Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 */
12
13#include <linux/errno.h>
14#include <linux/sched.h>
15#include <linux/sched/debug.h>
16#include <linux/sched/task.h>
17#include <linux/sched/task_stack.h>
18#include <linux/kernel.h>
19#include <linux/mm.h>
20#include <linux/smp.h>
21#include <linux/stddef.h>
22#include <linux/unistd.h>
23#include <linux/ptrace.h>
24#include <linux/slab.h>
25#include <linux/user.h>
26#include <linux/elf.h>
27#include <linux/prctl.h>
28#include <linux/init_task.h>
29#include <linux/export.h>
30#include <linux/kallsyms.h>
31#include <linux/mqueue.h>
32#include <linux/hardirq.h>
33#include <linux/utsname.h>
34#include <linux/ftrace.h>
35#include <linux/kernel_stat.h>
36#include <linux/personality.h>
37#include <linux/random.h>
38#include <linux/hw_breakpoint.h>
39#include <linux/uaccess.h>
40#include <linux/elf-randomize.h>
41#include <linux/pkeys.h>
42#include <linux/seq_buf.h>
43
44#include <asm/interrupt.h>
45#include <asm/io.h>
46#include <asm/processor.h>
47#include <asm/mmu.h>
48#include <asm/prom.h>
49#include <asm/machdep.h>
50#include <asm/time.h>
51#include <asm/runlatch.h>
52#include <asm/syscalls.h>
53#include <asm/switch_to.h>
54#include <asm/tm.h>
55#include <asm/debug.h>
56#ifdef CONFIG_PPC64
57#include <asm/firmware.h>
58#include <asm/hw_irq.h>
59#endif
60#include <asm/code-patching.h>
61#include <asm/exec.h>
62#include <asm/livepatch.h>
63#include <asm/cpu_has_feature.h>
64#include <asm/asm-prototypes.h>
65#include <asm/stacktrace.h>
66#include <asm/hw_breakpoint.h>
67
68#include <linux/kprobes.h>
69#include <linux/kdebug.h>
70
71/* Transactional Memory debug */
72#ifdef TM_DEBUG_SW
73#define TM_DEBUG(x...) printk(KERN_INFO x)
74#else
75#define TM_DEBUG(x...) do { } while(0)
76#endif
77
78extern unsigned long _get_SP(void);
79
80#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81/*
82 * Are we running in "Suspend disabled" mode? If so we have to block any
83 * sigreturn that would get us into suspended state, and we also warn in some
84 * other paths that we should never reach with suspend disabled.
85 */
86bool tm_suspend_disabled __ro_after_init = false;
87
88static void check_if_tm_restore_required(struct task_struct *tsk)
89{
90 /*
91 * If we are saving the current thread's registers, and the
92 * thread is in a transactional state, set the TIF_RESTORE_TM
93 * bit so that we know to restore the registers before
94 * returning to userspace.
95 */
96 if (tsk == current && tsk->thread.regs &&
97 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98 !test_thread_flag(TIF_RESTORE_TM)) {
99 regs_set_return_msr(&tsk->thread.ckpt_regs,
100 tsk->thread.regs->msr);
101 set_thread_flag(TIF_RESTORE_TM);
102 }
103}
104
105#else
106static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
107#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
108
109bool strict_msr_control;
110EXPORT_SYMBOL(strict_msr_control);
111
112static int __init enable_strict_msr_control(char *str)
113{
114 strict_msr_control = true;
115 pr_info("Enabling strict facility control\n");
116
117 return 0;
118}
119early_param("ppc_strict_facility_enable", enable_strict_msr_control);
120
121/* notrace because it's called by restore_math */
122unsigned long notrace msr_check_and_set(unsigned long bits)
123{
124 unsigned long oldmsr = mfmsr();
125 unsigned long newmsr;
126
127 newmsr = oldmsr | bits;
128
129 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
130 newmsr |= MSR_VSX;
131
132 if (oldmsr != newmsr)
133 mtmsr_isync(newmsr);
134
135 return newmsr;
136}
137EXPORT_SYMBOL_GPL(msr_check_and_set);
138
139/* notrace because it's called by restore_math */
140void notrace __msr_check_and_clear(unsigned long bits)
141{
142 unsigned long oldmsr = mfmsr();
143 unsigned long newmsr;
144
145 newmsr = oldmsr & ~bits;
146
147 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
148 newmsr &= ~MSR_VSX;
149
150 if (oldmsr != newmsr)
151 mtmsr_isync(newmsr);
152}
153EXPORT_SYMBOL(__msr_check_and_clear);
154
155#ifdef CONFIG_PPC_FPU
156static void __giveup_fpu(struct task_struct *tsk)
157{
158 unsigned long msr;
159
160 save_fpu(tsk);
161 msr = tsk->thread.regs->msr;
162 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
163 if (cpu_has_feature(CPU_FTR_VSX))
164 msr &= ~MSR_VSX;
165 regs_set_return_msr(tsk->thread.regs, msr);
166}
167
168void giveup_fpu(struct task_struct *tsk)
169{
170 check_if_tm_restore_required(tsk);
171
172 msr_check_and_set(MSR_FP);
173 __giveup_fpu(tsk);
174 msr_check_and_clear(MSR_FP);
175}
176EXPORT_SYMBOL(giveup_fpu);
177
178/*
179 * Make sure the floating-point register state in the
180 * the thread_struct is up to date for task tsk.
181 */
182void flush_fp_to_thread(struct task_struct *tsk)
183{
184 if (tsk->thread.regs) {
185 /*
186 * We need to disable preemption here because if we didn't,
187 * another process could get scheduled after the regs->msr
188 * test but before we have finished saving the FP registers
189 * to the thread_struct. That process could take over the
190 * FPU, and then when we get scheduled again we would store
191 * bogus values for the remaining FP registers.
192 */
193 preempt_disable();
194 if (tsk->thread.regs->msr & MSR_FP) {
195 /*
196 * This should only ever be called for current or
197 * for a stopped child process. Since we save away
198 * the FP register state on context switch,
199 * there is something wrong if a stopped child appears
200 * to still have its FP state in the CPU registers.
201 */
202 BUG_ON(tsk != current);
203 giveup_fpu(tsk);
204 }
205 preempt_enable();
206 }
207}
208EXPORT_SYMBOL_GPL(flush_fp_to_thread);
209
210void enable_kernel_fp(void)
211{
212 unsigned long cpumsr;
213
214 WARN_ON(preemptible());
215
216 cpumsr = msr_check_and_set(MSR_FP);
217
218 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
219 check_if_tm_restore_required(current);
220 /*
221 * If a thread has already been reclaimed then the
222 * checkpointed registers are on the CPU but have definitely
223 * been saved by the reclaim code. Don't need to and *cannot*
224 * giveup as this would save to the 'live' structure not the
225 * checkpointed structure.
226 */
227 if (!MSR_TM_ACTIVE(cpumsr) &&
228 MSR_TM_ACTIVE(current->thread.regs->msr))
229 return;
230 __giveup_fpu(current);
231 }
232}
233EXPORT_SYMBOL(enable_kernel_fp);
234#else
235static inline void __giveup_fpu(struct task_struct *tsk) { }
236#endif /* CONFIG_PPC_FPU */
237
238#ifdef CONFIG_ALTIVEC
239static void __giveup_altivec(struct task_struct *tsk)
240{
241 unsigned long msr;
242
243 save_altivec(tsk);
244 msr = tsk->thread.regs->msr;
245 msr &= ~MSR_VEC;
246 if (cpu_has_feature(CPU_FTR_VSX))
247 msr &= ~MSR_VSX;
248 regs_set_return_msr(tsk->thread.regs, msr);
249}
250
251void giveup_altivec(struct task_struct *tsk)
252{
253 check_if_tm_restore_required(tsk);
254
255 msr_check_and_set(MSR_VEC);
256 __giveup_altivec(tsk);
257 msr_check_and_clear(MSR_VEC);
258}
259EXPORT_SYMBOL(giveup_altivec);
260
261void enable_kernel_altivec(void)
262{
263 unsigned long cpumsr;
264
265 WARN_ON(preemptible());
266
267 cpumsr = msr_check_and_set(MSR_VEC);
268
269 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
270 check_if_tm_restore_required(current);
271 /*
272 * If a thread has already been reclaimed then the
273 * checkpointed registers are on the CPU but have definitely
274 * been saved by the reclaim code. Don't need to and *cannot*
275 * giveup as this would save to the 'live' structure not the
276 * checkpointed structure.
277 */
278 if (!MSR_TM_ACTIVE(cpumsr) &&
279 MSR_TM_ACTIVE(current->thread.regs->msr))
280 return;
281 __giveup_altivec(current);
282 }
283}
284EXPORT_SYMBOL(enable_kernel_altivec);
285
286/*
287 * Make sure the VMX/Altivec register state in the
288 * the thread_struct is up to date for task tsk.
289 */
290void flush_altivec_to_thread(struct task_struct *tsk)
291{
292 if (tsk->thread.regs) {
293 preempt_disable();
294 if (tsk->thread.regs->msr & MSR_VEC) {
295 BUG_ON(tsk != current);
296 giveup_altivec(tsk);
297 }
298 preempt_enable();
299 }
300}
301EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
302#endif /* CONFIG_ALTIVEC */
303
304#ifdef CONFIG_VSX
305static void __giveup_vsx(struct task_struct *tsk)
306{
307 unsigned long msr = tsk->thread.regs->msr;
308
309 /*
310 * We should never be ssetting MSR_VSX without also setting
311 * MSR_FP and MSR_VEC
312 */
313 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
314
315 /* __giveup_fpu will clear MSR_VSX */
316 if (msr & MSR_FP)
317 __giveup_fpu(tsk);
318 if (msr & MSR_VEC)
319 __giveup_altivec(tsk);
320}
321
322static void giveup_vsx(struct task_struct *tsk)
323{
324 check_if_tm_restore_required(tsk);
325
326 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
327 __giveup_vsx(tsk);
328 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
329}
330
331void enable_kernel_vsx(void)
332{
333 unsigned long cpumsr;
334
335 WARN_ON(preemptible());
336
337 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
338
339 if (current->thread.regs &&
340 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
341 check_if_tm_restore_required(current);
342 /*
343 * If a thread has already been reclaimed then the
344 * checkpointed registers are on the CPU but have definitely
345 * been saved by the reclaim code. Don't need to and *cannot*
346 * giveup as this would save to the 'live' structure not the
347 * checkpointed structure.
348 */
349 if (!MSR_TM_ACTIVE(cpumsr) &&
350 MSR_TM_ACTIVE(current->thread.regs->msr))
351 return;
352 __giveup_vsx(current);
353 }
354}
355EXPORT_SYMBOL(enable_kernel_vsx);
356
357void flush_vsx_to_thread(struct task_struct *tsk)
358{
359 if (tsk->thread.regs) {
360 preempt_disable();
361 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
362 BUG_ON(tsk != current);
363 giveup_vsx(tsk);
364 }
365 preempt_enable();
366 }
367}
368EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
369#endif /* CONFIG_VSX */
370
371#ifdef CONFIG_SPE
372void giveup_spe(struct task_struct *tsk)
373{
374 check_if_tm_restore_required(tsk);
375
376 msr_check_and_set(MSR_SPE);
377 __giveup_spe(tsk);
378 msr_check_and_clear(MSR_SPE);
379}
380EXPORT_SYMBOL(giveup_spe);
381
382void enable_kernel_spe(void)
383{
384 WARN_ON(preemptible());
385
386 msr_check_and_set(MSR_SPE);
387
388 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
389 check_if_tm_restore_required(current);
390 __giveup_spe(current);
391 }
392}
393EXPORT_SYMBOL(enable_kernel_spe);
394
395void flush_spe_to_thread(struct task_struct *tsk)
396{
397 if (tsk->thread.regs) {
398 preempt_disable();
399 if (tsk->thread.regs->msr & MSR_SPE) {
400 BUG_ON(tsk != current);
401 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
402 giveup_spe(tsk);
403 }
404 preempt_enable();
405 }
406}
407#endif /* CONFIG_SPE */
408
409static unsigned long msr_all_available;
410
411static int __init init_msr_all_available(void)
412{
413 if (IS_ENABLED(CONFIG_PPC_FPU))
414 msr_all_available |= MSR_FP;
415 if (cpu_has_feature(CPU_FTR_ALTIVEC))
416 msr_all_available |= MSR_VEC;
417 if (cpu_has_feature(CPU_FTR_VSX))
418 msr_all_available |= MSR_VSX;
419 if (cpu_has_feature(CPU_FTR_SPE))
420 msr_all_available |= MSR_SPE;
421
422 return 0;
423}
424early_initcall(init_msr_all_available);
425
426void giveup_all(struct task_struct *tsk)
427{
428 unsigned long usermsr;
429
430 if (!tsk->thread.regs)
431 return;
432
433 check_if_tm_restore_required(tsk);
434
435 usermsr = tsk->thread.regs->msr;
436
437 if ((usermsr & msr_all_available) == 0)
438 return;
439
440 msr_check_and_set(msr_all_available);
441
442 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
443
444 if (usermsr & MSR_FP)
445 __giveup_fpu(tsk);
446 if (usermsr & MSR_VEC)
447 __giveup_altivec(tsk);
448 if (usermsr & MSR_SPE)
449 __giveup_spe(tsk);
450
451 msr_check_and_clear(msr_all_available);
452}
453EXPORT_SYMBOL(giveup_all);
454
455#ifdef CONFIG_PPC_BOOK3S_64
456#ifdef CONFIG_PPC_FPU
457static bool should_restore_fp(void)
458{
459 if (current->thread.load_fp) {
460 current->thread.load_fp++;
461 return true;
462 }
463 return false;
464}
465
466static void do_restore_fp(void)
467{
468 load_fp_state(¤t->thread.fp_state);
469}
470#else
471static bool should_restore_fp(void) { return false; }
472static void do_restore_fp(void) { }
473#endif /* CONFIG_PPC_FPU */
474
475#ifdef CONFIG_ALTIVEC
476static bool should_restore_altivec(void)
477{
478 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
479 current->thread.load_vec++;
480 return true;
481 }
482 return false;
483}
484
485static void do_restore_altivec(void)
486{
487 load_vr_state(¤t->thread.vr_state);
488 current->thread.used_vr = 1;
489}
490#else
491static bool should_restore_altivec(void) { return false; }
492static void do_restore_altivec(void) { }
493#endif /* CONFIG_ALTIVEC */
494
495static bool should_restore_vsx(void)
496{
497 if (cpu_has_feature(CPU_FTR_VSX))
498 return true;
499 return false;
500}
501#ifdef CONFIG_VSX
502static void do_restore_vsx(void)
503{
504 current->thread.used_vsr = 1;
505}
506#else
507static void do_restore_vsx(void) { }
508#endif /* CONFIG_VSX */
509
510/*
511 * The exception exit path calls restore_math() with interrupts hard disabled
512 * but the soft irq state not "reconciled". ftrace code that calls
513 * local_irq_save/restore causes warnings.
514 *
515 * Rather than complicate the exit path, just don't trace restore_math. This
516 * could be done by having ftrace entry code check for this un-reconciled
517 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
518 * temporarily fix it up for the duration of the ftrace call.
519 */
520void notrace restore_math(struct pt_regs *regs)
521{
522 unsigned long msr;
523 unsigned long new_msr = 0;
524
525 msr = regs->msr;
526
527 /*
528 * new_msr tracks the facilities that are to be restored. Only reload
529 * if the bit is not set in the user MSR (if it is set, the registers
530 * are live for the user thread).
531 */
532 if ((!(msr & MSR_FP)) && should_restore_fp())
533 new_msr |= MSR_FP;
534
535 if ((!(msr & MSR_VEC)) && should_restore_altivec())
536 new_msr |= MSR_VEC;
537
538 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
539 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
540 new_msr |= MSR_VSX;
541 }
542
543 if (new_msr) {
544 unsigned long fpexc_mode = 0;
545
546 msr_check_and_set(new_msr);
547
548 if (new_msr & MSR_FP) {
549 do_restore_fp();
550
551 // This also covers VSX, because VSX implies FP
552 fpexc_mode = current->thread.fpexc_mode;
553 }
554
555 if (new_msr & MSR_VEC)
556 do_restore_altivec();
557
558 if (new_msr & MSR_VSX)
559 do_restore_vsx();
560
561 msr_check_and_clear(new_msr);
562
563 regs_set_return_msr(regs, regs->msr | new_msr | fpexc_mode);
564 }
565}
566#endif /* CONFIG_PPC_BOOK3S_64 */
567
568static void save_all(struct task_struct *tsk)
569{
570 unsigned long usermsr;
571
572 if (!tsk->thread.regs)
573 return;
574
575 usermsr = tsk->thread.regs->msr;
576
577 if ((usermsr & msr_all_available) == 0)
578 return;
579
580 msr_check_and_set(msr_all_available);
581
582 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
583
584 if (usermsr & MSR_FP)
585 save_fpu(tsk);
586
587 if (usermsr & MSR_VEC)
588 save_altivec(tsk);
589
590 if (usermsr & MSR_SPE)
591 __giveup_spe(tsk);
592
593 msr_check_and_clear(msr_all_available);
594}
595
596void flush_all_to_thread(struct task_struct *tsk)
597{
598 if (tsk->thread.regs) {
599 preempt_disable();
600 BUG_ON(tsk != current);
601#ifdef CONFIG_SPE
602 if (tsk->thread.regs->msr & MSR_SPE)
603 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
604#endif
605 save_all(tsk);
606
607 preempt_enable();
608 }
609}
610EXPORT_SYMBOL(flush_all_to_thread);
611
612#ifdef CONFIG_PPC_ADV_DEBUG_REGS
613void do_send_trap(struct pt_regs *regs, unsigned long address,
614 unsigned long error_code, int breakpt)
615{
616 current->thread.trap_nr = TRAP_HWBKPT;
617 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
618 11, SIGSEGV) == NOTIFY_STOP)
619 return;
620
621 /* Deliver the signal to userspace */
622 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
623 (void __user *)address);
624}
625#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
626
627static void do_break_handler(struct pt_regs *regs)
628{
629 struct arch_hw_breakpoint null_brk = {0};
630 struct arch_hw_breakpoint *info;
631 struct ppc_inst instr = ppc_inst(0);
632 int type = 0;
633 int size = 0;
634 unsigned long ea;
635 int i;
636
637 /*
638 * If underneath hw supports only one watchpoint, we know it
639 * caused exception. 8xx also falls into this category.
