Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 */
12
13#include <linux/errno.h>
14#include <linux/sched.h>
15#include <linux/sched/debug.h>
16#include <linux/sched/task.h>
17#include <linux/sched/task_stack.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/unistd.h>
23#include <linux/ptrace.h>
24#include <linux/slab.h>
25#include <linux/user.h>
26#include <linux/elf.h>
27#include <linux/prctl.h>
28#include <linux/init_task.h>
29#include <linux/export.h>
30#include <linux/kallsyms.h>
31#include <linux/mqueue.h>
32#include <linux/hardirq.h>
33#include <linux/utsname.h>
34#include <linux/ftrace.h>
35#include <linux/kernel_stat.h>
36#include <linux/personality.h>
37#include <linux/random.h>
38#include <linux/hw_breakpoint.h>
39#include <linux/uaccess.h>
40#include <linux/elf-randomize.h>
41#include <linux/pkeys.h>
42#include <linux/seq_buf.h>
43
44#include <asm/interrupt.h>
45#include <asm/io.h>
46#include <asm/processor.h>
47#include <asm/mmu.h>
48#include <asm/prom.h>
49#include <asm/machdep.h>
50#include <asm/time.h>
51#include <asm/runlatch.h>
52#include <asm/syscalls.h>
53#include <asm/switch_to.h>
54#include <asm/tm.h>
55#include <asm/debug.h>
56#ifdef CONFIG_PPC64
57#include <asm/firmware.h>
58#include <asm/hw_irq.h>
59#endif
60#include <asm/code-patching.h>
61#include <asm/exec.h>
62#include <asm/livepatch.h>
63#include <asm/cpu_has_feature.h>
64#include <asm/asm-prototypes.h>
65#include <asm/stacktrace.h>
66#include <asm/hw_breakpoint.h>
67
68#include <linux/kprobes.h>
69#include <linux/kdebug.h>
70
71/* Transactional Memory debug */
72#ifdef TM_DEBUG_SW
73#define TM_DEBUG(x...) printk(KERN_INFO x)
74#else
75#define TM_DEBUG(x...) do { } while(0)
76#endif
77
78extern unsigned long _get_SP(void);
79
80#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81/*
82 * Are we running in "Suspend disabled" mode? If so we have to block any
83 * sigreturn that would get us into suspended state, and we also warn in some
84 * other paths that we should never reach with suspend disabled.
85 */
86bool tm_suspend_disabled __ro_after_init = false;
87
88static void check_if_tm_restore_required(struct task_struct *tsk)
89{
90 /*
91 * If we are saving the current thread's registers, and the
92 * thread is in a transactional state, set the TIF_RESTORE_TM
93 * bit so that we know to restore the registers before
94 * returning to userspace.
95 */
96 if (tsk == current && tsk->thread.regs &&
97 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98 !test_thread_flag(TIF_RESTORE_TM)) {
99 regs_set_return_msr(&tsk->thread.ckpt_regs,
100 tsk->thread.regs->msr);
101 set_thread_flag(TIF_RESTORE_TM);
102 }
103}
104
105#else
106static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
107#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
108
109bool strict_msr_control;
110EXPORT_SYMBOL(strict_msr_control);
111
112static int __init enable_strict_msr_control(char *str)
113{
114 strict_msr_control = true;
115 pr_info("Enabling strict facility control\n");
116
117 return 0;
118}
119early_param("ppc_strict_facility_enable", enable_strict_msr_control);
120
121/* notrace because it's called by restore_math */
122unsigned long notrace msr_check_and_set(unsigned long bits)
123{
124 unsigned long oldmsr = mfmsr();
125 unsigned long newmsr;
126
127 newmsr = oldmsr | bits;
128
129 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
130 newmsr |= MSR_VSX;
131
132 if (oldmsr != newmsr)
133 mtmsr_isync(newmsr);
134
135 return newmsr;
136}
137EXPORT_SYMBOL_GPL(msr_check_and_set);
138
139/* notrace because it's called by restore_math */
140void notrace __msr_check_and_clear(unsigned long bits)
141{
142 unsigned long oldmsr = mfmsr();
143 unsigned long newmsr;
144
145 newmsr = oldmsr & ~bits;
146
147 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
148 newmsr &= ~MSR_VSX;
149
150 if (oldmsr != newmsr)
151 mtmsr_isync(newmsr);
152}
153EXPORT_SYMBOL(__msr_check_and_clear);
154
155#ifdef CONFIG_PPC_FPU
156static void __giveup_fpu(struct task_struct *tsk)
157{
158 unsigned long msr;
159
160 save_fpu(tsk);
161 msr = tsk->thread.regs->msr;
162 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
163 if (cpu_has_feature(CPU_FTR_VSX))
164 msr &= ~MSR_VSX;
165 regs_set_return_msr(tsk->thread.regs, msr);
166}
167
168void giveup_fpu(struct task_struct *tsk)
169{
170 check_if_tm_restore_required(tsk);
171
172 msr_check_and_set(MSR_FP);
173 __giveup_fpu(tsk);
174 msr_check_and_clear(MSR_FP);
175}
176EXPORT_SYMBOL(giveup_fpu);
177
178/*
179 * Make sure the floating-point register state in the
180 * the thread_struct is up to date for task tsk.
181 */
182void flush_fp_to_thread(struct task_struct *tsk)
183{
184 if (tsk->thread.regs) {
185 /*
186 * We need to disable preemption here because if we didn't,
187 * another process could get scheduled after the regs->msr
188 * test but before we have finished saving the FP registers
189 * to the thread_struct. That process could take over the
190 * FPU, and then when we get scheduled again we would store
191 * bogus values for the remaining FP registers.
192 */
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_FP) {
195 /*
196 * This should only ever be called for current or
197 * for a stopped child process. Since we save away
198 * the FP register state on context switch,
199 * there is something wrong if a stopped child appears
200 * to still have its FP state in the CPU registers.
201 */
202 BUG_ON(tsk != current);
203 giveup_fpu(tsk);
204 }
205 preempt_enable();
206 }
207}
208EXPORT_SYMBOL_GPL(flush_fp_to_thread);
209
210void enable_kernel_fp(void)
211{
212 unsigned long cpumsr;
213
214 WARN_ON(preemptible());
215
216 cpumsr = msr_check_and_set(MSR_FP);
217
218 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
219 check_if_tm_restore_required(current);
220 /*
221 * If a thread has already been reclaimed then the
222 * checkpointed registers are on the CPU but have definitely
223 * been saved by the reclaim code. Don't need to and *cannot*
224 * giveup as this would save to the 'live' structure not the
225 * checkpointed structure.
226 */
227 if (!MSR_TM_ACTIVE(cpumsr) &&
228 MSR_TM_ACTIVE(current->thread.regs->msr))
229 return;
230 __giveup_fpu(current);
231 }
232}
233EXPORT_SYMBOL(enable_kernel_fp);
234#else
235static inline void __giveup_fpu(struct task_struct *tsk) { }
236#endif /* CONFIG_PPC_FPU */
237
238#ifdef CONFIG_ALTIVEC
239static void __giveup_altivec(struct task_struct *tsk)
240{
241 unsigned long msr;
242
243 save_altivec(tsk);
244 msr = tsk->thread.regs->msr;
245 msr &= ~MSR_VEC;
246 if (cpu_has_feature(CPU_FTR_VSX))
247 msr &= ~MSR_VSX;
248 regs_set_return_msr(tsk->thread.regs, msr);
249}
250
251void giveup_altivec(struct task_struct *tsk)
252{
253 check_if_tm_restore_required(tsk);
254
255 msr_check_and_set(MSR_VEC);
256 __giveup_altivec(tsk);
257 msr_check_and_clear(MSR_VEC);
258}
259EXPORT_SYMBOL(giveup_altivec);
260
261void enable_kernel_altivec(void)
262{
263 unsigned long cpumsr;
264
265 WARN_ON(preemptible());
266
267 cpumsr = msr_check_and_set(MSR_VEC);
268
269 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
270 check_if_tm_restore_required(current);
271 /*
272 * If a thread has already been reclaimed then the
273 * checkpointed registers are on the CPU but have definitely
274 * been saved by the reclaim code. Don't need to and *cannot*
275 * giveup as this would save to the 'live' structure not the
276 * checkpointed structure.
277 */
278 if (!MSR_TM_ACTIVE(cpumsr) &&
279 MSR_TM_ACTIVE(current->thread.regs->msr))
280 return;
281 __giveup_altivec(current);
282 }
283}
284EXPORT_SYMBOL(enable_kernel_altivec);
285
286/*
287 * Make sure the VMX/Altivec register state in the
288 * the thread_struct is up to date for task tsk.
289 */
290void flush_altivec_to_thread(struct task_struct *tsk)
291{
292 if (tsk->thread.regs) {
293 preempt_disable();
294 if (tsk->thread.regs->msr & MSR_VEC) {
295 BUG_ON(tsk != current);
296 giveup_altivec(tsk);
297 }
298 preempt_enable();
299 }
300}
301EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
302#endif /* CONFIG_ALTIVEC */
303
304#ifdef CONFIG_VSX
305static void __giveup_vsx(struct task_struct *tsk)
306{
307 unsigned long msr = tsk->thread.regs->msr;
308
309 /*
310 * We should never be ssetting MSR_VSX without also setting
311 * MSR_FP and MSR_VEC
312 */
313 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
314
315 /* __giveup_fpu will clear MSR_VSX */
316 if (msr & MSR_FP)
317 __giveup_fpu(tsk);
318 if (msr & MSR_VEC)
319 __giveup_altivec(tsk);
320}
321
322static void giveup_vsx(struct task_struct *tsk)
323{
324 check_if_tm_restore_required(tsk);
325
326 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
327 __giveup_vsx(tsk);
328 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
329}
330
331void enable_kernel_vsx(void)
332{
333 unsigned long cpumsr;
334
335 WARN_ON(preemptible());
336
337 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
338
339 if (current->thread.regs &&
340 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
341 check_if_tm_restore_required(current);
342 /*
343 * If a thread has already been reclaimed then the
344 * checkpointed registers are on the CPU but have definitely
345 * been saved by the reclaim code. Don't need to and *cannot*
346 * giveup as this would save to the 'live' structure not the
347 * checkpointed structure.
348 */
349 if (!MSR_TM_ACTIVE(cpumsr) &&
350 MSR_TM_ACTIVE(current->thread.regs->msr))
351 return;
352 __giveup_vsx(current);
353 }
354}
355EXPORT_SYMBOL(enable_kernel_vsx);
356
357void flush_vsx_to_thread(struct task_struct *tsk)
358{
359 if (tsk->thread.regs) {
360 preempt_disable();
361 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
362 BUG_ON(tsk != current);
363 giveup_vsx(tsk);
364 }
365 preempt_enable();
366 }
367}
368EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
369#endif /* CONFIG_VSX */
370
371#ifdef CONFIG_SPE
372void giveup_spe(struct task_struct *tsk)
373{
374 check_if_tm_restore_required(tsk);
375
376 msr_check_and_set(MSR_SPE);
377 __giveup_spe(tsk);
378 msr_check_and_clear(MSR_SPE);
379}
380EXPORT_SYMBOL(giveup_spe);
381
382void enable_kernel_spe(void)
383{
384 WARN_ON(preemptible());
385
386 msr_check_and_set(MSR_SPE);
387
388 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
389 check_if_tm_restore_required(current);
390 __giveup_spe(current);
391 }
392}
393EXPORT_SYMBOL(enable_kernel_spe);
394
395void flush_spe_to_thread(struct task_struct *tsk)
396{
397 if (tsk->thread.regs) {
398 preempt_disable();
399 if (tsk->thread.regs->msr & MSR_SPE) {
400 BUG_ON(tsk != current);
401 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
402 giveup_spe(tsk);
403 }
404 preempt_enable();
405 }
406}
407#endif /* CONFIG_SPE */
408
409static unsigned long msr_all_available;
410
411static int __init init_msr_all_available(void)
412{
413 if (IS_ENABLED(CONFIG_PPC_FPU))
414 msr_all_available |= MSR_FP;
415 if (cpu_has_feature(CPU_FTR_ALTIVEC))
416 msr_all_available |= MSR_VEC;
417 if (cpu_has_feature(CPU_FTR_VSX))
418 msr_all_available |= MSR_VSX;
419 if (cpu_has_feature(CPU_FTR_SPE))
420 msr_all_available |= MSR_SPE;
421
422 return 0;
423}
424early_initcall(init_msr_all_available);
425
426void giveup_all(struct task_struct *tsk)
427{
428 unsigned long usermsr;
429
430 if (!tsk->thread.regs)
431 return;
432
433 check_if_tm_restore_required(tsk);
434
435 usermsr = tsk->thread.regs->msr;
436
437 if ((usermsr & msr_all_available) == 0)
438 return;
439
440 msr_check_and_set(msr_all_available);
441
442 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
443
444 if (usermsr & MSR_FP)
445 __giveup_fpu(tsk);
446 if (usermsr & MSR_VEC)
447 __giveup_altivec(tsk);
448 if (usermsr & MSR_SPE)
449 __giveup_spe(tsk);
450
451 msr_check_and_clear(msr_all_available);
452}
453EXPORT_SYMBOL(giveup_all);
454
455#ifdef CONFIG_PPC_BOOK3S_64
456#ifdef CONFIG_PPC_FPU
457static bool should_restore_fp(void)
458{
459 if (current->thread.load_fp) {
460 current->thread.load_fp++;
461 return true;
462 }
463 return false;
464}
465
466static void do_restore_fp(void)
467{
468 load_fp_state(¤t->thread.fp_state);
469}
470#else
471static bool should_restore_fp(void) { return false; }
472static void do_restore_fp(void) { }
473#endif /* CONFIG_PPC_FPU */
474
475#ifdef CONFIG_ALTIVEC
476static bool should_restore_altivec(void)
477{
478 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
479 current->thread.load_vec++;
480 return true;
481 }
482 return false;
483}
484
485static void do_restore_altivec(void)
486{
487 load_vr_state(¤t->thread.vr_state);
488 current->thread.used_vr = 1;
489}
490#else
491static bool should_restore_altivec(void) { return false; }
492static void do_restore_altivec(void) { }
493#endif /* CONFIG_ALTIVEC */
494
495static bool should_restore_vsx(void)
496{
497 if (cpu_has_feature(CPU_FTR_VSX))
498 return true;
499 return false;
500}
501#ifdef CONFIG_VSX
502static void do_restore_vsx(void)
503{
504 current->thread.used_vsr = 1;
505}
506#else
507static void do_restore_vsx(void) { }
508#endif /* CONFIG_VSX */
509
510/*
511 * The exception exit path calls restore_math() with interrupts hard disabled
512 * but the soft irq state not "reconciled". ftrace code that calls
513 * local_irq_save/restore causes warnings.
514 *
515 * Rather than complicate the exit path, just don't trace restore_math. This
516 * could be done by having ftrace entry code check for this un-reconciled
517 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
518 * temporarily fix it up for the duration of the ftrace call.
519 */
520void notrace restore_math(struct pt_regs *regs)
521{
522 unsigned long msr;
523 unsigned long new_msr = 0;
524
525 msr = regs->msr;
526
527 /*
528 * new_msr tracks the facilities that are to be restored. Only reload
529 * if the bit is not set in the user MSR (if it is set, the registers
530 * are live for the user thread).
