Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2014 Intel Corporation
   4 */
   5
   6/**
   7 * DOC: Logical Rings, Logical Ring Contexts and Execlists
   8 *
   9 * Motivation:
  10 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
  11 * These expanded contexts enable a number of new abilities, especially
  12 * "Execlists" (also implemented in this file).
  13 *
  14 * One of the main differences with the legacy HW contexts is that logical
  15 * ring contexts incorporate many more things to the context's state, like
  16 * PDPs or ringbuffer control registers:
  17 *
  18 * The reason why PDPs are included in the context is straightforward: as
  19 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
  20 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
  21 * instead, the GPU will do it for you on the context switch.
  22 *
  23 * But, what about the ringbuffer control registers (head, tail, etc..)?
  24 * shouldn't we just need a set of those per engine command streamer? This is
  25 * where the name "Logical Rings" starts to make sense: by virtualizing the
  26 * rings, the engine cs shifts to a new "ring buffer" with every context
  27 * switch. When you want to submit a workload to the GPU you: A) choose your
  28 * context, B) find its appropriate virtualized ring, C) write commands to it
  29 * and then, finally, D) tell the GPU to switch to that context.
  30 *
  31 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
  32 * to a contexts is via a context execution list, ergo "Execlists".
  33 *
  34 * LRC implementation:
  35 * Regarding the creation of contexts, we have:
  36 *
  37 * - One global default context.
  38 * - One local default context for each opened fd.
  39 * - One local extra context for each context create ioctl call.
  40 *
  41 * Now that ringbuffers belong per-context (and not per-engine, like before)
  42 * and that contexts are uniquely tied to a given engine (and not reusable,
  43 * like before) we need:
  44 *
  45 * - One ringbuffer per-engine inside each context.
  46 * - One backing object per-engine inside each context.
  47 *
  48 * The global default context starts its life with these new objects fully
  49 * allocated and populated. The local default context for each opened fd is
  50 * more complex, because we don't know at creation time which engine is going
  51 * to use them. To handle this, we have implemented a deferred creation of LR
  52 * contexts:
  53 *
  54 * The local context starts its life as a hollow or blank holder, that only
  55 * gets populated for a given engine once we receive an execbuffer. If later
  56 * on we receive another execbuffer ioctl for the same context but a different
  57 * engine, we allocate/populate a new ringbuffer and context backing object and
  58 * so on.
  59 *
  60 * Finally, regarding local contexts created using the ioctl call: as they are
  61 * only allowed with the render ring, we can allocate & populate them right
  62 * away (no need to defer anything, at least for now).
  63 *
  64 * Execlists implementation:
  65 * Execlists are the new method by which, on gen8+ hardware, workloads are
  66 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
  67 * This method works as follows:
  68 *
  69 * When a request is committed, its commands (the BB start and any leading or
  70 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
  71 * for the appropriate context. The tail pointer in the hardware context is not
  72 * updated at this time, but instead, kept by the driver in the ringbuffer
  73 * structure. A structure representing this request is added to a request queue
  74 * for the appropriate engine: this structure contains a copy of the context's
  75 * tail after the request was written to the ring buffer and a pointer to the
  76 * context itself.
  77 *
  78 * If the engine's request queue was empty before the request was added, the
  79 * queue is processed immediately. Otherwise the queue will be processed during
  80 * a context switch interrupt. In any case, elements on the queue will get sent
  81 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
  82 * globally unique 20-bits submission ID.
  83 *
  84 * When execution of a request completes, the GPU updates the context status
  85 * buffer with a context complete event and generates a context switch interrupt.
  86 * During the interrupt handling, the driver examines the events in the buffer:
  87 * for each context complete event, if the announced ID matches that on the head
  88 * of the request queue, then that request is retired and removed from the queue.
  89 *
  90 * After processing, if any requests were retired and the queue is not empty
  91 * then a new execution list can be submitted. The two requests at the front of
  92 * the queue are next to be submitted but since a context may not occur twice in
  93 * an execution list, if subsequent requests have the same ID as the first then
  94 * the two requests must be combined. This is done simply by discarding requests
  95 * at the head of the queue until either only one requests is left (in which case
  96 * we use a NULL second context) or the first two requests have unique IDs.
  97 *
  98 * By always executing the first two requests in the queue the driver ensures
  99 * that the GPU is kept as busy as possible. In the case where a single context
 100 * completes but a second context is still executing, the request for this second
 101 * context will be at the head of the queue when we remove the first one. This
 102 * request will then be resubmitted along with a new request for a different context,
 103 * which will cause the hardware to continue executing the second request and queue
 104 * the new request (the GPU detects the condition of a context getting preempted
 105 * with the same context and optimizes the context switch flow by not doing
 106 * preemption, but just sampling the new tail pointer).
 107 *
 108 */
 109#include <linux/interrupt.h>
 110
 111#include "i915_drv.h"
 112#include "i915_trace.h"
 113#include "i915_vgpu.h"
 114#include "gen8_engine_cs.h"
 115#include "intel_breadcrumbs.h"
 116#include "intel_context.h"
 117#include "intel_engine_pm.h"
 118#include "intel_engine_stats.h"
 119#include "intel_execlists_submission.h"
 120#include "intel_gt.h"
 121#include "intel_gt_irq.h"
 122#include "intel_gt_pm.h"
 123#include "intel_gt_requests.h"
 124#include "intel_lrc.h"
 125#include "intel_lrc_reg.h"
 126#include "intel_mocs.h"
 127#include "intel_reset.h"
 128#include "intel_ring.h"
 129#include "intel_workarounds.h"
 130#include "shmem_utils.h"
 131
 132#define RING_EXECLIST_QFULL		(1 << 0x2)
 133#define RING_EXECLIST1_VALID		(1 << 0x3)
 134#define RING_EXECLIST0_VALID		(1 << 0x4)
 135#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
 136#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
 137#define RING_EXECLIST0_ACTIVE		(1 << 0x12)
 138
 139#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
 140#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
 141#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
 142#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
 143#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
 144#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
 145
 146#define GEN8_CTX_STATUS_COMPLETED_MASK \
 147	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
 148
 149#define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
 150#define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
 151#define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
 152#define GEN12_IDLE_CTX_ID		0x7FF
 153#define GEN12_CSB_CTX_VALID(csb_dw) \
 154	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
 155
 156/* Typical size of the average request (2 pipecontrols and a MI_BB) */
 157#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
 158
 159struct virtual_engine {
 160	struct intel_engine_cs base;
 161	struct intel_context context;
 162	struct rcu_work rcu;
 163
 164	/*
 165	 * We allow only a single request through the virtual engine at a time
 166	 * (each request in the timeline waits for the completion fence of
 167	 * the previous before being submitted). By restricting ourselves to
 168	 * only submitting a single request, each request is placed on to a
 169	 * physical to maximise load spreading (by virtue of the late greedy
 170	 * scheduling -- each real engine takes the next available request
 171	 * upon idling).
 172	 */
 173	struct i915_request *request;
 174
 175	/*
 176	 * We keep a rbtree of available virtual engines inside each physical
 177	 * engine, sorted by priority. Here we preallocate the nodes we need
 178	 * for the virtual engine, indexed by physical_engine->id.
 179	 */
 180	struct ve_node {
 181		struct rb_node rb;
 182		int prio;
 183	} nodes[I915_NUM_ENGINES];
 184
 185	/*
 186	 * Keep track of bonded pairs -- restrictions upon on our selection
 187	 * of physical engines any particular request may be submitted to.
 188	 * If we receive a submit-fence from a master engine, we will only
 189	 * use one of sibling_mask physical engines.
 190	 */
 191	struct ve_bond {
 192		const struct intel_engine_cs *master;
 193		intel_engine_mask_t sibling_mask;
 194	} *bonds;
 195	unsigned int num_bonds;
 196
 197	/* And finally, which physical engines this virtual engine maps onto. */
 198	unsigned int num_siblings;
 199	struct intel_engine_cs *siblings[];
 200};
 201
 202static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
 203{
 204	GEM_BUG_ON(!intel_engine_is_virtual(engine));
 205	return container_of(engine, struct virtual_engine, base);
 206}
 207
 208static struct i915_request *
 209__active_request(const struct intel_timeline * const tl,
 210		 struct i915_request *rq,
 211		 int error)
 212{
 213	struct i915_request *active = rq;
 214
 215	list_for_each_entry_from_reverse(rq, &tl->requests, link) {
 216		if (__i915_request_is_complete(rq))
 217			break;
 218
 219		if (error) {
 220			i915_request_set_error_once(rq, error);
 221			__i915_request_skip(rq);
 222		}
 223		active = rq;
 224	}
 225
 226	return active;
 227}
 228
 229static struct i915_request *
 230active_request(const struct intel_timeline * const tl, struct i915_request *rq)
 231{
 232	return __active_request(tl, rq, 0);
 233}
 234
 235static void ring_set_paused(const struct intel_engine_cs *engine, int state)
 236{
 237	/*
 238	 * We inspect HWS_PREEMPT with a semaphore inside
 239	 * engine->emit_fini_breadcrumb. If the dword is true,
 240	 * the ring is paused as the semaphore will busywait
 241	 * until the dword is false.
 242	 */
 243	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
 244	if (state)
 245		wmb();
 246}
 247
 248static struct i915_priolist *to_priolist(struct rb_node *rb)
 249{
 250	return rb_entry(rb, struct i915_priolist, node);
 251}
 252
 253static int rq_prio(const struct i915_request *rq)
 254{
 255	return READ_ONCE(rq->sched.attr.priority);
 256}
 257
 258static int effective_prio(const struct i915_request *rq)
 259{
 260	int prio = rq_prio(rq);
 261
 262	/*
 263	 * If this request is special and must not be interrupted at any
 264	 * cost, so be it. Note we are only checking the most recent request
 265	 * in the context and so may be masking an earlier vip request. It
 266	 * is hoped that under the conditions where nopreempt is used, this
 267	 * will not matter (i.e. all requests to that context will be
 268	 * nopreempt for as long as desired).
 269	 */
 270	if (i915_request_has_nopreempt(rq))
 271		prio = I915_PRIORITY_UNPREEMPTABLE;
 272
 273	return prio;
 274}
 275
 276static int queue_prio(const struct intel_engine_execlists *execlists)
 277{
 278	struct rb_node *rb;
 279
 280	rb = rb_first_cached(&execlists->queue);
 281	if (!rb)
 282		return INT_MIN;
 283
 284	return to_priolist(rb)->priority;
 285}
 286
 287static int virtual_prio(const struct intel_engine_execlists *el)
 288{
 289	struct rb_node *rb = rb_first_cached(&el->virtual);
 290
 291	return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
 292}
 293
 294static bool need_preempt(const struct intel_engine_cs *engine,
 295			 const struct i915_request *rq)
 296{
 297	int last_prio;
 298
 299	if (!intel_engine_has_semaphores(engine))
 300		return false;
 301
 302	/*
 303	 * Check if the current priority hint merits a preemption attempt.
 304	 *
 305	 * We record the highest value priority we saw during rescheduling
 306	 * prior to this dequeue, therefore we know that if it is strictly
 307	 * less than the current tail of ESLP[0], we do not need to force
 308	 * a preempt-to-idle cycle.
 309	 *
 310	 * However, the priority hint is a mere hint that we may need to
 311	 * preempt. If that hint is stale or we may be trying to preempt
 312	 * ourselves, ignore the request.
 313	 *
 314	 * More naturally we would write
 315	 *      prio >= max(0, last);
 316	 * except that we wish to prevent triggering preemption at the same
 317	 * priority level: the task that is running should remain running
 318	 * to preserve FIFO ordering of dependencies.
 319	 */
 320	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
 321	if (engine->execlists.queue_priority_hint <= last_prio)
 322		return false;
 323
 324	/*
 325	 * Check against the first request in ELSP[1], it will, thanks to the
 326	 * power of PI, be the highest priority of that context.
 327	 */
 328	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
 329	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
 330		return true;
 331
 332	/*
 333	 * If the inflight context did not trigger the preemption, then maybe
 334	 * it was the set of queued requests? Pick the highest priority in
 335	 * the queue (the first active priolist) and see if it deserves to be
 336	 * running instead of ELSP[0].
 337	 *
 338	 * The highest priority request in the queue can not be either
 339	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
 340	 * context, it's priority would not exceed ELSP[0] aka last_prio.
 341	 */
 342	return max(virtual_prio(&engine->execlists),
 343		   queue_prio(&engine->execlists)) > last_prio;
 344}
 345
 346__maybe_unused static bool
 347assert_priority_queue(const struct i915_request *prev,
 348		      const struct i915_request *next)
 349{
 350	/*
 351	 * Without preemption, the prev may refer to the still active element
 352	 * which we refuse to let go.
 353	 *
 354	 * Even with preemption, there are times when we think it is better not
 355	 * to preempt and leave an ostensibly lower priority request in flight.
 356	 */
 357	if (i915_request_is_active(prev))
 358		return true;
 359
 360	return rq_prio(prev) >= rq_prio(next);
 361}
 362
 363static struct i915_request *
 364__unwind_incomplete_requests(struct intel_engine_cs *engine)
 365{
 366	struct i915_request *rq, *rn, *active = NULL;
 367	struct list_head *pl;
 368	int prio = I915_PRIORITY_INVALID;
 369
 370	lockdep_assert_held(&engine->active.lock);
 371
 372	list_for_each_entry_safe_reverse(rq, rn,
 373					 &engine->active.requests,
 374					 sched.link) {
 375		if (__i915_request_is_complete(rq)) {
 376			list_del_init(&rq->sched.link);
 377			continue;
 378		}
 379
 380		__i915_request_unsubmit(rq);
 381
 382		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
 383		if (rq_prio(rq) != prio) {
 384			prio = rq_prio(rq);
 385			pl = i915_sched_lookup_priolist(engine, prio);
 386		}
 387		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
 388
 389		list_move(&rq->sched.link, pl);
 390		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
 391
 392		/* Check in case we rollback so far we wrap [size/2] */
 393		if (intel_ring_direction(rq->ring,
 394					 rq->tail,
 395					 rq->ring->tail + 8) > 0)
 396			rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
 397
 398		active = rq;
 399	}
 400
 401	return active;
 402}
 403
 404struct i915_request *
 405execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
 406{
 407	struct intel_engine_cs *engine =
 408		container_of(execlists, typeof(*engine), execlists);
 409
 410	return __unwind_incomplete_requests(engine);
 411}
 412
 413static void
 414execlists_context_status_change(struct i915_request *rq, unsigned long status)
 415{
 416	/*
 417	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
 418	 * The compiler should eliminate this function as dead-code.
 419	 */
 420	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
 421		return;
 422
 423	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
 424				   status, rq);
 425}
 426
 427static void reset_active(struct i915_request *rq,
 428			 struct intel_engine_cs *engine)
 429{
 430	struct intel_context * const ce = rq->context;
 431	u32 head;
 432
 433	/*
 434	 * The executing context has been cancelled. We want to prevent
 435	 * further execution along this context and propagate the error on
 436	 * to anything depending on its results.
 437	 *
 438	 * In __i915_request_submit(), we apply the -EIO and remove the
 439	 * requests' payloads for any banned requests. But first, we must
 440	 * rewind the context back to the start of the incomplete request so
 441	 * that we do not jump back into the middle of the batch.
 442	 *
 443	 * We preserve the breadcrumbs and semaphores of the incomplete
 444	 * requests so that inter-timeline dependencies (i.e other timelines)
 445	 * remain correctly ordered. And we defer to __i915_request_submit()
 446	 * so that all asynchronous waits are correctly handled.
