Linux Audio

Check our new training course

Loading...
v5.14.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 13#include <linux/sched/hotplug.h>
 14#include <linux/sched/task_stack.h>
 15#include <linux/mm.h>
 16#include <linux/delay.h>
 17#include <linux/smp.h>
 18#include <linux/interrupt.h>
 19#include <linux/spinlock.h>
 20#include <linux/cpu.h>
 21#include <linux/cpumask.h>
 22#include <linux/reboot.h>
 23#include <linux/io.h>
 24#include <linux/compiler.h>
 25#include <linux/linkage.h>
 26#include <linux/bug.h>
 27#include <linux/kernel.h>
 28#include <linux/kexec.h>
 29
 30#include <asm/time.h>
 
 31#include <asm/processor.h>
 32#include <asm/bootinfo.h>
 
 33#include <asm/cacheflush.h>
 34#include <asm/tlbflush.h>
 35#include <asm/mipsregs.h>
 36#include <asm/bmips.h>
 37#include <asm/traps.h>
 38#include <asm/barrier.h>
 39#include <asm/cpu-features.h>
 40
 41static int __maybe_unused max_cpus = 1;
 42
 43/* these may be configured by the platform code */
 44int bmips_smp_enabled = 1;
 45int bmips_cpu_offset;
 46cpumask_t bmips_booted_mask;
 47unsigned long bmips_tp1_irqs = IE_IRQ1;
 48
 49#define RESET_FROM_KSEG0		0x80080800
 50#define RESET_FROM_KSEG1		0xa0080800
 51
 52static void bmips_set_reset_vec(int cpu, u32 val);
 53
 54#ifdef CONFIG_SMP
 55
 56/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 57unsigned long bmips_smp_boot_sp;
 58unsigned long bmips_smp_boot_gp;
 59
 60static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 61static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 62static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 63static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 64
 65/* SW interrupts 0,1 are used for interprocessor signaling */
 66#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 67#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 68
 69#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 70#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 71#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 72#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 73
 74static void __init bmips_smp_setup(void)
 75{
 76	int i, cpu = 1, boot_cpu = 0;
 77	int cpu_hw_intr;
 78
 79	switch (current_cpu_type()) {
 80	case CPU_BMIPS4350:
 81	case CPU_BMIPS4380:
 82		/* arbitration priority */
 83		clear_c0_brcm_cmt_ctrl(0x30);
 84
 85		/* NBK and weak order flags */
 86		set_c0_brcm_config_0(0x30000);
 87
 88		/* Find out if we are running on TP0 or TP1 */
 89		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 90
 91		/*
 92		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 93		 * thread
 94		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 95		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 96		 */
 97		if (boot_cpu == 0)
 98			cpu_hw_intr = 0x02;
 99		else
100			cpu_hw_intr = 0x1d;
101
102		change_c0_brcm_cmt_intr(0xf8018000,
103					(cpu_hw_intr << 27) | (0x03 << 15));
104
105		/* single core, 2 threads (2 pipelines) */
106		max_cpus = 2;
107
108		break;
109	case CPU_BMIPS5000:
110		/* enable raceless SW interrupts */
111		set_c0_brcm_config(0x03 << 22);
112
113		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
114		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
115
116		/* N cores, 2 threads per core */
117		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
118
119		/* clear any pending SW interrupts */
120		for (i = 0; i < max_cpus; i++) {
121			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
122			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
123		}
124
125		break;
126	default:
127		max_cpus = 1;
128	}
129
130	if (!bmips_smp_enabled)
131		max_cpus = 1;
132
133	/* this can be overridden by the BSP */
134	if (!board_ebase_setup)
135		board_ebase_setup = &bmips_ebase_setup;
136
137	if (max_cpus > 1) {
138		__cpu_number_map[boot_cpu] = 0;
139		__cpu_logical_map[0] = boot_cpu;
140
141		for (i = 0; i < max_cpus; i++) {
142			if (i != boot_cpu) {
143				__cpu_number_map[i] = cpu;
144				__cpu_logical_map[cpu] = i;
145				cpu++;
146			}
147			set_cpu_possible(i, 1);
148			set_cpu_present(i, 1);
149		}
150	} else {
151		__cpu_number_map[0] = boot_cpu;
152		__cpu_logical_map[0] = 0;
153		set_cpu_possible(0, 1);
154		set_cpu_present(0, 1);
155	}
156}
157
158/*
159 * IPI IRQ setup - runs on CPU0
160 */
161static void bmips_prepare_cpus(unsigned int max_cpus)
162{
163	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
164
165	switch (current_cpu_type()) {
166	case CPU_BMIPS4350:
167	case CPU_BMIPS4380:
168		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
169		break;
170	case CPU_BMIPS5000:
171		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
172		break;
173	default:
174		return;
175	}
176
177	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
178			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
179		panic("Can't request IPI0 interrupt");
180	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
181			IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
182		panic("Can't request IPI1 interrupt");
183}
184
185/*
186 * Tell the hardware to boot CPUx - runs on CPU0
187 */
188static int bmips_boot_secondary(int cpu, struct task_struct *idle)
189{
190	bmips_smp_boot_sp = __KSTK_TOS(idle);
191	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
192	mb();
193
194	/*
195	 * Initial boot sequence for secondary CPU:
196	 *   bmips_reset_nmi_vec @ a000_0000 ->
197	 *   bmips_smp_entry ->
198	 *   plat_wired_tlb_setup (cached function call; optional) ->
199	 *   start_secondary (cached jump)
200	 *
201	 * Warm restart sequence:
202	 *   play_dead WAIT loop ->
203	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
204	 *   eret to play_dead ->
205	 *   bmips_secondary_reentry ->
206	 *   start_secondary
207	 */
208
209	pr_info("SMP: Booting CPU%d...\n", cpu);
210
211	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
212		/* kseg1 might not exist if this CPU enabled XKS01 */
213		bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
214
215		switch (current_cpu_type()) {
216		case CPU_BMIPS4350:
217		case CPU_BMIPS4380:
218			bmips43xx_send_ipi_single(cpu, 0);
219			break;
220		case CPU_BMIPS5000:
221			bmips5000_send_ipi_single(cpu, 0);
222			break;
223		}
224	} else {
225		bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
226
227		switch (current_cpu_type()) {
228		case CPU_BMIPS4350:
229		case CPU_BMIPS4380:
230			/* Reset slave TP1 if booting from TP0 */
231			if (cpu_logical_map(cpu) == 1)
232				set_c0_brcm_cmt_ctrl(0x01);
233			break;
234		case CPU_BMIPS5000:
235			write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
 
