Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v5.14.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 13#include <linux/sched/hotplug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/mm.h>
 16#include <linux/delay.h>
 17#include <linux/smp.h>
 18#include <linux/interrupt.h>
 19#include <linux/spinlock.h>
 20#include <linux/cpu.h>
 21#include <linux/cpumask.h>
 22#include <linux/reboot.h>
 23#include <linux/io.h>
 24#include <linux/compiler.h>
 25#include <linux/linkage.h>
 26#include <linux/bug.h>
 27#include <linux/kernel.h>
 28#include <linux/kexec.h>
 29
 30#include <asm/time.h>
 
 31#include <asm/processor.h>
 32#include <asm/bootinfo.h>
 
 33#include <asm/cacheflush.h>
 34#include <asm/tlbflush.h>
 35#include <asm/mipsregs.h>
 36#include <asm/bmips.h>
 37#include <asm/traps.h>
 38#include <asm/barrier.h>
 39#include <asm/cpu-features.h>
 40
 41static int __maybe_unused max_cpus = 1;
 42
 43/* these may be configured by the platform code */
 44int bmips_smp_enabled = 1;
 45int bmips_cpu_offset;
 46cpumask_t bmips_booted_mask;
 47unsigned long bmips_tp1_irqs = IE_IRQ1;
 48
 49#define RESET_FROM_KSEG0		0x80080800
 50#define RESET_FROM_KSEG1		0xa0080800
 51
 52static void bmips_set_reset_vec(int cpu, u32 val);
 53
 54#ifdef CONFIG_SMP
 55
 56/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 57unsigned long bmips_smp_boot_sp;
 58unsigned long bmips_smp_boot_gp;
 59
 60static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 61static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 62static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 63static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 64
 65/* SW interrupts 0,1 are used for interprocessor signaling */
 66#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 67#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 68
 69#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 70#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 71#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 72#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 73
 74static void __init bmips_smp_setup(void)
 75{
 76	int i, cpu = 1, boot_cpu = 0;
 77	int cpu_hw_intr;
 78
 79	switch (current_cpu_type()) {
 80	case CPU_BMIPS4350:
 81	case CPU_BMIPS4380:
 82		/* arbitration priority */
 83		clear_c0_brcm_cmt_ctrl(0x30);
 84
 85		/* NBK and weak order flags */
 86		set_c0_brcm_config_0(0x30000);
 87
 88		/* Find out if we are running on TP0 or TP1 */
 89		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 90
 91		/*
 92		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 93		 * thread
 94		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 95		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 96		 */
 97		if (boot_cpu == 0)
 98			cpu_hw_intr = 0x02;
 99		else
100			cpu_hw_intr = 0x1d;
101
102		change_c0_brcm_cmt_intr(0xf8018000,
103					(cpu_hw_intr << 27) | (0x03 << 15));
104
105		/* single core, 2 threads (2 pipelines) */
106		max_cpus = 2;
107
108		break;
109	case CPU_BMIPS5000:
110		/* enable raceless SW interrupts */
111		set_c0_brcm_config(0x03 << 22);
112
113		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
114		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
115
116		/* N cores, 2 threads per core */
117		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
118
119		/* clear any pending SW interrupts */
120		for (i = 0; i < max_cpus; i++) {
121			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
122			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
123		}
124
125		break;
126	default:
127		max_cpus = 1;
128	}
129
130	if (!bmips_smp_enabled)
131		max_cpus = 1;
132
133	/* this can be overridden by the BSP */
134	if (!board_ebase_setup)
135		board_ebase_setup = &bmips_ebase_setup;
136
137	if (max_cpus > 1) {
138		__cpu_number_map[boot_cpu] = 0;
139		__cpu_logical_map[0] = boot_cpu;
140
141		for (i = 0; i < max_cpus; i++) {
142			if (i != boot_cpu) {
143				__cpu_number_map[i] = cpu;
144				__cpu_logical_map[cpu] = i;
145				cpu++;
146			}
147			set_cpu_possible(i, 1);
148			set_cpu_present(i, 1);
149		}
150	} else {
151		__cpu_number_map[0] = boot_cpu;
152		__cpu_logical_map[0] = 0;
153		set_cpu_possible(0, 1);
154		set_cpu_present(0, 1);
155	}
156}
157
158/*
159 * IPI IRQ setup - runs on CPU0
160 */
161static void bmips_prepare_cpus(unsigned int max_cpus)
162{
163	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
164
165	switch (current_cpu_type()) {
166	case CPU_BMIPS4350:
167	case CPU_BMIPS4380:
168		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
169		break;
170	case CPU_BMIPS5000:
171		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
172		break;
173	default:
174		return;
175	}
176
177	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
178			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
179		panic("Can't request IPI0 interrupt");
180	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
181			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