640 */
641 if (nr_wp_slots() == 1) {
642 __set_breakpoint(0, &null_brk);
643 current->thread.hw_brk[0] = null_brk;
644 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
645 return;
646 }
647
648 /* Otherwise findout which DAWR caused exception and disable it. */
649 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
650
651 for (i = 0; i < nr_wp_slots(); i++) {
652 info = ¤t->thread.hw_brk[i];
653 if (!info->address)
654 continue;
655
656 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
657 __set_breakpoint(i, &null_brk);
658 current->thread.hw_brk[i] = null_brk;
659 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
660 }
661 }
662}
663
664DEFINE_INTERRUPT_HANDLER(do_break)
665{
666 current->thread.trap_nr = TRAP_HWBKPT;
667 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, regs->dsisr,
668 11, SIGSEGV) == NOTIFY_STOP)
669 return;
670
671 if (debugger_break_match(regs))
672 return;
673
674 /*
675 * We reach here only when watchpoint exception is generated by ptrace
676 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
677 * watchpoint is already handled by hw_breakpoint_handler() so we don't
678 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
679 * we need to manually handle the watchpoint here.
680 */
681 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
682 do_break_handler(regs);
683
684 /* Deliver the signal to userspace */
685 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)regs->dar);
686}
687#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
688
689static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
690
691#ifdef CONFIG_PPC_ADV_DEBUG_REGS
692/*
693 * Set the debug registers back to their default "safe" values.
694 */
695static void set_debug_reg_defaults(struct thread_struct *thread)
696{
697 thread->debug.iac1 = thread->debug.iac2 = 0;
698#if CONFIG_PPC_ADV_DEBUG_IACS > 2
699 thread->debug.iac3 = thread->debug.iac4 = 0;
700#endif
701 thread->debug.dac1 = thread->debug.dac2 = 0;
702#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
703 thread->debug.dvc1 = thread->debug.dvc2 = 0;
704#endif
705 thread->debug.dbcr0 = 0;
706#ifdef CONFIG_BOOKE
707 /*
708 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
709 */
710 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
711 DBCR1_IAC3US | DBCR1_IAC4US;
712 /*
713 * Force Data Address Compare User/Supervisor bits to be User-only
714 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
715 */
716 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
717#else
718 thread->debug.dbcr1 = 0;
719#endif
720}
721
722static void prime_debug_regs(struct debug_reg *debug)
723{
724 /*
725 * We could have inherited MSR_DE from userspace, since
726 * it doesn't get cleared on exception entry. Make sure
727 * MSR_DE is clear before we enable any debug events.
728 */
729 mtmsr(mfmsr() & ~MSR_DE);
730
731 mtspr(SPRN_IAC1, debug->iac1);
732 mtspr(SPRN_IAC2, debug->iac2);
733#if CONFIG_PPC_ADV_DEBUG_IACS > 2
734 mtspr(SPRN_IAC3, debug->iac3);
735 mtspr(SPRN_IAC4, debug->iac4);
736#endif
737 mtspr(SPRN_DAC1, debug->dac1);
738 mtspr(SPRN_DAC2, debug->dac2);
739#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
740 mtspr(SPRN_DVC1, debug->dvc1);
741 mtspr(SPRN_DVC2, debug->dvc2);
742#endif
743 mtspr(SPRN_DBCR0, debug->dbcr0);
744 mtspr(SPRN_DBCR1, debug->dbcr1);
745#ifdef CONFIG_BOOKE
746 mtspr(SPRN_DBCR2, debug->dbcr2);
747#endif
748}
749/*
750 * Unless neither the old or new thread are making use of the
751 * debug registers, set the debug registers from the values
752 * stored in the new thread.
753 */
754void switch_booke_debug_regs(struct debug_reg *new_debug)
755{
756 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
757 || (new_debug->dbcr0 & DBCR0_IDM))
758 prime_debug_regs(new_debug);
759}
760EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
761#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
762#ifndef CONFIG_HAVE_HW_BREAKPOINT
763static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
764{
765 preempt_disable();
766 __set_breakpoint(i, brk);
767 preempt_enable();
768}
769
770static void set_debug_reg_defaults(struct thread_struct *thread)
771{
772 int i;
773 struct arch_hw_breakpoint null_brk = {0};
774
775 for (i = 0; i < nr_wp_slots(); i++) {
776 thread->hw_brk[i] = null_brk;
777 if (ppc_breakpoint_available())
778 set_breakpoint(i, &thread->hw_brk[i]);
779 }
780}
781
782static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
783 struct arch_hw_breakpoint *b)
784{
785 if (a->address != b->address)
786 return false;
787 if (a->type != b->type)
788 return false;
789 if (a->len != b->len)
790 return false;
791 /* no need to check hw_len. it's calculated from address and len */
792 return true;
793}
794
795static void switch_hw_breakpoint(struct task_struct *new)
796{
797 int i;
798
799 for (i = 0; i < nr_wp_slots(); i++) {
800 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]),
801 &new->thread.hw_brk[i])))
802 continue;
803
804 __set_breakpoint(i, &new->thread.hw_brk[i]);
805 }
806}
807#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
808#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
809
810static inline int set_dabr(struct arch_hw_breakpoint *brk)
811{
812 unsigned long dabr, dabrx;
813
814 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
815 dabrx = ((brk->type >> 3) & 0x7);
816
817 if (ppc_md.set_dabr)
818 return ppc_md.set_dabr(dabr, dabrx);
819
820 if (IS_ENABLED(CONFIG_PPC_ADV_DEBUG_REGS)) {
821 mtspr(SPRN_DAC1, dabr);
822 if (IS_ENABLED(CONFIG_PPC_47x))
823 isync();
824 return 0;
825 } else if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
826 mtspr(SPRN_DABR, dabr);
827 if (cpu_has_feature(CPU_FTR_DABRX))
828 mtspr(SPRN_DABRX, dabrx);
829 return 0;
830 } else {
831 return -EINVAL;
832 }
833}
834
835static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
836{
837 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
838 LCTRL1_CRWF_RW;
839 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
840 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
841 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
842
843 if (start_addr == 0)
844 lctrl2 |= LCTRL2_LW0LA_F;
845 else if (end_addr == 0)
846 lctrl2 |= LCTRL2_LW0LA_E;
847 else
848 lctrl2 |= LCTRL2_LW0LA_EandF;
849
850 mtspr(SPRN_LCTRL2, 0);
851
852 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
853 return 0;
854
855 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
856 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
857 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
858 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
859
860 mtspr(SPRN_CMPE, start_addr - 1);
861 mtspr(SPRN_CMPF, end_addr);
862 mtspr(SPRN_LCTRL1, lctrl1);
863 mtspr(SPRN_LCTRL2, lctrl2);
864
865 return 0;
866}
867
868void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
869{
870 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk));
871
872 if (dawr_enabled())
873 // Power8 or later
874 set_dawr(nr, brk);
875 else if (IS_ENABLED(CONFIG_PPC_8xx))
876 set_breakpoint_8xx(brk);
877 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
878 // Power7 or earlier
879 set_dabr(brk);
880 else
881 // Shouldn't happen due to higher level checks
882 WARN_ON_ONCE(1);
883}
884
885/* Check if we have DAWR or DABR hardware */
886bool ppc_breakpoint_available(void)
887{
888 if (dawr_enabled())
889 return true; /* POWER8 DAWR or POWER9 forced DAWR */
890 if (cpu_has_feature(CPU_FTR_ARCH_207S))
891 return false; /* POWER9 with DAWR disabled */
892 /* DABR: Everything but POWER8 and POWER9 */
893 return true;
894}
895EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
896
897#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
898
899static inline bool tm_enabled(struct task_struct *tsk)
900{
901 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
902}
903
904static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
905{
906 /*
907 * Use the current MSR TM suspended bit to track if we have
908 * checkpointed state outstanding.
909 * On signal delivery, we'd normally reclaim the checkpointed
910 * state to obtain stack pointer (see:get_tm_stackpointer()).
911 * This will then directly return to userspace without going
912 * through __switch_to(). However, if the stack frame is bad,
913 * we need to exit this thread which calls __switch_to() which
914 * will again attempt to reclaim the already saved tm state.
915 * Hence we need to check that we've not already reclaimed
916 * this state.
917 * We do this using the current MSR, rather tracking it in
918 * some specific thread_struct bit, as it has the additional
919 * benefit of checking for a potential TM bad thing exception.
920 */
921 if (!MSR_TM_SUSPENDED(mfmsr()))
922 return;
923
924 giveup_all(container_of(thr, struct task_struct, thread));
925
926 tm_reclaim(thr, cause);
927
928 /*
929 * If we are in a transaction and FP is off then we can't have
930 * used FP inside that transaction. Hence the checkpointed
931 * state is the same as the live state. We need to copy the
932 * live state to the checkpointed state so that when the
933 * transaction is restored, the checkpointed state is correct
934 * and the aborted transaction sees the correct state. We use
935 * ckpt_regs.msr here as that's what tm_reclaim will use to
936 * determine if it's going to write the checkpointed state or
937 * not. So either this will write the checkpointed registers,
938 * or reclaim will. Similarly for VMX.
939 */
940 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
941 memcpy(&thr->ckfp_state, &thr->fp_state,
942 sizeof(struct thread_fp_state));
943 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
944 memcpy(&thr->ckvr_state, &thr->vr_state,
945 sizeof(struct thread_vr_state));
946}
947
948void tm_reclaim_current(uint8_t cause)
949{
950 tm_enable();
951 tm_reclaim_thread(¤t->thread, cause);
952}
953
954static inline void tm_reclaim_task(struct task_struct *tsk)
955{
956 /* We have to work out if we're switching from/to a task that's in the
957 * middle of a transaction.
958 *
959 * In switching we need to maintain a 2nd register state as
960 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
961 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
962 * ckvr_state
963 *
964 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
965 */
966 struct thread_struct *thr = &tsk->thread;
967
968 if (!thr->regs)
969 return;
970
971 if (!MSR_TM_ACTIVE(thr->regs->msr))
972 goto out_and_saveregs;
973
974 WARN_ON(tm_suspend_disabled);
975
976 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
977 "ccr=%lx, msr=%lx, trap=%lx)\n",
978 tsk->pid, thr->regs->nip,
979 thr->regs->ccr, thr->regs->msr,
980 thr->regs->trap);
981
982 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
983
984 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
985 tsk->pid);
986
987out_and_saveregs:
988 /* Always save the regs here, even if a transaction's not active.
989 * This context-switches a thread's TM info SPRs. We do it here to
990 * be consistent with the restore path (in recheckpoint) which
991 * cannot happen later in _switch().
992 */
993 tm_save_sprs(thr);
994}
995
996extern void __tm_recheckpoint(struct thread_struct *thread);
997
998void tm_recheckpoint(struct thread_struct *thread)
999{
1000 unsigned long flags;
1001
1002 if (!(thread->regs->msr & MSR_TM))
1003 return;
1004
1005 /* We really can't be interrupted here as the TEXASR registers can't
1006 * change and later in the trecheckpoint code, we have a userspace R1.
1007 * So let's hard disable over this region.
1008 */
1009 local_irq_save(flags);
1010 hard_irq_disable();
1011
1012 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1013 * before the trecheckpoint and no explosion occurs.
1014 */
1015 tm_restore_sprs(thread);
1016
1017 __tm_recheckpoint(thread);
1018
1019 local_irq_restore(flags);
1020}
1021
1022static inline void tm_recheckpoint_new_task(struct task_struct *new)
1023{
1024 if (!cpu_has_feature(CPU_FTR_TM))
1025 return;
1026
1027 /* Recheckpoint the registers of the thread we're about to switch to.
1028 *
1029 * If the task was using FP, we non-lazily reload both the original and
1030 * the speculative FP register states. This is because the kernel
1031 * doesn't see if/when a TM rollback occurs, so if we take an FP
1032 * unavailable later, we are unable to determine which set of FP regs
1033 * need to be restored.
1034 */
1035 if (!tm_enabled(new))
1036 return;
1037
1038 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1039 tm_restore_sprs(&new->thread);
1040 return;
1041 }
1042 /* Recheckpoint to restore original checkpointed register state. */
1043 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1044 new->pid, new->thread.regs->msr);
1045
1046 tm_recheckpoint(&new->thread);
1047
1048 /*
1049 * The checkpointed state has been restored but the live state has
1050 * not, ensure all the math functionality is turned off to trigger
1051 * restore_math() to reload.
1052 */
1053 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1054
1055 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1056 "(kernel msr 0x%lx)\n",
1057 new->pid, mfmsr());
1058}
1059
1060static inline void __switch_to_tm(struct task_struct *prev,
1061 struct task_struct *new)
1062{
1063 if (cpu_has_feature(CPU_FTR_TM)) {
1064 if (tm_enabled(prev) || tm_enabled(new))
1065 tm_enable();
1066
1067 if (tm_enabled(prev)) {
1068 prev->thread.load_tm++;
1069 tm_reclaim_task(prev);
1070 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1071 prev->thread.regs->msr &= ~MSR_TM;
1072 }
1073
1074 tm_recheckpoint_new_task(new);
1075 }
1076}
1077
1078/*
1079 * This is called if we are on the way out to userspace and the
1080 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1081 * FP and/or vector state and does so if necessary.
1082 * If userspace is inside a transaction (whether active or
1083 * suspended) and FP/VMX/VSX instructions have ever been enabled
1084 * inside that transaction, then we have to keep them enabled
1085 * and keep the FP/VMX/VSX state loaded while ever the transaction
1086 * continues. The reason is that if we didn't, and subsequently
1087 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1088 * we don't know whether it's the same transaction, and thus we
1089 * don't know which of the checkpointed state and the transactional
1090 * state to use.
1091 */
1092void restore_tm_state(struct pt_regs *regs)
1093{
1094 unsigned long msr_diff;
1095
1096 /*
1097 * This is the only moment we should clear TIF_RESTORE_TM as
1098 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1099 * again, anything else could lead to an incorrect ckpt_msr being
1100 * saved and therefore incorrect signal contexts.
1101 */
1102 clear_thread_flag(TIF_RESTORE_TM);
1103 if (!MSR_TM_ACTIVE(regs->msr))
1104 return;
1105
1106 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1107 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1108
1109 /* Ensure that restore_math() will restore */
1110 if (msr_diff & MSR_FP)
1111 current->thread.load_fp = 1;
1112#ifdef CONFIG_ALTIVEC
1113 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1114 current->thread.load_vec = 1;
1115#endif
1116 restore_math(regs);
1117
1118 regs_set_return_msr(regs, regs->msr | msr_diff);
1119}
1120
1121#else /* !CONFIG_PPC_TRANSACTIONAL_MEM */
1122#define tm_recheckpoint_new_task(new)
1123#define __switch_to_tm(prev, new)
1124void tm_reclaim_current(uint8_t cause) {}
1125#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1126
1127static inline void save_sprs(struct thread_struct *t)
1128{
1129#ifdef CONFIG_ALTIVEC
1130 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1131 t->vrsave = mfspr(SPRN_VRSAVE);
1132#endif
1133#ifdef CONFIG_SPE
1134 if (cpu_has_feature(CPU_FTR_SPE))
1135 t->spefscr = mfspr(SPRN_SPEFSCR);
1136#endif
1137#ifdef CONFIG_PPC_BOOK3S_64
1138 if (cpu_has_feature(CPU_FTR_DSCR))
1139 t->dscr = mfspr(SPRN_DSCR);
1140
1141 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1142 t->bescr = mfspr(SPRN_BESCR);
1143 t->ebbhr = mfspr(SPRN_EBBHR);
1144 t->ebbrr = mfspr(SPRN_EBBRR);
1145
1146 t->fscr = mfspr(SPRN_FSCR);
1147
1148 /*
1149 * Note that the TAR is not available for use in the kernel.
1150 * (To provide this, the TAR should be backed up/restored on
1151 * exception entry/exit instead, and be in pt_regs. FIXME,
1152 * this should be in pt_regs anyway (for debug).)