 447	 */
 448	ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
 449		     rq->fence.context, rq->fence.seqno);
 450
 451	/* On resubmission of the active request, payload will be scrubbed */
 452	if (__i915_request_is_complete(rq))
 453		head = rq->tail;
 454	else
 455		head = __active_request(ce->timeline, rq, -EIO)->head;
 456	head = intel_ring_wrap(ce->ring, head);
 457
 458	/* Scrub the context image to prevent replaying the previous batch */
 459	lrc_init_regs(ce, engine, true);
 460
 461	/* We've switched away, so this should be a no-op, but intent matters */
 462	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
 463}
 464
 465static bool bad_request(const struct i915_request *rq)
 466{
 467	return rq->fence.error && i915_request_started(rq);
 468}
 469
 470static struct intel_engine_cs *
 471__execlists_schedule_in(struct i915_request *rq)
 472{
 473	struct intel_engine_cs * const engine = rq->engine;
 474	struct intel_context * const ce = rq->context;
 475
 476	intel_context_get(ce);
 477
 478	if (unlikely(intel_context_is_closed(ce) &&
 479		     !intel_engine_has_heartbeat(engine)))
 480		intel_context_set_banned(ce);
 481
 482	if (unlikely(intel_context_is_banned(ce) || bad_request(rq)))
 483		reset_active(rq, engine);
 484
 485	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
 486		lrc_check_regs(ce, engine, "before");
 487
 488	if (ce->tag) {
 489		/* Use a fixed tag for OA and friends */
 490		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
 491		ce->lrc.ccid = ce->tag;
 492	} else {
 493		/* We don't need a strict matching tag, just different values */
 494		unsigned int tag = __ffs(engine->context_tag);
 495
 496		GEM_BUG_ON(tag >= BITS_PER_LONG);
 497		__clear_bit(tag, &engine->context_tag);
 498		ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
 499
 500		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
 501	}
 502
 503	ce->lrc.ccid |= engine->execlists.ccid;
 504
 505	__intel_gt_pm_get(engine->gt);
 506	if (engine->fw_domain && !engine->fw_active++)
 507		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
 508	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
 509	intel_engine_context_in(engine);
 510
 511	CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
 512
 513	return engine;
 514}
 515
 516static void execlists_schedule_in(struct i915_request *rq, int idx)
 517{
 518	struct intel_context * const ce = rq->context;
 519	struct intel_engine_cs *old;
 520
 521	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
 522	trace_i915_request_in(rq, idx);
 523
 524	old = ce->inflight;
 525	if (!old)
 526		old = __execlists_schedule_in(rq);
 527	WRITE_ONCE(ce->inflight, ptr_inc(old));
 528
 529	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
 530}
 531
 532static void
 533resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
 534{
 535	struct intel_engine_cs *engine = rq->engine;
 536
 537	spin_lock_irq(&engine->active.lock);
 538
 539	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
 540	WRITE_ONCE(rq->engine, &ve->base);
 541	ve->base.submit_request(rq);
 542
 543	spin_unlock_irq(&engine->active.lock);
 544}
 545
 546static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
 547{
 548	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
 549	struct intel_engine_cs *engine = rq->engine;
 550
 551	/*
 552	 * After this point, the rq may be transferred to a new sibling, so
 553	 * before we clear ce->inflight make sure that the context has been
 554	 * removed from the b->signalers and furthermore we need to make sure
 555	 * that the concurrent iterator in signal_irq_work is no longer
 556	 * following ce->signal_link.
 557	 */
 558	if (!list_empty(&ce->signals))
 559		intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
 560
 561	/*
 562	 * This engine is now too busy to run this virtual request, so
 563	 * see if we can find an alternative engine for it to execute on.
 564	 * Once a request has become bonded to this engine, we treat it the
 565	 * same as other native request.
 566	 */
 567	if (i915_request_in_priority_queue(rq) &&
 568	    rq->execution_mask != engine->mask)
 569		resubmit_virtual_request(rq, ve);
 570
 571	if (READ_ONCE(ve->request))
 572		tasklet_hi_schedule(&ve->base.execlists.tasklet);
 573}
 574
 575static void __execlists_schedule_out(struct i915_request * const rq,
 576				     struct intel_context * const ce)
 577{
 578	struct intel_engine_cs * const engine = rq->engine;
 579	unsigned int ccid;
 580
 581	/*
 582	 * NB process_csb() is not under the engine->active.lock and hence
 583	 * schedule_out can race with schedule_in meaning that we should
 584	 * refrain from doing non-trivial work here.
 585	 */
 586
 587	CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
 588	GEM_BUG_ON(ce->inflight != engine);
 589
 590	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
 591		lrc_check_regs(ce, engine, "after");
 592
 593	/*
 594	 * If we have just completed this context, the engine may now be
 595	 * idle and we want to re-enter powersaving.
 596	 */
 597	if (intel_timeline_is_last(ce->timeline, rq) &&
 598	    __i915_request_is_complete(rq))
 599		intel_engine_add_retire(engine, ce->timeline);
 600
 601	ccid = ce->lrc.ccid;
 602	ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
 603	ccid &= GEN12_MAX_CONTEXT_HW_ID;
 604	if (ccid < BITS_PER_LONG) {
 605		GEM_BUG_ON(ccid == 0);
 606		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
 607		__set_bit(ccid - 1, &engine->context_tag);
 608	}
 609
 610	lrc_update_runtime(ce);
 611	intel_engine_context_out(engine);
 612	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
 613	if (engine->fw_domain && !--engine->fw_active)
 614		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
 615	intel_gt_pm_put_async(engine->gt);
 616
 617	/*
 618	 * If this is part of a virtual engine, its next request may
 619	 * have been blocked waiting for access to the active context.
 620	 * We have to kick all the siblings again in case we need to
 621	 * switch (e.g. the next request is not runnable on this
 622	 * engine). Hopefully, we will already have submitted the next
 623	 * request before the tasklet runs and do not need to rebuild
 624	 * each virtual tree and kick everyone again.
 625	 */
 626	if (ce->engine != engine)
 627		kick_siblings(rq, ce);
 628
 629	WRITE_ONCE(ce->inflight, NULL);
 630	intel_context_put(ce);
 631}
 632
 633static inline void execlists_schedule_out(struct i915_request *rq)
 634{
 635	struct intel_context * const ce = rq->context;
 636
 637	trace_i915_request_out(rq);
 638
 639	GEM_BUG_ON(!ce->inflight);
 640	ce->inflight = ptr_dec(ce->inflight);
 641	if (!__intel_context_inflight_count(ce->inflight))
 642		__execlists_schedule_out(rq, ce);
 643
 644	i915_request_put(rq);
 645}
 646
 647static u64 execlists_update_context(struct i915_request *rq)
 648{
 649	struct intel_context *ce = rq->context;
 650	u64 desc = ce->lrc.desc;
 651	u32 tail, prev;
 652
 653	/*
 654	 * WaIdleLiteRestore:bdw,skl
 655	 *
 656	 * We should never submit the context with the same RING_TAIL twice
 657	 * just in case we submit an empty ring, which confuses the HW.
 658	 *
 659	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
 660	 * the normal request to be able to always advance the RING_TAIL on
 661	 * subsequent resubmissions (for lite restore). Should that fail us,
 662	 * and we try and submit the same tail again, force the context
 663	 * reload.
 664	 *
 665	 * If we need to return to a preempted context, we need to skip the
 666	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
 667	 * HW has a tendency to ignore us rewinding the TAIL to the end of
 668	 * an earlier request.
 669	 */
 670	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
 671	prev = rq->ring->tail;
 672	tail = intel_ring_set_tail(rq->ring, rq->tail);
 673	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
 674		desc |= CTX_DESC_FORCE_RESTORE;
 675	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
 676	rq->tail = rq->wa_tail;
 677
 678	/*
 679	 * Make sure the context image is complete before we submit it to HW.
 680	 *
 681	 * Ostensibly, writes (including the WCB) should be flushed prior to
 682	 * an uncached write such as our mmio register access, the empirical
 683	 * evidence (esp. on Braswell) suggests that the WC write into memory
 684	 * may not be visible to the HW prior to the completion of the UC
 685	 * register write and that we may begin execution from the context
 686	 * before its image is complete leading to invalid PD chasing.
 687	 */
 688	wmb();
 689
 690	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
 691	return desc;
 692}
 693
 694static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
 695{
 696	if (execlists->ctrl_reg) {
 697		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
 698		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
 699	} else {
 700		writel(upper_32_bits(desc), execlists->submit_reg);
 701		writel(lower_32_bits(desc), execlists->submit_reg);
 702	}
 703}
 704
 705static __maybe_unused char *
 706dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
 707{
 708	if (!rq)
 709		return "";
 710
 711	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
 712		 prefix,
 713		 rq->context->lrc.ccid,
 714		 rq->fence.context, rq->fence.seqno,
 715		 __i915_request_is_complete(rq) ? "!" :
 716		 __i915_request_has_started(rq) ? "*" :
 717		 "",
 718		 rq_prio(rq));
 719
 720	return buf;
 721}
 722
 723static __maybe_unused noinline void
 724trace_ports(const struct intel_engine_execlists *execlists,
 725	    const char *msg,
 726	    struct i915_request * const *ports)
 727{
 728	const struct intel_engine_cs *engine =
 729		container_of(execlists, typeof(*engine), execlists);
 730	char __maybe_unused p0[40], p1[40];
 731
 732	if (!ports[0])
 733		return;
 734
 735	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
 736		     dump_port(p0, sizeof(p0), "", ports[0]),
 737		     dump_port(p1, sizeof(p1), ", ", ports[1]));
 738}
 739
 740static bool
 741reset_in_progress(const struct intel_engine_execlists *execlists)
 742{
 743	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
 744}
 745
 746static __maybe_unused noinline bool
 747assert_pending_valid(const struct intel_engine_execlists *execlists,
 748		     const char *msg)
 749{
 750	struct intel_engine_cs *engine =
 751		container_of(execlists, typeof(*engine), execlists);
 752	struct i915_request * const *port, *rq, *prev = NULL;
 753	struct intel_context *ce = NULL;
 754	u32 ccid = -1;
 755
 756	trace_ports(execlists, msg, execlists->pending);
 757
 758	/* We may be messing around with the lists during reset, lalala */
 759	if (reset_in_progress(execlists))
 760		return true;
 761
 762	if (!execlists->pending[0]) {
 763		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
 764			      engine->name);
 765		return false;
 766	}
 767
 768	if (execlists->pending[execlists_num_ports(execlists)]) {
 769		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
 770			      engine->name, execlists_num_ports(execlists));
 771		return false;
 772	}
 773
 774	for (port = execlists->pending; (rq = *port); port++) {
 775		unsigned long flags;
 776		bool ok = true;
 777
 778		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
 779		GEM_BUG_ON(!i915_request_is_active(rq));
 780
 781		if (ce == rq->context) {
 782			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
 783				      engine->name,
 784				      ce->timeline->fence_context,
 785				      port - execlists->pending);
 786			return false;
 787		}
 788		ce = rq->context;
 789
 790		if (ccid == ce->lrc.ccid) {
 791			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
 792				      engine->name,
 793				      ccid, ce->timeline->fence_context,
 794				      port - execlists->pending);
 795			return false;
 796		}
 797		ccid = ce->lrc.ccid;
 798
 799		/*
 800		 * Sentinels are supposed to be the last request so they flush
 801		 * the current execution off the HW. Check that they are the only
 802		 * request in the pending submission.
 803		 *
 804		 * NB: Due to the async nature of preempt-to-busy and request
 805		 * cancellation we need to handle the case where request
 806		 * becomes a sentinel in parallel to CSB processing.
 807		 */
 808		if (prev && i915_request_has_sentinel(prev) &&
 809		    !READ_ONCE(prev->fence.error)) {
 810			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
 811				      engine->name,
 812				      ce->timeline->fence_context,
 813				      port - execlists->pending);
 814			return false;
 815		}
 816		prev = rq;
 817
 818		/*
 819		 * We want virtual requests to only be in the first slot so
 820		 * that they are never stuck behind a hog and can be immediately
 821		 * transferred onto the next idle engine.
 822		 */
 823		if (rq->execution_mask != engine->mask &&
 824		    port != execlists->pending) {
 825			GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
 826				      engine->name,
 827				      ce->timeline->fence_context,
 828				      port - execlists->pending);
 829			return false;
 830		}
 831
 832		/* Hold tightly onto the lock to prevent concurrent retires! */
 833		if (!spin_trylock_irqsave(&rq->lock, flags))
 834			continue;
 835
 836		if (__i915_request_is_complete(rq))
 837			goto unlock;
 838
 839		if (i915_active_is_idle(&ce->active) &&
 840		    !intel_context_is_barrier(ce)) {
 841			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
 842				      engine->name,
 843				      ce->timeline->fence_context,
 844				      port - execlists->pending);
 845			ok = false;
 846			goto unlock;
 847		}
 848
 849		if (!i915_vma_is_pinned(ce->state)) {
 850			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
 851				      engine->name,
 852				      ce->timeline->fence_context,
 853				      port - execlists->pending);
 854			ok = false;
 855			goto unlock;
 856		}
 857
 858		if (!i915_vma_is_pinned(ce->ring->vma)) {
 859			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
 860				      engine->name,
 861				      ce->timeline->fence_context,
 862				      port - execlists->pending);
 863			ok = false;
 864			goto unlock;
 865		}
 866
 867unlock:
 868		spin_unlock_irqrestore(&rq->lock, flags);
 869		if (!ok)
 870			return false;
 871	}
 872
 873	return ce;
 874}
 875
 876static void execlists_submit_ports(struct intel_engine_cs *engine)
 877{
 878	struct intel_engine_execlists *execlists = &engine->execlists;
 879	unsigned int n;
 880
 881	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
 882
 883	/*
 884	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
 885	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
 886	 * not be relinquished until the device is idle (see
 887	 * i915_gem_idle_work_handler()). As a precaution, we make sure
 888	 * that all ELSP are drained i.e. we have processed the CSB,
 889	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
 890	 */
 891	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
 892
 893	/*
 894	 * ELSQ note: the submit queue is not cleared after being submitted
 895	 * to the HW so we need to make sure we always clean it up. This is
 896	 * currently ensured by the fact that we always write the same number
 897	 * of elsq entries, keep this in mind before changing the loop below.
 898	 */
 899	for (n = execlists_num_ports(execlists); n--; ) {
 900		struct i915_request *rq = execlists->pending[n];
 901
 902		write_desc(execlists,
 903			   rq ? execlists_update_context(rq) : 0,
 904			   n);
 905	}
 906
 907	/* we need to manually load the submit queue */
 908	if (execlists->ctrl_reg)
 909		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
 910}
 911
 912static bool ctx_single_port_submission(const struct intel_context *ce)
 913{
 914	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
 915		intel_context_force_single_submission(ce));
 916}
 917
 918static bool can_merge_ctx(const struct intel_context *prev,
 919			  const struct intel_context *next)
 920{
 921	if (prev != next)
 922		return false;
 923
 924	if (ctx_single_port_submission(prev))
 925		return false;
 926
 927	return true;
 928}
 929
 930static unsigned long i915_request_flags(const struct i915_request *rq)
 931{
 932	return READ_ONCE(rq->fence.flags);
 933}
 934
 935static bool can_merge_rq(const struct i915_request *prev,
 936			 const struct i915_request *next)
 937{
 938	GEM_BUG_ON(prev == next);
 939	GEM_BUG_ON(!assert_priority_queue(prev, next));
 940
 941	/*
 942	 * We do not submit known completed requests. Therefore if the next
 943	 * request is already completed, we can pretend to merge it in
 944	 * with the previous context (and we will skip updating the ELSP
 945	 * and tracking). Thus hopefully keeping the ELSP full with active
 946	 * contexts, despite the best efforts of preempt-to-busy to confuse
 947	 * us.
