Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
 
 
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
 
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <asm/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
 
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "print-tree.h"
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
 
  32#include "check-integrity.h"
  33#include "rcu-string.h"
  34#include "dev-replace.h"
  35#include "raid56.h"
  36#include "sysfs.h"
  37#include "qgroup.h"
  38#include "compression.h"
  39#include "tree-checker.h"
  40#include "ref-verify.h"
  41#include "block-group.h"
  42#include "discard.h"
  43#include "space-info.h"
  44#include "zoned.h"
  45#include "subpage.h"
  46
  47#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  48				 BTRFS_HEADER_FLAG_RELOC |\
  49				 BTRFS_SUPER_FLAG_ERROR |\
  50				 BTRFS_SUPER_FLAG_SEEDING |\
  51				 BTRFS_SUPER_FLAG_METADUMP |\
  52				 BTRFS_SUPER_FLAG_METADUMP_V2)
  53
 
  54static void end_workqueue_fn(struct btrfs_work *work);
 
 
 
  55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57				      struct btrfs_fs_info *fs_info);
  58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  59static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  60					struct extent_io_tree *dirty_pages,
  61					int mark);
  62static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  63				       struct extent_io_tree *pinned_extents);
  64static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  65static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  66
  67/*
  68 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  69 * is complete.  This is used during reads to verify checksums, and it is used
  70 * by writes to insert metadata for new file extents after IO is complete.
  71 */
  72struct btrfs_end_io_wq {
  73	struct bio *bio;
  74	bio_end_io_t *end_io;
  75	void *private;
  76	struct btrfs_fs_info *info;
  77	blk_status_t status;
  78	enum btrfs_wq_endio_type metadata;
 
  79	struct btrfs_work work;
  80};
  81
  82static struct kmem_cache *btrfs_end_io_wq_cache;
  83
  84int __init btrfs_end_io_wq_init(void)
  85{
  86	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  87					sizeof(struct btrfs_end_io_wq),
  88					0,
  89					SLAB_MEM_SPREAD,
  90					NULL);
  91	if (!btrfs_end_io_wq_cache)
  92		return -ENOMEM;
  93	return 0;
  94}
  95
  96void __cold btrfs_end_io_wq_exit(void)
  97{
  98	kmem_cache_destroy(btrfs_end_io_wq_cache);
  99}
 100
 101static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
 102{
 103	if (fs_info->csum_shash)
 104		crypto_free_shash(fs_info->csum_shash);
 105}
 106
 107/*
 108 * async submit bios are used to offload expensive checksumming
 109 * onto the worker threads.  They checksum file and metadata bios
 110 * just before they are sent down the IO stack.
 111 */
 112struct async_submit_bio {
 113	struct inode *inode;
 114	struct bio *bio;
 115	extent_submit_bio_start_t *submit_bio_start;
 
 
 116	int mirror_num;
 117
 118	/* Optional parameter for submit_bio_start used by direct io */
 119	u64 dio_file_offset;
 
 
 
 120	struct btrfs_work work;
 121	blk_status_t status;
 122};
 123
 124/*
 125 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 126 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 127 * the level the eb occupies in the tree.
 128 *
 129 * Different roots are used for different purposes and may nest inside each
 130 * other and they require separate keysets.  As lockdep keys should be
 131 * static, assign keysets according to the purpose of the root as indicated
 132 * by btrfs_root->root_key.objectid.  This ensures that all special purpose
 133 * roots have separate keysets.
 134 *
 135 * Lock-nesting across peer nodes is always done with the immediate parent
 136 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 137 * subclass to avoid triggering lockdep warning in such cases.
 138 *
 139 * The key is set by the readpage_end_io_hook after the buffer has passed
 140 * csum validation but before the pages are unlocked.  It is also set by
 141 * btrfs_init_new_buffer on freshly allocated blocks.
 142 *
 143 * We also add a check to make sure the highest level of the tree is the
 144 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 145 * needs update as well.
 146 */
 147#ifdef CONFIG_DEBUG_LOCK_ALLOC
 148# if BTRFS_MAX_LEVEL != 8
 149#  error
 150# endif
 151
 152#define DEFINE_LEVEL(stem, level)					\
 153	.names[level] = "btrfs-" stem "-0" #level,
 154
 155#define DEFINE_NAME(stem)						\
 156	DEFINE_LEVEL(stem, 0)						\
 157	DEFINE_LEVEL(stem, 1)						\
 158	DEFINE_LEVEL(stem, 2)						\
 159	DEFINE_LEVEL(stem, 3)						\
 160	DEFINE_LEVEL(stem, 4)						\
 161	DEFINE_LEVEL(stem, 5)						\
 162	DEFINE_LEVEL(stem, 6)						\
 163	DEFINE_LEVEL(stem, 7)
 164
 165static struct btrfs_lockdep_keyset {
 166	u64			id;		/* root objectid */
 167	/* Longest entry: btrfs-free-space-00 */
 168	char			names[BTRFS_MAX_LEVEL][20];
 169	struct lock_class_key	keys[BTRFS_MAX_LEVEL];
 170} btrfs_lockdep_keysets[] = {
 171	{ .id = BTRFS_ROOT_TREE_OBJECTID,	DEFINE_NAME("root")	},
 172	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	DEFINE_NAME("extent")	},
 173	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	DEFINE_NAME("chunk")	},
 174	{ .id = BTRFS_DEV_TREE_OBJECTID,	DEFINE_NAME("dev")	},
 175	{ .id = BTRFS_CSUM_TREE_OBJECTID,	DEFINE_NAME("csum")	},
 176	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	DEFINE_NAME("quota")	},
 177	{ .id = BTRFS_TREE_LOG_OBJECTID,	DEFINE_NAME("log")	},
 178	{ .id = BTRFS_TREE_RELOC_OBJECTID,	DEFINE_NAME("treloc")	},
 179	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	DEFINE_NAME("dreloc")	},
 180	{ .id = BTRFS_UUID_TREE_OBJECTID,	DEFINE_NAME("uuid")	},
 181	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	DEFINE_NAME("free-space") },
 182	{ .id = 0,				DEFINE_NAME("tree")	},
 
 183};
 184
 185#undef DEFINE_LEVEL
 186#undef DEFINE_NAME
 
 
 
 
 
 
 
 
 
 
 
 187
 188void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 189				    int level)
 190{
 191	struct btrfs_lockdep_keyset *ks;
 192
 193	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 194
 195	/* find the matching keyset, id 0 is the default entry */
 196	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 197		if (ks->id == objectid)
 198			break;
 199
 200	lockdep_set_class_and_name(&eb->lock,
 201				   &ks->keys[level], ks->names[level]);
 202}
 203
 204#endif
 205
 206/*
 207 * Compute the csum of a btree block and store the result to provided buffer.
 
 208 */
 209static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210{
 211	struct btrfs_fs_info *fs_info = buf->fs_info;
 212	const int num_pages = num_extent_pages(buf);
 213	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
 214	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
 
 
 
 
 
 
 
 
 
 
 
 215	char *kaddr;
 216	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217
 218	shash->tfm = fs_info->csum_shash;
 219	crypto_shash_init(shash);
 220	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
 221	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
 222			    first_page_part - BTRFS_CSUM_SIZE);
 223
 224	for (i = 1; i < num_pages; i++) {
 225		kaddr = page_address(buf->pages[i]);
 226		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 
 
 
 
 
 
 
 
 227	}
 228	memset(result, 0, BTRFS_CSUM_SIZE);
 229	crypto_shash_final(shash, result);
 
 230}
 231
 232/*
 233 * we can't consider a given block up to date unless the transid of the
 234 * block matches the transid in the parent node's pointer.  This is how we
 235 * detect blocks that either didn't get written at all or got written
 236 * in the wrong place.
 237 */
 238static int verify_parent_transid(struct extent_io_tree *io_tree,
 239				 struct extent_buffer *eb, u64 parent_transid,
 240				 int atomic)
 241{
 242	struct extent_state *cached_state = NULL;
 243	int ret;
 
 244
 245	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 246		return 0;
 247
 248	if (atomic)
 249		return -EAGAIN;
 250
 
 
 
 
 
 251	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 252			 &cached_state);
 253	if (extent_buffer_uptodate(eb) &&
 254	    btrfs_header_generation(eb) == parent_transid) {
 255		ret = 0;
 256		goto out;
 257	}
 258	btrfs_err_rl(eb->fs_info,
 259		"parent transid verify failed on %llu wanted %llu found %llu",
 260			eb->start,
 261			parent_transid, btrfs_header_generation(eb));
 262	ret = 1;
 263	clear_extent_buffer_uptodate(eb);
 
 
 
 
 
 
 
 
 
 
 264out:
 265	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 266			     &cached_state);
 
 
 267	return ret;
 268}
 269
 270static bool btrfs_supported_super_csum(u16 csum_type)
 271{
 272	switch (csum_type) {
 273	case BTRFS_CSUM_TYPE_CRC32:
 274	case BTRFS_CSUM_TYPE_XXHASH:
 275	case BTRFS_CSUM_TYPE_SHA256:
 276	case BTRFS_CSUM_TYPE_BLAKE2:
 277		return true;
 278	default:
 279		return false;
 280	}
 281}
 282
 283/*
 284 * Return 0 if the superblock checksum type matches the checksum value of that
 285 * algorithm. Pass the raw disk superblock data.
 286 */
 287static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 288				  char *raw_disk_sb)
 289{
 290	struct btrfs_super_block *disk_sb =
 291		(struct btrfs_super_block *)raw_disk_sb;
 292	char result[BTRFS_CSUM_SIZE];
 293	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 294
 295	shash->tfm = fs_info->csum_shash;
 296
 297	/*
 298	 * The super_block structure does not span the whole
 299	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 300	 * filled with zeros and is included in the checksum.
 301	 */
 302	crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
 303			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 304
 305	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
 306		return 1;
 307
 308	return 0;
 309}
 
 
 310
 311int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 312			   struct btrfs_key *first_key, u64 parent_transid)
 313{
 314	struct btrfs_fs_info *fs_info = eb->fs_info;
 315	int found_level;
 316	struct btrfs_key found_key;
 317	int ret;
 318
 319	found_level = btrfs_header_level(eb);
 320	if (found_level != level) {
 321		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 322		     KERN_ERR "BTRFS: tree level check failed\n");
 323		btrfs_err(fs_info,
 324"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 325			  eb->start, level, found_level);
 326		return -EIO;
 327	}
 328
 329	if (!first_key)
 330		return 0;
 331
 332	/*
 333	 * For live tree block (new tree blocks in current transaction),
 334	 * we need proper lock context to avoid race, which is impossible here.
 335	 * So we only checks tree blocks which is read from disk, whose
 336	 * generation <= fs_info->last_trans_committed.
 337	 */
 338	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 339		return 0;
 340
 341	/* We have @first_key, so this @eb must have at least one item */
 342	if (btrfs_header_nritems(eb) == 0) {
 343		btrfs_err(fs_info,
 344		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
 345			  eb->start);
 346		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 347		return -EUCLEAN;
 348	}
 349
 350	if (found_level)
 351		btrfs_node_key_to_cpu(eb, &found_key, 0);
 352	else
 353		btrfs_item_key_to_cpu(eb, &found_key, 0);
 354	ret = btrfs_comp_cpu_keys(first_key, &found_key);
 355
 356	if (ret) {
 357		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 358		     KERN_ERR "BTRFS: tree first key check failed\n");
 359		btrfs_err(fs_info,
 360"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 361			  eb->start, parent_transid, first_key->objectid,
 362			  first_key->type, first_key->offset,
 363			  found_key.objectid, found_key.type,
 364			  found_key.offset);
 365	}
 366	return ret;
 367}
 368
 369/*
 370 * helper to read a given tree block, doing retries as required when
 371 * the checksums don't match and we have alternate mirrors to try.
 372 *
 373 * @parent_transid:	expected transid, skip check if 0
 374 * @level:		expected level, mandatory check
 375 * @first_key:		expected key of first slot, skip check if NULL
 376 */
 377static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
 378					  u64 parent_transid, int level,
 379					  struct btrfs_key *first_key)
 380{
 381	struct btrfs_fs_info *fs_info = eb->fs_info;
 382	struct extent_io_tree *io_tree;
 383	int failed = 0;
 384	int ret;
 385	int num_copies = 0;
 386	int mirror_num = 0;
 387	int failed_mirror = 0;
 388
 
 389	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 390	while (1) {
 391		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 392		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
 393		if (!ret) {
 394			if (verify_parent_transid(io_tree, eb,
 395						   parent_transid, 0))
 396				ret = -EIO;
 397			else if (btrfs_verify_level_key(eb, level,
 398						first_key, parent_transid))
 399				ret = -EUCLEAN;
 400			else
 401				break;
 
 
 402		}
 403
 
 
 
 
 
 
 