1153 */
1154 t->tar = mfspr(SPRN_TAR);
1155 }
1156#endif
1157}
1158
1159static inline void restore_sprs(struct thread_struct *old_thread,
1160 struct thread_struct *new_thread)
1161{
1162#ifdef CONFIG_ALTIVEC
1163 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1164 old_thread->vrsave != new_thread->vrsave)
1165 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1166#endif
1167#ifdef CONFIG_SPE
1168 if (cpu_has_feature(CPU_FTR_SPE) &&
1169 old_thread->spefscr != new_thread->spefscr)
1170 mtspr(SPRN_SPEFSCR, new_thread->spefscr);
1171#endif
1172#ifdef CONFIG_PPC_BOOK3S_64
1173 if (cpu_has_feature(CPU_FTR_DSCR)) {
1174 u64 dscr = get_paca()->dscr_default;
1175 if (new_thread->dscr_inherit)
1176 dscr = new_thread->dscr;
1177
1178 if (old_thread->dscr != dscr)
1179 mtspr(SPRN_DSCR, dscr);
1180 }
1181
1182 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1183 if (old_thread->bescr != new_thread->bescr)
1184 mtspr(SPRN_BESCR, new_thread->bescr);
1185 if (old_thread->ebbhr != new_thread->ebbhr)
1186 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1187 if (old_thread->ebbrr != new_thread->ebbrr)
1188 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1189
1190 if (old_thread->fscr != new_thread->fscr)
1191 mtspr(SPRN_FSCR, new_thread->fscr);
1192
1193 if (old_thread->tar != new_thread->tar)
1194 mtspr(SPRN_TAR, new_thread->tar);
1195 }
1196
1197 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1198 old_thread->tidr != new_thread->tidr)
1199 mtspr(SPRN_TIDR, new_thread->tidr);
1200#endif
1201
1202}
1203
1204struct task_struct *__switch_to(struct task_struct *prev,
1205 struct task_struct *new)
1206{
1207 struct thread_struct *new_thread, *old_thread;
1208 struct task_struct *last;
1209#ifdef CONFIG_PPC_BOOK3S_64
1210 struct ppc64_tlb_batch *batch;
1211#endif
1212
1213 new_thread = &new->thread;
1214 old_thread = ¤t->thread;
1215
1216 WARN_ON(!irqs_disabled());
1217
1218#ifdef CONFIG_PPC_BOOK3S_64
1219 batch = this_cpu_ptr(&ppc64_tlb_batch);
1220 if (batch->active) {
1221 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1222 if (batch->index)
1223 __flush_tlb_pending(batch);
1224 batch->active = 0;
1225 }
1226
1227 /*
1228 * On POWER9 the copy-paste buffer can only paste into
1229 * foreign real addresses, so unprivileged processes can not
1230 * see the data or use it in any way unless they have
1231 * foreign real mappings. If the new process has the foreign
1232 * real address mappings, we must issue a cp_abort to clear
1233 * any state and prevent snooping, corruption or a covert
1234 * channel. ISA v3.1 supports paste into local memory.
1235 */
1236 if (new->mm && (cpu_has_feature(CPU_FTR_ARCH_31) ||
1237 atomic_read(&new->mm->context.vas_windows)))
1238 asm volatile(PPC_CP_ABORT);
1239#endif /* CONFIG_PPC_BOOK3S_64 */
1240
1241#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1242 switch_booke_debug_regs(&new->thread.debug);
1243#else
1244/*
1245 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1246 * schedule DABR
1247 */
1248#ifndef CONFIG_HAVE_HW_BREAKPOINT
1249 switch_hw_breakpoint(new);
1250#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1251#endif
1252
1253 /*
1254 * We need to save SPRs before treclaim/trecheckpoint as these will
1255 * change a number of them.
1256 */
1257 save_sprs(&prev->thread);
1258
1259 /* Save FPU, Altivec, VSX and SPE state */
1260 giveup_all(prev);
1261
1262 __switch_to_tm(prev, new);
1263
1264 if (!radix_enabled()) {
1265 /*
1266 * We can't take a PMU exception inside _switch() since there
1267 * is a window where the kernel stack SLB and the kernel stack
1268 * are out of sync. Hard disable here.
1269 */
1270 hard_irq_disable();
1271 }
1272
1273 /*
1274 * Call restore_sprs() and set_return_regs_changed() before calling
1275 * _switch(). If we move it after _switch() then we miss out on calling
1276 * it for new tasks. The reason for this is we manually create a stack
1277 * frame for new tasks that directly returns through ret_from_fork() or
1278 * ret_from_kernel_thread(). See copy_thread() for details.
1279 */
1280 restore_sprs(old_thread, new_thread);
1281
1282 set_return_regs_changed(); /* _switch changes stack (and regs) */
1283
1284#ifdef CONFIG_PPC32
1285 kuap_assert_locked();
1286#endif
1287 last = _switch(old_thread, new_thread);
1288
1289 /*
1290 * Nothing after _switch will be run for newly created tasks,
1291 * because they switch directly to ret_from_fork/ret_from_kernel_thread
1292 * etc. Code added here should have a comment explaining why that is
1293 * okay.
1294 */
1295
1296#ifdef CONFIG_PPC_BOOK3S_64
1297 /*
1298 * This applies to a process that was context switched while inside
1299 * arch_enter_lazy_mmu_mode(), to re-activate the batch that was
1300 * deactivated above, before _switch(). This will never be the case
1301 * for new tasks.
1302 */
1303 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1304 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1305 batch = this_cpu_ptr(&ppc64_tlb_batch);
1306 batch->active = 1;
1307 }
1308
1309 /*
1310 * Math facilities are masked out of the child MSR in copy_thread.
1311 * A new task does not need to restore_math because it will
1312 * demand fault them.
1313 */
1314 if (current->thread.regs)
1315 restore_math(current->thread.regs);
1316#endif /* CONFIG_PPC_BOOK3S_64 */
1317
1318 return last;
1319}
1320
1321#define NR_INSN_TO_PRINT 16
1322
1323static void show_instructions(struct pt_regs *regs)
1324{
1325 int i;
1326 unsigned long nip = regs->nip;
1327 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1328
1329 printk("Instruction dump:");
1330
1331 /*
1332 * If we were executing with the MMU off for instructions, adjust pc
1333 * rather than printing XXXXXXXX.
1334 */
1335 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1336 pc = (unsigned long)phys_to_virt(pc);
1337 nip = (unsigned long)phys_to_virt(regs->nip);
1338 }
1339
1340 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1341 int instr;
1342
1343 if (!(i % 8))
1344 pr_cont("\n");
1345
1346 if (!__kernel_text_address(pc) ||
1347 get_kernel_nofault(instr, (const void *)pc)) {
1348 pr_cont("XXXXXXXX ");
1349 } else {
1350 if (nip == pc)
1351 pr_cont("<%08x> ", instr);
1352 else
1353 pr_cont("%08x ", instr);
1354 }
1355
1356 pc += sizeof(int);
1357 }
1358
1359 pr_cont("\n");
1360}
1361
1362void show_user_instructions(struct pt_regs *regs)
1363{
1364 unsigned long pc;
1365 int n = NR_INSN_TO_PRINT;
1366 struct seq_buf s;
1367 char buf[96]; /* enough for 8 times 9 + 2 chars */
1368
1369 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1370
1371 seq_buf_init(&s, buf, sizeof(buf));
1372
1373 while (n) {
1374 int i;
1375
1376 seq_buf_clear(&s);
1377
1378 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1379 int instr;
1380
1381 if (copy_from_user_nofault(&instr, (void __user *)pc,
1382 sizeof(instr))) {
1383 seq_buf_printf(&s, "XXXXXXXX ");
1384 continue;
1385 }
1386 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1387 }
1388
1389 if (!seq_buf_has_overflowed(&s))
1390 pr_info("%s[%d]: code: %s\n", current->comm,
1391 current->pid, s.buffer);
1392 }
1393}
1394
1395struct regbit {
1396 unsigned long bit;
1397 const char *name;
1398};
1399
1400static struct regbit msr_bits[] = {
1401#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1402 {MSR_SF, "SF"},
1403 {MSR_HV, "HV"},
1404#endif
1405 {MSR_VEC, "VEC"},
1406 {MSR_VSX, "VSX"},
1407#ifdef CONFIG_BOOKE
1408 {MSR_CE, "CE"},
1409#endif
1410 {MSR_EE, "EE"},
1411 {MSR_PR, "PR"},
1412 {MSR_FP, "FP"},
1413 {MSR_ME, "ME"},
1414#ifdef CONFIG_BOOKE
1415 {MSR_DE, "DE"},
1416#else
1417 {MSR_SE, "SE"},
1418 {MSR_BE, "BE"},
1419#endif
1420 {MSR_IR, "IR"},
1421 {MSR_DR, "DR"},
1422 {MSR_PMM, "PMM"},
1423#ifndef CONFIG_BOOKE
1424 {MSR_RI, "RI"},
1425 {MSR_LE, "LE"},
1426#endif
1427 {0, NULL}
1428};
1429
1430static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1431{
1432 const char *s = "";
1433
1434 for (; bits->bit; ++bits)
1435 if (val & bits->bit) {
1436 pr_cont("%s%s", s, bits->name);
1437 s = sep;
1438 }
1439}
1440
1441#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1442static struct regbit msr_tm_bits[] = {
1443 {MSR_TS_T, "T"},
1444 {MSR_TS_S, "S"},
1445 {MSR_TM, "E"},
1446 {0, NULL}
1447};
1448
1449static void print_tm_bits(unsigned long val)
1450{
1451/*
1452 * This only prints something if at least one of the TM bit is set.
1453 * Inside the TM[], the output means:
1454 * E: Enabled (bit 32)
1455 * S: Suspended (bit 33)
1456 * T: Transactional (bit 34)
1457 */
1458 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1459 pr_cont(",TM[");
1460 print_bits(val, msr_tm_bits, "");
1461 pr_cont("]");
1462 }
1463}
1464#else
1465static void print_tm_bits(unsigned long val) {}
1466#endif
1467
1468static void print_msr_bits(unsigned long val)
1469{
1470 pr_cont("<");
1471 print_bits(val, msr_bits, ",");
1472 print_tm_bits(val);
1473 pr_cont(">");
1474}
1475
1476#ifdef CONFIG_PPC64
1477#define REG "%016lx"
1478#define REGS_PER_LINE 4
1479#else
1480#define REG "%08lx"
1481#define REGS_PER_LINE 8
1482#endif
1483
1484static void __show_regs(struct pt_regs *regs)
1485{
1486 int i, trap;
1487
1488 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1489 regs->nip, regs->link, regs->ctr);
1490 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1491 regs, regs->trap, print_tainted(), init_utsname()->release);
1492 printk("MSR: "REG" ", regs->msr);
1493 print_msr_bits(regs->msr);
1494 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1495 trap = TRAP(regs);
1496 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1497 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1498 if (trap == INTERRUPT_MACHINE_CHECK ||
1499 trap == INTERRUPT_DATA_STORAGE ||
1500 trap == INTERRUPT_ALIGNMENT) {
1501 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1502 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1503 else
1504 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1505 }
1506
1507#ifdef CONFIG_PPC64
1508 pr_cont("IRQMASK: %lx ", regs->softe);
1509#endif
1510#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1511 if (MSR_TM_ACTIVE(regs->msr))
1512 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1513#endif
1514
1515 for (i = 0; i < 32; i++) {
1516 if ((i % REGS_PER_LINE) == 0)
1517 pr_cont("\nGPR%02d: ", i);
1518 pr_cont(REG " ", regs->gpr[i]);
1519 }
1520 pr_cont("\n");
1521 /*
1522 * Lookup NIP late so we have the best change of getting the
1523 * above info out without failing
1524 */
1525 if (IS_ENABLED(CONFIG_KALLSYMS)) {
1526 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1527 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1528 }
1529}
1530
1531void show_regs(struct pt_regs *regs)
1532{
1533 show_regs_print_info(KERN_DEFAULT);
1534 __show_regs(regs);
1535 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1536 if (!user_mode(regs))
1537 show_instructions(regs);
1538}
1539
1540void flush_thread(void)
1541{
1542#ifdef CONFIG_HAVE_HW_BREAKPOINT
1543 flush_ptrace_hw_breakpoint(current);
1544#else /* CONFIG_HAVE_HW_BREAKPOINT */
1545 set_debug_reg_defaults(¤t->thread);
1546#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1547}
1548
1549void arch_setup_new_exec(void)
1550{
1551
1552#ifdef CONFIG_PPC_BOOK3S_64
1553 if (!radix_enabled())
1554 hash__setup_new_exec();
1555#endif
1556 /*
1557 * If we exec out of a kernel thread then thread.regs will not be
1558 * set. Do it now.
1559 */
1560 if (!current->thread.regs) {
1561 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1562 current->thread.regs = regs - 1;
1563 }
1564
1565#ifdef CONFIG_PPC_MEM_KEYS
1566 current->thread.regs->amr = default_amr;
1567 current->thread.regs->iamr = default_iamr;
1568#endif
1569}
1570
1571#ifdef CONFIG_PPC64
1572/**
1573 * Assign a TIDR (thread ID) for task @t and set it in the thread
1574 * structure. For now, we only support setting TIDR for 'current' task.
1575 *
1576 * Since the TID value is a truncated form of it PID, it is possible
1577 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1578 * that 2 threads share the same TID and are waiting, one of the following
1579 * cases will happen:
1580 *
1581 * 1. The correct thread is running, the wrong thread is not
1582 * In this situation, the correct thread is woken and proceeds to pass it's
1583 * condition check.
1584 *
1585 * 2. Neither threads are running
1586 * In this situation, neither thread will be woken. When scheduled, the waiting
1587 * threads will execute either a wait, which will return immediately, followed
1588 * by a condition check, which will pass for the correct thread and fail
1589 * for the wrong thread, or they will execute the condition check immediately.
1590 *
1591 * 3. The wrong thread is running, the correct thread is not
1592 * The wrong thread will be woken, but will fail it's condition check and
1593 * re-execute wait. The correct thread, when scheduled, will execute either
1594 * it's condition check (which will pass), or wait, which returns immediately
1595 * when called the first time after the thread is scheduled, followed by it's
1596 * condition check (which will pass).
1597 *
1598 * 4. Both threads are running
1599 * Both threads will be woken. The wrong thread will fail it's condition check
1600 * and execute another wait, while the correct thread will pass it's condition
1601 * check.
1602 *
1603 * @t: the task to set the thread ID for
1604 */
1605int set_thread_tidr(struct task_struct *t)
1606{
1607 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1608 return -EINVAL;
1609
1610 if (t != current)
1611 return -EINVAL;
1612
1613 if (t->thread.tidr)
1614 return 0;
1615
1616 t->thread.tidr = (u16)task_pid_nr(t);
1617 mtspr(SPRN_TIDR, t->thread.tidr);
1618
1619 return 0;
1620}
1621EXPORT_SYMBOL_GPL(set_thread_tidr);
1622
1623#endif /* CONFIG_PPC64 */
1624
1625void
1626release_thread(struct task_struct *t)
1627{
1628}
1629
1630/*
1631 * this gets called so that we can store coprocessor state into memory and
1632 * copy the current task into the new thread.
1633 */
1634int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1635{
1636 flush_all_to_thread(src);
1637 /*
1638 * Flush TM state out so we can copy it. __switch_to_tm() does this
1639 * flush but it removes the checkpointed state from the current CPU and
1640 * transitions the CPU out of TM mode. Hence we need to call
1641 * tm_recheckpoint_new_task() (on the same task) to restore the
1642 * checkpointed state back and the TM mode.
1643 *
1644 * Can't pass dst because it isn't ready. Doesn't matter, passing
1645 * dst is only important for __switch_to()
1646 */
1647 __switch_to_tm(src, src);
1648
1649 *dst = *src;
1650
1651 clear_task_ebb(dst);
1652
1653 return 0;
1654}
1655
1656static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1657{
1658#ifdef CONFIG_PPC_BOOK3S_64
1659 unsigned long sp_vsid;
1660 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1661
1662 if (radix_enabled())
1663 return;
1664
1665 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1666 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1667 << SLB_VSID_SHIFT_1T;
1668 else
1669 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1670 << SLB_VSID_SHIFT;
1671 sp_vsid |= SLB_VSID_KERNEL | llp;
1672 p->thread.ksp_vsid = sp_vsid;
1673#endif
1674}
1675
1676/*
1677 * Copy a thread..
1678 */
1679
1680/*
1681 * Copy architecture-specific thread state
1682 */
1683int copy_thread(unsigned long clone_flags, unsigned long usp,
1684 unsigned long kthread_arg, struct task_struct *p,
1685 unsigned long tls)
1686{
1687 struct pt_regs *childregs, *kregs;
1688 extern void ret_from_fork(void);
1689 extern void ret_from_fork_scv(void);
1690 extern void ret_from_kernel_thread(void);
1691 void (*f)(void);
1692 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1693 struct thread_info *ti = task_thread_info(p);
1694#ifdef CONFIG_HAVE_HW_BREAKPOINT
1695 int i;
1696#endif
1697
1698 klp_init_thread_info(p);
1699
1700 /* Copy registers */
1701 sp -= sizeof(struct pt_regs);
1702 childregs = (struct pt_regs *) sp;
1703 if (unlikely(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
1704 /* kernel thread */
1705 memset(childregs, 0, sizeof(struct pt_regs));
1706 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1707 /* function */
1708 if (usp)
1709 childregs->gpr[14] = ppc_function_entry((void *)usp);
1710#ifdef CONFIG_PPC64
1711 clear_tsk_thread_flag(p, TIF_32BIT);
1712 childregs->softe = IRQS_ENABLED;
1713#endif
1714 childregs->gpr[15] = kthread_arg;
1715 p->thread.regs = NULL; /* no user register state */
1716 ti->flags |= _TIF_RESTOREALL;
1717 f = ret_from_kernel_thread;
1718 } else {
1719 /* user thread */
1720 struct pt_regs *regs = current_pt_regs();
1721 *childregs = *regs;
1722 if (usp)
1723 childregs->gpr[1] = usp;
1724 p->thread.regs = childregs;
1725 /* 64s sets this in ret_from_fork */
1726 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1727 childregs->gpr[3] = 0; /* Result from fork() */
1728 if (clone_flags & CLONE_SETTLS) {
1729 if (!is_32bit_task())
1730 childregs->gpr[13] = tls;
1731 else
1732 childregs->gpr[2] = tls;
1733 }
1734
1735 if (trap_is_scv(regs))
1736 f = ret_from_fork_scv;
1737 else
1738 f = ret_from_fork;
1739 }
1740 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1741 sp -= STACK_FRAME_OVERHEAD;
1742
1743 /*
1744 * The way this works is that at some point in the future
1745 * some task will call _switch to switch to the new task.