182		panic("Can't request IPI1 interrupt");
183}
184
185/*
186 * Tell the hardware to boot CPUx - runs on CPU0
187 */
188static int bmips_boot_secondary(int cpu, struct task_struct *idle)
189{
190	bmips_smp_boot_sp = __KSTK_TOS(idle);
191	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
192	mb();
193
194	/*
195	 * Initial boot sequence for secondary CPU:
196	 *   bmips_reset_nmi_vec @ a000_0000 ->
197	 *   bmips_smp_entry ->
198	 *   plat_wired_tlb_setup (cached function call; optional) ->
199	 *   start_secondary (cached jump)
200	 *
201	 * Warm restart sequence:
202	 *   play_dead WAIT loop ->
203	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
204	 *   eret to play_dead ->
205	 *   bmips_secondary_reentry ->
206	 *   start_secondary
207	 */
208
209	pr_info("SMP: Booting CPU%d...\n", cpu);
210
211	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
212		/* kseg1 might not exist if this CPU enabled XKS01 */
213		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
214
215		switch (current_cpu_type()) {
216		case CPU_BMIPS4350:
217		case CPU_BMIPS4380:
218			bmips43xx_send_ipi_single(cpu, 0);
219			break;
220		case CPU_BMIPS5000:
221			bmips5000_send_ipi_single(cpu, 0);
222			break;
223		}
224	} else {
225		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
226
227		switch (current_cpu_type()) {
228		case CPU_BMIPS4350:
229		case CPU_BMIPS4380:
230			/* Reset slave TP1 if booting from TP0 */
231			if (cpu_logical_map(cpu) == 1)
232				set_c0_brcm_cmt_ctrl(0x01);
233			break;
234		case CPU_BMIPS5000:
235			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
236			break;
237		}
238		cpumask_set_cpu(cpu, &bmips_booted_mask);
239	}
240
241	return 0;
242}
243
244/*
245 * Early setup - runs on secondary CPU after cache probe
246 */
247static void bmips_init_secondary(void)
248{
249	bmips_cpu_setup();
250
251	switch (current_cpu_type()) {
252	case CPU_BMIPS4350:
253	case CPU_BMIPS4380:
254		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
255		break;
256	case CPU_BMIPS5000:
257		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
258		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
259		break;
260	}
261}
262
263/*
264 * Late setup - runs on secondary CPU before entering the idle loop
265 */
266static void bmips_smp_finish(void)
267{
268	pr_info("SMP: CPU%d is running\n", smp_processor_id());
269
270	/* make sure there won't be a timer interrupt for a little while */
271	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
272
273	irq_enable_hazard();
274	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
275	irq_enable_hazard();
276}
277
278/*
279 * BMIPS5000 raceless IPIs
280 *
281 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
282 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
283 * IPI1 is used for SMP_CALL_FUNCTION
284 */
285
286static void bmips5000_send_ipi_single(int cpu, unsigned int action)
287{
288	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
289}
290
291static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
292{
293	int action = irq - IPI0_IRQ;
294
295	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
296
297	if (action == 0)
298		scheduler_ipi();
299	else
300		generic_smp_call_function_interrupt();
301
302	return IRQ_HANDLED;
303}
304
305static void bmips5000_send_ipi_mask(const struct cpumask *mask,
306	unsigned int action)
307{
308	unsigned int i;
309
310	for_each_cpu(i, mask)
311		bmips5000_send_ipi_single(i, action);
312}
313
314/*
315 * BMIPS43xx racey IPIs
316 *
317 * We use one inbound SW IRQ for each CPU.
318 *
319 * A spinlock must be held in order to keep CPUx from accidentally clearing
320 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
321 * same spinlock is used to protect the action masks.
322 */
323
324static DEFINE_SPINLOCK(ipi_lock);
325static DEFINE_PER_CPU(int, ipi_action_mask);
326
327static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
328{
329	unsigned long flags;
330
331	spin_lock_irqsave(&ipi_lock, flags);
332	set_c0_cause(cpu ? C_SW1 : C_SW0);
333	per_cpu(ipi_action_mask, cpu) |= action;
334	irq_enable_hazard();
335	spin_unlock_irqrestore(&ipi_lock, flags);
336}
337
338static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
339{
340	unsigned long flags;
341	int action, cpu = irq - IPI0_IRQ;
342
343	spin_lock_irqsave(&ipi_lock, flags);
344	action = __this_cpu_read(ipi_action_mask);
345	per_cpu(ipi_action_mask, cpu) = 0;
346	clear_c0_cause(cpu ? C_SW1 : C_SW0);
347	spin_unlock_irqrestore(&ipi_lock, flags);
348
349	if (action & SMP_RESCHEDULE_YOURSELF)
350		scheduler_ipi();
351	if (action & SMP_CALL_FUNCTION)
352		generic_smp_call_function_interrupt();
353
354	return IRQ_HANDLED;
355}
356
357static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
358	unsigned int action)
359{
360	unsigned int i;
361
362	for_each_cpu(i, mask)
363		bmips43xx_send_ipi_single(i, action);
364}
365
366#ifdef CONFIG_HOTPLUG_CPU
367
368static int bmips_cpu_disable(void)
369{
370	unsigned int cpu = smp_processor_id();
371
 