 
 404		num_copies = btrfs_num_copies(fs_info,
 405					      eb->start, eb->len);
 406		if (num_copies == 1)
 407			break;
 408
 409		if (!failed_mirror) {
 410			failed = 1;
 411			failed_mirror = eb->read_mirror;
 412		}
 413
 414		mirror_num++;
 415		if (mirror_num == failed_mirror)
 416			mirror_num++;
 417
 418		if (mirror_num > num_copies)
 419			break;
 420	}
 421
 422	if (failed && !ret && failed_mirror)
 423		btrfs_repair_eb_io_failure(eb, failed_mirror);
 424
 425	return ret;
 426}
 427
 428static int csum_one_extent_buffer(struct extent_buffer *eb)
 429{
 430	struct btrfs_fs_info *fs_info = eb->fs_info;
 431	u8 result[BTRFS_CSUM_SIZE];
 432	int ret;
 433
 434	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 435				    offsetof(struct btrfs_header, fsid),
 436				    BTRFS_FSID_SIZE) == 0);
 437	csum_tree_block(eb, result);
 438
 439	if (btrfs_header_level(eb))
 440		ret = btrfs_check_node(eb);
 441	else
 442		ret = btrfs_check_leaf_full(eb);
 443
 444	if (ret < 0) {
 445		btrfs_print_tree(eb, 0);
 446		btrfs_err(fs_info,
 447			"block=%llu write time tree block corruption detected",
 448			eb->start);
 449		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 450		return ret;
 451	}
 452	write_extent_buffer(eb, result, 0, fs_info->csum_size);
 453
 454	return 0;
 455}
 456
 457/* Checksum all dirty extent buffers in one bio_vec */
 458static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
 459				      struct bio_vec *bvec)
 460{
 461	struct page *page = bvec->bv_page;
 462	u64 bvec_start = page_offset(page) + bvec->bv_offset;
 463	u64 cur;
 464	int ret = 0;
 465
 466	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
 467	     cur += fs_info->nodesize) {
 468		struct extent_buffer *eb;
 469		bool uptodate;
 470
 471		eb = find_extent_buffer(fs_info, cur);
 472		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
 473						       fs_info->nodesize);
 474
 475		/* A dirty eb shouldn't disappear from buffer_radix */
 476		if (WARN_ON(!eb))
 477			return -EUCLEAN;
 478
 479		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
 480			free_extent_buffer(eb);
 481			return -EUCLEAN;
 482		}
 483		if (WARN_ON(!uptodate)) {
 484			free_extent_buffer(eb);
 485			return -EUCLEAN;
 486		}
 487
 488		ret = csum_one_extent_buffer(eb);
 489		free_extent_buffer(eb);
 490		if (ret < 0)
 491			return ret;
 492	}
 493	return ret;
 494}
 495
 496/*
 497 * Checksum a dirty tree block before IO.  This has extra checks to make sure
 498 * we only fill in the checksum field in the first page of a multi-page block.
 499 * For subpage extent buffers we need bvec to also read the offset in the page.
 500 */
 501static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
 
 502{
 503	struct page *page = bvec->bv_page;
 504	u64 start = page_offset(page);
 505	u64 found_start;
 506	struct extent_buffer *eb;
 507
 508	if (fs_info->sectorsize < PAGE_SIZE)
 509		return csum_dirty_subpage_buffers(fs_info, bvec);
 510
 511	eb = (struct extent_buffer *)page->private;
 512	if (page != eb->pages[0])
 513		return 0;
 514
 515	found_start = btrfs_header_bytenr(eb);
 516
 517	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
 518		WARN_ON(found_start != 0);
 519		return 0;
 520	}
 521
 522	/*
 523	 * Please do not consolidate these warnings into a single if.
 524	 * It is useful to know what went wrong.
 525	 */
 526	if (WARN_ON(found_start != start))
 527		return -EUCLEAN;
 528	if (WARN_ON(!PageUptodate(page)))
 529		return -EUCLEAN;
 530
 531	return csum_one_extent_buffer(eb);
 
 
 
 532}
 533
 534static int check_tree_block_fsid(struct extent_buffer *eb)
 
 535{
 536	struct btrfs_fs_info *fs_info = eb->fs_info;
 537	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 538	u8 fsid[BTRFS_FSID_SIZE];
 539	u8 *metadata_uuid;
 540
 541	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 542			   BTRFS_FSID_SIZE);
 543	/*
 544	 * Checking the incompat flag is only valid for the current fs. For
 545	 * seed devices it's forbidden to have their uuid changed so reading
 546	 * ->fsid in this case is fine
 547	 */
 548	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
 549		metadata_uuid = fs_devices->metadata_uuid;
 550	else
 551		metadata_uuid = fs_devices->fsid;
 552
 553	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
 554		return 0;
 
 
 
 555
 556	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
 557		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
 558			return 0;
 
 
 
 
 
 559
 560	return 1;
 561}
 
 
 
 
 
 
 
 
 
 
 
 
 562
 563/* Do basic extent buffer checks at read time */
 564static int validate_extent_buffer(struct extent_buffer *eb)
 565{
 566	struct btrfs_fs_info *fs_info = eb->fs_info;
 567	u64 found_start;
 568	const u32 csum_size = fs_info->csum_size;
 569	u8 found_level;
 570	u8 result[BTRFS_CSUM_SIZE];
 571	const u8 *header_csum;
 572	int ret = 0;
 573
 574	found_start = btrfs_header_bytenr(eb);
 575	if (found_start != eb->start) {
 576		btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
 577			     eb->start, found_start);
 578		ret = -EIO;
 579		goto out;
 580	}
 581	if (check_tree_block_fsid(eb)) {
 582		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 583			     eb->start);
 584		ret = -EIO;
 585		goto out;
 586	}
 587	found_level = btrfs_header_level(eb);
 588	if (found_level >= BTRFS_MAX_LEVEL) {
 589		btrfs_err(fs_info, "bad tree block level %d on %llu",
 590			  (int)btrfs_header_level(eb), eb->start);
 591		ret = -EIO;
 592		goto out;
 593	}
 594
 595	csum_tree_block(eb, result);
 596	header_csum = page_address(eb->pages[0]) +
 597		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
 598
 599	if (memcmp(result, header_csum, csum_size) != 0) {
 600		btrfs_warn_rl(fs_info,
 601	"checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
 602			      eb->start,
 603			      CSUM_FMT_VALUE(csum_size, header_csum),
 604			      CSUM_FMT_VALUE(csum_size, result),
 605			      btrfs_header_level(eb));
 606		ret = -EUCLEAN;
 607		goto out;
 608	}
 609
 610	/*
 611	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 612	 * that we don't try and read the other copies of this block, just
 613	 * return -EIO.
 614	 */
 615	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 616		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 617		ret = -EIO;
 618	}
 
 
 
 
 
 
 
 619
 620	if (found_level > 0 && btrfs_check_node(eb))
 621		ret = -EIO;
 
 
 
 
 
 
 
 
 622
 623	if (!ret)
 624		set_extent_buffer_uptodate(eb);
 625	else
 626		btrfs_err(fs_info,
 627			  "block=%llu read time tree block corruption detected",
 628			  eb->start);
 629out:
 630	return ret;
 
 
 
 
 
 631}
 632
 633static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
 634				   int mirror)
 635{
 636	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
 637	struct extent_buffer *eb;
 638	bool reads_done;
 
 639	int ret = 0;
 640
 641	/*
 642	 * We don't allow bio merge for subpage metadata read, so we should
 643	 * only get one eb for each endio hook.
 644	 */
 645	ASSERT(end == start + fs_info->nodesize - 1);
 646	ASSERT(PagePrivate(page));
 647
 648	eb = find_extent_buffer(fs_info, start);
 649	/*
 650	 * When we are reading one tree block, eb must have been inserted into
 651	 * the radix tree. If not, something is wrong.
 652	 */
 653	ASSERT(eb);
 654
 655	reads_done = atomic_dec_and_test(&eb->io_pages);
 656	/* Subpage read must finish in page read */
 657	ASSERT(reads_done);
 658
 659	eb->read_mirror = mirror;
 660	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 661		ret = -EIO;
 662		goto err;
 663	}
 664	ret = validate_extent_buffer(eb);
 665	if (ret < 0)
 666		goto err;
 667
 668	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 669		btree_readahead_hook(eb, ret);
 
 
 670
 671	set_extent_buffer_uptodate(eb);
 
 
 
 
 672
 673	free_extent_buffer(eb);
 674	return ret;
 675err:
 676	/*
 677	 * end_bio_extent_readpage decrements io_pages in case of error,
 678	 * make sure it has something to decrement.
 679	 */
 680	atomic_inc(&eb->io_pages);
 681	clear_extent_buffer_uptodate(eb);
 682	free_extent_buffer(eb);
 683	return ret;
 684}
 685
 686int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
 687				   struct page *page, u64 start, u64 end,
 688				   int mirror)
 689{
 
 
 690	struct extent_buffer *eb;
 
 
 691	int ret = 0;
 692	int reads_done;
 693
 694	ASSERT(page->private);
 695
 696	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
 697		return validate_subpage_buffer(page, start, end, mirror);
 698
 699	eb = (struct extent_buffer *)page->private;
 700
 701	/*
 702	 * The pending IO might have been the only thing that kept this buffer
 703	 * in memory.  Make sure we have a ref for all this other checks
 704	 */
 705	atomic_inc(&eb->refs);
 706
 707	reads_done = atomic_dec_and_test(&eb->io_pages);
 708	if (!reads_done)
 709		goto err;
 710
 711	eb->read_mirror = mirror;
 712	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 713		ret = -EIO;
 714		goto err;
 715	}
 716	ret = validate_extent_buffer(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717err:
 718	if (reads_done &&
 719	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 720		btree_readahead_hook(eb, ret);
 721
 722	if (ret) {
 723		/*
 724		 * our io error hook is going to dec the io pages
 725		 * again, we have to make sure it has something
 726		 * to decrement
 727		 */
 728		atomic_inc(&eb->io_pages);
 729		clear_extent_buffer_uptodate(eb);
 730	}
 731	free_extent_buffer(eb);
 732
 733	return ret;
 734}
 735
 
 
 
 
 
 
 
 
 
 
 
 
 
 736static void end_workqueue_bio(struct bio *bio)
 737{
 738	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 739	struct btrfs_fs_info *fs_info;
 740	struct btrfs_workqueue *wq;
 
 741
 742	fs_info = end_io_wq->info;
 743	end_io_wq->status = bio->bi_status;
 744
 745	if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
 746		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
 747			wq = fs_info->endio_meta_write_workers;
 748		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
 
 749			wq = fs_info->endio_freespace_worker;
 750		else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 
 751			wq = fs_info->endio_raid56_workers;
 752		else
 
 753			wq = fs_info->endio_write_workers;
 
 
 754	} else {
 755		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
 
 
 
 
 756			wq = fs_info->endio_raid56_workers;
 757		else if (end_io_wq->metadata)
 
 758			wq = fs_info->endio_meta_workers;
 759		else
 
 760			wq = fs_info->endio_workers;
 
 
 761	}
 762
 763	btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
 764	btrfs_queue_work(wq, &end_io_wq->work);
 765}
 766
 767blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 768			enum btrfs_wq_endio_type metadata)
 769{
 770	struct btrfs_end_io_wq *end_io_wq;
 771
 772	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 773	if (!end_io_wq)
 774		return BLK_STS_RESOURCE;
 775
 776	end_io_wq->private = bio->bi_private;
 777	end_io_wq->end_io = bio->bi_end_io;
 778	end_io_wq->info = info;
 779	end_io_wq->status = 0;
 780	end_io_wq->bio = bio;
 781	end_io_wq->metadata = metadata;
 782
 783	bio->bi_private = end_io_wq;
 784	bio->bi_end_io = end_workqueue_bio;
 785	return 0;
 786}
 787
 
 
 
 
 
 
 
 
 788static void run_one_async_start(struct btrfs_work *work)
 789{
 790	struct async_submit_bio *async;
 791	blk_status_t ret;
 792
 793	async = container_of(work, struct  async_submit_bio, work);
 794	ret = async->submit_bio_start(async->inode, async->bio,
 795				      async->dio_file_offset);
 
 796	if (ret)
 797		async->status = ret;
 798}
 799
 800/*
 801 * In order to insert checksums into the metadata in large chunks, we wait
 802 * until bio submission time.   All the pages in the bio are checksummed and
 803 * sums are attached onto the ordered extent record.
 804 *
 805 * At IO completion time the csums attached on the ordered extent record are
 806 * inserted into the tree.
 807 */
 808static void run_one_async_done(struct btrfs_work *work)
 809{
 
 810	struct async_submit_bio *async;
 811	struct inode *inode;
 812	blk_status_t ret;
 813
 814	async = container_of(work, struct  async_submit_bio, work);
 815	inode = async->inode;
 816
 817	/* If an error occurred we just want to clean up the bio and move on */
 818	if (async->status) {
 819		async->bio->bi_status = async->status;
 820		bio_endio(async->bio);
 821		return;
 822	}
 823
 824	/*
 825	 * All of the bios that pass through here are from async helpers.
 826	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
 827	 * This changes nothing when cgroups aren't in use.
 828	 */
 829	async->bio->bi_opf |= REQ_CGROUP_PUNT;
 830	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
 831	if (ret) {
 832		async->bio->bi_status = ret;
 
 
 
 833		bio_endio(async->bio);
 
 834	}
 
 
 
 835}
 836
 837static void run_one_async_free(struct btrfs_work *work)
 838{
 839	struct async_submit_bio *async;
 840
 841	async = container_of(work, struct  async_submit_bio, work);
 842	kfree(async);
 843}
 844
 845blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
 846				 int mirror_num, unsigned long bio_flags,
 847				 u64 dio_file_offset,
 848				 extent_submit_bio_start_t *submit_bio_start)
 
 
 849{
 850	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
 851	struct async_submit_bio *async;
 852
 853	async = kmalloc(sizeof(*async), GFP_NOFS);
 854	if (!async)
 855		return BLK_STS_RESOURCE;
 856
 857	async->inode = inode;
 858	async->bio = bio;
 859	async->mirror_num = mirror_num;
 860	async->submit_bio_start = submit_bio_start;
 
 861
 862	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
 863			run_one_async_free);
 864
 865	async->dio_file_offset = dio_file_offset;
 
 866
 867	async->status = 0;
 