1746 * That will pop off the stack frame created below and start
1747 * the new task running at ret_from_fork. The new task will
1748 * do some house keeping and then return from the fork or clone
1749 * system call, using the stack frame created above.
1750 */
1751 ((unsigned long *)sp)[0] = 0;
1752 sp -= sizeof(struct pt_regs);
1753 kregs = (struct pt_regs *) sp;
1754 sp -= STACK_FRAME_OVERHEAD;
1755 p->thread.ksp = sp;
1756#ifdef CONFIG_HAVE_HW_BREAKPOINT
1757 for (i = 0; i < nr_wp_slots(); i++)
1758 p->thread.ptrace_bps[i] = NULL;
1759#endif
1760
1761#ifdef CONFIG_PPC_FPU_REGS
1762 p->thread.fp_save_area = NULL;
1763#endif
1764#ifdef CONFIG_ALTIVEC
1765 p->thread.vr_save_area = NULL;
1766#endif
1767#if defined(CONFIG_PPC_BOOK3S_32) && defined(CONFIG_PPC_KUAP)
1768 p->thread.kuap = KUAP_NONE;
1769#endif
1770
1771 setup_ksp_vsid(p, sp);
1772
1773#ifdef CONFIG_PPC64
1774 if (cpu_has_feature(CPU_FTR_DSCR)) {
1775 p->thread.dscr_inherit = current->thread.dscr_inherit;
1776 p->thread.dscr = mfspr(SPRN_DSCR);
1777 }
1778 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1779 childregs->ppr = DEFAULT_PPR;
1780
1781 p->thread.tidr = 0;
1782#endif
1783 /*
1784 * Run with the current AMR value of the kernel
1785 */
1786#ifdef CONFIG_PPC_PKEY
1787 if (mmu_has_feature(MMU_FTR_BOOK3S_KUAP))
1788 kregs->amr = AMR_KUAP_BLOCKED;
1789
1790 if (mmu_has_feature(MMU_FTR_BOOK3S_KUEP))
1791 kregs->iamr = AMR_KUEP_BLOCKED;
1792#endif
1793 kregs->nip = ppc_function_entry(f);
1794 return 0;
1795}
1796
1797void preload_new_slb_context(unsigned long start, unsigned long sp);
1798
1799/*
1800 * Set up a thread for executing a new program
1801 */
1802void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1803{
1804#ifdef CONFIG_PPC64
1805 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1806
1807 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1808 preload_new_slb_context(start, sp);
1809#endif
1810
1811#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1812 /*
1813 * Clear any transactional state, we're exec()ing. The cause is
1814 * not important as there will never be a recheckpoint so it's not
1815 * user visible.
1816 */
1817 if (MSR_TM_SUSPENDED(mfmsr()))
1818 tm_reclaim_current(0);
1819#endif
1820
1821 memset(regs->gpr, 0, sizeof(regs->gpr));
1822 regs->ctr = 0;
1823 regs->link = 0;
1824 regs->xer = 0;
1825 regs->ccr = 0;
1826 regs->gpr[1] = sp;
1827
1828#ifdef CONFIG_PPC32
1829 regs->mq = 0;
1830 regs->nip = start;
1831 regs->msr = MSR_USER;
1832#else
1833 if (!is_32bit_task()) {
1834 unsigned long entry;
1835
1836 if (is_elf2_task()) {
1837 /* Look ma, no function descriptors! */
1838 entry = start;
1839
1840 /*
1841 * Ulrich says:
1842 * The latest iteration of the ABI requires that when
1843 * calling a function (at its global entry point),
1844 * the caller must ensure r12 holds the entry point
1845 * address (so that the function can quickly
1846 * establish addressability).
1847 */
1848 regs->gpr[12] = start;
1849 /* Make sure that's restored on entry to userspace. */
1850 set_thread_flag(TIF_RESTOREALL);
1851 } else {
1852 unsigned long toc;
1853
1854 /* start is a relocated pointer to the function
1855 * descriptor for the elf _start routine. The first
1856 * entry in the function descriptor is the entry
1857 * address of _start and the second entry is the TOC
1858 * value we need to use.
1859 */
1860 __get_user(entry, (unsigned long __user *)start);
1861 __get_user(toc, (unsigned long __user *)start+1);
1862
1863 /* Check whether the e_entry function descriptor entries
1864 * need to be relocated before we can use them.
1865 */
1866 if (load_addr != 0) {
1867 entry += load_addr;
1868 toc += load_addr;
1869 }
1870 regs->gpr[2] = toc;
1871 }
1872 regs_set_return_ip(regs, entry);
1873 regs_set_return_msr(regs, MSR_USER64);
1874 } else {
1875 regs->gpr[2] = 0;
1876 regs_set_return_ip(regs, start);
1877 regs_set_return_msr(regs, MSR_USER32);
1878 }
1879
1880#endif
1881#ifdef CONFIG_VSX
1882 current->thread.used_vsr = 0;
1883#endif
1884 current->thread.load_slb = 0;
1885 current->thread.load_fp = 0;
1886#ifdef CONFIG_PPC_FPU_REGS
1887 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1888 current->thread.fp_save_area = NULL;
1889#endif
1890#ifdef CONFIG_ALTIVEC
1891 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1892 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1893 current->thread.vr_save_area = NULL;
1894 current->thread.vrsave = 0;
1895 current->thread.used_vr = 0;
1896 current->thread.load_vec = 0;
1897#endif /* CONFIG_ALTIVEC */
1898#ifdef CONFIG_SPE
1899 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1900 current->thread.acc = 0;
1901 current->thread.spefscr = 0;
1902 current->thread.used_spe = 0;
1903#endif /* CONFIG_SPE */
1904#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1905 current->thread.tm_tfhar = 0;
1906 current->thread.tm_texasr = 0;
1907 current->thread.tm_tfiar = 0;
1908 current->thread.load_tm = 0;
1909#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1910}
1911EXPORT_SYMBOL(start_thread);
1912
1913#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1914 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1915
1916int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1917{
1918 struct pt_regs *regs = tsk->thread.regs;
1919
1920 /* This is a bit hairy. If we are an SPE enabled processor
1921 * (have embedded fp) we store the IEEE exception enable flags in
1922 * fpexc_mode. fpexc_mode is also used for setting FP exception
1923 * mode (asyn, precise, disabled) for 'Classic' FP. */
1924 if (val & PR_FP_EXC_SW_ENABLE) {
1925 if (cpu_has_feature(CPU_FTR_SPE)) {
1926 /*
1927 * When the sticky exception bits are set
1928 * directly by userspace, it must call prctl
1929 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1930 * in the existing prctl settings) or
1931 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1932 * the bits being set). <fenv.h> functions
1933 * saving and restoring the whole
1934 * floating-point environment need to do so
1935 * anyway to restore the prctl settings from
1936 * the saved environment.
1937 */
1938#ifdef CONFIG_SPE
1939 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1940 tsk->thread.fpexc_mode = val &
1941 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1942#endif
1943 return 0;
1944 } else {
1945 return -EINVAL;
1946 }
1947 }
1948
1949 /* on a CONFIG_SPE this does not hurt us. The bits that
1950 * __pack_fe01 use do not overlap with bits used for
1951 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1952 * on CONFIG_SPE implementations are reserved so writing to
1953 * them does not change anything */
1954 if (val > PR_FP_EXC_PRECISE)
1955 return -EINVAL;
1956 tsk->thread.fpexc_mode = __pack_fe01(val);
1957 if (regs != NULL && (regs->msr & MSR_FP) != 0) {
1958 regs_set_return_msr(regs, (regs->msr & ~(MSR_FE0|MSR_FE1))
1959 | tsk->thread.fpexc_mode);
1960 }
1961 return 0;
1962}
1963
1964int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1965{
1966 unsigned int val = 0;
1967
1968 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
1969 if (cpu_has_feature(CPU_FTR_SPE)) {
1970 /*
1971 * When the sticky exception bits are set
1972 * directly by userspace, it must call prctl
1973 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1974 * in the existing prctl settings) or
1975 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1976 * the bits being set). <fenv.h> functions
1977 * saving and restoring the whole
1978 * floating-point environment need to do so
1979 * anyway to restore the prctl settings from
1980 * the saved environment.
1981 */
1982#ifdef CONFIG_SPE
1983 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1984 val = tsk->thread.fpexc_mode;
1985#endif
1986 } else
1987 return -EINVAL;
1988 } else {
1989 val = __unpack_fe01(tsk->thread.fpexc_mode);
1990 }
1991 return put_user(val, (unsigned int __user *) adr);
1992}
1993
1994int set_endian(struct task_struct *tsk, unsigned int val)
1995{
1996 struct pt_regs *regs = tsk->thread.regs;
1997
1998 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1999 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
2000 return -EINVAL;
2001
2002 if (regs == NULL)
2003 return -EINVAL;
2004
2005 if (val == PR_ENDIAN_BIG)
2006 regs_set_return_msr(regs, regs->msr & ~MSR_LE);
2007 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
2008 regs_set_return_msr(regs, regs->msr | MSR_LE);
2009 else
2010 return -EINVAL;
2011
2012 return 0;
2013}
2014
2015int get_endian(struct task_struct *tsk, unsigned long adr)
2016{
2017 struct pt_regs *regs = tsk->thread.regs;
2018 unsigned int val;
2019
2020 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2021 !cpu_has_feature(CPU_FTR_REAL_LE))
2022 return -EINVAL;
2023
2024 if (regs == NULL)
2025 return -EINVAL;
2026
2027 if (regs->msr & MSR_LE) {
2028 if (cpu_has_feature(CPU_FTR_REAL_LE))
2029 val = PR_ENDIAN_LITTLE;
2030 else
2031 val = PR_ENDIAN_PPC_LITTLE;
2032 } else
2033 val = PR_ENDIAN_BIG;
2034
2035 return put_user(val, (unsigned int __user *)adr);
2036}
2037
2038int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2039{
2040 tsk->thread.align_ctl = val;
2041 return 0;
2042}
2043
2044int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2045{
2046 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2047}
2048
2049static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2050 unsigned long nbytes)
2051{
2052 unsigned long stack_page;
2053 unsigned long cpu = task_cpu(p);
2054
2055 stack_page = (unsigned long)hardirq_ctx[cpu];
2056 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2057 return 1;
2058
2059 stack_page = (unsigned long)softirq_ctx[cpu];
2060 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2061 return 1;
2062
2063 return 0;
2064}
2065
2066static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2067 unsigned long nbytes)
2068{
2069#ifdef CONFIG_PPC64
2070 unsigned long stack_page;
2071 unsigned long cpu = task_cpu(p);
2072
2073 if (!paca_ptrs)
2074 return 0;
2075
2076 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2077 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2078 return 1;
2079
2080# ifdef CONFIG_PPC_BOOK3S_64
2081 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2082 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2083 return 1;
2084
2085 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2086 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2087 return 1;
2088# endif
2089#endif
2090
2091 return 0;
2092}
2093
2094
2095int validate_sp(unsigned long sp, struct task_struct *p,
2096 unsigned long nbytes)
2097{
2098 unsigned long stack_page = (unsigned long)task_stack_page(p);
2099
2100 if (sp < THREAD_SIZE)
2101 return 0;
2102
2103 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2104 return 1;
2105
2106 if (valid_irq_stack(sp, p, nbytes))
2107 return 1;
2108
2109 return valid_emergency_stack(sp, p, nbytes);
2110}
2111
2112EXPORT_SYMBOL(validate_sp);
2113
2114static unsigned long __get_wchan(struct task_struct *p)
2115{
2116 unsigned long ip, sp;
2117 int count = 0;
2118
2119 if (!p || p == current || task_is_running(p))
2120 return 0;
2121
2122 sp = p->thread.ksp;
2123 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2124 return 0;
2125
2126 do {
2127 sp = *(unsigned long *)sp;
2128 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2129 task_is_running(p))
2130 return 0;
2131 if (count > 0) {
2132 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2133 if (!in_sched_functions(ip))
2134 return ip;
2135 }
2136 } while (count++ < 16);
2137 return 0;
2138}
2139
2140unsigned long get_wchan(struct task_struct *p)
2141{
2142 unsigned long ret;
2143
2144 if (!try_get_task_stack(p))
2145 return 0;
2146
2147 ret = __get_wchan(p);
2148
2149 put_task_stack(p);
2150
2151 return ret;
2152}
2153
2154static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2155
2156void __no_sanitize_address show_stack(struct task_struct *tsk,
2157 unsigned long *stack,
2158 const char *loglvl)
2159{
2160 unsigned long sp, ip, lr, newsp;
2161 int count = 0;
2162 int firstframe = 1;
2163 unsigned long ret_addr;
2164 int ftrace_idx = 0;
2165
2166 if (tsk == NULL)
2167 tsk = current;
2168
2169 if (!try_get_task_stack(tsk))
2170 return;
2171
2172 sp = (unsigned long) stack;
2173 if (sp == 0) {
2174 if (tsk == current)
2175 sp = current_stack_frame();
2176 else
2177 sp = tsk->thread.ksp;
2178 }
2179
2180 lr = 0;
2181 printk("%sCall Trace:\n", loglvl);
2182 do {
2183 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2184 break;
2185
2186 stack = (unsigned long *) sp;
2187 newsp = stack[0];
2188 ip = stack[STACK_FRAME_LR_SAVE];
2189 if (!firstframe || ip != lr) {
2190 printk("%s["REG"] ["REG"] %pS",
2191 loglvl, sp, ip, (void *)ip);
2192 ret_addr = ftrace_graph_ret_addr(current,
2193 &ftrace_idx, ip, stack);
2194 if (ret_addr != ip)
2195 pr_cont(" (%pS)", (void *)ret_addr);
2196 if (firstframe)
2197 pr_cont(" (unreliable)");
2198 pr_cont("\n");
2199 }
2200 firstframe = 0;
2201
2202 /*
2203 * See if this is an exception frame.
2204 * We look for the "regshere" marker in the current frame.
2205 */
2206 if (validate_sp(sp, tsk, STACK_FRAME_WITH_PT_REGS)
2207 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2208 struct pt_regs *regs = (struct pt_regs *)
2209 (sp + STACK_FRAME_OVERHEAD);
2210
2211 lr = regs->link;
2212 printk("%s--- interrupt: %lx at %pS\n",
2213 loglvl, regs->trap, (void *)regs->nip);
2214 __show_regs(regs);
2215 printk("%s--- interrupt: %lx\n",
2216 loglvl, regs->trap);
2217
2218 firstframe = 1;
2219 }
2220
2221 sp = newsp;
2222 } while (count++ < kstack_depth_to_print);
2223
2224 put_task_stack(tsk);
2225}
2226
2227#ifdef CONFIG_PPC64
2228/* Called with hard IRQs off */
2229void notrace __ppc64_runlatch_on(void)
2230{
2231 struct thread_info *ti = current_thread_info();
2232
2233 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2234 /*
2235 * Least significant bit (RUN) is the only writable bit of
2236 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2237 * earliest ISA where this is the case, but it's convenient.
2238 */
2239 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2240 } else {
2241 unsigned long ctrl;
2242
2243 /*
2244 * Some architectures (e.g., Cell) have writable fields other
2245 * than RUN, so do the read-modify-write.