 
 
 
 
 
 
 
 
 
236			break;
237		}
238		cpumask_set_cpu(cpu, &bmips_booted_mask);
239	}
240
241	return 0;
242}
243
244/*
245 * Early setup - runs on secondary CPU after cache probe
246 */
247static void bmips_init_secondary(void)
248{
249	bmips_cpu_setup();
 
 
 
 
 
250
251	switch (current_cpu_type()) {
252	case CPU_BMIPS4350:
253	case CPU_BMIPS4380:
 
 
 
 
 
 
 
 
 
254		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
255		break;
256	case CPU_BMIPS5000:
 
 
 
257		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
258		cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
259		break;
260	}
261}
262
263/*
264 * Late setup - runs on secondary CPU before entering the idle loop
265 */
266static void bmips_smp_finish(void)
267{
268	pr_info("SMP: CPU%d is running\n", smp_processor_id());
269
270	/* make sure there won't be a timer interrupt for a little while */
271	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
272
273	irq_enable_hazard();
274	set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
275	irq_enable_hazard();
276}
277
278/*
 
 
 
 
 
 
 
279 * BMIPS5000 raceless IPIs
280 *
281 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
282 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
283 * IPI1 is used for SMP_CALL_FUNCTION
284 */
285
286static void bmips5000_send_ipi_single(int cpu, unsigned int action)
287{
288	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
289}
290
291static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
292{
293	int action = irq - IPI0_IRQ;
294
295	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
296
297	if (action == 0)
298		scheduler_ipi();
299	else
300		generic_smp_call_function_interrupt();
301
302	return IRQ_HANDLED;
303}
304
305static void bmips5000_send_ipi_mask(const struct cpumask *mask,
306	unsigned int action)
307{
308	unsigned int i;
309
310	for_each_cpu(i, mask)
311		bmips5000_send_ipi_single(i, action);
312}
313
314/*
315 * BMIPS43xx racey IPIs
316 *
317 * We use one inbound SW IRQ for each CPU.
318 *
319 * A spinlock must be held in order to keep CPUx from accidentally clearing
320 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
321 * same spinlock is used to protect the action masks.
322 */
323
324static DEFINE_SPINLOCK(ipi_lock);
325static DEFINE_PER_CPU(int, ipi_action_mask);
326
327static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
328{
329	unsigned long flags;
330
331	spin_lock_irqsave(&ipi_lock, flags);
332	set_c0_cause(cpu ? C_SW1 : C_SW0);
333	per_cpu(ipi_action_mask, cpu) |= action;
334	irq_enable_hazard();
335	spin_unlock_irqrestore(&ipi_lock, flags);
336}
337
338static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
339{
340	unsigned long flags;
341	int action, cpu = irq - IPI0_IRQ;
342
343	spin_lock_irqsave(&ipi_lock, flags);
344	action = __this_cpu_read(ipi_action_mask);
345	per_cpu(ipi_action_mask, cpu) = 0;
346	clear_c0_cause(cpu ? C_SW1 : C_SW0);
347	spin_unlock_irqrestore(&ipi_lock, flags);
348
349	if (action & SMP_RESCHEDULE_YOURSELF)
350		scheduler_ipi();
351	if (action & SMP_CALL_FUNCTION)
352		generic_smp_call_function_interrupt();
353
354	return IRQ_HANDLED;
355}
356
357static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
358	unsigned int action)
359{
360	unsigned int i;
361
362	for_each_cpu(i, mask)
363		bmips43xx_send_ipi_single(i, action);
364}
365
366#ifdef CONFIG_HOTPLUG_CPU
367
368static int bmips_cpu_disable(void)
369{
370	unsigned int cpu = smp_processor_id();
371
 
