Loading...
Note: File does not exist in v4.17.
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2014 Intel Corporation
4 */
5
6/**
7 * DOC: Logical Rings, Logical Ring Contexts and Execlists
8 *
9 * Motivation:
10 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11 * These expanded contexts enable a number of new abilities, especially
12 * "Execlists" (also implemented in this file).
13 *
14 * One of the main differences with the legacy HW contexts is that logical
15 * ring contexts incorporate many more things to the context's state, like
16 * PDPs or ringbuffer control registers:
17 *
18 * The reason why PDPs are included in the context is straightforward: as
19 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21 * instead, the GPU will do it for you on the context switch.
22 *
23 * But, what about the ringbuffer control registers (head, tail, etc..)?
24 * shouldn't we just need a set of those per engine command streamer? This is
25 * where the name "Logical Rings" starts to make sense: by virtualizing the
26 * rings, the engine cs shifts to a new "ring buffer" with every context
27 * switch. When you want to submit a workload to the GPU you: A) choose your
28 * context, B) find its appropriate virtualized ring, C) write commands to it
29 * and then, finally, D) tell the GPU to switch to that context.
30 *
31 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32 * to a contexts is via a context execution list, ergo "Execlists".
33 *
34 * LRC implementation:
35 * Regarding the creation of contexts, we have:
36 *
37 * - One global default context.
38 * - One local default context for each opened fd.
39 * - One local extra context for each context create ioctl call.
40 *
41 * Now that ringbuffers belong per-context (and not per-engine, like before)
42 * and that contexts are uniquely tied to a given engine (and not reusable,
43 * like before) we need:
44 *
45 * - One ringbuffer per-engine inside each context.
46 * - One backing object per-engine inside each context.
47 *
48 * The global default context starts its life with these new objects fully
49 * allocated and populated. The local default context for each opened fd is
50 * more complex, because we don't know at creation time which engine is going
51 * to use them. To handle this, we have implemented a deferred creation of LR
52 * contexts:
53 *
54 * The local context starts its life as a hollow or blank holder, that only
55 * gets populated for a given engine once we receive an execbuffer. If later
56 * on we receive another execbuffer ioctl for the same context but a different
57 * engine, we allocate/populate a new ringbuffer and context backing object and
58 * so on.
59 *
60 * Finally, regarding local contexts created using the ioctl call: as they are
61 * only allowed with the render ring, we can allocate & populate them right
62 * away (no need to defer anything, at least for now).
63 *
64 * Execlists implementation:
65 * Execlists are the new method by which, on gen8+ hardware, workloads are
66 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67 * This method works as follows:
68 *
69 * When a request is committed, its commands (the BB start and any leading or
70 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71 * for the appropriate context. The tail pointer in the hardware context is not
72 * updated at this time, but instead, kept by the driver in the ringbuffer
73 * structure. A structure representing this request is added to a request queue
74 * for the appropriate engine: this structure contains a copy of the context's
75 * tail after the request was written to the ring buffer and a pointer to the
76 * context itself.
77 *
78 * If the engine's request queue was empty before the request was added, the
79 * queue is processed immediately. Otherwise the queue will be processed during
80 * a context switch interrupt. In any case, elements on the queue will get sent
81 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82 * globally unique 20-bits submission ID.
83 *
84 * When execution of a request completes, the GPU updates the context status
85 * buffer with a context complete event and generates a context switch interrupt.
86 * During the interrupt handling, the driver examines the events in the buffer:
87 * for each context complete event, if the announced ID matches that on the head
88 * of the request queue, then that request is retired and removed from the queue.
89 *
90 * After processing, if any requests were retired and the queue is not empty
91 * then a new execution list can be submitted. The two requests at the front of
92 * the queue are next to be submitted but since a context may not occur twice in
93 * an execution list, if subsequent requests have the same ID as the first then
94 * the two requests must be combined. This is done simply by discarding requests
95 * at the head of the queue until either only one requests is left (in which case
96 * we use a NULL second context) or the first two requests have unique IDs.
97 *
98 * By always executing the first two requests in the queue the driver ensures
99 * that the GPU is kept as busy as possible. In the case where a single context
100 * completes but a second context is still executing, the request for this second
101 * context will be at the head of the queue when we remove the first one. This
102 * request will then be resubmitted along with a new request for a different context,
103 * which will cause the hardware to continue executing the second request and queue
104 * the new request (the GPU detects the condition of a context getting preempted
105 * with the same context and optimizes the context switch flow by not doing
106 * preemption, but just sampling the new tail pointer).
107 *
108 */
109#include <linux/interrupt.h>
110
111#include "i915_drv.h"
112#include "i915_trace.h"
113#include "i915_vgpu.h"
114#include "gen8_engine_cs.h"
115#include "intel_breadcrumbs.h"
116#include "intel_context.h"
117#include "intel_engine_pm.h"
118#include "intel_engine_stats.h"
119#include "intel_execlists_submission.h"
120#include "intel_gt.h"
121#include "intel_gt_irq.h"
122#include "intel_gt_pm.h"
123#include "intel_gt_requests.h"
124#include "intel_lrc.h"
125#include "intel_lrc_reg.h"
126#include "intel_mocs.h"
127#include "intel_reset.h"
128#include "intel_ring.h"
129#include "intel_workarounds.h"
130#include "shmem_utils.h"
131
132#define RING_EXECLIST_QFULL (1 << 0x2)
133#define RING_EXECLIST1_VALID (1 << 0x3)
134#define RING_EXECLIST0_VALID (1 << 0x4)
135#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
136#define RING_EXECLIST1_ACTIVE (1 << 0x11)
137#define RING_EXECLIST0_ACTIVE (1 << 0x12)
138
139#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
140#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
141#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
142#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
143#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
144#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
145
146#define GEN8_CTX_STATUS_COMPLETED_MASK \
147 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
148
149#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */
150#define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
151#define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15)
152#define GEN12_IDLE_CTX_ID 0x7FF
153#define GEN12_CSB_CTX_VALID(csb_dw) \
154 (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
155
156/* Typical size of the average request (2 pipecontrols and a MI_BB) */
157#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
158
159struct virtual_engine {
160 struct intel_engine_cs base;
161 struct intel_context context;
162 struct rcu_work rcu;
163
164 /*
165 * We allow only a single request through the virtual engine at a time
166 * (each request in the timeline waits for the completion fence of
167 * the previous before being submitted). By restricting ourselves to
168 * only submitting a single request, each request is placed on to a
169 * physical to maximise load spreading (by virtue of the late greedy
170 * scheduling -- each real engine takes the next available request
171 * upon idling).
172 */
173 struct i915_request *request;
174
175 /*
176 * We keep a rbtree of available virtual engines inside each physical
177 * engine, sorted by priority. Here we preallocate the nodes we need
178 * for the virtual engine, indexed by physical_engine->id.
179 */
180 struct ve_node {
181 struct rb_node rb;
182 int prio;
183 } nodes[I915_NUM_ENGINES];
184
185 /*
186 * Keep track of bonded pairs -- restrictions upon on our selection
187 * of physical engines any particular request may be submitted to.
188 * If we receive a submit-fence from a master engine, we will only
189 * use one of sibling_mask physical engines.
190 */
191 struct ve_bond {
192 const struct intel_engine_cs *master;
193 intel_engine_mask_t sibling_mask;
194 } *bonds;
195 unsigned int num_bonds;
196
197 /* And finally, which physical engines this virtual engine maps onto. */
198 unsigned int num_siblings;
199 struct intel_engine_cs *siblings[];
200};
201
202static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
203{
204 GEM_BUG_ON(!intel_engine_is_virtual(engine));
205 return container_of(engine, struct virtual_engine, base);
206}
207
208static struct i915_request *
209__active_request(const struct intel_timeline * const tl,
210 struct i915_request *rq,
211 int error)
212{
213 struct i915_request *active = rq;
214
215 list_for_each_entry_from_reverse(rq, &tl->requests, link) {
216 if (__i915_request_is_complete(rq))
217 break;
218
219 if (error) {
220 i915_request_set_error_once(rq, error);
221 __i915_request_skip(rq);
222 }
223 active = rq;
224 }
225
226 return active;
227}
228
229static struct i915_request *
230active_request(const struct intel_timeline * const tl, struct i915_request *rq)
231{
232 return __active_request(tl, rq, 0);
233}
234
235static void ring_set_paused(const struct intel_engine_cs *engine, int state)
236{
237 /*
238 * We inspect HWS_PREEMPT with a semaphore inside
239 * engine->emit_fini_breadcrumb. If the dword is true,
240 * the ring is paused as the semaphore will busywait
241 * until the dword is false.
242 */
243 engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
244 if (state)
245 wmb();
246}
247
248static struct i915_priolist *to_priolist(struct rb_node *rb)
249{
250 return rb_entry(rb, struct i915_priolist, node);
251}
252
253static int rq_prio(const struct i915_request *rq)
254{
255 return READ_ONCE(rq->sched.attr.priority);
256}
257
258static int effective_prio(const struct i915_request *rq)
259{
260 int prio = rq_prio(rq);
261
262 /*
263 * If this request is special and must not be interrupted at any
264 * cost, so be it. Note we are only checking the most recent request
265 * in the context and so may be masking an earlier vip request. It
266 * is hoped that under the conditions where nopreempt is used, this
267 * will not matter (i.e. all requests to that context will be
268 * nopreempt for as long as desired).
269 */
270 if (i915_request_has_nopreempt(rq))
271 prio = I915_PRIORITY_UNPREEMPTABLE;
272
273 return prio;
274}
275
276static int queue_prio(const struct intel_engine_execlists *execlists)
277{
278 struct rb_node *rb;
279
280 rb = rb_first_cached(&execlists->queue);
281 if (!rb)
282 return INT_MIN;
283
284 return to_priolist(rb)->priority;
285}
286
287static int virtual_prio(const struct intel_engine_execlists *el)
288{
289 struct rb_node *rb = rb_first_cached(&el->virtual);
290
291 return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
292}
293
294static bool need_preempt(const struct intel_engine_cs *engine,
295 const struct i915_request *rq)
296{
297 int last_prio;
298
299 if (!intel_engine_has_semaphores(engine))
300 return false;
301
302 /*
303 * Check if the current priority hint merits a preemption attempt.
304 *
305 * We record the highest value priority we saw during rescheduling
306 * prior to this dequeue, therefore we know that if it is strictly
307 * less than the current tail of ESLP[0], we do not need to force
308 * a preempt-to-idle cycle.
309 *
310 * However, the priority hint is a mere hint that we may need to
311 * preempt. If that hint is stale or we may be trying to preempt
312 * ourselves, ignore the request.
313 *
314 * More naturally we would write
315 * prio >= max(0, last);
316 * except that we wish to prevent triggering preemption at the same
317 * priority level: the task that is running should remain running
318 * to preserve FIFO ordering of dependencies.
319 */
320 last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
321 if (engine->execlists.queue_priority_hint <= last_prio)
322 return false;
323
324 /*
325 * Check against the first request in ELSP[1], it will, thanks to the
326 * power of PI, be the highest priority of that context.
327 */
328 if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
329 rq_prio(list_next_entry(rq, sched.link)) > last_prio)
330 return true;
331
332 /*
333 * If the inflight context did not trigger the preemption, then maybe
334 * it was the set of queued requests? Pick the highest priority in
335 * the queue (the first active priolist) and see if it deserves to be
336 * running instead of ELSP[0].
337 *
338 * The highest priority request in the queue can not be either
339 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
340 * context, it's priority would not exceed ELSP[0] aka last_prio.
341 */
342 return max(virtual_prio(&engine->execlists),
343 queue_prio(&engine->execlists)) > last_prio;
344}
345
346__maybe_unused static bool
347assert_priority_queue(const struct i915_request *prev,
348 const struct i915_request *next)
349{
350 /*
351 * Without preemption, the prev may refer to the still active element
352 * which we refuse to let go.
353 *
354 * Even with preemption, there are times when we think it is better not
355 * to preempt and leave an ostensibly lower priority request in flight.
356 */
357 if (i915_request_is_active(prev))
358 return true;
359
360 return rq_prio(prev) >= rq_prio(next);
361}
362
363static struct i915_request *
364__unwind_incomplete_requests(struct intel_engine_cs *engine)
365{
366 struct i915_request *rq, *rn, *active = NULL;
367 struct list_head *pl;
368 int prio = I915_PRIORITY_INVALID;
369
370 lockdep_assert_held(&engine->active.lock);
371
372 list_for_each_entry_safe_reverse(rq, rn,
373 &engine->active.requests,
374 sched.link) {
375 if (__i915_request_is_complete(rq)) {
376 list_del_init(&rq->sched.link);
377 continue;
378 }
379
380 __i915_request_unsubmit(rq);
381
382 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
383 if (rq_prio(rq) != prio) {
384 prio = rq_prio(rq);
385 pl = i915_sched_lookup_priolist(engine, prio);
386 }
387 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
388
389 list_move(&rq->sched.link, pl);
390 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
391
392 /* Check in case we rollback so far we wrap [size/2] */
393 if (intel_ring_direction(rq->ring,
394 rq->tail,
395 rq->ring->tail + 8) > 0)
396 rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
397
398 active = rq;
399 }
400
401 return active;
402}
403
404struct i915_request *
405execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
406{
407 struct intel_engine_cs *engine =
408 container_of(execlists, typeof(*engine), execlists);
409
410 return __unwind_incomplete_requests(engine);
411}
412
413static void
414execlists_context_status_change(struct i915_request *rq, unsigned long status)
415{
416 /*
417 * Only used when GVT-g is enabled now. When GVT-g is disabled,
418 * The compiler should eliminate this function as dead-code.
419 */
420 if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
421 return;
422
423 atomic_notifier_call_chain(&rq->engine->context_status_notifier,
424 status, rq);
425}
426
427static void reset_active(struct i915_request *rq,
428 struct intel_engine_cs *engine)
429{
430 struct intel_context * const ce = rq->context;
431 u32 head;
432
433 /*
434 * The executing context has been cancelled. We want to prevent
435 * further execution along this context and propagate the error on
436 * to anything depending on its results.
437 *
438 * In __i915_request_submit(), we apply the -EIO and remove the
439 * requests' payloads for any banned requests. But first, we must
440 * rewind the context back to the start of the incomplete request so
441 * that we do not jump back into the middle of the batch.
442 *
443 * We preserve the breadcrumbs and semaphores of the incomplete
444 * requests so that inter-timeline dependencies (i.e other timelines)
445 * remain correctly ordered. And we defer to __i915_request_submit()
446 * so that all asynchronous waits are correctly handled.