2246 */
2247 ctrl = mfspr(SPRN_CTRLF);
2248 ctrl |= CTRL_RUNLATCH;
2249 mtspr(SPRN_CTRLT, ctrl);
2250 }
2251
2252 ti->local_flags |= _TLF_RUNLATCH;
2253}
2254
2255/* Called with hard IRQs off */
2256void notrace __ppc64_runlatch_off(void)
2257{
2258 struct thread_info *ti = current_thread_info();
2259
2260 ti->local_flags &= ~_TLF_RUNLATCH;
2261
2262 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2263 mtspr(SPRN_CTRLT, 0);
2264 } else {
2265 unsigned long ctrl;
2266
2267 ctrl = mfspr(SPRN_CTRLF);
2268 ctrl &= ~CTRL_RUNLATCH;
2269 mtspr(SPRN_CTRLT, ctrl);
2270 }
2271}
2272#endif /* CONFIG_PPC64 */
2273
2274unsigned long arch_align_stack(unsigned long sp)
2275{
2276 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2277 sp -= get_random_int() & ~PAGE_MASK;
2278 return sp & ~0xf;
2279}
2280
2281static inline unsigned long brk_rnd(void)
2282{
2283 unsigned long rnd = 0;
2284
2285 /* 8MB for 32bit, 1GB for 64bit */
2286 if (is_32bit_task())
2287 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2288 else
2289 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2290
2291 return rnd << PAGE_SHIFT;
2292}
2293
2294unsigned long arch_randomize_brk(struct mm_struct *mm)
2295{
2296 unsigned long base = mm->brk;
2297 unsigned long ret;
2298
2299#ifdef CONFIG_PPC_BOOK3S_64
2300 /*
2301 * If we are using 1TB segments and we are allowed to randomise
2302 * the heap, we can put it above 1TB so it is backed by a 1TB
2303 * segment. Otherwise the heap will be in the bottom 1TB
2304 * which always uses 256MB segments and this may result in a
2305 * performance penalty. We don't need to worry about radix. For
2306 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2307 */
2308 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2309 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2310#endif
2311
2312 ret = PAGE_ALIGN(base + brk_rnd());
2313
2314 if (ret < mm->brk)
2315 return mm->brk;
2316
2317 return ret;
2318}
2319
1/*
2 * Derived from "arch/i386/kernel/process.c"
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6 * Paul Mackerras (paulus@cs.anu.edu.au)
7 *
8 * PowerPC version
9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17#include <linux/errno.h>
18#include <linux/sched.h>
19#include <linux/sched/debug.h>
20#include <linux/sched/task.h>
21#include <linux/sched/task_stack.h>
22#include <linux/kernel.h>
23#include <linux/mm.h>
24#include <linux/smp.h>
25#include <linux/stddef.h>
26#include <linux/unistd.h>
27#include <linux/ptrace.h>
28#include <linux/slab.h>
29#include <linux/user.h>
30#include <linux/elf.h>
31#include <linux/prctl.h>
32#include <linux/init_task.h>
33#include <linux/export.h>
34#include <linux/kallsyms.h>
35#include <linux/mqueue.h>
36#include <linux/hardirq.h>
37#include <linux/utsname.h>
38#include <linux/ftrace.h>
39#include <linux/kernel_stat.h>
40#include <linux/personality.h>
41#include <linux/random.h>
42#include <linux/hw_breakpoint.h>
43#include <linux/uaccess.h>
44#include <linux/elf-randomize.h>
45#include <linux/pkeys.h>
46
47#include <asm/pgtable.h>
48#include <asm/io.h>
49#include <asm/processor.h>
50#include <asm/mmu.h>
51#include <asm/prom.h>
52#include <asm/machdep.h>
53#include <asm/time.h>
54#include <asm/runlatch.h>
55#include <asm/syscalls.h>
56#include <asm/switch_to.h>
57#include <asm/tm.h>
58#include <asm/debug.h>
59#ifdef CONFIG_PPC64
60#include <asm/firmware.h>
61#include <asm/hw_irq.h>
62#endif
63#include <asm/code-patching.h>
64#include <asm/exec.h>
65#include <asm/livepatch.h>
66#include <asm/cpu_has_feature.h>
67#include <asm/asm-prototypes.h>
68
69#include <linux/kprobes.h>
70#include <linux/kdebug.h>
71
72/* Transactional Memory debug */
73#ifdef TM_DEBUG_SW
74#define TM_DEBUG(x...) printk(KERN_INFO x)
75#else
76#define TM_DEBUG(x...) do { } while(0)
77#endif
78
79extern unsigned long _get_SP(void);
80
81#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82/*
83 * Are we running in "Suspend disabled" mode? If so we have to block any
84 * sigreturn that would get us into suspended state, and we also warn in some
85 * other paths that we should never reach with suspend disabled.
86 */
87bool tm_suspend_disabled __ro_after_init = false;
88
89static void check_if_tm_restore_required(struct task_struct *tsk)
90{
91 /*
92 * If we are saving the current thread's registers, and the
93 * thread is in a transactional state, set the TIF_RESTORE_TM
94 * bit so that we know to restore the registers before
95 * returning to userspace.
96 */
97 if (tsk == current && tsk->thread.regs &&
98 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
99 !test_thread_flag(TIF_RESTORE_TM)) {
100 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
101 set_thread_flag(TIF_RESTORE_TM);
102 }
103}
104
105static inline bool msr_tm_active(unsigned long msr)
106{
107 return MSR_TM_ACTIVE(msr);
108}
109
110static bool tm_active_with_fp(struct task_struct *tsk)
111{
112 return msr_tm_active(tsk->thread.regs->msr) &&
113 (tsk->thread.ckpt_regs.msr & MSR_FP);
114}
115
116static bool tm_active_with_altivec(struct task_struct *tsk)
117{
118 return msr_tm_active(tsk->thread.regs->msr) &&
119 (tsk->thread.ckpt_regs.msr & MSR_VEC);
120}
121#else
122static inline bool msr_tm_active(unsigned long msr) { return false; }
123static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
124static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
125static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
126#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
127
128bool strict_msr_control;
129EXPORT_SYMBOL(strict_msr_control);
130
131static int __init enable_strict_msr_control(char *str)
132{
133 strict_msr_control = true;
134 pr_info("Enabling strict facility control\n");
135
136 return 0;
137}
138early_param("ppc_strict_facility_enable", enable_strict_msr_control);
139
140unsigned long msr_check_and_set(unsigned long bits)
141{
142 unsigned long oldmsr = mfmsr();
143 unsigned long newmsr;
144
145 newmsr = oldmsr | bits;
146
147#ifdef CONFIG_VSX
148 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149 newmsr |= MSR_VSX;
150#endif
151
152 if (oldmsr != newmsr)
153 mtmsr_isync(newmsr);
154
155 return newmsr;
156}
157
158void __msr_check_and_clear(unsigned long bits)
159{
160 unsigned long oldmsr = mfmsr();
161 unsigned long newmsr;
162
163 newmsr = oldmsr & ~bits;
164
165#ifdef CONFIG_VSX
166 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
167 newmsr &= ~MSR_VSX;
168#endif
169
170 if (oldmsr != newmsr)
171 mtmsr_isync(newmsr);
172}
173EXPORT_SYMBOL(__msr_check_and_clear);
174
175#ifdef CONFIG_PPC_FPU
176static void __giveup_fpu(struct task_struct *tsk)
177{
178 unsigned long msr;
179
180 save_fpu(tsk);
181 msr = tsk->thread.regs->msr;
182 msr &= ~MSR_FP;
183#ifdef CONFIG_VSX
184 if (cpu_has_feature(CPU_FTR_VSX))
185 msr &= ~MSR_VSX;
186#endif
187 tsk->thread.regs->msr = msr;
188}
189
190void giveup_fpu(struct task_struct *tsk)
191{
192 check_if_tm_restore_required(tsk);
193
194 msr_check_and_set(MSR_FP);
195 __giveup_fpu(tsk);
196 msr_check_and_clear(MSR_FP);
197}
198EXPORT_SYMBOL(giveup_fpu);
199
200/*
201 * Make sure the floating-point register state in the
202 * the thread_struct is up to date for task tsk.
203 */
204void flush_fp_to_thread(struct task_struct *tsk)
205{
206 if (tsk->thread.regs) {
207 /*
208 * We need to disable preemption here because if we didn't,
209 * another process could get scheduled after the regs->msr
210 * test but before we have finished saving the FP registers
211 * to the thread_struct. That process could take over the
212 * FPU, and then when we get scheduled again we would store
213 * bogus values for the remaining FP registers.
214 */
215 preempt_disable();
216 if (tsk->thread.regs->msr & MSR_FP) {
217 /*
218 * This should only ever be called for current or
219 * for a stopped child process. Since we save away
220 * the FP register state on context switch,
221 * there is something wrong if a stopped child appears
222 * to still have its FP state in the CPU registers.
223 */
224 BUG_ON(tsk != current);
225 giveup_fpu(tsk);
226 }
227 preempt_enable();
228 }
229}
230EXPORT_SYMBOL_GPL(flush_fp_to_thread);
231
232void enable_kernel_fp(void)
233{
234 unsigned long cpumsr;
235
236 WARN_ON(preemptible());
237
238 cpumsr = msr_check_and_set(MSR_FP);
239
240 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
241 check_if_tm_restore_required(current);
242 /*
243 * If a thread has already been reclaimed then the
244 * checkpointed registers are on the CPU but have definitely
245 * been saved by the reclaim code. Don't need to and *cannot*
246 * giveup as this would save to the 'live' structure not the
247 * checkpointed structure.
248 */
249 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
250 return;
251 __giveup_fpu(current);
252 }
253}
254EXPORT_SYMBOL(enable_kernel_fp);
255
256static int restore_fp(struct task_struct *tsk)
257{
258 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
259 load_fp_state(¤t->thread.fp_state);
260 current->thread.load_fp++;
261 return 1;
262 }
263 return 0;
264}
265#else
266static int restore_fp(struct task_struct *tsk) { return 0; }
267#endif /* CONFIG_PPC_FPU */
268
269#ifdef CONFIG_ALTIVEC
270#define loadvec(thr) ((thr).load_vec)
271
272static void __giveup_altivec(struct task_struct *tsk)
273{
274 unsigned long msr;
275
276 save_altivec(tsk);
277 msr = tsk->thread.regs->msr;
278 msr &= ~MSR_VEC;
279#ifdef CONFIG_VSX
280 if (cpu_has_feature(CPU_FTR_VSX))
281 msr &= ~MSR_VSX;
282#endif
283 tsk->thread.regs->msr = msr;
284}
285
286void giveup_altivec(struct task_struct *tsk)
287{
288 check_if_tm_restore_required(tsk);
289
290 msr_check_and_set(MSR_VEC);
291 __giveup_altivec(tsk);
292 msr_check_and_clear(MSR_VEC);
293}
294EXPORT_SYMBOL(giveup_altivec);
295
296void enable_kernel_altivec(void)
297{
298 unsigned long cpumsr;
299
300 WARN_ON(preemptible());
301
302 cpumsr = msr_check_and_set(MSR_VEC);
303
304 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
305 check_if_tm_restore_required(current);
306 /*
307 * If a thread has already been reclaimed then the
308 * checkpointed registers are on the CPU but have definitely
309 * been saved by the reclaim code. Don't need to and *cannot*
310 * giveup as this would save to the 'live' structure not the
311 * checkpointed structure.
312 */
313 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
314 return;
315 __giveup_altivec(current);
316 }
317}
318EXPORT_SYMBOL(enable_kernel_altivec);
319
320/*
321 * Make sure the VMX/Altivec register state in the
322 * the thread_struct is up to date for task tsk.
323 */
324void flush_altivec_to_thread(struct task_struct *tsk)
325{
326 if (tsk->thread.regs) {
327 preempt_disable();
328 if (tsk->thread.regs->msr & MSR_VEC) {
329 BUG_ON(tsk != current);
330 giveup_altivec(tsk);
331 }
332 preempt_enable();
333 }
334}
335EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
336
337static int restore_altivec(struct task_struct *tsk)
338{
339 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
340 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
341 load_vr_state(&tsk->thread.vr_state);
342 tsk->thread.used_vr = 1;
343 tsk->thread.load_vec++;
344
345 return 1;
346 }
347 return 0;
348}
349#else
350#define loadvec(thr) 0
351static inline int restore_altivec(struct task_struct *tsk) { return 0; }
352#endif /* CONFIG_ALTIVEC */
353
354#ifdef CONFIG_VSX
355static void __giveup_vsx(struct task_struct *tsk)
356{
357 unsigned long msr = tsk->thread.regs->msr;
358
359 /*
360 * We should never be ssetting MSR_VSX without also setting
361 * MSR_FP and MSR_VEC
362 */
363 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
364
365 /* __giveup_fpu will clear MSR_VSX */
366 if (msr & MSR_FP)
367 __giveup_fpu(tsk);
368 if (msr & MSR_VEC)
369 __giveup_altivec(tsk);
370}
371
372static void giveup_vsx(struct task_struct *tsk)
373{
374 check_if_tm_restore_required(tsk);
375
376 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
377 __giveup_vsx(tsk);
378 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
379}
380
381void enable_kernel_vsx(void)
382{
383 unsigned long cpumsr;
384
385 WARN_ON(preemptible());
386
387 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
388
389 if (current->thread.regs &&
390 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
391 check_if_tm_restore_required(current);
392 /*
393 * If a thread has already been reclaimed then the
394 * checkpointed registers are on the CPU but have definitely
395 * been saved by the reclaim code. Don't need to and *cannot*
396 * giveup as this would save to the 'live' structure not the
397 * checkpointed structure.
398 */
399 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
400 return;
401 __giveup_vsx(current);
402 }
403}
404EXPORT_SYMBOL(enable_kernel_vsx);
405
406void flush_vsx_to_thread(struct task_struct *tsk)
407{
408 if (tsk->thread.regs) {
409 preempt_disable();
410 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
411 BUG_ON(tsk != current);
412 giveup_vsx(tsk);
413 }
414 preempt_enable();
415 }
416}
417EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
418
419static int restore_vsx(struct task_struct *tsk)
420{
421 if (cpu_has_feature(CPU_FTR_VSX)) {
422 tsk->thread.used_vsr = 1;
423 return 1;
424 }
425
426 return 0;
427}
428#else
429static inline int restore_vsx(struct task_struct *tsk) { return 0; }
430#endif /* CONFIG_VSX */
431
432#ifdef CONFIG_SPE
433void giveup_spe(struct task_struct *tsk)
434{
435 check_if_tm_restore_required(tsk);
436
437 msr_check_and_set(MSR_SPE);
438 __giveup_spe(tsk);
439 msr_check_and_clear(MSR_SPE);
440}
441EXPORT_SYMBOL(giveup_spe);
442
443void enable_kernel_spe(void)
444{
445 WARN_ON(preemptible());
446
447 msr_check_and_set(MSR_SPE);
448
449 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
450 check_if_tm_restore_required(current);
451 __giveup_spe(current);
452 }
453}
454EXPORT_SYMBOL(enable_kernel_spe);
455
456void flush_spe_to_thread(struct task_struct *tsk)
457{
458 if (tsk->thread.regs) {
459 preempt_disable();
460 if (tsk->thread.regs->msr & MSR_SPE) {
461 BUG_ON(tsk != current);
462 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
463 giveup_spe(tsk);
464 }
465 preempt_enable();
466 }
467}
468#endif /* CONFIG_SPE */
469
470static unsigned long msr_all_available;
471
472static int __init init_msr_all_available(void)
473{
474#ifdef CONFIG_PPC_FPU
475 msr_all_available |= MSR_FP;
476#endif
477#ifdef CONFIG_ALTIVEC
478 if (cpu_has_feature(CPU_FTR_ALTIVEC))
479 msr_all_available |= MSR_VEC;
480#endif
481#ifdef CONFIG_VSX
482 if (cpu_has_feature(CPU_FTR_VSX))
483 msr_all_available |= MSR_VSX;
484#endif
485#ifdef CONFIG_SPE
486 if (cpu_has_feature(CPU_FTR_SPE))
487 msr_all_available |= MSR_SPE;
488#endif
489
490 return 0;
491}
492early_initcall(init_msr_all_available);
493
494void giveup_all(struct task_struct *tsk)
495{
496 unsigned long usermsr;
497
498 if (!tsk->thread.regs)
499 return;
500
501 usermsr = tsk->thread.regs->msr;
502
503 if ((usermsr & msr_all_available) == 0)
504 return;
505
506 msr_check_and_set(msr_all_available);
507 check_if_tm_restore_required(tsk);
508
509 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
510
511#ifdef CONFIG_PPC_FPU
512 if (usermsr & MSR_FP)
513 __giveup_fpu(tsk);
514#endif
515#ifdef CONFIG_ALTIVEC
516 if (usermsr & MSR_VEC)
517 __giveup_altivec(tsk);
518#endif
519#ifdef CONFIG_SPE
520 if (usermsr & MSR_SPE)
521 __giveup_spe(tsk);
522#endif
523
524 msr_check_and_clear(msr_all_available);
525}
526EXPORT_SYMBOL(giveup_all);
527
528void restore_math(struct pt_regs *regs)
529{
530 unsigned long msr;
531
532 if (!msr_tm_active(regs->msr) &&
533 !current->thread.load_fp && !loadvec(current->thread))
534 return;
535
536 msr = regs->msr;
537 msr_check_and_set(msr_all_available);
538
539 /*
540 * Only reload if the bit is not set in the user MSR, the bit BEING set
541 * indicates that the registers are hot
542 */
543 if ((!(msr & MSR_FP)) && restore_fp(current))
544 msr |= MSR_FP | current->thread.fpexc_mode;
545
546 if ((!(msr & MSR_VEC)) && restore_altivec(current))
547 msr |= MSR_VEC;
548
549 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
550 restore_vsx(current)) {
551 msr |= MSR_VSX;
552 }
553
554 msr_check_and_clear(msr_all_available);
555
556 regs->msr = msr;
557}
558
559static void save_all(struct task_struct *tsk)
560{
561 unsigned long usermsr;
562
563 if (!tsk->thread.regs)
564 return;
565
566 usermsr = tsk->thread.regs->msr;
567
568 if ((usermsr & msr_all_available) == 0)
569 return;
570
571 msr_check_and_set(msr_all_available);
572
573 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
574
575 if (usermsr & MSR_FP)
576 save_fpu(tsk);
577
578 if (usermsr & MSR_VEC)
579 save_altivec(tsk);
580
581 if (usermsr & MSR_SPE)
582 __giveup_spe(tsk);
583
584 msr_check_and_clear(msr_all_available);
585}
586
587void flush_all_to_thread(struct task_struct *tsk)
588{
589 if (tsk->thread.regs) {
590 preempt_disable();
591 BUG_ON(tsk != current);
592 save_all(tsk);
593
594#ifdef CONFIG_SPE
595 if (tsk->thread.regs->msr & MSR_SPE)
596 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
597#endif
598
599 preempt_enable();
600 }
601}
602EXPORT_SYMBOL(flush_all_to_thread);
603
604#ifdef CONFIG_PPC_ADV_DEBUG_REGS
605void do_send_trap(struct pt_regs *regs, unsigned long address,
606 unsigned long error_code, int breakpt)
607{
608 current->thread.trap_nr = TRAP_HWBKPT;
609 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610 11, SIGSEGV) == NOTIFY_STOP)
611 return;
612
613 /* Deliver the signal to userspace */
614 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
615 (void __user *)address);
616}
617#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
618void do_break (struct pt_regs *regs, unsigned long address,
619 unsigned long error_code)
620{
621 siginfo_t info;
622
623 current->thread.trap_nr = TRAP_HWBKPT;
624 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
625 11, SIGSEGV) == NOTIFY_STOP)
626 return;
627
628 if (debugger_break_match(regs))
629 return;
630
631 /* Clear the breakpoint */
632 hw_breakpoint_disable();
633
634 /* Deliver the signal to userspace */
635 info.si_signo = SIGTRAP;
636 info.si_errno = 0;
637 info.si_code = TRAP_HWBKPT;
638 info.si_addr = (void __user *)address;
639 force_sig_info(SIGTRAP, &info, current);
640}
641#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
642
643static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
644
645#ifdef CONFIG_PPC_ADV_DEBUG_REGS
646/*
647 * Set the debug registers back to their default "safe" values.