 
 
372	pr_info("SMP: CPU%d is offline\n", cpu);
373
374	set_cpu_online(cpu, false);
375	calculate_cpu_foreign_map();
376	irq_cpu_offline();
377	clear_c0_status(IE_IRQ5);
378
379	local_flush_tlb_all();
380	local_flush_icache_range(0, ~0);
381
382	return 0;
383}
384
385static void bmips_cpu_die(unsigned int cpu)
386{
387}
388
389void __ref play_dead(void)
390{
391	idle_task_exit();
392
393	/* flush data cache */
394	_dma_cache_wback_inv(0, ~0);
395
396	/*
397	 * Wakeup is on SW0 or SW1; disable everything else
398	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
399	 * IRQ handlers; this clears ST0_IE and returns immediately.
400	 */
401	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
402	change_c0_status(
403		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
404		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
405	irq_disable_hazard();
406
407	/*
408	 * wait for SW interrupt from bmips_boot_secondary(), then jump
409	 * back to start_secondary()
410	 */
411	__asm__ __volatile__(
412	"	wait\n"
413	"	j	bmips_secondary_reentry\n"
414	: : : "memory");
415}
416
417#endif /* CONFIG_HOTPLUG_CPU */
418
419const struct plat_smp_ops bmips43xx_smp_ops = {
420	.smp_setup		= bmips_smp_setup,
421	.prepare_cpus		= bmips_prepare_cpus,
422	.boot_secondary		= bmips_boot_secondary,
423	.smp_finish		= bmips_smp_finish,
424	.init_secondary		= bmips_init_secondary,
425	.send_ipi_single	= bmips43xx_send_ipi_single,
426	.send_ipi_mask		= bmips43xx_send_ipi_mask,
427#ifdef CONFIG_HOTPLUG_CPU
428	.cpu_disable		= bmips_cpu_disable,
429	.cpu_die		= bmips_cpu_die,
430#endif
431#ifdef CONFIG_KEXEC
432	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
433#endif
434};
435
436const struct plat_smp_ops bmips5000_smp_ops = {
437	.smp_setup		= bmips_smp_setup,
438	.prepare_cpus		= bmips_prepare_cpus,
439	.boot_secondary		= bmips_boot_secondary,
440	.smp_finish		= bmips_smp_finish,
441	.init_secondary		= bmips_init_secondary,
442	.send_ipi_single	= bmips5000_send_ipi_single,
443	.send_ipi_mask		= bmips5000_send_ipi_mask,
444#ifdef CONFIG_HOTPLUG_CPU
445	.cpu_disable		= bmips_cpu_disable,
446	.cpu_die		= bmips_cpu_die,
447#endif
448#ifdef CONFIG_KEXEC
449	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
450#endif
451};
452
453#endif /* CONFIG_SMP */
454
455/***********************************************************************
456 * BMIPS vector relocation
457 * This is primarily used for SMP boot, but it is applicable to some
458 * UP BMIPS systems as well.
459 ***********************************************************************/
460
461static void bmips_wr_vec(unsigned long dst, char *start, char *end)
462{
463	memcpy((void *)dst, start, end - start);
464	dma_cache_wback(dst, end - start);
465	local_flush_icache_range(dst, dst + (end - start));
466	instruction_hazard();
467}
468
469static inline void bmips_nmi_handler_setup(void)
470{
471	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
472		bmips_reset_nmi_vec_end);
473	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
474		bmips_smp_int_vec_end);
475}
476
477struct reset_vec_info {
478	int cpu;
479	u32 val;
480};
481
482static void bmips_set_reset_vec_remote(void *vinfo)
483{
484	struct reset_vec_info *info = vinfo;
485	int shift = info->cpu & 0x01 ? 16 : 0;
486	u32 mask = ~(0xffff << shift), val = info->val >> 16;
487
488	preempt_disable();
489	if (smp_processor_id() > 0) {
490		smp_call_function_single(0, &bmips_set_reset_vec_remote,
491					 info, 1);
492	} else {
493		if (info->cpu & 0x02) {
494			/* BMIPS5200 "should" use mask/shift, but it's buggy */
495			bmips_write_zscm_reg(0xa0, (val << 16) | val);
496			bmips_read_zscm_reg(0xa0);
497		} else {
498			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
499					      (val << shift));
500		}
501	}
502	preempt_enable();
503}
504
505static void bmips_set_reset_vec(int cpu, u32 val)
506{
507	struct reset_vec_info info;
508
509	if (current_cpu_type() == CPU_BMIPS5000) {
510		/* this needs to run from CPU0 (which is always online) */
511		info.cpu = cpu;
512		info.val = val;
513		bmips_set_reset_vec_remote(&info);
514	} else {
515		void __iomem *cbr = BMIPS_GET_CBR();
516
517		if (cpu == 0)
518			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
519		else {
520			if (current_cpu_type() != CPU_BMIPS4380)
521				return;
522			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
523		}
524	}
525	__sync();
526	back_to_back_c0_hazard();
527}
528
529void bmips_ebase_setup(void)
530{
531	unsigned long new_ebase = ebase;
532
533	BUG_ON(ebase != CKSEG0);
534