447 */
448 ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
449 rq->fence.context, rq->fence.seqno);
450
451 /* On resubmission of the active request, payload will be scrubbed */
452 if (__i915_request_is_complete(rq))
453 head = rq->tail;
454 else
455 head = __active_request(ce->timeline, rq, -EIO)->head;
456 head = intel_ring_wrap(ce->ring, head);
457
458 /* Scrub the context image to prevent replaying the previous batch */
459 lrc_init_regs(ce, engine, true);
460
461 /* We've switched away, so this should be a no-op, but intent matters */
462 ce->lrc.lrca = lrc_update_regs(ce, engine, head);
463}
464
465static bool bad_request(const struct i915_request *rq)
466{
467 return rq->fence.error && i915_request_started(rq);
468}
469
470static struct intel_engine_cs *
471__execlists_schedule_in(struct i915_request *rq)
472{
473 struct intel_engine_cs * const engine = rq->engine;
474 struct intel_context * const ce = rq->context;
475
476 intel_context_get(ce);
477
478 if (unlikely(intel_context_is_closed(ce) &&
479 !intel_engine_has_heartbeat(engine)))
480 intel_context_set_banned(ce);
481
482 if (unlikely(intel_context_is_banned(ce) || bad_request(rq)))
483 reset_active(rq, engine);
484
485 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
486 lrc_check_regs(ce, engine, "before");
487
488 if (ce->tag) {
489 /* Use a fixed tag for OA and friends */
490 GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
491 ce->lrc.ccid = ce->tag;
492 } else {
493 /* We don't need a strict matching tag, just different values */
494 unsigned int tag = __ffs(engine->context_tag);
495
496 GEM_BUG_ON(tag >= BITS_PER_LONG);
497 __clear_bit(tag, &engine->context_tag);
498 ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
499
500 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
501 }
502
503 ce->lrc.ccid |= engine->execlists.ccid;
504
505 __intel_gt_pm_get(engine->gt);
506 if (engine->fw_domain && !engine->fw_active++)
507 intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
508 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
509 intel_engine_context_in(engine);
510
511 CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
512
513 return engine;
514}
515
516static void execlists_schedule_in(struct i915_request *rq, int idx)
517{
518 struct intel_context * const ce = rq->context;
519 struct intel_engine_cs *old;
520
521 GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
522 trace_i915_request_in(rq, idx);
523
524 old = ce->inflight;
525 if (!old)
526 old = __execlists_schedule_in(rq);
527 WRITE_ONCE(ce->inflight, ptr_inc(old));
528
529 GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
530}
531
532static void
533resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
534{
535 struct intel_engine_cs *engine = rq->engine;
536
537 spin_lock_irq(&engine->active.lock);
538
539 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
540 WRITE_ONCE(rq->engine, &ve->base);
541 ve->base.submit_request(rq);
542
543 spin_unlock_irq(&engine->active.lock);
544}
545
546static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
547{
548 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
549 struct intel_engine_cs *engine = rq->engine;
550
551 /*
552 * After this point, the rq may be transferred to a new sibling, so
553 * before we clear ce->inflight make sure that the context has been
554 * removed from the b->signalers and furthermore we need to make sure
555 * that the concurrent iterator in signal_irq_work is no longer
556 * following ce->signal_link.
557 */
558 if (!list_empty(&ce->signals))
559 intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
560
561 /*
562 * This engine is now too busy to run this virtual request, so
563 * see if we can find an alternative engine for it to execute on.
564 * Once a request has become bonded to this engine, we treat it the
565 * same as other native request.
566 */
567 if (i915_request_in_priority_queue(rq) &&
568 rq->execution_mask != engine->mask)
569 resubmit_virtual_request(rq, ve);
570
571 if (READ_ONCE(ve->request))
572 tasklet_hi_schedule(&ve->base.execlists.tasklet);
573}
574
575static void __execlists_schedule_out(struct i915_request * const rq,
576 struct intel_context * const ce)
577{
578 struct intel_engine_cs * const engine = rq->engine;
579 unsigned int ccid;
580
581 /*
582 * NB process_csb() is not under the engine->active.lock and hence
583 * schedule_out can race with schedule_in meaning that we should
584 * refrain from doing non-trivial work here.
585 */
586
587 CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
588 GEM_BUG_ON(ce->inflight != engine);
589
590 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
591 lrc_check_regs(ce, engine, "after");
592
593 /*
594 * If we have just completed this context, the engine may now be
595 * idle and we want to re-enter powersaving.
596 */
597 if (intel_timeline_is_last(ce->timeline, rq) &&
598 __i915_request_is_complete(rq))
599 intel_engine_add_retire(engine, ce->timeline);
600
601 ccid = ce->lrc.ccid;
602 ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
603 ccid &= GEN12_MAX_CONTEXT_HW_ID;
604 if (ccid < BITS_PER_LONG) {
605 GEM_BUG_ON(ccid == 0);
606 GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
607 __set_bit(ccid - 1, &engine->context_tag);
608 }
609
610 lrc_update_runtime(ce);
611 intel_engine_context_out(engine);
612 execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
613 if (engine->fw_domain && !--engine->fw_active)
614 intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
615 intel_gt_pm_put_async(engine->gt);
616
617 /*
618 * If this is part of a virtual engine, its next request may
619 * have been blocked waiting for access to the active context.
620 * We have to kick all the siblings again in case we need to
621 * switch (e.g. the next request is not runnable on this
622 * engine). Hopefully, we will already have submitted the next
623 * request before the tasklet runs and do not need to rebuild
624 * each virtual tree and kick everyone again.
625 */
626 if (ce->engine != engine)
627 kick_siblings(rq, ce);
628
629 WRITE_ONCE(ce->inflight, NULL);
630 intel_context_put(ce);
631}
632
633static inline void execlists_schedule_out(struct i915_request *rq)
634{
635 struct intel_context * const ce = rq->context;
636
637 trace_i915_request_out(rq);
638
639 GEM_BUG_ON(!ce->inflight);
640 ce->inflight = ptr_dec(ce->inflight);
641 if (!__intel_context_inflight_count(ce->inflight))
642 __execlists_schedule_out(rq, ce);
643
644 i915_request_put(rq);
645}
646
647static u64 execlists_update_context(struct i915_request *rq)
648{
649 struct intel_context *ce = rq->context;
650 u64 desc = ce->lrc.desc;
651 u32 tail, prev;
652
653 /*
654 * WaIdleLiteRestore:bdw,skl
655 *
656 * We should never submit the context with the same RING_TAIL twice
657 * just in case we submit an empty ring, which confuses the HW.
658 *
659 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
660 * the normal request to be able to always advance the RING_TAIL on
661 * subsequent resubmissions (for lite restore). Should that fail us,
662 * and we try and submit the same tail again, force the context
663 * reload.
664 *
665 * If we need to return to a preempted context, we need to skip the
666 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
667 * HW has a tendency to ignore us rewinding the TAIL to the end of
668 * an earlier request.
669 */
670 GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
671 prev = rq->ring->tail;
672 tail = intel_ring_set_tail(rq->ring, rq->tail);
673 if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
674 desc |= CTX_DESC_FORCE_RESTORE;
675 ce->lrc_reg_state[CTX_RING_TAIL] = tail;
676 rq->tail = rq->wa_tail;
677
678 /*
679 * Make sure the context image is complete before we submit it to HW.
680 *
681 * Ostensibly, writes (including the WCB) should be flushed prior to
682 * an uncached write such as our mmio register access, the empirical
683 * evidence (esp. on Braswell) suggests that the WC write into memory
684 * may not be visible to the HW prior to the completion of the UC
685 * register write and that we may begin execution from the context
686 * before its image is complete leading to invalid PD chasing.
687 */
688 wmb();
689
690 ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
691 return desc;
692}
693
694static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
695{
696 if (execlists->ctrl_reg) {
697 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
698 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
699 } else {
700 writel(upper_32_bits(desc), execlists->submit_reg);
701 writel(lower_32_bits(desc), execlists->submit_reg);
702 }
703}
704
705static __maybe_unused char *
706dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
707{
708 if (!rq)
709 return "";
710
711 snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
712 prefix,
713 rq->context->lrc.ccid,
714 rq->fence.context, rq->fence.seqno,
715 __i915_request_is_complete(rq) ? "!" :
716 __i915_request_has_started(rq) ? "*" :
717 "",
718 rq_prio(rq));
719
720 return buf;
721}
722
723static __maybe_unused noinline void
724trace_ports(const struct intel_engine_execlists *execlists,
725 const char *msg,
726 struct i915_request * const *ports)
727{
728 const struct intel_engine_cs *engine =
729 container_of(execlists, typeof(*engine), execlists);
730 char __maybe_unused p0[40], p1[40];
731
732 if (!ports[0])
733 return;
734
735 ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
736 dump_port(p0, sizeof(p0), "", ports[0]),
737 dump_port(p1, sizeof(p1), ", ", ports[1]));
738}
739
740static bool
741reset_in_progress(const struct intel_engine_execlists *execlists)
742{
743 return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
744}
745
746static __maybe_unused noinline bool
747assert_pending_valid(const struct intel_engine_execlists *execlists,
748 const char *msg)
749{
750 struct intel_engine_cs *engine =
751 container_of(execlists, typeof(*engine), execlists);
752 struct i915_request * const *port, *rq, *prev = NULL;
753 struct intel_context *ce = NULL;
754 u32 ccid = -1;
755
756 trace_ports(execlists, msg, execlists->pending);
757
758 /* We may be messing around with the lists during reset, lalala */
759 if (reset_in_progress(execlists))
760 return true;
761
762 if (!execlists->pending[0]) {
763 GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
764 engine->name);
765 return false;
766 }
767
768 if (execlists->pending[execlists_num_ports(execlists)]) {
769 GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
770 engine->name, execlists_num_ports(execlists));
771 return false;
772 }
773
774 for (port = execlists->pending; (rq = *port); port++) {
775 unsigned long flags;
776 bool ok = true;
777
778 GEM_BUG_ON(!kref_read(&rq->fence.refcount));
779 GEM_BUG_ON(!i915_request_is_active(rq));
780
781 if (ce == rq->context) {
782 GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
783 engine->name,
784 ce->timeline->fence_context,
785 port - execlists->pending);
786 return false;
787 }
788 ce = rq->context;
789
790 if (ccid == ce->lrc.ccid) {
791 GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
792 engine->name,
793 ccid, ce->timeline->fence_context,
794 port - execlists->pending);
795 return false;
796 }
797 ccid = ce->lrc.ccid;
798
799 /*
800 * Sentinels are supposed to be the last request so they flush
801 * the current execution off the HW. Check that they are the only
802 * request in the pending submission.
803 *
804 * NB: Due to the async nature of preempt-to-busy and request
805 * cancellation we need to handle the case where request
806 * becomes a sentinel in parallel to CSB processing.
807 */
808 if (prev && i915_request_has_sentinel(prev) &&
809 !READ_ONCE(prev->fence.error)) {
810 GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
811 engine->name,
812 ce->timeline->fence_context,
813 port - execlists->pending);
814 return false;
815 }
816 prev = rq;
817
818 /*
819 * We want virtual requests to only be in the first slot so
820 * that they are never stuck behind a hog and can be immediately
821 * transferred onto the next idle engine.
822 */
823 if (rq->execution_mask != engine->mask &&
824 port != execlists->pending) {
825 GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
826 engine->name,
827 ce->timeline->fence_context,
828 port - execlists->pending);
829 return false;
830 }
831
832 /* Hold tightly onto the lock to prevent concurrent retires! */
833 if (!spin_trylock_irqsave(&rq->lock, flags))
834 continue;
835
836 if (__i915_request_is_complete(rq))
837 goto unlock;
838
839 if (i915_active_is_idle(&ce->active) &&
840 !intel_context_is_barrier(ce)) {
841 GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
842 engine->name,
843 ce->timeline->fence_context,
844 port - execlists->pending);
845 ok = false;
846 goto unlock;
847 }
848
849 if (!i915_vma_is_pinned(ce->state)) {
850 GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
851 engine->name,
852 ce->timeline->fence_context,
853 port - execlists->pending);
854 ok = false;
855 goto unlock;
856 }
857
858 if (!i915_vma_is_pinned(ce->ring->vma)) {
859 GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
860 engine->name,
861 ce->timeline->fence_context,
862 port - execlists->pending);
863 ok = false;
864 goto unlock;
865 }
866
867unlock:
868 spin_unlock_irqrestore(&rq->lock, flags);
869 if (!ok)
870 return false;
871 }
872
873 return ce;
874}
875
876static void execlists_submit_ports(struct intel_engine_cs *engine)
877{
878 struct intel_engine_execlists *execlists = &engine->execlists;
879 unsigned int n;
880
881 GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
882
883 /*
884 * We can skip acquiring intel_runtime_pm_get() here as it was taken
885 * on our behalf by the request (see i915_gem_mark_busy()) and it will
886 * not be relinquished until the device is idle (see
887 * i915_gem_idle_work_handler()). As a precaution, we make sure
888 * that all ELSP are drained i.e. we have processed the CSB,
889 * before allowing ourselves to idle and calling intel_runtime_pm_put().
890 */
891 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
892
893 /*
894 * ELSQ note: the submit queue is not cleared after being submitted
895 * to the HW so we need to make sure we always clean it up. This is
896 * currently ensured by the fact that we always write the same number
897 * of elsq entries, keep this in mind before changing the loop below.
898 */
899 for (n = execlists_num_ports(execlists); n--; ) {
900 struct i915_request *rq = execlists->pending[n];
901
902 write_desc(execlists,
903 rq ? execlists_update_context(rq) : 0,
904 n);
905 }
906
907 /* we need to manually load the submit queue */
908 if (execlists->ctrl_reg)
909 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
910}
911
912static bool ctx_single_port_submission(const struct intel_context *ce)
913{
914 return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
915 intel_context_force_single_submission(ce));
916}
917
918static bool can_merge_ctx(const struct intel_context *prev,
919 const struct intel_context *next)
920{
921 if (prev != next)
922 return false;
923
924 if (ctx_single_port_submission(prev))
925 return false;
926
927 return true;
928}
929
930static unsigned long i915_request_flags(const struct i915_request *rq)
931{
932 return READ_ONCE(rq->fence.flags);
933}
934
935static bool can_merge_rq(const struct i915_request *prev,
936 const struct i915_request *next)
937{
938 GEM_BUG_ON(prev == next);
939 GEM_BUG_ON(!assert_priority_queue(prev, next));
940
941 /*
942 * We do not submit known completed requests. Therefore if the next
943 * request is already completed, we can pretend to merge it in
944 * with the previous context (and we will skip updating the ELSP
945 * and tracking). Thus hopefully keeping the ELSP full with active
946 * contexts, despite the best efforts of preempt-to-busy to confuse
947 * us.
948 */
949 if (__i915_request_is_complete(next))
950 return true;
951
952 if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
953 (BIT(I915_FENCE_FLAG_NOPREEMPT) |
954 BIT(I915_FENCE_FLAG_SENTINEL))))
955 return false;
956
957 if (!can_merge_ctx(prev->context, next->context))
958 return false;
959
960 GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
961 return true;
962}
963
964static bool virtual_matches(const struct virtual_engine *ve,
965 const struct i915_request *rq,
966 const struct intel_engine_cs *engine)
967{
968 const struct intel_engine_cs *inflight;
969
970 if (!rq)
971 return false;
972
973 if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
974 return false;
975
976 /*
977 * We track when the HW has completed saving the context image
978 * (i.e. when we have seen the final CS event switching out of
979 * the context) and must not overwrite the context image before
980 * then. This restricts us to only using the active engine
981 * while the previous virtualized request is inflight (so
982 * we reuse the register offsets). This is a very small
983 * hystersis on the greedy seelction algorithm.
984 */
985 inflight = intel_context_inflight(&ve->context);
986 if (inflight && inflight != engine)
987 return false;
988
989 return true;
990}
991
992static struct virtual_engine *
993first_virtual_engine(struct intel_engine_cs *engine)
994{
995 struct intel_engine_execlists *el = &engine->execlists;
996 struct rb_node *rb = rb_first_cached(&el->virtual);
997
998 while (rb) {
999 struct virtual_engine *ve =
1000 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1001 struct i915_request *rq = READ_ONCE(ve->request);
1002
1003 /* lazily cleanup after another engine handled rq */
1004 if (!rq || !virtual_matches(ve, rq, engine)) {
1005 rb_erase_cached(rb, &el->virtual);
1006 RB_CLEAR_NODE(rb);
1007 rb = rb_first_cached(&el->virtual);
1008 continue;
1009 }
1010
1011 return ve;
1012 }
1013
1014 return NULL;
1015}
1016
1017static void virtual_xfer_context(struct virtual_engine *ve,
1018 struct intel_engine_cs *engine)
1019{
1020 unsigned int n;
1021
1022 if (likely(engine == ve->siblings[0]))
1023 return;
1024
1025 GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1026 if (!intel_engine_has_relative_mmio(engine))
1027 lrc_update_offsets(&ve->context, engine);
1028
1029 /*
1030 * Move the bound engine to the top of the list for
1031 * future execution. We then kick this tasklet first
1032 * before checking others, so that we preferentially
1033 * reuse this set of bound registers.