531 */
532 if ((!(msr & MSR_FP)) && should_restore_fp())
533 new_msr |= MSR_FP;
534
535 if ((!(msr & MSR_VEC)) && should_restore_altivec())
536 new_msr |= MSR_VEC;
537
538 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
539 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
540 new_msr |= MSR_VSX;
541 }
542
543 if (new_msr) {
544 unsigned long fpexc_mode = 0;
545
546 msr_check_and_set(new_msr);
547
548 if (new_msr & MSR_FP) {
549 do_restore_fp();
550
551 // This also covers VSX, because VSX implies FP
552 fpexc_mode = current->thread.fpexc_mode;
553 }
554
555 if (new_msr & MSR_VEC)
556 do_restore_altivec();
557
558 if (new_msr & MSR_VSX)
559 do_restore_vsx();
560
561 msr_check_and_clear(new_msr);
562
563 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
564 }
565}
566#endif /* CONFIG_PPC_BOOK3S_64 */
567
568static void save_all(struct task_struct *tsk)
569{
570 unsigned long usermsr;
571
572 if (!tsk->thread.regs)
573 return;
574
575 usermsr = tsk->thread.regs->msr;
576
577 if ((usermsr & msr_all_available) == 0)
578 return;
579
580 msr_check_and_set(msr_all_available);
581
582 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
583
584 if (usermsr & MSR_FP)
585 save_fpu(tsk);
586
587 if (usermsr & MSR_VEC)
588 save_altivec(tsk);
589
590 if (usermsr & MSR_SPE)
591 __giveup_spe(tsk);
592
593 msr_check_and_clear(msr_all_available);
594}
595
596void flush_all_to_thread(struct task_struct *tsk)
597{
598 if (tsk->thread.regs) {
599 preempt_disable();
600 BUG_ON(tsk != current);
601#ifdef CONFIG_SPE
602 if (tsk->thread.regs->msr & MSR_SPE)
603 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
604#endif
605 save_all(tsk);
606
607 preempt_enable();
608 }
609}
610EXPORT_SYMBOL(flush_all_to_thread);
611
612#ifdef CONFIG_PPC_ADV_DEBUG_REGS
613void do_send_trap(struct pt_regs *regs, unsigned long address,
614 unsigned long error_code, int breakpt)
615{
616 current->thread.trap_nr = TRAP_HWBKPT;
617 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
618 11, SIGSEGV) == NOTIFY_STOP)
619 return;
620
621 /* Deliver the signal to userspace */
622 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
623 (void __user *)address);
624}
625#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
626
627static void do_break_handler(struct pt_regs *regs)
628{
629 struct arch_hw_breakpoint null_brk = {0};
630 struct arch_hw_breakpoint *info;
631 struct ppc_inst instr = ppc_inst(0);
632 int type = 0;
633 int size = 0;
634 unsigned long ea;
635 int i;
636
637 /*
638 * If underneath hw supports only one watchpoint, we know it
639 * caused exception. 8xx also falls into this category.
640 */
641 if (nr_wp_slots() == 1) {
642 __set_breakpoint(0, &null_brk);
643 current->thread.hw_brk[0] = null_brk;
644 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
645 return;
646 }
647
648 /* Otherwise findout which DAWR caused exception and disable it. */
649 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
650
651 for (i = 0; i < nr_wp_slots(); i++) {
652 info = ¤t->thread.hw_brk[i];
653 if (!info->address)
654 continue;
655
656 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
657 __set_breakpoint(i, &null_brk);
658 current->thread.hw_brk[i] = null_brk;
659 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
660 }
661 }
662}
663
664DEFINE_INTERRUPT_HANDLER(do_break)
665{
666 current->thread.trap_nr = TRAP_HWBKPT;
667 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
668 11, SIGSEGV) == NOTIFY_STOP)
669 return;
670
671 if (debugger_break_match(regs))
672 return;
673
674 /*
675 * We reach here only when watchpoint exception is generated by ptrace
676 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
677 * watchpoint is already handled by hw_breakpoint_handler() so we don't
678 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
679 * we need to manually handle the watchpoint here.
680 */
681 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
682 do_break_handler(regs);
683
684 /* Deliver the signal to userspace */
685 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
686}
687#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
688
689static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
690
691#ifdef CONFIG_PPC_ADV_DEBUG_REGS
692/*
693 * Set the debug registers back to their default "safe" values.
694 */
695static void set_debug_reg_defaults(struct thread_struct *thread)
696{
697 thread->debug.iac1 = thread->debug.iac2 = 0;
698#if CONFIG_PPC_ADV_DEBUG_IACS > 2
699 thread->debug.iac3 = thread->debug.iac4 = 0;
700#endif
701 thread->debug.dac1 = thread->debug.dac2 = 0;
702#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
703 thread->debug.dvc1 = thread->debug.dvc2 = 0;
704#endif
705 thread->debug.dbcr0 = 0;
706#ifdef CONFIG_BOOKE
707 /*
708 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
709 */
710 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
711 DBCR1_IAC3US | DBCR1_IAC4US;
712 /*
713 * Force Data Address Compare User/Supervisor bits to be User-only
714 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
715 */
716 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
717#else
718 thread->debug.dbcr1 = 0;
719#endif
720}
721
722static void prime_debug_regs(struct debug_reg *debug)
723{
724 /*
725 * We could have inherited MSR_DE from userspace, since
726 * it doesn't get cleared on exception entry. Make sure
727 * MSR_DE is clear before we enable any debug events.
728 */
729 mtmsr(mfmsr() & ~MSR_DE);
730
731 mtspr(SPRN_IAC1, debug->iac1);
732 mtspr(SPRN_IAC2, debug->iac2);
733#if CONFIG_PPC_ADV_DEBUG_IACS > 2
734 mtspr(SPRN_IAC3, debug->iac3);
735 mtspr(SPRN_IAC4, debug->iac4);
736#endif
737 mtspr(SPRN_DAC1, debug->dac1);
738 mtspr(SPRN_DAC2, debug->dac2);
739#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
740 mtspr(SPRN_DVC1, debug->dvc1);
741 mtspr(SPRN_DVC2, debug->dvc2);
742#endif
743 mtspr(SPRN_DBCR0, debug->dbcr0);
744 mtspr(SPRN_DBCR1, debug->dbcr1);
745#ifdef CONFIG_BOOKE
746 mtspr(SPRN_DBCR2, debug->dbcr2);
747#endif
748}
749/*
750 * Unless neither the old or new thread are making use of the
751 * debug registers, set the debug registers from the values
752 * stored in the new thread.
753 */
754void switch_booke_debug_regs(struct debug_reg *new_debug)
755{
756 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
757 || (new_debug->dbcr0 & DBCR0_IDM))
758 prime_debug_regs(new_debug);
759}
760EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
761#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
762#ifndef CONFIG_HAVE_HW_BREAKPOINT
763static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
764{
765 preempt_disable();
766 __set_breakpoint(i, brk);
767 preempt_enable();
768}
769
770static void set_debug_reg_defaults(struct thread_struct *thread)
771{
772 int i;
773 struct arch_hw_breakpoint null_brk = {0};
774
775 for (i = 0; i < nr_wp_slots(); i++) {
776 thread->hw_brk[i] = null_brk;
777 if (ppc_breakpoint_available())
778 set_breakpoint(i, &thread->hw_brk[i]);
779 }
780}
781
782static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
783 struct arch_hw_breakpoint *b)
784{
785 if (a->address != b->address)
786 return false;
787 if (a->type != b->type)
788 return false;
789 if (a->len != b->len)
790 return false;
791 /* no need to check hw_len. it's calculated from address and len */
792 return true;
793}
794
795static void switch_hw_breakpoint(struct task_struct *new)
796{
797 int i;
798
799 for (i = 0; i < nr_wp_slots(); i++) {
800 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]),
801 &new->thread.hw_brk[i])))
802 continue;
803
804 __set_breakpoint(i, &new->thread.hw_brk[i]);
805 }
806}
807#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
808#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
809
810static inline int set_dabr(struct arch_hw_breakpoint *brk)
811{
812 unsigned long dabr, dabrx;
813
814 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
815 dabrx = ((brk->type >> 3) & 0x7);
816
817 if (ppc_md.set_dabr)
818 return ppc_md.set_dabr(dabr, dabrx);
819
820 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
821 mtspr(SPRN_DAC1, dabr);
822 if (IS_ENABLED(CONFIG_PPC_47x))
823 isync();
824 return 0;
825 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
826 mtspr(SPRN_DABR, dabr);
827 if (cpu_has_feature(CPU_FTR_DABRX))
828 mtspr(SPRN_DABRX, dabrx);
829 return 0;
830 } else {
831 return -EINVAL;
832 }
833}
834
835static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
836{
837 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
838 LCTRL1_CRWF_RW;
839 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
840 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
841 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
842
843 if (start_addr == 0)
844 lctrl2 |= LCTRL2_LW0LA_F;
845 else if (end_addr == 0)
846 lctrl2 |= LCTRL2_LW0LA_E;
847 else
848 lctrl2 |= LCTRL2_LW0LA_EandF;
849
850 mtspr(SPRN_LCTRL2, 0);
851
852 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
853 return 0;
854
855 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
856 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
857 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
858 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
859
860 mtspr(SPRN_CMPE, start_addr - 1);
861 mtspr(SPRN_CMPF, end_addr);
862 mtspr(SPRN_LCTRL1, lctrl1);
863 mtspr(SPRN_LCTRL2, lctrl2);
864
865 return 0;
866}
867
868void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
869{
870 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk));
871
872 if (dawr_enabled())
873 // Power8 or later
874 set_dawr(nr, brk);
875 else if (IS_ENABLED(CONFIG_PPC_8xx))
876 set_breakpoint_8xx(brk);
877 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
878 // Power7 or earlier
879 set_dabr(brk);
880 else
881 // Shouldn't happen due to higher level checks
882 WARN_ON_ONCE(1);
883}
884
885/* Check if we have DAWR or DABR hardware */
886bool ppc_breakpoint_available(void)
887{
888 if (dawr_enabled())
889 return true; /* POWER8 DAWR or POWER9 forced DAWR */
890 if (cpu_has_feature(CPU_FTR_ARCH_207S))
891 return false; /* POWER9 with DAWR disabled */
892 /* DABR: Everything but POWER8 and POWER9 */
893 return true;
894}
895EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
896
897#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
898
899static inline bool tm_enabled(struct task_struct *tsk)
900{
901 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
902}
903
904static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
905{
906 /*
907 * Use the current MSR TM suspended bit to track if we have
908 * checkpointed state outstanding.
909 * On signal delivery, we'd normally reclaim the checkpointed
910 * state to obtain stack pointer (see:get_tm_stackpointer()).
911 * This will then directly return to userspace without going
912 * through __switch_to(). However, if the stack frame is bad,
913 * we need to exit this thread which calls __switch_to() which
914 * will again attempt to reclaim the already saved tm state.
915 * Hence we need to check that we've not already reclaimed
916 * this state.
917 * We do this using the current MSR, rather tracking it in
918 * some specific thread_struct bit, as it has the additional
919 * benefit of checking for a potential TM bad thing exception.
920 */
921 if (!MSR_TM_SUSPENDED(mfmsr()))
922 return;
923
924 giveup_all(container_of(thr, struct task_struct, thread));
925
926 tm_reclaim(thr, cause);
927
928 /*
929 * If we are in a transaction and FP is off then we can't have
930 * used FP inside that transaction. Hence the checkpointed
931 * state is the same as the live state. We need to copy the
932 * live state to the checkpointed state so that when the
933 * transaction is restored, the checkpointed state is correct
934 * and the aborted transaction sees the correct state. We use
935 * ckpt_regs.msr here as that's what tm_reclaim will use to
936 * determine if it's going to write the checkpointed state or
937 * not. So either this will write the checkpointed registers,
938 * or reclaim will. Similarly for VMX.
939 */
940 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
941 memcpy(&thr->ckfp_state, &thr->fp_state,
942 sizeof(struct thread_fp_state));
943 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
944 memcpy(&thr->ckvr_state, &thr->vr_state,
945 sizeof(struct thread_vr_state));
946}
947
948void tm_reclaim_current(uint8_t cause)
949{
950 tm_enable();
951 tm_reclaim_thread(¤t->thread, cause);
952}
953
954static inline void tm_reclaim_task(struct task_struct *tsk)
955{
956 /* We have to work out if we're switching from/to a task that's in the
957 * middle of a transaction.
958 *
959 * In switching we need to maintain a 2nd register state as
960 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
961 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
962 * ckvr_state
963 *
964 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
965 */
966 struct thread_struct *thr = &tsk->thread;
967
968 if (!thr->regs)
969 return;
970
971 if (!MSR_TM_ACTIVE(thr->regs->msr))
972 goto out_and_saveregs;
973
974 WARN_ON(tm_suspend_disabled);
975
976 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
977 "ccr=%lx, msr=%lx, trap=%lx)\n",
978 tsk->pid, thr->regs->nip,
979 thr->regs->ccr, thr->regs->msr,
980 thr->regs->trap);
981
982 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
983
984 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
985 tsk->pid);
986
987out_and_saveregs:
988 /* Always save the regs here, even if a transaction's not active.
989 * This context-switches a thread's TM info SPRs. We do it here to
990 * be consistent with the restore path (in recheckpoint) which
991 * cannot happen later in _switch().
992 */
993 tm_save_sprs(thr);
994}
995
996extern void __tm_recheckpoint(struct thread_struct *thread);
997
998void tm_recheckpoint(struct thread_struct *thread)
999{
1000 unsigned long flags;
1001
1002 if (!(thread->regs->msr & MSR_TM))
1003 return;
1004
1005 /* We really can't be interrupted here as the TEXASR registers can't
1006 * change and later in the trecheckpoint code, we have a userspace R1.
1007 * So let's hard disable over this region.
1008 */
1009 local_irq_save(flags);
1010 hard_irq_disable();
1011
1012 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1013 * before the trecheckpoint and no explosion occurs.
1014 */
1015 tm_restore_sprs(thread);
1016
1017 __tm_recheckpoint(thread);
1018
1019 local_irq_restore(flags);
1020}
1021
1022static inline void tm_recheckpoint_new_task(struct task_struct *new)
1023{
1024 if (!cpu_has_feature(CPU_FTR_TM))
1025 return;
1026
1027 /* Recheckpoint the registers of the thread we're about to switch to.
1028 *
1029 * If the task was using FP, we non-lazily reload both the original and
1030 * the speculative FP register states. This is because the kernel
1031 * doesn't see if/when a TM rollback occurs, so if we take an FP
1032 * unavailable later, we are unable to determine which set of FP regs
1033 * need to be restored.
1034 */
1035 if (!tm_enabled(new))
1036 return;
1037
1038 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1039 tm_restore_sprs(&new->thread);
1040 return;
1041 }
1042 /* Recheckpoint to restore original checkpointed register state. */
1043 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1044 new->pid, new->thread.regs->msr);
1045
1046 tm_recheckpoint(&new->thread);
1047
1048 /*
1049 * The checkpointed state has been restored but the live state has
1050 * not, ensure all the math functionality is turned off to trigger
1051 * restore_math() to reload.
1052 */
1053 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1054
1055 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1056 "(kernel msr 0x%lx)\n",
1057 new->pid, mfmsr());
1058}
1059
1060static inline void __switch_to_tm(struct task_struct *prev,
1061 struct task_struct *new)
1062{
1063 if (cpu_has_feature(CPU_FTR_TM)) {
1064 if (tm_enabled(prev) || tm_enabled(new))
1065 tm_enable();
1066
1067 if (tm_enabled(prev)) {
1068 prev->thread.load_tm++;
1069 tm_reclaim_task(prev);
1070 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1071 prev->thread.regs->msr &= ~MSR_TM;
1072 }
1073
1074 tm_recheckpoint_new_task(new);
1075 }
1076}
1077
1078/*
1079 * This is called if we are on the way out to userspace and the
1080 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1081 * FP and/or vector state and does so if necessary.
1082 * If userspace is inside a transaction (whether active or
1083 * suspended) and FP/VMX/VSX instructions have ever been enabled
1084 * inside that transaction, then we have to keep them enabled
1085 * and keep the FP/VMX/VSX state loaded while ever the transaction
1086 * continues. The reason is that if we didn't, and subsequently
1087 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1088 * we don't know whether it's the same transaction, and thus we
1089 * don't know which of the checkpointed state and the transactional
1090 * state to use.
1091 */
1092void restore_tm_state(struct pt_regs *regs)
1093{
1094 unsigned long msr_diff;
1095
1096 /*
1097 * This is the only moment we should clear TIF_RESTORE_TM as
1098 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1099 * again, anything else could lead to an incorrect ckpt_msr being
1100 * saved and therefore incorrect signal contexts.
