Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 | // SPDX-License-Identifier: MIT /* * Copyright © 2014 Intel Corporation */ /** * DOC: Logical Rings, Logical Ring Contexts and Execlists * * Motivation: * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts". * These expanded contexts enable a number of new abilities, especially * "Execlists" (also implemented in this file). * * One of the main differences with the legacy HW contexts is that logical * ring contexts incorporate many more things to the context's state, like * PDPs or ringbuffer control registers: * * The reason why PDPs are included in the context is straightforward: as * PPGTTs (per-process GTTs) are actually per-context, having the PDPs * contained there mean you don't need to do a ppgtt->switch_mm yourself, * instead, the GPU will do it for you on the context switch. * * But, what about the ringbuffer control registers (head, tail, etc..)? * shouldn't we just need a set of those per engine command streamer? This is * where the name "Logical Rings" starts to make sense: by virtualizing the * rings, the engine cs shifts to a new "ring buffer" with every context * switch. When you want to submit a workload to the GPU you: A) choose your * context, B) find its appropriate virtualized ring, C) write commands to it * and then, finally, D) tell the GPU to switch to that context. * * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch * to a contexts is via a context execution list, ergo "Execlists". * * LRC implementation: * Regarding the creation of contexts, we have: * * - One global default context. * - One local default context for each opened fd. * - One local extra context for each context create ioctl call. * * Now that ringbuffers belong per-context (and not per-engine, like before) * and that contexts are uniquely tied to a given engine (and not reusable, * like before) we need: * * - One ringbuffer per-engine inside each context. * - One backing object per-engine inside each context. * * The global default context starts its life with these new objects fully * allocated and populated. The local default context for each opened fd is * more complex, because we don't know at creation time which engine is going * to use them. To handle this, we have implemented a deferred creation of LR * contexts: * * The local context starts its life as a hollow or blank holder, that only * gets populated for a given engine once we receive an execbuffer. If later * on we receive another execbuffer ioctl for the same context but a different * engine, we allocate/populate a new ringbuffer and context backing object and * so on. * * Finally, regarding local contexts created using the ioctl call: as they are * only allowed with the render ring, we can allocate & populate them right * away (no need to defer anything, at least for now). * * Execlists implementation: * Execlists are the new method by which, on gen8+ hardware, workloads are * submitted for execution (as opposed to the legacy, ringbuffer-based, method). * This method works as follows: * * When a request is committed, its commands (the BB start and any leading or * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer * for the appropriate context. The tail pointer in the hardware context is not * updated at this time, but instead, kept by the driver in the ringbuffer * structure. A structure representing this request is added to a request queue * for the appropriate engine: this structure contains a copy of the context's * tail after the request was written to the ring buffer and a pointer to the * context itself. * * If the engine's request queue was empty before the request was added, the * queue is processed immediately. Otherwise the queue will be processed during * a context switch interrupt. In any case, elements on the queue will get sent * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a * globally unique 20-bits submission ID. * * When execution of a request completes, the GPU updates the context status * buffer with a context complete event and generates a context switch interrupt. * During the interrupt handling, the driver examines the events in the buffer: * for each context complete event, if the announced ID matches that on the head * of the request queue, then that request is retired and removed from the queue. * * After processing, if any requests were retired and the queue is not empty * then a new execution list can be submitted. The two requests at the front of * the queue are next to be submitted but since a context may not occur twice in * an execution list, if subsequent requests have the same ID as the first then * the two requests must be combined. This is done simply by discarding requests * at the head of the queue until either only one requests is left (in which case * we use a NULL second context) or the first two requests have unique IDs. * * By always executing the first two requests in the queue the driver ensures * that the GPU is kept as busy as possible. In the case where a single context * completes but a second context is still executing, the request for this second * context will be at the head of the queue when we remove the first one. This * request will then be resubmitted along with a new request for a different context, * which will cause the hardware to continue executing the second request and queue * the new request (the GPU detects the condition of a context getting preempted * with the same context and optimizes the context switch flow by not doing * preemption, but just sampling the new tail pointer). * */ #include <linux/interrupt.h> #include <linux/string_helpers.h> #include "i915_drv.h" #include "i915_reg.h" #include "i915_trace.h" #include "i915_vgpu.h" #include "gen8_engine_cs.h" #include "intel_breadcrumbs.h" #include "intel_context.h" #include "intel_engine_heartbeat.h" #include "intel_engine_pm.h" #include "intel_engine_regs.h" #include "intel_engine_stats.h" #include "intel_execlists_submission.h" #include "intel_gt.h" #include "intel_gt_irq.h" #include "intel_gt_pm.h" #include "intel_gt_regs.h" #include "intel_gt_requests.h" #include "intel_lrc.h" #include "intel_lrc_reg.h" #include "intel_mocs.h" #include "intel_reset.h" #include "intel_ring.h" #include "intel_workarounds.h" #include "shmem_utils.h" #define RING_EXECLIST_QFULL (1 << 0x2) #define RING_EXECLIST1_VALID (1 << 0x3) #define RING_EXECLIST0_VALID (1 << 0x4) #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE) #define RING_EXECLIST1_ACTIVE (1 << 0x11) #define RING_EXECLIST0_ACTIVE (1 << 0x12) #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0) #define GEN8_CTX_STATUS_PREEMPTED (1 << 1) #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2) #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3) #define GEN8_CTX_STATUS_COMPLETE (1 << 4) #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15) #define GEN8_CTX_STATUS_COMPLETED_MASK \ (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED) #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE (0x1) /* lower csb dword */ #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */ #define GEN12_CSB_SW_CTX_ID_MASK GENMASK(25, 15) #define GEN12_IDLE_CTX_ID 0x7FF #define GEN12_CSB_CTX_VALID(csb_dw) \ (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID) #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE BIT(1) /* upper csb dword */ #define XEHP_CSB_SW_CTX_ID_MASK GENMASK(31, 10) #define XEHP_IDLE_CTX_ID 0xFFFF #define XEHP_CSB_CTX_VALID(csb_dw) \ (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID) /* Typical size of the average request (2 pipecontrols and a MI_BB) */ #define EXECLISTS_REQUEST_SIZE 64 /* bytes */ struct virtual_engine { struct intel_engine_cs base; struct intel_context context; struct rcu_work rcu; /* * We allow only a single request through the virtual engine at a time * (each request in the timeline waits for the completion fence of * the previous before being submitted). By restricting ourselves to * only submitting a single request, each request is placed on to a * physical to maximise load spreading (by virtue of the late greedy * scheduling -- each real engine takes the next available request * upon idling). */ struct i915_request *request; /* * We keep a rbtree of available virtual engines inside each physical * engine, sorted by priority. Here we preallocate the nodes we need * for the virtual engine, indexed by physical_engine->id. */ struct ve_node { struct rb_node rb; int prio; } nodes[I915_NUM_ENGINES]; /* And finally, which physical engines this virtual engine maps onto. */ unsigned int num_siblings; struct intel_engine_cs *siblings[]; }; static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine) { GEM_BUG_ON(!intel_engine_is_virtual(engine)); return container_of(engine, struct virtual_engine, base); } static struct intel_context * execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count, unsigned long flags); static struct i915_request * __active_request(const struct intel_timeline * const tl, struct i915_request *rq, int error) { struct i915_request *active = rq; list_for_each_entry_from_reverse(rq, &tl->requests, link) { if (__i915_request_is_complete(rq)) break; if (error) { i915_request_set_error_once(rq, error); __i915_request_skip(rq); } active = rq; } return active; } static struct i915_request * active_request(const struct intel_timeline * const tl, struct i915_request *rq) { return __active_request(tl, rq, 0); } static void ring_set_paused(const struct intel_engine_cs *engine, int state) { /* * We inspect HWS_PREEMPT with a semaphore inside * engine->emit_fini_breadcrumb. If the dword is true, * the ring is paused as the semaphore will busywait * until the dword is false. */ engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state; if (state) wmb(); } static struct i915_priolist *to_priolist(struct rb_node *rb) { return rb_entry(rb, struct i915_priolist, node); } static int rq_prio(const struct i915_request *rq) { return READ_ONCE(rq->sched.attr.priority); } static int effective_prio(const struct i915_request *rq) { int prio = rq_prio(rq); /* * If this request is special and must not be interrupted at any * cost, so be it. Note we are only checking the most recent request * in the context and so may be masking an earlier vip request. It * is hoped that under the conditions where nopreempt is used, this * will not matter (i.e. all requests to that context will be * nopreempt for as long as desired). */ if (i915_request_has_nopreempt(rq)) prio = I915_PRIORITY_UNPREEMPTABLE; return prio; } static int queue_prio(const struct i915_sched_engine *sched_engine) { struct rb_node *rb; rb = rb_first_cached(&sched_engine->queue); if (!rb) return INT_MIN; return to_priolist(rb)->priority; } static int virtual_prio(const struct intel_engine_execlists *el) { struct rb_node *rb = rb_first_cached(&el->virtual); return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN; } static bool need_preempt(const struct intel_engine_cs *engine, const struct i915_request *rq) { int last_prio; if (!intel_engine_has_semaphores(engine)) return false; /* * Check if the current priority hint merits a preemption attempt. * * We record the highest value priority we saw during rescheduling * prior to this dequeue, therefore we know that if it is strictly * less than the current tail of ESLP[0], we do not need to force * a preempt-to-idle cycle. * * However, the priority hint is a mere hint that we may need to * preempt. If that hint is stale or we may be trying to preempt * ourselves, ignore the request. * * More naturally we would write * prio >= max(0, last); * except that we wish to prevent triggering preemption at the same * priority level: the task that is running should remain running * to preserve FIFO ordering of dependencies. */ last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1); if (engine->sched_engine->queue_priority_hint <= last_prio) return false; /* * Check against the first request in ELSP[1], it will, thanks to the * power of PI, be the highest priority of that context. */ if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) && rq_prio(list_next_entry(rq, sched.link)) > last_prio) return true; /* * If the inflight context did not trigger the preemption, then maybe * it was the set of queued requests? Pick the highest priority in * the queue (the first active priolist) and see if it deserves to be * running instead of ELSP[0]. * * The highest priority request in the queue can not be either * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same * context, it's priority would not exceed ELSP[0] aka last_prio. */ return max(virtual_prio(&engine->execlists), queue_prio(engine->sched_engine)) > last_prio; } __maybe_unused static bool assert_priority_queue(const struct i915_request *prev, const struct i915_request *next) { /* * Without preemption, the prev may refer to the still active element * which we refuse to let go. * * Even with preemption, there are times when we think it is better not * to preempt and leave an ostensibly lower priority request in flight. */ if (i915_request_is_active(prev)) return true; return rq_prio(prev) >= rq_prio(next); } static struct i915_request * __unwind_incomplete_requests(struct intel_engine_cs *engine) { struct i915_request *rq, *rn, *active = NULL; struct list_head *pl; int prio = I915_PRIORITY_INVALID; lockdep_assert_held(&engine->sched_engine->lock); list_for_each_entry_safe_reverse(rq, rn, &engine->sched_engine->requests, sched.link) { if (__i915_request_is_complete(rq)) { list_del_init(&rq->sched.link); continue; } __i915_request_unsubmit(rq); GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); if (rq_prio(rq) != prio) { prio = rq_prio(rq); pl = i915_sched_lookup_priolist(engine->sched_engine, prio); } GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine)); list_move(&rq->sched.link, pl); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); /* Check in case we rollback so far we wrap [size/2] */ if (intel_ring_direction(rq->ring, rq->tail, rq->ring->tail + 8) > 0) rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE; active = rq; } return active; } struct i915_request * execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists) { struct intel_engine_cs *engine = container_of(execlists, typeof(*engine), execlists); return __unwind_incomplete_requests(engine); } static void execlists_context_status_change(struct i915_request *rq, unsigned long status) { /* * Only used when GVT-g is enabled now. When GVT-g is disabled, * The compiler should eliminate this function as dead-code. */ if (!IS_ENABLED(CONFIG_DRM_I915_GVT)) return; atomic_notifier_call_chain(&rq->engine->context_status_notifier, status, rq); } static void reset_active(struct i915_request *rq, struct intel_engine_cs *engine) { struct intel_context * const ce = rq->context; u32 head; /* * The executing context has been cancelled. We want to prevent * further execution along this context and propagate the error on * to anything depending on its results. * * In __i915_request_submit(), we apply the -EIO and remove the * requests' payloads for any banned requests. But first, we must * rewind the context back to the start of the incomplete request so * that we do not jump back into the middle of the batch. * * We preserve the breadcrumbs and semaphores of the incomplete * requests so that inter-timeline dependencies (i.e other timelines) * remain correctly ordered. And we defer to __i915_request_submit() * so that all asynchronous waits are correctly handled. */ ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n", rq->fence.context, rq->fence.seqno); /* On resubmission of the active request, payload will be scrubbed */ if (__i915_request_is_complete(rq)) head = rq->tail; else head = __active_request(ce->timeline, rq, -EIO)->head; head = intel_ring_wrap(ce->ring, head); /* Scrub the context image to prevent replaying the previous batch */ lrc_init_regs(ce, engine, true); /* We've switched away, so this should be a no-op, but intent matters */ ce->lrc.lrca = lrc_update_regs(ce, engine, head); } static bool bad_request(const struct i915_request *rq) { return rq->fence.error && i915_request_started(rq); } static struct intel_engine_cs * __execlists_schedule_in(struct i915_request *rq) { struct intel_engine_cs * const engine = rq->engine; struct intel_context * const ce = rq->context; intel_context_get(ce); if (unlikely(intel_context_is_closed(ce) && !intel_engine_has_heartbeat(engine))) intel_context_set_exiting(ce); if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq))) reset_active(rq, engine); if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) lrc_check_regs(ce, engine, "before"); if (ce->tag) { /* Use a fixed tag for OA and friends */ GEM_BUG_ON(ce->tag <= BITS_PER_LONG); ce->lrc.ccid = ce->tag; } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) { /* We don't need a strict matching tag, just different values */ unsigned int tag = ffs(READ_ONCE(engine->context_tag)); GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG); clear_bit(tag - 1, &engine->context_tag); ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32); BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID); } else { /* We don't need a strict matching tag, just different values */ unsigned int tag = __ffs(engine->context_tag); GEM_BUG_ON(tag >= BITS_PER_LONG); __clear_bit(tag, &engine->context_tag); ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32); BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID); } ce->lrc.ccid |= engine->execlists.ccid; __intel_gt_pm_get(engine->gt); if (engine->fw_domain && !engine->fw_active++) intel_uncore_forcewake_get(engine->uncore, engine->fw_domain); execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN); intel_engine_context_in(engine); CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid); return engine; } static void execlists_schedule_in(struct i915_request *rq, int idx) { struct intel_context * const ce = rq->context; struct intel_engine_cs *old; GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine)); trace_i915_request_in(rq, idx); old = ce->inflight; if (!old) old = __execlists_schedule_in(rq); WRITE_ONCE(ce->inflight, ptr_inc(old)); GEM_BUG_ON(intel_context_inflight(ce) != rq->engine); } static void resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve) { struct intel_engine_cs *engine = rq->engine; spin_lock_irq(&engine->sched_engine->lock); clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); WRITE_ONCE(rq->engine, &ve->base); ve->base.submit_request(rq); spin_unlock_irq(&engine->sched_engine->lock); } static void kick_siblings(struct i915_request *rq, struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); struct intel_engine_cs *engine = rq->engine; /* * After this point, the rq may be transferred to a new sibling, so * before we clear ce->inflight make sure that the context has been * removed from the b->signalers and furthermore we need to make sure * that the concurrent iterator in signal_irq_work is no longer * following ce->signal_link. */ if (!list_empty(&ce->signals)) intel_context_remove_breadcrumbs(ce, engine->breadcrumbs); /* * This engine is now too busy to run this virtual request, so * see if we can find an alternative engine for it to execute on. * Once a request has become bonded to this engine, we treat it the * same as other native request. */ if (i915_request_in_priority_queue(rq) && rq->execution_mask != engine->mask) resubmit_virtual_request(rq, ve); if (READ_ONCE(ve->request)) tasklet_hi_schedule(&ve->base.sched_engine->tasklet); } static void __execlists_schedule_out(struct i915_request * const rq, struct intel_context * const ce) { struct intel_engine_cs * const engine = rq->engine; unsigned int ccid; /* * NB process_csb() is not under the engine->sched_engine->lock and hence * schedule_out can race with schedule_in meaning that we should * refrain from doing non-trivial work here. */ CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid); GEM_BUG_ON(ce->inflight != engine); if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) lrc_check_regs(ce, engine, "after"); /* * If we have just completed this context, the engine may now be * idle and we want to re-enter powersaving. */ if (intel_timeline_is_last(ce->timeline, rq) && __i915_request_is_complete(rq)) intel_engine_add_retire(engine, ce->timeline); ccid = ce->lrc.ccid; if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) { ccid >>= XEHP_SW_CTX_ID_SHIFT - 32; ccid &= XEHP_MAX_CONTEXT_HW_ID; } else { ccid >>= GEN11_SW_CTX_ID_SHIFT - 32; ccid &= GEN12_MAX_CONTEXT_HW_ID; } if (ccid < BITS_PER_LONG) { GEM_BUG_ON(ccid == 0); GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag)); __set_bit(ccid - 1, &engine->context_tag); } intel_engine_context_out(engine); execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT); if (engine->fw_domain && !--engine->fw_active) intel_uncore_forcewake_put(engine->uncore, engine->fw_domain); intel_gt_pm_put_async_untracked(engine->gt); /* * If this is part of a virtual engine, its next request may * have been blocked waiting for access to the active context. * We have to kick all the siblings again in case we need to * switch (e.g. the next request is not runnable on this * engine). Hopefully, we will already have submitted the next * request before the tasklet runs and do not need to rebuild * each virtual tree and kick everyone again. */ if (ce->engine != engine) kick_siblings(rq, ce); WRITE_ONCE(ce->inflight, NULL); intel_context_put(ce); } static inline void execlists_schedule_out(struct i915_request *rq) { struct intel_context * const ce = rq->context; trace_i915_request_out(rq); GEM_BUG_ON(!ce->inflight); ce->inflight = ptr_dec(ce->inflight); if (!__intel_context_inflight_count(ce->inflight)) __execlists_schedule_out(rq, ce); i915_request_put(rq); } static u32 map_i915_prio_to_lrc_desc_prio(int prio) { if (prio > I915_PRIORITY_NORMAL) return GEN12_CTX_PRIORITY_HIGH; else if (prio < I915_PRIORITY_NORMAL) return GEN12_CTX_PRIORITY_LOW; else return GEN12_CTX_PRIORITY_NORMAL; } static u64 execlists_update_context(struct i915_request *rq) { struct intel_context *ce = rq->context; u64 desc; u32 tail, prev; desc = ce->lrc.desc; if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY) desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq)); /* * WaIdleLiteRestore:bdw,skl * * We should never submit the context with the same RING_TAIL twice * just in case we submit an empty ring, which confuses the HW. * * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of * the normal request to be able to always advance the RING_TAIL on * subsequent resubmissions (for lite restore). Should that fail us, * and we try and submit the same tail again, force the context * reload. * * If we need to return to a preempted context, we need to skip the * lite-restore and force it to reload the RING_TAIL. Otherwise, the * HW has a tendency to ignore us rewinding the TAIL to the end of * an earlier request. */ GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail); prev = rq->ring->tail; tail = intel_ring_set_tail(rq->ring, rq->tail); if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0)) desc |= CTX_DESC_FORCE_RESTORE; ce->lrc_reg_state[CTX_RING_TAIL] = tail; rq->tail = rq->wa_tail; /* * Make sure the context image is complete before we submit it to HW. * * Ostensibly, writes (including the WCB) should be flushed prior to * an uncached write such as our mmio register access, the empirical * evidence (esp. on Braswell) suggests that the WC write into memory * may not be visible to the HW prior to the completion of the UC * register write and that we may begin execution from the context * before its image is complete leading to invalid PD chasing. */ wmb(); ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE; return desc; } static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port) { if (execlists->ctrl_reg) { writel(lower_32_bits(desc), execlists->submit_reg + port * 2); writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1); } else { writel(upper_32_bits(desc), execlists->submit_reg); writel(lower_32_bits(desc), execlists->submit_reg); } } static __maybe_unused char * dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq) { if (!rq) return ""; snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d", prefix, rq->context->lrc.ccid, rq->fence.context, rq->fence.seqno, __i915_request_is_complete(rq) ? "!" : __i915_request_has_started(rq) ? "*" : "", rq_prio(rq)); return buf; } static __maybe_unused noinline void trace_ports(const struct intel_engine_execlists *execlists, const char *msg, struct i915_request * const *ports) { const struct intel_engine_cs *engine = container_of(execlists, typeof(*engine), execlists); char __maybe_unused p0[40], p1[40]; if (!ports[0]) return; ENGINE_TRACE(engine, "%s { %s%s }\n", msg, dump_port(p0, sizeof(p0), "", ports[0]), dump_port(p1, sizeof(p1), ", ", ports[1])); } static bool reset_in_progress(const struct intel_engine_cs *engine) { return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet)); } static __maybe_unused noinline bool assert_pending_valid(const struct intel_engine_execlists *execlists, const char *msg) { struct intel_engine_cs *engine = container_of(execlists, typeof(*engine), execlists); struct i915_request * const *port, *rq, *prev = NULL; struct intel_context *ce = NULL; u32 ccid = -1; trace_ports(execlists, msg, execlists->pending); /* We may be messing around with the lists during reset, lalala */ if (reset_in_progress(engine)) return true; if (!execlists->pending[0]) { GEM_TRACE_ERR("%s: Nothing pending for promotion!\n", engine->name); return false; } if (execlists->pending[execlists_num_ports(execlists)]) { GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n", engine->name, execlists_num_ports(execlists)); return false; } for (port = execlists->pending; (rq = *port); port++) { unsigned long flags; bool ok = true; GEM_BUG_ON(!kref_read(&rq->fence.refcount)); GEM_BUG_ON(!i915_request_is_active(rq)); if (ce == rq->context) { GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n", engine->name, ce->timeline->fence_context, port - execlists->pending); return false; } ce = rq->context; if (ccid == ce->lrc.ccid) { GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n", engine->name, ccid, ce->timeline->fence_context, port - execlists->pending); return false; } ccid = ce->lrc.ccid; /* * Sentinels are supposed to be the last request so they flush * the current execution off the HW. Check that they are the only * request in the pending submission. * * NB: Due to the async nature of preempt-to-busy and request * cancellation we need to handle the case where request * becomes a sentinel in parallel to CSB processing. */ if (prev && i915_request_has_sentinel(prev) && !READ_ONCE(prev->fence.error)) { GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n", engine->name, ce->timeline->fence_context, port - execlists->pending); return false; } prev = rq; /* * We want virtual requests to only be in the first slot so * that they are never stuck behind a hog and can be immediately * transferred onto the next idle engine. */ if (rq->execution_mask != engine->mask && port != execlists->pending) { GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n", engine->name, ce->timeline->fence_context, port - execlists->pending); return false; } /* Hold tightly onto the lock to prevent concurrent retires! */ if (!spin_trylock_irqsave(&rq->lock, flags)) continue; if (__i915_request_is_complete(rq)) goto unlock; if (i915_active_is_idle(&ce->active) && !intel_context_is_barrier(ce)) { GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n", engine->name, ce->timeline->fence_context, port - execlists->pending); ok = false; goto unlock; } if (!i915_vma_is_pinned(ce->state)) { GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n", engine->name, ce->timeline->fence_context, port - execlists->pending); ok = false; goto unlock; } if (!i915_vma_is_pinned(ce->ring->vma)) { GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n", engine->name, ce->timeline->fence_context, port - execlists->pending); ok = false; goto unlock; } unlock: spin_unlock_irqrestore(&rq->lock, flags); if (!ok) return false; } return ce; } static void execlists_submit_ports(struct intel_engine_cs *engine) { struct intel_engine_execlists *execlists = &engine->execlists; unsigned int n; GEM_BUG_ON(!assert_pending_valid(execlists, "submit")); /* * We can skip acquiring intel_runtime_pm_get() here as it was taken * on our behalf by the request (see i915_gem_mark_busy()) and it will * not be relinquished until the device is idle (see * i915_gem_idle_work_handler()). As a precaution, we make sure * that all ELSP are drained i.e. we have processed the CSB, * before allowing ourselves to idle and calling intel_runtime_pm_put(). */ GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); /* * ELSQ note: the submit queue is not cleared after being submitted * to the HW so we need to make sure we always clean it up. This is * currently ensured by the fact that we always write the same number * of elsq entries, keep this in mind before changing the loop below. */ for (n = execlists_num_ports(execlists); n--; ) { struct i915_request *rq = execlists->pending[n]; write_desc(execlists, rq ? execlists_update_context(rq) : 0, n); } /* we need to manually load the submit queue */ if (execlists->ctrl_reg) writel(EL_CTRL_LOAD, execlists->ctrl_reg); } static bool ctx_single_port_submission(const struct intel_context *ce) { return (IS_ENABLED(CONFIG_DRM_I915_GVT) && intel_context_force_single_submission(ce)); } static