1034 */
1035 for (n = 1; n < ve->num_siblings; n++) {
1036 if (ve->siblings[n] == engine) {
1037 swap(ve->siblings[n], ve->siblings[0]);
1038 break;
1039 }
1040 }
1041}
1042
1043static void defer_request(struct i915_request *rq, struct list_head * const pl)
1044{
1045 LIST_HEAD(list);
1046
1047 /*
1048 * We want to move the interrupted request to the back of
1049 * the round-robin list (i.e. its priority level), but
1050 * in doing so, we must then move all requests that were in
1051 * flight and were waiting for the interrupted request to
1052 * be run after it again.
1053 */
1054 do {
1055 struct i915_dependency *p;
1056
1057 GEM_BUG_ON(i915_request_is_active(rq));
1058 list_move_tail(&rq->sched.link, pl);
1059
1060 for_each_waiter(p, rq) {
1061 struct i915_request *w =
1062 container_of(p->waiter, typeof(*w), sched);
1063
1064 if (p->flags & I915_DEPENDENCY_WEAK)
1065 continue;
1066
1067 /* Leave semaphores spinning on the other engines */
1068 if (w->engine != rq->engine)
1069 continue;
1070
1071 /* No waiter should start before its signaler */
1072 GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1073 __i915_request_has_started(w) &&
1074 !__i915_request_is_complete(rq));
1075
1076 if (!i915_request_is_ready(w))
1077 continue;
1078
1079 if (rq_prio(w) < rq_prio(rq))
1080 continue;
1081
1082 GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1083 GEM_BUG_ON(i915_request_is_active(w));
1084 list_move_tail(&w->sched.link, &list);
1085 }
1086
1087 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1088 } while (rq);
1089}
1090
1091static void defer_active(struct intel_engine_cs *engine)
1092{
1093 struct i915_request *rq;
1094
1095 rq = __unwind_incomplete_requests(engine);
1096 if (!rq)
1097 return;
1098
1099 defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
1100}
1101
1102static bool
1103timeslice_yield(const struct intel_engine_execlists *el,
1104 const struct i915_request *rq)
1105{
1106 /*
1107 * Once bitten, forever smitten!
1108 *
1109 * If the active context ever busy-waited on a semaphore,
1110 * it will be treated as a hog until the end of its timeslice (i.e.
1111 * until it is scheduled out and replaced by a new submission,
1112 * possibly even its own lite-restore). The HW only sends an interrupt
1113 * on the first miss, and we do know if that semaphore has been
1114 * signaled, or even if it is now stuck on another semaphore. Play
1115 * safe, yield if it might be stuck -- it will be given a fresh
1116 * timeslice in the near future.
1117 */
1118 return rq->context->lrc.ccid == READ_ONCE(el->yield);
1119}
1120
1121static bool needs_timeslice(const struct intel_engine_cs *engine,
1122 const struct i915_request *rq)
1123{
1124 if (!intel_engine_has_timeslices(engine))
1125 return false;
1126
1127 /* If not currently active, or about to switch, wait for next event */
1128 if (!rq || __i915_request_is_complete(rq))
1129 return false;
1130
1131 /* We do not need to start the timeslice until after the ACK */
1132 if (READ_ONCE(engine->execlists.pending[0]))
1133 return false;
1134
1135 /* If ELSP[1] is occupied, always check to see if worth slicing */
1136 if (!list_is_last_rcu(&rq->sched.link, &engine->active.requests)) {
1137 ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1138 return true;
1139 }
1140
1141 /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1142 if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) {
1143 ENGINE_TRACE(engine, "timeslice required for queue\n");
1144 return true;
1145 }
1146
1147 if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1148 ENGINE_TRACE(engine, "timeslice required for virtual\n");
1149 return true;
1150 }
1151
1152 return false;
1153}
1154
1155static bool
1156timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1157{
1158 const struct intel_engine_execlists *el = &engine->execlists;
1159
1160 if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1161 return false;
1162
1163 if (!needs_timeslice(engine, rq))
1164 return false;
1165
1166 return timer_expired(&el->timer) || timeslice_yield(el, rq);
1167}
1168
1169static unsigned long timeslice(const struct intel_engine_cs *engine)
1170{
1171 return READ_ONCE(engine->props.timeslice_duration_ms);
1172}
1173
1174static void start_timeslice(struct intel_engine_cs *engine)
1175{
1176 struct intel_engine_execlists *el = &engine->execlists;
1177 unsigned long duration;
1178
1179 /* Disable the timer if there is nothing to switch to */
1180 duration = 0;
1181 if (needs_timeslice(engine, *el->active)) {
1182 /* Avoid continually prolonging an active timeslice */
1183 if (timer_active(&el->timer)) {
1184 /*
1185 * If we just submitted a new ELSP after an old
1186 * context, that context may have already consumed
1187 * its timeslice, so recheck.
1188 */
1189 if (!timer_pending(&el->timer))
1190 tasklet_hi_schedule(&el->tasklet);
1191 return;
1192 }
1193
1194 duration = timeslice(engine);
1195 }
1196
1197 set_timer_ms(&el->timer, duration);
1198}
1199
1200static void record_preemption(struct intel_engine_execlists *execlists)
1201{
1202 (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1203}
1204
1205static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1206 const struct i915_request *rq)
1207{
1208 if (!rq)
1209 return 0;
1210
1211 /* Force a fast reset for terminated contexts (ignoring sysfs!) */
1212 if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1213 return 1;
1214
1215 return READ_ONCE(engine->props.preempt_timeout_ms);
1216}
1217
1218static void set_preempt_timeout(struct intel_engine_cs *engine,
1219 const struct i915_request *rq)
1220{
1221 if (!intel_engine_has_preempt_reset(engine))
1222 return;
1223
1224 set_timer_ms(&engine->execlists.preempt,
1225 active_preempt_timeout(engine, rq));
1226}
1227
1228static bool completed(const struct i915_request *rq)
1229{
1230 if (i915_request_has_sentinel(rq))
1231 return false;
1232
1233 return __i915_request_is_complete(rq);
1234}
1235
1236static void execlists_dequeue(struct intel_engine_cs *engine)
1237{
1238 struct intel_engine_execlists * const execlists = &engine->execlists;
1239 struct i915_request **port = execlists->pending;
1240 struct i915_request ** const last_port = port + execlists->port_mask;
1241 struct i915_request *last, * const *active;
1242 struct virtual_engine *ve;
1243 struct rb_node *rb;
1244 bool submit = false;
1245
1246 /*
1247 * Hardware submission is through 2 ports. Conceptually each port
1248 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1249 * static for a context, and unique to each, so we only execute
1250 * requests belonging to a single context from each ring. RING_HEAD
1251 * is maintained by the CS in the context image, it marks the place
1252 * where it got up to last time, and through RING_TAIL we tell the CS
1253 * where we want to execute up to this time.
1254 *
1255 * In this list the requests are in order of execution. Consecutive
1256 * requests from the same context are adjacent in the ringbuffer. We
1257 * can combine these requests into a single RING_TAIL update:
1258 *
1259 * RING_HEAD...req1...req2
1260 * ^- RING_TAIL
1261 * since to execute req2 the CS must first execute req1.
1262 *
1263 * Our goal then is to point each port to the end of a consecutive
1264 * sequence of requests as being the most optimal (fewest wake ups
1265 * and context switches) submission.
1266 */
1267
1268 spin_lock(&engine->active.lock);
1269
1270 /*
1271 * If the queue is higher priority than the last
1272 * request in the currently active context, submit afresh.
1273 * We will resubmit again afterwards in case we need to split
1274 * the active context to interject the preemption request,
1275 * i.e. we will retrigger preemption following the ack in case
1276 * of trouble.
1277 *
1278 */
1279 active = execlists->active;
1280 while ((last = *active) && completed(last))
1281 active++;
1282
1283 if (last) {
1284 if (need_preempt(engine, last)) {
1285 ENGINE_TRACE(engine,
1286 "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1287 last->fence.context,
1288 last->fence.seqno,
1289 last->sched.attr.priority,
1290 execlists->queue_priority_hint);
1291 record_preemption(execlists);
1292
1293 /*
1294 * Don't let the RING_HEAD advance past the breadcrumb
1295 * as we unwind (and until we resubmit) so that we do
1296 * not accidentally tell it to go backwards.
1297 */
1298 ring_set_paused(engine, 1);
1299
1300 /*
1301 * Note that we have not stopped the GPU at this point,
1302 * so we are unwinding the incomplete requests as they
1303 * remain inflight and so by the time we do complete
1304 * the preemption, some of the unwound requests may
1305 * complete!
1306 */
1307 __unwind_incomplete_requests(engine);
1308
1309 last = NULL;
1310 } else if (timeslice_expired(engine, last)) {
1311 ENGINE_TRACE(engine,
1312 "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1313 yesno(timer_expired(&execlists->timer)),
1314 last->fence.context, last->fence.seqno,
1315 rq_prio(last),
1316 execlists->queue_priority_hint,
1317 yesno(timeslice_yield(execlists, last)));
1318
1319 /*
1320 * Consume this timeslice; ensure we start a new one.
1321 *
1322 * The timeslice expired, and we will unwind the
1323 * running contexts and recompute the next ELSP.
1324 * If that submit will be the same pair of contexts
1325 * (due to dependency ordering), we will skip the
1326 * submission. If we don't cancel the timer now,
1327 * we will see that the timer has expired and
1328 * reschedule the tasklet; continually until the
1329 * next context switch or other preeemption event.
1330 *
1331 * Since we have decided to reschedule based on
1332 * consumption of this timeslice, if we submit the
1333 * same context again, grant it a full timeslice.
1334 */
1335 cancel_timer(&execlists->timer);
1336 ring_set_paused(engine, 1);
1337 defer_active(engine);
1338
1339 /*
1340 * Unlike for preemption, if we rewind and continue
1341 * executing the same context as previously active,
1342 * the order of execution will remain the same and
1343 * the tail will only advance. We do not need to
1344 * force a full context restore, as a lite-restore
1345 * is sufficient to resample the monotonic TAIL.
1346 *
1347 * If we switch to any other context, similarly we
1348 * will not rewind TAIL of current context, and
1349 * normal save/restore will preserve state and allow
1350 * us to later continue executing the same request.
1351 */
1352 last = NULL;
1353 } else {
1354 /*
1355 * Otherwise if we already have a request pending
1356 * for execution after the current one, we can
1357 * just wait until the next CS event before
1358 * queuing more. In either case we will force a
1359 * lite-restore preemption event, but if we wait
1360 * we hopefully coalesce several updates into a single
1361 * submission.
1362 */
1363 if (active[1]) {
1364 /*
1365 * Even if ELSP[1] is occupied and not worthy
1366 * of timeslices, our queue might be.
1367 */
1368 spin_unlock(&engine->active.lock);
1369 return;
1370 }
1371 }
1372 }
1373
1374 /* XXX virtual is always taking precedence */
1375 while ((ve = first_virtual_engine(engine))) {
1376 struct i915_request *rq;
1377
1378 spin_lock(&ve->base.active.lock);
1379
1380 rq = ve->request;
1381 if (unlikely(!virtual_matches(ve, rq, engine)))
1382 goto unlock; /* lost the race to a sibling */
1383
1384 GEM_BUG_ON(rq->engine != &ve->base);
1385 GEM_BUG_ON(rq->context != &ve->context);
1386
1387 if (unlikely(rq_prio(rq) < queue_prio(execlists))) {
1388 spin_unlock(&ve->base.active.lock);
1389 break;
1390 }
1391
1392 if (last && !can_merge_rq(last, rq)) {
1393 spin_unlock(&ve->base.active.lock);
1394 spin_unlock(&engine->active.lock);
1395 return; /* leave this for another sibling */
1396 }
1397
1398 ENGINE_TRACE(engine,
1399 "virtual rq=%llx:%lld%s, new engine? %s\n",
1400 rq->fence.context,
1401 rq->fence.seqno,
1402 __i915_request_is_complete(rq) ? "!" :
1403 __i915_request_has_started(rq) ? "*" :
1404 "",
1405 yesno(engine != ve->siblings[0]));
1406
1407 WRITE_ONCE(ve->request, NULL);
1408 WRITE_ONCE(ve->base.execlists.queue_priority_hint, INT_MIN);
1409
1410 rb = &ve->nodes[engine->id].rb;
1411 rb_erase_cached(rb, &execlists->virtual);
1412 RB_CLEAR_NODE(rb);
1413
1414 GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1415 WRITE_ONCE(rq->engine, engine);
1416
1417 if (__i915_request_submit(rq)) {
1418 /*
1419 * Only after we confirm that we will submit
1420 * this request (i.e. it has not already
1421 * completed), do we want to update the context.
1422 *
1423 * This serves two purposes. It avoids
1424 * unnecessary work if we are resubmitting an
1425 * already completed request after timeslicing.
1426 * But more importantly, it prevents us altering
1427 * ve->siblings[] on an idle context, where
1428 * we may be using ve->siblings[] in
1429 * virtual_context_enter / virtual_context_exit.
1430 */
1431 virtual_xfer_context(ve, engine);
1432 GEM_BUG_ON(ve->siblings[0] != engine);
1433
1434 submit = true;
1435 last = rq;
1436 }
1437
1438 i915_request_put(rq);
1439unlock:
1440 spin_unlock(&ve->base.active.lock);
1441
1442 /*
1443 * Hmm, we have a bunch of virtual engine requests,
1444 * but the first one was already completed (thanks
1445 * preempt-to-busy!). Keep looking at the veng queue
1446 * until we have no more relevant requests (i.e.
1447 * the normal submit queue has higher priority).
1448 */
1449 if (submit)
1450 break;
1451 }
1452
1453 while ((rb = rb_first_cached(&execlists->queue))) {
1454 struct i915_priolist *p = to_priolist(rb);
1455 struct i915_request *rq, *rn;
1456
1457 priolist_for_each_request_consume(rq, rn, p) {
1458 bool merge = true;
1459
1460 /*
1461 * Can we combine this request with the current port?
1462 * It has to be the same context/ringbuffer and not
1463 * have any exceptions (e.g. GVT saying never to
1464 * combine contexts).
1465 *
1466 * If we can combine the requests, we can execute both
1467 * by updating the RING_TAIL to point to the end of the
1468 * second request, and so we never need to tell the
1469 * hardware about the first.
1470 */
1471 if (last && !can_merge_rq(last, rq)) {
1472 /*
1473 * If we are on the second port and cannot
1474 * combine this request with the last, then we
1475 * are done.
1476 */
1477 if (port == last_port)
1478 goto done;
1479
1480 /*
1481 * We must not populate both ELSP[] with the
1482 * same LRCA, i.e. we must submit 2 different
1483 * contexts if we submit 2 ELSP.
1484 */
1485 if (last->context == rq->context)
1486 goto done;
1487
1488 if (i915_request_has_sentinel(last))
1489 goto done;
1490
1491 /*
1492 * We avoid submitting virtual requests into
1493 * the secondary ports so that we can migrate
1494 * the request immediately to another engine
1495 * rather than wait for the primary request.