 
 
372	pr_info("SMP: CPU%d is offline\n", cpu);
373
374	set_cpu_online(cpu, false);
375	calculate_cpu_foreign_map();
376	irq_cpu_offline();
377	clear_c0_status(IE_IRQ5);
378
379	local_flush_tlb_all();
380	local_flush_icache_range(0, ~0);
381
382	return 0;
383}
384
385static void bmips_cpu_die(unsigned int cpu)
386{
387}
388
389void __ref play_dead(void)
390{
391	idle_task_exit();
392
393	/* flush data cache */
394	_dma_cache_wback_inv(0, ~0);
395
396	/*
397	 * Wakeup is on SW0 or SW1; disable everything else
398	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
399	 * IRQ handlers; this clears ST0_IE and returns immediately.
400	 */
401	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
402	change_c0_status(
403		IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
404		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
405	irq_disable_hazard();
406
407	/*
408	 * wait for SW interrupt from bmips_boot_secondary(), then jump
409	 * back to start_secondary()
410	 */
411	__asm__ __volatile__(
412	"	wait\n"
413	"	j	bmips_secondary_reentry\n"
414	: : : "memory");
415}
416
417#endif /* CONFIG_HOTPLUG_CPU */
418
419const struct plat_smp_ops bmips43xx_smp_ops = {
420	.smp_setup		= bmips_smp_setup,
421	.prepare_cpus		= bmips_prepare_cpus,
422	.boot_secondary		= bmips_boot_secondary,
423	.smp_finish		= bmips_smp_finish,
424	.init_secondary		= bmips_init_secondary,
 
425	.send_ipi_single	= bmips43xx_send_ipi_single,
426	.send_ipi_mask		= bmips43xx_send_ipi_mask,
427#ifdef CONFIG_HOTPLUG_CPU
428	.cpu_disable		= bmips_cpu_disable,
429	.cpu_die		= bmips_cpu_die,
430#endif
431#ifdef CONFIG_KEXEC
432	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
433#endif
434};
435
436const struct plat_smp_ops bmips5000_smp_ops = {
437	.smp_setup		= bmips_smp_setup,
438	.prepare_cpus		= bmips_prepare_cpus,
439	.boot_secondary		= bmips_boot_secondary,
440	.smp_finish		= bmips_smp_finish,
441	.init_secondary		= bmips_init_secondary,
 