 948	 */
 949	if (__i915_request_is_complete(next))
 950		return true;
 951
 952	if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
 953		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
 954		      BIT(I915_FENCE_FLAG_SENTINEL))))
 955		return false;
 956
 957	if (!can_merge_ctx(prev->context, next->context))
 958		return false;
 959
 960	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
 961	return true;
 962}
 963
 964static bool virtual_matches(const struct virtual_engine *ve,
 965			    const struct i915_request *rq,
 966			    const struct intel_engine_cs *engine)
 967{
 968	const struct intel_engine_cs *inflight;
 969
 970	if (!rq)
 971		return false;
 972
 973	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
 974		return false;
 975
 976	/*
 977	 * We track when the HW has completed saving the context image
 978	 * (i.e. when we have seen the final CS event switching out of
 979	 * the context) and must not overwrite the context image before
 980	 * then. This restricts us to only using the active engine
 981	 * while the previous virtualized request is inflight (so
 982	 * we reuse the register offsets). This is a very small
 983	 * hystersis on the greedy seelction algorithm.
 984	 */
 985	inflight = intel_context_inflight(&ve->context);
 986	if (inflight && inflight != engine)
 987		return false;
 988
 989	return true;
 990}
 991
 992static struct virtual_engine *
 993first_virtual_engine(struct intel_engine_cs *engine)
 994{
 995	struct intel_engine_execlists *el = &engine->execlists;
 996	struct rb_node *rb = rb_first_cached(&el->virtual);
 997
 998	while (rb) {
 999		struct virtual_engine *ve =
1000			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1001		struct i915_request *rq = READ_ONCE(ve->request);
1002
1003		/* lazily cleanup after another engine handled rq */
1004		if (!rq || !virtual_matches(ve, rq, engine)) {
1005			rb_erase_cached(rb, &el->virtual);
1006			RB_CLEAR_NODE(rb);
1007			rb = rb_first_cached(&el->virtual);
1008			continue;
1009		}
1010
1011		return ve;
1012	}
1013
1014	return NULL;
1015}
1016
1017static void virtual_xfer_context(struct virtual_engine *ve,
1018				 struct intel_engine_cs *engine)
1019{
1020	unsigned int n;
1021
1022	if (likely(engine == ve->siblings[0]))
1023		return;
1024
1025	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1026	if (!intel_engine_has_relative_mmio(engine))
1027		lrc_update_offsets(&ve->context, engine);
1028
1029	/*
1030	 * Move the bound engine to the top of the list for
1031	 * future execution. We then kick this tasklet first
1032	 * before checking others, so that we preferentially
1033	 * reuse this set of bound registers.
1034	 */
1035	for (n = 1; n < ve->num_siblings; n++) {
1036		if (ve->siblings[n] == engine) {
1037			swap(ve->siblings[n], ve->siblings[0]);
1038			break;
1039		}
1040	}
1041}
1042
1043static void defer_request(struct i915_request *rq, struct list_head * const pl)
1044{
1045	LIST_HEAD(list);
1046
1047	/*
1048	 * We want to move the interrupted request to the back of
1049	 * the round-robin list (i.e. its priority level), but
1050	 * in doing so, we must then move all requests that were in
1051	 * flight and were waiting for the interrupted request to
1052	 * be run after it again.
1053	 */
1054	do {
1055		struct i915_dependency *p;
1056
1057		GEM_BUG_ON(i915_request_is_active(rq));
1058		list_move_tail(&rq->sched.link, pl);
1059
1060		for_each_waiter(p, rq) {
1061			struct i915_request *w =
1062				container_of(p->waiter, typeof(*w), sched);
1063
1064			if (p->flags & I915_DEPENDENCY_WEAK)
1065				continue;
1066
1067			/* Leave semaphores spinning on the other engines */
1068			if (w->engine != rq->engine)
1069				continue;
1070
1071			/* No waiter should start before its signaler */
1072			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1073				   __i915_request_has_started(w) &&
1074				   !__i915_request_is_complete(rq));
1075
1076			if (!i915_request_is_ready(w))
1077				continue;
1078
1079			if (rq_prio(w) < rq_prio(rq))
1080				continue;
1081
1082			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1083			GEM_BUG_ON(i915_request_is_active(w));
1084			list_move_tail(&w->sched.link, &list);
1085		}
1086
1087		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1088	} while (rq);
1089}
1090
1091static void defer_active(struct intel_engine_cs *engine)
1092{
1093	struct i915_request *rq;
1094
1095	rq = __unwind_incomplete_requests(engine);
1096	if (!rq)
1097		return;
1098
1099	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
1100}
1101
1102static bool
1103timeslice_yield(const struct intel_engine_execlists *el,
1104		const struct i915_request *rq)
1105{
1106	/*
1107	 * Once bitten, forever smitten!
1108	 *
1109	 * If the active context ever busy-waited on a semaphore,
1110	 * it will be treated as a hog until the end of its timeslice (i.e.
1111	 * until it is scheduled out and replaced by a new submission,
1112	 * possibly even its own lite-restore). The HW only sends an interrupt
1113	 * on the first miss, and we do know if that semaphore has been
1114	 * signaled, or even if it is now stuck on another semaphore. Play
1115	 * safe, yield if it might be stuck -- it will be given a fresh
1116	 * timeslice in the near future.
1117	 */
1118	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1119}
1120
1121static bool needs_timeslice(const struct intel_engine_cs *engine,
1122			    const struct i915_request *rq)
1123{
1124	if (!intel_engine_has_timeslices(engine))
1125		return false;
1126
1127	/* If not currently active, or about to switch, wait for next event */
1128	if (!rq || __i915_request_is_complete(rq))
1129		return false;
1130
1131	/* We do not need to start the timeslice until after the ACK */
1132	if (READ_ONCE(engine->execlists.pending[0]))
1133		return false;
1134
1135	/* If ELSP[1] is occupied, always check to see if worth slicing */
1136	if (!list_is_last_rcu(&rq->sched.link, &engine->active.requests)) {
1137		ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1138		return true;
1139	}
1140
1141	/* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1142	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) {
1143		ENGINE_TRACE(engine, "timeslice required for queue\n");
1144		return true;
1145	}
1146
1147	if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1148		ENGINE_TRACE(engine, "timeslice required for virtual\n");
1149		return true;
1150	}
1151
1152	return false;
1153}
1154
1155static bool
1156timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1157{
1158	const struct intel_engine_execlists *el = &engine->execlists;
1159
1160	if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1161		return false;
1162
1163	if (!needs_timeslice(engine, rq))
1164		return false;
1165
1166	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1167}
1168
1169static unsigned long timeslice(const struct intel_engine_cs *engine)
1170{
1171	return READ_ONCE(engine->props.timeslice_duration_ms);
1172}
1173
1174static void start_timeslice(struct intel_engine_cs *engine)
1175{
1176	struct intel_engine_execlists *el = &engine->execlists;
1177	unsigned long duration;
1178
1179	/* Disable the timer if there is nothing to switch to */
1180	duration = 0;
1181	if (needs_timeslice(engine, *el->active)) {
1182		/* Avoid continually prolonging an active timeslice */
1183		if (timer_active(&el->timer)) {
1184			/*
1185			 * If we just submitted a new ELSP after an old
1186			 * context, that context may have already consumed
1187			 * its timeslice, so recheck.
1188			 */
1189			if (!timer_pending(&el->timer))
1190				tasklet_hi_schedule(&el->tasklet);
1191			return;
1192		}
1193
1194		duration = timeslice(engine);
1195	}
1196
1197	set_timer_ms(&el->timer, duration);
1198}
1199
1200static void record_preemption(struct intel_engine_execlists *execlists)
1201{
1202	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1203}
1204
1205static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1206					    const struct i915_request *rq)
1207{
1208	if (!rq)
1209		return 0;
1210
1211	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1212	if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1213		return 1;
1214
1215	return READ_ONCE(engine->props.preempt_timeout_ms);
1216}
1217
1218static void set_preempt_timeout(struct intel_engine_cs *engine,
1219				const struct i915_request *rq)
1220{
1221	if (!intel_engine_has_preempt_reset(engine))
1222		return;
1223
1224	set_timer_ms(&engine->execlists.preempt,
1225		     active_preempt_timeout(engine, rq));
1226}
1227
1228static bool completed(const struct i915_request *rq)
1229{
1230	if (i915_request_has_sentinel(rq))
1231		return false;
1232
1233	return __i915_request_is_complete(rq);
1234}
1235
1236static void execlists_dequeue(struct intel_engine_cs *engine)
1237{
1238	struct intel_engine_execlists * const execlists = &engine->execlists;
1239	struct i915_request **port = execlists->pending;
1240	struct i915_request ** const last_port = port + execlists->port_mask;
1241	struct i915_request *last, * const *active;
1242	struct virtual_engine *ve;
1243	struct rb_node *rb;
1244	bool submit = false;
1245
1246	/*
1247	 * Hardware submission is through 2 ports. Conceptually each port
1248	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1249	 * static for a context, and unique to each, so we only execute
1250	 * requests belonging to a single context from each ring. RING_HEAD
1251	 * is maintained by the CS in the context image, it marks the place
1252	 * where it got up to last time, and through RING_TAIL we tell the CS
1253	 * where we want to execute up to this time.
1254	 *
1255	 * In this list the requests are in order of execution. Consecutive
1256	 * requests from the same context are adjacent in the ringbuffer. We
1257	 * can combine these requests into a single RING_TAIL update:
1258	 *
1259	 *              RING_HEAD...req1...req2
1260	 *                                    ^- RING_TAIL
1261	 * since to execute req2 the CS must first execute req1.
1262	 *
1263	 * Our goal then is to point each port to the end of a consecutive
1264	 * sequence of requests as being the most optimal (fewest wake ups
1265	 * and context switches) submission.
1266	 */
1267
1268	spin_lock(&engine->active.lock);
1269
1270	/*
1271	 * If the queue is higher priority than the last
1272	 * request in the currently active context, submit afresh.
1273	 * We will resubmit again afterwards in case we need to split
1274	 * the active context to interject the preemption request,
1275	 * i.e. we will retrigger preemption following the ack in case
1276	 * of trouble.
1277	 *
1278	 */
1279	active = execlists->active;
1280	while ((last = *active) && completed(last))
1281		active++;
1282
1283	if (last) {
1284		if (need_preempt(engine, last)) {
1285			ENGINE_TRACE(engine,
1286				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1287				     last->fence.context,
1288				     last->fence.seqno,
1289				     last->sched.attr.priority,
1290				     execlists->queue_priority_hint);
1291			record_preemption(execlists);
1292
1293			/*
1294			 * Don't let the RING_HEAD advance past the breadcrumb
1295			 * as we unwind (and until we resubmit) so that we do
1296			 * not accidentally tell it to go backwards.
1297			 */
1298			ring_set_paused(engine, 1);
1299
1300			/*
1301			 * Note that we have not stopped the GPU at this point,
1302			 * so we are unwinding the incomplete requests as they
1303			 * remain inflight and so by the time we do complete
1304			 * the preemption, some of the unwound requests may
1305			 * complete!
1306			 */
1307			__unwind_incomplete_requests(engine);
1308
1309			last = NULL;
1310		} else if (timeslice_expired(engine, last)) {
1311			ENGINE_TRACE(engine,
1312				     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1313				     yesno(timer_expired(&execlists->timer)),
1314				     last->fence.context, last->fence.seqno,
1315				     rq_prio(last),
1316				     execlists->queue_priority_hint,
1317				     yesno(timeslice_yield(execlists, last)));
1318
1319			/*
1320			 * Consume this timeslice; ensure we start a new one.
1321			 *
1322			 * The timeslice expired, and we will unwind the
1323			 * running contexts and recompute the next ELSP.
1324			 * If that submit will be the same pair of contexts
1325			 * (due to dependency ordering), we will skip the
1326			 * submission. If we don't cancel the timer now,
1327			 * we will see that the timer has expired and
1328			 * reschedule the tasklet; continually until the
1329			 * next context switch or other preeemption event.
1330			 *
1331			 * Since we have decided to reschedule based on
1332			 * consumption of this timeslice, if we submit the
1333			 * same context again, grant it a full timeslice.
1334			 */
1335			cancel_timer(&execlists->timer);
1336			ring_set_paused(engine, 1);
1337			defer_active(engine);
1338
1339			/*
1340			 * Unlike for preemption, if we rewind and continue
1341			 * executing the same context as previously active,
1342			 * the order of execution will remain the same and
1343			 * the tail will only advance. We do not need to
1344			 * force a full context restore, as a lite-restore
1345			 * is sufficient to resample the monotonic TAIL.
1346			 *
1347			 * If we switch to any other context, similarly we
1348			 * will not rewind TAIL of current context, and
1349			 * normal save/restore will preserve state and allow
1350			 * us to later continue executing the same request.
1351			 */
1352			last = NULL;
1353		} else {
1354			/*
1355			 * Otherwise if we already have a request pending
1356			 * for execution after the current one, we can
1357			 * just wait until the next CS event before
1358			 * queuing more. In either case we will force a
1359			 * lite-restore preemption event, but if we wait
1360			 * we hopefully coalesce several updates into a single
1361			 * submission.
1362			 */
1363			if (active[1]) {
1364				/*
1365				 * Even if ELSP[1] is occupied and not worthy
1366				 * of timeslices, our queue might be.
1367				 */
1368				spin_unlock(&engine->active.lock);
1369				return;
1370			}
1371		}
1372	}
1373
1374	/* XXX virtual is always taking precedence */
1375	while ((ve = first_virtual_engine(engine))) {
1376		struct i915_request *rq;
1377
1378		spin_lock(&ve->base.active.lock);
1379
1380		rq = ve->request;
1381		if (unlikely(!virtual_matches(ve, rq, engine)))
1382			goto unlock; /* lost the race to a sibling */
1383
1384		GEM_BUG_ON(rq->engine != &ve->base);
1385		GEM_BUG_ON(rq->context != &ve->context);
1386
1387		if (unlikely(rq_prio(rq) < queue_prio(execlists))) {
1388			spin_unlock(&ve->base.active.lock);
1389			break;
1390		}
1391
1392		if (last && !can_merge_rq(last, rq)) {
1393			spin_unlock(&ve->base.active.lock);
1394			spin_unlock(&engine->active.lock);
1395			return; /* leave this for another sibling */
1396		}
1397
1398		ENGINE_TRACE(engine,
1399			     "virtual rq=%llx:%lld%s, new engine? %s\n",
1400			     rq->fence.context,
1401			     rq->fence.seqno,
1402			     __i915_request_is_complete(rq) ? "!" :
1403			     __i915_request_has_started(rq) ? "*" :
1404			     "",
1405			     yesno(engine != ve->siblings[0]));
1406
1407		WRITE_ONCE(ve->request, NULL);
1408		WRITE_ONCE(ve->base.execlists.queue_priority_hint, INT_MIN);
1409
1410		rb = &ve->nodes[engine->id].rb;
1411		rb_erase_cached(rb, &execlists->virtual);
1412		RB_CLEAR_NODE(rb);
1413
1414		GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1415		WRITE_ONCE(rq->engine, engine);
1416
1417		if (__i915_request_submit(rq)) {
1418			/*
1419			 * Only after we confirm that we will submit
1420			 * this request (i.e. it has not already
1421			 * completed), do we want to update the context.
1422			 *
1423			 * This serves two purposes. It avoids
1424			 * unnecessary work if we are resubmitting an
1425			 * already completed request after timeslicing.
1426			 * But more importantly, it prevents us altering
1427			 * ve->siblings[] on an idle context, where
1428			 * we may be using ve->siblings[] in
1429			 * virtual_context_enter / virtual_context_exit.
1430			 */
1431			virtual_xfer_context(ve, engine);
1432			GEM_BUG_ON(ve->siblings[0] != engine);
1433
1434			submit = true;
1435			last = rq;
1436		}
1437
1438		i915_request_put(rq);
1439unlock:
1440		spin_unlock(&ve->base.active.lock);
1441
1442		/*
1443		 * Hmm, we have a bunch of virtual engine requests,
1444		 * but the first one was already completed (thanks
1445		 * preempt-to-busy!). Keep looking at the veng queue
1446		 * until we have no more relevant requests (i.e.
1447		 * the normal submit queue has higher priority).