1101 */
1102 clear_thread_flag(TIF_RESTORE_TM);
1103 if (!MSR_TM_ACTIVE(regs->msr))
1104 return;
1105
1106 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1107 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1108
1109 /* Ensure that restore_math() will restore */
1110 if (msr_diff & MSR_FP)
1111 current->thread.load_fp = 1;
1112#ifdef CONFIG_ALTIVEC
1113 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1114 current->thread.load_vec = 1;
1115#endif
1116 restore_math(regs);
1117
1118 regs_set_return_msr(regs, regs->msr | msr_diff);
1119}
1120
1121#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1122#define tm_recheckpoint_new_task(new)
1123#define __switch_to_tm(prev, new)
1124void tm_reclaim_current(uint8_t cause) {}
1125#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1126
1127static inline void save_sprs(struct thread_struct *t)
1128{
1129#ifdef CONFIG_ALTIVEC
1130 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1131 t->vrsave = mfspr(SPRN_VRSAVE);
1132#endif
1133#ifdef CONFIG_SPE
1134 if (cpu_has_feature(CPU_FTR_SPE))
1135 t->spefscr = mfspr(SPRN_SPEFSCR);
1136#endif
1137#ifdef CONFIG_PPC_BOOK3S_64
1138 if (cpu_has_feature(CPU_FTR_DSCR))
1139 t->dscr = mfspr(SPRN_DSCR);
1140
1141 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1142 t->bescr = mfspr(SPRN_BESCR);
1143 t->ebbhr = mfspr(SPRN_EBBHR);
1144 t->ebbrr = mfspr(SPRN_EBBRR);
1145
1146 t->fscr = mfspr(SPRN_FSCR);
1147
1148 /*
1149 * Note that the TAR is not available for use in the kernel.
1150 * (To provide this, the TAR should be backed up/restored on
1151 * exception entry/exit instead, and be in pt_regs. FIXME,
1152 * this should be in pt_regs anyway (for debug).)
1153 */
1154 t->tar = mfspr(SPRN_TAR);
1155 }
1156#endif
1157}
1158
1159static inline void restore_sprs(struct thread_struct *old_thread,
1160 struct thread_struct *new_thread)
1161{
1162#ifdef CONFIG_ALTIVEC
1163 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1164 old_thread->vrsave != new_thread->vrsave)
1165 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1166#endif
1167#ifdef CONFIG_SPE
1168 if (cpu_has_feature(CPU_FTR_SPE) &&
1169 old_thread->spefscr != new_thread->spefscr)
1170 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1171#endif
1172#ifdef CONFIG_PPC_BOOK3S_64
1173 if (cpu_has_feature(CPU_FTR_DSCR)) {
1174 u64 dscr = get_paca()->dscr_default;
1175 if (new_thread->dscr_inherit)
1176 dscr = new_thread->dscr;
1177
1178 if (old_thread->dscr != dscr)
1179 mtspr(SPRN_DSCR, dscr);
1180 }
1181
1182 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1183 if (old_thread->bescr != new_thread->bescr)
1184 mtspr(SPRN_BESCR, new_thread->bescr);
1185 if (old_thread->ebbhr != new_thread->ebbhr)
1186 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1187 if (old_thread->ebbrr != new_thread->ebbrr)
1188 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1189
1190 if (old_thread->fscr != new_thread->fscr)
1191 mtspr(SPRN_FSCR, new_thread->fscr);
1192
1193 if (old_thread->tar != new_thread->tar)
1194 mtspr(SPRN_TAR, new_thread->tar);
1195 }
1196
1197 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1198 old_thread->tidr != new_thread->tidr)
1199 mtspr(SPRN_TIDR, new_thread->tidr);
1200#endif
1201
1202}
1203
1204struct task_struct *__switch_to(struct task_struct *prev,
1205 struct task_struct *new)
1206{
1207 struct thread_struct *new_thread, *old_thread;
1208 struct task_struct *last;
1209#ifdef CONFIG_PPC_BOOK3S_64
1210 struct ppc64_tlb_batch *batch;
1211#endif
1212
1213 new_thread = &new->thread;
1214 old_thread = ¤t->thread;
1215
1216 WARN_ON(!irqs_disabled());
1217
1218#ifdef CONFIG_PPC_BOOK3S_64
1219 batch = this_cpu_ptr(&ppc64_tlb_batch);
1220 if (batch->active) {
1221 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1222 if (batch->index)
1223 __flush_tlb_pending(batch);
1224 batch->active = 0;
1225 }
1226
1227 /*
1228 * On POWER9 the copy-paste buffer can only paste into
1229 * foreign real addresses, so unprivileged processes can not
1230 * see the data or use it in any way unless they have
1231 * foreign real mappings. If the new process has the foreign
1232 * real address mappings, we must issue a cp_abort to clear
1233 * any state and prevent snooping, corruption or a covert
1234 * channel. ISA v3.1 supports paste into local memory.
1235 */
1236 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1237 atomic_read(&new->mm->context.vas_windows)))
1238 asm volatile(PPC_CP_ABORT);
1239#endif /* CONFIG_PPC_BOOK3S_64 */
1240
1241#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1242 switch_booke_debug_regs(&new->thread.debug);
1243#else
1244/*
1245 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1246 * schedule DABR
1247 */
1248#ifndef CONFIG_HAVE_HW_BREAKPOINT
1249 switch_hw_breakpoint(new);
1250#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1251#endif
1252
1253 /*
1254 * We need to save SPRs before treclaim/trecheckpoint as these will
1255 * change a number of them.
1256 */
1257 save_sprs(&prev->thread);
1258
1259 /* Save FPU, Altivec, VSX and SPE state */
1260 giveup_all(prev);
1261
1262 __switch_to_tm(prev, new);
1263
1264 if (!radix_enabled()) {
1265 /*
1266 * We can't take a PMU exception inside _switch() since there
1267 * is a window where the kernel stack SLB and the kernel stack
1268 * are out of sync. Hard disable here.
1269 */
1270 hard_irq_disable();
1271 }
1272
1273 /*
1274 * Call restore_sprs() and set_return_regs_changed() before calling
1275 * _switch(). If we move it after _switch() then we miss out on calling
1276 * it for new tasks. The reason for this is we manually create a stack
1277 * frame for new tasks that directly returns through ret_from_fork() or
1278 * ret_from_kernel_thread(). See copy_thread() for details.
1279 */
1280 restore_sprs(old_thread, new_thread);
1281
1282 set_return_regs_changed(); /* _switch changes stack (and regs) */
1283
1284#ifdef CONFIG_PPC32
1285 kuap_assert_locked();
1286#endif
1287 last = _switch(old_thread, new_thread);
1288
1289 /*
1290 * Nothing after _switch will be run for newly created tasks,
1291 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1292 * etc. Code added here should have a comment explaining why that is
1293 * okay.
1294 */
1295
1296#ifdef CONFIG_PPC_BOOK3S_64
1297 /*
1298 * This applies to a process that was context switched while inside
1299 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1300 * deactivated above, before _switch(). This will never be the case
1301 * for new tasks.
1302 */
1303 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1304 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1305 batch = this_cpu_ptr(&ppc64_tlb_batch);
1306 batch->active = 1;
1307 }
1308
1309 /*
1310 * Math facilities are masked out of the child MSR in copy_thread.
1311 * A new task does not need to restore_math because it will
1312 * demand fault them.
1313 */
1314 if (current->thread.regs)
1315 restore_math(current->thread.regs);
1316#endif /* CONFIG_PPC_BOOK3S_64 */
1317
1318 return last;
1319}
1320
1321#define NR_INSN_TO_PRINT 16
1322
1323static void show_instructions(struct pt_regs *regs)
1324{
1325 int i;
1326 unsigned long nip = regs->nip;
1327 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1328
1329 printk("Instruction dump:");
1330
1331 /*
1332 * If we were executing with the MMU off for instructions, adjust pc
1333 * rather than printing XXXXXXXX.
1334 */
1335 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1336 pc = (unsigned long)phys_to_virt(pc);
1337 nip = (unsigned long)phys_to_virt(regs->nip);
1338 }
1339
1340 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1341 int instr;
1342
1343 if (!(i % 8))
1344 pr_cont("\n");
1345
1346 if (!__kernel_text_address(pc) ||
1347 get_kernel_nofault(instr, (const void *)pc)) {
1348 pr_cont("XXXXXXXX ");
1349 } else {
1350 if (nip == pc)
1351 pr_cont("<%08x> ", instr);
1352 else
1353 pr_cont("%08x ", instr);
1354 }
1355
1356 pc += sizeof(int);
1357 }
1358
1359 pr_cont("\n");
1360}
1361
1362void show_user_instructions(struct pt_regs *regs)
1363{
1364 unsigned long pc;
1365 int n = NR_INSN_TO_PRINT;
1366 struct seq_buf s;
1367 char buf[96]; /* enough for 8 times 9 + 2 chars */
1368
1369 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1370
1371 seq_buf_init(&s, buf, sizeof(buf));
1372
1373 while (n) {
1374 int i;
1375
1376 seq_buf_clear(&s);
1377
1378 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1379 int instr;
1380
1381 if (copy_from_user_nofault(&instr, (void __user *)pc,
1382 sizeof(instr))) {
1383 seq_buf_printf(&s, "XXXXXXXX ");
1384 continue;
1385 }
1386 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1387 }
1388
1389 if (!seq_buf_has_overflowed(&s))
1390 pr_info("%s[%d]: code: %s\n", current->comm,
1391 current->pid, s.buffer);
1392 }
1393}
1394
1395struct regbit {
1396 unsigned long bit;
1397 const char *name;
1398};
1399
1400static struct regbit msr_bits[] = {
1401#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1402 {MSR_SF, "SF"},
1403 {MSR_HV, "HV"},
1404#endif
1405 {MSR_VEC, "VEC"},
1406 {MSR_VSX, "VSX"},
1407#ifdef CONFIG_BOOKE
1408 {MSR_CE, "CE"},
1409#endif
1410 {MSR_EE, "EE"},
1411 {MSR_PR, "PR"},
1412 {MSR_FP, "FP"},
1413 {MSR_ME, "ME"},
1414#ifdef CONFIG_BOOKE
1415 {MSR_DE, "DE"},
1416#else
1417 {MSR_SE, "SE"},
1418 {MSR_BE, "BE"},
1419#endif
1420 {MSR_IR, "IR"},
1421 {MSR_DR, "DR"},
1422 {MSR_PMM, "PMM"},
1423#ifndef CONFIG_BOOKE
1424 {MSR_RI, "RI"},
1425 {MSR_LE, "LE"},
1426#endif
1427 {0, NULL}
1428};
1429
1430static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1431{
1432 const char *s = "";
1433
1434 for (; bits->bit; ++bits)
1435 if (val & bits->bit) {
1436 pr_cont("%s%s", s, bits->name);
1437 s = sep;
1438 }
1439}
1440
1441#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1442static struct regbit msr_tm_bits[] = {
1443 {MSR_TS_T, "T"},
1444 {MSR_TS_S, "S"},
1445 {MSR_TM, "E"},
1446 {0, NULL}
1447};
1448
1449static void print_tm_bits(unsigned long val)
1450{
1451/*
1452 * This only prints something if at least one of the TM bit is set.
1453 * Inside the TM[], the output means:
1454 * E: Enabled (bit 32)
1455 * S: Suspended (bit 33)
1456 * T: Transactional (bit 34)
1457 */
1458 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1459 pr_cont(",TM[");
1460 print_bits(val, msr_tm_bits, "");
1461 pr_cont("]");
1462 }
1463}
1464#else
1465static void print_tm_bits(unsigned long val) {}
1466#endif
1467
1468static void print_msr_bits(unsigned long val)
1469{
1470 pr_cont("<");
1471 print_bits(val, msr_bits, ",");
1472 print_tm_bits(val);
1473 pr_cont(">");
1474}
1475
1476#ifdef CONFIG_PPC64
1477#define REG "%016lx"
1478#define REGS_PER_LINE 4
1479#else
1480#define REG "%08lx"
1481#define REGS_PER_LINE 8
1482#endif
1483
1484static void __show_regs(struct pt_regs *regs)
1485{
1486 int i, trap;
1487
1488 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1489 regs->nip, regs->link, regs->ctr);
1490 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1491 regs, regs->trap, print_tainted(), init_utsname()->release);
1492 printk("MSR: "REG" ", regs->msr);
1493 print_msr_bits(regs->msr);
1494 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1495 trap = TRAP(regs);
1496 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1497 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1498 if (trap == INTERRUPT_MACHINE_CHECK ||
1499 trap == INTERRUPT_DATA_STORAGE ||
1500 trap == INTERRUPT_ALIGNMENT) {
1501 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1502 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1503 else
1504 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1505 }
1506
1507#ifdef CONFIG_PPC64
1508 pr_cont("IRQMASK: %lx ", regs->softe);
1509#endif
1510#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1511 if (MSR_TM_ACTIVE(regs->msr))
1512 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1513#endif
1514
1515 for (i = 0; i < 32; i++) {
1516 if ((i % REGS_PER_LINE) == 0)
1517 pr_cont("\nGPR%02d: ", i);
1518 pr_cont(REG " ", regs->gpr[i]);
1519 }
1520 pr_cont("\n");
1521 /*
1522 * Lookup NIP late so we have the best change of getting the
1523 * above info out without failing
1524 */
1525 if (IS_ENABLED(CONFIG_KALLSYMS)) {
1526 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1527 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1528 }
1529}
1530
1531void show_regs(struct pt_regs *regs)
1532{
1533 show_regs_print_info(KERN_DEFAULT);
1534 __show_regs(regs);
1535 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1536 if (!user_mode(regs))
1537 show_instructions(regs);
1538}
1539
1540void flush_thread(void)
1541{
1542#ifdef CONFIG_HAVE_HW_BREAKPOINT
1543 flush_ptrace_hw_breakpoint(current);
1544#else /* CONFIG_HAVE_HW_BREAKPOINT */
1545 set_debug_reg_defaults(¤t->thread);
1546#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1547}
1548
1549void arch_setup_new_exec(void)
1550{
1551
1552#ifdef CONFIG_PPC_BOOK3S_64
1553 if (!radix_enabled())
1554 hash__setup_new_exec();
1555#endif
1556 /*
1557 * If we exec out of a kernel thread then thread.regs will not be
1558 * set. Do it now.
1559 */
1560 if (!current->thread.regs) {
1561 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1562 current->thread.regs = regs - 1;
1563 }
1564
1565#ifdef CONFIG_PPC_MEM_KEYS
1566 current->thread.regs->amr = default_amr;
1567 current->thread.regs->iamr = default_iamr;
1568#endif
1569}
1570
1571#ifdef CONFIG_PPC64
1572/**
1573 * Assign a TIDR (thread ID) for task @t and set it in the thread
1574 * structure. For now, we only support setting TIDR for 'current' task.
1575 *
1576 * Since the TID value is a truncated form of it PID, it is possible
1577 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1578 * that 2 threads share the same TID and are waiting, one of the following
1579 * cases will happen:
1580 *
1581 * 1. The correct thread is running, the wrong thread is not
1582 * In this situation, the correct thread is woken and proceeds to pass it's
1583 * condition check.
1584 *
1585 * 2. Neither threads are running
1586 * In this situation, neither thread will be woken. When scheduled, the waiting
1587 * threads will execute either a wait, which will return immediately, followed
1588 * by a condition check, which will pass for the correct thread and fail
1589 * for the wrong thread, or they will execute the condition check immediately.
1590 *
1591 * 3. The wrong thread is running, the correct thread is not
1592 * The wrong thread will be woken, but will fail it's condition check and
1593 * re-execute wait. The correct thread, when scheduled, will execute either
1594 * it's condition check (which will pass), or wait, which returns immediately
1595 * when called the first time after the thread is scheduled, followed by it's
1596 * condition check (which will pass).