442	.send_ipi_single	= bmips5000_send_ipi_single,
443	.send_ipi_mask		= bmips5000_send_ipi_mask,
444#ifdef CONFIG_HOTPLUG_CPU
445	.cpu_disable		= bmips_cpu_disable,
446	.cpu_die		= bmips_cpu_die,
447#endif
448#ifdef CONFIG_KEXEC
449	.kexec_nonboot_cpu	= kexec_nonboot_cpu_jump,
450#endif
451};
452
453#endif /* CONFIG_SMP */
454
455/***********************************************************************
456 * BMIPS vector relocation
457 * This is primarily used for SMP boot, but it is applicable to some
458 * UP BMIPS systems as well.
459 ***********************************************************************/
460
461static void bmips_wr_vec(unsigned long dst, char *start, char *end)
462{
463	memcpy((void *)dst, start, end - start);
464	dma_cache_wback(dst, end - start);
465	local_flush_icache_range(dst, dst + (end - start));
466	instruction_hazard();
467}
468
469static inline void bmips_nmi_handler_setup(void)
470{
471	bmips_wr_vec(BMIPS_NMI_RESET_VEC, bmips_reset_nmi_vec,
472		bmips_reset_nmi_vec_end);
473	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, bmips_smp_int_vec,
474		bmips_smp_int_vec_end);
475}
476
477struct reset_vec_info {
478	int cpu;
479	u32 val;
480};
481
482static void bmips_set_reset_vec_remote(void *vinfo)
483{
484	struct reset_vec_info *info = vinfo;
485	int shift = info->cpu & 0x01 ? 16 : 0;
486	u32 mask = ~(0xffff << shift), val = info->val >> 16;
487
488	preempt_disable();
489	if (smp_processor_id() > 0) {
490		smp_call_function_single(0, &bmips_set_reset_vec_remote,
491					 info, 1);
492	} else {
493		if (info->cpu & 0x02) {
494			/* BMIPS5200 "should" use mask/shift, but it's buggy */
495			bmips_write_zscm_reg(0xa0, (val << 16) | val);
496			bmips_read_zscm_reg(0xa0);
497		} else {
498			write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
499					      (val << shift));
500		}
501	}
502	preempt_enable();
503}
504
505static void bmips_set_reset_vec(int cpu, u32 val)
506{
507	struct reset_vec_info info;
508
509	if (current_cpu_type() == CPU_BMIPS5000) {
510		/* this needs to run from CPU0 (which is always online) */
511		info.cpu = cpu;
512		info.val = val;
513		bmips_set_reset_vec_remote(&info);
514	} else {
515		void __iomem *cbr = BMIPS_GET_CBR();
516
517		if (cpu == 0)
518			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
519		else {
520			if (current_cpu_type() != CPU_BMIPS4380)
521				return;
522			__raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
523		}
524	}
525	__sync();
526	back_to_back_c0_hazard();
527}
528
529void bmips_ebase_setup(void)
530{
531	unsigned long new_ebase = ebase;
 
532
533	BUG_ON(ebase != CKSEG0);
534
535	switch (current_cpu_type()) {
536	case CPU_BMIPS4350:
537		/*
538		 * BMIPS4350 cannot relocate the normal vectors, but it
539		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
540		 * the relocated BEV=1, IV=0 general exception vector @
541		 * 0xa000_0380.
542		 *
543		 * set_uncached_handler() is used here because:
544		 *  - CPU1 will run this from uncached space
545		 *  - None of the cacheflush functions are set up yet
546		 */
547		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
548			&bmips_smp_int_vec, 0x80);
549		__sync();
550		return;
551	case CPU_BMIPS3300:
552	case CPU_BMIPS4380:
553		/*
554		 * 0x8000_0000: reset/NMI (initially in kseg1)
555		 * 0x8000_0400: normal vectors
556		 */
557		new_ebase = 0x80000400;
558		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
 
 
559		break;
560	case CPU_BMIPS5000:
561		/*
562		 * 0x8000_0000: reset/NMI (initially in kseg1)
563		 * 0x8000_1000: normal vectors
564		 */
565		new_ebase = 0x80001000;
566		bmips_set_reset_vec(0, RESET_FROM_KSEG0);
567		write_c0_ebase(new_ebase);
 