 
 868
 869	if (op_is_sync(bio->bi_opf))
 870		btrfs_set_work_high_priority(&async->work);
 871
 872	btrfs_queue_work(fs_info->workers, &async->work);
 
 
 
 
 
 
 
 873	return 0;
 874}
 875
 876static blk_status_t btree_csum_one_bio(struct bio *bio)
 877{
 878	struct bio_vec *bvec;
 879	struct btrfs_root *root;
 880	int ret = 0;
 881	struct bvec_iter_all iter_all;
 882
 883	ASSERT(!bio_flagged(bio, BIO_CLONED));
 884	bio_for_each_segment_all(bvec, bio, iter_all) {
 885		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 886		ret = csum_dirty_buffer(root->fs_info, bvec);
 887		if (ret)
 888			break;
 889	}
 890
 891	return errno_to_blk_status(ret);
 892}
 893
 894static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
 895					   u64 dio_file_offset)
 
 896{
 897	/*
 898	 * when we're called for a write, we're already in the async
 899	 * submission context.  Just jump into btrfs_map_bio
 900	 */
 901	return btree_csum_one_bio(bio);
 902}
 903
 904static bool should_async_write(struct btrfs_fs_info *fs_info,
 905			     struct btrfs_inode *bi)
 
 906{
 907	if (btrfs_is_zoned(fs_info))
 908		return false;
 909	if (atomic_read(&bi->sync_writers))
 910		return false;
 911	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 912		return false;
 913	return true;
 
 
 
 
 
 914}
 915
 916blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
 917				       int mirror_num, unsigned long bio_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 918{
 919	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 920	blk_status_t ret;
 
 921
 922	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
 923		/*
 924		 * called for a read, do the setup so that checksum validation
 925		 * can happen in the async kernel threads
 926		 */
 927		ret = btrfs_bio_wq_end_io(fs_info, bio,
 928					  BTRFS_WQ_ENDIO_METADATA);
 929		if (ret)
 930			goto out_w_error;
 931		ret = btrfs_map_bio(fs_info, bio, mirror_num);
 932	} else if (!should_async_write(fs_info, BTRFS_I(inode))) {
 933		ret = btree_csum_one_bio(bio);
 934		if (ret)
 935			goto out_w_error;
 936		ret = btrfs_map_bio(fs_info, bio, mirror_num);
 937	} else {
 938		/*
 939		 * kthread helpers are used to submit writes so that
 940		 * checksumming can happen in parallel across all CPUs
 941		 */
 942		ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
 943					  0, btree_submit_bio_start);
 
 
 944	}
 945
 946	if (ret)
 947		goto out_w_error;
 948	return 0;
 949
 950out_w_error:
 951	bio->bi_status = ret;
 952	bio_endio(bio);
 953	return ret;
 954}
 955
 956#ifdef CONFIG_MIGRATION
 957static int btree_migratepage(struct address_space *mapping,
 958			struct page *newpage, struct page *page,
 959			enum migrate_mode mode)
 960{
 961	/*
 962	 * we can't safely write a btree page from here,
 963	 * we haven't done the locking hook
 964	 */
 965	if (PageDirty(page))
 966		return -EAGAIN;
 967	/*
 968	 * Buffers may be managed in a filesystem specific way.
 969	 * We must have no buffers or drop them.
 970	 */
 971	if (page_has_private(page) &&
 972	    !try_to_release_page(page, GFP_KERNEL))
 973		return -EAGAIN;
 974	return migrate_page(mapping, newpage, page, mode);
 975}
 976#endif
 977
 978
 979static int btree_writepages(struct address_space *mapping,
 980			    struct writeback_control *wbc)
 981{
 982	struct btrfs_fs_info *fs_info;
 983	int ret;
 984
 985	if (wbc->sync_mode == WB_SYNC_NONE) {
 986
 987		if (wbc->for_kupdate)
 988			return 0;
 989
 990		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 991		/* this is a bit racy, but that's ok */
 992		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 993					     BTRFS_DIRTY_METADATA_THRESH,
 994					     fs_info->dirty_metadata_batch);
 995		if (ret < 0)
 996			return 0;
 997	}
 998	return btree_write_cache_pages(mapping, wbc);
 999}
1000
 
 
 
 
 
 
 
1001static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1002{
1003	if (PageWriteback(page) || PageDirty(page))
1004		return 0;
1005
1006	return try_release_extent_buffer(page);
1007}
1008
1009static void btree_invalidatepage(struct page *page, unsigned int offset,
1010				 unsigned int length)
1011{
1012	struct extent_io_tree *tree;
1013	tree = &BTRFS_I(page->mapping->host)->io_tree;
1014	extent_invalidatepage(tree, page, offset);
1015	btree_releasepage(page, GFP_NOFS);
1016	if (PagePrivate(page)) {
1017		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1018			   "page private not zero on page %llu",
1019			   (unsigned long long)page_offset(page));
1020		detach_page_private(page);
 
 
1021	}
1022}
1023
1024static int btree_set_page_dirty(struct page *page)
1025{
1026#ifdef DEBUG
1027	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1028	struct btrfs_subpage *subpage;
1029	struct extent_buffer *eb;
1030	int cur_bit = 0;
1031	u64 page_start = page_offset(page);
1032
1033	if (fs_info->sectorsize == PAGE_SIZE) {
1034		BUG_ON(!PagePrivate(page));
1035		eb = (struct extent_buffer *)page->private;
1036		BUG_ON(!eb);
1037		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1038		BUG_ON(!atomic_read(&eb->refs));
1039		btrfs_assert_tree_locked(eb);
1040		return __set_page_dirty_nobuffers(page);
1041	}
1042	ASSERT(PagePrivate(page) && page->private);
1043	subpage = (struct btrfs_subpage *)page->private;
1044
1045	ASSERT(subpage->dirty_bitmap);
1046	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1047		unsigned long flags;
1048		u64 cur;
1049		u16 tmp = (1 << cur_bit);
1050
1051		spin_lock_irqsave(&subpage->lock, flags);
1052		if (!(tmp & subpage->dirty_bitmap)) {
1053			spin_unlock_irqrestore(&subpage->lock, flags);
1054			cur_bit++;
1055			continue;
1056		}
1057		spin_unlock_irqrestore(&subpage->lock, flags);
1058		cur = page_start + cur_bit * fs_info->sectorsize;
1059
1060		eb = find_extent_buffer(fs_info, cur);
1061		ASSERT(eb);
1062		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063		ASSERT(atomic_read(&eb->refs));
1064		btrfs_assert_tree_locked(eb);
1065		free_extent_buffer(eb);
1066
1067		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1068	}
 
 
 
 
1069#endif
1070	return __set_page_dirty_nobuffers(page);
1071}
1072
1073static const struct address_space_operations btree_aops = {
 
1074	.writepages	= btree_writepages,
1075	.releasepage	= btree_releasepage,
1076	.invalidatepage = btree_invalidatepage,
1077#ifdef CONFIG_MIGRATION
1078	.migratepage	= btree_migratepage,
1079#endif
1080	.set_page_dirty = btree_set_page_dirty,
1081};
1082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083struct extent_buffer *btrfs_find_create_tree_block(
1084						struct btrfs_fs_info *fs_info,
1085						u64 bytenr, u64 owner_root,
1086						int level)
1087{
1088	if (btrfs_is_testing(fs_info))
1089		return alloc_test_extent_buffer(fs_info, bytenr);
1090	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
 
 
 
 
 
 
 
 
 
 
 
 
 
1091}
1092
1093/*
1094 * Read tree block at logical address @bytenr and do variant basic but critical
1095 * verification.
1096 *
1097 * @owner_root:		the objectid of the root owner for this block.
1098 * @parent_transid:	expected transid of this tree block, skip check if 0
1099 * @level:		expected level, mandatory check
1100 * @first_key:		expected key in slot 0, skip check if NULL
1101 */
1102struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1103				      u64 owner_root, u64 parent_transid,
1104				      int level, struct btrfs_key *first_key)
1105{
1106	struct extent_buffer *buf = NULL;
1107	int ret;
1108
1109	buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1110	if (IS_ERR(buf))
1111		return buf;
1112
1113	ret = btree_read_extent_buffer_pages(buf, parent_transid,
1114					     level, first_key);
1115	if (ret) {
1116		free_extent_buffer_stale(buf);
1117		return ERR_PTR(ret);
1118	}
1119	return buf;
1120
1121}
1122
1123void btrfs_clean_tree_block(struct extent_buffer *buf)
 
 
1124{
1125	struct btrfs_fs_info *fs_info = buf->fs_info;
1126	if (btrfs_header_generation(buf) ==
1127	    fs_info->running_transaction->transid) {
1128		btrfs_assert_tree_locked(buf);
1129
1130		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1131			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1132						 -buf->len,
1133						 fs_info->dirty_metadata_batch);
 
 
1134			clear_extent_buffer_dirty(buf);
1135		}
1136	}
1137}
1138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1140			 u64 objectid)
1141{
1142	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1143	root->fs_info = fs_info;
1144	root->node = NULL;
1145	root->commit_root = NULL;
1146	root->state = 0;
1147	root->orphan_cleanup_state = 0;
1148
 
1149	root->last_trans = 0;
1150	root->free_objectid = 0;
1151	root->nr_delalloc_inodes = 0;
1152	root->nr_ordered_extents = 0;
 
1153	root->inode_tree = RB_ROOT;
1154	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1155	root->block_rsv = NULL;
 
1156
1157	INIT_LIST_HEAD(&root->dirty_list);
1158	INIT_LIST_HEAD(&root->root_list);
1159	INIT_LIST_HEAD(&root->delalloc_inodes);
1160	INIT_LIST_HEAD(&root->delalloc_root);
1161	INIT_LIST_HEAD(&root->ordered_extents);
1162	INIT_LIST_HEAD(&root->ordered_root);
1163	INIT_LIST_HEAD(&root->reloc_dirty_list);
1164	INIT_LIST_HEAD(&root->logged_list[0]);
1165	INIT_LIST_HEAD(&root->logged_list[1]);
 
1166	spin_lock_init(&root->inode_lock);
1167	spin_lock_init(&root->delalloc_lock);
1168	spin_lock_init(&root->ordered_extent_lock);
1169	spin_lock_init(&root->accounting_lock);
1170	spin_lock_init(&root->log_extents_lock[0]);
1171	spin_lock_init(&root->log_extents_lock[1]);
1172	spin_lock_init(&root->qgroup_meta_rsv_lock);
1173	mutex_init(&root->objectid_mutex);
1174	mutex_init(&root->log_mutex);
1175	mutex_init(&root->ordered_extent_mutex);
1176	mutex_init(&root->delalloc_mutex);
1177	init_waitqueue_head(&root->qgroup_flush_wait);
1178	init_waitqueue_head(&root->log_writer_wait);
1179	init_waitqueue_head(&root->log_commit_wait[0]);
1180	init_waitqueue_head(&root->log_commit_wait[1]);
1181	INIT_LIST_HEAD(&root->log_ctxs[0]);
1182	INIT_LIST_HEAD(&root->log_ctxs[1]);
1183	atomic_set(&root->log_commit[0], 0);
1184	atomic_set(&root->log_commit[1], 0);
1185	atomic_set(&root->log_writers, 0);
1186	atomic_set(&root->log_batch, 0);
1187	refcount_set(&root->refs, 1);
1188	atomic_set(&root->snapshot_force_cow, 0);
1189	atomic_set(&root->nr_swapfiles, 0);
 
1190	root->log_transid = 0;
1191	root->log_transid_committed = -1;
1192	root->last_log_commit = 0;
1193	if (!dummy) {
1194		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1195				    IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1196		extent_io_tree_init(fs_info, &root->log_csum_range,
1197				    IO_TREE_LOG_CSUM_RANGE, NULL);
1198	}
1199
1200	memset(&root->root_key, 0, sizeof(root->root_key));
1201	memset(&root->root_item, 0, sizeof(root->root_item));
1202	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
 
 
 
 
1203	root->root_key.objectid = objectid;
1204	root->anon_dev = 0;
1205
1206	spin_lock_init(&root->root_item_lock);
1207	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1208#ifdef CONFIG_BTRFS_DEBUG
1209	INIT_LIST_HEAD(&root->leak_list);
1210	spin_lock(&fs_info->fs_roots_radix_lock);
1211	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1212	spin_unlock(&fs_info->fs_roots_radix_lock);
1213#endif
1214}
1215
1216static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1217					   u64 objectid, gfp_t flags)
1218{
1219	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1220	if (root)
1221		__setup_root(root, fs_info, objectid);
1222	return root;
1223}
1224
1225#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1226/* Should only be used by the testing infrastructure */
1227struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1228{
1229	struct btrfs_root *root;
1230
1231	if (!fs_info)
1232		return ERR_PTR(-EINVAL);
1233
1234	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1235	if (!root)
1236		return ERR_PTR(-ENOMEM);
1237
1238	/* We don't use the stripesize in selftest, set it as sectorsize */
 
1239	root->alloc_bytenr = 0;
1240
1241	return root;
1242}
1243#endif
1244
1245struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
 
1246				     u64 objectid)
1247{
1248	struct btrfs_fs_info *fs_info = trans->fs_info;
1249	struct extent_buffer *leaf;
1250	struct btrfs_root *tree_root = fs_info->tree_root;
1251	struct btrfs_root *root;
1252	struct btrfs_key key;
1253	unsigned int nofs_flag;
1254	int ret = 0;
 
1255
1256	/*
1257	 * We're holding a transaction handle, so use a NOFS memory allocation
1258	 * context to avoid deadlock if reclaim happens.
1259	 */
1260	nofs_flag = memalloc_nofs_save();
1261	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1262	memalloc_nofs_restore(nofs_flag);
1263	if (!root)
1264		return ERR_PTR(-ENOMEM);
1265
 