1597 *
1598 * 4. Both threads are running
1599 * Both threads will be woken. The wrong thread will fail it's condition check
1600 * and execute another wait, while the correct thread will pass it's condition
1601 * check.
1602 *
1603 * @t: the task to set the thread ID for
1604 */
1605int set_thread_tidr(struct task_struct *t)
1606{
1607 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1608 return -EINVAL;
1609
1610 if (t != current)
1611 return -EINVAL;
1612
1613 if (t->thread.tidr)
1614 return 0;
1615
1616 t->thread.tidr = (u16)task_pid_nr(t);
1617 mtspr(SPRN_TIDR, t->thread.tidr);
1618
1619 return 0;
1620}
1621EXPORT_SYMBOL_GPL(set_thread_tidr);
1622
1623#endif /* CONFIG_PPC64 */
1624
1625void
1626release_thread(struct task_struct *t)
1627{
1628}
1629
1630/*
1631 * this gets called so that we can store coprocessor state into memory and
1632 * copy the current task into the new thread.
1633 */
1634int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1635{
1636 flush_all_to_thread(src);
1637 /*
1638 * Flush TM state out so we can copy it. __switch_to_tm() does this
1639 * flush but it removes the checkpointed state from the current CPU and
1640 * transitions the CPU out of TM mode. Hence we need to call
1641 * tm_recheckpoint_new_task() (on the same task) to restore the
1642 * checkpointed state back and the TM mode.
1643 *
1644 * Can't pass dst because it isn't ready. Doesn't matter, passing
1645 * dst is only important for __switch_to()
1646 */
1647 __switch_to_tm(src, src);
1648
1649 *dst = *src;
1650
1651 clear_task_ebb(dst);
1652
1653 return 0;
1654}
1655
1656static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1657{
1658#ifdef CONFIG_PPC_BOOK3S_64
1659 unsigned long sp_vsid;
1660 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1661
1662 if (radix_enabled())
1663 return;
1664
1665 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1666 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1667 << SLB_VSID_SHIFT_1T;
1668 else
1669 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1670 << SLB_VSID_SHIFT;
1671 sp_vsid |= SLB_VSID_KERNEL | llp;
1672 p->thread.ksp_vsid = sp_vsid;
1673#endif
1674}
1675
1676/*
1677 * Copy a thread..
1678 */
1679
1680/*
1681 * Copy architecture-specific thread state
1682 */
1683int copy_thread(unsigned long clone_flags, unsigned long usp,
1684 unsigned long kthread_arg, struct task_struct *p,
1685 unsigned long tls)
1686{
1687 struct pt_regs *childregs, *kregs;
1688 extern void ret_from_fork(void);
1689 extern void ret_from_fork_scv(void);
1690 extern void ret_from_kernel_thread(void);
1691 void (*f)(void);
1692 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1693 struct thread_info *ti = task_thread_info(p);
1694#ifdef CONFIG_HAVE_HW_BREAKPOINT
1695 int i;
1696#endif
1697
1698 klp_init_thread_info(p);
1699
1700 /* Copy registers */
1701 sp -= sizeof(struct pt_regs);
1702 childregs = (struct pt_regs *) sp;
1703 if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
1704 /* kernel thread */
1705 memset(childregs, 0, sizeof(struct pt_regs));
1706 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1707 /* function */
1708 if (usp)
1709 childregs->gpr[14] = ppc_function_entry((void *)usp);
1710#ifdef CONFIG_PPC64
1711 clear_tsk_thread_flag(p, TIF_32BIT);
1712 childregs->softe = IRQS_ENABLED;
1713#endif
1714 childregs->gpr[15] = kthread_arg;
1715 p->thread.regs = NULL; /* no user register state */
1716 ti->flags |= _TIF_RESTOREALL;
1717 f = ret_from_kernel_thread;
1718 } else {
1719 /* user thread */
1720 struct pt_regs *regs = current_pt_regs();
1721 *childregs = *regs;
1722 if (usp)
1723 childregs->gpr[1] = usp;
1724 p->thread.regs = childregs;
1725 /* 64s sets this in ret_from_fork */
1726 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1727 childregs->gpr[3] = 0; /* Result from fork() */
1728 if (clone_flags & CLONE_SETTLS) {
1729 if (!is_32bit_task())
1730 childregs->gpr[13] = tls;
1731 else
1732 childregs->gpr[2] = tls;
1733 }
1734
1735 if (trap_is_scv(regs))
1736 f = ret_from_fork_scv;
1737 else
1738 f = ret_from_fork;
1739 }
1740 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1741 sp -= STACK_FRAME_OVERHEAD;
1742
1743 /*
1744 * The way this works is that at some point in the future
1745 * some task will call _switch to switch to the new task.
1746 * That will pop off the stack frame created below and start
1747 * the new task running at ret_from_fork. The new task will
1748 * do some house keeping and then return from the fork or clone
1749 * system call, using the stack frame created above.
1750 */
1751 ((unsigned long *)sp)[0] = 0;
1752 sp -= sizeof(struct pt_regs);
1753 kregs = (struct pt_regs *) sp;
1754 sp -= STACK_FRAME_OVERHEAD;
1755 p->thread.ksp = sp;
1756#ifdef CONFIG_HAVE_HW_BREAKPOINT
1757 for (i = 0; i < nr_wp_slots(); i++)
1758 p->thread.ptrace_bps[i] = NULL;
1759#endif
1760
1761#ifdef CONFIG_PPC_FPU_REGS
1762 p->thread.fp_save_area = NULL;
1763#endif
1764#ifdef CONFIG_ALTIVEC
1765 p->thread.vr_save_area = NULL;
1766#endif
1767#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1768 p->thread.kuap = KUAP_NONE;
1769#endif
1770
1771 setup_ksp_vsid(p, sp);
1772
1773#ifdef CONFIG_PPC64
1774 if (cpu_has_feature(CPU_FTR_DSCR)) {
1775 p->thread.dscr_inherit = current->thread.dscr_inherit;
1776 p->thread.dscr = mfspr(SPRN_DSCR);
1777 }
1778 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1779 childregs->ppr = DEFAULT_PPR;
1780
1781 p->thread.tidr = 0;
1782#endif
1783 /*
1784 * Run with the current AMR value of the kernel
1785 */
1786#ifdef CONFIG_PPC_PKEY
1787 if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1788 kregs->amr = AMR_KUAP_BLOCKED;
1789
1790 if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1791 kregs->iamr = AMR_KUEP_BLOCKED;
1792#endif
1793 kregs->nip = ppc_function_entry(f);
1794 return 0;
1795}
1796
1797void preload_new_slb_context(unsigned long start, unsigned long sp);
1798
1799/*
1800 * Set up a thread for executing a new program
1801 */
1802void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1803{
1804#ifdef CONFIG_PPC64
1805 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1806
1807 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1808 preload_new_slb_context(start, sp);
1809#endif
1810
1811#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1812 /*
1813 * Clear any transactional state, we're exec()ing. The cause is
1814 * not important as there will never be a recheckpoint so it's not
1815 * user visible.
1816 */
1817 if (MSR_TM_SUSPENDED(mfmsr()))
1818 tm_reclaim_current(0);
1819#endif
1820
1821 memset(regs->gpr, 0, sizeof(regs->gpr));
1822 regs->ctr = 0;
1823 regs->link = 0;
1824 regs->xer = 0;
1825 regs->ccr = 0;
1826 regs->gpr[1] = sp;
1827
1828#ifdef CONFIG_PPC32
1829 regs->mq = 0;
1830 regs->nip = start;
1831 regs->msr = MSR_USER;
1832#else
1833 if (!is_32bit_task()) {
1834 unsigned long entry;
1835
1836 if (is_elf2_task()) {
1837 /* Look ma, no function descriptors! */
1838 entry = start;
1839
1840 /*
1841 * Ulrich says:
1842 * The latest iteration of the ABI requires that when
1843 * calling a function (at its global entry point),
1844 * the caller must ensure r12 holds the entry point
1845 * address (so that the function can quickly
1846 * establish addressability).
1847 */
1848 regs->gpr[12] = start;
1849 /* Make sure that's restored on entry to userspace. */
1850 set_thread_flag(TIF_RESTOREALL);
1851 } else {
1852 unsigned long toc;
1853
1854 /* start is a relocated pointer to the function
1855 * descriptor for the elf _start routine. The first
1856 * entry in the function descriptor is the entry
1857 * address of _start and the second entry is the TOC
1858 * value we need to use.
1859 */
1860 __get_user(entry, (unsigned long __user *)start);
1861 __get_user(toc, (unsigned long __user *)start+1);
1862
1863 /* Check whether the e_entry function descriptor entries
1864 * need to be relocated before we can use them.
1865 */
1866 if (load_addr != 0) {
1867 entry += load_addr;
1868 toc += load_addr;
1869 }
1870 regs->gpr[2] = toc;
1871 }
1872 regs_set_return_ip(regs, entry);
1873 regs_set_return_msr(regs, MSR_USER64);
1874 } else {
1875 regs->gpr[2] = 0;
1876 regs_set_return_ip(regs, start);
1877 regs_set_return_msr(regs, MSR_USER32);
1878 }
1879
1880#endif
1881#ifdef CONFIG_VSX
1882 current->thread.used_vsr = 0;
1883#endif
1884 current->thread.load_slb = 0;
1885 current->thread.load_fp = 0;
1886#ifdef CONFIG_PPC_FPU_REGS
1887 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1888 current->thread.fp_save_area = NULL;
1889#endif
1890#ifdef CONFIG_ALTIVEC
1891 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1892 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1893 current->thread.vr_save_area = NULL;
1894 current->thread.vrsave = 0;
1895 current->thread.used_vr = 0;
1896 current->thread.load_vec = 0;
1897#endif /* CONFIG_ALTIVEC */
1898#ifdef CONFIG_SPE
1899 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1900 current->thread.acc = 0;
1901 current->thread.spefscr = 0;
1902 current->thread.used_spe = 0;
1903#endif /* CONFIG_SPE */
1904#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1905 current->thread.tm_tfhar = 0;
1906 current->thread.tm_texasr = 0;
1907 current->thread.tm_tfiar = 0;
1908 current->thread.load_tm = 0;
1909#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1910}
1911EXPORT_SYMBOL(start_thread);
1912
1913#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1914 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1915
1916int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1917{
1918 struct pt_regs *regs = tsk->thread.regs;
1919
1920 /* This is a bit hairy. If we are an SPE enabled processor
1921 * (have embedded fp) we store the IEEE exception enable flags in
1922 * fpexc_mode. fpexc_mode is also used for setting FP exception
1923 * mode (asyn, precise, disabled) for 'Classic' FP. */
1924 if (val & PR_FP_EXC_SW_ENABLE) {
1925 if (cpu_has_feature(CPU_FTR_SPE)) {
1926 /*
1927 * When the sticky exception bits are set
1928 * directly by userspace, it must call prctl
1929 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1930 * in the existing prctl settings) or
1931 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1932 * the bits being set). <fenv.h> functions
1933 * saving and restoring the whole
1934 * floating-point environment need to do so
1935 * anyway to restore the prctl settings from
1936 * the saved environment.
1937 */
1938#ifdef CONFIG_SPE
1939 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1940 tsk->thread.fpexc_mode = val &
1941 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1942#endif
1943 return 0;
1944 } else {
1945 return -EINVAL;
1946 }
1947 }
1948
1949 /* on a CONFIG_SPE this does not hurt us. The bits that
1950 * __pack_fe01 use do not overlap with bits used for
1951 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1952 * on CONFIG_SPE implementations are reserved so writing to
1953 * them does not change anything */
1954 if (val > PR_FP_EXC_PRECISE)
1955 return -EINVAL;
1956 tsk->thread.fpexc_mode = __pack_fe01(val);
1957 if (regs != NULL && (regs->msr & MSR_FP) != 0) {
1958 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
1959 | tsk->thread.fpexc_mode);
1960 }
1961 return 0;
1962}
1963
1964int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1965{
1966 unsigned int val = 0;
1967
1968 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
1969 if (cpu_has_feature(CPU_FTR_SPE)) {
1970 /*
1971 * When the sticky exception bits are set
1972 * directly by userspace, it must call prctl
1973 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1974 * in the existing prctl settings) or
1975 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1976 * the bits being set). <fenv.h> functions
1977 * saving and restoring the whole
1978 * floating-point environment need to do so
1979 * anyway to restore the prctl settings from
1980 * the saved environment.
1981 */
1982#ifdef CONFIG_SPE
1983 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1984 val = tsk->thread.fpexc_mode;
1985#endif
1986 } else
1987 return -EINVAL;
1988 } else {
1989 val = __unpack_fe01(tsk->thread.fpexc_mode);
1990 }
1991 return put_user(val, (unsigned int __user *) adr);
1992}
1993
1994int set_endian(struct task_struct *tsk, unsigned int val)
1995{
1996 struct pt_regs *regs = tsk->thread.regs;
1997
1998 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1999 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2000 return -EINVAL;
2001
2002 if (regs == NULL)
2003 return -EINVAL;
2004
2005 if (val == PR_ENDIAN_BIG)
2006 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2007 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2008 regs_set_return_msr(regs, regs->msr | MSR_LE);
2009 else
2010 return -EINVAL;
2011
2012 return 0;
2013}
2014
2015int get_endian(struct task_struct *tsk, unsigned long adr)
2016{
2017 struct pt_regs *regs = tsk->thread.regs;
2018 unsigned int val;
2019
2020 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2021 !cpu_has_feature(CPU_FTR_REAL_LE))
2022 return -EINVAL;
2023
2024 if (regs == NULL)
2025 return -EINVAL;
2026
2027 if (regs->msr & MSR_LE) {
2028 if (cpu_has_feature(CPU_FTR_REAL_LE))
2029 val = PR_ENDIAN_LITTLE;
2030 else
2031 val = PR_ENDIAN_PPC_LITTLE;
2032 } else
2033 val = PR_ENDIAN_BIG;
2034
2035 return put_user(val, (unsigned int __user *)adr);
2036}
2037
2038int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2039{
2040 tsk->thread.align_ctl = val;
2041 return 0;
2042}
2043
2044int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2045{
2046 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2047}
2048
2049static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2050 unsigned long nbytes)
2051{
2052 unsigned long stack_page;
2053 unsigned long cpu = task_cpu(p);
2054
2055 stack_page = (unsigned long)hardirq_ctx[cpu];
2056 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2057 return 1;
2058
2059 stack_page = (unsigned long)softirq_ctx[cpu];
2060 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2061 return 1;
2062
2063 return 0;
2064}
2065
2066static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2067 unsigned long nbytes)
2068{
2069#ifdef CONFIG_PPC64
2070 unsigned long stack_page;
2071 unsigned long cpu = task_cpu(p);
2072
2073 if (!paca_ptrs)
2074 return 0;
2075
2076 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2077 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2078 return 1;
2079
2080# ifdef CONFIG_PPC_BOOK3S_64
2081 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2082 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2083 return 1;
2084
2085 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2086 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2087 return 1;
2088# endif
2089#endif
2090
2091 return 0;
2092}
2093
2094
2095int validate_sp(unsigned long sp, struct task_struct *p,
2096 unsigned long nbytes)
2097{
2098 unsigned long stack_page = (unsigned long)task_stack_page(p);
2099
2100 if (sp < THREAD_SIZE)
2101 return 0;
2102
2103 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2104 return 1;
2105
2106 if (valid_irq_stack(sp, p, nbytes))
2107 return 1;
2108
2109 return valid_emergency_stack(sp, p, nbytes);
2110}
2111
2112EXPORT_SYMBOL(validate_sp);
2113
2114static unsigned long __get_wchan(struct task_struct *p)
2115{
2116 unsigned long ip, sp;
2117 int count = 0;
2118
2119 if (!p || p == current || task_is_running(p))
2120 return 0;
2121
2122 sp = p->thread.ksp;
2123 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2124 return 0;
2125
2126 do {
2127 sp = *(unsigned long *)sp;
2128 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2129 task_is_running(p))
2130 return 0;
2131 if (count > 0) {
2132 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2133 if (!in_sched_functions(ip))
2134 return ip;
2135 }
2136 } while (count++ < 16);
2137 return 0;
2138}
2139
2140unsigned long get_wchan(struct task_struct *p)
2141{
2142 unsigned long ret;
2143
2144 if (!try_get_task_stack(p))
2145 return 0;
2146
2147 ret = __get_wchan(p);
2148
2149 put_task_stack(p);
2150
2151 return ret;
2152}
2153
2154static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2155
2156void __no_sanitize_address show_stack(struct task_struct *tsk,
2157 unsigned long *stack,
2158 const char *loglvl)
2159{
2160 unsigned long sp, ip, lr, newsp;
2161 int count = 0;
2162 int firstframe = 1;
2163 unsigned long ret_addr;
2164 int ftrace_idx = 0;
2165
2166 if (tsk == NULL)
2167 tsk = current;
2168
2169 if (!try_get_task_stack(tsk))
2170 return;
2171
2172 sp = (unsigned long) stack;
2173 if (sp == 0) {
2174 if (tsk == current)
2175 sp = current_stack_frame();
2176 else
2177 sp = tsk->thread.ksp;
2178 }
2179
2180 lr = 0;
2181 printk("%sCall Trace:\n", loglvl);
2182 do {
2183 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2184 break;
2185
2186 stack = (unsigned long *) sp;
2187 newsp = stack[0];
2188 ip = stack[STACK_FRAME_LR_SAVE];
2189 if (!firstframe || ip != lr) {
2190 printk("%s["REG"] ["REG"] %pS",
2191 loglvl, sp, ip, (void *)ip);
2192 ret_addr = ftrace_graph_ret_addr(current,
2193 &ftrace_idx, ip, stack);
2194 if (ret_addr != ip)
2195 pr_cont(" (%pS)", (void *)ret_addr);
2196 if (firstframe)
2197 pr_cont(" (unreliable)");
2198 pr_cont("\n");
2199 }
2200 firstframe = 0;
2201
2202 /*
2203 * See if this is an exception frame.