 
568		break;
569	default:
570		return;
571	}
572
573	board_nmi_handler_setup = &bmips_nmi_handler_setup;
574	ebase = new_ebase;
575}
576
577asmlinkage void __weak plat_wired_tlb_setup(void)
578{
579	/*
580	 * Called when starting/restarting a secondary CPU.
581	 * Kernel stacks and other important data might only be accessible
582	 * once the wired entries are present.
583	 */
584}
585
586void bmips_cpu_setup(void)
587{
588	void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
589	u32 __maybe_unused cfg;
590
591	switch (current_cpu_type()) {
592	case CPU_BMIPS3300:
593		/* Set BIU to async mode */
594		set_c0_brcm_bus_pll(BIT(22));
595		__sync();
596
597		/* put the BIU back in sync mode */
598		clear_c0_brcm_bus_pll(BIT(22));
599
600		/* clear BHTD to enable branch history table */
601		clear_c0_brcm_reset(BIT(16));
602
603		/* Flush and enable RAC */
604		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
605		__raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
606		__raw_readl(cbr + BMIPS_RAC_CONFIG);
607
608		cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
609		__raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
610		__raw_readl(cbr + BMIPS_RAC_CONFIG);
611
612		cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
613		__raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
614		__raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
615		break;
616
617	case CPU_BMIPS4380:
618		/* CBG workaround for early BMIPS4380 CPUs */
619		switch (read_c0_prid()) {
620		case 0x2a040:
621		case 0x2a042:
622		case 0x2a044:
623		case 0x2a060:
624			cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
625			__raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
626			__raw_readl(cbr + BMIPS_L2_CONFIG);
627		}
628
629		/* clear BHTD to enable branch history table */
630		clear_c0_brcm_config_0(BIT(21));
631
632		/* XI/ROTR enable */
633		set_c0_brcm_config_0(BIT(23));
634		set_c0_brcm_cmt_ctrl(BIT(15));
635		break;
636
637	case CPU_BMIPS5000:
638		/* enable RDHWR, BRDHWR */
639		set_c0_brcm_config(BIT(17) | BIT(21));
640
641		/* Disable JTB */
642		__asm__ __volatile__(
643		"	.set	noreorder\n"
644		"	li	$8, 0x5a455048\n"
645		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
646		"	.word	0x4008b008\n"	/* mfc0	t0, $22, 8 */
647		"	li	$9, 0x00008000\n"
648		"	or	$8, $8, $9\n"
649		"	.word	0x4088b008\n"	/* mtc0	t0, $22, 8 */
650		"	sync\n"
651		"	li	$8, 0x0\n"
652		"	.word	0x4088b00f\n"	/* mtc0	t0, $22, 15 */
653		"	.set	reorder\n"
654		: : : "$8", "$9");
655
656		/* XI enable */
657		set_c0_brcm_config(BIT(27));
658
659		/* enable MIPS32R2 ROR instruction for XI TLB handlers */
660		__asm__ __volatile__(
661		"	li	$8, 0x5a455048\n"
662		"	.word	0x4088b00f\n"	/* mtc0 $8, $22, 15 */
663		"	nop; nop; nop\n"
664		"	.word	0x4008b008\n"	/* mfc0 $8, $22, 8 */
665		"	lui	$9, 0x0100\n"
666		"	or	$8, $9\n"
667		"	.word	0x4088b008\n"	/* mtc0 $8, $22, 8 */
668		: : : "$8", "$9");
669		break;
670	}
671}
v3.15
  1/*
  2 * This file is subject to the terms and conditions of the GNU General Public
  3 * License.  See the file "COPYING" in the main directory of this archive
  4 * for more details.
  5 *
  6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
  7 *
  8 * SMP support for BMIPS
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/sched.h>
 
 
 13#include <linux/mm.h>
 14#include <linux/delay.h>
 15#include <linux/smp.h>
 16#include <linux/interrupt.h>
 17#include <linux/spinlock.h>
 18#include <linux/cpu.h>
 19#include <linux/cpumask.h>
 20#include <linux/reboot.h>
 21#include <linux/io.h>
 22#include <linux/compiler.h>
 23#include <linux/linkage.h>
 24#include <linux/bug.h>
 25#include <linux/kernel.h>
 
 26
 27#include <asm/time.h>
 28#include <asm/pgtable.h>
 29#include <asm/processor.h>
 30#include <asm/bootinfo.h>
 31#include <asm/pmon.h>
 32#include <asm/cacheflush.h>
 33#include <asm/tlbflush.h>
 34#include <asm/mipsregs.h>
 35#include <asm/bmips.h>
 36#include <asm/traps.h>
 37#include <asm/barrier.h>
 
 38
 39static int __maybe_unused max_cpus = 1;
 40
 41/* these may be configured by the platform code */
 42int bmips_smp_enabled = 1;
 43int bmips_cpu_offset;
 44cpumask_t bmips_booted_mask;
 
 
 
 
 
 
 45
 46#ifdef CONFIG_SMP
 47
 48/* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
 49unsigned long bmips_smp_boot_sp;
 50unsigned long bmips_smp_boot_gp;
 51
 52static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
 53static void bmips5000_send_ipi_single(int cpu, unsigned int action);
 54static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
 55static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
 56
 57/* SW interrupts 0,1 are used for interprocessor signaling */
 58#define IPI0_IRQ			(MIPS_CPU_IRQ_BASE + 0)
 59#define IPI1_IRQ			(MIPS_CPU_IRQ_BASE + 1)
 60
 61#define CPUNUM(cpu, shift)		(((cpu) + bmips_cpu_offset) << (shift))
 62#define ACTION_CLR_IPI(cpu, ipi)	(0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 63#define ACTION_SET_IPI(cpu, ipi)	(0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
 64#define ACTION_BOOT_THREAD(cpu)		(0x08 | CPUNUM(cpu, 0))
 65
 66static void __init bmips_smp_setup(void)
 67{
 68	int i, cpu = 1, boot_cpu = 0;
 69	int cpu_hw_intr;
 70
 71	switch (current_cpu_type()) {
 72	case CPU_BMIPS4350:
 73	case CPU_BMIPS4380:
 74		/* arbitration priority */
 75		clear_c0_brcm_cmt_ctrl(0x30);
 76
 77		/* NBK and weak order flags */
 78		set_c0_brcm_config_0(0x30000);
 79
 80		/* Find out if we are running on TP0 or TP1 */
 81		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
 82
 83		/*
 84		 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
 85		 * thread
 86		 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
 87		 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
 88		 */
 89		if (boot_cpu == 0)
 90			cpu_hw_intr = 0x02;
 91		else
 92			cpu_hw_intr = 0x1d;
 93
 94		change_c0_brcm_cmt_intr(0xf8018000,
 95					(cpu_hw_intr << 27) | (0x03 << 15));
 96
 97		/* single core, 2 threads (2 pipelines) */
 98		max_cpus = 2;
 99
100		break;
101	case CPU_BMIPS5000:
102		/* enable raceless SW interrupts */
103		set_c0_brcm_config(0x03 << 22);
104
105		/* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
106		change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
107
108		/* N cores, 2 threads per core */
109		max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
110
111		/* clear any pending SW interrupts */
112		for (i = 0; i < max_cpus; i++) {
113			write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
114			write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
115		}
116
117		break;
118	default:
119		max_cpus = 1;
120	}
121
122	if (!bmips_smp_enabled)
123		max_cpus = 1;
124
125	/* this can be overridden by the BSP */
126	if (!board_ebase_setup)
127		board_ebase_setup = &bmips_ebase_setup;
128
129	__cpu_number_map[boot_cpu] = 0;
130	__cpu_logical_map[0] = boot_cpu;
 