1496 */
1497 if (rq->execution_mask != engine->mask)
1498 goto done;
1499
1500 /*
1501 * If GVT overrides us we only ever submit
1502 * port[0], leaving port[1] empty. Note that we
1503 * also have to be careful that we don't queue
1504 * the same context (even though a different
1505 * request) to the second port.
1506 */
1507 if (ctx_single_port_submission(last->context) ||
1508 ctx_single_port_submission(rq->context))
1509 goto done;
1510
1511 merge = false;
1512 }
1513
1514 if (__i915_request_submit(rq)) {
1515 if (!merge) {
1516 *port++ = i915_request_get(last);
1517 last = NULL;
1518 }
1519
1520 GEM_BUG_ON(last &&
1521 !can_merge_ctx(last->context,
1522 rq->context));
1523 GEM_BUG_ON(last &&
1524 i915_seqno_passed(last->fence.seqno,
1525 rq->fence.seqno));
1526
1527 submit = true;
1528 last = rq;
1529 }
1530 }
1531
1532 rb_erase_cached(&p->node, &execlists->queue);
1533 i915_priolist_free(p);
1534 }
1535done:
1536 *port++ = i915_request_get(last);
1537
1538 /*
1539 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1540 *
1541 * We choose the priority hint such that if we add a request of greater
1542 * priority than this, we kick the submission tasklet to decide on
1543 * the right order of submitting the requests to hardware. We must
1544 * also be prepared to reorder requests as they are in-flight on the
1545 * HW. We derive the priority hint then as the first "hole" in
1546 * the HW submission ports and if there are no available slots,
1547 * the priority of the lowest executing request, i.e. last.
1548 *
1549 * When we do receive a higher priority request ready to run from the
1550 * user, see queue_request(), the priority hint is bumped to that
1551 * request triggering preemption on the next dequeue (or subsequent
1552 * interrupt for secondary ports).
1553 */
1554 execlists->queue_priority_hint = queue_prio(execlists);
1555 spin_unlock(&engine->active.lock);
1556
1557 /*
1558 * We can skip poking the HW if we ended up with exactly the same set
1559 * of requests as currently running, e.g. trying to timeslice a pair
1560 * of ordered contexts.
1561 */
1562 if (submit &&
1563 memcmp(active,
1564 execlists->pending,
1565 (port - execlists->pending) * sizeof(*port))) {
1566 *port = NULL;
1567 while (port-- != execlists->pending)
1568 execlists_schedule_in(*port, port - execlists->pending);
1569
1570 WRITE_ONCE(execlists->yield, -1);
1571 set_preempt_timeout(engine, *active);
1572 execlists_submit_ports(engine);
1573 } else {
1574 ring_set_paused(engine, 0);
1575 while (port-- != execlists->pending)
1576 i915_request_put(*port);
1577 *execlists->pending = NULL;
1578 }
1579}
1580
1581static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1582{
1583 local_irq_disable(); /* Suspend interrupts across request submission */
1584 execlists_dequeue(engine);
1585 local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1586}
1587
1588static void clear_ports(struct i915_request **ports, int count)
1589{
1590 memset_p((void **)ports, NULL, count);
1591}
1592
1593static void
1594copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1595{
1596 /* A memcpy_p() would be very useful here! */
1597 while (count--)
1598 WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1599}
1600
1601static struct i915_request **
1602cancel_port_requests(struct intel_engine_execlists * const execlists,
1603 struct i915_request **inactive)
1604{
1605 struct i915_request * const *port;
1606
1607 for (port = execlists->pending; *port; port++)
1608 *inactive++ = *port;
1609 clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1610
1611 /* Mark the end of active before we overwrite *active */
1612 for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1613 *inactive++ = *port;
1614 clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1615
1616 smp_wmb(); /* complete the seqlock for execlists_active() */
1617 WRITE_ONCE(execlists->active, execlists->inflight);
1618
1619 /* Having cancelled all outstanding process_csb(), stop their timers */
1620 GEM_BUG_ON(execlists->pending[0]);
1621 cancel_timer(&execlists->timer);
1622 cancel_timer(&execlists->preempt);
1623
1624 return inactive;
1625}
1626
1627static void invalidate_csb_entries(const u64 *first, const u64 *last)
1628{
1629 clflush((void *)first);
1630 clflush((void *)last);
1631}
1632
1633/*
1634 * Starting with Gen12, the status has a new format:
1635 *
1636 * bit 0: switched to new queue
1637 * bit 1: reserved
1638 * bit 2: semaphore wait mode (poll or signal), only valid when
1639 * switch detail is set to "wait on semaphore"
1640 * bits 3-5: engine class
1641 * bits 6-11: engine instance
1642 * bits 12-14: reserved
1643 * bits 15-25: sw context id of the lrc the GT switched to
1644 * bits 26-31: sw counter of the lrc the GT switched to
1645 * bits 32-35: context switch detail
1646 * - 0: ctx complete
1647 * - 1: wait on sync flip
1648 * - 2: wait on vblank
1649 * - 3: wait on scanline
1650 * - 4: wait on semaphore
1651 * - 5: context preempted (not on SEMAPHORE_WAIT or
1652 * WAIT_FOR_EVENT)
1653 * bit 36: reserved
1654 * bits 37-43: wait detail (for switch detail 1 to 4)
1655 * bits 44-46: reserved
1656 * bits 47-57: sw context id of the lrc the GT switched away from
1657 * bits 58-63: sw counter of the lrc the GT switched away from
1658 */
1659static bool gen12_csb_parse(const u64 csb)
1660{
1661 bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_32_bits(csb));
1662 bool new_queue =
1663 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
1664
1665 /*
1666 * The context switch detail is not guaranteed to be 5 when a preemption
1667 * occurs, so we can't just check for that. The check below works for
1668 * all the cases we care about, including preemptions of WAIT
1669 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1670 * would require some extra handling, but we don't support that.
1671 */
1672 if (!ctx_away_valid || new_queue) {
1673 GEM_BUG_ON(!GEN12_CSB_CTX_VALID(lower_32_bits(csb)));
1674 return true;
1675 }
1676
1677 /*
1678 * switch detail = 5 is covered by the case above and we do not expect a
1679 * context switch on an unsuccessful wait instruction since we always
1680 * use polling mode.
1681 */
1682 GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1683 return false;
1684}
1685
1686static bool gen8_csb_parse(const u64 csb)
1687{
1688 return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1689}
1690
1691static noinline u64
1692wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1693{
1694 u64 entry;
1695
1696 /*
1697 * Reading from the HWSP has one particular advantage: we can detect
1698 * a stale entry. Since the write into HWSP is broken, we have no reason
1699 * to trust the HW at all, the mmio entry may equally be unordered, so
1700 * we prefer the path that is self-checking and as a last resort,
1701 * return the mmio value.
1702 *
1703 * tgl,dg1:HSDES#22011327657
1704 */
1705 preempt_disable();
1706 if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1707 int idx = csb - engine->execlists.csb_status;
1708 int status;
1709
1710 status = GEN8_EXECLISTS_STATUS_BUF;
1711 if (idx >= 6) {
1712 status = GEN11_EXECLISTS_STATUS_BUF2;
1713 idx -= 6;
1714 }
1715 status += sizeof(u64) * idx;
1716
1717 entry = intel_uncore_read64(engine->uncore,
1718 _MMIO(engine->mmio_base + status));
1719 }
1720 preempt_enable();
1721
1722 return entry;
1723}
1724
1725static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1726{
1727 u64 entry = READ_ONCE(*csb);
1728
1729 /*
1730 * Unfortunately, the GPU does not always serialise its write
1731 * of the CSB entries before its write of the CSB pointer, at least
1732 * from the perspective of the CPU, using what is known as a Global
1733 * Observation Point. We may read a new CSB tail pointer, but then
1734 * read the stale CSB entries, causing us to misinterpret the
1735 * context-switch events, and eventually declare the GPU hung.
1736 *
1737 * icl:HSDES#1806554093
1738 * tgl:HSDES#22011248461
1739 */
1740 if (unlikely(entry == -1))
1741 entry = wa_csb_read(engine, csb);
1742
1743 /* Consume this entry so that we can spot its future reuse. */
1744 WRITE_ONCE(*csb, -1);
1745
1746 /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1747 return entry;
1748}
1749
1750static void new_timeslice(struct intel_engine_execlists *el)
1751{
1752 /* By cancelling, we will start afresh in start_timeslice() */
1753 cancel_timer(&el->timer);
1754}
1755
1756static struct i915_request **
1757process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1758{
1759 struct intel_engine_execlists * const execlists = &engine->execlists;
1760 u64 * const buf = execlists->csb_status;
1761 const u8 num_entries = execlists->csb_size;
1762 struct i915_request **prev;
1763 u8 head, tail;
1764
1765 /*
1766 * As we modify our execlists state tracking we require exclusive
1767 * access. Either we are inside the tasklet, or the tasklet is disabled
1768 * and we assume that is only inside the reset paths and so serialised.
1769 */
1770 GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
1771 !reset_in_progress(execlists));
1772
1773 /*
1774 * Note that csb_write, csb_status may be either in HWSP or mmio.
1775 * When reading from the csb_write mmio register, we have to be
1776 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1777 * the low 4bits. As it happens we know the next 4bits are always
1778 * zero and so we can simply masked off the low u8 of the register
1779 * and treat it identically to reading from the HWSP (without having
1780 * to use explicit shifting and masking, and probably bifurcating
1781 * the code to handle the legacy mmio read).
1782 */
1783 head = execlists->csb_head;
1784 tail = READ_ONCE(*execlists->csb_write);
1785 if (unlikely(head == tail))
1786 return inactive;
1787
1788 /*
1789 * We will consume all events from HW, or at least pretend to.
1790 *
1791 * The sequence of events from the HW is deterministic, and derived
1792 * from our writes to the ELSP, with a smidgen of variability for
1793 * the arrival of the asynchronous requests wrt to the inflight
1794 * execution. If the HW sends an event that does not correspond with
1795 * the one we are expecting, we have to abandon all hope as we lose
1796 * all tracking of what the engine is actually executing. We will
1797 * only detect we are out of sequence with the HW when we get an
1798 * 'impossible' event because we have already drained our own
1799 * preemption/promotion queue. If this occurs, we know that we likely
1800 * lost track of execution earlier and must unwind and restart, the
1801 * simplest way is by stop processing the event queue and force the
1802 * engine to reset.
1803 */
1804 execlists->csb_head = tail;
1805 ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1806
1807 /*
1808 * Hopefully paired with a wmb() in HW!
1809 *
1810 * We must complete the read of the write pointer before any reads
1811 * from the CSB, so that we do not see stale values. Without an rmb
1812 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1813 * we perform the READ_ONCE(*csb_write).
1814 */
1815 rmb();
1816
1817 /* Remember who was last running under the timer */
1818 prev = inactive;
1819 *prev = NULL;
1820
1821 do {
1822 bool promote;
1823 u64 csb;
1824
1825 if (++head == num_entries)
1826 head = 0;
1827
1828 /*
1829 * We are flying near dragons again.
1830 *
1831 * We hold a reference to the request in execlist_port[]
1832 * but no more than that. We are operating in softirq
1833 * context and so cannot hold any mutex or sleep. That
1834 * prevents us stopping the requests we are processing
1835 * in port[] from being retired simultaneously (the
1836 * breadcrumb will be complete before we see the
1837 * context-switch). As we only hold the reference to the
1838 * request, any pointer chasing underneath the request
1839 * is subject to a potential use-after-free. Thus we
1840 * store all of the bookkeeping within port[] as
1841 * required, and avoid using unguarded pointers beneath
1842 * request itself. The same applies to the atomic
1843 * status notifier.
1844 */
1845
1846 csb = csb_read(engine, buf + head);
1847 ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1848 head, upper_32_bits(csb), lower_32_bits(csb));
1849
1850 if (GRAPHICS_VER(engine->i915) >= 12)
1851 promote = gen12_csb_parse(csb);
1852 else
1853 promote = gen8_csb_parse(csb);
1854 if (promote) {
1855 struct i915_request * const *old = execlists->active;
1856
1857 if (GEM_WARN_ON(!*execlists->pending)) {
1858 execlists->error_interrupt |= ERROR_CSB;
1859 break;
1860 }
1861
1862 ring_set_paused(engine, 0);
1863
1864 /* Point active to the new ELSP; prevent overwriting */
1865 WRITE_ONCE(execlists->active, execlists->pending);
1866 smp_wmb(); /* notify execlists_active() */
1867
1868 /* cancel old inflight, prepare for switch */
1869 trace_ports(execlists, "preempted", old);
1870 while (*old)
1871 *inactive++ = *old++;
1872
1873 /* switch pending to inflight */
1874 GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1875 copy_ports(execlists->inflight,
1876 execlists->pending,
1877 execlists_num_ports(execlists));
1878 smp_wmb(); /* complete the seqlock */
1879 WRITE_ONCE(execlists->active, execlists->inflight);
1880
1881 /* XXX Magic delay for tgl */
1882 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1883
1884 WRITE_ONCE(execlists->pending[0], NULL);
1885 } else {
1886 if (GEM_WARN_ON(!*execlists->active)) {
1887 execlists->error_interrupt |= ERROR_CSB;
1888 break;
1889 }
1890
1891 /* port0 completed, advanced to port1 */
1892 trace_ports(execlists, "completed", execlists->active);
1893
1894 /*
1895 * We rely on the hardware being strongly
1896 * ordered, that the breadcrumb write is
1897 * coherent (visible from the CPU) before the
1898 * user interrupt is processed. One might assume
1899 * that the breadcrumb write being before the
1900 * user interrupt and the CS event for the context
1901 * switch would therefore be before the CS event
1902 * itself...
1903 */
1904 if (GEM_SHOW_DEBUG() &&
1905 !__i915_request_is_complete(*execlists->active)) {
1906 struct i915_request *rq = *execlists->active;
1907 const u32 *regs __maybe_unused =
1908 rq->context->lrc_reg_state;
1909
1910 ENGINE_TRACE(engine,
1911 "context completed before request!\n");
1912 ENGINE_TRACE(engine,
1913 "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1914 ENGINE_READ(engine, RING_START),
1915 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1916 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1917 ENGINE_READ(engine, RING_CTL),
1918 ENGINE_READ(engine, RING_MI_MODE));
1919 ENGINE_TRACE(engine,
1920 "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1921 i915_ggtt_offset(rq->ring->vma),
1922 rq->head, rq->tail,
1923 rq->fence.context,
1924 lower_32_bits(rq->fence.seqno),
1925 hwsp_seqno(rq));
1926 ENGINE_TRACE(engine,
1927 "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1928 regs[CTX_RING_START],
1929 regs[CTX_RING_HEAD],
1930 regs[CTX_RING_TAIL]);
1931 }
1932
1933 *inactive++ = *execlists->active++;
1934
1935 GEM_BUG_ON(execlists->active - execlists->inflight >
1936 execlists_num_ports(execlists));
1937 }
1938 } while (head != tail);
1939
1940 /*
1941 * Gen11 has proven to fail wrt global observation point between
1942 * entry and tail update, failing on the ordering and thus
1943 * we see an old entry in the context status buffer.
1944 *
1945 * Forcibly evict out entries for the next gpu csb update,
1946 * to increase the odds that we get a fresh entries with non
1947 * working hardware. The cost for doing so comes out mostly with
1948 * the wash as hardware, working or not, will need to do the
1949 * invalidation before.
1950 */
1951 invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1952
1953 /*
1954 * We assume that any event reflects a change in context flow
1955 * and merits a fresh timeslice. We reinstall the timer after
1956 * inspecting the queue to see if we need to resumbit.