535	switch (current_cpu_type()) {
536	case CPU_BMIPS4350:
537		/*
538		 * BMIPS4350 cannot relocate the normal vectors, but it
539		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
540		 * the relocated BEV=1, IV=0 general exception vector @
541		 * 0xa000_0380.
542		 *
543		 * set_uncached_handler() is used here because:
544		 *  - CPU1 will run this from uncached space
545		 *  - None of the cacheflush functions are set up yet
546		 */
547		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
548			&bmips_smp_int_vec, 0x80);
549		__sync();
550		return;
551	case CPU_BMIPS3300:
552	case CPU_BMIPS4380:
553		/*
554		 * 0x8000_0000: reset/NMI (initially in kseg1)
555		 * 0x8000_0400: normal vectors
556		 */
557		new_ebase = 0x80000400;
558		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
559		break;
560	case CPU_BMIPS5000:
561		/*
562		 * 0x8000_0000: reset/NMI (initially in kseg1)
563		 * 0x8000_1000: normal vectors
564		 */
565		new_ebase = 0x80001000;
566		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
567		write_c0_ebase(new_ebase);
568		break;
569	default:
570		return;
571	}
572
573	board_nmi_handler_setup = &bmips_nmi_handler_setup;
574	ebase = new_ebase;
575}
576
577asmlinkage void __weak plat_wired_tlb_setup(void)
578{
579	/*
580	 * Called when starting/restarting a secondary CPU.
581	 * Kernel stacks and other important data might only be accessible
582	 * once the wired entries are present.
583	 */
584}
585
586void bmips_cpu_setup(void)
587{
588	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
589	u32 __maybe_unused cfg;
590
591	switch (current_cpu_type()) {
592	case CPU_BMIPS3300:
593		/* Set BIU to async mode */
594		set_c0_brcm_bus_pll(BIT(22));
595		__sync();
596
597		/* put the BIU back in sync mode */
598		clear_c0_brcm_bus_pll(BIT(22));
599
600		/* clear BHTD to enable branch history table */
601		clear_c0_brcm_reset(BIT(16));
602
603		/* Flush and enable RAC */
604		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
605		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
606		__raw_readl(cbr + BMIPS_RAC_CONFIG);
607
608		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
609		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
610		__raw_readl(cbr + BMIPS_RAC_CONFIG);
611
612		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
613		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
614		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
615		break;
616
617	case CPU_BMIPS4380:
618		/* CBG workaround for early BMIPS4380 CPUs */
619		switch (read_c0_prid()) {
620		case 0x2a040:
621		case 0x2a042:
622		case 0x2a044:
623		case 0x2a060:
624			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
625			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
626			__raw_readl(cbr + BMIPS_L2_CONFIG);
627		}
628
629		/* clear BHTD to enable branch history table */
630		clear_c0_brcm_config_0(BIT(21));
631
632		/* XI/ROTR enable */
633		set_c0_brcm_config_0(BIT(23));
634		set_c0_brcm_cmt_ctrl(BIT(15));
635		break;
636
637	case CPU_BMIPS5000:
638		/* enable RDHWR, BRDHWR */
639		set_c0_brcm_config(BIT(17) | BIT(21));
640
641		/* Disable JTB */
642		__asm__ __volatile__(
643		"	.set	noreorder\n"
644		"	li	$8, 0x5a455048\n"
645		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
646		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
647		"	li	$9, 0x00008000\n"
648		"	or	$8, $8, $9\n"
649		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
650		"	sync\n"
651		"	li	$8, 0x0\n"
652		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
653		"	.set	reorder\n"
654		: : : "$8", "$9");
655
656		/* XI enable */
657		set_c0_brcm_config(BIT(27));
658
659		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
660		__asm__ __volatile__(
661		"	li	$8, 0x5a455048\n"
662		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
663		"	nop; nop; nop\n"
664		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
665		"	lui	$9, 0x0100\n"
666		"	or	$8, $9\n"
667		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
668		: : : "$8", "$9");
669		break;
670	}
671}
v4.17
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 13#include <linux/sched/hotplug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/mm.h>
 16#include <linux/delay.h>
 17#include <linux/smp.h>
 18#include <linux/interrupt.h>
 19#include <linux/spinlock.h>
 20#include <linux/cpu.h>
 21#include <linux/cpumask.h>
 22#include <linux/reboot.h>
 23#include <linux/io.h>
 24#include <linux/compiler.h>
 25#include <linux/linkage.h>
 26#include <linux/bug.h>
 27#include <linux/kernel.h>
 