131
132	for (i = 0; i < max_cpus; i++) {
133		if (i != boot_cpu) {
134			__cpu_number_map[i] = cpu;
135			__cpu_logical_map[cpu] = i;
136			cpu++;
 
 
 
137		}
138		set_cpu_possible(i, 1);
139		set_cpu_present(i, 1);
 
 
 
140	}
141}
142
143/*
144 * IPI IRQ setup - runs on CPU0
145 */
146static void bmips_prepare_cpus(unsigned int max_cpus)
147{
148	irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
149
150	switch (current_cpu_type()) {
151	case CPU_BMIPS4350:
152	case CPU_BMIPS4380:
153		bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
154		break;
155	case CPU_BMIPS5000:
156		bmips_ipi_interrupt = bmips5000_ipi_interrupt;
157		break;
158	default:
159		return;
160	}
161
162	if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
163			"smp_ipi0", NULL))
164		panic("Can't request IPI0 interrupt");
165	if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
166			"smp_ipi1", NULL))
167		panic("Can't request IPI1 interrupt");
168}
169
170/*
171 * Tell the hardware to boot CPUx - runs on CPU0
172 */
173static void bmips_boot_secondary(int cpu, struct task_struct *idle)
174{
175	bmips_smp_boot_sp = __KSTK_TOS(idle);
176	bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
177	mb();
178
179	/*
180	 * Initial boot sequence for secondary CPU:
181	 *   bmips_reset_nmi_vec @ a000_0000 ->
182	 *   bmips_smp_entry ->
183	 *   plat_wired_tlb_setup (cached function call; optional) ->
184	 *   start_secondary (cached jump)
185	 *
186	 * Warm restart sequence:
187	 *   play_dead WAIT loop ->
188	 *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
189	 *   eret to play_dead ->
190	 *   bmips_secondary_reentry ->
191	 *   start_secondary
192	 */
193
194	pr_info("SMP: Booting CPU%d...\n", cpu);
195
196	if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
 
 
 
197		switch (current_cpu_type()) {
198		case CPU_BMIPS4350:
199		case CPU_BMIPS4380:
200			bmips43xx_send_ipi_single(cpu, 0);
201			break;
202		case CPU_BMIPS5000:
203			bmips5000_send_ipi_single(cpu, 0);
204			break;
205		}
206	}
207	else {
 
208		switch (current_cpu_type()) {
209		case CPU_BMIPS4350:
210		case CPU_BMIPS4380:
211			/* Reset slave TP1 if booting from TP0 */
212			if (cpu_logical_map(cpu) == 1)
213				set_c0_brcm_cmt_ctrl(0x01);
214			break;
215		case CPU_BMIPS5000:
216			if (cpu & 0x01)
217				write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
218			else {
219				/*
220				 * core N thread 0 was already booted; just
221				 * pulse the NMI line
222				 */
223				bmips_write_zscm_reg(0x210, 0xc0000000);
224				udelay(10);
225				bmips_write_zscm_reg(0x210, 0x00);
226			}
227			break;
228		}
229		cpumask_set_cpu(cpu, &bmips_booted_mask);
230	}
 