1957 */
1958 if (*prev != *execlists->active) /* elide lite-restores */
1959 new_timeslice(execlists);
1960
1961 return inactive;
1962}
1963
1964static void post_process_csb(struct i915_request **port,
1965 struct i915_request **last)
1966{
1967 while (port != last)
1968 execlists_schedule_out(*port++);
1969}
1970
1971static void __execlists_hold(struct i915_request *rq)
1972{
1973 LIST_HEAD(list);
1974
1975 do {
1976 struct i915_dependency *p;
1977
1978 if (i915_request_is_active(rq))
1979 __i915_request_unsubmit(rq);
1980
1981 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1982 list_move_tail(&rq->sched.link, &rq->engine->active.hold);
1983 i915_request_set_hold(rq);
1984 RQ_TRACE(rq, "on hold\n");
1985
1986 for_each_waiter(p, rq) {
1987 struct i915_request *w =
1988 container_of(p->waiter, typeof(*w), sched);
1989
1990 if (p->flags & I915_DEPENDENCY_WEAK)
1991 continue;
1992
1993 /* Leave semaphores spinning on the other engines */
1994 if (w->engine != rq->engine)
1995 continue;
1996
1997 if (!i915_request_is_ready(w))
1998 continue;
1999
2000 if (__i915_request_is_complete(w))
2001 continue;
2002
2003 if (i915_request_on_hold(w))
2004 continue;
2005
2006 list_move_tail(&w->sched.link, &list);
2007 }
2008
2009 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2010 } while (rq);
2011}
2012
2013static bool execlists_hold(struct intel_engine_cs *engine,
2014 struct i915_request *rq)
2015{
2016 if (i915_request_on_hold(rq))
2017 return false;
2018
2019 spin_lock_irq(&engine->active.lock);
2020
2021 if (__i915_request_is_complete(rq)) { /* too late! */
2022 rq = NULL;
2023 goto unlock;
2024 }
2025
2026 /*
2027 * Transfer this request onto the hold queue to prevent it
2028 * being resumbitted to HW (and potentially completed) before we have
2029 * released it. Since we may have already submitted following
2030 * requests, we need to remove those as well.
2031 */
2032 GEM_BUG_ON(i915_request_on_hold(rq));
2033 GEM_BUG_ON(rq->engine != engine);
2034 __execlists_hold(rq);
2035 GEM_BUG_ON(list_empty(&engine->active.hold));
2036
2037unlock:
2038 spin_unlock_irq(&engine->active.lock);
2039 return rq;
2040}
2041
2042static bool hold_request(const struct i915_request *rq)
2043{
2044 struct i915_dependency *p;
2045 bool result = false;
2046
2047 /*
2048 * If one of our ancestors is on hold, we must also be on hold,
2049 * otherwise we will bypass it and execute before it.
2050 */
2051 rcu_read_lock();
2052 for_each_signaler(p, rq) {
2053 const struct i915_request *s =
2054 container_of(p->signaler, typeof(*s), sched);
2055
2056 if (s->engine != rq->engine)
2057 continue;
2058
2059 result = i915_request_on_hold(s);
2060 if (result)
2061 break;
2062 }
2063 rcu_read_unlock();
2064
2065 return result;
2066}
2067
2068static void __execlists_unhold(struct i915_request *rq)
2069{
2070 LIST_HEAD(list);
2071
2072 do {
2073 struct i915_dependency *p;
2074
2075 RQ_TRACE(rq, "hold release\n");
2076
2077 GEM_BUG_ON(!i915_request_on_hold(rq));
2078 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2079
2080 i915_request_clear_hold(rq);
2081 list_move_tail(&rq->sched.link,
2082 i915_sched_lookup_priolist(rq->engine,
2083 rq_prio(rq)));
2084 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2085
2086 /* Also release any children on this engine that are ready */
2087 for_each_waiter(p, rq) {
2088 struct i915_request *w =
2089 container_of(p->waiter, typeof(*w), sched);
2090
2091 if (p->flags & I915_DEPENDENCY_WEAK)
2092 continue;
2093
2094 /* Propagate any change in error status */
2095 if (rq->fence.error)
2096 i915_request_set_error_once(w, rq->fence.error);
2097
2098 if (w->engine != rq->engine)
2099 continue;
2100
2101 if (!i915_request_on_hold(w))
2102 continue;
2103
2104 /* Check that no other parents are also on hold */
2105 if (hold_request(w))
2106 continue;
2107
2108 list_move_tail(&w->sched.link, &list);
2109 }
2110
2111 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2112 } while (rq);
2113}
2114
2115static void execlists_unhold(struct intel_engine_cs *engine,
2116 struct i915_request *rq)
2117{
2118 spin_lock_irq(&engine->active.lock);
2119
2120 /*
2121 * Move this request back to the priority queue, and all of its
2122 * children and grandchildren that were suspended along with it.
2123 */
2124 __execlists_unhold(rq);
2125
2126 if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
2127 engine->execlists.queue_priority_hint = rq_prio(rq);
2128 tasklet_hi_schedule(&engine->execlists.tasklet);
2129 }
2130
2131 spin_unlock_irq(&engine->active.lock);
2132}
2133
2134struct execlists_capture {
2135 struct work_struct work;
2136 struct i915_request *rq;
2137 struct i915_gpu_coredump *error;
2138};
2139
2140static void execlists_capture_work(struct work_struct *work)
2141{
2142 struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2143 const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2144 struct intel_engine_cs *engine = cap->rq->engine;
2145 struct intel_gt_coredump *gt = cap->error->gt;
2146 struct intel_engine_capture_vma *vma;
2147
2148 /* Compress all the objects attached to the request, slow! */
2149 vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2150 if (vma) {
2151 struct i915_vma_compress *compress =
2152 i915_vma_capture_prepare(gt);
2153
2154 intel_engine_coredump_add_vma(gt->engine, vma, compress);
2155 i915_vma_capture_finish(gt, compress);
2156 }
2157
2158 gt->simulated = gt->engine->simulated;
2159 cap->error->simulated = gt->simulated;
2160
2161 /* Publish the error state, and announce it to the world */
2162 i915_error_state_store(cap->error);
2163 i915_gpu_coredump_put(cap->error);
2164
2165 /* Return this request and all that depend upon it for signaling */
2166 execlists_unhold(engine, cap->rq);
2167 i915_request_put(cap->rq);
2168
2169 kfree(cap);
2170}
2171
2172static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2173{
2174 const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2175 struct execlists_capture *cap;
2176
2177 cap = kmalloc(sizeof(*cap), gfp);
2178 if (!cap)
2179 return NULL;
2180
2181 cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2182 if (!cap->error)
2183 goto err_cap;
2184
2185 cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2186 if (!cap->error->gt)
2187 goto err_gpu;
2188
2189 cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2190 if (!cap->error->gt->engine)
2191 goto err_gt;
2192
2193 cap->error->gt->engine->hung = true;
2194
2195 return cap;
2196
2197err_gt:
2198 kfree(cap->error->gt);
2199err_gpu:
2200 kfree(cap->error);
2201err_cap:
2202 kfree(cap);
2203 return NULL;
2204}
2205
2206static struct i915_request *
2207active_context(struct intel_engine_cs *engine, u32 ccid)
2208{
2209 const struct intel_engine_execlists * const el = &engine->execlists;
2210 struct i915_request * const *port, *rq;
2211
2212 /*
2213 * Use the most recent result from process_csb(), but just in case
2214 * we trigger an error (via interrupt) before the first CS event has
2215 * been written, peek at the next submission.
2216 */
2217
2218 for (port = el->active; (rq = *port); port++) {
2219 if (rq->context->lrc.ccid == ccid) {
2220 ENGINE_TRACE(engine,
2221 "ccid:%x found at active:%zd\n",
2222 ccid, port - el->active);
2223 return rq;
2224 }
2225 }
2226
2227 for (port = el->pending; (rq = *port); port++) {
2228 if (rq->context->lrc.ccid == ccid) {
2229 ENGINE_TRACE(engine,
2230 "ccid:%x found at pending:%zd\n",
2231 ccid, port - el->pending);
2232 return rq;
2233 }
2234 }
2235
2236 ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2237 return NULL;
2238}
2239
2240static u32 active_ccid(struct intel_engine_cs *engine)
2241{
2242 return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2243}
2244
2245static void execlists_capture(struct intel_engine_cs *engine)
2246{
2247 struct execlists_capture *cap;
2248
2249 if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2250 return;
2251
2252 /*
2253 * We need to _quickly_ capture the engine state before we reset.
2254 * We are inside an atomic section (softirq) here and we are delaying
2255 * the forced preemption event.
2256 */
2257 cap = capture_regs(engine);
2258 if (!cap)
2259 return;
2260
2261 spin_lock_irq(&engine->active.lock);
2262 cap->rq = active_context(engine, active_ccid(engine));
2263 if (cap->rq) {
2264 cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2265 cap->rq = i915_request_get_rcu(cap->rq);
2266 }
2267 spin_unlock_irq(&engine->active.lock);
2268 if (!cap->rq)
2269 goto err_free;
2270
2271 /*
2272 * Remove the request from the execlists queue, and take ownership
2273 * of the request. We pass it to our worker who will _slowly_ compress
2274 * all the pages the _user_ requested for debugging their batch, after
2275 * which we return it to the queue for signaling.
2276 *
2277 * By removing them from the execlists queue, we also remove the
2278 * requests from being processed by __unwind_incomplete_requests()
2279 * during the intel_engine_reset(), and so they will *not* be replayed
2280 * afterwards.
2281 *
2282 * Note that because we have not yet reset the engine at this point,
2283 * it is possible for the request that we have identified as being
2284 * guilty, did in fact complete and we will then hit an arbitration
2285 * point allowing the outstanding preemption to succeed. The likelihood
2286 * of that is very low (as capturing of the engine registers should be
2287 * fast enough to run inside an irq-off atomic section!), so we will
2288 * simply hold that request accountable for being non-preemptible
2289 * long enough to force the reset.
2290 */
2291 if (!execlists_hold(engine, cap->rq))
2292 goto err_rq;
2293
2294 INIT_WORK(&cap->work, execlists_capture_work);
2295 schedule_work(&cap->work);
2296 return;
2297
2298err_rq:
2299 i915_request_put(cap->rq);
2300err_free:
2301 i915_gpu_coredump_put(cap->error);
2302 kfree(cap);
2303}
2304
2305static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2306{
2307 const unsigned int bit = I915_RESET_ENGINE + engine->id;
2308 unsigned long *lock = &engine->gt->reset.flags;
2309
2310 if (!intel_has_reset_engine(engine->gt))
2311 return;
2312
2313 if (test_and_set_bit(bit, lock))
2314 return;
2315
2316 ENGINE_TRACE(engine, "reset for %s\n", msg);
2317
2318 /* Mark this tasklet as disabled to avoid waiting for it to complete */
2319 tasklet_disable_nosync(&engine->execlists.tasklet);
2320
2321 ring_set_paused(engine, 1); /* Freeze the current request in place */
2322 execlists_capture(engine);
2323 intel_engine_reset(engine, msg);
2324
2325 tasklet_enable(&engine->execlists.tasklet);
2326 clear_and_wake_up_bit(bit, lock);
2327}
2328
2329static bool preempt_timeout(const struct intel_engine_cs *const engine)
2330{
2331 const struct timer_list *t = &engine->execlists.preempt;
2332
2333 if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2334 return false;
2335
2336 if (!timer_expired(t))
2337 return false;
2338
2339 return engine->execlists.pending[0];
2340}
2341
2342/*
2343 * Check the unread Context Status Buffers and manage the submission of new
2344 * contexts to the ELSP accordingly.
2345 */
2346static void execlists_submission_tasklet(struct tasklet_struct *t)
2347{
2348 struct intel_engine_cs * const engine =
2349 from_tasklet(engine, t, execlists.tasklet);
2350 struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2351 struct i915_request **inactive;
2352
2353 rcu_read_lock();
2354 inactive = process_csb(engine, post);
2355 GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2356
2357 if (unlikely(preempt_timeout(engine))) {
2358 cancel_timer(&engine->execlists.preempt);
2359 engine->execlists.error_interrupt |= ERROR_PREEMPT;
2360 }
2361
2362 if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2363 const char *msg;
2364
2365 /* Generate the error message in priority wrt to the user! */
2366 if (engine->execlists.error_interrupt & GENMASK(15, 0))
2367 msg = "CS error"; /* thrown by a user payload */
2368 else if (engine->execlists.error_interrupt & ERROR_CSB)
2369 msg = "invalid CSB event";
2370 else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2371 msg = "preemption time out";
2372 else
2373 msg = "internal error";
2374
2375 engine->execlists.error_interrupt = 0;
2376 execlists_reset(engine, msg);
2377 }
2378
2379 if (!engine->execlists.pending[0]) {
2380 execlists_dequeue_irq(engine);
2381 start_timeslice(engine);
2382 }
2383
2384 post_process_csb(post, inactive);
2385 rcu_read_unlock();
2386}
2387
2388static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2389{
2390 bool tasklet = false;
2391
2392 if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2393 u32 eir;
2394
2395 /* Upper 16b are the enabling mask, rsvd for internal errors */
2396 eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2397 ENGINE_TRACE(engine, "CS error: %x\n", eir);
2398
2399 /* Disable the error interrupt until after the reset */
2400 if (likely(eir)) {
2401 ENGINE_WRITE(engine, RING_EMR, ~0u);
2402 ENGINE_WRITE(engine, RING_EIR, eir);
2403 WRITE_ONCE(engine->execlists.error_interrupt, eir);
2404 tasklet = true;
2405 }
2406 }
2407
2408 if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2409 WRITE_ONCE(engine->execlists.yield,
2410 ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2411 ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2412 engine->execlists.yield);
2413 if (del_timer(&engine->execlists.timer))
2414 tasklet = true;
2415 }
2416
2417 if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2418 tasklet = true;
2419
2420 if (iir & GT_RENDER_USER_INTERRUPT)
2421 intel_engine_signal_breadcrumbs(engine);
2422
2423 if (tasklet)
2424 tasklet_hi_schedule(&engine->execlists.tasklet);
2425}
2426
2427static void __execlists_kick(struct intel_engine_execlists *execlists)
2428{
2429 /* Kick the tasklet for some interrupt coalescing and reset handling */
2430 tasklet_hi_schedule(&execlists->tasklet);
2431}
2432
2433#define execlists_kick(t, member) \
2434 __execlists_kick(container_of(t, struct intel_engine_execlists, member))
2435
2436static void execlists_timeslice(struct timer_list *timer)
2437{
2438 execlists_kick(timer, timer);
2439}
2440
2441static void execlists_preempt(struct timer_list *timer)
2442{
2443 execlists_kick(timer, preempt);
2444}
2445
2446static void queue_request(struct intel_engine_cs *engine,
2447 struct i915_request *rq)
2448{
2449 GEM_BUG_ON(!list_empty(&rq->sched.link));
2450 list_add_tail(&rq->sched.link,
2451 i915_sched_lookup_priolist(engine, rq_prio(rq)));
2452 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2453}
2454
2455static bool submit_queue(struct intel_engine_cs *engine,
2456 const struct i915_request *rq)
2457{
2458 struct intel_engine_execlists *execlists = &engine->execlists;
2459
2460 if (rq_prio(rq) <= execlists->queue_priority_hint)
2461 return false;
2462
2463 execlists->queue_priority_hint = rq_prio(rq);
2464 return true;
2465}
2466
2467static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2468 const struct i915_request *rq)
2469{
2470 GEM_BUG_ON(i915_request_on_hold(rq));
2471 return !list_empty(&engine->active.hold) && hold_request(rq);
2472}
2473
2474static void execlists_submit_request(struct i915_request *request)
2475{
2476 struct intel_engine_cs *engine = request->engine;
2477 unsigned long flags;
2478
2479 /* Will be called from irq-context when using foreign fences. */
2480 spin_lock_irqsave(&engine->active.lock, flags);
2481
2482 if (unlikely(ancestor_on_hold(engine, request))) {
2483 RQ_TRACE(request, "ancestor on hold\n");
2484 list_add_tail(&request->sched.link, &engine->active.hold);
2485 i915_request_set_hold(request);
2486 } else {
2487 queue_request(engine, request);
2488
2489 GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
2490 GEM_BUG_ON(list_empty(&request->sched.link));
2491
2492 if (submit_queue(engine, request))
2493 __execlists_kick(&engine->execlists);
2494 }
2495
2496 spin_unlock_irqrestore(&engine->active.lock, flags);
2497}
2498
2499static int
2500__execlists_context_pre_pin(struct intel_context *ce,
2501 struct intel_engine_cs *engine,
2502 struct i915_gem_ww_ctx *ww, void **vaddr)
2503{
2504 int err;
2505
2506 err = lrc_pre_pin(ce, engine, ww, vaddr);
2507 if (err)
2508 return err;
2509
2510 if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2511 lrc_init_state(ce, engine, *vaddr);
2512
2513 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2514 }
2515
2516 return 0;
2517}
2518
2519static int execlists_context_pre_pin(struct intel_context *ce,
2520 struct i915_gem_ww_ctx *ww,
2521 void **vaddr)
2522{
2523 return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2524}
2525
2526static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2527{
2528 return lrc_pin(ce, ce->engine, vaddr);
2529}
2530
2531static int execlists_context_alloc(struct intel_context *ce)
2532{
2533 return lrc_alloc(ce, ce->engine);
2534}
2535
2536static const struct intel_context_ops execlists_context_ops = {
2537 .flags = COPS_HAS_INFLIGHT,
2538
2539 .alloc = execlists_context_alloc,
2540
2541 .pre_pin = execlists_context_pre_pin,
2542 .pin = execlists_context_pin,
2543 .unpin = lrc_unpin,
2544 .post_unpin = lrc_post_unpin,
2545
2546 .enter = intel_context_enter_engine,
2547 .exit = intel_context_exit_engine,
2548
2549 .reset = lrc_reset,
2550 .destroy = lrc_destroy,
2551};
2552
2553static int emit_pdps(struct i915_request *rq)
2554{
2555 const struct intel_engine_cs * const engine = rq->engine;
2556 struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2557 int err, i;
2558 u32 *cs;
2559
2560 GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2561
2562 /*
2563 * Beware ye of the dragons, this sequence is magic!