bool can_merge_ctx(const struct intel_context *prev, const struct intel_context *next) { if (prev != next) return false; if (ctx_single_port_submission(prev)) return false; return true; } static unsigned long i915_request_flags(const struct i915_request *rq) { return READ_ONCE(rq->fence.flags); } static bool can_merge_rq(const struct i915_request *prev, const struct i915_request *next) { GEM_BUG_ON(prev == next); GEM_BUG_ON(!assert_priority_queue(prev, next)); /* * We do not submit known completed requests. Therefore if the next * request is already completed, we can pretend to merge it in * with the previous context (and we will skip updating the ELSP * and tracking). Thus hopefully keeping the ELSP full with active * contexts, despite the best efforts of preempt-to-busy to confuse * us. */ if (__i915_request_is_complete(next)) return true; if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) & (BIT(I915_FENCE_FLAG_NOPREEMPT) | BIT(I915_FENCE_FLAG_SENTINEL)))) return false; if (!can_merge_ctx(prev->context, next->context)) return false; GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno)); return true; } static bool virtual_matches(const struct virtual_engine *ve, const struct i915_request *rq, const struct intel_engine_cs *engine) { const struct intel_engine_cs *inflight; if (!rq) return false; if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */ return false; /* * We track when the HW has completed saving the context image * (i.e. when we have seen the final CS event switching out of * the context) and must not overwrite the context image before * then. This restricts us to only using the active engine * while the previous virtualized request is inflight (so * we reuse the register offsets). This is a very small * hystersis on the greedy seelction algorithm. */ inflight = intel_context_inflight(&ve->context); if (inflight && inflight != engine) return false; return true; } static struct virtual_engine * first_virtual_engine(struct intel_engine_cs *engine) { struct intel_engine_execlists *el = &engine->execlists; struct rb_node *rb = rb_first_cached(&el->virtual); while (rb) { struct virtual_engine *ve = rb_entry(rb, typeof(*ve), nodes[engine->id].rb); struct i915_request *rq = READ_ONCE(ve->request); /* lazily cleanup after another engine handled rq */ if (!rq || !virtual_matches(ve, rq, engine)) { rb_erase_cached(rb, &el->virtual); RB_CLEAR_NODE(rb); rb = rb_first_cached(&el->virtual); continue; } return ve; } return NULL; } static void virtual_xfer_context(struct virtual_engine *ve, struct intel_engine_cs *engine) { unsigned int n; if (likely(engine == ve->siblings[0])) return; GEM_BUG_ON(READ_ONCE(ve->context.inflight)); if (!intel_engine_has_relative_mmio(engine)) lrc_update_offsets(&ve->context, engine); /* * Move the bound engine to the top of the list for * future execution. We then kick this tasklet first * before checking others, so that we preferentially * reuse this set of bound registers. */ for (n = 1; n < ve->num_siblings; n++) { if (ve->siblings[n] == engine) { swap(ve->siblings[n], ve->siblings[0]); break; } } } static void defer_request(struct i915_request *rq, struct list_head * const pl) { LIST_HEAD(list); /* * We want to move the interrupted request to the back of * the round-robin list (i.e. its priority level), but * in doing so, we must then move all requests that were in * flight and were waiting for the interrupted request to * be run after it again. */ do { struct i915_dependency *p; GEM_BUG_ON(i915_request_is_active(rq)); list_move_tail(&rq->sched.link, pl); for_each_waiter(p, rq) { struct i915_request *w = container_of(p->waiter, typeof(*w), sched); if (p->flags & I915_DEPENDENCY_WEAK) continue; /* Leave semaphores spinning on the other engines */ if (w->engine != rq->engine) continue; /* No waiter should start before its signaler */ GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) && __i915_request_has_started(w) && !__i915_request_is_complete(rq)); if (!i915_request_is_ready(w)) continue; if (rq_prio(w) < rq_prio(rq)) continue; GEM_BUG_ON(rq_prio(w) > rq_prio(rq)); GEM_BUG_ON(i915_request_is_active(w)); list_move_tail(&w->sched.link, &list); } rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); } while (rq); } static void defer_active(struct intel_engine_cs *engine) { struct i915_request *rq; rq = __unwind_incomplete_requests(engine); if (!rq) return; defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine, rq_prio(rq))); } static bool timeslice_yield(const struct intel_engine_execlists *el, const struct i915_request *rq) { /* * Once bitten, forever smitten! * * If the active context ever busy-waited on a semaphore, * it will be treated as a hog until the end of its timeslice (i.e. * until it is scheduled out and replaced by a new submission, * possibly even its own lite-restore). The HW only sends an interrupt * on the first miss, and we do know if that semaphore has been * signaled, or even if it is now stuck on another semaphore. Play * safe, yield if it might be stuck -- it will be given a fresh * timeslice in the near future. */ return rq->context->lrc.ccid == READ_ONCE(el->yield); } static bool needs_timeslice(const struct intel_engine_cs *engine, const struct i915_request *rq) { if (!intel_engine_has_timeslices(engine)) return false; /* If not currently active, or about to switch, wait for next event */ if (!rq || __i915_request_is_complete(rq)) return false; /* We do not need to start the timeslice until after the ACK */ if (READ_ONCE(engine->execlists.pending[0])) return false; /* If ELSP[1] is occupied, always check to see if worth slicing */ if (!list_is_last_rcu(&rq->sched.link, &engine->sched_engine->requests)) { ENGINE_TRACE(engine, "timeslice required for second inflight context\n"); return true; } /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */ if (!i915_sched_engine_is_empty(engine->sched_engine)) { ENGINE_TRACE(engine, "timeslice required for queue\n"); return true; } if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) { ENGINE_TRACE(engine, "timeslice required for virtual\n"); return true; } return false; } static bool timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq) { const struct intel_engine_execlists *el = &engine->execlists; if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq)) return false; if (!needs_timeslice(engine, rq)) return false; return timer_expired(&el->timer) || timeslice_yield(el, rq); } static unsigned long timeslice(const struct intel_engine_cs *engine) { return READ_ONCE(engine->props.timeslice_duration_ms); } static void start_timeslice(struct intel_engine_cs *engine) { struct intel_engine_execlists *el = &engine->execlists; unsigned long duration; /* Disable the timer if there is nothing to switch to */ duration = 0; if (needs_timeslice(engine, *el->active)) { /* Avoid continually prolonging an active timeslice */ if (timer_active(&el->timer)) { /* * If we just submitted a new ELSP after an old * context, that context may have already consumed * its timeslice, so recheck. */ if (!timer_pending(&el->timer)) tasklet_hi_schedule(&engine->sched_engine->tasklet); return; } duration = timeslice(engine); } set_timer_ms(&el->timer, duration); } static void record_preemption(struct intel_engine_execlists *execlists) { (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++); } static unsigned long active_preempt_timeout(struct intel_engine_cs *engine, const struct i915_request *rq) { if (!rq) return 0; /* Only allow ourselves to force reset the currently active context */ engine->execlists.preempt_target = rq; /* Force a fast reset for terminated contexts (ignoring sysfs!) */ if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq))) return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS; return READ_ONCE(engine->props.preempt_timeout_ms); } static void set_preempt_timeout(struct intel_engine_cs *engine, const struct i915_request *rq) { if (!intel_engine_has_preempt_reset(engine)) return; set_timer_ms(&engine->execlists.preempt, active_preempt_timeout(engine, rq)); } static bool completed(const struct i915_request *rq) { if (i915_request_has_sentinel(rq)) return false; return __i915_request_is_complete(rq); } static void execlists_dequeue(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_sched_engine * const sched_engine = engine->sched_engine; struct i915_request **port = execlists->pending; struct i915_request ** const last_port = port + execlists->port_mask; struct i915_request *last, * const *active; struct virtual_engine *ve; struct rb_node *rb; bool submit = false; /* * Hardware submission is through 2 ports. Conceptually each port * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is * static for a context, and unique to each, so we only execute * requests belonging to a single context from each ring. RING_HEAD * is maintained by the CS in the context image, it marks the place * where it got up to last time, and through RING_TAIL we tell the CS * where we want to execute up to this time. * * In this list the requests are in order of execution. Consecutive * requests from the same context are adjacent in the ringbuffer. We * can combine these requests into a single RING_TAIL update: * * RING_HEAD...req1...req2 * ^- RING_TAIL * since to execute req2 the CS must first execute req1. * * Our goal then is to point each port to the end of a consecutive * sequence of requests as being the most optimal (fewest wake ups * and context switches) submission. */ spin_lock(&sched_engine->lock); /* * If the queue is higher priority than the last * request in the currently active context, submit afresh. * We will resubmit again afterwards in case we need to split * the active context to interject the preemption request, * i.e. we will retrigger preemption following the ack in case * of trouble. * */ active = execlists->active; while ((last = *active) && completed(last)) active++; if (last) { if (need_preempt(engine, last)) { ENGINE_TRACE(engine, "preempting last=%llx:%lld, prio=%d, hint=%d\n", last->fence.context, last->fence.seqno, last->sched.attr.priority, sched_engine->queue_priority_hint); record_preemption(execlists); /* * Don't let the RING_HEAD advance past the breadcrumb * as we unwind (and until we resubmit) so that we do * not accidentally tell it to go backwards. */ ring_set_paused(engine, 1); /* * Note that we have not stopped the GPU at this point, * so we are unwinding the incomplete requests as they * remain inflight and so by the time we do complete * the preemption, some of the unwound requests may * complete! */ __unwind_incomplete_requests(engine); last = NULL; } else if (timeslice_expired(engine, last)) { ENGINE_TRACE(engine, "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n", str_yes_no(timer_expired(&execlists->timer)), last->fence.context, last->fence.seqno, rq_prio(last), sched_engine->queue_priority_hint, str_yes_no(timeslice_yield(execlists, last))); /* * Consume this timeslice; ensure we start a new one. * * The timeslice expired, and we will unwind the * running contexts and recompute the next ELSP. * If that submit will be the same pair of contexts * (due to dependency ordering), we will skip the * submission. If we don't cancel the timer now, * we will see that the timer has expired and * reschedule the tasklet; continually until the * next context switch or other preemption event. * * Since we have decided to reschedule based on * consumption of this timeslice, if we submit the * same context again, grant it a full timeslice. */ cancel_timer(&execlists->timer); ring_set_paused(engine, 1); defer_active(engine); /* * Unlike for preemption, if we rewind and continue * executing the same context as previously active, * the order of execution will remain the same and * the tail will only advance. We do not need to * force a full context restore, as a lite-restore * is sufficient to resample the monotonic TAIL. * * If we switch to any other context, similarly we * will not rewind TAIL of current context, and * normal save/restore will preserve state and allow * us to later continue executing the same request. */ last = NULL; } else { /* * Otherwise if we already have a request pending * for execution after the current one, we can * just wait until the next CS event before * queuing more. In either case we will force a * lite-restore preemption event, but if we wait * we hopefully coalesce several updates into a single * submission. */ if (active[1]) { /* * Even if ELSP[1] is occupied and not worthy * of timeslices, our queue might be. */ spin_unlock(&sched_engine->lock); return; } } } /* XXX virtual is always taking precedence */ while ((ve = first_virtual_engine(engine))) { struct i915_request *rq; spin_lock(&ve->base.sched_engine->lock); rq = ve->request; if (unlikely(!virtual_matches(ve, rq, engine))) goto unlock; /* lost the race to a sibling */ GEM_BUG_ON(rq->engine != &ve->base); GEM_BUG_ON(rq->context != &ve->context); if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) { spin_unlock(&ve->base.sched_engine->lock); break; } if (last && !can_merge_rq(last, rq)) { spin_unlock(&ve->base.sched_engine->lock); spin_unlock(&engine->sched_engine->lock); return; /* leave this for another sibling */ } ENGINE_TRACE(engine, "virtual rq=%llx:%lld%s, new engine? %s\n", rq->fence.context, rq->fence.seqno, __i915_request_is_complete(rq) ? "!" : __i915_request_has_started(rq) ? "*" : "", str_yes_no(engine != ve->siblings[0])); WRITE_ONCE(ve->request, NULL); WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN); rb = &ve->nodes[engine->id].rb; rb_erase_cached(rb, &execlists->virtual); RB_CLEAR_NODE(rb); GEM_BUG_ON(!