 
231}
232
233/*
234 * Early setup - runs on secondary CPU after cache probe
235 */
236static void bmips_init_secondary(void)
237{
238	/* move NMI vector to kseg0, in case XKS01 is enabled */
239
240	void __iomem *cbr;
241	unsigned long old_vec;
242	unsigned long relo_vector;
243	int boot_cpu;
244
245	switch (current_cpu_type()) {
246	case CPU_BMIPS4350:
247	case CPU_BMIPS4380:
248		cbr = BMIPS_GET_CBR();
249
250		boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
251		relo_vector = boot_cpu ? BMIPS_RELO_VECTOR_CONTROL_0 :
252				  BMIPS_RELO_VECTOR_CONTROL_1;
253
254		old_vec = __raw_readl(cbr + relo_vector);
255		__raw_writel(old_vec & ~0x20000000, cbr + relo_vector);
256
257		clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
258		break;
259	case CPU_BMIPS5000:
260		write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
261			(smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
262
263		write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
 
264		break;
265	}
266}
267
268/*
269 * Late setup - runs on secondary CPU before entering the idle loop
270 */
271static void bmips_smp_finish(void)
272{
273	pr_info("SMP: CPU%d is running\n", smp_processor_id());
274
275	/* make sure there won't be a timer interrupt for a little while */
276	write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
277
278	irq_enable_hazard();
279	set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
280	irq_enable_hazard();
281}
282
283/*
284 * Runs on CPU0 after all CPUs have been booted
285 */
286static void bmips_cpus_done(void)
287{
288}
289
290/*
291 * BMIPS5000 raceless IPIs
292 *
293 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
294 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
295 * IPI1 is used for SMP_CALL_FUNCTION
296 */
297
298static void bmips5000_send_ipi_single(int cpu, unsigned int action)
299{
300	write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
301}
302
303static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
304{
305	int action = irq - IPI0_IRQ;
306
307	write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
308
309	if (action == 0)
310		scheduler_ipi();
311	else
312		smp_call_function_interrupt();
313
314	return IRQ_HANDLED;
315}
316
317static void bmips5000_send_ipi_mask(const struct cpumask *mask,
318	unsigned int action)
319{
320	unsigned int i;
321
322	for_each_cpu(i, mask)
323		bmips5000_send_ipi_single(i, action);
324}
325
326/*
327 * BMIPS43xx racey IPIs
328 *
329 * We use one inbound SW IRQ for each CPU.
330 *
331 * A spinlock must be held in order to keep CPUx from accidentally clearing
332 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
333 * same spinlock is used to protect the action masks.
334 */
335
336static DEFINE_SPINLOCK(ipi_lock);
337static DEFINE_PER_CPU(int, ipi_action_mask);
338
339static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
340{
341	unsigned long flags;
342
343	spin_lock_irqsave(&ipi_lock, flags);
344	set_c0_cause(cpu ? C_SW1 : C_SW0);
345	per_cpu(ipi_action_mask, cpu) |= action;
346	irq_enable_hazard();
347	spin_unlock_irqrestore(&ipi_lock, flags);
348}
349
350static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
351{
352	unsigned long flags;
353	int action, cpu = irq - IPI0_IRQ;
354
355	spin_lock_irqsave(&ipi_lock, flags);
356	action = __get_cpu_var(ipi_action_mask);
357	per_cpu(ipi_action_mask, cpu) = 0;
358	clear_c0_cause(cpu ? C_SW1 : C_SW0);
359	spin_unlock_irqrestore(&ipi_lock, flags);
360
361	if (action & SMP_RESCHEDULE_YOURSELF)
362		scheduler_ipi();
363	if (action & SMP_CALL_FUNCTION)
364		smp_call_function_interrupt();
365
366	return IRQ_HANDLED;
367}
368
369static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
370	unsigned int action)
371{
372	unsigned int i;
373
374	for_each_cpu(i, mask)
375		bmips43xx_send_ipi_single(i, action);
376}
377
378#ifdef CONFIG_HOTPLUG_CPU
379
380static int bmips_cpu_disable(void)
381{
382	unsigned int cpu = smp_processor_id();
383
384	if (cpu == 0)
385		return -EBUSY;
386
387	pr_info("SMP: CPU%d is offline\n", cpu);
388
389	set_cpu_online(cpu, false);
390	cpu_clear(cpu, cpu_callin_map);
 
 
391
392	local_flush_tlb_all();
393	local_flush_icache_range(0, ~0);
394
395	return 0;
396}
397
398static void bmips_cpu_die(unsigned int cpu)
399{
400}
401
402void __ref play_dead(void)
403{
404	idle_task_exit();
405
406	/* flush data cache */
407	_dma_cache_wback_inv(0, ~0);
408
409	/*
410	 * Wakeup is on SW0 or SW1; disable everything else
411	 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
412	 * IRQ handlers; this clears ST0_IE and returns immediately.
413	 */
414	clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
415	change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
 