648 */
649static void set_debug_reg_defaults(struct thread_struct *thread)
650{
651 thread->debug.iac1 = thread->debug.iac2 = 0;
652#if CONFIG_PPC_ADV_DEBUG_IACS > 2
653 thread->debug.iac3 = thread->debug.iac4 = 0;
654#endif
655 thread->debug.dac1 = thread->debug.dac2 = 0;
656#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
657 thread->debug.dvc1 = thread->debug.dvc2 = 0;
658#endif
659 thread->debug.dbcr0 = 0;
660#ifdef CONFIG_BOOKE
661 /*
662 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
663 */
664 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
665 DBCR1_IAC3US | DBCR1_IAC4US;
666 /*
667 * Force Data Address Compare User/Supervisor bits to be User-only
668 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
669 */
670 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
671#else
672 thread->debug.dbcr1 = 0;
673#endif
674}
675
676static void prime_debug_regs(struct debug_reg *debug)
677{
678 /*
679 * We could have inherited MSR_DE from userspace, since
680 * it doesn't get cleared on exception entry. Make sure
681 * MSR_DE is clear before we enable any debug events.
682 */
683 mtmsr(mfmsr() & ~MSR_DE);
684
685 mtspr(SPRN_IAC1, debug->iac1);
686 mtspr(SPRN_IAC2, debug->iac2);
687#if CONFIG_PPC_ADV_DEBUG_IACS > 2
688 mtspr(SPRN_IAC3, debug->iac3);
689 mtspr(SPRN_IAC4, debug->iac4);
690#endif
691 mtspr(SPRN_DAC1, debug->dac1);
692 mtspr(SPRN_DAC2, debug->dac2);
693#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
694 mtspr(SPRN_DVC1, debug->dvc1);
695 mtspr(SPRN_DVC2, debug->dvc2);
696#endif
697 mtspr(SPRN_DBCR0, debug->dbcr0);
698 mtspr(SPRN_DBCR1, debug->dbcr1);
699#ifdef CONFIG_BOOKE
700 mtspr(SPRN_DBCR2, debug->dbcr2);
701#endif
702}
703/*
704 * Unless neither the old or new thread are making use of the
705 * debug registers, set the debug registers from the values
706 * stored in the new thread.
707 */
708void switch_booke_debug_regs(struct debug_reg *new_debug)
709{
710 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
711 || (new_debug->dbcr0 & DBCR0_IDM))
712 prime_debug_regs(new_debug);
713}
714EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
715#else /* !CONFIG_PPC_ADV_DEBUG_REGS */
716#ifndef CONFIG_HAVE_HW_BREAKPOINT
717static void set_debug_reg_defaults(struct thread_struct *thread)
718{
719 thread->hw_brk.address = 0;
720 thread->hw_brk.type = 0;
721 if (ppc_breakpoint_available())
722 set_breakpoint(&thread->hw_brk);
723}
724#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
725#endif /* CONFIG_PPC_ADV_DEBUG_REGS */
726
727#ifdef CONFIG_PPC_ADV_DEBUG_REGS
728static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
729{
730 mtspr(SPRN_DAC1, dabr);
731#ifdef CONFIG_PPC_47x
732 isync();
733#endif
734 return 0;
735}
736#elif defined(CONFIG_PPC_BOOK3S)
737static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738{
739 mtspr(SPRN_DABR, dabr);
740 if (cpu_has_feature(CPU_FTR_DABRX))
741 mtspr(SPRN_DABRX, dabrx);
742 return 0;
743}
744#elif defined(CONFIG_PPC_8xx)
745static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
746{
747 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
748 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
749 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
750
751 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
752 lctrl1 |= 0xa0000;
753 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
754 lctrl1 |= 0xf0000;
755 else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
756 lctrl2 = 0;
757
758 mtspr(SPRN_LCTRL2, 0);
759 mtspr(SPRN_CMPE, addr);
760 mtspr(SPRN_CMPF, addr + 4);
761 mtspr(SPRN_LCTRL1, lctrl1);
762 mtspr(SPRN_LCTRL2, lctrl2);
763
764 return 0;
765}
766#else
767static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
768{
769 return -EINVAL;
770}
771#endif
772
773static inline int set_dabr(struct arch_hw_breakpoint *brk)
774{
775 unsigned long dabr, dabrx;
776
777 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
778 dabrx = ((brk->type >> 3) & 0x7);
779
780 if (ppc_md.set_dabr)
781 return ppc_md.set_dabr(dabr, dabrx);
782
783 return __set_dabr(dabr, dabrx);
784}
785
786static inline int set_dawr(struct arch_hw_breakpoint *brk)
787{
788 unsigned long dawr, dawrx, mrd;
789
790 dawr = brk->address;
791
792 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
793 << (63 - 58); //* read/write bits */
794 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
795 << (63 - 59); //* translate */
796 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
797 >> 3; //* PRIM bits */
798 /* dawr length is stored in field MDR bits 48:53. Matches range in
799 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
800 0b111111=64DW.
801 brk->len is in bytes.
802 This aligns up to double word size, shifts and does the bias.
803 */
804 mrd = ((brk->len + 7) >> 3) - 1;
805 dawrx |= (mrd & 0x3f) << (63 - 53);
806
807 if (ppc_md.set_dawr)
808 return ppc_md.set_dawr(dawr, dawrx);
809 mtspr(SPRN_DAWR, dawr);
810 mtspr(SPRN_DAWRX, dawrx);
811 return 0;
812}
813
814void __set_breakpoint(struct arch_hw_breakpoint *brk)
815{
816 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk));
817
818 if (cpu_has_feature(CPU_FTR_DAWR))
819 // Power8 or later
820 set_dawr(brk);
821 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
822 // Power7 or earlier
823 set_dabr(brk);
824 else
825 // Shouldn't happen due to higher level checks
826 WARN_ON_ONCE(1);
827}
828
829void set_breakpoint(struct arch_hw_breakpoint *brk)
830{
831 preempt_disable();
832 __set_breakpoint(brk);
833 preempt_enable();
834}
835
836/* Check if we have DAWR or DABR hardware */
837bool ppc_breakpoint_available(void)
838{
839 if (cpu_has_feature(CPU_FTR_DAWR))
840 return true; /* POWER8 DAWR */
841 if (cpu_has_feature(CPU_FTR_ARCH_207S))
842 return false; /* POWER9 with DAWR disabled */
843 /* DABR: Everything but POWER8 and POWER9 */
844 return true;
845}
846EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
847
848#ifdef CONFIG_PPC64
849DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
850#endif
851
852static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
853 struct arch_hw_breakpoint *b)
854{
855 if (a->address != b->address)
856 return false;
857 if (a->type != b->type)
858 return false;
859 if (a->len != b->len)
860 return false;
861 return true;
862}
863
864#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
865
866static inline bool tm_enabled(struct task_struct *tsk)
867{
868 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
869}
870
871static void tm_reclaim_thread(struct thread_struct *thr,
872 struct thread_info *ti, uint8_t cause)
873{
874 /*
875 * Use the current MSR TM suspended bit to track if we have
876 * checkpointed state outstanding.
877 * On signal delivery, we'd normally reclaim the checkpointed
878 * state to obtain stack pointer (see:get_tm_stackpointer()).
879 * This will then directly return to userspace without going
880 * through __switch_to(). However, if the stack frame is bad,
881 * we need to exit this thread which calls __switch_to() which
882 * will again attempt to reclaim the already saved tm state.
883 * Hence we need to check that we've not already reclaimed
884 * this state.
885 * We do this using the current MSR, rather tracking it in
886 * some specific thread_struct bit, as it has the additional
887 * benefit of checking for a potential TM bad thing exception.
888 */
889 if (!MSR_TM_SUSPENDED(mfmsr()))
890 return;
891
892 giveup_all(container_of(thr, struct task_struct, thread));
893
894 tm_reclaim(thr, cause);
895
896 /*
897 * If we are in a transaction and FP is off then we can't have
898 * used FP inside that transaction. Hence the checkpointed
899 * state is the same as the live state. We need to copy the
900 * live state to the checkpointed state so that when the
901 * transaction is restored, the checkpointed state is correct
902 * and the aborted transaction sees the correct state. We use
903 * ckpt_regs.msr here as that's what tm_reclaim will use to
904 * determine if it's going to write the checkpointed state or
905 * not. So either this will write the checkpointed registers,
906 * or reclaim will. Similarly for VMX.
907 */
908 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
909 memcpy(&thr->ckfp_state, &thr->fp_state,
910 sizeof(struct thread_fp_state));
911 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
912 memcpy(&thr->ckvr_state, &thr->vr_state,
913 sizeof(struct thread_vr_state));
914}
915
916void tm_reclaim_current(uint8_t cause)
917{
918 tm_enable();
919 tm_reclaim_thread(¤t->thread, current_thread_info(), cause);
920}
921
922static inline void tm_reclaim_task(struct task_struct *tsk)
923{
924 /* We have to work out if we're switching from/to a task that's in the
925 * middle of a transaction.
926 *
927 * In switching we need to maintain a 2nd register state as
928 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
929 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
930 * ckvr_state
931 *
932 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
933 */
934 struct thread_struct *thr = &tsk->thread;
935
936 if (!thr->regs)
937 return;
938
939 if (!MSR_TM_ACTIVE(thr->regs->msr))
940 goto out_and_saveregs;
941
942 WARN_ON(tm_suspend_disabled);
943
944 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
945 "ccr=%lx, msr=%lx, trap=%lx)\n",
946 tsk->pid, thr->regs->nip,
947 thr->regs->ccr, thr->regs->msr,
948 thr->regs->trap);
949
950 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
951
952 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
953 tsk->pid);
954
955out_and_saveregs:
956 /* Always save the regs here, even if a transaction's not active.
957 * This context-switches a thread's TM info SPRs. We do it here to
958 * be consistent with the restore path (in recheckpoint) which
959 * cannot happen later in _switch().
960 */
961 tm_save_sprs(thr);
962}
963
964extern void __tm_recheckpoint(struct thread_struct *thread);
965
966void tm_recheckpoint(struct thread_struct *thread)
967{
968 unsigned long flags;
969
970 if (!(thread->regs->msr & MSR_TM))
971 return;
972
973 /* We really can't be interrupted here as the TEXASR registers can't
974 * change and later in the trecheckpoint code, we have a userspace R1.
975 * So let's hard disable over this region.
976 */
977 local_irq_save(flags);
978 hard_irq_disable();
979
980 /* The TM SPRs are restored here, so that TEXASR.FS can be set
981 * before the trecheckpoint and no explosion occurs.
982 */
983 tm_restore_sprs(thread);
984
985 __tm_recheckpoint(thread);
986
987 local_irq_restore(flags);
988}
989
990static inline void tm_recheckpoint_new_task(struct task_struct *new)
991{
992 if (!cpu_has_feature(CPU_FTR_TM))
993 return;
994
995 /* Recheckpoint the registers of the thread we're about to switch to.
996 *
997 * If the task was using FP, we non-lazily reload both the original and
998 * the speculative FP register states. This is because the kernel
999 * doesn't see if/when a TM rollback occurs, so if we take an FP
1000 * unavailable later, we are unable to determine which set of FP regs
1001 * need to be restored.
1002 */
1003 if (!tm_enabled(new))
1004 return;
1005
1006 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1007 tm_restore_sprs(&new->thread);
1008 return;
1009 }
1010 /* Recheckpoint to restore original checkpointed register state. */
1011 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1012 new->pid, new->thread.regs->msr);
1013
1014 tm_recheckpoint(&new->thread);
1015
1016 /*
1017 * The checkpointed state has been restored but the live state has
1018 * not, ensure all the math functionality is turned off to trigger
1019 * restore_math() to reload.
1020 */
1021 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1022
1023 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1024 "(kernel msr 0x%lx)\n",
1025 new->pid, mfmsr());
1026}
1027
1028static inline void __switch_to_tm(struct task_struct *prev,
1029 struct task_struct *new)
1030{
1031 if (cpu_has_feature(CPU_FTR_TM)) {
1032 if (tm_enabled(prev) || tm_enabled(new))
1033 tm_enable();
1034
1035 if (tm_enabled(prev)) {
1036 prev->thread.load_tm++;
1037 tm_reclaim_task(prev);
1038 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1039 prev->thread.regs->msr &= ~MSR_TM;
1040 }
1041
1042 tm_recheckpoint_new_task(new);
1043 }
1044}
1045
1046/*
1047 * This is called if we are on the way out to userspace and the
1048 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1049 * FP and/or vector state and does so if necessary.
1050 * If userspace is inside a transaction (whether active or
1051 * suspended) and FP/VMX/VSX instructions have ever been enabled
1052 * inside that transaction, then we have to keep them enabled
1053 * and keep the FP/VMX/VSX state loaded while ever the transaction
1054 * continues. The reason is that if we didn't, and subsequently
1055 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1056 * we don't know whether it's the same transaction, and thus we
1057 * don't know which of the checkpointed state and the transactional
1058 * state to use.
1059 */
1060void restore_tm_state(struct pt_regs *regs)
1061{
1062 unsigned long msr_diff;
1063
1064 /*
1065 * This is the only moment we should clear TIF_RESTORE_TM as
1066 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1067 * again, anything else could lead to an incorrect ckpt_msr being
1068 * saved and therefore incorrect signal contexts.
1069 */
1070 clear_thread_flag(TIF_RESTORE_TM);
1071 if (!MSR_TM_ACTIVE(regs->msr))
1072 return;
1073
1074 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1075 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1076
1077 /* Ensure that restore_math() will restore */
1078 if (msr_diff & MSR_FP)
1079 current->thread.load_fp = 1;
1080#ifdef CONFIG_ALTIVEC
1081 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1082 current->thread.load_vec = 1;
1083#endif
1084 restore_math(regs);
1085
1086 regs->msr |= msr_diff;
1087}
1088
1089#else
1090#define tm_recheckpoint_new_task(new)
1091#define __switch_to_tm(prev, new)
1092#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1093
1094static inline void save_sprs(struct thread_struct *t)
1095{
1096#ifdef CONFIG_ALTIVEC
1097 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1098 t->vrsave = mfspr(SPRN_VRSAVE);
1099#endif
1100#ifdef CONFIG_PPC_BOOK3S_64
1101 if (cpu_has_feature(CPU_FTR_DSCR))
1102 t->dscr = mfspr(SPRN_DSCR);
1103
1104 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1105 t->bescr = mfspr(SPRN_BESCR);
1106 t->ebbhr = mfspr(SPRN_EBBHR);
1107 t->ebbrr = mfspr(SPRN_EBBRR);
1108
1109 t->fscr = mfspr(SPRN_FSCR);
1110
1111 /*
1112 * Note that the TAR is not available for use in the kernel.
1113 * (To provide this, the TAR should be backed up/restored on
1114 * exception entry/exit instead, and be in pt_regs. FIXME,
1115 * this should be in pt_regs anyway (for debug).)