 28
 29#include <asm/time.h>
 30#include <asm/pgtable.h>
 31#include <asm/processor.h>
 32#include <asm/bootinfo.h>
 33#include <asm/pmon.h>
 34#include <asm/cacheflush.h>
 35#include <asm/tlbflush.h>
 36#include <asm/mipsregs.h>
 37#include <asm/bmips.h>
 38#include <asm/traps.h>
 39#include <asm/barrier.h>
 40#include <asm/cpu-features.h>
 41
 42static int __maybe_unused max_cpus = 1;
 43
 44/* these may be configured by the platform code */
 45int bmips_smp_enabled = 1;
 46int bmips_cpu_offset;
 47cpumask_t bmips_booted_mask;
 48unsigned long bmips_tp1_irqs = IE_IRQ1;
 49
 50#define RESET_FROM_KSEG0		0x80080800
 51#define RESET_FROM_KSEG1		0xa0080800
 52
 53static void bmips_set_reset_vec(int cpu, u32 val);
 54
 55#ifdef CONFIG_SMP
 56
 57/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 58unsigned long bmips_smp_boot_sp;
 59unsigned long bmips_smp_boot_gp;
 60
 61static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 62static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 63static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 64static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 65
 66/* SW interrupts 0,1 are used for interprocessor signaling */
 67#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 68#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 69
 70#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 71#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 72#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 73#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 74
 75static void __init bmips_smp_setup(void)
 76{
 77	int i, cpu = 1, boot_cpu = 0;
 78	int cpu_hw_intr;
 79
 80	switch (current_cpu_type()) {
 81	case CPU_BMIPS4350:
 82	case CPU_BMIPS4380:
 83		/* arbitration priority */
 84		clear_c0_brcm_cmt_ctrl(0x30);
 85
 86		/* NBK and weak order flags */
 87		set_c0_brcm_config_0(0x30000);
 88
 89		/* Find out if we are running on TP0 or TP1 */
 90		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 91
 92		/*
 93		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 94		 * thread
 95		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 96		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 97		 */
 98		if (boot_cpu == 0)
 99			cpu_hw_intr = 0x02;
100		else
101			cpu_hw_intr = 0x1d;
102
103		change_c0_brcm_cmt_intr(0xf8018000,
104					(cpu_hw_intr << 27) | (0x03 << 15));
105
106		/* single core, 2 threads (2 pipelines) */
107		max_cpus = 2;
108
109		break;
110	case CPU_BMIPS5000:
111		/* enable raceless SW interrupts */
112		set_c0_brcm_config(0x03 << 22);
113
114		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
115		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
116
117		/* N cores, 2 threads per core */
118		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
119
120		/* clear any pending SW interrupts */
121		for (i = 0; i < max_cpus; i++) {
122			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
123			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
124		}
125
126		break;
127	default:
128		max_cpus = 1;
129	}
130
131	if (!bmips_smp_enabled)
132		max_cpus = 1;
133
134	/* this can be overridden by the BSP */
135	if (!board_ebase_setup)
136		board_ebase_setup = &bmips_ebase_setup;
137
138	__cpu_number_map[boot_cpu] = 0;
139	__cpu_logical_map[0] = boot_cpu;
 
140
141	for (i = 0; i < max_cpus; i++) {
142		if (i != boot_cpu) {
143			__cpu_number_map[i] = cpu;
144			__cpu_logical_map[cpu] = i;
145			cpu++;
 
 
 
146		}
147		set_cpu_possible(i, 1);
148		set_cpu_present(i, 1);
 
 
 