2204 * We look for the "regshere" marker in the current frame.
2205 */
2206 if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2207 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2208 struct pt_regs *regs = (struct pt_regs *)
2209 (sp + STACK_FRAME_OVERHEAD);
2210
2211 lr = regs->link;
2212 printk("%s--- interrupt: %lx at %pS\n",
2213 loglvl, regs->trap, (void *)regs->nip);
2214 __show_regs(regs);
2215 printk("%s--- interrupt: %lx\n",
2216 loglvl, regs->trap);
2217
2218 firstframe = 1;
2219 }
2220
2221 sp = newsp;
2222 } while (count++ < kstack_depth_to_print);
2223
2224 put_task_stack(tsk);
2225}
2226
2227#ifdef CONFIG_PPC64
2228/* Called with hard IRQs off */
2229void notrace __ppc64_runlatch_on(void)
2230{
2231 struct thread_info *ti = current_thread_info();
2232
2233 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2234 /*
2235 * Least significant bit (RUN) is the only writable bit of
2236 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2237 * earliest ISA where this is the case, but it's convenient.
2238 */
2239 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2240 } else {
2241 unsigned long ctrl;
2242
2243 /*
2244 * Some architectures (e.g., Cell) have writable fields other
2245 * than RUN, so do the read-modify-write.
2246 */
2247 ctrl = mfspr(SPRN_CTRLF);
2248 ctrl |= CTRL_RUNLATCH;
2249 mtspr(SPRN_CTRLT, ctrl);
2250 }
2251
2252 ti->local_flags |= _TLF_RUNLATCH;
2253}
2254
2255/* Called with hard IRQs off */
2256void notrace __ppc64_runlatch_off(void)
2257{
2258 struct thread_info *ti = current_thread_info();
2259
2260 ti->local_flags &= ~_TLF_RUNLATCH;
2261
2262 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2263 mtspr(SPRN_CTRLT, 0);
2264 } else {
2265 unsigned long ctrl;
2266
2267 ctrl = mfspr(SPRN_CTRLF);
2268 ctrl &= ~CTRL_RUNLATCH;
2269 mtspr(SPRN_CTRLT, ctrl);
2270 }
2271}
2272#endif /* CONFIG_PPC64 */
2273
2274unsigned long arch_align_stack(unsigned long sp)
2275{
2276 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2277 sp -= get_random_int() & ~PAGE_MASK;
2278 return sp & ~0xf;
2279}
2280
2281static inline unsigned long brk_rnd(void)
2282{
2283 unsigned long rnd = 0;
2284
2285 /* 8MB for 32bit, 1GB for 64bit */
2286 if (is_32bit_task())
2287 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2288 else
2289 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2290
2291 return rnd << PAGE_SHIFT;
2292}
2293
2294unsigned long arch_randomize_brk(struct mm_struct *mm)
2295{
2296 unsigned long base = mm->brk;
2297 unsigned long ret;
2298
2299#ifdef CONFIG_PPC_BOOK3S_64
2300 /*
2301 * If we are using 1TB segments and we are allowed to randomise
2302 * the heap, we can put it above 1TB so it is backed by a 1TB
2303 * segment. Otherwise the heap will be in the bottom 1TB
2304 * which always uses 256MB segments and this may result in a
2305 * performance penalty. We don't need to worry about radix. For
2306 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2307 */
2308 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2309 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2310#endif
2311
2312 ret = PAGE_ALIGN(base + brk_rnd());
2313
2314 if (ret < mm->brk)
2315 return mm->brk;
2316
2317 return ret;
2318}
2319
1/*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/kernel.h>
20#include <linux/mm.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/ptrace.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/elf.h>
28#include <linux/prctl.h>
29#include <linux/init_task.h>
30#include <linux/export.h>
31#include <linux/kallsyms.h>
32#include <linux/mqueue.h>
33#include <linux/hardirq.h>
34#include <linux/utsname.h>
35#include <linux/ftrace.h>
36#include <linux/kernel_stat.h>
37#include <linux/personality.h>
38#include <linux/random.h>
39#include <linux/hw_breakpoint.h>
40#include <linux/uaccess.h>
41
42#include <asm/pgtable.h>
43#include <asm/io.h>
44#include <asm/processor.h>
45#include <asm/mmu.h>
46#include <asm/prom.h>
47#include <asm/machdep.h>
48#include <asm/time.h>
49#include <asm/runlatch.h>
50#include <asm/syscalls.h>
51#include <asm/switch_to.h>
52#include <asm/tm.h>
53#include <asm/debug.h>
54#ifdef CONFIG_PPC64
55#include <asm/firmware.h>
56#endif
57#include <asm/code-patching.h>
58#include <linux/kprobes.h>
59#include <linux/kdebug.h>
60
61/* Transactional Memory debug */
62#ifdef TM_DEBUG_SW
63#define TM_DEBUG(x...) printk(KERN_INFO x)
64#else
65#define TM_DEBUG(x...) do { } while(0)
66#endif
67
68extern unsigned long _get_SP(void);
69
70#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
71static void check_if_tm_restore_required(struct task_struct *tsk)
72{
73 /*
74 * If we are saving the current thread's registers, and the
75 * thread is in a transactional state, set the TIF_RESTORE_TM
76 * bit so that we know to restore the registers before
77 * returning to userspace.
78 */
79 if (tsk == current && tsk->thread.regs &&
80 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
81 !test_thread_flag(TIF_RESTORE_TM)) {
82 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
83 set_thread_flag(TIF_RESTORE_TM);
84 }
85}
86#else
87static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
88#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
89
90bool strict_msr_control;
91EXPORT_SYMBOL(strict_msr_control);
92
93static int __init enable_strict_msr_control(char *str)
94{
95 strict_msr_control = true;
96 pr_info("Enabling strict facility control\n");
97
98 return 0;
99}
100early_param("ppc_strict_facility_enable", enable_strict_msr_control);
101
102void msr_check_and_set(unsigned long bits)
103{
104 unsigned long oldmsr = mfmsr();
105 unsigned long newmsr;
106
107 newmsr = oldmsr | bits;
108
109#ifdef CONFIG_VSX
110 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
111 newmsr |= MSR_VSX;
112#endif
113
114 if (oldmsr != newmsr)
115 mtmsr_isync(newmsr);
116}
117
118void __msr_check_and_clear(unsigned long bits)
119{
120 unsigned long oldmsr = mfmsr();
121 unsigned long newmsr;
122
123 newmsr = oldmsr & ~bits;
124
125#ifdef CONFIG_VSX
126 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
127 newmsr &= ~MSR_VSX;
128#endif
129
130 if (oldmsr != newmsr)
131 mtmsr_isync(newmsr);
132}
133EXPORT_SYMBOL(__msr_check_and_clear);
134
135#ifdef CONFIG_PPC_FPU
136void __giveup_fpu(struct task_struct *tsk)
137{
138 save_fpu(tsk);
139 tsk->thread.regs->msr &= ~MSR_FP;
140#ifdef CONFIG_VSX
141 if (cpu_has_feature(CPU_FTR_VSX))
142 tsk->thread.regs->msr &= ~MSR_VSX;
143#endif
144}
145
146void giveup_fpu(struct task_struct *tsk)
147{
148 check_if_tm_restore_required(tsk);
149
150 msr_check_and_set(MSR_FP);
151 __giveup_fpu(tsk);
152 msr_check_and_clear(MSR_FP);
153}
154EXPORT_SYMBOL(giveup_fpu);
155
156/*
157 * Make sure the floating-point register state in the
158 * the thread_struct is up to date for task tsk.
159 */
160void flush_fp_to_thread(struct task_struct *tsk)
161{
162 if (tsk->thread.regs) {
163 /*
164 * We need to disable preemption here because if we didn't,
165 * another process could get scheduled after the regs->msr
166 * test but before we have finished saving the FP registers
167 * to the thread_struct. That process could take over the
168 * FPU, and then when we get scheduled again we would store
169 * bogus values for the remaining FP registers.
170 */
171 preempt_disable();
172 if (tsk->thread.regs->msr & MSR_FP) {
173 /*
174 * This should only ever be called for current or
175 * for a stopped child process. Since we save away
176 * the FP register state on context switch,
177 * there is something wrong if a stopped child appears
178 * to still have its FP state in the CPU registers.
179 */
180 BUG_ON(tsk != current);
181 giveup_fpu(tsk);
182 }
183 preempt_enable();
184 }
185}
186EXPORT_SYMBOL_GPL(flush_fp_to_thread);
187
188void enable_kernel_fp(void)
189{
190 WARN_ON(preemptible());
191
192 msr_check_and_set(MSR_FP);
193
194 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
195 check_if_tm_restore_required(current);
196 __giveup_fpu(current);
197 }
198}
199EXPORT_SYMBOL(enable_kernel_fp);
200
201static int restore_fp(struct task_struct *tsk) {
202 if (tsk->thread.load_fp) {
203 load_fp_state(¤t->thread.fp_state);
204 current->thread.load_fp++;
205 return 1;
206 }
207 return 0;
208}
209#else
210static int restore_fp(struct task_struct *tsk) { return 0; }
211#endif /* CONFIG_PPC_FPU */
212
213#ifdef CONFIG_ALTIVEC
214#define loadvec(thr) ((thr).load_vec)
215
216static void __giveup_altivec(struct task_struct *tsk)
217{
218 save_altivec(tsk);
219 tsk->thread.regs->msr &= ~MSR_VEC;
220#ifdef CONFIG_VSX
221 if (cpu_has_feature(CPU_FTR_VSX))
222 tsk->thread.regs->msr &= ~MSR_VSX;
223#endif
224}
225
226void giveup_altivec(struct task_struct *tsk)
227{
228 check_if_tm_restore_required(tsk);
229
230 msr_check_and_set(MSR_VEC);
231 __giveup_altivec(tsk);
232 msr_check_and_clear(MSR_VEC);
233}
234EXPORT_SYMBOL(giveup_altivec);
235
236void enable_kernel_altivec(void)
237{
238 WARN_ON(preemptible());
239
240 msr_check_and_set(MSR_VEC);
241
242 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
243 check_if_tm_restore_required(current);
244 __giveup_altivec(current);
245 }
246}
247EXPORT_SYMBOL(enable_kernel_altivec);
248
249/*
250 * Make sure the VMX/Altivec register state in the
251 * the thread_struct is up to date for task tsk.