1266	root->root_key.objectid = objectid;
1267	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1268	root->root_key.offset = 0;
1269
1270	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1271				      BTRFS_NESTING_NORMAL);
1272	if (IS_ERR(leaf)) {
1273		ret = PTR_ERR(leaf);
1274		leaf = NULL;
1275		goto fail_unlock;
1276	}
1277
 
 
 
 
 
1278	root->node = leaf;
 
 
 
1279	btrfs_mark_buffer_dirty(leaf);
1280
1281	root->commit_root = btrfs_root_node(root);
1282	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1283
1284	btrfs_set_root_flags(&root->root_item, 0);
1285	btrfs_set_root_limit(&root->root_item, 0);
1286	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1287	btrfs_set_root_generation(&root->root_item, trans->transid);
1288	btrfs_set_root_level(&root->root_item, 0);
1289	btrfs_set_root_refs(&root->root_item, 1);
1290	btrfs_set_root_used(&root->root_item, leaf->len);
1291	btrfs_set_root_last_snapshot(&root->root_item, 0);
1292	btrfs_set_root_dirid(&root->root_item, 0);
1293	if (is_fstree(objectid))
1294		generate_random_guid(root->root_item.uuid);
1295	else
1296		export_guid(root->root_item.uuid, &guid_null);
1297	btrfs_set_root_drop_level(&root->root_item, 0);
1298
1299	btrfs_tree_unlock(leaf);
1300
1301	key.objectid = objectid;
1302	key.type = BTRFS_ROOT_ITEM_KEY;
1303	key.offset = 0;
1304	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1305	if (ret)
1306		goto fail;
1307
 
 
1308	return root;
1309
1310fail_unlock:
1311	if (leaf)
1312		btrfs_tree_unlock(leaf);
1313fail:
1314	btrfs_put_root(root);
 
 
 
 
 
1315
1316	return ERR_PTR(ret);
1317}
1318
1319static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1320					 struct btrfs_fs_info *fs_info)
1321{
1322	struct btrfs_root *root;
 
1323
1324	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1325	if (!root)
1326		return ERR_PTR(-ENOMEM);
1327
 
 
1328	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1329	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1330	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1331
1332	return root;
1333}
1334
1335int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1336			      struct btrfs_root *root)
1337{
1338	struct extent_buffer *leaf;
1339
1340	/*
1341	 * DON'T set SHAREABLE bit for log trees.
1342	 *
1343	 * Log trees are not exposed to user space thus can't be snapshotted,
1344	 * and they go away before a real commit is actually done.
1345	 *
1346	 * They do store pointers to file data extents, and those reference
1347	 * counts still get updated (along with back refs to the log tree).
 
 
1348	 */
1349
1350	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1351			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1352	if (IS_ERR(leaf))
1353		return PTR_ERR(leaf);
 
 
1354
 
 
 
 
 
1355	root->node = leaf;
1356
 
1357	btrfs_mark_buffer_dirty(root->node);
1358	btrfs_tree_unlock(root->node);
1359
1360	return 0;
1361}
1362
1363int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1364			     struct btrfs_fs_info *fs_info)
1365{
1366	struct btrfs_root *log_root;
1367
1368	log_root = alloc_log_tree(trans, fs_info);
1369	if (IS_ERR(log_root))
1370		return PTR_ERR(log_root);
1371
1372	if (!btrfs_is_zoned(fs_info)) {
1373		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1374
1375		if (ret) {
1376			btrfs_put_root(log_root);
1377			return ret;
1378		}
1379	}
1380
1381	WARN_ON(fs_info->log_root_tree);
1382	fs_info->log_root_tree = log_root;
1383	return 0;
1384}
1385
1386int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1387		       struct btrfs_root *root)
1388{
1389	struct btrfs_fs_info *fs_info = root->fs_info;
1390	struct btrfs_root *log_root;
1391	struct btrfs_inode_item *inode_item;
1392	int ret;
1393
1394	log_root = alloc_log_tree(trans, fs_info);
1395	if (IS_ERR(log_root))
1396		return PTR_ERR(log_root);
1397
1398	ret = btrfs_alloc_log_tree_node(trans, log_root);
1399	if (ret) {
1400		btrfs_put_root(log_root);
1401		return ret;
1402	}
1403
1404	log_root->last_trans = trans->transid;
1405	log_root->root_key.offset = root->root_key.objectid;
1406
1407	inode_item = &log_root->root_item.inode;
1408	btrfs_set_stack_inode_generation(inode_item, 1);
1409	btrfs_set_stack_inode_size(inode_item, 3);
1410	btrfs_set_stack_inode_nlink(inode_item, 1);
1411	btrfs_set_stack_inode_nbytes(inode_item,
1412				     fs_info->nodesize);
1413	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1414
1415	btrfs_set_root_node(&log_root->root_item, log_root->node);
1416
1417	WARN_ON(root->log_root);
1418	root->log_root = log_root;
1419	root->log_transid = 0;
1420	root->log_transid_committed = -1;
1421	root->last_log_commit = 0;
1422	return 0;
1423}
1424
1425static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1426					      struct btrfs_path *path,
1427					      struct btrfs_key *key)
1428{
1429	struct btrfs_root *root;
1430	struct btrfs_fs_info *fs_info = tree_root->fs_info;
 
1431	u64 generation;
1432	int ret;
1433	int level;
1434
1435	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1436	if (!root)
1437		return ERR_PTR(-ENOMEM);
1438
 
 
 
 
 
 
 
 
1439	ret = btrfs_find_root(tree_root, key, path,
1440			      &root->root_item, &root->root_key);
1441	if (ret) {
1442		if (ret > 0)
1443			ret = -ENOENT;
1444		goto fail;
1445	}
1446
1447	generation = btrfs_root_generation(&root->root_item);
1448	level = btrfs_root_level(&root->root_item);
1449	root->node = read_tree_block(fs_info,
1450				     btrfs_root_bytenr(&root->root_item),
1451				     key->objectid, generation, level, NULL);
1452	if (IS_ERR(root->node)) {
1453		ret = PTR_ERR(root->node);
1454		root->node = NULL;
1455		goto fail;
1456	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1457		ret = -EIO;
1458		goto fail;
 
1459	}
1460	root->commit_root = btrfs_root_node(root);
 
 
1461	return root;
1462fail:
1463	btrfs_put_root(root);
1464	return ERR_PTR(ret);
 
 
 
1465}
1466
1467struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1468					struct btrfs_key *key)
1469{
1470	struct btrfs_root *root;
1471	struct btrfs_path *path;
1472
1473	path = btrfs_alloc_path();
1474	if (!path)
1475		return ERR_PTR(-ENOMEM);
1476	root = read_tree_root_path(tree_root, path, key);
1477	btrfs_free_path(path);
 
 
 
1478
1479	return root;
1480}
1481
1482/*
1483 * Initialize subvolume root in-memory structure
1484 *
1485 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1486 */
1487static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1488{
1489	int ret;
1490	unsigned int nofs_flag;
1491
1492	/*
1493	 * We might be called under a transaction (e.g. indirect backref
1494	 * resolution) which could deadlock if it triggers memory reclaim
1495	 */
1496	nofs_flag = memalloc_nofs_save();
1497	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1498	memalloc_nofs_restore(nofs_flag);
1499	if (ret)
1500		goto fail;
1501
1502	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1503	    root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1504		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1505		btrfs_check_and_init_root_item(&root->root_item);
1506	}
1507
1508	/*
1509	 * Don't assign anonymous block device to roots that are not exposed to
1510	 * userspace, the id pool is limited to 1M
1511	 */
1512	if (is_fstree(root->root_key.objectid) &&
1513	    btrfs_root_refs(&root->root_item) > 0) {
1514		if (!anon_dev) {
1515			ret = get_anon_bdev(&root->anon_dev);
1516			if (ret)
1517				goto fail;
1518		} else {
1519			root->anon_dev = anon_dev;
1520		}
1521	}
 
 
 
 
 
 
 
 
 
1522
1523	mutex_lock(&root->objectid_mutex);
1524	ret = btrfs_init_root_free_objectid(root);
 
1525	if (ret) {
1526		mutex_unlock(&root->objectid_mutex);
1527		goto fail;
1528	}
1529
1530	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1531
1532	mutex_unlock(&root->objectid_mutex);
1533
1534	return 0;
1535fail:
1536	/* The caller is responsible to call btrfs_free_fs_root */
1537	return ret;
1538}
1539
1540static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1541					       u64 root_id)
1542{
1543	struct btrfs_root *root;
1544
1545	spin_lock(&fs_info->fs_roots_radix_lock);
1546	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1547				 (unsigned long)root_id);
1548	if (root)
1549		root = btrfs_grab_root(root);
1550	spin_unlock(&fs_info->fs_roots_radix_lock);
1551	return root;
1552}
1553
1554static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1555						u64 objectid)
1556{
1557	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1558		return btrfs_grab_root(fs_info->tree_root);
1559	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1560		return btrfs_grab_root(fs_info->extent_root);
1561	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1562		return btrfs_grab_root(fs_info->chunk_root);
1563	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1564		return btrfs_grab_root(fs_info->dev_root);
1565	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1566		return btrfs_grab_root(fs_info->csum_root);
1567	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1568		return btrfs_grab_root(fs_info->quota_root) ?
1569			fs_info->quota_root : ERR_PTR(-ENOENT);
1570	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1571		return btrfs_grab_root(fs_info->uuid_root) ?
1572			fs_info->uuid_root : ERR_PTR(-ENOENT);
1573	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1574		return btrfs_grab_root(fs_info->free_space_root) ?
1575			fs_info->free_space_root : ERR_PTR(-ENOENT);
1576	return NULL;
1577}
1578
1579int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1580			 struct btrfs_root *root)
1581{
1582	int ret;
1583
1584	ret = radix_tree_preload(GFP_NOFS);
1585	if (ret)
1586		return ret;
1587
1588	spin_lock(&fs_info->fs_roots_radix_lock);
1589	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1590				(unsigned long)root->root_key.objectid,
1591				root);
1592	if (ret == 0) {
1593		btrfs_grab_root(root);
1594		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1595	}
1596	spin_unlock(&fs_info->fs_roots_radix_lock);
1597	radix_tree_preload_end();
1598
1599	return ret;
1600}
1601
1602void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1603{
1604#ifdef CONFIG_BTRFS_DEBUG
1605	struct btrfs_root *root;
1606
1607	while (!list_empty(&fs_info->allocated_roots)) {
1608		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1609
1610		root = list_first_entry(&fs_info->allocated_roots,
1611					struct btrfs_root, leak_list);
1612		btrfs_err(fs_info, "leaked root %s refcount %d",
1613			  btrfs_root_name(&root->root_key, buf),
1614			  refcount_read(&root->refs));
1615		while (refcount_read(&root->refs) > 1)
1616			btrfs_put_root(root);
1617		btrfs_put_root(root);
1618	}
1619#endif
1620}
1621
1622void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1623{
1624	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1625	percpu_counter_destroy(&fs_info->delalloc_bytes);
1626	percpu_counter_destroy(&fs_info->ordered_bytes);
1627	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1628	btrfs_free_csum_hash(fs_info);
1629	btrfs_free_stripe_hash_table(fs_info);
1630	btrfs_free_ref_cache(fs_info);
1631	kfree(fs_info->balance_ctl);
1632	kfree(fs_info->delayed_root);
1633	btrfs_put_root(fs_info->extent_root);
1634	btrfs_put_root(fs_info->tree_root);
1635	btrfs_put_root(fs_info->chunk_root);
1636	btrfs_put_root(fs_info->dev_root);
1637	btrfs_put_root(fs_info->csum_root);
1638	btrfs_put_root(fs_info->quota_root);
1639	btrfs_put_root(fs_info->uuid_root);
1640	btrfs_put_root(fs_info->free_space_root);
1641	btrfs_put_root(fs_info->fs_root);
1642	btrfs_put_root(fs_info->data_reloc_root);
1643	btrfs_check_leaked_roots(fs_info);
1644	btrfs_extent_buffer_leak_debug_check(fs_info);
1645	kfree(fs_info->super_copy);
1646	kfree(fs_info->super_for_commit);
1647	kvfree(fs_info);
1648}
1649
1650
1651/*
1652 * Get an in-memory reference of a root structure.
1653 *
1654 * For essential trees like root/extent tree, we grab it from fs_info directly.
1655 * For subvolume trees, we check the cached filesystem roots first. If not
1656 * found, then read it from disk and add it to cached fs roots.
1657 *
1658 * Caller should release the root by calling btrfs_put_root() after the usage.
1659 *
1660 * NOTE: Reloc and log trees can't be read by this function as they share the
1661 *	 same root objectid.
1662 *
1663 * @objectid:	root id
1664 * @anon_dev:	preallocated anonymous block device number for new roots,
1665 * 		pass 0 for new allocation.
1666 * @check_ref:	whether to check root item references, If true, return -ENOENT
1667 *		for orphan roots
1668 */
1669static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1670					     u64 objectid, dev_t anon_dev,
1671					     bool check_ref)
1672{
1673	struct btrfs_root *root;
1674	struct btrfs_path *path;
1675	struct btrfs_key key;
1676	int ret;
1677
1678	root = btrfs_get_global_root(fs_info, objectid);
1679	if (root)
1680		return root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1681again:
1682	root = btrfs_lookup_fs_root(fs_info, objectid);
1683	if (root) {
1684		/* Shouldn't get preallocated anon_dev for cached roots */
1685		ASSERT(!anon_dev);
1686		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1687			btrfs_put_root(root);
1688			return ERR_PTR(-ENOENT);
1689		}
1690		return root;
1691	}
1692
1693	key.objectid = objectid;
1694	key.type = BTRFS_ROOT_ITEM_KEY;
1695	key.offset = (u64)-1;
1696	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1697	if (IS_ERR(root))
1698		return root;
1699
1700	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1701		ret = -ENOENT;
1702		goto fail;
1703	}
1704
1705	ret = btrfs_init_fs_root(root, anon_dev);
1706	if (ret)
1707		goto fail;
1708
1709	path = btrfs_alloc_path();
1710	if (!path) {
1711		ret = -ENOMEM;
1712		goto fail;
1713	}
1714	key.objectid = BTRFS_ORPHAN_OBJECTID;
1715	key.type = BTRFS_ORPHAN_ITEM_KEY;
1716	key.offset = objectid;
1717
1718	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1719	btrfs_free_path(path);
1720	if (ret < 0)
1721		goto fail;
1722	if (ret == 0)
1723		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1724
1725	ret = btrfs_insert_fs_root(fs_info, root);
1726	if (ret) {
1727		btrfs_put_root(root);
1728		if (ret == -EEXIST)
1729			goto again;
 