149	}
150}
151
152/*
153 * IPI IRQ setup - runs on CPU0
154 */
155static void bmips_prepare_cpus(unsigned int max_cpus)
156{
157	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
158
159	switch (current_cpu_type()) {
160	case CPU_BMIPS4350:
161	case CPU_BMIPS4380:
162		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
163		break;
164	case CPU_BMIPS5000:
165		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
166		break;
167	default:
168		return;
169	}
170
171	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
172			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
173		panic("Can't request IPI0 interrupt");
174	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
175			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
176		panic("Can't request IPI1 interrupt");
177}
178
179/*
180 * Tell the hardware to boot CPUx - runs on CPU0
181 */
182static int bmips_boot_secondary(int cpu, struct task_struct *idle)
183{
184	bmips_smp_boot_sp = __KSTK_TOS(idle);
185	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
186	mb();
187
188	/*
189	 * Initial boot sequence for secondary CPU:
190	 *   bmips_reset_nmi_vec @ a000_0000 ->
191	 *   bmips_smp_entry ->
192	 *   plat_wired_tlb_setup (cached function call; optional) ->
193	 *   start_secondary (cached jump)
194	 *
195	 * Warm restart sequence:
196	 *   play_dead WAIT loop ->
197	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
198	 *   eret to play_dead ->
199	 *   bmips_secondary_reentry ->
200	 *   start_secondary
201	 */
202
203	pr_info("SMP: Booting CPU%d...\n", cpu);
204
205	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
206		/* kseg1 might not exist if this CPU enabled XKS01 */
207		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
208
209		switch (current_cpu_type()) {
210		case CPU_BMIPS4350:
211		case CPU_BMIPS4380:
212			bmips43xx_send_ipi_single(cpu, 0);
213			break;
214		case CPU_BMIPS5000:
215			bmips5000_send_ipi_single(cpu, 0);
216			break;
217		}
218	} else {
219		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
220
221		switch (current_cpu_type()) {
222		case CPU_BMIPS4350:
223		case CPU_BMIPS4380:
224			/* Reset slave TP1 if booting from TP0 */
225			if (cpu_logical_map(cpu) == 1)
226				set_c0_brcm_cmt_ctrl(0x01);
227			break;
228		case CPU_BMIPS5000:
229			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
230			break;
231		}
232		cpumask_set_cpu(cpu, &bmips_booted_mask);
233	}
234
235	return 0;
236}
237
238/*
239 * Early setup - runs on secondary CPU after cache probe
240 */
241static void bmips_init_secondary(void)
242{
 
 
243	switch (current_cpu_type()) {
244	case CPU_BMIPS4350:
245	case CPU_BMIPS4380:
246		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
247		break;
248	case CPU_BMIPS5000:
249		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
250		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
251		break;
252	}
253}
254
255/*
256 * Late setup - runs on secondary CPU before entering the idle loop
257 */
258static void bmips_smp_finish(void)
259{
260	pr_info("SMP: CPU%d is running\n", smp_processor_id());
261
262	/* make sure there won't be a timer interrupt for a little while */
263	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
264
265	irq_enable_hazard();
266	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
267	irq_enable_hazard();
268}
269
270/*
271 * BMIPS5000 raceless IPIs
272 *
273 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
274 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
275 * IPI1 is used for SMP_CALL_FUNCTION
276 */
277
278static void bmips5000_send_ipi_single(int cpu, unsigned int action)
279{
280	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