(rq->execution_mask & engine->mask)); WRITE_ONCE(rq->engine, engine); if (__i915_request_submit(rq)) { /* * Only after we confirm that we will submit * this request (i.e. it has not already * completed), do we want to update the context. * * This serves two purposes. It avoids * unnecessary work if we are resubmitting an * already completed request after timeslicing. * But more importantly, it prevents us altering * ve->siblings[] on an idle context, where * we may be using ve->siblings[] in * virtual_context_enter / virtual_context_exit. */ virtual_xfer_context(ve, engine); GEM_BUG_ON(ve->siblings[0] != engine); submit = true; last = rq; } i915_request_put(rq); unlock: spin_unlock(&ve->base.sched_engine->lock); /* * Hmm, we have a bunch of virtual engine requests, * but the first one was already completed (thanks * preempt-to-busy!). Keep looking at the veng queue * until we have no more relevant requests (i.e. * the normal submit queue has higher priority). */ if (submit) break; } while ((rb = rb_first_cached(&sched_engine->queue))) { struct i915_priolist *p = to_priolist(rb); struct i915_request *rq, *rn; priolist_for_each_request_consume(rq, rn, p) { bool merge = true; /* * Can we combine this request with the current port? * It has to be the same context/ringbuffer and not * have any exceptions (e.g. GVT saying never to * combine contexts). * * If we can combine the requests, we can execute both * by updating the RING_TAIL to point to the end of the * second request, and so we never need to tell the * hardware about the first. */ if (last && !can_merge_rq(last, rq)) { /* * If we are on the second port and cannot * combine this request with the last, then we * are done. */ if (port == last_port) goto done; /* * We must not populate both ELSP[] with the * same LRCA, i.e. we must submit 2 different * contexts if we submit 2 ELSP. */ if (last->context == rq->context) goto done; if (i915_request_has_sentinel(last)) goto done; /* * We avoid submitting virtual requests into * the secondary ports so that we can migrate * the request immediately to another engine * rather than wait for the primary request. */ if (rq->execution_mask != engine->mask) goto done; /* * If GVT overrides us we only ever submit * port[0], leaving port[1] empty. Note that we * also have to be careful that we don't queue * the same context (even though a different * request) to the second port. */ if (ctx_single_port_submission(last->context) || ctx_single_port_submission(rq->context)) goto done; merge = false; } if (__i915_request_submit(rq)) { if (!merge) { *port++ = i915_request_get(last); last = NULL; } GEM_BUG_ON(last && !can_merge_ctx(last->context, rq->context)); GEM_BUG_ON(last && i915_seqno_passed(last->fence.seqno, rq->fence.seqno)); submit = true; last = rq; } } rb_erase_cached(&p->node, &sched_engine->queue); i915_priolist_free(p); } done: *port++ = i915_request_get(last); /* * Here be a bit of magic! Or sleight-of-hand, whichever you prefer. * * We choose the priority hint such that if we add a request of greater * priority than this, we kick the submission tasklet to decide on * the right order of submitting the requests to hardware. We must * also be prepared to reorder requests as they are in-flight on the * HW. We derive the priority hint then as the first "hole" in * the HW submission ports and if there are no available slots, * the priority of the lowest executing request, i.e. last. * * When we do receive a higher priority request ready to run from the * user, see queue_request(), the priority hint is bumped to that * request triggering preemption on the next dequeue (or subsequent * interrupt for secondary ports). */ sched_engine->queue_priority_hint = queue_prio(sched_engine); i915_sched_engine_reset_on_empty(sched_engine); spin_unlock(&sched_engine->lock); /* * We can skip poking the HW if we ended up with exactly the same set * of requests as currently running, e.g. trying to timeslice a pair * of ordered contexts. */ if (submit && memcmp(active, execlists->pending, (port - execlists->pending) * sizeof(*port))) { *port = NULL; while (port-- != execlists->pending) execlists_schedule_in(*port, port - execlists->pending); WRITE_ONCE(execlists->yield, -1); set_preempt_timeout(engine, *active); execlists_submit_ports(engine); } else { ring_set_paused(engine, 0); while (port-- != execlists->pending) i915_request_put(*port); *execlists->pending = NULL; } } static void execlists_dequeue_irq(struct intel_engine_cs *engine) { local_irq_disable(); /* Suspend interrupts across request submission */ execlists_dequeue(engine); local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */ } static void clear_ports(struct i915_request **ports, int count) { memset_p((void **)ports, NULL, count); } static void copy_ports(struct i915_request **dst, struct i915_request **src, int count) { /* A memcpy_p() would be very useful here! */ while (count--) WRITE_ONCE(*dst++, *src++); /* avoid write tearing */ } static struct i915_request ** cancel_port_requests(struct intel_engine_execlists * const execlists, struct i915_request **inactive) { struct i915_request * const *port; for (port = execlists->pending; *port; port++) *inactive++ = *port; clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending)); /* Mark the end of active before we overwrite *active */ for (port = xchg(&execlists->active, execlists->pending); *port; port++) *inactive++ = *port; clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight)); smp_wmb(); /* complete the seqlock for execlists_active() */ WRITE_ONCE(execlists->active, execlists->inflight); /* Having cancelled all outstanding process_csb(), stop their timers */ GEM_BUG_ON(execlists->pending[0]); cancel_timer(&execlists->timer); cancel_timer(&execlists->preempt); return inactive; } /* * Starting with Gen12, the status has a new format: * * bit 0: switched to new queue * bit 1: reserved * bit 2: semaphore wait mode (poll or signal), only valid when * switch detail is set to "wait on semaphore" * bits 3-5: engine class * bits 6-11: engine instance * bits 12-14: reserved * bits 15-25: sw context id of the lrc the GT switched to * bits 26-31: sw counter of the lrc the GT switched to * bits 32-35: context switch detail * - 0: ctx complete * - 1: wait on sync flip * - 2: wait on vblank * - 3: wait on scanline * - 4: wait on semaphore * - 5: context preempted (not on SEMAPHORE_WAIT or * WAIT_FOR_EVENT) * bit 36: reserved * bits 37-43: wait detail (for switch detail 1 to 4) * bits 44-46: reserved * bits 47-57: sw context id of the lrc the GT switched away from * bits 58-63: sw counter of the lrc the GT switched away from * * Xe_HP csb shuffles things around compared to TGL: * * bits 0-3: context switch detail (same possible values as TGL) * bits 4-9: engine instance * bits 10-25: sw context id of the lrc the GT switched to * bits 26-31: sw counter of the lrc the GT switched to * bit 32: semaphore wait mode (poll or signal), Only valid when * switch detail is set to "wait on semaphore" * bit 33: switched to new queue * bits 34-41: wait detail (for switch detail 1 to 4) * bits 42-57: sw context id of the lrc the GT switched away from * bits 58-63: sw counter of the lrc the GT switched away from */ static inline bool __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue, u8 switch_detail) { /* * The context switch detail is not guaranteed to be 5 when a preemption * occurs, so we can't just check for that. The check below works for * all the cases we care about, including preemptions of WAIT * instructions and lite-restore. Preempt-to-idle via the CTRL register * would require some extra handling, but we don't support that. */ if (!ctx_away_valid || new_queue) { GEM_BUG_ON(!ctx_to_valid); return true; } /* * switch detail = 5 is covered by the case above and we do not expect a * context switch on an unsuccessful wait instruction since we always * use polling mode. */ GEM_BUG_ON(switch_detail); return false; } static bool xehp_csb_parse(const u64 csb) { return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */ XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */ upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE, GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb))); } static bool gen12_csb_parse(const u64 csb) { return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */ GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */ lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE, GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb))); } static bool gen8_csb_parse(const u64 csb) { return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED); } static noinline u64 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb) { u64 entry; /* * Reading from the HWSP has one particular advantage: we can detect * a stale entry. Since the write into HWSP is broken, we have no reason * to trust the HW at all, the mmio entry may equally be unordered, so * we prefer the path that is self-checking and as a last resort, * return the mmio value. * * tgl,dg1:HSDES#22011327657 */ preempt_disable(); if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) { int idx = csb - engine->execlists.csb_status; int status; status = GEN8_EXECLISTS_STATUS_BUF; if (idx >= 6) { status = GEN11_EXECLISTS_STATUS_BUF2; idx -= 6; } status += sizeof(u64) * idx; entry = intel_uncore_read64(engine->uncore, _MMIO(engine->mmio_base + status)); } preempt_enable(); return entry; } static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb) { u64 entry = READ_ONCE(*csb); /* * Unfortunately, the GPU does not always serialise its write * of the CSB entries before its write of the CSB pointer, at least * from the perspective of the CPU, using what is known as a Global * Observation Point. We may read a new CSB tail pointer, but then * read the stale CSB entries, causing us to misinterpret the * context-switch events, and eventually declare the GPU hung. * * icl:HSDES#1806554093 * tgl:HSDES#22011248461 */ if (unlikely(entry == -1)) entry = wa_csb_read(engine, csb); /* Consume this entry so that we can spot its future reuse. */ WRITE_ONCE(*csb, -1); /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */ return entry; } static void new_timeslice(struct intel_engine_execlists *el) { /* By cancelling, we will start afresh in start_timeslice() */ cancel_timer(&el->timer); } static struct i915_request ** process_csb(struct intel_engine_cs *engine, struct i915_request **inactive) { struct intel_engine_execlists * const execlists = &engine->execlists; u64 * const buf = execlists->csb_status; const u8 num_entries = execlists->csb_size; struct i915_request **prev; u8 head, tail; /* * As we modify our execlists state tracking we require exclusive * access. Either we are inside the tasklet, or the tasklet is disabled * and we assume that is only inside the reset paths and so serialised. */ GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) && !reset_in_progress(engine)); /* * Note that csb_write, csb_status may be either in HWSP or mmio. * When reading from the csb_write mmio register, we have to be * careful to only use the GEN8_CSB_WRITE_PTR portion, which is * the low 4bits. As it happens we know the next 4bits are always * zero and so we can simply masked off the low u8 of the register * and treat it identically to reading from the HWSP (without having * to use explicit shifting and masking, and probably bifurcating * the code to handle the legacy mmio read). */ head = execlists->csb_head; tail = READ_ONCE(*execlists->csb_write); if (unlikely(head == tail)) return inactive; /* * We will consume all events from HW, or at least pretend to. * * The sequence of events from the HW is deterministic, and derived * from our writes to the ELSP, with a smidgen of variability for * the arrival of the asynchronous requests wrt to the inflight * execution. If the HW sends an event that does not correspond with * the one we are expecting, we have to abandon all hope as we lose * all tracking of what the engine is actually executing. We will * only detect we are out of sequence with the HW when we get an * 'impossible' event because we have already drained our own * preemption/promotion queue. If this occurs, we know that we likely * lost track of execution earlier and must unwind and restart, the * simplest way is by stop processing the event queue and force the * engine to reset. */ execlists->csb_head = tail; ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail); /* * Hopefully paired with a wmb() in HW! * * We must complete the read of the write pointer before any reads * from the CSB, so that we do not see stale values. Without an rmb * (lfence) the HW may speculatively perform the CSB[] reads *before* * we perform the READ_ONCE(*csb_write). */ rmb(); /* Remember who was last running under the timer */ prev = inactive; *prev = NULL; do { bool promote; u64 csb; if (++head == num_entries) head = 0; /* * We are flying near dragons again. * * We hold a reference to the request in execlist_port[] * but no more than that. We are operating in softirq * context and so cannot hold any mutex or sleep. That * prevents us stopping the requests we are processing * in port[] from being retired simultaneously (the * breadcrumb will be complete before we see the * context-switch). As we only hold the reference to the * request, any pointer chasing underneath the request * is subject to a potential use-after-free. Thus we * store all of the bookkeeping within port[] as * required, and avoid using unguarded pointers beneath * request itself. The same applies to the atomic * status notifier. */ csb = csb_read(engine, buf + head); ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n", head, upper_32_bits(csb), lower_32_bits(csb)); if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) promote = xehp_csb_parse(csb); else if (GRAPHICS_VER(engine->i915) >= 12) promote = gen12_csb_parse(csb); else promote = gen8_csb_parse(csb); if (promote) { struct i915_request * const *old = execlists->active; if (GEM_WARN_ON(!*execlists->pending)) { execlists->error_interrupt |= ERROR_CSB; break; } ring_set_paused(engine, 0); /* Point active to the new ELSP; prevent overwriting */ WRITE_ONCE(execlists->active, execlists->pending); smp_wmb(); /* notify execlists_active() */ /* cancel old inflight, prepare for switch */ trace_ports(execlists, "preempted", old); while (*old) *inactive++ = *old++; /* switch pending to inflight */ GEM_BUG_ON(!assert_pending_valid(execlists, "promote")); copy_ports(execlists->inflight, execlists->pending, execlists_num_ports(execlists)); smp_wmb(); /* complete the seqlock */ WRITE_ONCE(execlists->active, execlists->inflight); /* XXX Magic delay for tgl */ ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR); WRITE_ONCE(execlists->pending[0], NULL); } else { if (GEM_WARN_ON(!*execlists->active)) { execlists->error_interrupt |= ERROR_CSB; break; } /* port0 completed, advanced to port1 */ trace_ports(execlists, "completed", execlists->active); /* * We rely on the hardware being strongly * ordered, that the breadcrumb write is * coherent (visible from the CPU) before the * user interrupt is processed. One might assume * that the breadcrumb write being before the * user interrupt and the CS event for the context * switch would therefore be before the CS event * itself... */ if (GEM_SHOW_DEBUG() && !__i915_request_is_complete(*execlists->active)) { struct i915_request *rq = *execlists->active; const u32 *regs __maybe_unused = rq->context->lrc_reg_state; ENGINE_TRACE(engine, "context completed before request!