1116 */
1117 t->tar = mfspr(SPRN_TAR);
1118 }
1119#endif
1120
1121 thread_pkey_regs_save(t);
1122}
1123
1124static inline void restore_sprs(struct thread_struct *old_thread,
1125 struct thread_struct *new_thread)
1126{
1127#ifdef CONFIG_ALTIVEC
1128 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1129 old_thread->vrsave != new_thread->vrsave)
1130 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1131#endif
1132#ifdef CONFIG_PPC_BOOK3S_64
1133 if (cpu_has_feature(CPU_FTR_DSCR)) {
1134 u64 dscr = get_paca()->dscr_default;
1135 if (new_thread->dscr_inherit)
1136 dscr = new_thread->dscr;
1137
1138 if (old_thread->dscr != dscr)
1139 mtspr(SPRN_DSCR, dscr);
1140 }
1141
1142 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1143 if (old_thread->bescr != new_thread->bescr)
1144 mtspr(SPRN_BESCR, new_thread->bescr);
1145 if (old_thread->ebbhr != new_thread->ebbhr)
1146 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1147 if (old_thread->ebbrr != new_thread->ebbrr)
1148 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1149
1150 if (old_thread->fscr != new_thread->fscr)
1151 mtspr(SPRN_FSCR, new_thread->fscr);
1152
1153 if (old_thread->tar != new_thread->tar)
1154 mtspr(SPRN_TAR, new_thread->tar);
1155 }
1156
1157 if (cpu_has_feature(CPU_FTR_ARCH_300) &&
1158 old_thread->tidr != new_thread->tidr)
1159 mtspr(SPRN_TIDR, new_thread->tidr);
1160#endif
1161
1162 thread_pkey_regs_restore(new_thread, old_thread);
1163}
1164
1165#ifdef CONFIG_PPC_BOOK3S_64
1166#define CP_SIZE 128
1167static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1168#endif
1169
1170struct task_struct *__switch_to(struct task_struct *prev,
1171 struct task_struct *new)
1172{
1173 struct thread_struct *new_thread, *old_thread;
1174 struct task_struct *last;
1175#ifdef CONFIG_PPC_BOOK3S_64
1176 struct ppc64_tlb_batch *batch;
1177#endif
1178
1179 new_thread = &new->thread;
1180 old_thread = ¤t->thread;
1181
1182 WARN_ON(!irqs_disabled());
1183
1184#ifdef CONFIG_PPC64
1185 /*
1186 * Collect processor utilization data per process
1187 */
1188 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1189 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1190 long unsigned start_tb, current_tb;
1191 start_tb = old_thread->start_tb;
1192 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1193 old_thread->accum_tb += (current_tb - start_tb);
1194 new_thread->start_tb = current_tb;
1195 }
1196#endif /* CONFIG_PPC64 */
1197
1198#ifdef CONFIG_PPC_BOOK3S_64
1199 batch = this_cpu_ptr(&ppc64_tlb_batch);
1200 if (batch->active) {
1201 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1202 if (batch->index)
1203 __flush_tlb_pending(batch);
1204 batch->active = 0;
1205 }
1206#endif /* CONFIG_PPC_BOOK3S_64 */
1207
1208#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1209 switch_booke_debug_regs(&new->thread.debug);
1210#else
1211/*
1212 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1213 * schedule DABR
1214 */
1215#ifndef CONFIG_HAVE_HW_BREAKPOINT
1216 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk)))
1217 __set_breakpoint(&new->thread.hw_brk);
1218#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1219#endif
1220
1221 /*
1222 * We need to save SPRs before treclaim/trecheckpoint as these will
1223 * change a number of them.
1224 */
1225 save_sprs(&prev->thread);
1226
1227 /* Save FPU, Altivec, VSX and SPE state */
1228 giveup_all(prev);
1229
1230 __switch_to_tm(prev, new);
1231
1232 if (!radix_enabled()) {
1233 /*
1234 * We can't take a PMU exception inside _switch() since there
1235 * is a window where the kernel stack SLB and the kernel stack
1236 * are out of sync. Hard disable here.
1237 */
1238 hard_irq_disable();
1239 }
1240
1241 /*
1242 * Call restore_sprs() before calling _switch(). If we move it after
1243 * _switch() then we miss out on calling it for new tasks. The reason
1244 * for this is we manually create a stack frame for new tasks that
1245 * directly returns through ret_from_fork() or
1246 * ret_from_kernel_thread(). See copy_thread() for details.
1247 */
1248 restore_sprs(old_thread, new_thread);
1249
1250 last = _switch(old_thread, new_thread);
1251
1252#ifdef CONFIG_PPC_BOOK3S_64
1253 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1254 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1255 batch = this_cpu_ptr(&ppc64_tlb_batch);
1256 batch->active = 1;
1257 }
1258
1259 if (current_thread_info()->task->thread.regs) {
1260 restore_math(current_thread_info()->task->thread.regs);
1261
1262 /*
1263 * The copy-paste buffer can only store into foreign real
1264 * addresses, so unprivileged processes can not see the
1265 * data or use it in any way unless they have foreign real
1266 * mappings. If the new process has the foreign real address
1267 * mappings, we must issue a cp_abort to clear any state and
1268 * prevent snooping, corruption or a covert channel.
1269 *
1270 * DD1 allows paste into normal system memory so we do an
1271 * unpaired copy, rather than cp_abort, to clear the buffer,
1272 * since cp_abort is quite expensive.
1273 */
1274 if (current_thread_info()->task->thread.used_vas) {
1275 asm volatile(PPC_CP_ABORT);
1276 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1277 asm volatile(PPC_COPY(%0, %1)
1278 : : "r"(dummy_copy_buffer), "r"(0));
1279 }
1280 }
1281#endif /* CONFIG_PPC_BOOK3S_64 */
1282
1283 return last;
1284}
1285
1286static int instructions_to_print = 16;
1287
1288static void show_instructions(struct pt_regs *regs)
1289{
1290 int i;
1291 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1292 sizeof(int));
1293
1294 printk("Instruction dump:");
1295
1296 for (i = 0; i < instructions_to_print; i++) {
1297 int instr;
1298
1299 if (!(i % 8))
1300 pr_cont("\n");
1301
1302#if !defined(CONFIG_BOOKE)
1303 /* If executing with the IMMU off, adjust pc rather
1304 * than print XXXXXXXX.
1305 */
1306 if (!(regs->msr & MSR_IR))
1307 pc = (unsigned long)phys_to_virt(pc);
1308#endif
1309
1310 if (!__kernel_text_address(pc) ||
1311 probe_kernel_address((unsigned int __user *)pc, instr)) {
1312 pr_cont("XXXXXXXX ");
1313 } else {
1314 if (regs->nip == pc)
1315 pr_cont("<%08x> ", instr);
1316 else
1317 pr_cont("%08x ", instr);
1318 }
1319
1320 pc += sizeof(int);
1321 }
1322
1323 pr_cont("\n");
1324}
1325
1326struct regbit {
1327 unsigned long bit;
1328 const char *name;
1329};
1330
1331static struct regbit msr_bits[] = {
1332#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1333 {MSR_SF, "SF"},
1334 {MSR_HV, "HV"},
1335#endif
1336 {MSR_VEC, "VEC"},
1337 {MSR_VSX, "VSX"},
1338#ifdef CONFIG_BOOKE
1339 {MSR_CE, "CE"},
1340#endif
1341 {MSR_EE, "EE"},
1342 {MSR_PR, "PR"},
1343 {MSR_FP, "FP"},
1344 {MSR_ME, "ME"},
1345#ifdef CONFIG_BOOKE
1346 {MSR_DE, "DE"},
1347#else
1348 {MSR_SE, "SE"},
1349 {MSR_BE, "BE"},
1350#endif
1351 {MSR_IR, "IR"},
1352 {MSR_DR, "DR"},
1353 {MSR_PMM, "PMM"},
1354#ifndef CONFIG_BOOKE
1355 {MSR_RI, "RI"},
1356 {MSR_LE, "LE"},
1357#endif
1358 {0, NULL}
1359};
1360
1361static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1362{
1363 const char *s = "";
1364
1365 for (; bits->bit; ++bits)
1366 if (val & bits->bit) {
1367 pr_cont("%s%s", s, bits->name);
1368 s = sep;
1369 }
1370}
1371
1372#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1373static struct regbit msr_tm_bits[] = {
1374 {MSR_TS_T, "T"},
1375 {MSR_TS_S, "S"},
1376 {MSR_TM, "E"},
1377 {0, NULL}
1378};
1379
1380static void print_tm_bits(unsigned long val)
1381{
1382/*
1383 * This only prints something if at least one of the TM bit is set.
1384 * Inside the TM[], the output means:
1385 * E: Enabled (bit 32)
1386 * S: Suspended (bit 33)
1387 * T: Transactional (bit 34)
1388 */
1389 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1390 pr_cont(",TM[");
1391 print_bits(val, msr_tm_bits, "");
1392 pr_cont("]");
1393 }
1394}
1395#else
1396static void print_tm_bits(unsigned long val) {}
1397#endif
1398
1399static void print_msr_bits(unsigned long val)
1400{
1401 pr_cont("<");
1402 print_bits(val, msr_bits, ",");
1403 print_tm_bits(val);
1404 pr_cont(">");
1405}
1406
1407#ifdef CONFIG_PPC64
1408#define REG "%016lx"
1409#define REGS_PER_LINE 4
1410#define LAST_VOLATILE 13
1411#else
1412#define REG "%08lx"
1413#define REGS_PER_LINE 8
1414#define LAST_VOLATILE 12
1415#endif
1416
1417void show_regs(struct pt_regs * regs)
1418{
1419 int i, trap;
1420
1421 show_regs_print_info(KERN_DEFAULT);
1422
1423 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1424 regs->nip, regs->link, regs->ctr);
1425 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1426 regs, regs->trap, print_tainted(), init_utsname()->release);
1427 printk("MSR: "REG" ", regs->msr);
1428 print_msr_bits(regs->msr);
1429 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1430 trap = TRAP(regs);
1431 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1432 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1433 if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1434#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1435 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1436#else
1437 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1438#endif
1439#ifdef CONFIG_PPC64
1440 pr_cont("SOFTE: %ld ", regs->softe);
1441#endif
1442#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1443 if (MSR_TM_ACTIVE(regs->msr))
1444 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1445#endif
1446
1447 for (i = 0; i < 32; i++) {
1448 if ((i % REGS_PER_LINE) == 0)
1449 pr_cont("\nGPR%02d: ", i);
1450 pr_cont(REG " ", regs->gpr[i]);
1451 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1452 break;
1453 }
1454 pr_cont("\n");
1455#ifdef CONFIG_KALLSYMS
1456 /*
1457 * Lookup NIP late so we have the best change of getting the
1458 * above info out without failing
1459 */
1460 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1461 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1462#endif
1463 show_stack(current, (unsigned long *) regs->gpr[1]);
1464 if (!user_mode(regs))
1465 show_instructions(regs);
1466}
1467
1468void flush_thread(void)
1469{
1470#ifdef CONFIG_HAVE_HW_BREAKPOINT
1471 flush_ptrace_hw_breakpoint(current);
1472#else /* CONFIG_HAVE_HW_BREAKPOINT */
1473 set_debug_reg_defaults(¤t->thread);
1474#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1475}
1476
1477int set_thread_uses_vas(void)
1478{
1479#ifdef CONFIG_PPC_BOOK3S_64
1480 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1481 return -EINVAL;
1482
1483 current->thread.used_vas = 1;
1484
1485 /*
1486 * Even a process that has no foreign real address mapping can use
1487 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1488 * to clear any pending COPY and prevent a covert channel.
1489 *
1490 * __switch_to() will issue CP_ABORT on future context switches.
1491 */
1492 asm volatile(PPC_CP_ABORT);
1493
1494#endif /* CONFIG_PPC_BOOK3S_64 */
1495 return 0;
1496}
1497
1498#ifdef CONFIG_PPC64
1499static DEFINE_SPINLOCK(vas_thread_id_lock);
1500static DEFINE_IDA(vas_thread_ida);
1501
1502/*
1503 * We need to assign a unique thread id to each thread in a process.
1504 *
1505 * This thread id, referred to as TIDR, and separate from the Linux's tgid,
1506 * is intended to be used to direct an ASB_Notify from the hardware to the
1507 * thread, when a suitable event occurs in the system.
1508 *
1509 * One such event is a "paste" instruction in the context of Fast Thread
1510 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard
1511 * (VAS) in POWER9.
1512 *
1513 * To get a unique TIDR per process we could simply reuse task_pid_nr() but
1514 * the problem is that task_pid_nr() is not yet available copy_thread() is
1515 * called. Fixing that would require changing more intrusive arch-neutral
1516 * code in code path in copy_process()?.
1517 *
1518 * Further, to assign unique TIDRs within each process, we need an atomic
1519 * field (or an IDR) in task_struct, which again intrudes into the arch-
1520 * neutral code. So try to assign globally unique TIDRs for now.
1521 *
1522 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value.
1523 * For now, only threads that expect to be notified by the VAS
1524 * hardware need a TIDR value and we assign values > 0 for those.
1525 */
1526#define MAX_THREAD_CONTEXT ((1 << 16) - 1)
1527static int assign_thread_tidr(void)
1528{
1529 int index;
1530 int err;
1531 unsigned long flags;
1532
1533again:
1534 if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL))
1535 return -ENOMEM;
1536
1537 spin_lock_irqsave(&vas_thread_id_lock, flags);
1538 err = ida_get_new_above(&vas_thread_ida, 1, &index);
1539 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1540
1541 if (err == -EAGAIN)
1542 goto again;
1543 else if (err)
1544 return err;
1545
1546 if (index > MAX_THREAD_CONTEXT) {
1547 spin_lock_irqsave(&vas_thread_id_lock, flags);
1548 ida_remove(&vas_thread_ida, index);
1549 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1550 return -ENOMEM;
1551 }
1552
1553 return index;
1554}
1555
1556static void free_thread_tidr(int id)
1557{
1558 unsigned long flags;
1559
1560 spin_lock_irqsave(&vas_thread_id_lock, flags);
1561 ida_remove(&vas_thread_ida, id);
1562 spin_unlock_irqrestore(&vas_thread_id_lock, flags);
1563}
1564
1565/*
1566 * Clear any TIDR value assigned to this thread.
1567 */
1568void clear_thread_tidr(struct task_struct *t)
1569{
1570 if (!t->thread.tidr)
1571 return;
1572
1573 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1574 WARN_ON_ONCE(1);
1575 return;
1576 }
1577
1578 mtspr(SPRN_TIDR, 0);
1579 free_thread_tidr(t->thread.tidr);
1580 t->thread.tidr = 0;
1581}
1582
1583void arch_release_task_struct(struct task_struct *t)
1584{
1585 clear_thread_tidr(t);
1586}
1587
1588/*
1589 * Assign a unique TIDR (thread id) for task @t and set it in the thread
1590 * structure. For now, we only support setting TIDR for 'current' task.
1591 */
1592int set_thread_tidr(struct task_struct *t)
1593{
1594 int rc;
1595
1596 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1597 return -EINVAL;
1598
1599 if (t != current)
1600 return -EINVAL;
1601
1602 if (t->thread.tidr)
1603 return 0;
1604
1605 rc = assign_thread_tidr();
1606 if (rc < 0)
1607 return rc;
1608
1609 t->thread.tidr = rc;
1610 mtspr(SPRN_TIDR, t->thread.tidr);
1611
1612 return 0;
1613}
1614EXPORT_SYMBOL_GPL(set_thread_tidr);
1615
1616#endif /* CONFIG_PPC64 */
1617
1618void
1619release_thread(struct task_struct *t)
1620{
1621}
1622
1623/*
1624 * this gets called so that we can store coprocessor state into memory and
1625 * copy the current task into the new thread.
1626 */
1627int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1628{
1629 flush_all_to_thread(src);
1630 /*
1631 * Flush TM state out so we can copy it. __switch_to_tm() does this
1632 * flush but it removes the checkpointed state from the current CPU and
1633 * transitions the CPU out of TM mode. Hence we need to call
1634 * tm_recheckpoint_new_task() (on the same task) to restore the
1635 * checkpointed state back and the TM mode.
1636 *
1637 * Can't pass dst because it isn't ready. Doesn't matter, passing
1638 * dst is only important for __switch_to()
1639 */
1640 __switch_to_tm(src, src);
1641
1642 *dst = *src;
1643
1644 clear_task_ebb(dst);
1645
1646 return 0;
1647}
1648
1649static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1650{
1651#ifdef CONFIG_PPC_BOOK3S_64
1652 unsigned long sp_vsid;
1653 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1654
1655 if (radix_enabled())
1656 return;
1657
1658 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1659 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1660 << SLB_VSID_SHIFT_1T;
1661 else
1662 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1663 << SLB_VSID_SHIFT;
1664 sp_vsid |= SLB_VSID_KERNEL | llp;
1665 p->thread.ksp_vsid = sp_vsid;
1666#endif
1667}
1668
1669/*
1670 * Copy a thread..