1448		 */
1449		if (submit)
1450			break;
1451	}
1452
1453	while ((rb = rb_first_cached(&execlists->queue))) {
1454		struct i915_priolist *p = to_priolist(rb);
1455		struct i915_request *rq, *rn;
1456
1457		priolist_for_each_request_consume(rq, rn, p) {
1458			bool merge = true;
1459
1460			/*
1461			 * Can we combine this request with the current port?
1462			 * It has to be the same context/ringbuffer and not
1463			 * have any exceptions (e.g. GVT saying never to
1464			 * combine contexts).
1465			 *
1466			 * If we can combine the requests, we can execute both
1467			 * by updating the RING_TAIL to point to the end of the
1468			 * second request, and so we never need to tell the
1469			 * hardware about the first.
1470			 */
1471			if (last && !can_merge_rq(last, rq)) {
1472				/*
1473				 * If we are on the second port and cannot
1474				 * combine this request with the last, then we
1475				 * are done.
1476				 */
1477				if (port == last_port)
1478					goto done;
1479
1480				/*
1481				 * We must not populate both ELSP[] with the
1482				 * same LRCA, i.e. we must submit 2 different
1483				 * contexts if we submit 2 ELSP.
1484				 */
1485				if (last->context == rq->context)
1486					goto done;
1487
1488				if (i915_request_has_sentinel(last))
1489					goto done;
1490
1491				/*
1492				 * We avoid submitting virtual requests into
1493				 * the secondary ports so that we can migrate
1494				 * the request immediately to another engine
1495				 * rather than wait for the primary request.
1496				 */
1497				if (rq->execution_mask != engine->mask)
1498					goto done;
1499
1500				/*
1501				 * If GVT overrides us we only ever submit
1502				 * port[0], leaving port[1] empty. Note that we
1503				 * also have to be careful that we don't queue
1504				 * the same context (even though a different
1505				 * request) to the second port.
1506				 */
1507				if (ctx_single_port_submission(last->context) ||
1508				    ctx_single_port_submission(rq->context))
1509					goto done;
1510
1511				merge = false;
1512			}
1513
1514			if (__i915_request_submit(rq)) {
1515				if (!merge) {
1516					*port++ = i915_request_get(last);
1517					last = NULL;
1518				}
1519
1520				GEM_BUG_ON(last &&
1521					   !can_merge_ctx(last->context,
1522							  rq->context));
1523				GEM_BUG_ON(last &&
1524					   i915_seqno_passed(last->fence.seqno,
1525							     rq->fence.seqno));
1526
1527				submit = true;
1528				last = rq;
1529			}
1530		}
1531
1532		rb_erase_cached(&p->node, &execlists->queue);
1533		i915_priolist_free(p);
1534	}
1535done:
1536	*port++ = i915_request_get(last);
1537
1538	/*
1539	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1540	 *
1541	 * We choose the priority hint such that if we add a request of greater
1542	 * priority than this, we kick the submission tasklet to decide on
1543	 * the right order of submitting the requests to hardware. We must
1544	 * also be prepared to reorder requests as they are in-flight on the
1545	 * HW. We derive the priority hint then as the first "hole" in
1546	 * the HW submission ports and if there are no available slots,
1547	 * the priority of the lowest executing request, i.e. last.
1548	 *
1549	 * When we do receive a higher priority request ready to run from the
1550	 * user, see queue_request(), the priority hint is bumped to that
1551	 * request triggering preemption on the next dequeue (or subsequent
1552	 * interrupt for secondary ports).
1553	 */
1554	execlists->queue_priority_hint = queue_prio(execlists);
1555	spin_unlock(&engine->active.lock);
1556
1557	/*
1558	 * We can skip poking the HW if we ended up with exactly the same set
1559	 * of requests as currently running, e.g. trying to timeslice a pair
1560	 * of ordered contexts.
1561	 */
1562	if (submit &&
1563	    memcmp(active,
1564		   execlists->pending,
1565		   (port - execlists->pending) * sizeof(*port))) {
1566		*port = NULL;
1567		while (port-- != execlists->pending)
1568			execlists_schedule_in(*port, port - execlists->pending);
1569
1570		WRITE_ONCE(execlists->yield, -1);
1571		set_preempt_timeout(engine, *active);
1572		execlists_submit_ports(engine);
1573	} else {
1574		ring_set_paused(engine, 0);
1575		while (port-- != execlists->pending)
1576			i915_request_put(*port);
1577		*execlists->pending = NULL;
1578	}
1579}
1580
1581static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1582{
1583	local_irq_disable(); /* Suspend interrupts across request submission */
1584	execlists_dequeue(engine);
1585	local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1586}
1587
1588static void clear_ports(struct i915_request **ports, int count)
1589{
1590	memset_p((void **)ports, NULL, count);
1591}
1592
1593static void
1594copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1595{
1596	/* A memcpy_p() would be very useful here! */
1597	while (count--)
1598		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1599}
1600
1601static struct i915_request **
1602cancel_port_requests(struct intel_engine_execlists * const execlists,
1603		     struct i915_request **inactive)
1604{
1605	struct i915_request * const *port;
1606
1607	for (port = execlists->pending; *port; port++)
1608		*inactive++ = *port;
1609	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1610
1611	/* Mark the end of active before we overwrite *active */
1612	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1613		*inactive++ = *port;
1614	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1615
1616	smp_wmb(); /* complete the seqlock for execlists_active() */
1617	WRITE_ONCE(execlists->active, execlists->inflight);
1618
1619	/* Having cancelled all outstanding process_csb(), stop their timers */
1620	GEM_BUG_ON(execlists->pending[0]);
1621	cancel_timer(&execlists->timer);
1622	cancel_timer(&execlists->preempt);
1623
1624	return inactive;
1625}
1626
1627static void invalidate_csb_entries(const u64 *first, const u64 *last)
1628{
1629	clflush((void *)first);
1630	clflush((void *)last);
1631}
1632
1633/*
1634 * Starting with Gen12, the status has a new format:
1635 *
1636 *     bit  0:     switched to new queue
1637 *     bit  1:     reserved
1638 *     bit  2:     semaphore wait mode (poll or signal), only valid when
1639 *                 switch detail is set to "wait on semaphore"
1640 *     bits 3-5:   engine class
1641 *     bits 6-11:  engine instance
1642 *     bits 12-14: reserved
1643 *     bits 15-25: sw context id of the lrc the GT switched to
1644 *     bits 26-31: sw counter of the lrc the GT switched to
1645 *     bits 32-35: context switch detail
1646 *                  - 0: ctx complete
1647 *                  - 1: wait on sync flip
1648 *                  - 2: wait on vblank
1649 *                  - 3: wait on scanline
1650 *                  - 4: wait on semaphore
1651 *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1652 *                       WAIT_FOR_EVENT)
1653 *     bit  36:    reserved
1654 *     bits 37-43: wait detail (for switch detail 1 to 4)
1655 *     bits 44-46: reserved
1656 *     bits 47-57: sw context id of the lrc the GT switched away from
1657 *     bits 58-63: sw counter of the lrc the GT switched away from
1658 */
1659static bool gen12_csb_parse(const u64 csb)
1660{
1661	bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_32_bits(csb));
1662	bool new_queue =
1663		lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
1664
1665	/*
1666	 * The context switch detail is not guaranteed to be 5 when a preemption
1667	 * occurs, so we can't just check for that. The check below works for
1668	 * all the cases we care about, including preemptions of WAIT
1669	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1670	 * would require some extra handling, but we don't support that.
1671	 */
1672	if (!ctx_away_valid || new_queue) {
1673		GEM_BUG_ON(!GEN12_CSB_CTX_VALID(lower_32_bits(csb)));
1674		return true;
1675	}
1676
1677	/*
1678	 * switch detail = 5 is covered by the case above and we do not expect a
1679	 * context switch on an unsuccessful wait instruction since we always
1680	 * use polling mode.
1681	 */
1682	GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1683	return false;
1684}
1685
1686static bool gen8_csb_parse(const u64 csb)
1687{
1688	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1689}
1690
1691static noinline u64
1692wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1693{
1694	u64 entry;
1695
1696	/*
1697	 * Reading from the HWSP has one particular advantage: we can detect
1698	 * a stale entry. Since the write into HWSP is broken, we have no reason
1699	 * to trust the HW at all, the mmio entry may equally be unordered, so
1700	 * we prefer the path that is self-checking and as a last resort,
1701	 * return the mmio value.
1702	 *
1703	 * tgl,dg1:HSDES#22011327657
1704	 */
1705	preempt_disable();
1706	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1707		int idx = csb - engine->execlists.csb_status;
1708		int status;
1709
1710		status = GEN8_EXECLISTS_STATUS_BUF;
1711		if (idx >= 6) {
1712			status = GEN11_EXECLISTS_STATUS_BUF2;
1713			idx -= 6;
1714		}
1715		status += sizeof(u64) * idx;
1716
1717		entry = intel_uncore_read64(engine->uncore,
1718					    _MMIO(engine->mmio_base + status));
1719	}
1720	preempt_enable();
1721
1722	return entry;
1723}
1724
1725static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1726{
1727	u64 entry = READ_ONCE(*csb);
1728
1729	/*
1730	 * Unfortunately, the GPU does not always serialise its write
1731	 * of the CSB entries before its write of the CSB pointer, at least
1732	 * from the perspective of the CPU, using what is known as a Global
1733	 * Observation Point. We may read a new CSB tail pointer, but then
1734	 * read the stale CSB entries, causing us to misinterpret the
1735	 * context-switch events, and eventually declare the GPU hung.
1736	 *
1737	 * icl:HSDES#1806554093
1738	 * tgl:HSDES#22011248461
1739	 */
1740	if (unlikely(entry == -1))
1741		entry = wa_csb_read(engine, csb);
1742
1743	/* Consume this entry so that we can spot its future reuse. */
1744	WRITE_ONCE(*csb, -1);
1745
1746	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1747	return entry;
1748}
1749
1750static void new_timeslice(struct intel_engine_execlists *el)
1751{
1752	/* By cancelling, we will start afresh in start_timeslice() */
1753	cancel_timer(&el->timer);
1754}
1755
1756static struct i915_request **
1757process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1758{
1759	struct intel_engine_execlists * const execlists = &engine->execlists;
1760	u64 * const buf = execlists->csb_status;
1761	const u8 num_entries = execlists->csb_size;
1762	struct i915_request **prev;
1763	u8 head, tail;
1764
1765	/*
1766	 * As we modify our execlists state tracking we require exclusive
1767	 * access. Either we are inside the tasklet, or the tasklet is disabled
1768	 * and we assume that is only inside the reset paths and so serialised.
1769	 */
1770	GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
1771		   !reset_in_progress(execlists));
1772
1773	/*
1774	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1775	 * When reading from the csb_write mmio register, we have to be
1776	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1777	 * the low 4bits. As it happens we know the next 4bits are always
1778	 * zero and so we can simply masked off the low u8 of the register
1779	 * and treat it identically to reading from the HWSP (without having
1780	 * to use explicit shifting and masking, and probably bifurcating
1781	 * the code to handle the legacy mmio read).
1782	 */
1783	head = execlists->csb_head;
1784	tail = READ_ONCE(*execlists->csb_write);
1785	if (unlikely(head == tail))
1786		return inactive;
1787
1788	/*
1789	 * We will consume all events from HW, or at least pretend to.
1790	 *
1791	 * The sequence of events from the HW is deterministic, and derived
1792	 * from our writes to the ELSP, with a smidgen of variability for
1793	 * the arrival of the asynchronous requests wrt to the inflight
1794	 * execution. If the HW sends an event that does not correspond with
1795	 * the one we are expecting, we have to abandon all hope as we lose
1796	 * all tracking of what the engine is actually executing. We will
1797	 * only detect we are out of sequence with the HW when we get an
1798	 * 'impossible' event because we have already drained our own
1799	 * preemption/promotion queue. If this occurs, we know that we likely
1800	 * lost track of execution earlier and must unwind and restart, the
1801	 * simplest way is by stop processing the event queue and force the
1802	 * engine to reset.
1803	 */
1804	execlists->csb_head = tail;
1805	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1806
1807	/*
1808	 * Hopefully paired with a wmb() in HW!
1809	 *
1810	 * We must complete the read of the write pointer before any reads
1811	 * from the CSB, so that we do not see stale values. Without an rmb
1812	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1813	 * we perform the READ_ONCE(*csb_write).
1814	 */
1815	rmb();
1816
1817	/* Remember who was last running under the timer */
1818	prev = inactive;
1819	*prev = NULL;
1820
1821	do {
1822		bool promote;
1823		u64 csb;
1824
1825		if (++head == num_entries)
1826			head = 0;
1827
1828		/*
1829		 * We are flying near dragons again.
1830		 *
1831		 * We hold a reference to the request in execlist_port[]
1832		 * but no more than that. We are operating in softirq
1833		 * context and so cannot hold any mutex or sleep. That
1834		 * prevents us stopping the requests we are processing
1835		 * in port[] from being retired simultaneously (the
1836		 * breadcrumb will be complete before we see the
1837		 * context-switch). As we only hold the reference to the
1838		 * request, any pointer chasing underneath the request
1839		 * is subject to a potential use-after-free. Thus we
1840		 * store all of the bookkeeping within port[] as
1841		 * required, and avoid using unguarded pointers beneath
1842		 * request itself. The same applies to the atomic
1843		 * status notifier.
1844		 */
1845
1846		csb = csb_read(engine, buf + head);
1847		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1848			     head, upper_32_bits(csb), lower_32_bits(csb));
1849
1850		if (GRAPHICS_VER(engine->i915) >= 12)
1851			promote = gen12_csb_parse(csb);
1852		else
1853			promote = gen8_csb_parse(csb);
1854		if (promote) {
1855			struct i915_request * const *old = execlists->active;
1856
1857			if (GEM_WARN_ON(!*execlists->pending)) {
1858				execlists->error_interrupt |= ERROR_CSB;
1859				break;
1860			}
1861
1862			ring_set_paused(engine, 0);
1863
1864			/* Point active to the new ELSP; prevent overwriting */
1865			WRITE_ONCE(execlists->active, execlists->pending);
1866			smp_wmb(); /* notify execlists_active() */
1867
1868			/* cancel old inflight, prepare for switch */
1869			trace_ports(execlists, "preempted", old);
1870			while (*old)
1871				*inactive++ = *old++;
1872
1873			/* switch pending to inflight */
1874			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1875			copy_ports(execlists->inflight,
1876				   execlists->pending,
1877				   execlists_num_ports(execlists));
1878			smp_wmb(); /* complete the seqlock */
1879			WRITE_ONCE(execlists->active, execlists->inflight);
1880
1881			/* XXX Magic delay for tgl */
1882			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1883
1884			WRITE_ONCE(execlists->pending[0], NULL);
1885		} else {
1886			if (GEM_WARN_ON(!*execlists->active)) {
1887				execlists->error_interrupt |= ERROR_CSB;
1888				break;
1889			}
1890
1891			/* port0 completed, advanced to port1 */
1892			trace_ports(execlists, "completed", execlists->active);
1893
1894			/*
1895			 * We rely on the hardware being strongly
1896			 * ordered, that the breadcrumb write is
1897			 * coherent (visible from the CPU) before the
1898			 * user interrupt is processed. One might assume
1899			 * that the breadcrumb write being before the
1900			 * user interrupt and the CS event for the context
1901			 * switch would therefore be before the CS event
1902			 * itself...