\n"); ENGINE_TRACE(engine, "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n", ENGINE_READ(engine, RING_START), ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR, ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR, ENGINE_READ(engine, RING_CTL), ENGINE_READ(engine, RING_MI_MODE)); ENGINE_TRACE(engine, "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ", i915_ggtt_offset(rq->ring->vma), rq->head, rq->tail, rq->fence.context, lower_32_bits(rq->fence.seqno), hwsp_seqno(rq)); ENGINE_TRACE(engine, "ctx:{start:%08x, head:%04x, tail:%04x}, ", regs[CTX_RING_START], regs[CTX_RING_HEAD], regs[CTX_RING_TAIL]); } *inactive++ = *execlists->active++; GEM_BUG_ON(execlists->active - execlists->inflight > execlists_num_ports(execlists)); } } while (head != tail); /* * Gen11 has proven to fail wrt global observation point between * entry and tail update, failing on the ordering and thus * we see an old entry in the context status buffer. * * Forcibly evict out entries for the next gpu csb update, * to increase the odds that we get a fresh entries with non * working hardware. The cost for doing so comes out mostly with * the wash as hardware, working or not, will need to do the * invalidation before. */ drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0])); /* * We assume that any event reflects a change in context flow * and merits a fresh timeslice. We reinstall the timer after * inspecting the queue to see if we need to resumbit. */ if (*prev != *execlists->active) { /* elide lite-restores */ struct intel_context *prev_ce = NULL, *active_ce = NULL; /* * Note the inherent discrepancy between the HW runtime, * recorded as part of the context switch, and the CPU * adjustment for active contexts. We have to hope that * the delay in processing the CS event is very small * and consistent. It works to our advantage to have * the CPU adjustment _undershoot_ (i.e. start later than) * the CS timestamp so we never overreport the runtime * and correct overselves later when updating from HW. */ if (*prev) prev_ce = (*prev)->context; if (*execlists->active) active_ce = (*execlists->active)->context; if (prev_ce != active_ce) { if (prev_ce) lrc_runtime_stop(prev_ce); if (active_ce) lrc_runtime_start(active_ce); } new_timeslice(execlists); } return inactive; } static void post_process_csb(struct i915_request **port, struct i915_request **last) { while (port != last) execlists_schedule_out(*port++); } static void __execlists_hold(struct i915_request *rq) { LIST_HEAD(list); do { struct i915_dependency *p; if (i915_request_is_active(rq)) __i915_request_unsubmit(rq); clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); list_move_tail(&rq->sched.link, &rq->engine->sched_engine->hold); i915_request_set_hold(rq); RQ_TRACE(rq, "on hold\n"); for_each_waiter(p, rq) { struct i915_request *w = container_of(p->waiter, typeof(*w), sched); if (p->flags & I915_DEPENDENCY_WEAK) continue; /* Leave semaphores spinning on the other engines */ if (w->engine != rq->engine) continue; if (!i915_request_is_ready(w)) continue; if (__i915_request_is_complete(w)) continue; if (i915_request_on_hold(w)) continue; list_move_tail(&w->sched.link, &list); } rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); } while (rq); } static bool execlists_hold(struct intel_engine_cs *engine, struct i915_request *rq) { if (i915_request_on_hold(rq)) return false; spin_lock_irq(&engine->sched_engine->lock); if (__i915_request_is_complete(rq)) { /* too late! */ rq = NULL; goto unlock; } /* * Transfer this request onto the hold queue to prevent it * being resumbitted to HW (and potentially completed) before we have * released it. Since we may have already submitted following * requests, we need to remove those as well. */ GEM_BUG_ON(i915_request_on_hold(rq)); GEM_BUG_ON(rq->engine != engine); __execlists_hold(rq); GEM_BUG_ON(list_empty(&engine->sched_engine->hold)); unlock: spin_unlock_irq(&engine->sched_engine->lock); return rq; } static bool hold_request(const struct i915_request *rq) { struct i915_dependency *p; bool result = false; /* * If one of our ancestors is on hold, we must also be on hold, * otherwise we will bypass it and execute before it. */ rcu_read_lock(); for_each_signaler(p, rq) { const struct i915_request *s = container_of(p->signaler, typeof(*s), sched); if (s->engine != rq->engine) continue; result = i915_request_on_hold(s); if (result) break; } rcu_read_unlock(); return result; } static void __execlists_unhold(struct i915_request *rq) { LIST_HEAD(list); do { struct i915_dependency *p; RQ_TRACE(rq, "hold release\n"); GEM_BUG_ON(!i915_request_on_hold(rq)); GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit)); i915_request_clear_hold(rq); list_move_tail(&rq->sched.link, i915_sched_lookup_priolist(rq->engine->sched_engine, rq_prio(rq))); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); /* Also release any children on this engine that are ready */ for_each_waiter(p, rq) { struct i915_request *w = container_of(p->waiter, typeof(*w), sched); if (p->flags & I915_DEPENDENCY_WEAK) continue; if (w->engine != rq->engine) continue; if (!i915_request_on_hold(w)) continue; /* Check that no other parents are also on hold */ if (hold_request(w)) continue; list_move_tail(&w->sched.link, &list); } rq = list_first_entry_or_null(&list, typeof(*rq), sched.link); } while (rq); } static void execlists_unhold(struct intel_engine_cs *engine, struct i915_request *rq) { spin_lock_irq(&engine->sched_engine->lock); /* * Move this request back to the priority queue, and all of its * children and grandchildren that were suspended along with it. */ __execlists_unhold(rq); if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) { engine->sched_engine->queue_priority_hint = rq_prio(rq); tasklet_hi_schedule(&engine->sched_engine->tasklet); } spin_unlock_irq(&engine->sched_engine->lock); } struct execlists_capture { struct work_struct work; struct i915_request *rq; struct i915_gpu_coredump *error; }; static void execlists_capture_work(struct work_struct *work) { struct execlists_capture *cap = container_of(work, typeof(*cap), work); const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL | __GFP_NOWARN; struct intel_engine_cs *engine = cap->rq->engine; struct intel_gt_coredump *gt = cap->error->gt; struct intel_engine_capture_vma *vma; /* Compress all the objects attached to the request, slow! */ vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp); if (vma) { struct i915_vma_compress *compress = i915_vma_capture_prepare(gt); intel_engine_coredump_add_vma(gt->engine, vma, compress); i915_vma_capture_finish(gt, compress); } gt->simulated = gt->engine->simulated; cap->error->simulated = gt->simulated; /* Publish the error state, and announce it to the world */ i915_error_state_store(cap->error); i915_gpu_coredump_put(cap->error); /* Return this request and all that depend upon it for signaling */ execlists_unhold(engine, cap->rq); i915_request_put(cap->rq); kfree(cap); } static struct execlists_capture *capture_regs(struct intel_engine_cs *engine) { const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN; struct execlists_capture *cap; cap = kmalloc(sizeof(*cap), gfp); if (!cap) return NULL; cap->error = i915_gpu_coredump_alloc(engine->i915, gfp); if (!cap->error) goto err_cap; cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE); if (!cap->error->gt) goto err_gpu; cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE); if (!cap->error->gt->engine) goto err_gt; cap->error->gt->engine->hung = true; return cap; err_gt: kfree(cap->error->gt); err_gpu: kfree(cap->error); err_cap: kfree(cap); return NULL; } static struct i915_request * active_context(struct intel_engine_cs *engine, u32 ccid) { const struct intel_engine_execlists * const el = &engine->execlists; struct i915_request * const *port, *rq; /* * Use the most recent result from process_csb(), but just in case * we trigger an error (via interrupt) before the first CS event has * been written, peek at the next submission. */ for (port = el->active; (rq = *port); port++) { if (rq->context->lrc.ccid == ccid) { ENGINE_TRACE(engine, "ccid:%x found at active:%zd\n", ccid, port - el->active); return rq; } } for (port = el->pending; (rq = *port); port++) { if (rq->context->lrc.ccid == ccid) { ENGINE_TRACE(engine, "ccid:%x found at pending:%zd\n", ccid, port - el->pending); return rq; } } ENGINE_TRACE(engine, "ccid:%x not found\n", ccid); return NULL; } static u32 active_ccid(struct intel_engine_cs *engine) { return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI); } static void execlists_capture(struct intel_engine_cs *engine) { struct drm_i915_private *i915 = engine->i915; struct execlists_capture *cap; if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)) return; /* * We need to _quickly_ capture the engine state before we reset. * We are inside an atomic section (softirq) here and we are delaying * the forced preemption event. */ cap = capture_regs(engine); if (!cap) return; spin_lock_irq(&engine->sched_engine->lock); cap->rq = active_context(engine, active_ccid(engine)); if (cap->rq) { cap->rq = active_request(cap->rq->context->timeline, cap->rq); cap->rq = i915_request_get_rcu(cap->rq); } spin_unlock_irq(&engine->sched_engine->lock); if (!cap->rq) goto err_free; /* * Remove the request from the execlists queue, and take ownership * of the request. We pass it to our worker who will _slowly_ compress * all the pages the _user_ requested for debugging their batch, after * which we return it to the queue for signaling. * * By removing them from the execlists queue, we also remove the * requests from being processed by __unwind_incomplete_requests() * during the intel_engine_reset(), and so they will *not* be replayed * afterwards. * * Note that because we have not yet reset the engine at this point, * it is possible for the request that we have identified as being * guilty, did in fact complete and we will then hit an arbitration * point allowing the outstanding preemption to succeed. The likelihood * of that is very low (as capturing of the engine registers should be * fast enough to run inside an irq-off atomic section!), so we will * simply hold that request accountable for being non-preemptible * long enough to force the reset. */ if (!execlists_hold(engine, cap->rq)) goto err_rq; INIT_WORK(&cap->work, execlists_capture_work); queue_work(i915->unordered_wq, &cap->work); return; err_rq: i915_request_put(cap->rq); err_free: i915_gpu_coredump_put(cap->error); kfree(cap); } static void execlists_reset(struct intel_engine_cs *engine, const char *msg) { const unsigned int bit = I915_RESET_ENGINE + engine->id; unsigned long *lock = &engine->gt->reset.flags; if (!intel_has_reset_engine(engine->gt)) return; if (test_and_set_bit(bit, lock)) return; ENGINE_TRACE(engine, "reset for %s\n", msg); /* Mark this tasklet as disabled to avoid waiting for it to complete */ tasklet_disable_nosync(&engine->sched_engine->tasklet); ring_set_paused(engine, 1); /* Freeze the current request in place */ execlists_capture(engine); intel_engine_reset(engine, msg); tasklet_enable(&engine->sched_engine->tasklet); clear_and_wake_up_bit(bit, lock); } static bool preempt_timeout(const struct intel_engine_cs *const engine) { const struct timer_list *t = &engine->execlists.preempt; if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT) return false; if (!timer_expired(t)) return false; return engine->execlists.pending[0]; } /* * Check the unread Context Status Buffers and manage the submission of new * contexts to the ELSP accordingly. */ static void execlists_submission_tasklet(struct tasklet_struct *t) { struct i915_sched_engine *sched_engine = from_tasklet(sched_engine, t, tasklet); struct intel_engine_cs * const engine = sched_engine->private_data; struct i915_request *post[2 * EXECLIST_MAX_PORTS]; struct i915_request **inactive; rcu_read_lock(); inactive = process_csb(engine, post); GEM_BUG_ON(inactive - post > ARRAY_SIZE(post)); if (unlikely(preempt_timeout(engine))) { const struct i915_request *rq = *engine->execlists.active; /* * If after the preempt-timeout expired, we are still on the * same active request/context as before we initiated the * preemption, reset the engine. * * However, if we have processed a CS event to switch contexts, * but not yet processed the CS event for the pending * preemption, reset the timer allowing the new context to * gracefully exit. */ cancel_timer(&engine->execlists.preempt); if (rq == engine->execlists.preempt_target) engine->execlists.error_interrupt |= ERROR_PREEMPT; else set_timer_ms(&engine->execlists.preempt, active_preempt_timeout(engine, rq)); } if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) { const char *msg; /* Generate the error message in priority wrt to the user! */ if (engine->execlists.error_interrupt & GENMASK(15, 0)) msg = "CS error"; /* thrown by a user payload */ else if (engine->execlists.error_interrupt & ERROR_CSB) msg = "invalid CSB event"; else if (engine->execlists.error_interrupt & ERROR_PREEMPT) msg = "preemption time out"; else msg = "internal error"; engine->execlists.error_interrupt = 0; execlists_reset(engine, msg); } if (!engine->execlists.pending[0]) { execlists_dequeue_irq(engine); start_timeslice(engine); } post_process_csb(post, inactive); rcu_read_unlock(); } static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir) { bool tasklet = false; if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) { u32 eir; /* Upper 16b are the enabling mask, rsvd for internal errors */ eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0); ENGINE_TRACE(engine, "CS error: %x\n", eir); /* Disable the error interrupt until after the reset */ if (likely(eir)) { ENGINE_WRITE(engine, RING_EMR, ~0u); ENGINE_WRITE(engine, RING_EIR, eir); WRITE_ONCE(engine->execlists.error_interrupt, eir); tasklet = true; } } if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) { WRITE_ONCE(engine->execlists.yield, ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI)); ENGINE_TRACE(engine, "semaphore yield: %08x\n", engine->execlists.yield); if (del_timer(&engine->execlists.timer)) tasklet = true; } if (iir & GT_CONTEXT_SWITCH_INTERRUPT) tasklet = true; if (iir & GT_RENDER_USER_INTERRUPT) intel_engine_signal_breadcrumbs(engine); if (tasklet) tasklet_hi_schedule(&engine->sched_engine->tasklet); } static void __execlists_kick(struct intel_engine_execlists *execlists) { struct intel_engine_cs *engine = container_of(execlists, typeof(*engine), execlists); /* Kick the tasklet for some interrupt coalescing and reset handling */ tasklet_hi_schedule(&engine->sched_engine->tasklet); } #define execlists_kick(t, member) \ __execlists_kick(container_of(t, struct intel_engine_execlists, member)) static void execlists_timeslice(struct timer_list *timer) { execlists_kick(timer, timer); } static void execlists_preempt(struct timer_list *timer) { execlists_kick(timer, preempt); } static void queue_request(struct intel_engine_cs *engine, struct i915_request *rq) { GEM_BUG_ON(!list_empty(&rq->sched.link)); list_add_tail(&rq->sched.link, i915_sched_lookup_priolist(engine->sched_engine, rq_prio(rq))); set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); } static bool submit_queue(struct