252 */
253void flush_altivec_to_thread(struct task_struct *tsk)
254{
255 if (tsk->thread.regs) {
256 preempt_disable();
257 if (tsk->thread.regs->msr & MSR_VEC) {
258 BUG_ON(tsk != current);
259 giveup_altivec(tsk);
260 }
261 preempt_enable();
262 }
263}
264EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
265
266static int restore_altivec(struct task_struct *tsk)
267{
268 if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
269 load_vr_state(&tsk->thread.vr_state);
270 tsk->thread.used_vr = 1;
271 tsk->thread.load_vec++;
272
273 return 1;
274 }
275 return 0;
276}
277#else
278#define loadvec(thr) 0
279static inline int restore_altivec(struct task_struct *tsk) { return 0; }
280#endif /* CONFIG_ALTIVEC */
281
282#ifdef CONFIG_VSX
283static void __giveup_vsx(struct task_struct *tsk)
284{
285 if (tsk->thread.regs->msr & MSR_FP)
286 __giveup_fpu(tsk);
287 if (tsk->thread.regs->msr & MSR_VEC)
288 __giveup_altivec(tsk);
289 tsk->thread.regs->msr &= ~MSR_VSX;
290}
291
292static void giveup_vsx(struct task_struct *tsk)
293{
294 check_if_tm_restore_required(tsk);
295
296 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
297 __giveup_vsx(tsk);
298 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
299}
300
301static void save_vsx(struct task_struct *tsk)
302{
303 if (tsk->thread.regs->msr & MSR_FP)
304 save_fpu(tsk);
305 if (tsk->thread.regs->msr & MSR_VEC)
306 save_altivec(tsk);
307}
308
309void enable_kernel_vsx(void)
310{
311 WARN_ON(preemptible());
312
313 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
314
315 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
316 check_if_tm_restore_required(current);
317 if (current->thread.regs->msr & MSR_FP)
318 __giveup_fpu(current);
319 if (current->thread.regs->msr & MSR_VEC)
320 __giveup_altivec(current);
321 __giveup_vsx(current);
322 }
323}
324EXPORT_SYMBOL(enable_kernel_vsx);
325
326void flush_vsx_to_thread(struct task_struct *tsk)
327{
328 if (tsk->thread.regs) {
329 preempt_disable();
330 if (tsk->thread.regs->msr & MSR_VSX) {
331 BUG_ON(tsk != current);
332 giveup_vsx(tsk);
333 }
334 preempt_enable();
335 }
336}
337EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
338
339static int restore_vsx(struct task_struct *tsk)
340{
341 if (cpu_has_feature(CPU_FTR_VSX)) {
342 tsk->thread.used_vsr = 1;
343 return 1;
344 }
345
346 return 0;
347}
348#else
349static inline int restore_vsx(struct task_struct *tsk) { return 0; }
350static inline void save_vsx(struct task_struct *tsk) { }
351#endif /* CONFIG_VSX */
352
353#ifdef CONFIG_SPE
354void giveup_spe(struct task_struct *tsk)
355{
356 check_if_tm_restore_required(tsk);
357
358 msr_check_and_set(MSR_SPE);
359 __giveup_spe(tsk);
360 msr_check_and_clear(MSR_SPE);
361}
362EXPORT_SYMBOL(giveup_spe);
363
364void enable_kernel_spe(void)
365{
366 WARN_ON(preemptible());
367
368 msr_check_and_set(MSR_SPE);
369
370 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
371 check_if_tm_restore_required(current);
372 __giveup_spe(current);
373 }
374}
375EXPORT_SYMBOL(enable_kernel_spe);
376
377void flush_spe_to_thread(struct task_struct *tsk)
378{
379 if (tsk->thread.regs) {
380 preempt_disable();
381 if (tsk->thread.regs->msr & MSR_SPE) {
382 BUG_ON(tsk != current);
383 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
384 giveup_spe(tsk);
385 }
386 preempt_enable();
387 }
388}
389#endif /* CONFIG_SPE */
390
391static unsigned long msr_all_available;
392
393static int __init init_msr_all_available(void)
394{
395#ifdef CONFIG_PPC_FPU
396 msr_all_available |= MSR_FP;
397#endif
398#ifdef CONFIG_ALTIVEC
399 if (cpu_has_feature(CPU_FTR_ALTIVEC))
400 msr_all_available |= MSR_VEC;
401#endif
402#ifdef CONFIG_VSX
403 if (cpu_has_feature(CPU_FTR_VSX))
404 msr_all_available |= MSR_VSX;
405#endif
406#ifdef CONFIG_SPE
407 if (cpu_has_feature(CPU_FTR_SPE))
408 msr_all_available |= MSR_SPE;
409#endif
410
411 return 0;
412}
413early_initcall(init_msr_all_available);
414
415void giveup_all(struct task_struct *tsk)
416{
417 unsigned long usermsr;
418
419 if (!tsk->thread.regs)
420 return;
421
422 usermsr = tsk->thread.regs->msr;
423
424 if ((usermsr & msr_all_available) == 0)
425 return;
426
427 msr_check_and_set(msr_all_available);
428
429#ifdef CONFIG_PPC_FPU
430 if (usermsr & MSR_FP)
431 __giveup_fpu(tsk);
432#endif
433#ifdef CONFIG_ALTIVEC
434 if (usermsr & MSR_VEC)
435 __giveup_altivec(tsk);
436#endif
437#ifdef CONFIG_VSX
438 if (usermsr & MSR_VSX)
439 __giveup_vsx(tsk);
440#endif
441#ifdef CONFIG_SPE
442 if (usermsr & MSR_SPE)
443 __giveup_spe(tsk);
444#endif
445
446 msr_check_and_clear(msr_all_available);
447}
448EXPORT_SYMBOL(giveup_all);
449
450void restore_math(struct pt_regs *regs)
451{
452 unsigned long msr;
453
454 if (!current->thread.load_fp && !loadvec(current->thread))
455 return;
456
457 msr = regs->msr;
458 msr_check_and_set(msr_all_available);
459
460 /*
461 * Only reload if the bit is not set in the user MSR, the bit BEING set
462 * indicates that the registers are hot
463 */
464 if ((!(msr & MSR_FP)) && restore_fp(current))
465 msr |= MSR_FP | current->thread.fpexc_mode;
466
467 if ((!(msr & MSR_VEC)) && restore_altivec(current))
468 msr |= MSR_VEC;
469
470 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
471 restore_vsx(current)) {
472 msr |= MSR_VSX;
473 }
474
475 msr_check_and_clear(msr_all_available);
476
477 regs->msr = msr;
478}
479
480void save_all(struct task_struct *tsk)
481{
482 unsigned long usermsr;
483
484 if (!tsk->thread.regs)
485 return;
486
487 usermsr = tsk->thread.regs->msr;
488
489 if ((usermsr & msr_all_available) == 0)
490 return;
491
492 msr_check_and_set(msr_all_available);
493
494 /*
495 * Saving the way the register space is in hardware, save_vsx boils
496 * down to a save_fpu() and save_altivec()
497 */
498 if (usermsr & MSR_VSX) {
499 save_vsx(tsk);
500 } else {
501 if (usermsr & MSR_FP)
502 save_fpu(tsk);
503
504 if (usermsr & MSR_VEC)
505 save_altivec(tsk);
506 }
507
508 if (usermsr & MSR_SPE)
509 __giveup_spe(tsk);
510
511 msr_check_and_clear(msr_all_available);
512}
513
514void flush_all_to_thread(struct task_struct *tsk)
515{
516 if (tsk->thread.regs) {
517 preempt_disable();
518 BUG_ON(tsk != current);
519 save_all(tsk);
520
521#ifdef CONFIG_SPE
522 if (tsk->thread.regs->msr & MSR_SPE)
523 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
524#endif
525
526 preempt_enable();
527 }
528}
529EXPORT_SYMBOL(flush_all_to_thread);
530
531#ifdef CONFIG_PPC_ADV_DEBUG_REGS
532void do_send_trap(struct pt_regs *regs, unsigned long address,
533 unsigned long error_code, int signal_code, int breakpt)
534{
535 siginfo_t info;
536
537 current->thread.trap_nr = signal_code;
538 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
539 11, SIGSEGV) == NOTIFY_STOP)
540 return;
541
542 /* Deliver the signal to userspace */
543 info.si_signo = SIGTRAP;
544 info.si_errno = breakpt; /* breakpoint or watchpoint id */
545 info.si_code = signal_code;
546 info.si_addr = (void __user *)address;
547 force_sig_info(SIGTRAP, &info, current);
548}
549#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
550void do_break (struct pt_regs *regs, unsigned long address,
551 unsigned long error_code)
552{
553 siginfo_t info;
554
555 current->thread.trap_nr = TRAP_HWBKPT;
556 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
557 11, SIGSEGV) == NOTIFY_STOP)
558 return;
559
560 if (debugger_break_match(regs))
561 return;
562
563 /* Clear the breakpoint */
564 hw_breakpoint_disable();
565
566 /* Deliver the signal to userspace */
567 info.si_signo = SIGTRAP;
568 info.si_errno = 0;
569 info.si_code = TRAP_HWBKPT;
570 info.si_addr = (void __user *)address;
571 force_sig_info(SIGTRAP, &info, current);
572}
573#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
574
575static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
576
577#ifdef CONFIG_PPC_ADV_DEBUG_REGS
578/*
579 * Set the debug registers back to their default "safe" values.
580 */
581static void set_debug_reg_defaults(struct thread_struct *thread)
582{
583 thread->debug.iac1 = thread->debug.iac2 = 0;
584#if CONFIG_PPC_ADV_DEBUG_IACS > 2
585 thread->debug.iac3 = thread->debug.iac4 = 0;
586#endif
587 thread->debug.dac1 = thread->debug.dac2 = 0;
588#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
589 thread->debug.dvc1 = thread->debug.dvc2 = 0;
590#endif
591 thread->debug.dbcr0 = 0;
592#ifdef CONFIG_BOOKE
593 /*
594 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
595 */
596 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
597 DBCR1_IAC3US | DBCR1_IAC4US;
598 /*
599 * Force Data Address Compare User/Supervisor bits to be User-only
600 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
601 */
602 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
603#else
604 thread->debug.dbcr1 = 0;
605#endif
606}
607
608static void prime_debug_regs(struct debug_reg *debug)
609{
610 /*
611 * We could have inherited MSR_DE from userspace, since
612 * it doesn't get cleared on exception entry. Make sure
613 * MSR_DE is clear before we enable any debug events.
614 */
615 mtmsr(mfmsr() & ~MSR_DE);
616
617 mtspr(SPRN_IAC1, debug->iac1);
618 mtspr(SPRN_IAC2, debug->iac2);
619#if CONFIG_PPC_ADV_DEBUG_IACS > 2
620 mtspr(SPRN_IAC3, debug->iac3);
621 mtspr(SPRN_IAC4, debug->iac4);
622#endif
623 mtspr(SPRN_DAC1, debug->dac1);
624 mtspr(SPRN_DAC2, debug->dac2);
625#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
626 mtspr(SPRN_DVC1, debug->dvc1);
627 mtspr(SPRN_DVC2, debug->dvc2);
628#endif
629 mtspr(SPRN_DBCR0, debug->dbcr0);
630 mtspr(SPRN_DBCR1, debug->dbcr1);
631#ifdef CONFIG_BOOKE
632 mtspr(SPRN_DBCR2, debug->dbcr2);
633#endif
634}
635/*
636 * Unless neither the old or new thread are making use of the
637 * debug registers, set the debug registers from the values
638 * stored in the new thread.
639 */
640void switch_booke_debug_regs(struct debug_reg *new_debug)
641{
642 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
643 || (new_debug->dbcr0 & DBCR0_IDM))
644 prime_debug_regs(new_debug);
645}
646EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
647#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
648#ifndef CONFIG_HAVE_HW_BREAKPOINT
649static void set_debug_reg_defaults(struct thread_struct *thread)
650{
651 thread->hw_brk.address = 0;
652 thread->hw_brk.type = 0;
653 set_breakpoint(&thread->hw_brk);
654}
655#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
656#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
657
658#ifdef CONFIG_PPC_ADV_DEBUG_REGS
659static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
660{
661 mtspr(SPRN_DAC1, dabr);
662#ifdef CONFIG_PPC_47x
663 isync();
664#endif
665 return 0;
666}
667#elif defined(CONFIG_PPC_BOOK3S)
668static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
669{
670 mtspr(SPRN_DABR, dabr);
671 if (cpu_has_feature(CPU_FTR_DABRX))
672 mtspr(SPRN_DABRX, dabrx);
673 return 0;
674}
675#else
676static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
677{
678 return -EINVAL;
679}
680#endif
681
682static inline int set_dabr(struct arch_hw_breakpoint *brk)
683{
684 unsigned long dabr, dabrx;
685
686 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
687 dabrx = ((brk->type >> 3) & 0x7);
688
689 if (ppc_md.set_dabr)
690 return ppc_md.set_dabr(dabr, dabrx);
691
692 return __set_dabr(dabr, dabrx);
693}
694
695static inline int set_dawr(struct arch_hw_breakpoint *brk)
696{
697 unsigned long dawr, dawrx, mrd;
698
699 dawr = brk->address;
700
701 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
702 << (63 - 58); //* read/write bits */
703 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
704 << (63 - 59); //* translate */
705 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
706 >> 3; //* PRIM bits */
707 /* dawr length is stored in field MDR bits 48:53. Matches range in
708 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
709 0b111111=64DW.
710 brk->len is in bytes.
711 This aligns up to double word size, shifts and does the bias.
712 */
713 mrd = ((brk->len + 7) >> 3) - 1;
714 dawrx |= (mrd & 0x3f) << (63 - 53);
715
716 if (ppc_md.set_dawr)
717 return ppc_md.set_dawr(dawr, dawrx);
718 mtspr(SPRN_DAWR, dawr);
719 mtspr(SPRN_DAWRX, dawrx);
720 return 0;
721}
722
723void __set_breakpoint(struct arch_hw_breakpoint *brk)
724{
725 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk));
726
727 if (cpu_has_feature(CPU_FTR_DAWR))
728 set_dawr(brk);
729 else
730 set_dabr(brk);
731}
732
733void set_breakpoint(struct arch_hw_breakpoint *brk)
734{
735 preempt_disable();
736 __set_breakpoint(brk);
737 preempt_enable();
738}
739
740#ifdef CONFIG_PPC64
741DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
742#endif
743
744static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
745 struct arch_hw_breakpoint *b)
746{
747 if (a->address != b->address)
748 return false;
749 if (a->type != b->type)
750 return false;
751 if (a->len != b->len)
752 return false;
753 return true;
754}
755
756#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
757static void tm_reclaim_thread(struct thread_struct *thr,
758 struct thread_info *ti, uint8_t cause)
759{
760 unsigned long msr_diff = 0;
761
762 /*
763 * If FP/VSX registers have been already saved to the
764 * thread_struct, move them to the transact_fp array.
765 * We clear the TIF_RESTORE_TM bit since after the reclaim
766 * the thread will no longer be transactional.
767 */
768 if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
769 msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
770 if (msr_diff & MSR_FP)
771 memcpy(&thr->transact_fp, &thr->fp_state,
772 sizeof(struct thread_fp_state));
773 if (msr_diff & MSR_VEC)
774 memcpy(&thr->transact_vr, &thr->vr_state,
775 sizeof(struct thread_vr_state));
776 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
777 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
778 }
779
780 /*
781 * Use the current MSR TM suspended bit to track if we have
782 * checkpointed state outstanding.
783 * On signal delivery, we'd normally reclaim the checkpointed
784 * state to obtain stack pointer (see:get_tm_stackpointer()).
785 * This will then directly return to userspace without going
786 * through __switch_to(). However, if the stack frame is bad,
787 * we need to exit this thread which calls __switch_to() which
788 * will again attempt to reclaim the already saved tm state.
789 * Hence we need to check that we've not already reclaimed
790 * this state.
791 * We do this using the current MSR, rather tracking it in
792 * some specific thread_struct bit, as it has the additional
793 * benifit of checking for a potential TM bad thing exception.
794 */
795 if (!MSR_TM_SUSPENDED(mfmsr()))
796 return;
797
798 tm_reclaim(thr, thr->regs->msr, cause);
799
800 /* Having done the reclaim, we now have the checkpointed
801 * FP/VSX values in the registers. These might be valid
802 * even if we have previously called enable_kernel_fp() or
803 * flush_fp_to_thread(), so update thr->regs->msr to
804 * indicate their current validity.
805 */
806 thr->regs->msr |= msr_diff;
807}
808
809void tm_reclaim_current(uint8_t cause)
810{
811 tm_enable();
812 tm_reclaim_thread(¤t->thread, current_thread_info(), cause);
813}
814
815static inline void tm_reclaim_task(struct task_struct *tsk)
816{
817 /* We have to work out if we're switching from/to a task that's in the
818 * middle of a transaction.
819 *
820 * In switching we need to maintain a 2nd register state as
821 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
822 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
823 * (current) FPRs into oldtask->thread.transact_fpr[].
824 *
825 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
826 */
827 struct thread_struct *thr = &tsk->thread;
828
829 if (!thr->regs)
830 return;
831
832 if (!MSR_TM_ACTIVE(thr->regs->msr))
833 goto out_and_saveregs;
834
835 /* Stash the original thread MSR, as giveup_fpu et al will
836 * modify it. We hold onto it to see whether the task used
837 * FP & vector regs. If the TIF_RESTORE_TM flag is set,
838 * ckpt_regs.msr is already set.
839 */
840 if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
841 thr->ckpt_regs.msr = thr->regs->msr;
842
843 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
844 "ccr=%lx, msr=%lx, trap=%lx)\n",
845 tsk->pid, thr->regs->nip,
846 thr->regs->ccr, thr->regs->msr,
847 thr->regs->trap);
848
849 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
850
851 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
852 tsk->pid);
853
854out_and_saveregs:
855 /* Always save the regs here, even if a transaction's not active.
856 * This context-switches a thread's TM info SPRs. We do it here to
857 * be consistent with the restore path (in recheckpoint) which
858 * cannot happen later in _switch().
859 */
860 tm_save_sprs(thr);
861}
862
863extern void __tm_recheckpoint(struct thread_struct *thread,
864 unsigned long orig_msr);
865
866void tm_recheckpoint(struct thread_struct *thread,
867 unsigned long orig_msr)
868{
869 unsigned long flags;
870
871 /* We really can't be interrupted here as the TEXASR registers can't
872 * change and later in the trecheckpoint code, we have a userspace R1.
873 * So let's hard disable over this region.
874 */
875 local_irq_save(flags);
876 hard_irq_disable();
877
878 /* The TM SPRs are restored here, so that TEXASR.FS can be set
879 * before the trecheckpoint and no explosion occurs.
880 */
881 tm_restore_sprs(thread);
882
883 __tm_recheckpoint(thread, orig_msr);
884
885 local_irq_restore(flags);
886}
887
888static inline void tm_recheckpoint_new_task(struct task_struct *new)
889{
890 unsigned long msr;
891
892 if (!cpu_has_feature(CPU_FTR_TM))
893 return;
894
895 /* Recheckpoint the registers of the thread we're about to switch to.
896 *
897 * If the task was using FP, we non-lazily reload both the original and
898 * the speculative FP register states. This is because the kernel
899 * doesn't see if/when a TM rollback occurs, so if we take an FP
900 * unavoidable later, we are unable to determine which set of FP regs
901 * need to be restored.