281}
282
283static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
284{
285	int action = irq - IPI0_IRQ;
286
287	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
288
289	if (action == 0)
290		scheduler_ipi();
291	else
292		generic_smp_call_function_interrupt();
293
294	return IRQ_HANDLED;
295}
296
297static void bmips5000_send_ipi_mask(const struct cpumask *mask,
298	unsigned int action)
299{
300	unsigned int i;
301
302	for_each_cpu(i, mask)
303		bmips5000_send_ipi_single(i, action);
304}
305
306/*
307 * BMIPS43xx racey IPIs
308 *
309 * We use one inbound SW IRQ for each CPU.
310 *
311 * A spinlock must be held in order to keep CPUx from accidentally clearing
312 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
313 * same spinlock is used to protect the action masks.
314 */
315
316static DEFINE_SPINLOCK(ipi_lock);
317static DEFINE_PER_CPU(int, ipi_action_mask);
318
319static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
320{
321	unsigned long flags;
322
323	spin_lock_irqsave(&ipi_lock, flags);
324	set_c0_cause(cpu ? C_SW1 : C_SW0);
325	per_cpu(ipi_action_mask, cpu) |= action;
326	irq_enable_hazard();
327	spin_unlock_irqrestore(&ipi_lock, flags);
328}
329
330static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
331{
332	unsigned long flags;
333	int action, cpu = irq - IPI0_IRQ;
334
335	spin_lock_irqsave(&ipi_lock, flags);
336	action = __this_cpu_read(ipi_action_mask);
337	per_cpu(ipi_action_mask, cpu) = 0;
338	clear_c0_cause(cpu ? C_SW1 : C_SW0);
339	spin_unlock_irqrestore(&ipi_lock, flags);
340
341	if (action & SMP_RESCHEDULE_YOURSELF)
342		scheduler_ipi();
343	if (action & SMP_CALL_FUNCTION)
344		generic_smp_call_function_interrupt();
345
346	return IRQ_HANDLED;
347}
348
349static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
350	unsigned int action)
351{
352	unsigned int i;
353
354	for_each_cpu(i, mask)
355		bmips43xx_send_ipi_single(i, action);
356}
357
358#ifdef CONFIG_HOTPLUG_CPU
359
360static int bmips_cpu_disable(void)
361{
362	unsigned int cpu = smp_processor_id();
363
364	if (cpu == 0)
365		return -EBUSY;
366
367	pr_info("SMP: CPU%d is offline\n", cpu);
368
369	set_cpu_online(cpu, false);
370	calculate_cpu_foreign_map();
371	irq_cpu_offline();
372	clear_c0_status(IE_IRQ5);
373
374	local_flush_tlb_all();
375	local_flush_icache_range(0, ~0);
376
377	return 0;
378}
379
380static void bmips_cpu_die(unsigned int cpu)
381{
382}
383
384void __ref play_dead(void)
385{
386	idle_task_exit();
387
388	/* flush data cache */
389	_dma_cache_wback_inv(0, ~0);
390
391	/*
392	 * Wakeup is on SW0 or SW1; disable everything else
393	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
394	 * IRQ handlers; this clears ST0_IE and returns immediately.
395	 */
396	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
397	change_c0_status(
398		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
399		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
400	irq_disable_hazard();
401
402	/*
403	 * wait for SW interrupt from bmips_boot_secondary(), then jump
404	 * back to start_secondary()
405	 */
406	__asm__ __volatile__(
407	"	wait\n"
408	"	j	bmips_secondary_reentry\n"
409	: : : "memory");
410}
411
412#endif /* CONFIG_HOTPLUG_CPU */
413
414const struct plat_smp_ops bmips43xx_smp_ops = {
415	.smp_setup		= bmips_smp_setup,
416	.prepare_cpus		= bmips_prepare_cpus,
417	.boot_secondary		= bmips_boot_secondary,
418	.smp_finish		= bmips_smp_finish,
419	.init_secondary		= bmips_init_secondary,
420	.send_ipi_single	= bmips43xx_send_ipi_single,
421	.send_ipi_mask		= bmips43xx_send_ipi_mask,
422#ifdef CONFIG_HOTPLUG_CPU
423	.cpu_disable		= bmips_cpu_disable,
424	.cpu_die		= bmips_cpu_die,
425#endif
 