1730		goto fail;
1731	}
1732	return root;
1733fail:
1734	btrfs_put_root(root);
1735	return ERR_PTR(ret);
1736}
1737
1738/*
1739 * Get in-memory reference of a root structure
1740 *
1741 * @objectid:	tree objectid
1742 * @check_ref:	if set, verify that the tree exists and the item has at least
1743 *		one reference
1744 */
1745struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1746				     u64 objectid, bool check_ref)
1747{
1748	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1749}
 
 
1750
1751/*
1752 * Get in-memory reference of a root structure, created as new, optionally pass
1753 * the anonymous block device id
1754 *
1755 * @objectid:	tree objectid
1756 * @anon_dev:	if zero, allocate a new anonymous block device or use the
1757 *		parameter value
1758 */
1759struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1760					 u64 objectid, dev_t anon_dev)
1761{
1762	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1763}
1764
1765/*
1766 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1767 * @fs_info:	the fs_info
1768 * @objectid:	the objectid we need to lookup
1769 *
1770 * This is exclusively used for backref walking, and exists specifically because
1771 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1772 * creation time, which means we may have to read the tree_root in order to look
1773 * up a fs root that is not in memory.  If the root is not in memory we will
1774 * read the tree root commit root and look up the fs root from there.  This is a
1775 * temporary root, it will not be inserted into the radix tree as it doesn't
1776 * have the most uptodate information, it'll simply be discarded once the
1777 * backref code is finished using the root.
1778 */
1779struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1780						 struct btrfs_path *path,
1781						 u64 objectid)
1782{
1783	struct btrfs_root *root;
1784	struct btrfs_key key;
1785
1786	ASSERT(path->search_commit_root && path->skip_locking);
1787
1788	/*
1789	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1790	 * since this is called via the backref walking code we won't be looking
1791	 * up a root that doesn't exist, unless there's corruption.  So if root
1792	 * != NULL just return it.
1793	 */
1794	root = btrfs_get_global_root(fs_info, objectid);
1795	if (root)
1796		return root;
1797
1798	root = btrfs_lookup_fs_root(fs_info, objectid);
1799	if (root)
1800		return root;
1801
1802	key.objectid = objectid;
1803	key.type = BTRFS_ROOT_ITEM_KEY;
1804	key.offset = (u64)-1;
1805	root = read_tree_root_path(fs_info->tree_root, path, &key);
1806	btrfs_release_path(path);
1807
1808	return root;
1809}
1810
1811/*
1812 * called by the kthread helper functions to finally call the bio end_io
1813 * functions.  This is where read checksum verification actually happens
1814 */
1815static void end_workqueue_fn(struct btrfs_work *work)
1816{
1817	struct bio *bio;
1818	struct btrfs_end_io_wq *end_io_wq;
1819
1820	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1821	bio = end_io_wq->bio;
1822
1823	bio->bi_status = end_io_wq->status;
1824	bio->bi_private = end_io_wq->private;
1825	bio->bi_end_io = end_io_wq->end_io;
1826	bio_endio(bio);
1827	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
 
1828}
1829
1830static int cleaner_kthread(void *arg)
1831{
1832	struct btrfs_root *root = arg;
1833	struct btrfs_fs_info *fs_info = root->fs_info;
1834	int again;
 
1835
1836	while (1) {
1837		again = 0;
1838
1839		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1840
1841		/* Make the cleaner go to sleep early. */
1842		if (btrfs_need_cleaner_sleep(fs_info))
1843			goto sleep;
1844
1845		/*
1846		 * Do not do anything if we might cause open_ctree() to block
1847		 * before we have finished mounting the filesystem.
1848		 */
1849		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1850			goto sleep;
1851
1852		if (!mutex_trylock(&fs_info->cleaner_mutex))
1853			goto sleep;
1854
1855		/*
1856		 * Avoid the problem that we change the status of the fs
1857		 * during the above check and trylock.
1858		 */
1859		if (btrfs_need_cleaner_sleep(fs_info)) {
1860			mutex_unlock(&fs_info->cleaner_mutex);
1861			goto sleep;
1862		}
1863
 
1864		btrfs_run_delayed_iputs(fs_info);
 
1865
1866		again = btrfs_clean_one_deleted_snapshot(root);
1867		mutex_unlock(&fs_info->cleaner_mutex);
1868
1869		/*
1870		 * The defragger has dealt with the R/O remount and umount,
1871		 * needn't do anything special here.
1872		 */
1873		btrfs_run_defrag_inodes(fs_info);
1874
1875		/*
1876		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1877		 * with relocation (btrfs_relocate_chunk) and relocation
1878		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1879		 * after acquiring fs_info->reclaim_bgs_lock. So we
1880		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1881		 * unused block groups.
1882		 */
1883		btrfs_delete_unused_bgs(fs_info);
1884
1885		/*
1886		 * Reclaim block groups in the reclaim_bgs list after we deleted
1887		 * all unused block_groups. This possibly gives us some more free
1888		 * space.
1889		 */
1890		btrfs_reclaim_bgs(fs_info);
1891sleep:
1892		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1893		if (kthread_should_park())
1894			kthread_parkme();
1895		if (kthread_should_stop())
1896			return 0;
1897		if (!again) {
1898			set_current_state(TASK_INTERRUPTIBLE);
1899			schedule();
 
1900			__set_current_state(TASK_RUNNING);
1901		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1902	}
 
 
1903}
1904
1905static int transaction_kthread(void *arg)
1906{
1907	struct btrfs_root *root = arg;
1908	struct btrfs_fs_info *fs_info = root->fs_info;
1909	struct btrfs_trans_handle *trans;
1910	struct btrfs_transaction *cur;
1911	u64 transid;
1912	time64_t delta;
1913	unsigned long delay;
1914	bool cannot_commit;
1915
1916	do {
1917		cannot_commit = false;
1918		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1919		mutex_lock(&fs_info->transaction_kthread_mutex);
1920
1921		spin_lock(&fs_info->trans_lock);
1922		cur = fs_info->running_transaction;
1923		if (!cur) {
1924			spin_unlock(&fs_info->trans_lock);
1925			goto sleep;
1926		}
1927
1928		delta = ktime_get_seconds() - cur->start_time;
1929		if (cur->state < TRANS_STATE_COMMIT_START &&
1930		    delta < fs_info->commit_interval) {
 
1931			spin_unlock(&fs_info->trans_lock);
1932			delay -= msecs_to_jiffies((delta - 1) * 1000);
1933			delay = min(delay,
1934				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1935			goto sleep;
1936		}
1937		transid = cur->transid;
1938		spin_unlock(&fs_info->trans_lock);
1939
1940		/* If the file system is aborted, this will always fail. */
1941		trans = btrfs_attach_transaction(root);
1942		if (IS_ERR(trans)) {
1943			if (PTR_ERR(trans) != -ENOENT)
1944				cannot_commit = true;
1945			goto sleep;
1946		}
1947		if (transid == trans->transid) {
1948			btrfs_commit_transaction(trans);
1949		} else {
1950			btrfs_end_transaction(trans);
1951		}
1952sleep:
1953		wake_up_process(fs_info->cleaner_kthread);
1954		mutex_unlock(&fs_info->transaction_kthread_mutex);
1955
1956		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1957				      &fs_info->fs_state)))
1958			btrfs_cleanup_transaction(fs_info);
 
1959		if (!kthread_should_stop() &&
1960				(!btrfs_transaction_blocked(fs_info) ||
1961				 cannot_commit))
1962			schedule_timeout_interruptible(delay);
 
1963	} while (!kthread_should_stop());
1964	return 0;
1965}
1966
1967/*
1968 * This will find the highest generation in the array of root backups.  The
1969 * index of the highest array is returned, or -EINVAL if we can't find
1970 * anything.
1971 *
1972 * We check to make sure the array is valid by comparing the
1973 * generation of the latest  root in the array with the generation
1974 * in the super block.  If they don't match we pitch it.
1975 */
1976static int find_newest_super_backup(struct btrfs_fs_info *info)
1977{
1978	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1979	u64 cur;
 
1980	struct btrfs_root_backup *root_backup;
1981	int i;
1982
1983	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1984		root_backup = info->super_copy->super_roots + i;
1985		cur = btrfs_backup_tree_root_gen(root_backup);
1986		if (cur == newest_gen)
1987			return i;
1988	}
1989
1990	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991}
1992
1993/*
1994 * copy all the root pointers into the super backup array.
1995 * this will bump the backup pointer by one when it is
1996 * done
1997 */
1998static void backup_super_roots(struct btrfs_fs_info *info)
1999{
2000	const int next_backup = info->backup_root_index;
2001	struct btrfs_root_backup *root_backup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2002
2003	root_backup = info->super_for_commit->super_roots + next_backup;
2004
2005	/*
2006	 * make sure all of our padding and empty slots get zero filled
2007	 * regardless of which ones we use today
2008	 */
2009	memset(root_backup, 0, sizeof(*root_backup));
2010
2011	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2012
2013	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2014	btrfs_set_backup_tree_root_gen(root_backup,
2015			       btrfs_header_generation(info->tree_root->node));
2016
2017	btrfs_set_backup_tree_root_level(root_backup,
2018			       btrfs_header_level(info->tree_root->node));
2019
2020	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2021	btrfs_set_backup_chunk_root_gen(root_backup,
2022			       btrfs_header_generation(info->chunk_root->node));
2023	btrfs_set_backup_chunk_root_level(root_backup,
2024			       btrfs_header_level(info->chunk_root->node));
2025
2026	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2027	btrfs_set_backup_extent_root_gen(root_backup,
2028			       btrfs_header_generation(info->extent_root->node));
2029	btrfs_set_backup_extent_root_level(root_backup,
2030			       btrfs_header_level(info->extent_root->node));
2031
2032	/*
2033	 * we might commit during log recovery, which happens before we set
2034	 * the fs_root.  Make sure it is valid before we fill it in.
2035	 */
2036	if (info->fs_root && info->fs_root->node) {
2037		btrfs_set_backup_fs_root(root_backup,
2038					 info->fs_root->node->start);
2039		btrfs_set_backup_fs_root_gen(root_backup,
2040			       btrfs_header_generation(info->fs_root->node));
2041		btrfs_set_backup_fs_root_level(root_backup,
2042			       btrfs_header_level(info->fs_root->node));
2043	}
2044
2045	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2046	btrfs_set_backup_dev_root_gen(root_backup,
2047			       btrfs_header_generation(info->dev_root->node));
2048	btrfs_set_backup_dev_root_level(root_backup,
2049				       btrfs_header_level(info->dev_root->node));
2050
2051	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2052	btrfs_set_backup_csum_root_gen(root_backup,
2053			       btrfs_header_generation(info->csum_root->node));
2054	btrfs_set_backup_csum_root_level(root_backup,
2055			       btrfs_header_level(info->csum_root->node));
2056
2057	btrfs_set_backup_total_bytes(root_backup,
2058			     btrfs_super_total_bytes(info->super_copy));
2059	btrfs_set_backup_bytes_used(root_backup,
2060			     btrfs_super_bytes_used(info->super_copy));
2061	btrfs_set_backup_num_devices(root_backup,
2062			     btrfs_super_num_devices(info->super_copy));
2063
2064	/*
2065	 * if we don't copy this out to the super_copy, it won't get remembered
2066	 * for the next commit
2067	 */
2068	memcpy(&info->super_copy->super_roots,
2069	       &info->super_for_commit->super_roots,
2070	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2071}
2072
2073/*
2074 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2075 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2076 *
2077 * fs_info - filesystem whose backup roots need to be read
2078 * priority - priority of backup root required
2079 *
2080 * Returns backup root index on success and -EINVAL otherwise.
2081 */
2082static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
 
 
2083{
2084	int backup_index = find_newest_super_backup(fs_info);
2085	struct btrfs_super_block *super = fs_info->super_copy;
2086	struct btrfs_root_backup *root_backup;
 
2087
2088	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2089		if (priority == 0)
2090			return backup_index;
2091
2092		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2093		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
 
 
 
 
 
 
 
2094	} else {
2095		return -EINVAL;
 
 
 