416		IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
417	irq_disable_hazard();
418
419	/*
420	 * wait for SW interrupt from bmips_boot_secondary(), then jump
421	 * back to start_secondary()
422	 */
423	__asm__ __volatile__(
424	"	wait\n"
425	"	j	bmips_secondary_reentry\n"
426	: : : "memory");
427}
428
429#endif /* CONFIG_HOTPLUG_CPU */
430
431struct plat_smp_ops bmips43xx_smp_ops = {
432	.smp_setup		= bmips_smp_setup,
433	.prepare_cpus		= bmips_prepare_cpus,
434	.boot_secondary		= bmips_boot_secondary,
435	.smp_finish		= bmips_smp_finish,
436	.init_secondary		= bmips_init_secondary,
437	.cpus_done		= bmips_cpus_done,
438	.send_ipi_single	= bmips43xx_send_ipi_single,
439	.send_ipi_mask		= bmips43xx_send_ipi_mask,
440#ifdef CONFIG_HOTPLUG_CPU
441	.cpu_disable		= bmips_cpu_disable,
442	.cpu_die		= bmips_cpu_die,
443#endif
 
 
 
444};
445
446struct plat_smp_ops bmips5000_smp_ops = {
447	.smp_setup		= bmips_smp_setup,
448	.prepare_cpus		= bmips_prepare_cpus,
449	.boot_secondary		= bmips_boot_secondary,
450	.smp_finish		= bmips_smp_finish,
451	.init_secondary		= bmips_init_secondary,
452	.cpus_done		= bmips_cpus_done,
453	.send_ipi_single	= bmips5000_send_ipi_single,
454	.send_ipi_mask		= bmips5000_send_ipi_mask,
455#ifdef CONFIG_HOTPLUG_CPU
456	.cpu_disable		= bmips_cpu_disable,
457	.cpu_die		= bmips_cpu_die,
458#endif
 
 
 
459};
460
461#endif /* CONFIG_SMP */
462
463/***********************************************************************
464 * BMIPS vector relocation
465 * This is primarily used for SMP boot, but it is applicable to some
466 * UP BMIPS systems as well.
467 ***********************************************************************/
468
469static void bmips_wr_vec(unsigned long dst, char *start, char *end)
470{
471	memcpy((void *)dst, start, end - start);
472	dma_cache_wback((unsigned long)start, end - start);
473	local_flush_icache_range(dst, dst + (end - start));
474	instruction_hazard();
475}
476
477static inline void bmips_nmi_handler_setup(void)
478{
479	bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
480		&bmips_reset_nmi_vec_end);
481	bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
482		&bmips_smp_int_vec_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
483}
484
485void bmips_ebase_setup(void)
486{
487	unsigned long new_ebase = ebase;
488	void __iomem __maybe_unused *cbr;
489
490	BUG_ON(ebase != CKSEG0);
491
492	switch (current_cpu_type()) {
493	case CPU_BMIPS4350:
494		/*
495		 * BMIPS4350 cannot relocate the normal vectors, but it
496		 * can relocate the BEV=1 vectors.  So CPU1 starts up at
497		 * the relocated BEV=1, IV=0 general exception vector @
498		 * 0xa000_0380.
499		 *
500		 * set_uncached_handler() is used here because:
501		 *  - CPU1 will run this from uncached space
502		 *  - None of the cacheflush functions are set up yet
503		 */
504		set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
505			&bmips_smp_int_vec, 0x80);
506		__sync();
507		return;
 
508	case CPU_BMIPS4380:
509		/*
510		 * 0x8000_0000: reset/NMI (initially in kseg1)
511		 * 0x8000_0400: normal vectors
512		 */
513		new_ebase = 0x80000400;
514		cbr = BMIPS_GET_CBR();
515		__raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
516		__raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
517		break;
518	case CPU_BMIPS5000:
519		/*
520		 * 0x8000_0000: reset/NMI (initially in kseg1)
521		 * 0x8000_1000: normal vectors
522		 */
523		new_ebase = 0x80001000;
524		write_c0_brcm_bootvec(0xa0088008);
525		write_c0_ebase(new_ebase);
526		if (max_cpus > 2)
527			bmips_write_zscm_reg(0xa0, 0xa008a008);
528		break;
529	default:
530		return;
531	}
532
533	board_nmi_handler_setup = &bmips_nmi_handler_setup;
534	ebase = new_ebase;
535}
536
537asmlinkage void __weak plat_wired_tlb_setup(void)
538{
539	/*
540	 * Called when starting/restarting a secondary CPU.
541	 * Kernel stacks and other important data might only be accessible
542	 * once the wired entries are present.
543	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
544}