902 */
903 if (!new->thread.regs)
904 return;
905
906 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
907 tm_restore_sprs(&new->thread);
908 return;
909 }
910 msr = new->thread.ckpt_regs.msr;
911 /* Recheckpoint to restore original checkpointed register state. */
912 TM_DEBUG("*** tm_recheckpoint of pid %d "
913 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
914 new->pid, new->thread.regs->msr, msr);
915
916 /* This loads the checkpointed FP/VEC state, if used */
917 tm_recheckpoint(&new->thread, msr);
918
919 /* This loads the speculative FP/VEC state, if used */
920 if (msr & MSR_FP) {
921 do_load_up_transact_fpu(&new->thread);
922 new->thread.regs->msr |=
923 (MSR_FP | new->thread.fpexc_mode);
924 }
925#ifdef CONFIG_ALTIVEC
926 if (msr & MSR_VEC) {
927 do_load_up_transact_altivec(&new->thread);
928 new->thread.regs->msr |= MSR_VEC;
929 }
930#endif
931 /* We may as well turn on VSX too since all the state is restored now */
932 if (msr & MSR_VSX)
933 new->thread.regs->msr |= MSR_VSX;
934
935 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
936 "(kernel msr 0x%lx)\n",
937 new->pid, mfmsr());
938}
939
940static inline void __switch_to_tm(struct task_struct *prev)
941{
942 if (cpu_has_feature(CPU_FTR_TM)) {
943 tm_enable();
944 tm_reclaim_task(prev);
945 }
946}
947
948/*
949 * This is called if we are on the way out to userspace and the
950 * TIF_RESTORE_TM flag is set. It checks if we need to reload
951 * FP and/or vector state and does so if necessary.
952 * If userspace is inside a transaction (whether active or
953 * suspended) and FP/VMX/VSX instructions have ever been enabled
954 * inside that transaction, then we have to keep them enabled
955 * and keep the FP/VMX/VSX state loaded while ever the transaction
956 * continues. The reason is that if we didn't, and subsequently
957 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
958 * we don't know whether it's the same transaction, and thus we
959 * don't know which of the checkpointed state and the transactional
960 * state to use.
961 */
962void restore_tm_state(struct pt_regs *regs)
963{
964 unsigned long msr_diff;
965
966 clear_thread_flag(TIF_RESTORE_TM);
967 if (!MSR_TM_ACTIVE(regs->msr))
968 return;
969
970 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
971 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
972
973 restore_math(regs);
974
975 regs->msr |= msr_diff;
976}
977
978#else
979#define tm_recheckpoint_new_task(new)
980#define __switch_to_tm(prev)
981#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
982
983static inline void save_sprs(struct thread_struct *t)
984{
985#ifdef CONFIG_ALTIVEC
986 if (cpu_has_feature(CPU_FTR_ALTIVEC))
987 t->vrsave = mfspr(SPRN_VRSAVE);
988#endif
989#ifdef CONFIG_PPC_BOOK3S_64
990 if (cpu_has_feature(CPU_FTR_DSCR))
991 t->dscr = mfspr(SPRN_DSCR);
992
993 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
994 t->bescr = mfspr(SPRN_BESCR);
995 t->ebbhr = mfspr(SPRN_EBBHR);
996 t->ebbrr = mfspr(SPRN_EBBRR);
997
998 t->fscr = mfspr(SPRN_FSCR);
999
1000 /*
1001 * Note that the TAR is not available for use in the kernel.
1002 * (To provide this, the TAR should be backed up/restored on
1003 * exception entry/exit instead, and be in pt_regs. FIXME,
1004 * this should be in pt_regs anyway (for debug).)
1005 */
1006 t->tar = mfspr(SPRN_TAR);
1007 }
1008#endif
1009}
1010
1011static inline void restore_sprs(struct thread_struct *old_thread,
1012 struct thread_struct *new_thread)
1013{
1014#ifdef CONFIG_ALTIVEC
1015 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1016 old_thread->vrsave != new_thread->vrsave)
1017 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1018#endif
1019#ifdef CONFIG_PPC_BOOK3S_64
1020 if (cpu_has_feature(CPU_FTR_DSCR)) {
1021 u64 dscr = get_paca()->dscr_default;
1022 u64 fscr = old_thread->fscr & ~FSCR_DSCR;
1023
1024 if (new_thread->dscr_inherit) {
1025 dscr = new_thread->dscr;
1026 fscr |= FSCR_DSCR;
1027 }
1028
1029 if (old_thread->dscr != dscr)
1030 mtspr(SPRN_DSCR, dscr);
1031
1032 if (old_thread->fscr != fscr)
1033 mtspr(SPRN_FSCR, fscr);
1034 }
1035
1036 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1037 if (old_thread->bescr != new_thread->bescr)
1038 mtspr(SPRN_BESCR, new_thread->bescr);
1039 if (old_thread->ebbhr != new_thread->ebbhr)
1040 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1041 if (old_thread->ebbrr != new_thread->ebbrr)
1042 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1043
1044 if (old_thread->tar != new_thread->tar)
1045 mtspr(SPRN_TAR, new_thread->tar);
1046 }
1047#endif
1048}
1049
1050struct task_struct *__switch_to(struct task_struct *prev,
1051 struct task_struct *new)
1052{
1053 struct thread_struct *new_thread, *old_thread;
1054 struct task_struct *last;
1055#ifdef CONFIG_PPC_BOOK3S_64
1056 struct ppc64_tlb_batch *batch;
1057#endif
1058
1059 new_thread = &new->thread;
1060 old_thread = ¤t->thread;
1061
1062 WARN_ON(!irqs_disabled());
1063
1064#ifdef CONFIG_PPC64
1065 /*
1066 * Collect processor utilization data per process
1067 */
1068 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1069 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1070 long unsigned start_tb, current_tb;
1071 start_tb = old_thread->start_tb;
1072 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1073 old_thread->accum_tb += (current_tb - start_tb);
1074 new_thread->start_tb = current_tb;
1075 }
1076#endif /* CONFIG_PPC64 */
1077
1078#ifdef CONFIG_PPC_BOOK3S_64
1079 batch = this_cpu_ptr(&ppc64_tlb_batch);
1080 if (batch->active) {
1081 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1082 if (batch->index)
1083 __flush_tlb_pending(batch);
1084 batch->active = 0;
1085 }
1086#endif /* CONFIG_PPC_BOOK3S_64 */
1087
1088#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1089 switch_booke_debug_regs(&new->thread.debug);
1090#else
1091/*
1092 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1093 * schedule DABR
1094 */
1095#ifndef CONFIG_HAVE_HW_BREAKPOINT
1096 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk)))
1097 __set_breakpoint(&new->thread.hw_brk);
1098#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1099#endif
1100
1101 /*
1102 * We need to save SPRs before treclaim/trecheckpoint as these will
1103 * change a number of them.
1104 */
1105 save_sprs(&prev->thread);
1106
1107 __switch_to_tm(prev);
1108
1109 /* Save FPU, Altivec, VSX and SPE state */
1110 giveup_all(prev);
1111
1112 /*
1113 * We can't take a PMU exception inside _switch() since there is a
1114 * window where the kernel stack SLB and the kernel stack are out
1115 * of sync. Hard disable here.
1116 */
1117 hard_irq_disable();
1118
1119 tm_recheckpoint_new_task(new);
1120
1121 /*
1122 * Call restore_sprs() before calling _switch(). If we move it after
1123 * _switch() then we miss out on calling it for new tasks. The reason
1124 * for this is we manually create a stack frame for new tasks that
1125 * directly returns through ret_from_fork() or
1126 * ret_from_kernel_thread(). See copy_thread() for details.
1127 */
1128 restore_sprs(old_thread, new_thread);
1129
1130 last = _switch(old_thread, new_thread);
1131
1132#ifdef CONFIG_PPC_BOOK3S_64
1133 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1134 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1135 batch = this_cpu_ptr(&ppc64_tlb_batch);
1136 batch->active = 1;
1137 }
1138
1139 if (current_thread_info()->task->thread.regs)
1140 restore_math(current_thread_info()->task->thread.regs);
1141
1142#endif /* CONFIG_PPC_BOOK3S_64 */
1143
1144 return last;
1145}
1146
1147static int instructions_to_print = 16;
1148
1149static void show_instructions(struct pt_regs *regs)
1150{
1151 int i;
1152 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1153 sizeof(int));
1154
1155 printk("Instruction dump:");
1156
1157 for (i = 0; i < instructions_to_print; i++) {
1158 int instr;
1159
1160 if (!(i % 8))
1161 printk("\n");
1162
1163#if !defined(CONFIG_BOOKE)
1164 /* If executing with the IMMU off, adjust pc rather
1165 * than print XXXXXXXX.
1166 */
1167 if (!(regs->msr & MSR_IR))
1168 pc = (unsigned long)phys_to_virt(pc);
1169#endif
1170
1171 if (!__kernel_text_address(pc) ||
1172 probe_kernel_address((unsigned int __user *)pc, instr)) {
1173 printk(KERN_CONT "XXXXXXXX ");
1174 } else {
1175 if (regs->nip == pc)
1176 printk(KERN_CONT "<%08x> ", instr);
1177 else
1178 printk(KERN_CONT "%08x ", instr);
1179 }
1180
1181 pc += sizeof(int);
1182 }
1183
1184 printk("\n");
1185}
1186
1187struct regbit {
1188 unsigned long bit;
1189 const char *name;
1190};
1191
1192static struct regbit msr_bits[] = {
1193#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1194 {MSR_SF, "SF"},
1195 {MSR_HV, "HV"},
1196#endif
1197 {MSR_VEC, "VEC"},
1198 {MSR_VSX, "VSX"},
1199#ifdef CONFIG_BOOKE
1200 {MSR_CE, "CE"},
1201#endif
1202 {MSR_EE, "EE"},
1203 {MSR_PR, "PR"},
1204 {MSR_FP, "FP"},
1205 {MSR_ME, "ME"},
1206#ifdef CONFIG_BOOKE
1207 {MSR_DE, "DE"},
1208#else
1209 {MSR_SE, "SE"},
1210 {MSR_BE, "BE"},
1211#endif
1212 {MSR_IR, "IR"},
1213 {MSR_DR, "DR"},
1214 {MSR_PMM, "PMM"},
1215#ifndef CONFIG_BOOKE
1216 {MSR_RI, "RI"},
1217 {MSR_LE, "LE"},
1218#endif
1219 {0, NULL}
1220};
1221
1222static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1223{
1224 const char *s = "";
1225
1226 for (; bits->bit; ++bits)
1227 if (val & bits->bit) {
1228 printk("%s%s", s, bits->name);
1229 s = sep;
1230 }
1231}
1232
1233#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1234static struct regbit msr_tm_bits[] = {
1235 {MSR_TS_T, "T"},
1236 {MSR_TS_S, "S"},
1237 {MSR_TM, "E"},
1238 {0, NULL}
1239};
1240
1241static void print_tm_bits(unsigned long val)
1242{
1243/*
1244 * This only prints something if at least one of the TM bit is set.
1245 * Inside the TM[], the output means:
1246 * E: Enabled (bit 32)
1247 * S: Suspended (bit 33)
1248 * T: Transactional (bit 34)
1249 */
1250 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1251 printk(",TM[");
1252 print_bits(val, msr_tm_bits, "");
1253 printk("]");
1254 }
1255}
1256#else
1257static void print_tm_bits(unsigned long val) {}
1258#endif
1259
1260static void print_msr_bits(unsigned long val)
1261{
1262 printk("<");
1263 print_bits(val, msr_bits, ",");
1264 print_tm_bits(val);
1265 printk(">");
1266}
1267
1268#ifdef CONFIG_PPC64
1269#define REG "%016lx"
1270#define REGS_PER_LINE 4
1271#define LAST_VOLATILE 13
1272#else
1273#define REG "%08lx"
1274#define REGS_PER_LINE 8
1275#define LAST_VOLATILE 12
1276#endif
1277
1278void show_regs(struct pt_regs * regs)
1279{
1280 int i, trap;
1281
1282 show_regs_print_info(KERN_DEFAULT);
1283
1284 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1285 regs->nip, regs->link, regs->ctr);
1286 printk("REGS: %p TRAP: %04lx %s (%s)\n",
1287 regs, regs->trap, print_tainted(), init_utsname()->release);
1288 printk("MSR: "REG" ", regs->msr);
1289 print_msr_bits(regs->msr);
1290 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1291 trap = TRAP(regs);
1292 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1293 printk("CFAR: "REG" ", regs->orig_gpr3);
1294 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1295#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1296 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1297#else
1298 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1299#endif
1300#ifdef CONFIG_PPC64
1301 printk("SOFTE: %ld ", regs->softe);
1302#endif
1303#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1304 if (MSR_TM_ACTIVE(regs->msr))
1305 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1306#endif
1307
1308 for (i = 0; i < 32; i++) {
1309 if ((i % REGS_PER_LINE) == 0)
1310 printk("\nGPR%02d: ", i);
1311 printk(REG " ", regs->gpr[i]);
1312 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1313 break;
1314 }
1315 printk("\n");
1316#ifdef CONFIG_KALLSYMS
1317 /*
1318 * Lookup NIP late so we have the best change of getting the
1319 * above info out without failing
1320 */
1321 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1322 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1323#endif
1324 show_stack(current, (unsigned long *) regs->gpr[1]);
1325 if (!user_mode(regs))
1326 show_instructions(regs);
1327}
1328
1329void exit_thread(void)
1330{
1331}
1332
1333void flush_thread(void)
1334{
1335#ifdef CONFIG_HAVE_HW_BREAKPOINT
1336 flush_ptrace_hw_breakpoint(current);
1337#else /* CONFIG_HAVE_HW_BREAKPOINT */
1338 set_debug_reg_defaults(¤t->thread);
1339#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1340}
1341
1342void
1343release_thread(struct task_struct *t)
1344{
1345}
1346
1347/*
1348 * this gets called so that we can store coprocessor state into memory and
1349 * copy the current task into the new thread.
1350 */
1351int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1352{
1353 flush_all_to_thread(src);
1354 /*
1355 * Flush TM state out so we can copy it. __switch_to_tm() does this
1356 * flush but it removes the checkpointed state from the current CPU and
1357 * transitions the CPU out of TM mode. Hence we need to call
1358 * tm_recheckpoint_new_task() (on the same task) to restore the
1359 * checkpointed state back and the TM mode.
1360 */
1361 __switch_to_tm(src);
1362 tm_recheckpoint_new_task(src);
1363
1364 *dst = *src;
1365
1366 clear_task_ebb(dst);
1367
1368 return 0;
1369}
1370
1371static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1372{
1373#ifdef CONFIG_PPC_STD_MMU_64
1374 unsigned long sp_vsid;
1375 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1376
1377 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1378 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1379 << SLB_VSID_SHIFT_1T;
1380 else
1381 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1382 << SLB_VSID_SHIFT;
1383 sp_vsid |= SLB_VSID_KERNEL | llp;
1384 p->thread.ksp_vsid = sp_vsid;
1385#endif
1386}
1387
1388/*
1389 * Copy a thread..
1390 */
1391
1392/*
1393 * Copy architecture-specific thread state
1394 */
1395int copy_thread(unsigned long clone_flags, unsigned long usp,
1396 unsigned long kthread_arg, struct task_struct *p)
1397{
1398 struct pt_regs *childregs, *kregs;
1399 extern void ret_from_fork(void);
1400 extern void ret_from_kernel_thread(void);
1401 void (*f)(void);
1402 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1403
1404 /* Copy registers */
1405 sp -= sizeof(struct pt_regs);
1406 childregs = (struct pt_regs *) sp;
1407 if (unlikely(p->flags & PF_KTHREAD)) {
1408 /* kernel thread */
1409 struct thread_info *ti = (void *)task_stack_page(p);
1410 memset(childregs, 0, sizeof(struct pt_regs));
1411 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1412 /* function */
1413 if (usp)
1414 childregs->gpr[14] = ppc_function_entry((void *)usp);
1415#ifdef CONFIG_PPC64
1416 clear_tsk_thread_flag(p, TIF_32BIT);
1417 childregs->softe = 1;
1418#endif
1419 childregs->gpr[15] = kthread_arg;
1420 p->thread.regs = NULL; /* no user register state */
1421 ti->flags |= _TIF_RESTOREALL;
1422 f = ret_from_kernel_thread;
1423 } else {
1424 /* user thread */
1425 struct pt_regs *regs = current_pt_regs();
1426 CHECK_FULL_REGS(regs);
1427 *childregs = *regs;
1428 if (usp)
1429 childregs->gpr[1] = usp;
1430 p->thread.regs = childregs;
1431 childregs->gpr[3] = 0; /* Result from fork() */
1432 if (clone_flags & CLONE_SETTLS) {
1433#ifdef CONFIG_PPC64
1434 if (!is_32bit_task())
1435 childregs->gpr[13] = childregs->gpr[6];
1436 else
1437#endif
1438 childregs->gpr[2] = childregs->gpr[6];
1439 }
1440
1441 f = ret_from_fork;
1442 }
1443 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1444 sp -= STACK_FRAME_OVERHEAD;
1445
1446 /*
1447 * The way this works is that at some point in the future
1448 * some task will call _switch to switch to the new task.