2564 *
2565 * Small changes to this sequence can cause anything from
2566 * GPU hangs to forcewake errors and machine lockups!
2567 */
2568
2569 cs = intel_ring_begin(rq, 2);
2570 if (IS_ERR(cs))
2571 return PTR_ERR(cs);
2572
2573 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2574 *cs++ = MI_NOOP;
2575 intel_ring_advance(rq, cs);
2576
2577 /* Flush any residual operations from the context load */
2578 err = engine->emit_flush(rq, EMIT_FLUSH);
2579 if (err)
2580 return err;
2581
2582 /* Magic required to prevent forcewake errors! */
2583 err = engine->emit_flush(rq, EMIT_INVALIDATE);
2584 if (err)
2585 return err;
2586
2587 cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2588 if (IS_ERR(cs))
2589 return PTR_ERR(cs);
2590
2591 /* Ensure the LRI have landed before we invalidate & continue */
2592 *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2593 for (i = GEN8_3LVL_PDPES; i--; ) {
2594 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2595 u32 base = engine->mmio_base;
2596
2597 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2598 *cs++ = upper_32_bits(pd_daddr);
2599 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2600 *cs++ = lower_32_bits(pd_daddr);
2601 }
2602 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2603 intel_ring_advance(rq, cs);
2604
2605 intel_ring_advance(rq, cs);
2606
2607 return 0;
2608}
2609
2610static int execlists_request_alloc(struct i915_request *request)
2611{
2612 int ret;
2613
2614 GEM_BUG_ON(!intel_context_is_pinned(request->context));
2615
2616 /*
2617 * Flush enough space to reduce the likelihood of waiting after
2618 * we start building the request - in which case we will just
2619 * have to repeat work.
2620 */
2621 request->reserved_space += EXECLISTS_REQUEST_SIZE;
2622
2623 /*
2624 * Note that after this point, we have committed to using
2625 * this request as it is being used to both track the
2626 * state of engine initialisation and liveness of the
2627 * golden renderstate above. Think twice before you try
2628 * to cancel/unwind this request now.
2629 */
2630
2631 if (!i915_vm_is_4lvl(request->context->vm)) {
2632 ret = emit_pdps(request);
2633 if (ret)
2634 return ret;
2635 }
2636
2637 /* Unconditionally invalidate GPU caches and TLBs. */
2638 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2639 if (ret)
2640 return ret;
2641
2642 request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2643 return 0;
2644}
2645
2646static void reset_csb_pointers(struct intel_engine_cs *engine)
2647{
2648 struct intel_engine_execlists * const execlists = &engine->execlists;
2649 const unsigned int reset_value = execlists->csb_size - 1;
2650
2651 ring_set_paused(engine, 0);
2652
2653 /*
2654 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2655 * Bludgeon them with a mmio update to be sure.
2656 */
2657 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2658 0xffff << 16 | reset_value << 8 | reset_value);
2659 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2660
2661 /*
2662 * After a reset, the HW starts writing into CSB entry [0]. We
2663 * therefore have to set our HEAD pointer back one entry so that
2664 * the *first* entry we check is entry 0. To complicate this further,
2665 * as we don't wait for the first interrupt after reset, we have to
2666 * fake the HW write to point back to the last entry so that our
2667 * inline comparison of our cached head position against the last HW
2668 * write works even before the first interrupt.
2669 */
2670 execlists->csb_head = reset_value;
2671 WRITE_ONCE(*execlists->csb_write, reset_value);
2672 wmb(); /* Make sure this is visible to HW (paranoia?) */
2673
2674 /* Check that the GPU does indeed update the CSB entries! */
2675 memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2676 invalidate_csb_entries(&execlists->csb_status[0],
2677 &execlists->csb_status[reset_value]);
2678
2679 /* Once more for luck and our trusty paranoia */
2680 ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2681 0xffff << 16 | reset_value << 8 | reset_value);
2682 ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2683
2684 GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2685}
2686
2687static void sanitize_hwsp(struct intel_engine_cs *engine)
2688{
2689 struct intel_timeline *tl;
2690
2691 list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2692 intel_timeline_reset_seqno(tl);
2693}
2694
2695static void execlists_sanitize(struct intel_engine_cs *engine)
2696{
2697 GEM_BUG_ON(execlists_active(&engine->execlists));
2698
2699 /*
2700 * Poison residual state on resume, in case the suspend didn't!
2701 *
2702 * We have to assume that across suspend/resume (or other loss
2703 * of control) that the contents of our pinned buffers has been
2704 * lost, replaced by garbage. Since this doesn't always happen,
2705 * let's poison such state so that we more quickly spot when
2706 * we falsely assume it has been preserved.
2707 */
2708 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2709 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2710
2711 reset_csb_pointers(engine);
2712
2713 /*
2714 * The kernel_context HWSP is stored in the status_page. As above,
2715 * that may be lost on resume/initialisation, and so we need to
2716 * reset the value in the HWSP.
2717 */
2718 sanitize_hwsp(engine);
2719
2720 /* And scrub the dirty cachelines for the HWSP */
2721 clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
2722}
2723
2724static void enable_error_interrupt(struct intel_engine_cs *engine)
2725{
2726 u32 status;
2727
2728 engine->execlists.error_interrupt = 0;
2729 ENGINE_WRITE(engine, RING_EMR, ~0u);
2730 ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2731
2732 status = ENGINE_READ(engine, RING_ESR);
2733 if (unlikely(status)) {
2734 drm_err(&engine->i915->drm,
2735 "engine '%s' resumed still in error: %08x\n",
2736 engine->name, status);
2737 __intel_gt_reset(engine->gt, engine->mask);
2738 }
2739
2740 /*
2741 * On current gen8+, we have 2 signals to play with
2742 *
2743 * - I915_ERROR_INSTUCTION (bit 0)
2744 *
2745 * Generate an error if the command parser encounters an invalid
2746 * instruction
2747 *
2748 * This is a fatal error.
2749 *
2750 * - CP_PRIV (bit 2)
2751 *
2752 * Generate an error on privilege violation (where the CP replaces
2753 * the instruction with a no-op). This also fires for writes into
2754 * read-only scratch pages.
2755 *
2756 * This is a non-fatal error, parsing continues.
2757 *
2758 * * there are a few others defined for odd HW that we do not use
2759 *
2760 * Since CP_PRIV fires for cases where we have chosen to ignore the
2761 * error (as the HW is validating and suppressing the mistakes), we
2762 * only unmask the instruction error bit.
2763 */
2764 ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2765}
2766
2767static void enable_execlists(struct intel_engine_cs *engine)
2768{
2769 u32 mode;
2770
2771 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2772
2773 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2774
2775 if (GRAPHICS_VER(engine->i915) >= 11)
2776 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2777 else
2778 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2779 ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2780
2781 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2782
2783 ENGINE_WRITE_FW(engine,
2784 RING_HWS_PGA,
2785 i915_ggtt_offset(engine->status_page.vma));
2786 ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2787
2788 enable_error_interrupt(engine);
2789}
2790
2791static int execlists_resume(struct intel_engine_cs *engine)
2792{
2793 intel_mocs_init_engine(engine);
2794 intel_breadcrumbs_reset(engine->breadcrumbs);
2795
2796 enable_execlists(engine);
2797
2798 return 0;
2799}
2800
2801static void execlists_reset_prepare(struct intel_engine_cs *engine)
2802{
2803 struct intel_engine_execlists * const execlists = &engine->execlists;
2804
2805 ENGINE_TRACE(engine, "depth<-%d\n",
2806 atomic_read(&execlists->tasklet.count));
2807
2808 /*
2809 * Prevent request submission to the hardware until we have
2810 * completed the reset in i915_gem_reset_finish(). If a request
2811 * is completed by one engine, it may then queue a request
2812 * to a second via its execlists->tasklet *just* as we are
2813 * calling engine->resume() and also writing the ELSP.
2814 * Turning off the execlists->tasklet until the reset is over
2815 * prevents the race.
2816 */
2817 __tasklet_disable_sync_once(&execlists->tasklet);
2818 GEM_BUG_ON(!reset_in_progress(execlists));
2819
2820 /*
2821 * We stop engines, otherwise we might get failed reset and a
2822 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2823 * from system hang if batchbuffer is progressing when
2824 * the reset is issued, regardless of READY_TO_RESET ack.
2825 * Thus assume it is best to stop engines on all gens
2826 * where we have a gpu reset.
2827 *
2828 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2829 *
2830 * FIXME: Wa for more modern gens needs to be validated
2831 */
2832 ring_set_paused(engine, 1);
2833 intel_engine_stop_cs(engine);
2834
2835 engine->execlists.reset_ccid = active_ccid(engine);
2836}
2837
2838static struct i915_request **
2839reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
2840{
2841 struct intel_engine_execlists * const execlists = &engine->execlists;
2842
2843 mb(); /* paranoia: read the CSB pointers from after the reset */
2844 clflush(execlists->csb_write);
2845 mb();
2846
2847 inactive = process_csb(engine, inactive); /* drain preemption events */
2848
2849 /* Following the reset, we need to reload the CSB read/write pointers */
2850 reset_csb_pointers(engine);
2851
2852 return inactive;
2853}
2854
2855static void
2856execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
2857{
2858 struct intel_context *ce;
2859 struct i915_request *rq;
2860 u32 head;
2861
2862 /*
2863 * Save the currently executing context, even if we completed
2864 * its request, it was still running at the time of the
2865 * reset and will have been clobbered.
2866 */
2867 rq = active_context(engine, engine->execlists.reset_ccid);
2868 if (!rq)
2869 return;
2870
2871 ce = rq->context;
2872 GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2873
2874 if (__i915_request_is_complete(rq)) {
2875 /* Idle context; tidy up the ring so we can restart afresh */
2876 head = intel_ring_wrap(ce->ring, rq->tail);
2877 goto out_replay;
2878 }
2879
2880 /* We still have requests in-flight; the engine should be active */
2881 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
2882
2883 /* Context has requests still in-flight; it should not be idle! */
2884 GEM_BUG_ON(i915_active_is_idle(&ce->active));
2885
2886 rq = active_request(ce->timeline, rq);
2887 head = intel_ring_wrap(ce->ring, rq->head);
2888 GEM_BUG_ON(head == ce->ring->tail);
2889
2890 /*
2891 * If this request hasn't started yet, e.g. it is waiting on a
2892 * semaphore, we need to avoid skipping the request or else we
2893 * break the signaling chain. However, if the context is corrupt
2894 * the request will not restart and we will be stuck with a wedged
2895 * device. It is quite often the case that if we issue a reset
2896 * while the GPU is loading the context image, that the context
2897 * image becomes corrupt.
2898 *
2899 * Otherwise, if we have not started yet, the request should replay
2900 * perfectly and we do not need to flag the result as being erroneous.
2901 */
2902 if (!__i915_request_has_started(rq))
2903 goto out_replay;
2904
2905 /*
2906 * If the request was innocent, we leave the request in the ELSP
2907 * and will try to replay it on restarting. The context image may
2908 * have been corrupted by the reset, in which case we may have
2909 * to service a new GPU hang, but more likely we can continue on
2910 * without impact.
2911 *
2912 * If the request was guilty, we presume the context is corrupt
2913 * and have to at least restore the RING register in the context
2914 * image back to the expected values to skip over the guilty request.
2915 */
2916 __i915_request_reset(rq, stalled);
2917
2918 /*
2919 * We want a simple context + ring to execute the breadcrumb update.
2920 * We cannot rely on the context being intact across the GPU hang,
2921 * so clear it and rebuild just what we need for the breadcrumb.
2922 * All pending requests for this context will be zapped, and any
2923 * future request will be after userspace has had the opportunity
2924 * to recreate its own state.
2925 */
2926out_replay:
2927 ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
2928 head, ce->ring->tail);
2929 lrc_reset_regs(ce, engine);
2930 ce->lrc.lrca = lrc_update_regs(ce, engine, head);
2931}
2932
2933static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
2934{
2935 struct intel_engine_execlists * const execlists = &engine->execlists;
2936 struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2937 struct i915_request **inactive;
2938
2939 rcu_read_lock();
2940 inactive = reset_csb(engine, post);
2941
2942 execlists_reset_active(engine, true);
2943
2944 inactive = cancel_port_requests(execlists, inactive);
2945 post_process_csb(post, inactive);
2946 rcu_read_unlock();
2947}
2948
2949static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
2950{
2951 unsigned long flags;
2952
2953 ENGINE_TRACE(engine, "\n");
2954
2955 /* Process the csb, find the guilty context and throw away */
2956 execlists_reset_csb(engine, stalled);
2957
2958 /* Push back any incomplete requests for replay after the reset. */
2959 rcu_read_lock();
2960 spin_lock_irqsave(&engine->active.lock, flags);
2961 __unwind_incomplete_requests(engine);
2962 spin_unlock_irqrestore(&engine->active.lock, flags);
2963 rcu_read_unlock();
2964}
2965
2966static void nop_submission_tasklet(struct tasklet_struct *t)
2967{
2968 struct intel_engine_cs * const engine =
2969 from_tasklet(engine, t, execlists.tasklet);
2970
2971 /* The driver is wedged; don't process any more events. */
2972 WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN);
2973}
2974
2975static void execlists_reset_cancel(struct intel_engine_cs *engine)
2976{
2977 struct intel_engine_execlists * const execlists = &engine->execlists;
2978 struct i915_request *rq, *rn;
2979 struct rb_node *rb;
2980 unsigned long flags;
2981
2982 ENGINE_TRACE(engine, "\n");
2983
2984 /*
2985 * Before we call engine->cancel_requests(), we should have exclusive
2986 * access to the submission state. This is arranged for us by the
2987 * caller disabling the interrupt generation, the tasklet and other
2988 * threads that may then access the same state, giving us a free hand
2989 * to reset state. However, we still need to let lockdep be aware that
2990 * we know this state may be accessed in hardirq context, so we
2991 * disable the irq around this manipulation and we want to keep
2992 * the spinlock focused on its duties and not accidentally conflate
2993 * coverage to the submission's irq state. (Similarly, although we
2994 * shouldn't need to disable irq around the manipulation of the
2995 * submission's irq state, we also wish to remind ourselves that
2996 * it is irq state.)