1903			 */
1904			if (GEM_SHOW_DEBUG() &&
1905			    !__i915_request_is_complete(*execlists->active)) {
1906				struct i915_request *rq = *execlists->active;
1907				const u32 *regs __maybe_unused =
1908					rq->context->lrc_reg_state;
1909
1910				ENGINE_TRACE(engine,
1911					     "context completed before request!\n");
1912				ENGINE_TRACE(engine,
1913					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1914					     ENGINE_READ(engine, RING_START),
1915					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1916					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1917					     ENGINE_READ(engine, RING_CTL),
1918					     ENGINE_READ(engine, RING_MI_MODE));
1919				ENGINE_TRACE(engine,
1920					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1921					     i915_ggtt_offset(rq->ring->vma),
1922					     rq->head, rq->tail,
1923					     rq->fence.context,
1924					     lower_32_bits(rq->fence.seqno),
1925					     hwsp_seqno(rq));
1926				ENGINE_TRACE(engine,
1927					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1928					     regs[CTX_RING_START],
1929					     regs[CTX_RING_HEAD],
1930					     regs[CTX_RING_TAIL]);
1931			}
1932
1933			*inactive++ = *execlists->active++;
1934
1935			GEM_BUG_ON(execlists->active - execlists->inflight >
1936				   execlists_num_ports(execlists));
1937		}
1938	} while (head != tail);
1939
1940	/*
1941	 * Gen11 has proven to fail wrt global observation point between
1942	 * entry and tail update, failing on the ordering and thus
1943	 * we see an old entry in the context status buffer.
1944	 *
1945	 * Forcibly evict out entries for the next gpu csb update,
1946	 * to increase the odds that we get a fresh entries with non
1947	 * working hardware. The cost for doing so comes out mostly with
1948	 * the wash as hardware, working or not, will need to do the
1949	 * invalidation before.
1950	 */
1951	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1952
1953	/*
1954	 * We assume that any event reflects a change in context flow
1955	 * and merits a fresh timeslice. We reinstall the timer after
1956	 * inspecting the queue to see if we need to resumbit.
1957	 */
1958	if (*prev != *execlists->active) /* elide lite-restores */
1959		new_timeslice(execlists);
1960
1961	return inactive;
1962}
1963
1964static void post_process_csb(struct i915_request **port,
1965			     struct i915_request **last)
1966{
1967	while (port != last)
1968		execlists_schedule_out(*port++);
1969}
1970
1971static void __execlists_hold(struct i915_request *rq)
1972{
1973	LIST_HEAD(list);
1974
1975	do {
1976		struct i915_dependency *p;
1977
1978		if (i915_request_is_active(rq))
1979			__i915_request_unsubmit(rq);
1980
1981		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1982		list_move_tail(&rq->sched.link, &rq->engine->active.hold);
1983		i915_request_set_hold(rq);
1984		RQ_TRACE(rq, "on hold\n");
1985
1986		for_each_waiter(p, rq) {
1987			struct i915_request *w =
1988				container_of(p->waiter, typeof(*w), sched);
1989
1990			if (p->flags & I915_DEPENDENCY_WEAK)
1991				continue;
1992
1993			/* Leave semaphores spinning on the other engines */
1994			if (w->engine != rq->engine)
1995				continue;
1996
1997			if (!i915_request_is_ready(w))
1998				continue;
1999
2000			if (__i915_request_is_complete(w))
2001				continue;
2002
2003			if (i915_request_on_hold(w))
2004				continue;
2005
2006			list_move_tail(&w->sched.link, &list);
2007		}
2008
2009		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2010	} while (rq);
2011}
2012
2013static bool execlists_hold(struct intel_engine_cs *engine,
2014			   struct i915_request *rq)
2015{
2016	if (i915_request_on_hold(rq))
2017		return false;
2018
2019	spin_lock_irq(&engine->active.lock);
2020
2021	if (__i915_request_is_complete(rq)) { /* too late! */
2022		rq = NULL;
2023		goto unlock;
2024	}
2025
2026	/*
2027	 * Transfer this request onto the hold queue to prevent it
2028	 * being resumbitted to HW (and potentially completed) before we have
2029	 * released it. Since we may have already submitted following
2030	 * requests, we need to remove those as well.
2031	 */
2032	GEM_BUG_ON(i915_request_on_hold(rq));
2033	GEM_BUG_ON(rq->engine != engine);
2034	__execlists_hold(rq);
2035	GEM_BUG_ON(list_empty(&engine->active.hold));
2036
2037unlock:
2038	spin_unlock_irq(&engine->active.lock);
2039	return rq;
2040}
2041
2042static bool hold_request(const struct i915_request *rq)
2043{
2044	struct i915_dependency *p;
2045	bool result = false;
2046
2047	/*
2048	 * If one of our ancestors is on hold, we must also be on hold,
2049	 * otherwise we will bypass it and execute before it.
2050	 */
2051	rcu_read_lock();
2052	for_each_signaler(p, rq) {
2053		const struct i915_request *s =
2054			container_of(p->signaler, typeof(*s), sched);
2055
2056		if (s->engine != rq->engine)
2057			continue;
2058
2059		result = i915_request_on_hold(s);
2060		if (result)
2061			break;
2062	}
2063	rcu_read_unlock();
2064
2065	return result;
2066}
2067
2068static void __execlists_unhold(struct i915_request *rq)
2069{
2070	LIST_HEAD(list);
2071
2072	do {
2073		struct i915_dependency *p;
2074
2075		RQ_TRACE(rq, "hold release\n");
2076
2077		GEM_BUG_ON(!i915_request_on_hold(rq));
2078		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2079
2080		i915_request_clear_hold(rq);
2081		list_move_tail(&rq->sched.link,
2082			       i915_sched_lookup_priolist(rq->engine,
2083							  rq_prio(rq)));
2084		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2085
2086		/* Also release any children on this engine that are ready */
2087		for_each_waiter(p, rq) {
2088			struct i915_request *w =
2089				container_of(p->waiter, typeof(*w), sched);
2090
2091			if (p->flags & I915_DEPENDENCY_WEAK)
2092				continue;
2093
2094			/* Propagate any change in error status */
2095			if (rq->fence.error)
2096				i915_request_set_error_once(w, rq->fence.error);
2097
2098			if (w->engine != rq->engine)
2099				continue;
2100
2101			if (!i915_request_on_hold(w))
2102				continue;
2103
2104			/* Check that no other parents are also on hold */
2105			if (hold_request(w))
2106				continue;
2107
2108			list_move_tail(&w->sched.link, &list);
2109		}
2110
2111		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2112	} while (rq);
2113}
2114
2115static void execlists_unhold(struct intel_engine_cs *engine,
2116			     struct i915_request *rq)
2117{
2118	spin_lock_irq(&engine->active.lock);
2119
2120	/*
2121	 * Move this request back to the priority queue, and all of its
2122	 * children and grandchildren that were suspended along with it.
2123	 */
2124	__execlists_unhold(rq);
2125
2126	if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
2127		engine->execlists.queue_priority_hint = rq_prio(rq);
2128		tasklet_hi_schedule(&engine->execlists.tasklet);
2129	}
2130
2131	spin_unlock_irq(&engine->active.lock);
2132}
2133
2134struct execlists_capture {
2135	struct work_struct work;
2136	struct i915_request *rq;
2137	struct i915_gpu_coredump *error;
2138};
2139
2140static void execlists_capture_work(struct work_struct *work)
2141{
2142	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2143	const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2144	struct intel_engine_cs *engine = cap->rq->engine;
2145	struct intel_gt_coredump *gt = cap->error->gt;
2146	struct intel_engine_capture_vma *vma;
2147
2148	/* Compress all the objects attached to the request, slow! */
2149	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2150	if (vma) {
2151		struct i915_vma_compress *compress =
2152			i915_vma_capture_prepare(gt);
2153
2154		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2155		i915_vma_capture_finish(gt, compress);
2156	}
2157
2158	gt->simulated = gt->engine->simulated;
2159	cap->error->simulated = gt->simulated;
2160
2161	/* Publish the error state, and announce it to the world */
2162	i915_error_state_store(cap->error);
2163	i915_gpu_coredump_put(cap->error);
2164
2165	/* Return this request and all that depend upon it for signaling */
2166	execlists_unhold(engine, cap->rq);
2167	i915_request_put(cap->rq);
2168
2169	kfree(cap);
2170}
2171
2172static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2173{
2174	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2175	struct execlists_capture *cap;
2176
2177	cap = kmalloc(sizeof(*cap), gfp);
2178	if (!cap)
2179		return NULL;
2180
2181	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2182	if (!cap->error)
2183		goto err_cap;
2184
2185	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2186	if (!cap->error->gt)
2187		goto err_gpu;
2188
2189	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2190	if (!cap->error->gt->engine)
2191		goto err_gt;
2192
2193	cap->error->gt->engine->hung = true;
2194
2195	return cap;
2196
2197err_gt:
2198	kfree(cap->error->gt);
2199err_gpu:
2200	kfree(cap->error);
2201err_cap:
2202	kfree(cap);
2203	return NULL;
2204}
2205
2206static struct i915_request *
2207active_context(struct intel_engine_cs *engine, u32 ccid)
2208{
2209	const struct intel_engine_execlists * const el = &engine->execlists;
2210	struct i915_request * const *port, *rq;
2211
2212	/*
2213	 * Use the most recent result from process_csb(), but just in case
2214	 * we trigger an error (via interrupt) before the first CS event has
2215	 * been written, peek at the next submission.
2216	 */
2217
2218	for (port = el->active; (rq = *port); port++) {
2219		if (rq->context->lrc.ccid == ccid) {
2220			ENGINE_TRACE(engine,
2221				     "ccid:%x found at active:%zd\n",
2222				     ccid, port - el->active);
2223			return rq;
2224		}
2225	}
2226
2227	for (port = el->pending; (rq = *port); port++) {
2228		if (rq->context->lrc.ccid == ccid) {
2229			ENGINE_TRACE(engine,
2230				     "ccid:%x found at pending:%zd\n",
2231				     ccid, port - el->pending);
2232			return rq;
2233		}
2234	}
2235
2236	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2237	return NULL;
2238}
2239
2240static u32 active_ccid(struct intel_engine_cs *engine)
2241{
2242	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2243}
2244
2245static void execlists_capture(struct intel_engine_cs *engine)
2246{
2247	struct execlists_capture *cap;
2248
2249	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2250		return;
2251
2252	/*
2253	 * We need to _quickly_ capture the engine state before we reset.
2254	 * We are inside an atomic section (softirq) here and we are delaying
2255	 * the forced preemption event.
2256	 */
2257	cap = capture_regs(engine);
2258	if (!cap)
2259		return;
2260
2261	spin_lock_irq(&engine->active.lock);
2262	cap->rq = active_context(engine, active_ccid(engine));
2263	if (cap->rq) {
2264		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2265		cap->rq = i915_request_get_rcu(cap->rq);
2266	}
2267	spin_unlock_irq(&engine->active.lock);
2268	if (!cap->rq)
2269		goto err_free;
2270
2271	/*
2272	 * Remove the request from the execlists queue, and take ownership
2273	 * of the request. We pass it to our worker who will _slowly_ compress
2274	 * all the pages the _user_ requested for debugging their batch, after
2275	 * which we return it to the queue for signaling.
2276	 *
2277	 * By removing them from the execlists queue, we also remove the
2278	 * requests from being processed by __unwind_incomplete_requests()
2279	 * during the intel_engine_reset(), and so they will *not* be replayed
2280	 * afterwards.
2281	 *
2282	 * Note that because we have not yet reset the engine at this point,
2283	 * it is possible for the request that we have identified as being
2284	 * guilty, did in fact complete and we will then hit an arbitration
2285	 * point allowing the outstanding preemption to succeed. The likelihood
2286	 * of that is very low (as capturing of the engine registers should be
2287	 * fast enough to run inside an irq-off atomic section!), so we will
2288	 * simply hold that request accountable for being non-preemptible
2289	 * long enough to force the reset.
2290	 */
2291	if (!execlists_hold(engine, cap->rq))
2292		goto err_rq;
2293
2294	INIT_WORK(&cap->work, execlists_capture_work);
2295	schedule_work(&cap->work);
2296	return;
2297
2298err_rq:
2299	i915_request_put(cap->rq);
2300err_free:
2301	i915_gpu_coredump_put(cap->error);
2302	kfree(cap);
2303}
2304
2305static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2306{
2307	const unsigned int bit = I915_RESET_ENGINE + engine->id;
2308	unsigned long *lock = &engine->gt->reset.flags;
2309
2310	if (!intel_has_reset_engine(engine->gt))
2311		return;
2312
2313	if (test_and_set_bit(bit, lock))
2314		return;
2315
2316	ENGINE_TRACE(engine, "reset for %s\n", msg);
2317
2318	/* Mark this tasklet as disabled to avoid waiting for it to complete */
2319	tasklet_disable_nosync(&engine->execlists.tasklet);
2320
2321	ring_set_paused(engine, 1); /* Freeze the current request in place */
2322	execlists_capture(engine);
2323	intel_engine_reset(engine, msg);
2324
2325	tasklet_enable(&engine->execlists.tasklet);
2326	clear_and_wake_up_bit(bit, lock);
2327}
2328
2329static bool preempt_timeout(const struct intel_engine_cs *const engine)
2330{
2331	const struct timer_list *t = &engine->execlists.preempt;
2332
2333	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2334		return false;
2335
2336	if (!timer_expired(t))
2337		return false;
2338
2339	return engine->execlists.pending[0];
2340}
2341
2342/*
2343 * Check the unread Context Status Buffers and manage the submission of new
2344 * contexts to the ELSP accordingly.