1671 */
1672
1673/*
1674 * Copy architecture-specific thread state
1675 */
1676int copy_thread(unsigned long clone_flags, unsigned long usp,
1677 unsigned long kthread_arg, struct task_struct *p)
1678{
1679 struct pt_regs *childregs, *kregs;
1680 extern void ret_from_fork(void);
1681 extern void ret_from_kernel_thread(void);
1682 void (*f)(void);
1683 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1684 struct thread_info *ti = task_thread_info(p);
1685
1686 klp_init_thread_info(ti);
1687
1688 /* Copy registers */
1689 sp -= sizeof(struct pt_regs);
1690 childregs = (struct pt_regs *) sp;
1691 if (unlikely(p->flags & PF_KTHREAD)) {
1692 /* kernel thread */
1693 memset(childregs, 0, sizeof(struct pt_regs));
1694 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1695 /* function */
1696 if (usp)
1697 childregs->gpr[14] = ppc_function_entry((void *)usp);
1698#ifdef CONFIG_PPC64
1699 clear_tsk_thread_flag(p, TIF_32BIT);
1700 childregs->softe = IRQS_ENABLED;
1701#endif
1702 childregs->gpr[15] = kthread_arg;
1703 p->thread.regs = NULL; /* no user register state */
1704 ti->flags |= _TIF_RESTOREALL;
1705 f = ret_from_kernel_thread;
1706 } else {
1707 /* user thread */
1708 struct pt_regs *regs = current_pt_regs();
1709 CHECK_FULL_REGS(regs);
1710 *childregs = *regs;
1711 if (usp)
1712 childregs->gpr[1] = usp;
1713 p->thread.regs = childregs;
1714 childregs->gpr[3] = 0; /* Result from fork() */
1715 if (clone_flags & CLONE_SETTLS) {
1716#ifdef CONFIG_PPC64
1717 if (!is_32bit_task())
1718 childregs->gpr[13] = childregs->gpr[6];
1719 else
1720#endif
1721 childregs->gpr[2] = childregs->gpr[6];
1722 }
1723
1724 f = ret_from_fork;
1725 }
1726 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1727 sp -= STACK_FRAME_OVERHEAD;
1728
1729 /*
1730 * The way this works is that at some point in the future
1731 * some task will call _switch to switch to the new task.
1732 * That will pop off the stack frame created below and start
1733 * the new task running at ret_from_fork. The new task will
1734 * do some house keeping and then return from the fork or clone
1735 * system call, using the stack frame created above.
1736 */
1737 ((unsigned long *)sp)[0] = 0;
1738 sp -= sizeof(struct pt_regs);
1739 kregs = (struct pt_regs *) sp;
1740 sp -= STACK_FRAME_OVERHEAD;
1741 p->thread.ksp = sp;
1742#ifdef CONFIG_PPC32
1743 p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1744 _ALIGN_UP(sizeof(struct thread_info), 16);
1745#endif
1746#ifdef CONFIG_HAVE_HW_BREAKPOINT
1747 p->thread.ptrace_bps[0] = NULL;
1748#endif
1749
1750 p->thread.fp_save_area = NULL;
1751#ifdef CONFIG_ALTIVEC
1752 p->thread.vr_save_area = NULL;
1753#endif
1754
1755 setup_ksp_vsid(p, sp);
1756
1757#ifdef CONFIG_PPC64
1758 if (cpu_has_feature(CPU_FTR_DSCR)) {
1759 p->thread.dscr_inherit = current->thread.dscr_inherit;
1760 p->thread.dscr = mfspr(SPRN_DSCR);
1761 }
1762 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1763 p->thread.ppr = INIT_PPR;
1764
1765 p->thread.tidr = 0;
1766#endif
1767 kregs->nip = ppc_function_entry(f);
1768 return 0;
1769}
1770
1771/*
1772 * Set up a thread for executing a new program
1773 */
1774void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1775{
1776#ifdef CONFIG_PPC64
1777 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1778#endif
1779
1780 /*
1781 * If we exec out of a kernel thread then thread.regs will not be
1782 * set. Do it now.
1783 */
1784 if (!current->thread.regs) {
1785 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1786 current->thread.regs = regs - 1;
1787 }
1788
1789#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1790 /*
1791 * Clear any transactional state, we're exec()ing. The cause is
1792 * not important as there will never be a recheckpoint so it's not
1793 * user visible.
1794 */
1795 if (MSR_TM_SUSPENDED(mfmsr()))
1796 tm_reclaim_current(0);
1797#endif
1798
1799 memset(regs->gpr, 0, sizeof(regs->gpr));
1800 regs->ctr = 0;
1801 regs->link = 0;
1802 regs->xer = 0;
1803 regs->ccr = 0;
1804 regs->gpr[1] = sp;
1805
1806 /*
1807 * We have just cleared all the nonvolatile GPRs, so make
1808 * FULL_REGS(regs) return true. This is necessary to allow
1809 * ptrace to examine the thread immediately after exec.
1810 */
1811 regs->trap &= ~1UL;
1812
1813#ifdef CONFIG_PPC32
1814 regs->mq = 0;
1815 regs->nip = start;
1816 regs->msr = MSR_USER;
1817#else
1818 if (!is_32bit_task()) {
1819 unsigned long entry;
1820
1821 if (is_elf2_task()) {
1822 /* Look ma, no function descriptors! */
1823 entry = start;
1824
1825 /*
1826 * Ulrich says:
1827 * The latest iteration of the ABI requires that when
1828 * calling a function (at its global entry point),
1829 * the caller must ensure r12 holds the entry point
1830 * address (so that the function can quickly
1831 * establish addressability).
1832 */
1833 regs->gpr[12] = start;
1834 /* Make sure that's restored on entry to userspace. */
1835 set_thread_flag(TIF_RESTOREALL);
1836 } else {
1837 unsigned long toc;
1838
1839 /* start is a relocated pointer to the function
1840 * descriptor for the elf _start routine. The first
1841 * entry in the function descriptor is the entry
1842 * address of _start and the second entry is the TOC
1843 * value we need to use.
1844 */
1845 __get_user(entry, (unsigned long __user *)start);
1846 __get_user(toc, (unsigned long __user *)start+1);
1847
1848 /* Check whether the e_entry function descriptor entries
1849 * need to be relocated before we can use them.
1850 */
1851 if (load_addr != 0) {
1852 entry += load_addr;
1853 toc += load_addr;
1854 }
1855 regs->gpr[2] = toc;
1856 }
1857 regs->nip = entry;
1858 regs->msr = MSR_USER64;
1859 } else {
1860 regs->nip = start;
1861 regs->gpr[2] = 0;
1862 regs->msr = MSR_USER32;
1863 }
1864#endif
1865#ifdef CONFIG_VSX
1866 current->thread.used_vsr = 0;
1867#endif
1868 current->thread.load_fp = 0;
1869 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1870 current->thread.fp_save_area = NULL;
1871#ifdef CONFIG_ALTIVEC
1872 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1873 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1874 current->thread.vr_save_area = NULL;
1875 current->thread.vrsave = 0;
1876 current->thread.used_vr = 0;
1877 current->thread.load_vec = 0;
1878#endif /* CONFIG_ALTIVEC */
1879#ifdef CONFIG_SPE
1880 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1881 current->thread.acc = 0;
1882 current->thread.spefscr = 0;
1883 current->thread.used_spe = 0;
1884#endif /* CONFIG_SPE */
1885#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1886 current->thread.tm_tfhar = 0;
1887 current->thread.tm_texasr = 0;
1888 current->thread.tm_tfiar = 0;
1889 current->thread.load_tm = 0;
1890#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1891
1892 thread_pkey_regs_init(¤t->thread);
1893}
1894EXPORT_SYMBOL(start_thread);
1895
1896#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1897 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1898
1899int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1900{
1901 struct pt_regs *regs = tsk->thread.regs;
1902
1903 /* This is a bit hairy. If we are an SPE enabled processor
1904 * (have embedded fp) we store the IEEE exception enable flags in
1905 * fpexc_mode. fpexc_mode is also used for setting FP exception
1906 * mode (asyn, precise, disabled) for 'Classic' FP. */
1907 if (val & PR_FP_EXC_SW_ENABLE) {
1908#ifdef CONFIG_SPE
1909 if (cpu_has_feature(CPU_FTR_SPE)) {
1910 /*
1911 * When the sticky exception bits are set
1912 * directly by userspace, it must call prctl
1913 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1914 * in the existing prctl settings) or
1915 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1916 * the bits being set). <fenv.h> functions
1917 * saving and restoring the whole
1918 * floating-point environment need to do so
1919 * anyway to restore the prctl settings from
1920 * the saved environment.
1921 */
1922 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1923 tsk->thread.fpexc_mode = val &
1924 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1925 return 0;
1926 } else {
1927 return -EINVAL;
1928 }
1929#else
1930 return -EINVAL;
1931#endif
1932 }
1933
1934 /* on a CONFIG_SPE this does not hurt us. The bits that
1935 * __pack_fe01 use do not overlap with bits used for
1936 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1937 * on CONFIG_SPE implementations are reserved so writing to
1938 * them does not change anything */
1939 if (val > PR_FP_EXC_PRECISE)
1940 return -EINVAL;
1941 tsk->thread.fpexc_mode = __pack_fe01(val);
1942 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1943 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1944 | tsk->thread.fpexc_mode;
1945 return 0;
1946}
1947
1948int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1949{
1950 unsigned int val;
1951
1952 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1953#ifdef CONFIG_SPE
1954 if (cpu_has_feature(CPU_FTR_SPE)) {
1955 /*
1956 * When the sticky exception bits are set
1957 * directly by userspace, it must call prctl
1958 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1959 * in the existing prctl settings) or
1960 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1961 * the bits being set). <fenv.h> functions
1962 * saving and restoring the whole
1963 * floating-point environment need to do so
1964 * anyway to restore the prctl settings from
1965 * the saved environment.
1966 */
1967 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1968 val = tsk->thread.fpexc_mode;
1969 } else
1970 return -EINVAL;
1971#else
1972 return -EINVAL;
1973#endif
1974 else
1975 val = __unpack_fe01(tsk->thread.fpexc_mode);
1976 return put_user(val, (unsigned int __user *) adr);
1977}
1978
1979int set_endian(struct task_struct *tsk, unsigned int val)
1980{
1981 struct pt_regs *regs = tsk->thread.regs;
1982
1983 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1984 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1985 return -EINVAL;
1986
1987 if (regs == NULL)
1988 return -EINVAL;
1989
1990 if (val == PR_ENDIAN_BIG)
1991 regs->msr &= ~MSR_LE;
1992 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1993 regs->msr |= MSR_LE;
1994 else
1995 return -EINVAL;
1996
1997 return 0;
1998}
1999
2000int get_endian(struct task_struct *tsk, unsigned long adr)
2001{
2002 struct pt_regs *regs = tsk->thread.regs;
2003 unsigned int val;
2004
2005 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
2006 !cpu_has_feature(CPU_FTR_REAL_LE))
2007 return -EINVAL;
2008
2009 if (regs == NULL)
2010 return -EINVAL;
2011
2012 if (regs->msr & MSR_LE) {
2013 if (cpu_has_feature(CPU_FTR_REAL_LE))
2014 val = PR_ENDIAN_LITTLE;
2015 else
2016 val = PR_ENDIAN_PPC_LITTLE;
2017 } else
2018 val = PR_ENDIAN_BIG;
2019
2020 return put_user(val, (unsigned int __user *)adr);
2021}
2022
2023int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2024{
2025 tsk->thread.align_ctl = val;
2026 return 0;
2027}
2028
2029int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2030{
2031 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2032}
2033
2034static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2035 unsigned long nbytes)
2036{
2037 unsigned long stack_page;
2038 unsigned long cpu = task_cpu(p);
2039
2040 /*
2041 * Avoid crashing if the stack has overflowed and corrupted
2042 * task_cpu(p), which is in the thread_info struct.
2043 */
2044 if (cpu < NR_CPUS && cpu_possible(cpu)) {
2045 stack_page = (unsigned long) hardirq_ctx[cpu];
2046 if (sp >= stack_page + sizeof(struct thread_struct)
2047 && sp <= stack_page + THREAD_SIZE - nbytes)
2048 return 1;
2049
2050 stack_page = (unsigned long) softirq_ctx[cpu];
2051 if (sp >= stack_page + sizeof(struct thread_struct)
2052 && sp <= stack_page + THREAD_SIZE - nbytes)
2053 return 1;
2054 }
2055 return 0;
2056}
2057
2058int validate_sp(unsigned long sp, struct task_struct *p,
2059 unsigned long nbytes)
2060{
2061 unsigned long stack_page = (unsigned long)task_stack_page(p);
2062
2063 if (sp >= stack_page + sizeof(struct thread_struct)
2064 && sp <= stack_page + THREAD_SIZE - nbytes)
2065 return 1;
2066
2067 return valid_irq_stack(sp, p, nbytes);
2068}
2069
2070EXPORT_SYMBOL(validate_sp);
2071
2072unsigned long get_wchan(struct task_struct *p)
2073{
2074 unsigned long ip, sp;
2075 int count = 0;
2076
2077 if (!p || p == current || p->state == TASK_RUNNING)
2078 return 0;
2079
2080 sp = p->thread.ksp;
2081 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2082 return 0;
2083
2084 do {
2085 sp = *(unsigned long *)sp;
2086 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2087 p->state == TASK_RUNNING)
2088 return 0;
2089 if (count > 0) {
2090 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2091 if (!in_sched_functions(ip))
2092 return ip;
2093 }
2094 } while (count++ < 16);
2095 return 0;
2096}
2097
2098static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2099
2100void show_stack(struct task_struct *tsk, unsigned long *stack)
2101{
2102 unsigned long sp, ip, lr, newsp;
2103 int count = 0;
2104 int firstframe = 1;
2105#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2106 int curr_frame = current->curr_ret_stack;
2107 extern void return_to_handler(void);
2108 unsigned long rth = (unsigned long)return_to_handler;
2109#endif
2110
2111 sp = (unsigned long) stack;
2112 if (tsk == NULL)
2113 tsk = current;
2114 if (sp == 0) {
2115 if (tsk == current)
2116 sp = current_stack_pointer();
2117 else
2118 sp = tsk->thread.ksp;
2119 }
2120
2121 lr = 0;
2122 printk("Call Trace:\n");
2123 do {
2124 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2125 return;
2126
2127 stack = (unsigned long *) sp;
2128 newsp = stack[0];
2129 ip = stack[STACK_FRAME_LR_SAVE];
2130 if (!firstframe || ip != lr) {
2131 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2132#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2133 if ((ip == rth) && curr_frame >= 0) {
2134 pr_cont(" (%pS)",
2135 (void *)current->ret_stack[curr_frame].ret);
2136 curr_frame--;
2137 }
2138#endif
2139 if (firstframe)
2140 pr_cont(" (unreliable)");
2141 pr_cont("\n");
2142 }
2143 firstframe = 0;
2144
2145 /*
2146 * See if this is an exception frame.
2147 * We look for the "regshere" marker in the current frame.
2148 */
2149 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2150 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2151 struct pt_regs *regs = (struct pt_regs *)
2152 (sp + STACK_FRAME_OVERHEAD);
2153 lr = regs->link;
2154 printk("--- interrupt: %lx at %pS\n LR = %pS\n",
2155 regs->trap, (void *)regs->nip, (void *)lr);
2156 firstframe = 1;
2157 }
2158
2159 sp = newsp;
2160 } while (count++ < kstack_depth_to_print);
2161}
2162
2163#ifdef CONFIG_PPC64
2164/* Called with hard IRQs off */
2165void notrace __ppc64_runlatch_on(void)
2166{
2167 struct thread_info *ti = current_thread_info();
2168
2169 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2170 /*
2171 * Least significant bit (RUN) is the only writable bit of
2172 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2173 * earliest ISA where this is the case, but it's convenient.
2174 */
2175 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2176 } else {
2177 unsigned long ctrl;
2178
2179 /*
2180 * Some architectures (e.g., Cell) have writable fields other
2181 * than RUN, so do the read-modify-write.
2182 */
2183 ctrl = mfspr(SPRN_CTRLF);
2184 ctrl |= CTRL_RUNLATCH;
2185 mtspr(SPRN_CTRLT, ctrl);
2186 }
2187
2188 ti->local_flags |= _TLF_RUNLATCH;
2189}
2190
2191/* Called with hard IRQs off */
2192void notrace __ppc64_runlatch_off(void)
2193{
2194 struct thread_info *ti = current_thread_info();
2195
2196 ti->local_flags &= ~_TLF_RUNLATCH;
2197
2198 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2199 mtspr(SPRN_CTRLT, 0);
2200 } else {
2201 unsigned long ctrl;
2202
2203 ctrl = mfspr(SPRN_CTRLF);
2204 ctrl &= ~CTRL_RUNLATCH;
2205 mtspr(SPRN_CTRLT, ctrl);
2206 }
2207}
2208#endif /* CONFIG_PPC64 */
2209
2210unsigned long arch_align_stack(unsigned long sp)
2211{
2212 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2213 sp -= get_random_int() & ~PAGE_MASK;
2214 return sp & ~0xf;
2215}
2216
2217static inline unsigned long brk_rnd(void)
2218{
2219 unsigned long rnd = 0;
2220
2221 /* 8MB for 32bit, 1GB for 64bit */
2222 if (is_32bit_task())
2223 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2224 else
2225 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2226
2227 return rnd << PAGE_SHIFT;
2228}
2229
2230unsigned long arch_randomize_brk(struct mm_struct *mm)
2231{
2232 unsigned long base = mm->brk;
2233 unsigned long ret;
2234
2235#ifdef CONFIG_PPC_BOOK3S_64
2236 /*
2237 * If we are using 1TB segments and we are allowed to randomise
2238 * the heap, we can put it above 1TB so it is backed by a 1TB
2239 * segment. Otherwise the heap will be in the bottom 1TB
2240 * which always uses 256MB segments and this may result in a
2241 * performance penalty. We don't need to worry about radix. For
2242 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2243 */
2244 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2245 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2246#endif
2247
2248 ret = PAGE_ALIGN(base + brk_rnd());
2249
2250 if (ret < mm->brk)
2251 return mm->brk;
2252
2253 return ret;
2254}
2255