2997 */
2998 execlists_reset_csb(engine, true);
2999
3000 rcu_read_lock();
3001 spin_lock_irqsave(&engine->active.lock, flags);
3002
3003 /* Mark all executing requests as skipped. */
3004 list_for_each_entry(rq, &engine->active.requests, sched.link)
3005 i915_request_put(i915_request_mark_eio(rq));
3006 intel_engine_signal_breadcrumbs(engine);
3007
3008 /* Flush the queued requests to the timeline list (for retiring). */
3009 while ((rb = rb_first_cached(&execlists->queue))) {
3010 struct i915_priolist *p = to_priolist(rb);
3011
3012 priolist_for_each_request_consume(rq, rn, p) {
3013 if (i915_request_mark_eio(rq)) {
3014 __i915_request_submit(rq);
3015 i915_request_put(rq);
3016 }
3017 }
3018
3019 rb_erase_cached(&p->node, &execlists->queue);
3020 i915_priolist_free(p);
3021 }
3022
3023 /* On-hold requests will be flushed to timeline upon their release */
3024 list_for_each_entry(rq, &engine->active.hold, sched.link)
3025 i915_request_put(i915_request_mark_eio(rq));
3026
3027 /* Cancel all attached virtual engines */
3028 while ((rb = rb_first_cached(&execlists->virtual))) {
3029 struct virtual_engine *ve =
3030 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3031
3032 rb_erase_cached(rb, &execlists->virtual);
3033 RB_CLEAR_NODE(rb);
3034
3035 spin_lock(&ve->base.active.lock);
3036 rq = fetch_and_zero(&ve->request);
3037 if (rq) {
3038 if (i915_request_mark_eio(rq)) {
3039 rq->engine = engine;
3040 __i915_request_submit(rq);
3041 i915_request_put(rq);
3042 }
3043 i915_request_put(rq);
3044
3045 ve->base.execlists.queue_priority_hint = INT_MIN;
3046 }
3047 spin_unlock(&ve->base.active.lock);
3048 }
3049
3050 /* Remaining _unready_ requests will be nop'ed when submitted */
3051
3052 execlists->queue_priority_hint = INT_MIN;
3053 execlists->queue = RB_ROOT_CACHED;
3054
3055 GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
3056 execlists->tasklet.callback = nop_submission_tasklet;
3057
3058 spin_unlock_irqrestore(&engine->active.lock, flags);
3059 rcu_read_unlock();
3060}
3061
3062static void execlists_reset_finish(struct intel_engine_cs *engine)
3063{
3064 struct intel_engine_execlists * const execlists = &engine->execlists;
3065
3066 /*
3067 * After a GPU reset, we may have requests to replay. Do so now while
3068 * we still have the forcewake to be sure that the GPU is not allowed
3069 * to sleep before we restart and reload a context.
3070 *
3071 * If the GPU reset fails, the engine may still be alive with requests
3072 * inflight. We expect those to complete, or for the device to be
3073 * reset as the next level of recovery, and as a final resort we
3074 * will declare the device wedged.
3075 */
3076 GEM_BUG_ON(!reset_in_progress(execlists));
3077
3078 /* And kick in case we missed a new request submission. */
3079 if (__tasklet_enable(&execlists->tasklet))
3080 __execlists_kick(execlists);
3081
3082 ENGINE_TRACE(engine, "depth->%d\n",
3083 atomic_read(&execlists->tasklet.count));
3084}
3085
3086static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3087{
3088 ENGINE_WRITE(engine, RING_IMR,
3089 ~(engine->irq_enable_mask | engine->irq_keep_mask));
3090 ENGINE_POSTING_READ(engine, RING_IMR);
3091}
3092
3093static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3094{
3095 ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3096}
3097
3098static void execlists_park(struct intel_engine_cs *engine)
3099{
3100 cancel_timer(&engine->execlists.timer);
3101 cancel_timer(&engine->execlists.preempt);
3102}
3103
3104static bool can_preempt(struct intel_engine_cs *engine)
3105{
3106 if (GRAPHICS_VER(engine->i915) > 8)
3107 return true;
3108
3109 /* GPGPU on bdw requires extra w/a; not implemented */
3110 return engine->class != RENDER_CLASS;
3111}
3112
3113static void execlists_set_default_submission(struct intel_engine_cs *engine)
3114{
3115 engine->submit_request = execlists_submit_request;
3116 engine->schedule = i915_schedule;
3117 engine->execlists.tasklet.callback = execlists_submission_tasklet;
3118}
3119
3120static void execlists_shutdown(struct intel_engine_cs *engine)
3121{
3122 /* Synchronise with residual timers and any softirq they raise */
3123 del_timer_sync(&engine->execlists.timer);
3124 del_timer_sync(&engine->execlists.preempt);
3125 tasklet_kill(&engine->execlists.tasklet);
3126}
3127
3128static void execlists_release(struct intel_engine_cs *engine)
3129{
3130 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3131
3132 execlists_shutdown(engine);
3133
3134 intel_engine_cleanup_common(engine);
3135 lrc_fini_wa_ctx(engine);
3136}
3137
3138static void
3139logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3140{
3141 /* Default vfuncs which can be overridden by each engine. */
3142
3143 engine->resume = execlists_resume;
3144
3145 engine->cops = &execlists_context_ops;
3146 engine->request_alloc = execlists_request_alloc;
3147
3148 engine->reset.prepare = execlists_reset_prepare;
3149 engine->reset.rewind = execlists_reset_rewind;
3150 engine->reset.cancel = execlists_reset_cancel;
3151 engine->reset.finish = execlists_reset_finish;
3152
3153 engine->park = execlists_park;
3154 engine->unpark = NULL;
3155
3156 engine->emit_flush = gen8_emit_flush_xcs;
3157 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3158 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3159 if (GRAPHICS_VER(engine->i915) >= 12) {
3160 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3161 engine->emit_flush = gen12_emit_flush_xcs;
3162 }
3163 engine->set_default_submission = execlists_set_default_submission;
3164
3165 if (GRAPHICS_VER(engine->i915) < 11) {
3166 engine->irq_enable = gen8_logical_ring_enable_irq;
3167 engine->irq_disable = gen8_logical_ring_disable_irq;
3168 } else {
3169 /*
3170 * TODO: On Gen11 interrupt masks need to be clear
3171 * to allow C6 entry. Keep interrupts enabled at
3172 * and take the hit of generating extra interrupts
3173 * until a more refined solution exists.
3174 */
3175 }
3176 intel_engine_set_irq_handler(engine, execlists_irq_handler);
3177
3178 engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3179 if (!intel_vgpu_active(engine->i915)) {
3180 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3181 if (can_preempt(engine)) {
3182 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3183 if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
3184 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3185 }
3186 }
3187
3188 if (intel_engine_has_preemption(engine))
3189 engine->emit_bb_start = gen8_emit_bb_start;
3190 else
3191 engine->emit_bb_start = gen8_emit_bb_start_noarb;
3192}
3193
3194static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3195{
3196 unsigned int shift = 0;
3197
3198 if (GRAPHICS_VER(engine->i915) < 11) {
3199 const u8 irq_shifts[] = {
3200 [RCS0] = GEN8_RCS_IRQ_SHIFT,
3201 [BCS0] = GEN8_BCS_IRQ_SHIFT,
3202 [VCS0] = GEN8_VCS0_IRQ_SHIFT,
3203 [VCS1] = GEN8_VCS1_IRQ_SHIFT,
3204 [VECS0] = GEN8_VECS_IRQ_SHIFT,
3205 };
3206
3207 shift = irq_shifts[engine->id];
3208 }
3209
3210 engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3211 engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3212 engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3213 engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3214}
3215
3216static void rcs_submission_override(struct intel_engine_cs *engine)
3217{
3218 switch (GRAPHICS_VER(engine->i915)) {
3219 case 12:
3220 engine->emit_flush = gen12_emit_flush_rcs;
3221 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3222 break;
3223 case 11:
3224 engine->emit_flush = gen11_emit_flush_rcs;
3225 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3226 break;
3227 default:
3228 engine->emit_flush = gen8_emit_flush_rcs;
3229 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3230 break;
3231 }
3232}
3233
3234int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3235{
3236 struct intel_engine_execlists * const execlists = &engine->execlists;
3237 struct drm_i915_private *i915 = engine->i915;
3238 struct intel_uncore *uncore = engine->uncore;
3239 u32 base = engine->mmio_base;
3240
3241 tasklet_setup(&engine->execlists.tasklet, execlists_submission_tasklet);
3242 timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3243 timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3244
3245 logical_ring_default_vfuncs(engine);
3246 logical_ring_default_irqs(engine);
3247
3248 if (engine->class == RENDER_CLASS)
3249 rcs_submission_override(engine);
3250
3251 lrc_init_wa_ctx(engine);
3252
3253 if (HAS_LOGICAL_RING_ELSQ(i915)) {
3254 execlists->submit_reg = uncore->regs +
3255 i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3256 execlists->ctrl_reg = uncore->regs +
3257 i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3258 } else {
3259 execlists->submit_reg = uncore->regs +
3260 i915_mmio_reg_offset(RING_ELSP(base));
3261 }
3262
3263 execlists->csb_status =
3264 (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3265
3266 execlists->csb_write =
3267 &engine->status_page.addr[intel_hws_csb_write_index(i915)];
3268
3269 if (GRAPHICS_VER(i915) < 11)
3270 execlists->csb_size = GEN8_CSB_ENTRIES;
3271 else
3272 execlists->csb_size = GEN11_CSB_ENTRIES;
3273
3274 engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3275 if (GRAPHICS_VER(engine->i915) >= 11) {
3276 execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3277 execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3278 }
3279
3280 /* Finally, take ownership and responsibility for cleanup! */
3281 engine->sanitize = execlists_sanitize;
3282 engine->release = execlists_release;
3283
3284 return 0;
3285}
3286
3287static struct list_head *virtual_queue(struct virtual_engine *ve)
3288{
3289 return &ve->base.execlists.default_priolist.requests;
3290}
3291
3292static void rcu_virtual_context_destroy(struct work_struct *wrk)
3293{
3294 struct virtual_engine *ve =
3295 container_of(wrk, typeof(*ve), rcu.work);
3296 unsigned int n;
3297
3298 GEM_BUG_ON(ve->context.inflight);
3299
3300 /* Preempt-to-busy may leave a stale request behind. */
3301 if (unlikely(ve->request)) {
3302 struct i915_request *old;
3303
3304 spin_lock_irq(&ve->base.active.lock);
3305
3306 old = fetch_and_zero(&ve->request);
3307 if (old) {
3308 GEM_BUG_ON(!__i915_request_is_complete(old));
3309 __i915_request_submit(old);
3310 i915_request_put(old);
3311 }
3312
3313 spin_unlock_irq(&ve->base.active.lock);
3314 }
3315
3316 /*
3317 * Flush the tasklet in case it is still running on another core.
3318 *
3319 * This needs to be done before we remove ourselves from the siblings'
3320 * rbtrees as in the case it is running in parallel, it may reinsert
3321 * the rb_node into a sibling.
3322 */
3323 tasklet_kill(&ve->base.execlists.tasklet);
3324
3325 /* Decouple ourselves from the siblings, no more access allowed. */
3326 for (n = 0; n < ve->num_siblings; n++) {
3327 struct intel_engine_cs *sibling = ve->siblings[n];
3328 struct rb_node *node = &ve->nodes[sibling->id].rb;
3329
3330 if (RB_EMPTY_NODE(node))
3331 continue;
3332
3333 spin_lock_irq(&sibling->active.lock);
3334
3335 /* Detachment is lazily performed in the execlists tasklet */
3336 if (!RB_EMPTY_NODE(node))
3337 rb_erase_cached(node, &sibling->execlists.virtual);
3338
3339 spin_unlock_irq(&sibling->active.lock);
3340 }
3341 GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3342 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3343
3344 lrc_fini(&ve->context);
3345 intel_context_fini(&ve->context);
3346
3347 intel_breadcrumbs_free(ve->base.breadcrumbs);
3348 intel_engine_free_request_pool(&ve->base);
3349
3350 kfree(ve->bonds);
3351 kfree(ve);
3352}
3353
3354static void virtual_context_destroy(struct kref *kref)
3355{
3356 struct virtual_engine *ve =
3357 container_of(kref, typeof(*ve), context.ref);
3358
3359 GEM_BUG_ON(!list_empty(&ve->context.signals));
3360
3361 /*
3362 * When destroying the virtual engine, we have to be aware that
3363 * it may still be in use from an hardirq/softirq context causing
3364 * the resubmission of a completed request (background completion
3365 * due to preempt-to-busy). Before we can free the engine, we need
3366 * to flush the submission code and tasklets that are still potentially
3367 * accessing the engine. Flushing the tasklets requires process context,
3368 * and since we can guard the resubmit onto the engine with an RCU read
3369 * lock, we can delegate the free of the engine to an RCU worker.
3370 */
3371 INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3372 queue_rcu_work(system_wq, &ve->rcu);
3373}
3374
3375static void virtual_engine_initial_hint(struct virtual_engine *ve)
3376{
3377 int swp;
3378
3379 /*
3380 * Pick a random sibling on starting to help spread the load around.
3381 *
3382 * New contexts are typically created with exactly the same order
3383 * of siblings, and often started in batches. Due to the way we iterate
3384 * the array of sibling when submitting requests, sibling[0] is
3385 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3386 * randomised across the system, we also help spread the load by the
3387 * first engine we inspect being different each time.
3388 *
3389 * NB This does not force us to execute on this engine, it will just
3390 * typically be the first we inspect for submission.