2345 */
2346static void execlists_submission_tasklet(struct tasklet_struct *t)
2347{
2348	struct intel_engine_cs * const engine =
2349		from_tasklet(engine, t, execlists.tasklet);
2350	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2351	struct i915_request **inactive;
2352
2353	rcu_read_lock();
2354	inactive = process_csb(engine, post);
2355	GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2356
2357	if (unlikely(preempt_timeout(engine))) {
2358		cancel_timer(&engine->execlists.preempt);
2359		engine->execlists.error_interrupt |= ERROR_PREEMPT;
2360	}
2361
2362	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2363		const char *msg;
2364
2365		/* Generate the error message in priority wrt to the user! */
2366		if (engine->execlists.error_interrupt & GENMASK(15, 0))
2367			msg = "CS error"; /* thrown by a user payload */
2368		else if (engine->execlists.error_interrupt & ERROR_CSB)
2369			msg = "invalid CSB event";
2370		else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2371			msg = "preemption time out";
2372		else
2373			msg = "internal error";
2374
2375		engine->execlists.error_interrupt = 0;
2376		execlists_reset(engine, msg);
2377	}
2378
2379	if (!engine->execlists.pending[0]) {
2380		execlists_dequeue_irq(engine);
2381		start_timeslice(engine);
2382	}
2383
2384	post_process_csb(post, inactive);
2385	rcu_read_unlock();
2386}
2387
2388static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2389{
2390	bool tasklet = false;
2391
2392	if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2393		u32 eir;
2394
2395		/* Upper 16b are the enabling mask, rsvd for internal errors */
2396		eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2397		ENGINE_TRACE(engine, "CS error: %x\n", eir);
2398
2399		/* Disable the error interrupt until after the reset */
2400		if (likely(eir)) {
2401			ENGINE_WRITE(engine, RING_EMR, ~0u);
2402			ENGINE_WRITE(engine, RING_EIR, eir);
2403			WRITE_ONCE(engine->execlists.error_interrupt, eir);
2404			tasklet = true;
2405		}
2406	}
2407
2408	if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2409		WRITE_ONCE(engine->execlists.yield,
2410			   ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2411		ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2412			     engine->execlists.yield);
2413		if (del_timer(&engine->execlists.timer))
2414			tasklet = true;
2415	}
2416
2417	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2418		tasklet = true;
2419
2420	if (iir & GT_RENDER_USER_INTERRUPT)
2421		intel_engine_signal_breadcrumbs(engine);
2422
2423	if (tasklet)
2424		tasklet_hi_schedule(&engine->execlists.tasklet);
2425}
2426
2427static void __execlists_kick(struct intel_engine_execlists *execlists)
2428{
2429	/* Kick the tasklet for some interrupt coalescing and reset handling */
2430	tasklet_hi_schedule(&execlists->tasklet);
2431}
2432
2433#define execlists_kick(t, member) \
2434	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
2435
2436static void execlists_timeslice(struct timer_list *timer)
2437{
2438	execlists_kick(timer, timer);
2439}
2440
2441static void execlists_preempt(struct timer_list *timer)
2442{
2443	execlists_kick(timer, preempt);
2444}
2445
2446static void queue_request(struct intel_engine_cs *engine,
2447			  struct i915_request *rq)
2448{
2449	GEM_BUG_ON(!list_empty(&rq->sched.link));
2450	list_add_tail(&rq->sched.link,
2451		      i915_sched_lookup_priolist(engine, rq_prio(rq)));
2452	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2453}
2454
2455static bool submit_queue(struct intel_engine_cs *engine,
2456			 const struct i915_request *rq)
2457{
2458	struct intel_engine_execlists *execlists = &engine->execlists;
2459
2460	if (rq_prio(rq) <= execlists->queue_priority_hint)
2461		return false;
2462
2463	execlists->queue_priority_hint = rq_prio(rq);
2464	return true;
2465}
2466
2467static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2468			     const struct i915_request *rq)
2469{
2470	GEM_BUG_ON(i915_request_on_hold(rq));
2471	return !list_empty(&engine->active.hold) && hold_request(rq);
2472}
2473
2474static void execlists_submit_request(struct i915_request *request)
2475{
2476	struct intel_engine_cs *engine = request->engine;
2477	unsigned long flags;
2478
2479	/* Will be called from irq-context when using foreign fences. */
2480	spin_lock_irqsave(&engine->active.lock, flags);
2481
2482	if (unlikely(ancestor_on_hold(engine, request))) {
2483		RQ_TRACE(request, "ancestor on hold\n");
2484		list_add_tail(&request->sched.link, &engine->active.hold);
2485		i915_request_set_hold(request);
2486	} else {
2487		queue_request(engine, request);
2488
2489		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
2490		GEM_BUG_ON(list_empty(&request->sched.link));
2491
2492		if (submit_queue(engine, request))
2493			__execlists_kick(&engine->execlists);
2494	}
2495
2496	spin_unlock_irqrestore(&engine->active.lock, flags);
2497}
2498
2499static int
2500__execlists_context_pre_pin(struct intel_context *ce,
2501			    struct intel_engine_cs *engine,
2502			    struct i915_gem_ww_ctx *ww, void **vaddr)
2503{
2504	int err;
2505
2506	err = lrc_pre_pin(ce, engine, ww, vaddr);
2507	if (err)
2508		return err;
2509
2510	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2511		lrc_init_state(ce, engine, *vaddr);
2512
2513		 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2514	}
2515
2516	return 0;
2517}
2518
2519static int execlists_context_pre_pin(struct intel_context *ce,
2520				     struct i915_gem_ww_ctx *ww,
2521				     void **vaddr)
2522{
2523	return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2524}
2525
2526static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2527{
2528	return lrc_pin(ce, ce->engine, vaddr);
2529}
2530
2531static int execlists_context_alloc(struct intel_context *ce)
2532{
2533	return lrc_alloc(ce, ce->engine);
2534}
2535
2536static const struct intel_context_ops execlists_context_ops = {
2537	.flags = COPS_HAS_INFLIGHT,
2538
2539	.alloc = execlists_context_alloc,
2540
2541	.pre_pin = execlists_context_pre_pin,
2542	.pin = execlists_context_pin,
2543	.unpin = lrc_unpin,
2544	.post_unpin = lrc_post_unpin,
2545
2546	.enter = intel_context_enter_engine,
2547	.exit = intel_context_exit_engine,
2548
2549	.reset = lrc_reset,
2550	.destroy = lrc_destroy,
2551};
2552
2553static int emit_pdps(struct i915_request *rq)
2554{
2555	const struct intel_engine_cs * const engine = rq->engine;
2556	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2557	int err, i;
2558	u32 *cs;
2559
2560	GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2561
2562	/*
2563	 * Beware ye of the dragons, this sequence is magic!
2564	 *
2565	 * Small changes to this sequence can cause anything from
2566	 * GPU hangs to forcewake errors and machine lockups!
2567	 */
2568
2569	cs = intel_ring_begin(rq, 2);
2570	if (IS_ERR(cs))
2571		return PTR_ERR(cs);
2572
2573	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2574	*cs++ = MI_NOOP;
2575	intel_ring_advance(rq, cs);
2576
2577	/* Flush any residual operations from the context load */
2578	err = engine->emit_flush(rq, EMIT_FLUSH);
2579	if (err)
2580		return err;
2581
2582	/* Magic required to prevent forcewake errors! */
2583	err = engine->emit_flush(rq, EMIT_INVALIDATE);
2584	if (err)
2585		return err;
2586
2587	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2588	if (IS_ERR(cs))
2589		return PTR_ERR(cs);
2590
2591	/* Ensure the LRI have landed before we invalidate & continue */
2592	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2593	for (i = GEN8_3LVL_PDPES; i--; ) {
2594		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2595		u32 base = engine->mmio_base;
2596
2597		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2598		*cs++ = upper_32_bits(pd_daddr);
2599		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2600		*cs++ = lower_32_bits(pd_daddr);
2601	}
2602	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2603	intel_ring_advance(rq, cs);
2604
2605	intel_ring_advance(rq, cs);
2606
2607	return 0;
2608}
2609
2610static int execlists_request_alloc(struct i915_request *request)
2611{
2612	int ret;
2613
2614	GEM_BUG_ON(!intel_context_is_pinned(request->context));
2615
2616	/*
2617	 * Flush enough space to reduce the likelihood of waiting after
2618	 * we start building the request - in which case we will just
2619	 * have to repeat work.
2620	 */
2621	request->reserved_space += EXECLISTS_REQUEST_SIZE;
2622
2623	/*
2624	 * Note that after this point, we have committed to using
2625	 * this request as it is being used to both track the
2626	 * state of engine initialisation and liveness of the
2627	 * golden renderstate above. Think twice before you try
2628	 * to cancel/unwind this request now.
2629	 */
2630
2631	if (!i915_vm_is_4lvl(request->context->vm)) {
2632		ret = emit_pdps(request);
2633		if (ret)
2634			return ret;
2635	}
2636
2637	/* Unconditionally invalidate GPU caches and TLBs. */
2638	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2639	if (ret)
2640		return ret;
2641
2642	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2643	return 0;
2644}
2645
2646static void reset_csb_pointers(struct intel_engine_cs *engine)
2647{
2648	struct intel_engine_execlists * const execlists = &engine->execlists;
2649	const unsigned int reset_value = execlists->csb_size - 1;
2650
2651	ring_set_paused(engine, 0);
2652
2653	/*
2654	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2655	 * Bludgeon them with a mmio update to be sure.
2656	 */
2657	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2658		     0xffff << 16 | reset_value << 8 | reset_value);
2659	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2660
2661	/*
2662	 * After a reset, the HW starts writing into CSB entry [0]. We
2663	 * therefore have to set our HEAD pointer back one entry so that
2664	 * the *first* entry we check is entry 0. To complicate this further,
2665	 * as we don't wait for the first interrupt after reset, we have to
2666	 * fake the HW write to point back to the last entry so that our
2667	 * inline comparison of our cached head position against the last HW
2668	 * write works even before the first interrupt.
2669	 */
2670	execlists->csb_head = reset_value;
2671	WRITE_ONCE(*execlists->csb_write, reset_value);
2672	wmb(); /* Make sure this is visible to HW (paranoia?) */
2673
2674	/* Check that the GPU does indeed update the CSB entries! */
2675	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2676	invalidate_csb_entries(&execlists->csb_status[0],
2677			       &execlists->csb_status[reset_value]);
2678
2679	/* Once more for luck and our trusty paranoia */
2680	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2681		     0xffff << 16 | reset_value << 8 | reset_value);
2682	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2683
2684	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2685}
2686
2687static void sanitize_hwsp(struct intel_engine_cs *engine)
2688{
2689	struct intel_timeline *tl;
2690
2691	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2692		intel_timeline_reset_seqno(tl);
2693}
2694
2695static void execlists_sanitize(struct intel_engine_cs *engine)
2696{
2697	GEM_BUG_ON(execlists_active(&engine->execlists));
2698
2699	/*
2700	 * Poison residual state on resume, in case the suspend didn't!
2701	 *
2702	 * We have to assume that across suspend/resume (or other loss
2703	 * of control) that the contents of our pinned buffers has been
2704	 * lost, replaced by garbage. Since this doesn't always happen,
2705	 * let's poison such state so that we more quickly spot when
2706	 * we falsely assume it has been preserved.
2707	 */
2708	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2709		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2710
2711	reset_csb_pointers(engine);
2712
2713	/*
2714	 * The kernel_context HWSP is stored in the status_page. As above,
2715	 * that may be lost on resume/initialisation, and so we need to
2716	 * reset the value in the HWSP.
2717	 */
2718	sanitize_hwsp(engine);
2719
2720	/* And scrub the dirty cachelines for the HWSP */
2721	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
2722}
2723
2724static void enable_error_interrupt(struct intel_engine_cs *engine)
2725{
2726	u32 status;
2727
2728	engine->execlists.error_interrupt = 0;
2729	ENGINE_WRITE(engine, RING_EMR, ~0u);
2730	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2731
2732	status = ENGINE_READ(engine, RING_ESR);
2733	if (unlikely(status)) {
2734		drm_err(&engine->i915->drm,
2735			"engine '%s' resumed still in error: %08x\n",
2736			engine->name, status);
2737		__intel_gt_reset(engine->gt, engine->mask);
2738	}
2739
2740	/*
2741	 * On current gen8+, we have 2 signals to play with
2742	 *
2743	 * - I915_ERROR_INSTUCTION (bit 0)
2744	 *
2745	 *    Generate an error if the command parser encounters an invalid
2746	 *    instruction
2747	 *
2748	 *    This is a fatal error.
2749	 *
2750	 * - CP_PRIV (bit 2)
2751	 *
2752	 *    Generate an error on privilege violation (where the CP replaces
2753	 *    the instruction with a no-op). This also fires for writes into
2754	 *    read-only scratch pages.
2755	 *
2756	 *    This is a non-fatal error, parsing continues.
2757	 *
2758	 * * there are a few others defined for odd HW that we do not use
2759	 *
2760	 * Since CP_PRIV fires for cases where we have chosen to ignore the
2761	 * error (as the HW is validating and suppressing the mistakes), we
2762	 * only unmask the instruction error bit.
2763	 */
2764	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2765}
2766
2767static void enable_execlists(struct intel_engine_cs *engine)
2768{
2769	u32 mode;
2770
2771	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2772
2773	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2774
2775	if (GRAPHICS_VER(engine->i915) >= 11)
2776		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2777	else
2778		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2779	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2780
2781	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2782
2783	ENGINE_WRITE_FW(engine,
2784			RING_HWS_PGA,
2785			i915_ggtt_offset(engine->status_page.vma));
2786	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2787
2788	enable_error_interrupt(engine);
2789}
2790
2791static int execlists_resume(struct intel_engine_cs *engine)
2792{
2793	intel_mocs_init_engine(engine);
2794	intel_breadcrumbs_reset(engine->breadcrumbs);
2795
2796	enable_execlists(engine);
2797
2798	return 0;
2799}
2800
2801static void execlists_reset_prepare(struct intel_engine_cs *engine)
2802{
2803	struct intel_engine_execlists * const execlists = &engine->execlists;
2804
2805	ENGINE_TRACE(engine, "depth<-%d\n",
2806		     atomic_read(&execlists->tasklet.count));
2807
2808	/*
2809	 * Prevent request submission to the hardware until we have
2810	 * completed the reset in i915_gem_reset_finish(). If a request
2811	 * is completed by one engine, it may then queue a request
2812	 * to a second via its execlists->tasklet *just* as we are
2813	 * calling engine->resume() and also writing the ELSP.
2814	 * Turning off the execlists->tasklet until the reset is over
2815	 * prevents the race.
2816	 */
2817	__tasklet_disable_sync_once(&execlists->tasklet);
2818	GEM_BUG_ON(!reset_in_progress(execlists));
2819
2820	/*
2821	 * We stop engines, otherwise we might get failed reset and a
2822	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2823	 * from system hang if batchbuffer is progressing when
2824	 * the reset is issued, regardless of READY_TO_RESET ack.
2825	 * Thus assume it is best to stop engines on all gens
2826	 * where we have a gpu reset.
2827	 *
2828	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2829	 *
2830	 * FIXME: Wa for more modern gens needs to be validated
2831	 */
2832	ring_set_paused(engine, 1);
2833	intel_engine_stop_cs(engine);
2834
2835	engine->execlists.reset_ccid = active_ccid(engine);
2836}
2837
2838static struct i915_request **
2839reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
2840{
2841	struct intel_engine_execlists * const execlists = &engine->execlists;
2842
2843	mb(); /* paranoia: read the CSB pointers from after the reset */
2844	clflush(execlists->csb_write);
2845	mb();
2846
2847	inactive = process_csb(engine, inactive); /* drain preemption events */
2848
2849	/* Following the reset, we need to reload the CSB read/write pointers */
2850	reset_csb_pointers(engine);
2851
2852	return inactive;
2853}
2854
2855static void
2856execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
2857{
2858	struct intel_context *ce;
2859	struct i915_request *rq;
2860	u32 head;
2861
2862	/*
2863	 * Save the currently executing context, even if we completed
2864	 * its request, it was still running at the time of the
2865	 * reset and will have been clobbered.
2866	 */
2867	rq = active_context(engine, engine->execlists.reset_ccid);
2868	if (!rq)
2869		return;
2870
2871	ce = rq->context;
2872	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2873
2874	if (__i915_request_is_complete(rq)) {
2875		/* Idle context; tidy up the ring so we can restart afresh */
2876		head = intel_ring_wrap(ce->ring, rq->tail);
2877		goto out_replay;
2878	}
2879
2880	/* We still have requests in-flight; the engine should be active */
2881	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
2882
2883	/* Context has requests still in-flight; it should not be idle! */
2884	GEM_BUG_ON(i915_active_is_idle(&ce->active));
2885
2886	rq = active_request(ce->timeline, rq);
2887	head = intel_ring_wrap(ce->ring, rq->head);
2888	GEM_BUG_ON(head == ce->ring->tail);
2889
2890	/*
2891	 * If this request hasn't started yet, e.g. it is waiting on a
2892	 * semaphore, we need to avoid skipping the request or else we
2893	 * break the signaling chain. However, if the context is corrupt
2894	 * the request will not restart and we will be stuck with a wedged
2895	 * device. It is quite often the case that if we issue a reset
2896	 * while the GPU is loading the context image, that the context
2897	 * image becomes corrupt.
2898	 *
2899	 * Otherwise, if we have not started yet, the request should replay
2900	 * perfectly and we do not need to flag the result as being erroneous.
2901	 */
2902	if (!__i915_request_has_started(rq))
2903		goto out_replay;
2904
2905	/*
2906	 * If the request was innocent, we leave the request in the ELSP
2907	 * and will try to replay it on restarting. The context image may
2908	 * have been corrupted by the reset, in which case we may have
2909	 * to service a new GPU hang, but more likely we can continue on
2910	 * without impact.
2911	 *
2912	 * If the request was guilty, we presume the context is corrupt
2913	 * and have to at least restore the RING register in the context
2914	 * image back to the expected values to skip over the guilty request.
2915	 */
2916	__i915_request_reset(rq, stalled);
2917
2918	/*
2919	 * We want a simple context + ring to execute the breadcrumb update.
2920	 * We cannot rely on the context being intact across the GPU hang,
2921	 * so clear it and rebuild just what we need for the breadcrumb.
2922	 * All pending requests for this context will be zapped, and any
2923	 * future request will be after userspace has had the opportunity
2924	 * to recreate its own state.