intel_engine_cs *engine, const struct i915_request *rq) { struct i915_sched_engine *sched_engine = engine->sched_engine; if (rq_prio(rq) <= sched_engine->queue_priority_hint) return false; sched_engine->queue_priority_hint = rq_prio(rq); return true; } static bool ancestor_on_hold(const struct intel_engine_cs *engine, const struct i915_request *rq) { GEM_BUG_ON(i915_request_on_hold(rq)); return !list_empty(&engine->sched_engine->hold) && hold_request(rq); } static void execlists_submit_request(struct i915_request *request) { struct intel_engine_cs *engine = request->engine; unsigned long flags; /* Will be called from irq-context when using foreign fences. */ spin_lock_irqsave(&engine->sched_engine->lock, flags); if (unlikely(ancestor_on_hold(engine, request))) { RQ_TRACE(request, "ancestor on hold\n"); list_add_tail(&request->sched.link, &engine->sched_engine->hold); i915_request_set_hold(request); } else { queue_request(engine, request); GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine)); GEM_BUG_ON(list_empty(&request->sched.link)); if (submit_queue(engine, request)) __execlists_kick(&engine->execlists); } spin_unlock_irqrestore(&engine->sched_engine->lock, flags); } static int __execlists_context_pre_pin(struct intel_context *ce, struct intel_engine_cs *engine, struct i915_gem_ww_ctx *ww, void **vaddr) { int err; err = lrc_pre_pin(ce, engine, ww, vaddr); if (err) return err; if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) { lrc_init_state(ce, engine, *vaddr); __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size); } return 0; } static int execlists_context_pre_pin(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void **vaddr) { return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr); } static int execlists_context_pin(struct intel_context *ce, void *vaddr) { return lrc_pin(ce, ce->engine, vaddr); } static int execlists_context_alloc(struct intel_context *ce) { return lrc_alloc(ce, ce->engine); } static void execlists_context_cancel_request(struct intel_context *ce, struct i915_request *rq) { struct intel_engine_cs *engine = NULL; i915_request_active_engine(rq, &engine); if (engine && intel_engine_pulse(engine)) intel_gt_handle_error(engine->gt, engine->mask, 0, "request cancellation by %s", current->comm); } static struct intel_context * execlists_create_parallel(struct intel_engine_cs **engines, unsigned int num_siblings, unsigned int width) { struct intel_context *parent = NULL, *ce, *err; int i; GEM_BUG_ON(num_siblings != 1); for (i = 0; i < width; ++i) { ce = intel_context_create(engines[i]); if (IS_ERR(ce)) { err = ce; goto unwind; } if (i == 0) parent = ce; else intel_context_bind_parent_child(parent, ce); } parent->parallel.fence_context = dma_fence_context_alloc(1); intel_context_set_nopreempt(parent); for_each_child(parent, ce) intel_context_set_nopreempt(ce); return parent; unwind: if (parent) intel_context_put(parent); return err; } static const struct intel_context_ops execlists_context_ops = { .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES, .alloc = execlists_context_alloc, .cancel_request = execlists_context_cancel_request, .pre_pin = execlists_context_pre_pin, .pin = execlists_context_pin, .unpin = lrc_unpin, .post_unpin = lrc_post_unpin, .enter = intel_context_enter_engine, .exit = intel_context_exit_engine, .reset = lrc_reset, .destroy = lrc_destroy, .create_parallel = execlists_create_parallel, .create_virtual = execlists_create_virtual, }; static int emit_pdps(struct i915_request *rq) { const struct intel_engine_cs * const engine = rq->engine; struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm); int err, i; u32 *cs; GEM_BUG_ON(intel_vgpu_active(rq->i915)); /* * Beware ye of the dragons, this sequence is magic! * * Small changes to this sequence can cause anything from * GPU hangs to forcewake errors and machine lockups! */ cs = intel_ring_begin(rq, 2); if (IS_ERR(cs)) return PTR_ERR(cs); *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; *cs++ = MI_NOOP; intel_ring_advance(rq, cs); /* Flush any residual operations from the context load */ err = engine->emit_flush(rq, EMIT_FLUSH); if (err) return err; /* Magic required to prevent forcewake errors! */ err = engine->emit_flush(rq, EMIT_INVALIDATE); if (err) return err; cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2); if (IS_ERR(cs)) return PTR_ERR(cs); /* Ensure the LRI have landed before we invalidate & continue */ *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED; for (i = GEN8_3LVL_PDPES; i--; ) { const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i); u32 base = engine->mmio_base; *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i)); *cs++ = upper_32_bits(pd_daddr); *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i)); *cs++ = lower_32_bits(pd_daddr); } *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; intel_ring_advance(rq, cs); intel_ring_advance(rq, cs); return 0; } static int execlists_request_alloc(struct i915_request *request) { int ret; GEM_BUG_ON(!intel_context_is_pinned(request->context)); /* * Flush enough space to reduce the likelihood of waiting after * we start building the request - in which case we will just * have to repeat work. */ request->reserved_space += EXECLISTS_REQUEST_SIZE; /* * Note that after this point, we have committed to using * this request as it is being used to both track the * state of engine initialisation and liveness of the * golden renderstate above. Think twice before you try * to cancel/unwind this request now. */ if (!i915_vm_is_4lvl(request->context->vm)) { ret = emit_pdps(request); if (ret) return ret; } /* Unconditionally invalidate GPU caches and TLBs. */ ret = request->engine->emit_flush(request, EMIT_INVALIDATE); if (ret) return ret; request->reserved_space -= EXECLISTS_REQUEST_SIZE; return 0; } static void reset_csb_pointers(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; const unsigned int reset_value = execlists->csb_size - 1; ring_set_paused(engine, 0); /* * Sometimes Icelake forgets to reset its pointers on a GPU reset. * Bludgeon them with a mmio update to be sure. */ ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR, 0xffff << 16 | reset_value << 8 | reset_value); ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR); /* * After a reset, the HW starts writing into CSB entry [0]. We * therefore have to set our HEAD pointer back one entry so that * the *first* entry we check is entry 0. To complicate this further, * as we don't wait for the first interrupt after reset, we have to * fake the HW write to point back to the last entry so that our * inline comparison of our cached head position against the last HW * write works even before the first interrupt. */ execlists->csb_head = reset_value; WRITE_ONCE(*execlists->csb_write, reset_value); wmb(); /* Make sure this is visible to HW (paranoia?) */ /* Check that the GPU does indeed update the CSB entries! */ memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64)); drm_clflush_virt_range(execlists->csb_status, execlists->csb_size * sizeof(execlists->csb_status)); /* Once more for luck and our trusty paranoia */ ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR, 0xffff << 16 | reset_value << 8 | reset_value); ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR); GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value); } static void sanitize_hwsp(struct intel_engine_cs *engine) { struct intel_timeline *tl; list_for_each_entry(tl, &engine->status_page.timelines, engine_link) intel_timeline_reset_seqno(tl); } static void execlists_sanitize(struct intel_engine_cs *engine) { GEM_BUG_ON(execlists_active(&engine->execlists)); /* * Poison residual state on resume, in case the suspend didn't! * * We have to assume that across suspend/resume (or other loss * of control) that the contents of our pinned buffers has been * lost, replaced by garbage. Since this doesn't always happen, * let's poison such state so that we more quickly spot when * we falsely assume it has been preserved. */ if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); reset_csb_pointers(engine); /* * The kernel_context HWSP is stored in the status_page. As above, * that may be lost on resume/initialisation, and so we need to * reset the value in the HWSP. */ sanitize_hwsp(engine); /* And scrub the dirty cachelines for the HWSP */ drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); intel_engine_reset_pinned_contexts(engine); } static void enable_error_interrupt(struct intel_engine_cs *engine) { u32 status; engine->execlists.error_interrupt = 0; ENGINE_WRITE(engine, RING_EMR, ~0u); ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */ status = ENGINE_READ(engine, RING_ESR); if (unlikely(status)) { drm_err(&engine->i915->drm, "engine '%s' resumed still in error: %08x\n", engine->name, status); __intel_gt_reset(engine->gt, engine->mask); } /* * On current gen8+, we have 2 signals to play with * * - I915_ERROR_INSTUCTION (bit 0) * * Generate an error if the command parser encounters an invalid * instruction * * This is a fatal error. * * - CP_PRIV (bit 2) * * Generate an error on privilege violation (where the CP replaces * the instruction with a no-op). This also fires for writes into * read-only scratch pages. * * This is a non-fatal error, parsing continues. * * * there are a few others defined for odd HW that we do not use * * Since CP_PRIV fires for cases where we have chosen to ignore the * error (as the HW is validating and suppressing the mistakes), we * only unmask the instruction error bit. */ ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION); } static void enable_execlists(struct intel_engine_cs *engine) { u32 mode; assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ if (GRAPHICS_VER(engine->i915) >= 11) mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE); else mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE); ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode); ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); ENGINE_WRITE_FW(engine, RING_HWS_PGA, i915_ggtt_offset(engine->status_page.vma)); ENGINE_POSTING_READ(engine, RING_HWS_PGA); enable_error_interrupt(engine); } static int execlists_resume(struct intel_engine_cs *engine) { intel_mocs_init_engine(engine); intel_breadcrumbs_reset(engine->breadcrumbs); enable_execlists(engine); if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) xehp_enable_ccs_engines(engine); return 0; } static void execlists_reset_prepare(struct intel_engine_cs *engine) { ENGINE_TRACE(engine, "depth<-%d\n", atomic_read(&engine->sched_engine->tasklet.count)); /* * Prevent request submission to the hardware until we have * completed the reset in i915_gem_reset_finish(). If a request * is completed by one engine, it may then queue a request * to a second via its execlists->tasklet *just* as we are * calling engine->resume() and also writing the ELSP. * Turning off the execlists->tasklet until the reset is over * prevents the race. */ __tasklet_disable_sync_once(&engine->sched_engine->tasklet); GEM_BUG_ON(!reset_in_progress(engine)); /* * We stop engines, otherwise we might get failed reset and a * dead gpu (on elk). Also as modern gpu as kbl can suffer * from system hang if batchbuffer is progressing when * the reset is issued, regardless of READY_TO_RESET ack. * Thus assume it is best to stop engines on all gens * where we have a gpu reset. * * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES) * * FIXME: Wa for more modern gens needs to be validated */ ring_set_paused(engine, 1); intel_engine_stop_cs(engine); /* * Wa_22011802037: In addition to stopping the cs, we need * to wait for any pending mi force wakeups */ if (intel_engine_reset_needs_wa_22011802037(engine->gt)) intel_engine_wait_for_pending_mi_fw(engine); engine->execlists.reset_ccid = active_ccid(engine); } static struct i915_request ** reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive) { struct intel_engine_execlists * const execlists = &engine->execlists; drm_clflush_virt_range(execlists->csb_write, sizeof(execlists->csb_write[0])); inactive = process_csb(engine, inactive); /* drain preemption events */ /* Following the reset, we need to reload the CSB read/write pointers */ reset_csb_pointers(engine); return inactive; } static void execlists_reset_active(struct intel_engine_cs *engine, bool stalled) { struct intel_context *ce; struct i915_request *rq; u32 head; /* * Save the currently executing context, even if we completed * its request, it was still running at the time of the * reset and will have been clobbered. */ rq = active_context(engine, engine->execlists.reset_ccid); if (!rq) return; ce = rq->context; GEM_BUG_ON(!i915_vma_is_pinned(ce->state)); if (__i915_request_is_complete(rq)) { /* Idle context; tidy up the ring so we can restart afresh */ head = intel_ring_wrap(ce->ring, rq->tail); goto out_replay; } /* We still have requests in-flight; the engine should be active */ GEM_BUG_ON(!intel_engine_pm_is_awake(engine)); /* Context has requests still in-flight; it should not be idle! */ GEM_BUG_ON(i915_active_is_idle(&ce->active)); rq = active_request(ce->timeline, rq); head = intel_ring_wrap(ce->ring, rq->head); GEM_BUG_ON(head == ce->ring->tail); /* * If this request hasn't started yet, e.g. it is waiting on a * semaphore, we need to avoid skipping the request or else we * break the signaling chain. However, if the context is corrupt * the request will not restart and we will be stuck with a wedged * device. It is quite often the case that if we issue a reset * while the GPU is loading the context image, that the context * image becomes corrupt. * * Otherwise, if we have not started yet, the request should replay * perfectly and we do not need to flag the result as being erroneous. */ if (!