3391 */
3392 swp = prandom_u32_max(ve->num_siblings);
3393 if (swp)
3394 swap(ve->siblings[swp], ve->siblings[0]);
3395}
3396
3397static int virtual_context_alloc(struct intel_context *ce)
3398{
3399 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3400
3401 return lrc_alloc(ce, ve->siblings[0]);
3402}
3403
3404static int virtual_context_pre_pin(struct intel_context *ce,
3405 struct i915_gem_ww_ctx *ww,
3406 void **vaddr)
3407{
3408 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3409
3410 /* Note: we must use a real engine class for setting up reg state */
3411 return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3412}
3413
3414static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3415{
3416 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3417
3418 return lrc_pin(ce, ve->siblings[0], vaddr);
3419}
3420
3421static void virtual_context_enter(struct intel_context *ce)
3422{
3423 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3424 unsigned int n;
3425
3426 for (n = 0; n < ve->num_siblings; n++)
3427 intel_engine_pm_get(ve->siblings[n]);
3428
3429 intel_timeline_enter(ce->timeline);
3430}
3431
3432static void virtual_context_exit(struct intel_context *ce)
3433{
3434 struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3435 unsigned int n;
3436
3437 intel_timeline_exit(ce->timeline);
3438
3439 for (n = 0; n < ve->num_siblings; n++)
3440 intel_engine_pm_put(ve->siblings[n]);
3441}
3442
3443static const struct intel_context_ops virtual_context_ops = {
3444 .flags = COPS_HAS_INFLIGHT,
3445
3446 .alloc = virtual_context_alloc,
3447
3448 .pre_pin = virtual_context_pre_pin,
3449 .pin = virtual_context_pin,
3450 .unpin = lrc_unpin,
3451 .post_unpin = lrc_post_unpin,
3452
3453 .enter = virtual_context_enter,
3454 .exit = virtual_context_exit,
3455
3456 .destroy = virtual_context_destroy,
3457};
3458
3459static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3460{
3461 struct i915_request *rq;
3462 intel_engine_mask_t mask;
3463
3464 rq = READ_ONCE(ve->request);
3465 if (!rq)
3466 return 0;
3467
3468 /* The rq is ready for submission; rq->execution_mask is now stable. */
3469 mask = rq->execution_mask;
3470 if (unlikely(!mask)) {
3471 /* Invalid selection, submit to a random engine in error */
3472 i915_request_set_error_once(rq, -ENODEV);
3473 mask = ve->siblings[0]->mask;
3474 }
3475
3476 ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3477 rq->fence.context, rq->fence.seqno,
3478 mask, ve->base.execlists.queue_priority_hint);
3479
3480 return mask;
3481}
3482
3483static void virtual_submission_tasklet(struct tasklet_struct *t)
3484{
3485 struct virtual_engine * const ve =
3486 from_tasklet(ve, t, base.execlists.tasklet);
3487 const int prio = READ_ONCE(ve->base.execlists.queue_priority_hint);
3488 intel_engine_mask_t mask;
3489 unsigned int n;
3490
3491 rcu_read_lock();
3492 mask = virtual_submission_mask(ve);
3493 rcu_read_unlock();
3494 if (unlikely(!mask))
3495 return;
3496
3497 for (n = 0; n < ve->num_siblings; n++) {
3498 struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3499 struct ve_node * const node = &ve->nodes[sibling->id];
3500 struct rb_node **parent, *rb;
3501 bool first;
3502
3503 if (!READ_ONCE(ve->request))
3504 break; /* already handled by a sibling's tasklet */
3505
3506 spin_lock_irq(&sibling->active.lock);
3507
3508 if (unlikely(!(mask & sibling->mask))) {
3509 if (!RB_EMPTY_NODE(&node->rb)) {
3510 rb_erase_cached(&node->rb,
3511 &sibling->execlists.virtual);
3512 RB_CLEAR_NODE(&node->rb);
3513 }
3514
3515 goto unlock_engine;
3516 }
3517
3518 if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3519 /*
3520 * Cheat and avoid rebalancing the tree if we can
3521 * reuse this node in situ.
3522 */
3523 first = rb_first_cached(&sibling->execlists.virtual) ==
3524 &node->rb;
3525 if (prio == node->prio || (prio > node->prio && first))
3526 goto submit_engine;
3527
3528 rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3529 }
3530
3531 rb = NULL;
3532 first = true;
3533 parent = &sibling->execlists.virtual.rb_root.rb_node;
3534 while (*parent) {
3535 struct ve_node *other;
3536
3537 rb = *parent;
3538 other = rb_entry(rb, typeof(*other), rb);
3539 if (prio > other->prio) {
3540 parent = &rb->rb_left;
3541 } else {
3542 parent = &rb->rb_right;
3543 first = false;
3544 }
3545 }
3546
3547 rb_link_node(&node->rb, rb, parent);
3548 rb_insert_color_cached(&node->rb,
3549 &sibling->execlists.virtual,
3550 first);
3551
3552submit_engine:
3553 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3554 node->prio = prio;
3555 if (first && prio > sibling->execlists.queue_priority_hint)
3556 tasklet_hi_schedule(&sibling->execlists.tasklet);
3557
3558unlock_engine:
3559 spin_unlock_irq(&sibling->active.lock);
3560
3561 if (intel_context_inflight(&ve->context))
3562 break;
3563 }
3564}
3565
3566static void virtual_submit_request(struct i915_request *rq)
3567{
3568 struct virtual_engine *ve = to_virtual_engine(rq->engine);
3569 unsigned long flags;
3570
3571 ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3572 rq->fence.context,
3573 rq->fence.seqno);
3574
3575 GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3576
3577 spin_lock_irqsave(&ve->base.active.lock, flags);
3578
3579 /* By the time we resubmit a request, it may be completed */
3580 if (__i915_request_is_complete(rq)) {
3581 __i915_request_submit(rq);
3582 goto unlock;
3583 }
3584
3585 if (ve->request) { /* background completion from preempt-to-busy */
3586 GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3587 __i915_request_submit(ve->request);
3588 i915_request_put(ve->request);
3589 }
3590
3591 ve->base.execlists.queue_priority_hint = rq_prio(rq);
3592 ve->request = i915_request_get(rq);
3593
3594 GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3595 list_move_tail(&rq->sched.link, virtual_queue(ve));
3596
3597 tasklet_hi_schedule(&ve->base.execlists.tasklet);
3598
3599unlock:
3600 spin_unlock_irqrestore(&ve->base.active.lock, flags);
3601}
3602
3603static struct ve_bond *
3604virtual_find_bond(struct virtual_engine *ve,
3605 const struct intel_engine_cs *master)
3606{
3607 int i;
3608
3609 for (i = 0; i < ve->num_bonds; i++) {
3610 if (ve->bonds[i].master == master)
3611 return &ve->bonds[i];
3612 }
3613
3614 return NULL;
3615}
3616
3617static void
3618virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3619{
3620 struct virtual_engine *ve = to_virtual_engine(rq->engine);
3621 intel_engine_mask_t allowed, exec;
3622 struct ve_bond *bond;
3623
3624 allowed = ~to_request(signal)->engine->mask;
3625
3626 bond = virtual_find_bond(ve, to_request(signal)->engine);
3627 if (bond)
3628 allowed &= bond->sibling_mask;
3629
3630 /* Restrict the bonded request to run on only the available engines */
3631 exec = READ_ONCE(rq->execution_mask);
3632 while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
3633 ;
3634
3635 /* Prevent the master from being re-run on the bonded engines */
3636 to_request(signal)->execution_mask &= ~allowed;
3637}
3638
3639struct intel_context *
3640intel_execlists_create_virtual(struct intel_engine_cs **siblings,
3641 unsigned int count)
3642{
3643 struct virtual_engine *ve;
3644 unsigned int n;
3645 int err;
3646
3647 if (count == 0)
3648 return ERR_PTR(-EINVAL);
3649
3650 if (count == 1)
3651 return intel_context_create(siblings[0]);
3652
3653 ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3654 if (!ve)
3655 return ERR_PTR(-ENOMEM);
3656
3657 ve->base.i915 = siblings[0]->i915;
3658 ve->base.gt = siblings[0]->gt;
3659 ve->base.uncore = siblings[0]->uncore;
3660 ve->base.id = -1;
3661
3662 ve->base.class = OTHER_CLASS;
3663 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3664 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3665 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3666
3667 /*
3668 * The decision on whether to submit a request using semaphores
3669 * depends on the saturated state of the engine. We only compute
3670 * this during HW submission of the request, and we need for this
3671 * state to be globally applied to all requests being submitted
3672 * to this engine. Virtual engines encompass more than one physical
3673 * engine and so we cannot accurately tell in advance if one of those
3674 * engines is already saturated and so cannot afford to use a semaphore
3675 * and be pessimized in priority for doing so -- if we are the only
3676 * context using semaphores after all other clients have stopped, we
3677 * will be starved on the saturated system. Such a global switch for
3678 * semaphores is less than ideal, but alas is the current compromise.
3679 */
3680 ve->base.saturated = ALL_ENGINES;
3681
3682 snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3683
3684 intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3685 intel_engine_init_execlists(&ve->base);
3686
3687 ve->base.cops = &virtual_context_ops;
3688 ve->base.request_alloc = execlists_request_alloc;
3689
3690 ve->base.schedule = i915_schedule;
3691 ve->base.submit_request = virtual_submit_request;
3692 ve->base.bond_execute = virtual_bond_execute;
3693
3694 INIT_LIST_HEAD(virtual_queue(ve));
3695 ve->base.execlists.queue_priority_hint = INT_MIN;
3696 tasklet_setup(&ve->base.execlists.tasklet, virtual_submission_tasklet);
3697
3698 intel_context_init(&ve->context, &ve->base);
3699
3700 ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3701 if (!ve->base.breadcrumbs) {
3702 err = -ENOMEM;
3703 goto err_put;
3704 }
3705
3706 for (n = 0; n < count; n++) {
3707 struct intel_engine_cs *sibling = siblings[n];
3708
3709 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3710 if (sibling->mask & ve->base.mask) {
3711 DRM_DEBUG("duplicate %s entry in load balancer\n",
3712 sibling->name);
3713 err = -EINVAL;
3714 goto err_put;
3715 }
3716
3717 /*
3718 * The virtual engine implementation is tightly coupled to
3719 * the execlists backend -- we push out request directly
3720 * into a tree inside each physical engine. We could support
3721 * layering if we handle cloning of the requests and
3722 * submitting a copy into each backend.
3723 */
3724 if (sibling->execlists.tasklet.callback !=
3725 execlists_submission_tasklet) {
3726 err = -ENODEV;
3727 goto err_put;
3728 }
3729
3730 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3731 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3732
3733 ve->siblings[ve->num_siblings++] = sibling;
3734 ve->base.mask |= sibling->mask;
3735
3736 /*
3737 * All physical engines must be compatible for their emission
3738 * functions (as we build the instructions during request
3739 * construction and do not alter them before submission
3740 * on the physical engine). We use the engine class as a guide
3741 * here, although that could be refined.
3742 */
3743 if (ve->base.class != OTHER_CLASS) {
3744 if (ve->base.class != sibling->class) {
3745 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3746 sibling->class, ve->base.class);
3747 err = -EINVAL;
3748 goto err_put;
3749 }
3750 continue;
3751 }
3752
3753 ve->base.class = sibling->class;
3754 ve->base.uabi_class = sibling->uabi_class;
3755 snprintf(ve->base.name, sizeof(ve->base.name),
3756 "v%dx%d", ve->base.class, count);
3757 ve->base.context_size = sibling->context_size;
3758
3759 ve->base.emit_bb_start = sibling->emit_bb_start;
3760 ve->base.emit_flush = sibling->emit_flush;
3761 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3762 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3763 ve->base.emit_fini_breadcrumb_dw =
3764 sibling->emit_fini_breadcrumb_dw;
3765
3766 ve->base.flags = sibling->flags;
3767 }
3768
3769 ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3770
3771 virtual_engine_initial_hint(ve);
3772 return &ve->context;
3773
3774err_put:
3775 intel_context_put(&ve->context);
3776 return ERR_PTR(err);
3777}
3778
3779struct intel_context *
3780intel_execlists_clone_virtual(struct intel_engine_cs *src)
3781{
3782 struct virtual_engine *se = to_virtual_engine(src);
3783 struct intel_context *dst;
3784
3785 dst = intel_execlists_create_virtual(se->siblings,
3786 se->num_siblings);
3787 if (IS_ERR(dst))
3788 return dst;
3789
3790 if (se->num_bonds) {
3791 struct virtual_engine *de = to_virtual_engine(dst->engine);
3792
3793 de->bonds = kmemdup(se->bonds,
3794 sizeof(*se->bonds) * se->num_bonds,
3795 GFP_KERNEL);
3796 if (!de->bonds) {
3797 intel_context_put(dst);
3798 return ERR_PTR(-ENOMEM);
3799 }
3800
3801 de->num_bonds = se->num_bonds;
3802 }
3803
3804 return dst;
3805}
3806
3807int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3808 const struct intel_engine_cs *master,
3809 const struct intel_engine_cs *sibling)
3810{
3811 struct virtual_engine *ve = to_virtual_engine(engine);
3812 struct ve_bond *bond;
3813 int n;
3814
3815 /* Sanity check the sibling is part of the virtual engine */
3816 for (n = 0; n < ve->num_siblings; n++)
3817 if (sibling == ve->siblings[n])
3818 break;
3819 if (n == ve->num_siblings)
3820 return -EINVAL;
3821
3822 bond = virtual_find_bond(ve, master);
3823 if (bond) {
3824 bond->sibling_mask |= sibling->mask;
3825 return 0;
3826 }
3827
3828 bond = krealloc(ve->bonds,
3829 sizeof(*bond) * (ve->num_bonds + 1),
3830 GFP_KERNEL);
3831 if (!bond)
3832 return -ENOMEM;
3833
3834 bond[ve->num_bonds].master = master;
3835 bond[ve->num_bonds].sibling_mask = sibling->mask;
3836
3837 ve->bonds = bond;
3838 ve->num_bonds++;
3839
3840 return 0;
3841}
3842
3843void intel_execlists_show_requests(struct intel_engine_cs *engine,
3844 struct drm_printer *m,
3845 void (*show_request)(struct drm_printer *m,
3846 const struct i915_request *rq,
3847 const char *prefix,
3848 int indent),
3849 unsigned int max)
3850{
3851 const struct intel_engine_execlists *execlists = &engine->execlists;
3852 struct i915_request *rq, *last;
3853 unsigned long flags;
3854 unsigned int count;
3855 struct rb_node *rb;
3856
3857 spin_lock_irqsave(&engine->active.lock, flags);
3858
3859 last = NULL;
3860 count = 0;
3861 list_for_each_entry(rq, &engine->active.requests, sched.link) {
3862 if (count++ < max - 1)
3863 show_request(m, rq, "\t\t", 0);
3864 else
3865 last = rq;
3866 }
3867 if (last) {
3868 if (count > max) {
3869 drm_printf(m,
3870 "\t\t...skipping %d executing requests...\n",
3871 count - max);
3872 }
3873 show_request(m, last, "\t\t", 0);
3874 }
3875
3876 if (execlists->queue_priority_hint != INT_MIN)
3877 drm_printf(m, "\t\tQueue priority hint: %d\n",
3878 READ_ONCE(execlists->queue_priority_hint));
3879
3880 last = NULL;
3881 count = 0;
3882 for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3883 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3884
3885 priolist_for_each_request(rq, p) {
3886 if (count++ < max - 1)
3887 show_request(m, rq, "\t\t", 0);
3888 else
3889 last = rq;
3890 }
3891 }
3892 if (last) {
3893 if (count > max) {
3894 drm_printf(m,
3895 "\t\t...skipping %d queued requests...\n",
3896 count - max);
3897 }
3898 show_request(m, last, "\t\t", 0);
3899 }
3900
3901 last = NULL;
3902 count = 0;
3903 for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3904 struct virtual_engine *ve =
3905 rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3906 struct i915_request *rq = READ_ONCE(ve->request);
3907
3908 if (rq) {
3909 if (count++ < max - 1)
3910 show_request(m, rq, "\t\t", 0);
3911 else
3912 last = rq;
3913 }
3914 }
3915 if (last) {
3916 if (count > max) {
3917 drm_printf(m,
3918 "\t\t...skipping %d virtual requests...\n",
3919 count - max);
3920 }
3921 show_request(m, last, "\t\t", 0);
3922 }
3923
3924 spin_unlock_irqrestore(&engine->active.lock, flags);
3925}
3926
3927#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3928#include "selftest_execlists.c"
3929#endif