 
2096	}
2097
2098	root_backup = super->super_roots + backup_index;
2099
2100	btrfs_set_super_generation(super,
2101				   btrfs_backup_tree_root_gen(root_backup));
2102	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2103	btrfs_set_super_root_level(super,
2104				   btrfs_backup_tree_root_level(root_backup));
2105	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2106
2107	/*
2108	 * Fixme: the total bytes and num_devices need to match or we should
2109	 * need a fsck
2110	 */
2111	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2112	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2113
2114	return backup_index;
2115}
2116
2117/* helper to cleanup workers */
2118static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2119{
2120	btrfs_destroy_workqueue(fs_info->fixup_workers);
2121	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2122	btrfs_destroy_workqueue(fs_info->workers);
2123	btrfs_destroy_workqueue(fs_info->endio_workers);
 
2124	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
 
2125	btrfs_destroy_workqueue(fs_info->rmw_workers);
 
2126	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2127	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
 
2128	btrfs_destroy_workqueue(fs_info->delayed_workers);
2129	btrfs_destroy_workqueue(fs_info->caching_workers);
2130	btrfs_destroy_workqueue(fs_info->readahead_workers);
2131	btrfs_destroy_workqueue(fs_info->flush_workers);
2132	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2133	if (fs_info->discard_ctl.discard_workers)
2134		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2135	/*
2136	 * Now that all other work queues are destroyed, we can safely destroy
2137	 * the queues used for metadata I/O, since tasks from those other work
2138	 * queues can do metadata I/O operations.
2139	 */
2140	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2141	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2142}
2143
2144static void free_root_extent_buffers(struct btrfs_root *root)
2145{
2146	if (root) {
2147		free_extent_buffer(root->node);
2148		free_extent_buffer(root->commit_root);
2149		root->node = NULL;
2150		root->commit_root = NULL;
2151	}
2152}
2153
2154/* helper to cleanup tree roots */
2155static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2156{
2157	free_root_extent_buffers(info->tree_root);
2158
2159	free_root_extent_buffers(info->dev_root);
2160	free_root_extent_buffers(info->extent_root);
2161	free_root_extent_buffers(info->csum_root);
2162	free_root_extent_buffers(info->quota_root);
2163	free_root_extent_buffers(info->uuid_root);
2164	free_root_extent_buffers(info->fs_root);
2165	free_root_extent_buffers(info->data_reloc_root);
2166	if (free_chunk_root)
2167		free_root_extent_buffers(info->chunk_root);
2168	free_root_extent_buffers(info->free_space_root);
2169}
2170
2171void btrfs_put_root(struct btrfs_root *root)
2172{
2173	if (!root)
2174		return;
2175
2176	if (refcount_dec_and_test(&root->refs)) {
2177		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2178		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2179		if (root->anon_dev)
2180			free_anon_bdev(root->anon_dev);
2181		btrfs_drew_lock_destroy(&root->snapshot_lock);
2182		free_root_extent_buffers(root);
2183#ifdef CONFIG_BTRFS_DEBUG
2184		spin_lock(&root->fs_info->fs_roots_radix_lock);
2185		list_del_init(&root->leak_list);
2186		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2187#endif
2188		kfree(root);
2189	}
2190}
2191
2192void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2193{
2194	int ret;
2195	struct btrfs_root *gang[8];
2196	int i;
2197
2198	while (!list_empty(&fs_info->dead_roots)) {
2199		gang[0] = list_entry(fs_info->dead_roots.next,
2200				     struct btrfs_root, root_list);
2201		list_del(&gang[0]->root_list);
2202
2203		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2204			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2205		btrfs_put_root(gang[0]);
 
 
 
 
2206	}
2207
2208	while (1) {
2209		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2210					     (void **)gang, 0,
2211					     ARRAY_SIZE(gang));
2212		if (!ret)
2213			break;
2214		for (i = 0; i < ret; i++)
2215			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2216	}
 
 
 
 
 
2217}
2218
2219static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2220{
2221	mutex_init(&fs_info->scrub_lock);
2222	atomic_set(&fs_info->scrubs_running, 0);
2223	atomic_set(&fs_info->scrub_pause_req, 0);
2224	atomic_set(&fs_info->scrubs_paused, 0);
2225	atomic_set(&fs_info->scrub_cancel_req, 0);
2226	init_waitqueue_head(&fs_info->scrub_pause_wait);
2227	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2228}
2229
2230static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2231{
2232	spin_lock_init(&fs_info->balance_lock);
2233	mutex_init(&fs_info->balance_mutex);
 
2234	atomic_set(&fs_info->balance_pause_req, 0);
2235	atomic_set(&fs_info->balance_cancel_req, 0);
2236	fs_info->balance_ctl = NULL;
2237	init_waitqueue_head(&fs_info->balance_wait_q);
2238	atomic_set(&fs_info->reloc_cancel_req, 0);
2239}
2240
2241static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2242{
2243	struct inode *inode = fs_info->btree_inode;
2244
2245	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2246	set_nlink(inode, 1);
2247	/*
2248	 * we set the i_size on the btree inode to the max possible int.
2249	 * the real end of the address space is determined by all of
2250	 * the devices in the system
2251	 */
2252	inode->i_size = OFFSET_MAX;
2253	inode->i_mapping->a_ops = &btree_aops;
2254
2255	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2256	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2257			    IO_TREE_BTREE_INODE_IO, inode);
2258	BTRFS_I(inode)->io_tree.track_uptodate = false;
2259	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2260
2261	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
 
 
2262	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2263	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2264	btrfs_insert_inode_hash(inode);
2265}
2266
2267static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2268{
 
 
2269	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2270	init_rwsem(&fs_info->dev_replace.rwsem);
2271	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
 
 
 
2272}
2273
2274static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2275{
2276	spin_lock_init(&fs_info->qgroup_lock);
2277	mutex_init(&fs_info->qgroup_ioctl_lock);
2278	fs_info->qgroup_tree = RB_ROOT;
 
2279	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2280	fs_info->qgroup_seq = 1;
2281	fs_info->qgroup_ulist = NULL;
2282	fs_info->qgroup_rescan_running = false;
2283	mutex_init(&fs_info->qgroup_rescan_lock);
2284}
2285
2286static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2287		struct btrfs_fs_devices *fs_devices)
2288{
2289	u32 max_active = fs_info->thread_pool_size;
2290	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2291
2292	fs_info->workers =
2293		btrfs_alloc_workqueue(fs_info, "worker",
2294				      flags | WQ_HIGHPRI, max_active, 16);
2295
2296	fs_info->delalloc_workers =
2297		btrfs_alloc_workqueue(fs_info, "delalloc",
2298				      flags, max_active, 2);
2299
2300	fs_info->flush_workers =
2301		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2302				      flags, max_active, 0);
2303
2304	fs_info->caching_workers =
2305		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2306
 
 
 
 
 
 
 
 
 
 
2307	fs_info->fixup_workers =
2308		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2309
2310	/*
2311	 * endios are largely parallel and should have a very
2312	 * low idle thresh
2313	 */
2314	fs_info->endio_workers =
2315		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2316	fs_info->endio_meta_workers =
2317		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2318				      max_active, 4);
2319	fs_info->endio_meta_write_workers =
2320		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2321				      max_active, 2);
2322	fs_info->endio_raid56_workers =
2323		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2324				      max_active, 4);
 
 
2325	fs_info->rmw_workers =
2326		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2327	fs_info->endio_write_workers =
2328		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2329				      max_active, 2);
2330	fs_info->endio_freespace_worker =
2331		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2332				      max_active, 0);
2333	fs_info->delayed_workers =
2334		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2335				      max_active, 0);
2336	fs_info->readahead_workers =
2337		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2338				      max_active, 2);
2339	fs_info->qgroup_rescan_workers =
2340		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2341	fs_info->discard_ctl.discard_workers =
2342		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
 
 
2343
2344	if (!(fs_info->workers && fs_info->delalloc_workers &&
2345	      fs_info->flush_workers &&
2346	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2347	      fs_info->endio_meta_write_workers &&
 
2348	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2349	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2350	      fs_info->caching_workers && fs_info->readahead_workers &&
2351	      fs_info->fixup_workers && fs_info->delayed_workers &&
2352	      fs_info->qgroup_rescan_workers &&
2353	      fs_info->discard_ctl.discard_workers)) {
2354		return -ENOMEM;
2355	}
2356
2357	return 0;
2358}
2359
2360static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2361{
2362	struct crypto_shash *csum_shash;
2363	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2364
2365	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2366
2367	if (IS_ERR(csum_shash)) {
2368		btrfs_err(fs_info, "error allocating %s hash for checksum",
2369			  csum_driver);
2370		return PTR_ERR(csum_shash);
2371	}
2372
2373	fs_info->csum_shash = csum_shash;
2374
2375	return 0;
2376}
2377
2378static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2379			    struct btrfs_fs_devices *fs_devices)
2380{
2381	int ret;
2382	struct btrfs_root *log_tree_root;
2383	struct btrfs_super_block *disk_super = fs_info->super_copy;
2384	u64 bytenr = btrfs_super_log_root(disk_super);
2385	int level = btrfs_super_log_root_level(disk_super);
2386
2387	if (fs_devices->rw_devices == 0) {
2388		btrfs_warn(fs_info, "log replay required on RO media");
2389		return -EIO;
2390	}
2391
2392	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2393					 GFP_KERNEL);
2394	if (!log_tree_root)
2395		return -ENOMEM;
2396
 
 
2397	log_tree_root->node = read_tree_block(fs_info, bytenr,
2398					      BTRFS_TREE_LOG_OBJECTID,
2399					      fs_info->generation + 1, level,
2400					      NULL);
2401	if (IS_ERR(log_tree_root->node)) {
2402		btrfs_warn(fs_info, "failed to read log tree");
2403		ret = PTR_ERR(log_tree_root->node);
2404		log_tree_root->node = NULL;
2405		btrfs_put_root(log_tree_root);
2406		return ret;
2407	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2408		btrfs_err(fs_info, "failed to read log tree");
2409		btrfs_put_root(log_tree_root);
 
2410		return -EIO;
2411	}
2412	/* returns with log_tree_root freed on success */
2413	ret = btrfs_recover_log_trees(log_tree_root);
2414	if (ret) {
2415		btrfs_handle_fs_error(fs_info, ret,
2416				      "Failed to recover log tree");
2417		btrfs_put_root(log_tree_root);
 
2418		return ret;
2419	}
2420
2421	if (sb_rdonly(fs_info->sb)) {
2422		ret = btrfs_commit_super(fs_info);
2423		if (ret)
2424			return ret;
2425	}
2426
2427	return 0;
2428}
2429
2430static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2431{
2432	struct btrfs_root *tree_root = fs_info->tree_root;
2433	struct btrfs_root *root;
2434	struct btrfs_key location;
2435	int ret;
2436
2437	BUG_ON(!fs_info->tree_root);
2438
2439	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2440	location.type = BTRFS_ROOT_ITEM_KEY;
2441	location.offset = 0;
2442
2443	root = btrfs_read_tree_root(tree_root, &location);
2444	if (IS_ERR(root)) {
2445		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2446			ret = PTR_ERR(root);
2447			goto out;
2448		}
2449	} else {
2450		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2451		fs_info->extent_root = root;
2452	}
2453
2454	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2455	root = btrfs_read_tree_root(tree_root, &location);
2456	if (IS_ERR(root)) {
2457		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2458			ret = PTR_ERR(root);
2459			goto out;
2460		}
2461	} else {
2462		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2463		fs_info->dev_root = root;
2464	}
2465	/* Initialize fs_info for all devices in any case */
2466	btrfs_init_devices_late(fs_info);
2467
2468	/* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2469	if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2470		location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2471		root = btrfs_read_tree_root(tree_root, &location);
2472		if (IS_ERR(root)) {
2473			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2474				ret = PTR_ERR(root);
2475				goto out;
2476			}
2477		} else {
2478			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2479			fs_info->csum_root = root;
2480		}
2481	}
2482
2483	/*
2484	 * This tree can share blocks with some other fs tree during relocation
2485	 * and we need a proper setup by btrfs_get_fs_root
2486	 */
2487	root = btrfs_get_fs_root(tree_root->fs_info,
2488				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2489	if (IS_ERR(root)) {
2490		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2491			ret = PTR_ERR(root);
2492			goto out;
2493		}
2494	} else {
2495		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2496		fs_info->data_reloc_root = root;
2497	}
2498
2499	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2500	root = btrfs_read_tree_root(tree_root, &location);
2501	if (!IS_ERR(root)) {
2502		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2503		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2504		fs_info->quota_root = root;
2505	}
2506
2507	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2508	root = btrfs_read_tree_root(tree_root, &location);
2509	if (IS_ERR(root)) {
2510		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2511			ret = PTR_ERR(root);
2512			if (ret != -ENOENT)
2513				goto out;
2514		}
2515	} else {
2516		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2517		fs_info->uuid_root = root;
2518	}
2519
2520	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2521		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2522		root = btrfs_read_tree_root(tree_root, &location);
2523		if (IS_ERR(root)) {
2524			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2525				ret = PTR_ERR(root);
2526				goto out;
2527			}
2528		}  else {
2529			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2530			fs_info->free_space_root = root;
2531		}
2532	}
2533
2534	return 0;
2535out:
2536	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2537		   location.objectid, ret);
2538	return ret;
2539}
2540
2541/*
2542 * Real super block validation
2543 * NOTE: super csum type and incompat features will not be checked here.
2544 *
2545 * @sb:		super block to check
2546 * @mirror_num:	the super block number to check its bytenr:
2547 * 		0	the primary (1st) sb
2548 * 		1, 2	2nd and 3rd backup copy
2549 * 	       -1	skip bytenr check
2550 */
2551static int validate_super(struct btrfs_fs_info *fs_info,
2552			    struct btrfs_super_block *sb, int mirror_num)
2553{
2554	u64 nodesize = btrfs_super_nodesize(sb);
2555	u64 sectorsize = btrfs_super_sectorsize(sb);
2556	int ret = 0;
2557
2558	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2559		btrfs_err(fs_info, "no valid FS found");
2560		ret = -EINVAL;
2561	}
2562	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2563		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2564				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2565		ret = -EINVAL;
2566	}
2567	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2568		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2569				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2570		ret = -EINVAL;
2571	}
2572	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2573		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2574				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2575		ret = -EINVAL;
2576	}
2577	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2578		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2579				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2580		ret = -EINVAL;
2581	}
2582
2583	/*
2584	 * Check sectorsize and nodesize first, other check will need it.
2585	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2586	 */
2587	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2588	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2589		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2590		ret = -EINVAL;
2591	}
2592
2593	/*
2594	 * For 4K page size, we only support 4K sector size.
2595	 * For 64K page size, we support read-write for 64K sector size, and
2596	 * read-only for 4K sector size.
2597	 */
2598	if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2599	    (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2600				     sectorsize != SZ_64K))) {
2601		btrfs_err(fs_info,
2602			"sectorsize %llu not yet supported for page size %lu",
2603			sectorsize, PAGE_SIZE);
2604		ret = -EINVAL;
2605	}
2606
2607	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2608	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2609		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2610		ret = -EINVAL;
2611	}
2612	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2613		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2614			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2615		ret = -EINVAL;
2616	}
2617
2618	/* Root alignment check */
2619	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2620		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2621			   btrfs_super_root(sb));
2622		ret = -EINVAL;
2623	}
2624	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2625		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2626			   btrfs_super_chunk_root(sb));
2627		ret = -EINVAL;
2628	}
2629	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2630		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2631			   btrfs_super_log_root(sb));
2632		ret = -EINVAL;
2633	}
2634
2635	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2636		   BTRFS_FSID_SIZE)) {
2637		btrfs_err(fs_info,
2638		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2639			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2640		ret = -EINVAL;
2641	}
2642
2643	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2644	    memcmp(fs_info->fs_devices->metadata_uuid,
2645		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2646		btrfs_err(fs_info,
2647"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2648			fs_info->super_copy->metadata_uuid,
2649			fs_info->fs_devices->metadata_uuid);
2650		ret = -EINVAL;
2651	}
2652
2653	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2654		   BTRFS_FSID_SIZE) != 0) {
2655		btrfs_err(fs_info,
2656			"dev_item UUID does not match metadata fsid: %pU != %pU",
2657			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2658		ret = -EINVAL;
2659	}
2660
2661	/*
2662	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2663	 * done later
2664	 */
2665	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2666		btrfs_err(fs_info, "bytes_used is too small %llu",
2667			  btrfs_super_bytes_used(sb));
2668		ret = -EINVAL;
2669	}
2670	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2671		btrfs_err(fs_info, "invalid stripesize %u",
2672			  btrfs_super_stripesize(sb));
2673		ret = -EINVAL;
2674	}
2675	if (btrfs_super_num_devices(sb) > (1UL << 31))
2676		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2677			   btrfs_super_num_devices(sb));
2678	if (btrfs_super_num_devices(sb) == 0) {
2679		btrfs_err(fs_info, "number of devices is 0");
2680		ret = -EINVAL;
2681	}
2682
2683	if (mirror_num >= 0 &&
2684	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2685		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2686			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2687		ret = -EINVAL;
2688	}
 