2925	 */
2926out_replay:
2927	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
2928		     head, ce->ring->tail);
2929	lrc_reset_regs(ce, engine);
2930	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
2931}
2932
2933static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
2934{
2935	struct intel_engine_execlists * const execlists = &engine->execlists;
2936	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2937	struct i915_request **inactive;
2938
2939	rcu_read_lock();
2940	inactive = reset_csb(engine, post);
2941
2942	execlists_reset_active(engine, true);
2943
2944	inactive = cancel_port_requests(execlists, inactive);
2945	post_process_csb(post, inactive);
2946	rcu_read_unlock();
2947}
2948
2949static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
2950{
2951	unsigned long flags;
2952
2953	ENGINE_TRACE(engine, "\n");
2954
2955	/* Process the csb, find the guilty context and throw away */
2956	execlists_reset_csb(engine, stalled);
2957
2958	/* Push back any incomplete requests for replay after the reset. */
2959	rcu_read_lock();
2960	spin_lock_irqsave(&engine->active.lock, flags);
2961	__unwind_incomplete_requests(engine);
2962	spin_unlock_irqrestore(&engine->active.lock, flags);
2963	rcu_read_unlock();
2964}
2965
2966static void nop_submission_tasklet(struct tasklet_struct *t)
2967{
2968	struct intel_engine_cs * const engine =
2969		from_tasklet(engine, t, execlists.tasklet);
2970
2971	/* The driver is wedged; don't process any more events. */
2972	WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN);
2973}
2974
2975static void execlists_reset_cancel(struct intel_engine_cs *engine)
2976{
2977	struct intel_engine_execlists * const execlists = &engine->execlists;
2978	struct i915_request *rq, *rn;
2979	struct rb_node *rb;
2980	unsigned long flags;
2981
2982	ENGINE_TRACE(engine, "\n");
2983
2984	/*
2985	 * Before we call engine->cancel_requests(), we should have exclusive
2986	 * access to the submission state. This is arranged for us by the
2987	 * caller disabling the interrupt generation, the tasklet and other
2988	 * threads that may then access the same state, giving us a free hand
2989	 * to reset state. However, we still need to let lockdep be aware that
2990	 * we know this state may be accessed in hardirq context, so we
2991	 * disable the irq around this manipulation and we want to keep
2992	 * the spinlock focused on its duties and not accidentally conflate
2993	 * coverage to the submission's irq state. (Similarly, although we
2994	 * shouldn't need to disable irq around the manipulation of the
2995	 * submission's irq state, we also wish to remind ourselves that
2996	 * it is irq state.)
2997	 */
2998	execlists_reset_csb(engine, true);
2999
3000	rcu_read_lock();
3001	spin_lock_irqsave(&engine->active.lock, flags);
3002
3003	/* Mark all executing requests as skipped. */
3004	list_for_each_entry(rq, &engine->active.requests, sched.link)
3005		i915_request_put(i915_request_mark_eio(rq));
3006	intel_engine_signal_breadcrumbs(engine);
3007
3008	/* Flush the queued requests to the timeline list (for retiring). */
3009	while ((rb = rb_first_cached(&execlists->queue))) {
3010		struct i915_priolist *p = to_priolist(rb);
3011
3012		priolist_for_each_request_consume(rq, rn, p) {
3013			if (i915_request_mark_eio(rq)) {
3014				__i915_request_submit(rq);
3015				i915_request_put(rq);
3016			}
3017		}
3018
3019		rb_erase_cached(&p->node, &execlists->queue);
3020		i915_priolist_free(p);
3021	}
3022
3023	/* On-hold requests will be flushed to timeline upon their release */
3024	list_for_each_entry(rq, &engine->active.hold, sched.link)
3025		i915_request_put(i915_request_mark_eio(rq));
3026
3027	/* Cancel all attached virtual engines */
3028	while ((rb = rb_first_cached(&execlists->virtual))) {
3029		struct virtual_engine *ve =
3030			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3031
3032		rb_erase_cached(rb, &execlists->virtual);
3033		RB_CLEAR_NODE(rb);
3034
3035		spin_lock(&ve->base.active.lock);
3036		rq = fetch_and_zero(&ve->request);
3037		if (rq) {
3038			if (i915_request_mark_eio(rq)) {
3039				rq->engine = engine;
3040				__i915_request_submit(rq);
3041				i915_request_put(rq);
3042			}
3043			i915_request_put(rq);
3044
3045			ve->base.execlists.queue_priority_hint = INT_MIN;
3046		}
3047		spin_unlock(&ve->base.active.lock);
3048	}
3049
3050	/* Remaining _unready_ requests will be nop'ed when submitted */
3051
3052	execlists->queue_priority_hint = INT_MIN;
3053	execlists->queue = RB_ROOT_CACHED;
3054
3055	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
3056	execlists->tasklet.callback = nop_submission_tasklet;
3057
3058	spin_unlock_irqrestore(&engine->active.lock, flags);
3059	rcu_read_unlock();
3060}
3061
3062static void execlists_reset_finish(struct intel_engine_cs *engine)
3063{
3064	struct intel_engine_execlists * const execlists = &engine->execlists;
3065
3066	/*
3067	 * After a GPU reset, we may have requests to replay. Do so now while
3068	 * we still have the forcewake to be sure that the GPU is not allowed
3069	 * to sleep before we restart and reload a context.
3070	 *
3071	 * If the GPU reset fails, the engine may still be alive with requests
3072	 * inflight. We expect those to complete, or for the device to be
3073	 * reset as the next level of recovery, and as a final resort we
3074	 * will declare the device wedged.
3075	 */
3076	GEM_BUG_ON(!reset_in_progress(execlists));
3077
3078	/* And kick in case we missed a new request submission. */
3079	if (__tasklet_enable(&execlists->tasklet))
3080		__execlists_kick(execlists);
3081
3082	ENGINE_TRACE(engine, "depth->%d\n",
3083		     atomic_read(&execlists->tasklet.count));
3084}
3085
3086static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3087{
3088	ENGINE_WRITE(engine, RING_IMR,
3089		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3090	ENGINE_POSTING_READ(engine, RING_IMR);
3091}
3092
3093static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3094{
3095	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3096}
3097
3098static void execlists_park(struct intel_engine_cs *engine)
3099{
3100	cancel_timer(&engine->execlists.timer);
3101	cancel_timer(&engine->execlists.preempt);
3102}
3103
3104static bool can_preempt(struct intel_engine_cs *engine)
3105{
3106	if (GRAPHICS_VER(engine->i915) > 8)
3107		return true;
3108
3109	/* GPGPU on bdw requires extra w/a; not implemented */
3110	return engine->class != RENDER_CLASS;
3111}
3112
3113static void execlists_set_default_submission(struct intel_engine_cs *engine)
3114{
3115	engine->submit_request = execlists_submit_request;
3116	engine->schedule = i915_schedule;
3117	engine->execlists.tasklet.callback = execlists_submission_tasklet;
3118}
3119
3120static void execlists_shutdown(struct intel_engine_cs *engine)
3121{
3122	/* Synchronise with residual timers and any softirq they raise */
3123	del_timer_sync(&engine->execlists.timer);
3124	del_timer_sync(&engine->execlists.preempt);
3125	tasklet_kill(&engine->execlists.tasklet);
3126}
3127
3128static void execlists_release(struct intel_engine_cs *engine)
3129{
3130	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3131
3132	execlists_shutdown(engine);
3133
3134	intel_engine_cleanup_common(engine);
3135	lrc_fini_wa_ctx(engine);
3136}
3137
3138static void
3139logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3140{
3141	/* Default vfuncs which can be overridden by each engine. */
3142
3143	engine->resume = execlists_resume;
3144
3145	engine->cops = &execlists_context_ops;
3146	engine->request_alloc = execlists_request_alloc;
3147
3148	engine->reset.prepare = execlists_reset_prepare;
3149	engine->reset.rewind = execlists_reset_rewind;
3150	engine->reset.cancel = execlists_reset_cancel;
3151	engine->reset.finish = execlists_reset_finish;
3152
3153	engine->park = execlists_park;
3154	engine->unpark = NULL;
3155
3156	engine->emit_flush = gen8_emit_flush_xcs;
3157	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3158	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3159	if (GRAPHICS_VER(engine->i915) >= 12) {
3160		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3161		engine->emit_flush = gen12_emit_flush_xcs;
3162	}
3163	engine->set_default_submission = execlists_set_default_submission;
3164
3165	if (GRAPHICS_VER(engine->i915) < 11) {
3166		engine->irq_enable = gen8_logical_ring_enable_irq;
3167		engine->irq_disable = gen8_logical_ring_disable_irq;
3168	} else {
3169		/*
3170		 * TODO: On Gen11 interrupt masks need to be clear
3171		 * to allow C6 entry. Keep interrupts enabled at
3172		 * and take the hit of generating extra interrupts
3173		 * until a more refined solution exists.
3174		 */
3175	}
3176	intel_engine_set_irq_handler(engine, execlists_irq_handler);
3177
3178	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3179	if (!intel_vgpu_active(engine->i915)) {
3180		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3181		if (can_preempt(engine)) {
3182			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3183			if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
3184				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3185		}
3186	}
3187
3188	if (intel_engine_has_preemption(engine))
3189		engine->emit_bb_start = gen8_emit_bb_start;
3190	else
3191		engine->emit_bb_start = gen8_emit_bb_start_noarb;
3192}
3193
3194static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3195{
3196	unsigned int shift = 0;
3197
3198	if (GRAPHICS_VER(engine->i915) < 11) {
3199		const u8 irq_shifts[] = {
3200			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3201			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3202			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3203			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3204			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3205		};
3206
3207		shift = irq_shifts[engine->id];
3208	}
3209
3210	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3211	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3212	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3213	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3214}
3215
3216static void rcs_submission_override(struct intel_engine_cs *engine)
3217{
3218	switch (GRAPHICS_VER(engine->i915)) {
3219	case 12:
3220		engine->emit_flush = gen12_emit_flush_rcs;
3221		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3222		break;
3223	case 11:
3224		engine->emit_flush = gen11_emit_flush_rcs;
3225		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3226		break;
3227	default:
3228		engine->emit_flush = gen8_emit_flush_rcs;
3229		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3230		break;
3231	}
3232}
3233
3234int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3235{
3236	struct intel_engine_execlists * const execlists = &engine->execlists;
3237	struct drm_i915_private *i915 = engine->i915;
3238	struct intel_uncore *uncore = engine->uncore;
3239	u32 base = engine->mmio_base;
3240
3241	tasklet_setup(&engine->execlists.tasklet, execlists_submission_tasklet);
3242	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3243	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3244
3245	logical_ring_default_vfuncs(engine);
3246	logical_ring_default_irqs(engine);
3247
3248	if (engine->class == RENDER_CLASS)
3249		rcs_submission_override(engine);
3250
3251	lrc_init_wa_ctx(engine);
3252
3253	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3254		execlists->submit_reg = uncore->regs +
3255			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3256		execlists->ctrl_reg = uncore->regs +
3257			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3258	} else {
3259		execlists->submit_reg = uncore->regs +
3260			i915_mmio_reg_offset(RING_ELSP(base));
3261	}
3262
3263	execlists->csb_status =
3264		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3265
3266	execlists->csb_write =
3267		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
3268
3269	if (GRAPHICS_VER(i915) < 11)
3270		execlists->csb_size = GEN8_CSB_ENTRIES;
3271	else
3272		execlists->csb_size = GEN11_CSB_ENTRIES;
3273
3274	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3275	if (GRAPHICS_VER(engine->i915) >= 11) {
3276		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3277		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3278	}
3279
3280	/* Finally, take ownership and responsibility for cleanup! */
3281	engine->sanitize = execlists_sanitize;
3282	engine->release = execlists_release;
3283
3284	return 0;
3285}
3286
3287static struct list_head *virtual_queue(struct virtual_engine *ve)
3288{
3289	return &ve->base.execlists.default_priolist.requests;
3290}
3291
3292static void rcu_virtual_context_destroy(struct work_struct *wrk)
3293{
3294	struct virtual_engine *ve =
3295		container_of(wrk, typeof(*ve), rcu.work);
3296	unsigned int n;
3297
3298	GEM_BUG_ON(ve->context.inflight);
3299
3300	/* Preempt-to-busy may leave a stale request behind. */
3301	if (unlikely(ve->request)) {
3302		struct i915_request *old;
3303
3304		spin_lock_irq(&ve->base.active.lock);
3305
3306		old = fetch_and_zero(&ve->request);
3307		if (old) {
3308			GEM_BUG_ON(!__i915_request_is_complete(old));
3309			__i915_request_submit(old);
3310			i915_request_put(old);
3311		}
3312
3313		spin_unlock_irq(&ve->base.active.lock);
3314	}
3315
3316	/*
3317	 * Flush the tasklet in case it is still running on another core.
3318	 *
3319	 * This needs to be done before we remove ourselves from the siblings'
3320	 * rbtrees as in the case it is running in parallel, it may reinsert
3321	 * the rb_node into a sibling.
3322	 */
3323	tasklet_kill(&ve->base.execlists.tasklet);
3324
3325	/* Decouple ourselves from the siblings, no more access allowed. */
3326	for (n = 0; n < ve->num_siblings; n++) {
3327		struct intel_engine_cs *sibling = ve->siblings[n];
3328		struct rb_node *node = &ve->nodes[sibling->id].rb;
3329
3330		if (RB_EMPTY_NODE(node))
3331			continue;
3332
3333		spin_lock_irq(&sibling->active.lock);
3334
3335		/* Detachment is lazily performed in the execlists tasklet */
3336		if (!RB_EMPTY_NODE(node))
3337			rb_erase_cached(node, &sibling->execlists.virtual);
3338
3339		spin_unlock_irq(&sibling->active.lock);
3340	}
3341	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3342	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3343
3344	lrc_fini(&ve->context);
3345	intel_context_fini(&ve->context);
3346
3347	intel_breadcrumbs_free(ve->base.breadcrumbs);
3348	intel_engine_free_request_pool(&ve->base);
3349
3350	kfree(ve->bonds);
3351	kfree(ve);
3352}
3353
3354static void virtual_context_destroy(struct kref *kref)
3355{
3356	struct virtual_engine *ve =
3357		container_of(kref, typeof(*ve), context.ref);
3358
3359	GEM_BUG_ON(!list_empty(&ve->context.signals));
3360
3361	/*
3362	 * When destroying the virtual engine, we have to be aware that
3363	 * it may still be in use from an hardirq/softirq context causing
3364	 * the resubmission of a completed request (background completion
3365	 * due to preempt-to-busy). Before we can free the engine, we need
3366	 * to flush the submission code and tasklets that are still potentially
3367	 * accessing the engine. Flushing the tasklets requires process context,
3368	 * and since we can guard the resubmit onto the engine with an RCU read
3369	 * lock, we can delegate the free of the engine to an RCU worker.
3370	 */
3371	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3372	queue_rcu_work(system_wq, &ve->rcu);
3373}
3374
3375static void virtual_engine_initial_hint(struct virtual_engine *ve)
3376{
3377	int swp;
3378
3379	/*
3380	 * Pick a random sibling on starting to help spread the load around.
3381	 *
3382	 * New contexts are typically created with exactly the same order
3383	 * of siblings, and often started in batches. Due to the way we iterate
3384	 * the array of sibling when submitting requests, sibling[0] is
3385	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3386	 * randomised across the system, we also help spread the load by the
3387	 * first engine we inspect being different each time.
3388	 *
3389	 * NB This does not force us to execute on this engine, it will just
3390	 * typically be the first we inspect for submission.