__i915_request_has_started(rq)) goto out_replay; /* * If the request was innocent, we leave the request in the ELSP * and will try to replay it on restarting. The context image may * have been corrupted by the reset, in which case we may have * to service a new GPU hang, but more likely we can continue on * without impact. * * If the request was guilty, we presume the context is corrupt * and have to at least restore the RING register in the context * image back to the expected values to skip over the guilty request. */ __i915_request_reset(rq, stalled); /* * We want a simple context + ring to execute the breadcrumb update. * We cannot rely on the context being intact across the GPU hang, * so clear it and rebuild just what we need for the breadcrumb. * All pending requests for this context will be zapped, and any * future request will be after userspace has had the opportunity * to recreate its own state. */ out_replay: ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n", head, ce->ring->tail); lrc_reset_regs(ce, engine); ce->lrc.lrca = lrc_update_regs(ce, engine, head); } static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled) { struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_request *post[2 * EXECLIST_MAX_PORTS]; struct i915_request **inactive; rcu_read_lock(); inactive = reset_csb(engine, post); execlists_reset_active(engine, true); inactive = cancel_port_requests(execlists, inactive); post_process_csb(post, inactive); rcu_read_unlock(); } static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled) { unsigned long flags; ENGINE_TRACE(engine, "\n"); /* Process the csb, find the guilty context and throw away */ execlists_reset_csb(engine, stalled); /* Push back any incomplete requests for replay after the reset. */ rcu_read_lock(); spin_lock_irqsave(&engine->sched_engine->lock, flags); __unwind_incomplete_requests(engine); spin_unlock_irqrestore(&engine->sched_engine->lock, flags); rcu_read_unlock(); } static void nop_submission_tasklet(struct tasklet_struct *t) { struct i915_sched_engine *sched_engine = from_tasklet(sched_engine, t, tasklet); struct intel_engine_cs * const engine = sched_engine->private_data; /* The driver is wedged; don't process any more events. */ WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN); } static void execlists_reset_cancel(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; struct i915_sched_engine * const sched_engine = engine->sched_engine; struct i915_request *rq, *rn; struct rb_node *rb; unsigned long flags; ENGINE_TRACE(engine, "\n"); /* * Before we call engine->cancel_requests(), we should have exclusive * access to the submission state. This is arranged for us by the * caller disabling the interrupt generation, the tasklet and other * threads that may then access the same state, giving us a free hand * to reset state. However, we still need to let lockdep be aware that * we know this state may be accessed in hardirq context, so we * disable the irq around this manipulation and we want to keep * the spinlock focused on its duties and not accidentally conflate * coverage to the submission's irq state. (Similarly, although we * shouldn't need to disable irq around the manipulation of the * submission's irq state, we also wish to remind ourselves that * it is irq state.) */ execlists_reset_csb(engine, true); rcu_read_lock(); spin_lock_irqsave(&engine->sched_engine->lock, flags); /* Mark all executing requests as skipped. */ list_for_each_entry(rq, &engine->sched_engine->requests, sched.link) i915_request_put(i915_request_mark_eio(rq)); intel_engine_signal_breadcrumbs(engine); /* Flush the queued requests to the timeline list (for retiring). */ while ((rb = rb_first_cached(&sched_engine->queue))) { struct i915_priolist *p = to_priolist(rb); priolist_for_each_request_consume(rq, rn, p) { if (i915_request_mark_eio(rq)) { __i915_request_submit(rq); i915_request_put(rq); } } rb_erase_cached(&p->node, &sched_engine->queue); i915_priolist_free(p); } /* On-hold requests will be flushed to timeline upon their release */ list_for_each_entry(rq, &sched_engine->hold, sched.link) i915_request_put(i915_request_mark_eio(rq)); /* Cancel all attached virtual engines */ while ((rb = rb_first_cached(&execlists->virtual))) { struct virtual_engine *ve = rb_entry(rb, typeof(*ve), nodes[engine->id].rb); rb_erase_cached(rb, &execlists->virtual); RB_CLEAR_NODE(rb); spin_lock(&ve->base.sched_engine->lock); rq = fetch_and_zero(&ve->request); if (rq) { if (i915_request_mark_eio(rq)) { rq->engine = engine; __i915_request_submit(rq); i915_request_put(rq); } i915_request_put(rq); ve->base.sched_engine->queue_priority_hint = INT_MIN; } spin_unlock(&ve->base.sched_engine->lock); } /* Remaining _unready_ requests will be nop'ed when submitted */ sched_engine->queue_priority_hint = INT_MIN; sched_engine->queue = RB_ROOT_CACHED; GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet)); engine->sched_engine->tasklet.callback = nop_submission_tasklet; spin_unlock_irqrestore(&engine->sched_engine->lock, flags); rcu_read_unlock(); } static void execlists_reset_finish(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; /* * After a GPU reset, we may have requests to replay. Do so now while * we still have the forcewake to be sure that the GPU is not allowed * to sleep before we restart and reload a context. * * If the GPU reset fails, the engine may still be alive with requests * inflight. We expect those to complete, or for the device to be * reset as the next level of recovery, and as a final resort we * will declare the device wedged. */ GEM_BUG_ON(!reset_in_progress(engine)); /* And kick in case we missed a new request submission. */ if (__tasklet_enable(&engine->sched_engine->tasklet)) __execlists_kick(execlists); ENGINE_TRACE(engine, "depth->%d\n", atomic_read(&engine->sched_engine->tasklet.count)); } static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~(engine->irq_enable_mask | engine->irq_keep_mask)); ENGINE_POSTING_READ(engine, RING_IMR); } static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine) { ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask); } static void execlists_park(struct intel_engine_cs *engine) { cancel_timer(&engine->execlists.timer); cancel_timer(&engine->execlists.preempt); /* Reset upon idling, or we may delay the busy wakeup. */ WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN); } static void add_to_engine(struct i915_request *rq) { lockdep_assert_held(&rq->engine->sched_engine->lock); list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests); } static void remove_from_engine(struct i915_request *rq) { struct intel_engine_cs *engine, *locked; /* * Virtual engines complicate acquiring the engine timeline lock, * as their rq->engine pointer is not stable until under that * engine lock. The simple ploy we use is to take the lock then * check that the rq still belongs to the newly locked engine. */ locked = READ_ONCE(rq->engine); spin_lock_irq(&locked->sched_engine->lock); while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) { spin_unlock(&locked->sched_engine->lock); spin_lock(&engine->sched_engine->lock); locked = engine; } list_del_init(&rq->sched.link); clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags); /* Prevent further __await_execution() registering a cb, then flush */ set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); spin_unlock_irq(&locked->sched_engine->lock); i915_request_notify_execute_cb_imm(rq); } static bool can_preempt(struct intel_engine_cs *engine) { if (GRAPHICS_VER(engine->i915) > 8) return true; /* GPGPU on bdw requires extra w/a; not implemented */ return engine->class != RENDER_CLASS; } static void kick_execlists(const struct i915_request *rq, int prio) { struct intel_engine_cs *engine = rq->engine; struct i915_sched_engine *sched_engine = engine->sched_engine; const struct i915_request *inflight; /* * We only need to kick the tasklet once for the high priority * new context we add into the queue. */ if (prio <= sched_engine->queue_priority_hint) return; rcu_read_lock(); /* Nothing currently active? We're overdue for a submission! */ inflight = execlists_active(&engine->execlists); if (!inflight) goto unlock; /* * If we are already the currently executing context, don't * bother evaluating if we should preempt ourselves. */ if (inflight->context == rq->context) goto unlock; ENGINE_TRACE(engine, "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n", prio, rq->fence.context, rq->fence.seqno, inflight->fence.context, inflight->fence.seqno, inflight->sched.attr.priority); sched_engine->queue_priority_hint = prio; /* * Allow preemption of low -> normal -> high, but we do * not allow low priority tasks to preempt other low priority * tasks under the impression that latency for low priority * tasks does not matter (as much as background throughput), * so kiss. */ if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight))) tasklet_hi_schedule(&sched_engine->tasklet); unlock: rcu_read_unlock(); } static void execlists_set_default_submission(struct intel_engine_cs *engine) { engine->submit_request = execlists_submit_request; engine->sched_engine->schedule = i915_schedule; engine->sched_engine->kick_backend = kick_execlists; engine->sched_engine->tasklet.callback = execlists_submission_tasklet; } static void execlists_shutdown(struct intel_engine_cs *engine) { /* Synchronise with residual timers and any softirq they raise */ del_timer_sync(&engine->execlists.timer); del_timer_sync(&engine->execlists.preempt); tasklet_kill(&engine->sched_engine->tasklet); } static void execlists_release(struct intel_engine_cs *engine) { engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ execlists_shutdown(engine); intel_engine_cleanup_common(engine); lrc_fini_wa_ctx(engine); } static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) { struct intel_engine_execlists_stats *stats = &engine->stats.execlists; ktime_t total = stats->total; /* * If the engine is executing something at the moment * add it to the total. */ *now = ktime_get(); if (READ_ONCE(stats->active)) total = ktime_add(total, ktime_sub(*now, stats->start)); return total; } static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) { struct intel_engine_execlists_stats *stats = &engine->stats.execlists; unsigned int seq; ktime_t total; do { seq = read_seqcount_begin(&stats->lock); total = __execlists_engine_busyness(engine, now); } while (read_seqcount_retry(&stats->lock, seq)); return total; } static void logical_ring_default_vfuncs(struct intel_engine_cs *engine) { /* Default vfuncs which can be overridden by each engine. */ engine->resume = execlists_resume; engine->cops = &execlists_context_ops; engine->request_alloc = execlists_request_alloc; engine->add_active_request = add_to_engine; engine->remove_active_request = remove_from_engine; engine->reset.prepare = execlists_reset_prepare; engine->reset.rewind = execlists_reset_rewind; engine->reset.cancel = execlists_reset_cancel; engine->reset.finish = execlists_reset_finish; engine->park = execlists_park; engine->unpark = NULL; engine->emit_flush = gen8_emit_flush_xcs; engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; if (GRAPHICS_VER(engine->i915) >= 12) { engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; engine->emit_flush = gen12_emit_flush_xcs; } engine->set_default_submission = execlists_set_default_submission; if (GRAPHICS_VER(engine->i915) < 11) { engine->irq_enable = gen8_logical_ring_enable_irq; engine->irq_disable = gen8_logical_ring_disable_irq; } else { /* * TODO: On Gen11 interrupt masks need to be clear * to allow C6 entry. Keep interrupts enabled at * and take the hit of generating extra interrupts * until a more refined solution exists. */ } intel_engine_set_irq_handler(engine, execlists_irq_handler); engine->flags |= I915_ENGINE_SUPPORTS_STATS; if (!intel_vgpu_active(engine->i915)) { engine->flags |= I915_ENGINE_HAS_SEMAPHORES; if (can_preempt(engine)) { engine->flags |= I915_ENGINE_HAS_PREEMPTION; if (CONFIG_DRM_I915_TIMESLICE_DURATION) engine->flags |= I915_ENGINE_HAS_TIMESLICES; } } if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) { if (intel_engine_has_preemption(engine)) engine->emit_bb_start = xehp_emit_bb_start; else engine->emit_bb_start = xehp_emit_bb_start_noarb; } else { if (intel_engine_has_preemption(engine)) engine->emit_bb_start = gen8_emit_bb_start; else engine->emit_bb_start = gen8_emit_bb_start_noarb; } engine->busyness = execlists_engine_busyness; } static void logical_ring_default_irqs(struct intel_engine_cs *engine) { unsigned int shift = 0; if (GRAPHICS_VER(engine->i915) < 11) { const u8 irq_shifts[] = { [RCS0] = GEN8_RCS_IRQ_SHIFT, [BCS0] = GEN8_BCS_IRQ_SHIFT, [VCS0] = GEN8_VCS0_IRQ_SHIFT, [VCS1] = GEN8_VCS1_IRQ_SHIFT, [VECS0] = GEN8_VECS_IRQ_SHIFT, }; shift = irq_shifts[engine->id]; } engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift; engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift; engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift; engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift; } static void rcs_submission_override(struct intel_engine_cs *engine) { switch (GRAPHICS_VER(engine->i915)) { case 12: engine->emit_flush = gen12_emit_flush_rcs; engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; break; case 11: engine->emit_flush = gen11_emit_flush_rcs; engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; break; default: engine->emit_flush = gen8_emit_flush_rcs; engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; break; } } int intel_execlists_submission_setup(struct intel_engine_cs *engine) { struct intel_engine_execlists * const execlists = &engine->execlists; struct drm_i915_private *i915 = engine->i915; struct intel_uncore *uncore = engine->uncore; u32 base = engine->mmio_base; tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet); timer_setup(&engine->execlists.timer, execlists_timeslice, 0); timer_setup(&engine->execlists.preempt, execlists_preempt, 0); logical_ring_default_vfuncs(engine); logical_ring_default_irqs(engine); seqcount_init(&engine->stats.execlists.lock); if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) rcs_submission_override(engine); lrc_init_wa_ctx(engine); if (HAS_LOGICAL_RING_ELSQ(i915)) { execlists->submit_reg = intel_uncore_regs(uncore) + i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base)); execlists->ctrl_reg = intel_uncore_regs(uncore) + i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base)); engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore, RING_EXECLIST_CONTROL(engine->mmio_base), FW_REG_WRITE); } else { execlists->submit_reg = intel_uncore_regs(uncore) + i915_mmio_reg_offset(RING_ELSP(base)); } execlists->csb_status = (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; execlists->csb_write = &engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)]; if (GRAPHICS_VER(i915) < 11) execlists->csb_size = GEN8_CSB_ENTRIES; else execlists->csb_size = GEN11_CSB_ENTRIES; engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0); if (GRAPHICS_VER(engine->i915) >= 11 && GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) { execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32); execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32); } /* Finally, take ownership and responsibility for cleanup! */ engine->sanitize = execlists_sanitize; engine->release = execlists_release; return 0; } static struct list_head *virtual_queue(struct virtual_engine *ve) { return &ve->base.sched_engine->default_priolist.requests; } static void rcu_virtual_context_destroy(struct work_struct *wrk) { struct virtual_engine *ve = container_of(wrk, typeof(*ve), rcu.work); unsigned int n; GEM_BUG_ON(ve->context.inflight); /* Preempt-to-busy may leave a stale request behind. */ if (unlikely(ve->request)) { struct i915_request *old; spin_lock_irq(&ve->base.sched_engine->lock); old = fetch_and_zero(&ve->request); if (old) { GEM_BUG_ON(!