 
2689
2690	/*
2691	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2692	 * and one chunk
2693	 */
2694	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2695		btrfs_err(fs_info, "system chunk array too big %u > %u",
2696			  btrfs_super_sys_array_size(sb),
2697			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2698		ret = -EINVAL;
2699	}
2700	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2701			+ sizeof(struct btrfs_chunk)) {
2702		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2703			  btrfs_super_sys_array_size(sb),
2704			  sizeof(struct btrfs_disk_key)
2705			  + sizeof(struct btrfs_chunk));
2706		ret = -EINVAL;
2707	}
2708
2709	/*
2710	 * The generation is a global counter, we'll trust it more than the others
2711	 * but it's still possible that it's the one that's wrong.
2712	 */
2713	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2714		btrfs_warn(fs_info,
2715			"suspicious: generation < chunk_root_generation: %llu < %llu",
2716			btrfs_super_generation(sb),
2717			btrfs_super_chunk_root_generation(sb));
2718	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2719	    && btrfs_super_cache_generation(sb) != (u64)-1)
2720		btrfs_warn(fs_info,
2721			"suspicious: generation < cache_generation: %llu < %llu",
2722			btrfs_super_generation(sb),
2723			btrfs_super_cache_generation(sb));
2724
2725	return ret;
2726}
2727
2728/*
2729 * Validation of super block at mount time.
2730 * Some checks already done early at mount time, like csum type and incompat
2731 * flags will be skipped.
2732 */
2733static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2734{
2735	return validate_super(fs_info, fs_info->super_copy, 0);
2736}
2737
2738/*
2739 * Validation of super block at write time.
2740 * Some checks like bytenr check will be skipped as their values will be
2741 * overwritten soon.
2742 * Extra checks like csum type and incompat flags will be done here.
2743 */
2744static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2745				      struct btrfs_super_block *sb)
2746{
2747	int ret;
2748
2749	ret = validate_super(fs_info, sb, -1);
2750	if (ret < 0)
2751		goto out;
2752	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2753		ret = -EUCLEAN;
2754		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2755			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2756		goto out;
2757	}
2758	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2759		ret = -EUCLEAN;
2760		btrfs_err(fs_info,
2761		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2762			  btrfs_super_incompat_flags(sb),
2763			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2764		goto out;
2765	}
2766out:
2767	if (ret < 0)
2768		btrfs_err(fs_info,
2769		"super block corruption detected before writing it to disk");
2770	return ret;
2771}
2772
2773static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2774{
2775	int backup_index = find_newest_super_backup(fs_info);
2776	struct btrfs_super_block *sb = fs_info->super_copy;
2777	struct btrfs_root *tree_root = fs_info->tree_root;
2778	bool handle_error = false;
2779	int ret = 0;
2780	int i;
2781
2782	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2783		u64 generation;
2784		int level;
2785
2786		if (handle_error) {
2787			if (!IS_ERR(tree_root->node))
2788				free_extent_buffer(tree_root->node);
2789			tree_root->node = NULL;
2790
2791			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2792				break;
2793
2794			free_root_pointers(fs_info, 0);
2795
2796			/*
2797			 * Don't use the log in recovery mode, it won't be
2798			 * valid
2799			 */
2800			btrfs_set_super_log_root(sb, 0);
2801
2802			/* We can't trust the free space cache either */
2803			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2804
2805			ret = read_backup_root(fs_info, i);
2806			backup_index = ret;
2807			if (ret < 0)
2808				return ret;
2809		}
2810		generation = btrfs_super_generation(sb);
2811		level = btrfs_super_root_level(sb);
2812		tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2813						  BTRFS_ROOT_TREE_OBJECTID,
2814						  generation, level, NULL);
2815		if (IS_ERR(tree_root->node)) {
2816			handle_error = true;
2817			ret = PTR_ERR(tree_root->node);
2818			tree_root->node = NULL;
2819			btrfs_warn(fs_info, "couldn't read tree root");
2820			continue;
2821
2822		} else if (!extent_buffer_uptodate(tree_root->node)) {
2823			handle_error = true;
2824			ret = -EIO;
2825			btrfs_warn(fs_info, "error while reading tree root");
2826			continue;
2827		}
2828
2829		btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2830		tree_root->commit_root = btrfs_root_node(tree_root);
2831		btrfs_set_root_refs(&tree_root->root_item, 1);
2832
2833		/*
2834		 * No need to hold btrfs_root::objectid_mutex since the fs
2835		 * hasn't been fully initialised and we are the only user
2836		 */
2837		ret = btrfs_init_root_free_objectid(tree_root);
2838		if (ret < 0) {
2839			handle_error = true;
2840			continue;
2841		}
2842
2843		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2844
2845		ret = btrfs_read_roots(fs_info);
2846		if (ret < 0) {
2847			handle_error = true;
2848			continue;
2849		}
2850
2851		/* All successful */
2852		fs_info->generation = generation;
2853		fs_info->last_trans_committed = generation;
2854
2855		/* Always begin writing backup roots after the one being used */
2856		if (backup_index < 0) {
2857			fs_info->backup_root_index = 0;
2858		} else {
2859			fs_info->backup_root_index = backup_index + 1;
2860			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2861		}
2862		break;
2863	}
2864
2865	return ret;
2866}
2867
2868void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2869{
2870	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2871	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2872	INIT_LIST_HEAD(&fs_info->trans_list);
2873	INIT_LIST_HEAD(&fs_info->dead_roots);
2874	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2875	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2876	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2877	spin_lock_init(&fs_info->delalloc_root_lock);
2878	spin_lock_init(&fs_info->trans_lock);
2879	spin_lock_init(&fs_info->fs_roots_radix_lock);
2880	spin_lock_init(&fs_info->delayed_iput_lock);
2881	spin_lock_init(&fs_info->defrag_inodes_lock);
 
 
2882	spin_lock_init(&fs_info->super_lock);
 
2883	spin_lock_init(&fs_info->buffer_lock);
2884	spin_lock_init(&fs_info->unused_bgs_lock);
2885	spin_lock_init(&fs_info->treelog_bg_lock);
2886	rwlock_init(&fs_info->tree_mod_log_lock);
2887	mutex_init(&fs_info->unused_bg_unpin_mutex);
2888	mutex_init(&fs_info->reclaim_bgs_lock);
2889	mutex_init(&fs_info->reloc_mutex);
2890	mutex_init(&fs_info->delalloc_root_mutex);
2891	mutex_init(&fs_info->zoned_meta_io_lock);
2892	seqlock_init(&fs_info->profiles_lock);
2893
2894	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2895	INIT_LIST_HEAD(&fs_info->space_info);
2896	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2897	INIT_LIST_HEAD(&fs_info->unused_bgs);
2898	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2899#ifdef CONFIG_BTRFS_DEBUG
2900	INIT_LIST_HEAD(&fs_info->allocated_roots);
2901	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2902	spin_lock_init(&fs_info->eb_leak_lock);
2903#endif
2904	extent_map_tree_init(&fs_info->mapping_tree);
2905	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2906			     BTRFS_BLOCK_RSV_GLOBAL);
 
 
2907	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2908	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2909	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2910	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2911			     BTRFS_BLOCK_RSV_DELOPS);
2912	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2913			     BTRFS_BLOCK_RSV_DELREFS);
2914
2915	atomic_set(&fs_info->async_delalloc_pages, 0);
 
 
2916	atomic_set(&fs_info->defrag_running, 0);
 
2917	atomic_set(&fs_info->reada_works_cnt, 0);
2918	atomic_set(&fs_info->nr_delayed_iputs, 0);
2919	atomic64_set(&fs_info->tree_mod_seq, 0);
 
 
2920	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2921	fs_info->metadata_ratio = 0;
2922	fs_info->defrag_inodes = RB_ROOT;
2923	atomic64_set(&fs_info->free_chunk_space, 0);
2924	fs_info->tree_mod_log = RB_ROOT;
2925	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2926	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2927	/* readahead state */
2928	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2929	spin_lock_init(&fs_info->reada_lock);
2930	btrfs_init_ref_verify(fs_info);
2931
2932	fs_info->thread_pool_size = min_t(unsigned long,
2933					  num_online_cpus() + 2, 8);
2934
2935	INIT_LIST_HEAD(&fs_info->ordered_roots);
2936	spin_lock_init(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
2937
2938	btrfs_init_scrub(fs_info);
2939#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2940	fs_info->check_integrity_print_mask = 0;
2941#endif
2942	btrfs_init_balance(fs_info);
2943	btrfs_init_async_reclaim_work(fs_info);
 
 
 
 
 
 
2944
2945	spin_lock_init(&fs_info->block_group_cache_lock);
2946	fs_info->block_group_cache_tree = RB_ROOT;
2947	fs_info->first_logical_byte = (u64)-1;
2948
2949	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2950			    IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
 
 
 
2951	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2952
2953	mutex_init(&fs_info->ordered_operations_mutex);
2954	mutex_init(&fs_info->tree_log_mutex);
2955	mutex_init(&fs_info->chunk_mutex);
2956	mutex_init(&fs_info->transaction_kthread_mutex);
2957	mutex_init(&fs_info->cleaner_mutex);
 
2958	mutex_init(&fs_info->ro_block_group_mutex);
2959	init_rwsem(&fs_info->commit_root_sem);
2960	init_rwsem(&fs_info->cleanup_work_sem);
2961	init_rwsem(&fs_info->subvol_sem);
2962	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2963
2964	btrfs_init_dev_replace_locks(fs_info);
2965	btrfs_init_qgroup(fs_info);
2966	btrfs_discard_init(fs_info);
2967
2968	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2969	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2970
2971	init_waitqueue_head(&fs_info->transaction_throttle);
2972	init_waitqueue_head(&fs_info->transaction_wait);
2973	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2974	init_waitqueue_head(&fs_info->async_submit_wait);
2975	init_waitqueue_head(&fs_info->delayed_iputs_wait);
 