 
 
426};
427
428const struct plat_smp_ops bmips5000_smp_ops = {
429	.smp_setup		= bmips_smp_setup,
430	.prepare_cpus		= bmips_prepare_cpus,
431	.boot_secondary		= bmips_boot_secondary,
432	.smp_finish		= bmips_smp_finish,
433	.init_secondary		= bmips_init_secondary,
434	.send_ipi_single	= bmips5000_send_ipi_single,
435	.send_ipi_mask		= bmips5000_send_ipi_mask,
436#ifdef CONFIG_HOTPLUG_CPU
437	.cpu_disable		= bmips_cpu_disable,
438	.cpu_die		= bmips_cpu_die,
439#endif
 
 
 
440};
441
442#endif /* CONFIG_SMP */
443
444/***********************************************************************
445 * BMIPS vector relocation
446 * This is primarily used for SMP boot, but it is applicable to some
447 * UP BMIPS systems as well.
448 ***********************************************************************/
449
450static void bmips_wr_vec(unsigned long dst, char *start, char *end)
451{
452	memcpy((void *)dst, start, end - start);
453	dma_cache_wback(dst, end - start);
454	local_flush_icache_range(dst, dst + (end - start));
455	instruction_hazard();
456}
457
458static inline void bmips_nmi_handler_setup(void)
459{
460	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
461		&bmips_reset_nmi_vec_end);
462	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
463		&bmips_smp_int_vec_end);
464}
465
466struct reset_vec_info {
467	int cpu;
468	u32 val;
469};
470
471static void bmips_set_reset_vec_remote(void *vinfo)
472{
473	struct reset_vec_info *info = vinfo;
474	int shift = info->cpu & 0x01 ? 16 : 0;
475	u32 mask = ~(0xffff << shift), val = info->val >> 16;
476
477	preempt_disable();
478	if (smp_processor_id() > 0) {
479		smp_call_function_single(0, &bmips_set_reset_vec_remote,
480					 info, 1);
481	} else {
482		if (info->cpu & 0x02) {
483			/* BMIPS5200 "should" use mask/shift, but it's buggy */
484			bmips_write_zscm_reg(0xa0, (val << 16) | val);
485			bmips_read_zscm_reg(0xa0);
486		} else {
487			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
488					      (val << shift));
489		}
490	}
491	preempt_enable();
492}
493
494static void bmips_set_reset_vec(int cpu, u32 val)
495{
496	struct reset_vec_info info;
497
498	if (current_cpu_type() == CPU_BMIPS5000) {
499		/* this needs to run from CPU0 (which is always online) */
500		info.cpu = cpu;
501		info.val = val;
502		bmips_set_reset_vec_remote(&info);
503	} else {
504		void __iomem *cbr = BMIPS_GET_CBR();
505
506		if (cpu == 0)
507			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
508		else {
509			if (current_cpu_type() != CPU_BMIPS4380)
510				return;
511			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
512		}
513	}
514	__sync();
515	back_to_back_c0_hazard();
516}
517
518void bmips_ebase_setup(void)
519{
520	unsigned long new_ebase = ebase;
521
522	BUG_ON(ebase != CKSEG0);
523
524	switch (current_cpu_type()) {
525	case CPU_BMIPS4350:
526		/*
527		 * BMIPS4350 cannot relocate the normal vectors, but it
528		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
529		 * the relocated BEV=1, IV=0 general exception vector @
530		 * 0xa000_0380.
531		 *
532		 * set_uncached_handler() is used here because:
533		 *  - CPU1 will run this from uncached space
534		 *  - None of the cacheflush functions are set up yet
535		 */
536		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
537			&bmips_smp_int_vec, 0x80);
538		__sync();
539		return;
540	case CPU_BMIPS3300:
541	case CPU_BMIPS4380:
542		/*
543		 * 0x8000_0000: reset/NMI (initially in kseg1)
544		 * 0x8000_0400: normal vectors
545		 */
546		new_ebase = 0x80000400;
547		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
548		break;
549	case CPU_BMIPS5000:
550		/*
551		 * 0x8000_0000: reset/NMI (initially in kseg1)
552		 * 0x8000_1000: normal vectors
553		 */
554		new_ebase = 0x80001000;
555		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
556		write_c0_ebase(new_ebase);
557		break;
558	default:
559		return;
560	}
561
562	board_nmi_handler_setup = &bmips_nmi_handler_setup;
563	ebase = new_ebase;
564}
565
566asmlinkage void __weak plat_wired_tlb_setup(void)
567{
568	/*
569	 * Called when starting/restarting a secondary CPU.
570	 * Kernel stacks and other important data might only be accessible
571	 * once the wired entries are present.
572	 */
573}
574
575void bmips_cpu_setup(void)
576{
577	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
578	u32 __maybe_unused cfg;
579
580	switch (current_cpu_type()) {
581	case CPU_BMIPS3300:
582		/* Set BIU to async mode */
583		set_c0_brcm_bus_pll(BIT(22));
584		__sync();
585
586		/* put the BIU back in sync mode */
587		clear_c0_brcm_bus_pll(BIT(22));
588
589		/* clear BHTD to enable branch history table */
590		clear_c0_brcm_reset(BIT(16));
591
592		/* Flush and enable RAC */
593		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
594		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
595		__raw_readl(cbr + BMIPS_RAC_CONFIG);
596
597		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
598		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
599		__raw_readl(cbr + BMIPS_RAC_CONFIG);
600
601		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
602		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
603		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
604		break;
605
606	case CPU_BMIPS4380:
607		/* CBG workaround for early BMIPS4380 CPUs */
608		switch (read_c0_prid()) {
609		case 0x2a040:
610		case 0x2a042:
611		case 0x2a044:
612		case 0x2a060:
613			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
614			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
615			__raw_readl(cbr + BMIPS_L2_CONFIG);
616		}
617
618		/* clear BHTD to enable branch history table */
619		clear_c0_brcm_config_0(BIT(21));
620
621		/* XI/ROTR enable */
622		set_c0_brcm_config_0(BIT(23));
623		set_c0_brcm_cmt_ctrl(BIT(15));
624		break;
625
626	case CPU_BMIPS5000:
627		/* enable RDHWR, BRDHWR */
628		set_c0_brcm_config(BIT(17) | BIT(21));
629
630		/* Disable JTB */
631		__asm__ __volatile__(
632		"	.set	noreorder\n"
633		"	li	$8, 0x5a455048\n"
634		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
635		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
636		"	li	$9, 0x00008000\n"
637		"	or	$8, $8, $9\n"
638		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
639		"	sync\n"
640		"	li	$8, 0x0\n"
641		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
642		"	.set	reorder\n"
643		: : : "$8", "$9");
644
645		/* XI enable */
646		set_c0_brcm_config(BIT(27));
647
648		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
649		__asm__ __volatile__(
650		"	li	$8, 0x5a455048\n"
651		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
652		"	nop; nop; nop\n"
653		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
654		"	lui	$9, 0x0100\n"
655		"	or	$8, $9\n"
656		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
657		: : : "$8", "$9");
658		break;
659	}
660}