__i915_request_is_complete(old)); __i915_request_submit(old); i915_request_put(old); } spin_unlock_irq(&ve->base.sched_engine->lock); } /* * Flush the tasklet in case it is still running on another core. * * This needs to be done before we remove ourselves from the siblings' * rbtrees as in the case it is running in parallel, it may reinsert * the rb_node into a sibling. */ tasklet_kill(&ve->base.sched_engine->tasklet); /* Decouple ourselves from the siblings, no more access allowed. */ for (n = 0; n < ve->num_siblings; n++) { struct intel_engine_cs *sibling = ve->siblings[n]; struct rb_node *node = &ve->nodes[sibling->id].rb; if (RB_EMPTY_NODE(node)) continue; spin_lock_irq(&sibling->sched_engine->lock); /* Detachment is lazily performed in the sched_engine->tasklet */ if (!RB_EMPTY_NODE(node)) rb_erase_cached(node, &sibling->execlists.virtual); spin_unlock_irq(&sibling->sched_engine->lock); } GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet)); GEM_BUG_ON(!list_empty(virtual_queue(ve))); lrc_fini(&ve->context); intel_context_fini(&ve->context); if (ve->base.breadcrumbs) intel_breadcrumbs_put(ve->base.breadcrumbs); if (ve->base.sched_engine) i915_sched_engine_put(ve->base.sched_engine); intel_engine_free_request_pool(&ve->base); kfree(ve); } static void virtual_context_destroy(struct kref *kref) { struct virtual_engine *ve = container_of(kref, typeof(*ve), context.ref); GEM_BUG_ON(!list_empty(&ve->context.signals)); /* * When destroying the virtual engine, we have to be aware that * it may still be in use from an hardirq/softirq context causing * the resubmission of a completed request (background completion * due to preempt-to-busy). Before we can free the engine, we need * to flush the submission code and tasklets that are still potentially * accessing the engine. Flushing the tasklets requires process context, * and since we can guard the resubmit onto the engine with an RCU read * lock, we can delegate the free of the engine to an RCU worker. */ INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy); queue_rcu_work(ve->context.engine->i915->unordered_wq, &ve->rcu); } static void virtual_engine_initial_hint(struct virtual_engine *ve) { int swp; /* * Pick a random sibling on starting to help spread the load around. * * New contexts are typically created with exactly the same order * of siblings, and often started in batches. Due to the way we iterate * the array of sibling when submitting requests, sibling[0] is * prioritised for dequeuing. If we make sure that sibling[0] is fairly * randomised across the system, we also help spread the load by the * first engine we inspect being different each time. * * NB This does not force us to execute on this engine, it will just * typically be the first we inspect for submission. */ swp = get_random_u32_below(ve->num_siblings); if (swp) swap(ve->siblings[swp], ve->siblings[0]); } static int virtual_context_alloc(struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); return lrc_alloc(ce, ve->siblings[0]); } static int virtual_context_pre_pin(struct intel_context *ce, struct i915_gem_ww_ctx *ww, void **vaddr) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); /* Note: we must use a real engine class for setting up reg state */ return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr); } static int virtual_context_pin(struct intel_context *ce, void *vaddr) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); return lrc_pin(ce, ve->siblings[0], vaddr); } static void virtual_context_enter(struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); unsigned int n; for (n = 0; n < ve->num_siblings; n++) intel_engine_pm_get(ve->siblings[n]); intel_timeline_enter(ce->timeline); } static void virtual_context_exit(struct intel_context *ce) { struct virtual_engine *ve = container_of(ce, typeof(*ve), context); unsigned int n; intel_timeline_exit(ce->timeline); for (n = 0; n < ve->num_siblings; n++) intel_engine_pm_put(ve->siblings[n]); } static struct intel_engine_cs * virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling) { struct virtual_engine *ve = to_virtual_engine(engine); if (sibling >= ve->num_siblings) return NULL; return ve->siblings[sibling]; } static const struct intel_context_ops virtual_context_ops = { .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES, .alloc = virtual_context_alloc, .cancel_request = execlists_context_cancel_request, .pre_pin = virtual_context_pre_pin, .pin = virtual_context_pin, .unpin = lrc_unpin, .post_unpin = lrc_post_unpin, .enter = virtual_context_enter, .exit = virtual_context_exit, .destroy = virtual_context_destroy, .get_sibling = virtual_get_sibling, }; static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve) { struct i915_request *rq; intel_engine_mask_t mask; rq = READ_ONCE(ve->request); if (!rq) return 0; /* The rq is ready for submission; rq->execution_mask is now stable. */ mask = rq->execution_mask; if (unlikely(!mask)) { /* Invalid selection, submit to a random engine in error */ i915_request_set_error_once(rq, -ENODEV); mask = ve->siblings[0]->mask; } ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n", rq->fence.context, rq->fence.seqno, mask, ve->base.sched_engine->queue_priority_hint); return mask; } static void virtual_submission_tasklet(struct tasklet_struct *t) { struct i915_sched_engine *sched_engine = from_tasklet(sched_engine, t, tasklet); struct virtual_engine * const ve = (struct virtual_engine *)sched_engine->private_data; const int prio = READ_ONCE(sched_engine->queue_priority_hint); intel_engine_mask_t mask; unsigned int n; rcu_read_lock(); mask = virtual_submission_mask(ve); rcu_read_unlock(); if (unlikely(!mask)) return; for (n = 0; n < ve->num_siblings; n++) { struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]); struct ve_node * const node = &ve->nodes[sibling->id]; struct rb_node **parent, *rb; bool first; if (!READ_ONCE(ve->request)) break; /* already handled by a sibling's tasklet */ spin_lock_irq(&sibling->sched_engine->lock); if (unlikely(!(mask & sibling->mask))) { if (!RB_EMPTY_NODE(&node->rb)) { rb_erase_cached(&node->rb, &sibling->execlists.virtual); RB_CLEAR_NODE(&node->rb); } goto unlock_engine; } if (unlikely(!RB_EMPTY_NODE(&node->rb))) { /* * Cheat and avoid rebalancing the tree if we can * reuse this node in situ. */ first = rb_first_cached(&sibling->execlists.virtual) == &node->rb; if (prio == node->prio || (prio > node->prio && first)) goto submit_engine; rb_erase_cached(&node->rb, &sibling->execlists.virtual); } rb = NULL; first = true; parent = &sibling->execlists.virtual.rb_root.rb_node; while (*parent) { struct ve_node *other; rb = *parent; other = rb_entry(rb, typeof(*other), rb); if (prio > other->prio) { parent = &rb->rb_left; } else { parent = &rb->rb_right; first = false; } } rb_link_node(&node->rb, rb, parent); rb_insert_color_cached(&node->rb, &sibling->execlists.virtual, first); submit_engine: GEM_BUG_ON(RB_EMPTY_NODE(&node->rb)); node->prio = prio; if (first && prio > sibling->sched_engine->queue_priority_hint) tasklet_hi_schedule(&sibling->sched_engine->tasklet); unlock_engine: spin_unlock_irq(&sibling->sched_engine->lock); if (intel_context_inflight(&ve->context)) break; } } static void virtual_submit_request(struct i915_request *rq) { struct virtual_engine *ve = to_virtual_engine(rq->engine); unsigned long flags; ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n", rq->fence.context, rq->fence.seqno); GEM_BUG_ON(ve->base.submit_request != virtual_submit_request); spin_lock_irqsave(&ve->base.sched_engine->lock, flags); /* By the time we resubmit a request, it may be completed */ if (__i915_request_is_complete(rq)) { __i915_request_submit(rq); goto unlock; } if (ve->request) { /* background completion from preempt-to-busy */ GEM_BUG_ON(!__i915_request_is_complete(ve->request)); __i915_request_submit(ve->request); i915_request_put(ve->request); } ve->base.sched_engine->queue_priority_hint = rq_prio(rq); ve->request = i915_request_get(rq); GEM_BUG_ON(!list_empty(virtual_queue(ve))); list_move_tail(&rq->sched.link, virtual_queue(ve)); tasklet_hi_schedule(&ve->base.sched_engine->tasklet); unlock: spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags); } static struct intel_context * execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count, unsigned long flags) { struct drm_i915_private *i915 = siblings[0]->i915; struct virtual_engine *ve; unsigned int n; int err; ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL); if (!ve) return ERR_PTR(-ENOMEM); ve->base.i915 = i915; ve->base.gt = siblings[0]->gt; ve->base.uncore = siblings[0]->uncore; ve->base.id = -1; ve->base.class = OTHER_CLASS; ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; /* * The decision on whether to submit a request using semaphores * depends on the saturated state of the engine. We only compute * this during HW submission of the request, and we need for this * state to be globally applied to all requests being submitted * to this engine. Virtual engines encompass more than one physical * engine and so we cannot accurately tell in advance if one of those * engines is already saturated and so cannot afford to use a semaphore * and be pessimized in priority for doing so -- if we are the only * context using semaphores after all other clients have stopped, we * will be starved on the saturated system. Such a global switch for * semaphores is less than ideal, but alas is the current compromise. */ ve->base.saturated = ALL_ENGINES; snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); intel_engine_init_execlists(&ve->base); ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); if (!ve->base.sched_engine) { err = -ENOMEM; goto err_put; } ve->base.sched_engine->private_data = &ve->base; ve->base.cops = &virtual_context_ops; ve->base.request_alloc = execlists_request_alloc; ve->base.sched_engine->schedule = i915_schedule; ve->base.sched_engine->kick_backend = kick_execlists; ve->base.submit_request = virtual_submit_request; INIT_LIST_HEAD(virtual_queue(ve)); tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet); intel_context_init(&ve->context, &ve->base); ve->base.breadcrumbs = intel_breadcrumbs_create(NULL); if (!ve->base.breadcrumbs) { err = -ENOMEM; goto err_put; } for (n = 0; n < count; n++) { struct intel_engine_cs *sibling = siblings[n]; GEM_BUG_ON(!is_power_of_2(sibling->mask)); if (sibling->mask & ve->base.mask) { drm_dbg(&i915->drm, "duplicate %s entry in load balancer\n", sibling->name); err = -EINVAL; goto err_put; } /* * The virtual engine implementation is tightly coupled to * the execlists backend -- we push out request directly * into a tree inside each physical engine. We could support * layering if we handle cloning of the requests and * submitting a copy into each backend. */ if (sibling->sched_engine->tasklet.callback != execlists_submission_tasklet) { err = -ENODEV; goto err_put; } GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb)); RB_CLEAR_NODE(&ve->nodes[sibling->id].rb); ve->siblings[ve->num_siblings++] = sibling; ve->base.mask |= sibling->mask; ve->base.logical_mask |= sibling->logical_mask; /* * All physical engines must be compatible for their emission * functions (as we build the instructions during request * construction and do not alter them before submission * on the physical engine). We use the engine class as a guide * here, although that could be refined. */ if (ve->base.class != OTHER_CLASS) { if (ve->base.class != sibling->class) { drm_dbg(&i915->drm, "invalid mixing of engine class, sibling %d, already %d\n", sibling->class, ve->base.class); err = -EINVAL; goto err_put; } continue; } ve->base.class = sibling->class; ve->base.uabi_class = sibling->uabi_class; snprintf(ve->base.name, sizeof(ve->base.name), "v%dx%d", ve->base.class, count); ve->base.context_size = sibling->context_size; ve->base.add_active_request = sibling->add_active_request; ve->base.remove_active_request = sibling->remove_active_request; ve->base.emit_bb_start = sibling->emit_bb_start; ve->base.emit_flush = sibling->emit_flush; ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb; ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb; ve->base.emit_fini_breadcrumb_dw = sibling->emit_fini_breadcrumb_dw; ve->base.flags = sibling->flags; } ve->base.flags |= I915_ENGINE_IS_VIRTUAL; virtual_engine_initial_hint(ve); return &ve->context; err_put: intel_context_put(&ve->context); return ERR_PTR(err); } void intel_execlists_show_requests(struct intel_engine_cs *engine, struct drm_printer *m, void (*show_request)(struct drm_printer *m, const struct i915_request *rq, const char *prefix, int indent), unsigned int max) { const struct intel_engine_execlists *execlists = &engine->execlists; struct i915_sched_engine *sched_engine = engine->sched_engine; struct i915_request *rq, *last; unsigned long flags; unsigned int count; struct rb_node *rb; spin_lock_irqsave(&sched_engine->lock, flags); last = NULL; count = 0; list_for_each_entry(rq, &sched_engine->requests, sched.link) { if (count++ < max - 1) show_request(m, rq, "\t\t", 0); else last = rq; } if (last) { if (count > max) { drm_printf(m, "\t\t...skipping %d executing requests...\n", count - max); } show_request(m, last, "\t\t", 0); } if (sched_engine->queue_priority_hint != INT_MIN) drm_printf(m, "\t\tQueue priority hint: %d\n", READ_ONCE(sched_engine->queue_priority_hint)); last = NULL; count = 0; for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { struct i915_priolist *p = rb_entry(rb, typeof(*p), node); priolist_for_each_request(rq, p) { if (count++ < max - 1) show_request(m, rq, "\t\t", 0); else last = rq; } } if (last) { if (count > max) { drm_printf(m, "\t\t...skipping %d queued requests...\n", count - max); } show_request(m, last, "\t\t", 0); } last = NULL; count = 0; for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) { struct virtual_engine *ve = rb_entry(rb, typeof(*ve), nodes[engine->id].rb); struct i915_request *rq = READ_ONCE(ve->request); if (rq) { if (count++ < max - 1) show_request(m, rq, "\t\t", 0); else last = rq; } } if (last) { if (count > max) { drm_printf(m, "\t\t...skipping %d virtual requests...\n", count - max); } show_request(m, last, "\t\t", 0); } spin_unlock_irqrestore(&sched_engine->lock, flags); } void intel_execlists_dump_active_requests(struct intel_engine_cs *engine, struct i915_request *hung_rq, struct drm_printer *m) { unsigned long flags; spin_lock_irqsave(&engine->sched_engine->lock, flags); intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m); drm_printf(m, "\tOn hold?: %zu\n", list_count_nodes(&engine->sched_engine->hold)); spin_unlock_irqrestore(&engine->sched_engine->lock, flags); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_execlists.c" #endif |