1449 * That will pop off the stack frame created below and start
1450 * the new task running at ret_from_fork. The new task will
1451 * do some house keeping and then return from the fork or clone
1452 * system call, using the stack frame created above.
1453 */
1454 ((unsigned long *)sp)[0] = 0;
1455 sp -= sizeof(struct pt_regs);
1456 kregs = (struct pt_regs *) sp;
1457 sp -= STACK_FRAME_OVERHEAD;
1458 p->thread.ksp = sp;
1459#ifdef CONFIG_PPC32
1460 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1461 _ALIGN_UP(sizeof(struct thread_info), 16);
1462#endif
1463#ifdef CONFIG_HAVE_HW_BREAKPOINT
1464 p->thread.ptrace_bps[0] = NULL;
1465#endif
1466
1467 p->thread.fp_save_area = NULL;
1468#ifdef CONFIG_ALTIVEC
1469 p->thread.vr_save_area = NULL;
1470#endif
1471
1472 setup_ksp_vsid(p, sp);
1473
1474#ifdef CONFIG_PPC64
1475 if (cpu_has_feature(CPU_FTR_DSCR)) {
1476 p->thread.dscr_inherit = current->thread.dscr_inherit;
1477 p->thread.dscr = mfspr(SPRN_DSCR);
1478 }
1479 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1480 p->thread.ppr = INIT_PPR;
1481#endif
1482 kregs->nip = ppc_function_entry(f);
1483 return 0;
1484}
1485
1486/*
1487 * Set up a thread for executing a new program
1488 */
1489void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1490{
1491#ifdef CONFIG_PPC64
1492 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1493#endif
1494
1495 /*
1496 * If we exec out of a kernel thread then thread.regs will not be
1497 * set. Do it now.
1498 */
1499 if (!current->thread.regs) {
1500 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1501 current->thread.regs = regs - 1;
1502 }
1503
1504 memset(regs->gpr, 0, sizeof(regs->gpr));
1505 regs->ctr = 0;
1506 regs->link = 0;
1507 regs->xer = 0;
1508 regs->ccr = 0;
1509 regs->gpr[1] = sp;
1510
1511 /*
1512 * We have just cleared all the nonvolatile GPRs, so make
1513 * FULL_REGS(regs) return true. This is necessary to allow
1514 * ptrace to examine the thread immediately after exec.
1515 */
1516 regs->trap &= ~1UL;
1517
1518#ifdef CONFIG_PPC32
1519 regs->mq = 0;
1520 regs->nip = start;
1521 regs->msr = MSR_USER;
1522#else
1523 if (!is_32bit_task()) {
1524 unsigned long entry;
1525
1526 if (is_elf2_task()) {
1527 /* Look ma, no function descriptors! */
1528 entry = start;
1529
1530 /*
1531 * Ulrich says:
1532 * The latest iteration of the ABI requires that when
1533 * calling a function (at its global entry point),
1534 * the caller must ensure r12 holds the entry point
1535 * address (so that the function can quickly
1536 * establish addressability).
1537 */
1538 regs->gpr[12] = start;
1539 /* Make sure that's restored on entry to userspace. */
1540 set_thread_flag(TIF_RESTOREALL);
1541 } else {
1542 unsigned long toc;
1543
1544 /* start is a relocated pointer to the function
1545 * descriptor for the elf _start routine. The first
1546 * entry in the function descriptor is the entry
1547 * address of _start and the second entry is the TOC
1548 * value we need to use.
1549 */
1550 __get_user(entry, (unsigned long __user *)start);
1551 __get_user(toc, (unsigned long __user *)start+1);
1552
1553 /* Check whether the e_entry function descriptor entries
1554 * need to be relocated before we can use them.
1555 */
1556 if (load_addr != 0) {
1557 entry += load_addr;
1558 toc += load_addr;
1559 }
1560 regs->gpr[2] = toc;
1561 }
1562 regs->nip = entry;
1563 regs->msr = MSR_USER64;
1564 } else {
1565 regs->nip = start;
1566 regs->gpr[2] = 0;
1567 regs->msr = MSR_USER32;
1568 }
1569#endif
1570#ifdef CONFIG_VSX
1571 current->thread.used_vsr = 0;
1572#endif
1573 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1574 current->thread.fp_save_area = NULL;
1575#ifdef CONFIG_ALTIVEC
1576 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1577 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1578 current->thread.vr_save_area = NULL;
1579 current->thread.vrsave = 0;
1580 current->thread.used_vr = 0;
1581#endif /* CONFIG_ALTIVEC */
1582#ifdef CONFIG_SPE
1583 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1584 current->thread.acc = 0;
1585 current->thread.spefscr = 0;
1586 current->thread.used_spe = 0;
1587#endif /* CONFIG_SPE */
1588#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1589 if (cpu_has_feature(CPU_FTR_TM))
1590 regs->msr |= MSR_TM;
1591 current->thread.tm_tfhar = 0;
1592 current->thread.tm_texasr = 0;
1593 current->thread.tm_tfiar = 0;
1594#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1595}
1596EXPORT_SYMBOL(start_thread);
1597
1598#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1599 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1600
1601int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1602{
1603 struct pt_regs *regs = tsk->thread.regs;
1604
1605 /* This is a bit hairy. If we are an SPE enabled processor
1606 * (have embedded fp) we store the IEEE exception enable flags in
1607 * fpexc_mode. fpexc_mode is also used for setting FP exception
1608 * mode (asyn, precise, disabled) for 'Classic' FP. */
1609 if (val & PR_FP_EXC_SW_ENABLE) {
1610#ifdef CONFIG_SPE
1611 if (cpu_has_feature(CPU_FTR_SPE)) {
1612 /*
1613 * When the sticky exception bits are set
1614 * directly by userspace, it must call prctl
1615 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1616 * in the existing prctl settings) or
1617 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1618 * the bits being set). <fenv.h> functions
1619 * saving and restoring the whole
1620 * floating-point environment need to do so
1621 * anyway to restore the prctl settings from
1622 * the saved environment.
1623 */
1624 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1625 tsk->thread.fpexc_mode = val &
1626 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1627 return 0;
1628 } else {
1629 return -EINVAL;
1630 }
1631#else
1632 return -EINVAL;
1633#endif
1634 }
1635
1636 /* on a CONFIG_SPE this does not hurt us. The bits that
1637 * __pack_fe01 use do not overlap with bits used for
1638 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1639 * on CONFIG_SPE implementations are reserved so writing to
1640 * them does not change anything */
1641 if (val > PR_FP_EXC_PRECISE)
1642 return -EINVAL;
1643 tsk->thread.fpexc_mode = __pack_fe01(val);
1644 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1645 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1646 | tsk->thread.fpexc_mode;
1647 return 0;
1648}
1649
1650int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1651{
1652 unsigned int val;
1653
1654 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1655#ifdef CONFIG_SPE
1656 if (cpu_has_feature(CPU_FTR_SPE)) {
1657 /*
1658 * When the sticky exception bits are set
1659 * directly by userspace, it must call prctl
1660 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1661 * in the existing prctl settings) or
1662 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1663 * the bits being set). <fenv.h> functions
1664 * saving and restoring the whole
1665 * floating-point environment need to do so
1666 * anyway to restore the prctl settings from
1667 * the saved environment.
1668 */
1669 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1670 val = tsk->thread.fpexc_mode;
1671 } else
1672 return -EINVAL;
1673#else
1674 return -EINVAL;
1675#endif
1676 else
1677 val = __unpack_fe01(tsk->thread.fpexc_mode);
1678 return put_user(val, (unsigned int __user *) adr);
1679}
1680
1681int set_endian(struct task_struct *tsk, unsigned int val)
1682{
1683 struct pt_regs *regs = tsk->thread.regs;
1684
1685 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1686 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1687 return -EINVAL;
1688
1689 if (regs == NULL)
1690 return -EINVAL;
1691
1692 if (val == PR_ENDIAN_BIG)
1693 regs->msr &= ~MSR_LE;
1694 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1695 regs->msr |= MSR_LE;
1696 else
1697 return -EINVAL;
1698
1699 return 0;
1700}
1701
1702int get_endian(struct task_struct *tsk, unsigned long adr)
1703{
1704 struct pt_regs *regs = tsk->thread.regs;
1705 unsigned int val;
1706
1707 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1708 !cpu_has_feature(CPU_FTR_REAL_LE))
1709 return -EINVAL;
1710
1711 if (regs == NULL)
1712 return -EINVAL;
1713
1714 if (regs->msr & MSR_LE) {
1715 if (cpu_has_feature(CPU_FTR_REAL_LE))
1716 val = PR_ENDIAN_LITTLE;
1717 else
1718 val = PR_ENDIAN_PPC_LITTLE;
1719 } else
1720 val = PR_ENDIAN_BIG;
1721
1722 return put_user(val, (unsigned int __user *)adr);
1723}
1724
1725int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1726{
1727 tsk->thread.align_ctl = val;
1728 return 0;
1729}
1730
1731int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1732{
1733 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1734}
1735
1736static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1737 unsigned long nbytes)
1738{
1739 unsigned long stack_page;
1740 unsigned long cpu = task_cpu(p);
1741
1742 /*
1743 * Avoid crashing if the stack has overflowed and corrupted
1744 * task_cpu(p), which is in the thread_info struct.
1745 */
1746 if (cpu < NR_CPUS && cpu_possible(cpu)) {
1747 stack_page = (unsigned long) hardirq_ctx[cpu];
1748 if (sp >= stack_page + sizeof(struct thread_struct)
1749 && sp <= stack_page + THREAD_SIZE - nbytes)
1750 return 1;
1751
1752 stack_page = (unsigned long) softirq_ctx[cpu];
1753 if (sp >= stack_page + sizeof(struct thread_struct)
1754 && sp <= stack_page + THREAD_SIZE - nbytes)
1755 return 1;
1756 }
1757 return 0;
1758}
1759
1760int validate_sp(unsigned long sp, struct task_struct *p,
1761 unsigned long nbytes)
1762{
1763 unsigned long stack_page = (unsigned long)task_stack_page(p);
1764
1765 if (sp >= stack_page + sizeof(struct thread_struct)
1766 && sp <= stack_page + THREAD_SIZE - nbytes)
1767 return 1;
1768
1769 return valid_irq_stack(sp, p, nbytes);
1770}
1771
1772EXPORT_SYMBOL(validate_sp);
1773
1774unsigned long get_wchan(struct task_struct *p)
1775{
1776 unsigned long ip, sp;
1777 int count = 0;
1778
1779 if (!p || p == current || p->state == TASK_RUNNING)
1780 return 0;
1781
1782 sp = p->thread.ksp;
1783 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1784 return 0;
1785
1786 do {
1787 sp = *(unsigned long *)sp;
1788 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1789 return 0;
1790 if (count > 0) {
1791 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1792 if (!in_sched_functions(ip))
1793 return ip;
1794 }
1795 } while (count++ < 16);
1796 return 0;
1797}
1798
1799static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1800
1801void show_stack(struct task_struct *tsk, unsigned long *stack)
1802{
1803 unsigned long sp, ip, lr, newsp;
1804 int count = 0;
1805 int firstframe = 1;
1806#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1807 int curr_frame = current->curr_ret_stack;
1808 extern void return_to_handler(void);
1809 unsigned long rth = (unsigned long)return_to_handler;
1810#endif
1811
1812 sp = (unsigned long) stack;
1813 if (tsk == NULL)
1814 tsk = current;
1815 if (sp == 0) {
1816 if (tsk == current)
1817 sp = current_stack_pointer();
1818 else
1819 sp = tsk->thread.ksp;
1820 }
1821
1822 lr = 0;
1823 printk("Call Trace:\n");
1824 do {
1825 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1826 return;
1827
1828 stack = (unsigned long *) sp;
1829 newsp = stack[0];
1830 ip = stack[STACK_FRAME_LR_SAVE];
1831 if (!firstframe || ip != lr) {
1832 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1833#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1834 if ((ip == rth) && curr_frame >= 0) {
1835 printk(" (%pS)",
1836 (void *)current->ret_stack[curr_frame].ret);
1837 curr_frame--;
1838 }
1839#endif
1840 if (firstframe)
1841 printk(" (unreliable)");
1842 printk("\n");
1843 }
1844 firstframe = 0;
1845
1846 /*
1847 * See if this is an exception frame.
1848 * We look for the "regshere" marker in the current frame.
1849 */
1850 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1851 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1852 struct pt_regs *regs = (struct pt_regs *)
1853 (sp + STACK_FRAME_OVERHEAD);
1854 lr = regs->link;
1855 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
1856 regs->trap, (void *)regs->nip, (void *)lr);
1857 firstframe = 1;
1858 }
1859
1860 sp = newsp;
1861 } while (count++ < kstack_depth_to_print);
1862}
1863
1864#ifdef CONFIG_PPC64
1865/* Called with hard IRQs off */
1866void notrace __ppc64_runlatch_on(void)
1867{
1868 struct thread_info *ti = current_thread_info();
1869 unsigned long ctrl;
1870
1871 ctrl = mfspr(SPRN_CTRLF);
1872 ctrl |= CTRL_RUNLATCH;
1873 mtspr(SPRN_CTRLT, ctrl);
1874
1875 ti->local_flags |= _TLF_RUNLATCH;
1876}
1877
1878/* Called with hard IRQs off */
1879void notrace __ppc64_runlatch_off(void)
1880{
1881 struct thread_info *ti = current_thread_info();
1882 unsigned long ctrl;
1883
1884 ti->local_flags &= ~_TLF_RUNLATCH;
1885
1886 ctrl = mfspr(SPRN_CTRLF);
1887 ctrl &= ~CTRL_RUNLATCH;
1888 mtspr(SPRN_CTRLT, ctrl);
1889}
1890#endif /* CONFIG_PPC64 */
1891
1892unsigned long arch_align_stack(unsigned long sp)
1893{
1894 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1895 sp -= get_random_int() & ~PAGE_MASK;
1896 return sp & ~0xf;
1897}
1898
1899static inline unsigned long brk_rnd(void)
1900{
1901 unsigned long rnd = 0;
1902
1903 /* 8MB for 32bit, 1GB for 64bit */
1904 if (is_32bit_task())
1905 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1906 else
1907 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1908
1909 return rnd << PAGE_SHIFT;
1910}
1911
1912unsigned long arch_randomize_brk(struct mm_struct *mm)
1913{
1914 unsigned long base = mm->brk;
1915 unsigned long ret;
1916
1917#ifdef CONFIG_PPC_STD_MMU_64
1918 /*
1919 * If we are using 1TB segments and we are allowed to randomise
1920 * the heap, we can put it above 1TB so it is backed by a 1TB
1921 * segment. Otherwise the heap will be in the bottom 1TB
1922 * which always uses 256MB segments and this may result in a
1923 * performance penalty.
1924 */
1925 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1926 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1927#endif
1928
1929 ret = PAGE_ALIGN(base + brk_rnd());
1930
1931 if (ret < mm->brk)
1932 return mm->brk;
1933
1934 return ret;
1935}
1936