3391	 */
3392	swp = prandom_u32_max(ve->num_siblings);
3393	if (swp)
3394		swap(ve->siblings[swp], ve->siblings[0]);
3395}
3396
3397static int virtual_context_alloc(struct intel_context *ce)
3398{
3399	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3400
3401	return lrc_alloc(ce, ve->siblings[0]);
3402}
3403
3404static int virtual_context_pre_pin(struct intel_context *ce,
3405				   struct i915_gem_ww_ctx *ww,
3406				   void **vaddr)
3407{
3408	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3409
3410	 /* Note: we must use a real engine class for setting up reg state */
3411	return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3412}
3413
3414static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3415{
3416	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3417
3418	return lrc_pin(ce, ve->siblings[0], vaddr);
3419}
3420
3421static void virtual_context_enter(struct intel_context *ce)
3422{
3423	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3424	unsigned int n;
3425
3426	for (n = 0; n < ve->num_siblings; n++)
3427		intel_engine_pm_get(ve->siblings[n]);
3428
3429	intel_timeline_enter(ce->timeline);
3430}
3431
3432static void virtual_context_exit(struct intel_context *ce)
3433{
3434	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3435	unsigned int n;
3436
3437	intel_timeline_exit(ce->timeline);
3438
3439	for (n = 0; n < ve->num_siblings; n++)
3440		intel_engine_pm_put(ve->siblings[n]);
3441}
3442
3443static const struct intel_context_ops virtual_context_ops = {
3444	.flags = COPS_HAS_INFLIGHT,
3445
3446	.alloc = virtual_context_alloc,
3447
3448	.pre_pin = virtual_context_pre_pin,
3449	.pin = virtual_context_pin,
3450	.unpin = lrc_unpin,
3451	.post_unpin = lrc_post_unpin,
3452
3453	.enter = virtual_context_enter,
3454	.exit = virtual_context_exit,
3455
3456	.destroy = virtual_context_destroy,
3457};
3458
3459static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3460{
3461	struct i915_request *rq;
3462	intel_engine_mask_t mask;
3463
3464	rq = READ_ONCE(ve->request);
3465	if (!rq)
3466		return 0;
3467
3468	/* The rq is ready for submission; rq->execution_mask is now stable. */
3469	mask = rq->execution_mask;
3470	if (unlikely(!mask)) {
3471		/* Invalid selection, submit to a random engine in error */
3472		i915_request_set_error_once(rq, -ENODEV);
3473		mask = ve->siblings[0]->mask;
3474	}
3475
3476	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3477		     rq->fence.context, rq->fence.seqno,
3478		     mask, ve->base.execlists.queue_priority_hint);
3479
3480	return mask;
3481}
3482
3483static void virtual_submission_tasklet(struct tasklet_struct *t)
3484{
3485	struct virtual_engine * const ve =
3486		from_tasklet(ve, t, base.execlists.tasklet);
3487	const int prio = READ_ONCE(ve->base.execlists.queue_priority_hint);
3488	intel_engine_mask_t mask;
3489	unsigned int n;
3490
3491	rcu_read_lock();
3492	mask = virtual_submission_mask(ve);
3493	rcu_read_unlock();
3494	if (unlikely(!mask))
3495		return;
3496
3497	for (n = 0; n < ve->num_siblings; n++) {
3498		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3499		struct ve_node * const node = &ve->nodes[sibling->id];
3500		struct rb_node **parent, *rb;
3501		bool first;
3502
3503		if (!READ_ONCE(ve->request))
3504			break; /* already handled by a sibling's tasklet */
3505
3506		spin_lock_irq(&sibling->active.lock);
3507
3508		if (unlikely(!(mask & sibling->mask))) {
3509			if (!RB_EMPTY_NODE(&node->rb)) {
3510				rb_erase_cached(&node->rb,
3511						&sibling->execlists.virtual);
3512				RB_CLEAR_NODE(&node->rb);
3513			}
3514
3515			goto unlock_engine;
3516		}
3517
3518		if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3519			/*
3520			 * Cheat and avoid rebalancing the tree if we can
3521			 * reuse this node in situ.
3522			 */
3523			first = rb_first_cached(&sibling->execlists.virtual) ==
3524				&node->rb;
3525			if (prio == node->prio || (prio > node->prio && first))
3526				goto submit_engine;
3527
3528			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3529		}
3530
3531		rb = NULL;
3532		first = true;
3533		parent = &sibling->execlists.virtual.rb_root.rb_node;
3534		while (*parent) {
3535			struct ve_node *other;
3536
3537			rb = *parent;
3538			other = rb_entry(rb, typeof(*other), rb);
3539			if (prio > other->prio) {
3540				parent = &rb->rb_left;
3541			} else {
3542				parent = &rb->rb_right;
3543				first = false;
3544			}
3545		}
3546
3547		rb_link_node(&node->rb, rb, parent);
3548		rb_insert_color_cached(&node->rb,
3549				       &sibling->execlists.virtual,
3550				       first);
3551
3552submit_engine:
3553		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3554		node->prio = prio;
3555		if (first && prio > sibling->execlists.queue_priority_hint)
3556			tasklet_hi_schedule(&sibling->execlists.tasklet);
3557
3558unlock_engine:
3559		spin_unlock_irq(&sibling->active.lock);
3560
3561		if (intel_context_inflight(&ve->context))
3562			break;
3563	}
3564}
3565
3566static void virtual_submit_request(struct i915_request *rq)
3567{
3568	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3569	unsigned long flags;
3570
3571	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3572		     rq->fence.context,
3573		     rq->fence.seqno);
3574
3575	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3576
3577	spin_lock_irqsave(&ve->base.active.lock, flags);
3578
3579	/* By the time we resubmit a request, it may be completed */
3580	if (__i915_request_is_complete(rq)) {
3581		__i915_request_submit(rq);
3582		goto unlock;
3583	}
3584
3585	if (ve->request) { /* background completion from preempt-to-busy */
3586		GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3587		__i915_request_submit(ve->request);
3588		i915_request_put(ve->request);
3589	}
3590
3591	ve->base.execlists.queue_priority_hint = rq_prio(rq);
3592	ve->request = i915_request_get(rq);
3593
3594	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3595	list_move_tail(&rq->sched.link, virtual_queue(ve));
3596
3597	tasklet_hi_schedule(&ve->base.execlists.tasklet);
3598
3599unlock:
3600	spin_unlock_irqrestore(&ve->base.active.lock, flags);
3601}
3602
3603static struct ve_bond *
3604virtual_find_bond(struct virtual_engine *ve,
3605		  const struct intel_engine_cs *master)
3606{
3607	int i;
3608
3609	for (i = 0; i < ve->num_bonds; i++) {
3610		if (ve->bonds[i].master == master)
3611			return &ve->bonds[i];
3612	}
3613
3614	return NULL;
3615}
3616
3617static void
3618virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3619{
3620	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3621	intel_engine_mask_t allowed, exec;
3622	struct ve_bond *bond;
3623
3624	allowed = ~to_request(signal)->engine->mask;
3625
3626	bond = virtual_find_bond(ve, to_request(signal)->engine);
3627	if (bond)
3628		allowed &= bond->sibling_mask;
3629
3630	/* Restrict the bonded request to run on only the available engines */
3631	exec = READ_ONCE(rq->execution_mask);
3632	while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
3633		;
3634
3635	/* Prevent the master from being re-run on the bonded engines */
3636	to_request(signal)->execution_mask &= ~allowed;
3637}
3638
3639struct intel_context *
3640intel_execlists_create_virtual(struct intel_engine_cs **siblings,
3641			       unsigned int count)
3642{
3643	struct virtual_engine *ve;
3644	unsigned int n;
3645	int err;
3646
3647	if (count == 0)
3648		return ERR_PTR(-EINVAL);
3649
3650	if (count == 1)
3651		return intel_context_create(siblings[0]);
3652
3653	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3654	if (!ve)
3655		return ERR_PTR(-ENOMEM);
3656
3657	ve->base.i915 = siblings[0]->i915;
3658	ve->base.gt = siblings[0]->gt;
3659	ve->base.uncore = siblings[0]->uncore;
3660	ve->base.id = -1;
3661
3662	ve->base.class = OTHER_CLASS;
3663	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3664	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3665	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3666
3667	/*
3668	 * The decision on whether to submit a request using semaphores
3669	 * depends on the saturated state of the engine. We only compute
3670	 * this during HW submission of the request, and we need for this
3671	 * state to be globally applied to all requests being submitted
3672	 * to this engine. Virtual engines encompass more than one physical
3673	 * engine and so we cannot accurately tell in advance if one of those
3674	 * engines is already saturated and so cannot afford to use a semaphore
3675	 * and be pessimized in priority for doing so -- if we are the only
3676	 * context using semaphores after all other clients have stopped, we
3677	 * will be starved on the saturated system. Such a global switch for
3678	 * semaphores is less than ideal, but alas is the current compromise.
3679	 */
3680	ve->base.saturated = ALL_ENGINES;
3681
3682	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3683
3684	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3685	intel_engine_init_execlists(&ve->base);
3686
3687	ve->base.cops = &virtual_context_ops;
3688	ve->base.request_alloc = execlists_request_alloc;
3689
3690	ve->base.schedule = i915_schedule;
3691	ve->base.submit_request = virtual_submit_request;
3692	ve->base.bond_execute = virtual_bond_execute;
3693
3694	INIT_LIST_HEAD(virtual_queue(ve));
3695	ve->base.execlists.queue_priority_hint = INT_MIN;
3696	tasklet_setup(&ve->base.execlists.tasklet, virtual_submission_tasklet);
3697
3698	intel_context_init(&ve->context, &ve->base);
3699
3700	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3701	if (!ve->base.breadcrumbs) {
3702		err = -ENOMEM;
3703		goto err_put;
3704	}
3705
3706	for (n = 0; n < count; n++) {
3707		struct intel_engine_cs *sibling = siblings[n];
3708
3709		GEM_BUG_ON(!is_power_of_2(sibling->mask));
3710		if (sibling->mask & ve->base.mask) {
3711			DRM_DEBUG("duplicate %s entry in load balancer\n",
3712				  sibling->name);
3713			err = -EINVAL;
3714			goto err_put;
3715		}
3716
3717		/*
3718		 * The virtual engine implementation is tightly coupled to
3719		 * the execlists backend -- we push out request directly
3720		 * into a tree inside each physical engine. We could support
3721		 * layering if we handle cloning of the requests and
3722		 * submitting a copy into each backend.
3723		 */
3724		if (sibling->execlists.tasklet.callback !=
3725		    execlists_submission_tasklet) {
3726			err = -ENODEV;
3727			goto err_put;
3728		}
3729
3730		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3731		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3732
3733		ve->siblings[ve->num_siblings++] = sibling;
3734		ve->base.mask |= sibling->mask;
3735
3736		/*
3737		 * All physical engines must be compatible for their emission
3738		 * functions (as we build the instructions during request
3739		 * construction and do not alter them before submission
3740		 * on the physical engine). We use the engine class as a guide
3741		 * here, although that could be refined.
3742		 */
3743		if (ve->base.class != OTHER_CLASS) {
3744			if (ve->base.class != sibling->class) {
3745				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3746					  sibling->class, ve->base.class);
3747				err = -EINVAL;
3748				goto err_put;
3749			}
3750			continue;
3751		}
3752
3753		ve->base.class = sibling->class;
3754		ve->base.uabi_class = sibling->uabi_class;
3755		snprintf(ve->base.name, sizeof(ve->base.name),
3756			 "v%dx%d", ve->base.class, count);
3757		ve->base.context_size = sibling->context_size;
3758
3759		ve->base.emit_bb_start = sibling->emit_bb_start;
3760		ve->base.emit_flush = sibling->emit_flush;
3761		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3762		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3763		ve->base.emit_fini_breadcrumb_dw =
3764			sibling->emit_fini_breadcrumb_dw;
3765
3766		ve->base.flags = sibling->flags;
3767	}
3768
3769	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3770
3771	virtual_engine_initial_hint(ve);
3772	return &ve->context;
3773
3774err_put:
3775	intel_context_put(&ve->context);
3776	return ERR_PTR(err);
3777}
3778
3779struct intel_context *
3780intel_execlists_clone_virtual(struct intel_engine_cs *src)
3781{
3782	struct virtual_engine *se = to_virtual_engine(src);
3783	struct intel_context *dst;
3784
3785	dst = intel_execlists_create_virtual(se->siblings,
3786					     se->num_siblings);
3787	if (IS_ERR(dst))
3788		return dst;
3789
3790	if (se->num_bonds) {
3791		struct virtual_engine *de = to_virtual_engine(dst->engine);
3792
3793		de->bonds = kmemdup(se->bonds,
3794				    sizeof(*se->bonds) * se->num_bonds,
3795				    GFP_KERNEL);
3796		if (!de->bonds) {
3797			intel_context_put(dst);
3798			return ERR_PTR(-ENOMEM);
3799		}
3800
3801		de->num_bonds = se->num_bonds;
3802	}
3803
3804	return dst;
3805}
3806
3807int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3808				     const struct intel_engine_cs *master,
3809				     const struct intel_engine_cs *sibling)
3810{
3811	struct virtual_engine *ve = to_virtual_engine(engine);
3812	struct ve_bond *bond;
3813	int n;
3814
3815	/* Sanity check the sibling is part of the virtual engine */
3816	for (n = 0; n < ve->num_siblings; n++)
3817		if (sibling == ve->siblings[n])
3818			break;
3819	if (n == ve->num_siblings)
3820		return -EINVAL;
3821
3822	bond = virtual_find_bond(ve, master);
3823	if (bond) {
3824		bond->sibling_mask |= sibling->mask;
3825		return 0;
3826	}
3827
3828	bond = krealloc(ve->bonds,
3829			sizeof(*bond) * (ve->num_bonds + 1),
3830			GFP_KERNEL);
3831	if (!bond)
3832		return -ENOMEM;
3833
3834	bond[ve->num_bonds].master = master;
3835	bond[ve->num_bonds].sibling_mask = sibling->mask;
3836
3837	ve->bonds = bond;
3838	ve->num_bonds++;
3839
3840	return 0;
3841}
3842
3843void intel_execlists_show_requests(struct intel_engine_cs *engine,
3844				   struct drm_printer *m,
3845				   void (*show_request)(struct drm_printer *m,
3846							const struct i915_request *rq,
3847							const char *prefix,
3848							int indent),
3849				   unsigned int max)
3850{
3851	const struct intel_engine_execlists *execlists = &engine->execlists;
3852	struct i915_request *rq, *last;
3853	unsigned long flags;
3854	unsigned int count;
3855	struct rb_node *rb;
3856
3857	spin_lock_irqsave(&engine->active.lock, flags);
3858
3859	last = NULL;
3860	count = 0;
3861	list_for_each_entry(rq, &engine->active.requests, sched.link) {
3862		if (count++ < max - 1)
3863			show_request(m, rq, "\t\t", 0);
3864		else
3865			last = rq;
3866	}
3867	if (last) {
3868		if (count > max) {
3869			drm_printf(m,
3870				   "\t\t...skipping %d executing requests...\n",
3871				   count - max);
3872		}
3873		show_request(m, last, "\t\t", 0);
3874	}
3875
3876	if (execlists->queue_priority_hint != INT_MIN)
3877		drm_printf(m, "\t\tQueue priority hint: %d\n",
3878			   READ_ONCE(execlists->queue_priority_hint));
3879
3880	last = NULL;
3881	count = 0;
3882	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3883		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3884
3885		priolist_for_each_request(rq, p) {
3886			if (count++ < max - 1)
3887				show_request(m, rq, "\t\t", 0);
3888			else
3889				last = rq;
3890		}
3891	}
3892	if (last) {
3893		if (count > max) {
3894			drm_printf(m,
3895				   "\t\t...skipping %d queued requests...\n",
3896				   count - max);
3897		}
3898		show_request(m, last, "\t\t", 0);
3899	}
3900
3901	last = NULL;
3902	count = 0;
3903	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3904		struct virtual_engine *ve =
3905			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3906		struct i915_request *rq = READ_ONCE(ve->request);
3907
3908		if (rq) {
3909			if (count++ < max - 1)
3910				show_request(m, rq, "\t\t", 0);
3911			else
3912				last = rq;
3913		}
3914	}
3915	if (last) {
3916		if (count > max) {
3917			drm_printf(m,
3918				   "\t\t...skipping %d virtual requests...\n",
3919				   count - max);
3920		}
3921		show_request(m, last, "\t\t", 0);
3922	}
3923
3924	spin_unlock_irqrestore(&engine->active.lock, flags);
3925}
3926
3927#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3928#include "selftest_execlists.c"
3929#endif