2976
2977	/* Usable values until the real ones are cached from the superblock */
2978	fs_info->nodesize = 4096;
2979	fs_info->sectorsize = 4096;
2980	fs_info->sectorsize_bits = ilog2(4096);
2981	fs_info->stripesize = 4096;
2982
2983	spin_lock_init(&fs_info->swapfile_pins_lock);
2984	fs_info->swapfile_pins = RB_ROOT;
2985
2986	spin_lock_init(&fs_info->send_reloc_lock);
2987	fs_info->send_in_progress = 0;
2988
2989	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2990	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2991}
2992
2993static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2994{
2995	int ret;
2996
2997	fs_info->sb = sb;
2998	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2999	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3000
3001	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3002	if (ret)
3003		return ret;
3004
3005	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3006	if (ret)
3007		return ret;
3008
3009	fs_info->dirty_metadata_batch = PAGE_SIZE *
3010					(1 + ilog2(nr_cpu_ids));
3011
3012	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3013	if (ret)
3014		return ret;
3015
3016	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3017			GFP_KERNEL);
3018	if (ret)
3019		return ret;
3020
3021	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3022					GFP_KERNEL);
3023	if (!fs_info->delayed_root)
3024		return -ENOMEM;
3025	btrfs_init_delayed_root(fs_info->delayed_root);
3026
3027	if (sb_rdonly(sb))
3028		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3029
3030	return btrfs_alloc_stripe_hash_table(fs_info);
3031}
3032
3033static int btrfs_uuid_rescan_kthread(void *data)
3034{
3035	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3036	int ret;
3037
3038	/*
3039	 * 1st step is to iterate through the existing UUID tree and
3040	 * to delete all entries that contain outdated data.
3041	 * 2nd step is to add all missing entries to the UUID tree.
3042	 */
3043	ret = btrfs_uuid_tree_iterate(fs_info);
3044	if (ret < 0) {
3045		if (ret != -EINTR)
3046			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3047				   ret);
3048		up(&fs_info->uuid_tree_rescan_sem);
3049		return ret;
3050	}
3051	return btrfs_uuid_scan_kthread(data);
3052}
3053
3054static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3055{
3056	struct task_struct *task;
3057
3058	down(&fs_info->uuid_tree_rescan_sem);
3059	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3060	if (IS_ERR(task)) {
3061		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3062		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3063		up(&fs_info->uuid_tree_rescan_sem);
3064		return PTR_ERR(task);
3065	}
3066
3067	return 0;
3068}
3069
3070/*
3071 * Some options only have meaning at mount time and shouldn't persist across
3072 * remounts, or be displayed. Clear these at the end of mount and remount
3073 * code paths.
3074 */
3075void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3076{
3077	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3078	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3079}
3080
3081/*
3082 * Mounting logic specific to read-write file systems. Shared by open_ctree
3083 * and btrfs_remount when remounting from read-only to read-write.
3084 */
3085int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3086{
3087	int ret;
3088	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3089	bool clear_free_space_tree = false;
3090
3091	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3092	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3093		clear_free_space_tree = true;
3094	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3095		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3096		btrfs_warn(fs_info, "free space tree is invalid");
3097		clear_free_space_tree = true;
3098	}
3099
3100	if (clear_free_space_tree) {
3101		btrfs_info(fs_info, "clearing free space tree");
3102		ret = btrfs_clear_free_space_tree(fs_info);
3103		if (ret) {
3104			btrfs_warn(fs_info,
3105				   "failed to clear free space tree: %d", ret);
3106			goto out;
3107		}
3108	}
3109
3110	/*
3111	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3112	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3113	 * them into the fs_info->fs_roots_radix tree. This must be done before
3114	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3115	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3116	 * item before the root's tree is deleted - this means that if we unmount
3117	 * or crash before the deletion completes, on the next mount we will not
3118	 * delete what remains of the tree because the orphan item does not
3119	 * exists anymore, which is what tells us we have a pending deletion.
3120	 */
3121	ret = btrfs_find_orphan_roots(fs_info);
3122	if (ret)
3123		goto out;
3124
3125	ret = btrfs_cleanup_fs_roots(fs_info);
3126	if (ret)
3127		goto out;
3128
3129	down_read(&fs_info->cleanup_work_sem);
3130	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3131	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3132		up_read(&fs_info->cleanup_work_sem);
3133		goto out;
3134	}
3135	up_read(&fs_info->cleanup_work_sem);
3136
3137	mutex_lock(&fs_info->cleaner_mutex);
3138	ret = btrfs_recover_relocation(fs_info->tree_root);
3139	mutex_unlock(&fs_info->cleaner_mutex);
3140	if (ret < 0) {
3141		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3142		goto out;
3143	}
3144
3145	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3146	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3147		btrfs_info(fs_info, "creating free space tree");
3148		ret = btrfs_create_free_space_tree(fs_info);
3149		if (ret) {
3150			btrfs_warn(fs_info,
3151				"failed to create free space tree: %d", ret);
3152			goto out;
3153		}
3154	}
3155
3156	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3157		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3158		if (ret)
3159			goto out;
3160	}
3161
3162	ret = btrfs_resume_balance_async(fs_info);
3163	if (ret)
3164		goto out;
3165
3166	ret = btrfs_resume_dev_replace_async(fs_info);
3167	if (ret) {
3168		btrfs_warn(fs_info, "failed to resume dev_replace");
3169		goto out;
3170	}
3171
3172	btrfs_qgroup_rescan_resume(fs_info);
3173
3174	if (!fs_info->uuid_root) {
3175		btrfs_info(fs_info, "creating UUID tree");
3176		ret = btrfs_create_uuid_tree(fs_info);
3177		if (ret) {
3178			btrfs_warn(fs_info,
3179				   "failed to create the UUID tree %d", ret);
3180			goto out;
3181		}
3182	}
3183
3184out:
3185	return ret;
3186}
3187
3188int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3189		      char *options)
3190{
3191	u32 sectorsize;
3192	u32 nodesize;
3193	u32 stripesize;
3194	u64 generation;
3195	u64 features;
3196	u16 csum_type;
3197	struct btrfs_super_block *disk_super;
3198	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3199	struct btrfs_root *tree_root;
3200	struct btrfs_root *chunk_root;
3201	int ret;
3202	int err = -EINVAL;
3203	int level;
3204
3205	ret = init_mount_fs_info(fs_info, sb);
3206	if (ret) {
3207		err = ret;
3208		goto fail;
3209	}
3210
3211	/* These need to be init'ed before we start creating inodes and such. */
3212	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3213				     GFP_KERNEL);
3214	fs_info->tree_root = tree_root;
3215	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3216				      GFP_KERNEL);
3217	fs_info->chunk_root = chunk_root;
3218	if (!tree_root || !chunk_root) {
3219		err = -ENOMEM;
3220		goto fail;
3221	}
3222
3223	fs_info->btree_inode = new_inode(sb);
3224	if (!fs_info->btree_inode) {
3225		err = -ENOMEM;
3226		goto fail;
3227	}
3228	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3229	btrfs_init_btree_inode(fs_info);
3230
3231	invalidate_bdev(fs_devices->latest_bdev);
3232
3233	/*
3234	 * Read super block and check the signature bytes only
3235	 */
3236	disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3237	if (IS_ERR(disk_super)) {
3238		err = PTR_ERR(disk_super);
3239		goto fail_alloc;
3240	}
3241
3242	/*
3243	 * Verify the type first, if that or the checksum value are
3244	 * corrupted, we'll find out
3245	 */
3246	csum_type = btrfs_super_csum_type(disk_super);
3247	if (!btrfs_supported_super_csum(csum_type)) {
3248		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3249			  csum_type);
3250		err = -EINVAL;
3251		btrfs_release_disk_super(disk_super);
3252		goto fail_alloc;
3253	}
3254
3255	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3256
3257	ret = btrfs_init_csum_hash(fs_info, csum_type);
3258	if (ret) {
3259		err = ret;
3260		btrfs_release_disk_super(disk_super);
3261		goto fail_alloc;
3262	}
3263
3264	/*
3265	 * We want to check superblock checksum, the type is stored inside.
3266	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3267	 */
3268	if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3269		btrfs_err(fs_info, "superblock checksum mismatch");
3270		err = -EINVAL;
3271		btrfs_release_disk_super(disk_super);
3272		goto fail_alloc;
3273	}
3274
3275	/*
3276	 * super_copy is zeroed at allocation time and we never touch the
3277	 * following bytes up to INFO_SIZE, the checksum is calculated from
3278	 * the whole block of INFO_SIZE
3279	 */
3280	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3281	btrfs_release_disk_super(disk_super);
3282
3283	disk_super = fs_info->super_copy;
3284
3285
3286	features = btrfs_super_flags(disk_super);
3287	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3288		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3289		btrfs_set_super_flags(disk_super, features);
3290		btrfs_info(fs_info,
3291			"found metadata UUID change in progress flag, clearing");
3292	}
3293
3294	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3295	       sizeof(*fs_info->super_for_commit));
 
 
 
3296
3297	ret = btrfs_validate_mount_super(fs_info);
3298	if (ret) {
3299		btrfs_err(fs_info, "superblock contains fatal errors");
3300		err = -EINVAL;
3301		goto fail_alloc;
3302	}
3303
 
3304	if (!btrfs_super_root(disk_super))
3305		goto fail_alloc;
3306
3307	/* check FS state, whether FS is broken. */
3308	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3309		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3310
3311	/*
3312	 * In the long term, we'll store the compression type in the super
3313	 * block, and it'll be used for per file compression control.
3314	 */
3315	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
 
3316
3317	/*
3318	 * Flag our filesystem as having big metadata blocks if they are bigger
3319	 * than the page size.
3320	 */
3321	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3322		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3323			btrfs_info(fs_info,
3324				"flagging fs with big metadata feature");
3325		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3326	}
3327
3328	/* Set up fs_info before parsing mount options */
3329	nodesize = btrfs_super_nodesize(disk_super);
3330	sectorsize = btrfs_super_sectorsize(disk_super);
3331	stripesize = sectorsize;
3332	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3333	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3334
3335	fs_info->nodesize = nodesize;
3336	fs_info->sectorsize = sectorsize;
3337	fs_info->sectorsize_bits = ilog2(sectorsize);
3338	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3339	fs_info->stripesize = stripesize;
3340
3341	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3342	if (ret) {
3343		err = ret;
3344		goto fail_alloc;
3345	}
3346
3347	features = btrfs_super_incompat_flags(disk_super) &
3348		~BTRFS_FEATURE_INCOMPAT_SUPP;
3349	if (features) {
3350		btrfs_err(fs_info,
3351		    "cannot mount because of unsupported optional features (%llx)",
3352		    features);
3353		err = -EINVAL;
3354		goto fail_alloc;
3355	}
3356
3357	features = btrfs_super_incompat_flags(disk_super);
3358	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3359	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3360		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3361	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3362		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3363
3364	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3365		btrfs_info(fs_info, "has skinny extents");
3366
3367	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368	 * mixed block groups end up with duplicate but slightly offset
3369	 * extent buffers for the same range.  It leads to corruptions
3370	 */
3371	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3372	    (sectorsize != nodesize)) {
3373		btrfs_err(fs_info,
3374"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3375			nodesize, sectorsize);
3376		goto fail_alloc;
3377	}
3378
3379	/*
3380	 * Needn't use the lock because there is no other task which will
3381	 * update the flag.
3382	 */
3383	btrfs_set_super_incompat_flags(disk_super, features);
3384
3385	features = btrfs_super_compat_ro_flags(disk_super) &
3386		~BTRFS_FEATURE_COMPAT_RO_SUPP;
3387	if (!sb_rdonly(sb) && features) {
3388		btrfs_err(fs_info,
3389	"cannot mount read-write because of unsupported optional features (%llx)",
3390		       features);
3391		err = -EINVAL;
3392		goto fail_alloc;
3393	}
3394
3395	/* For 4K sector size support, it's only read-only */
3396	if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) {
3397		if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) {
3398			btrfs_err(fs_info,
3399	"subpage sectorsize %u only supported read-only for page size %lu",
3400				sectorsize, PAGE_SIZE);
3401			err = -EINVAL;
3402			goto fail_alloc;
3403		}
3404	}
3405
3406	ret = btrfs_init_workqueues(fs_info, fs_devices);
3407	if (ret) {
3408		err = ret;
3409		goto fail_sb_buffer;
3410	}
3411
3412	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3413	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
 
3414
3415	sb->s_blocksize = sectorsize;
3416	sb->s_blocksize_bits = blksize_bits(sectorsize);
3417	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3418
3419	mutex_lock(&fs_info->chunk_mutex);
3420	ret = btrfs_read_sys_array(fs_info);
3421	mutex_unlock(&fs_info->chunk_mutex);
3422	if (ret) {
3423		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3424		goto fail_sb_buffer;
3425	}
3426
3427	generation = btrfs_super_chunk_root_generation(disk_super);
3428	level = btrfs_super_chunk_root_level(disk_super);
 
3429
3430	chunk_root->node = read_tree_block(fs_info,
3431					   btrfs_super_chunk_root(disk_super),
3432					   BTRFS_CHUNK_TREE_OBJECTID,
3433					   generation, level, NULL);
3434	if (IS_ERR(chunk_root->node) ||
3435	    !extent_buffer_uptodate(chunk_root->node)) {
3436		btrfs_err(fs_info, "failed to read chunk root");
3437		if (!IS_ERR(chunk_root->node))
3438			free_extent_buffer(chunk_root->node);
3439		chunk_root->node = NULL;
3440		goto fail_tree_roots;
3441	}
3442	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3443	chunk_root->commit_root = btrfs_root_node(chunk_root);
3444
3445	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3446			   offsetof(struct btrfs_header, chunk_tree_uuid),
3447			   BTRFS_UUID_SIZE);
3448
3449	ret = btrfs_read_chunk_tree(fs_info);
3450	if (ret) {
3451		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3452		goto fail_tree_roots;
3453	}
3454
3455	/*
3456	 * At this point we know all the devices that make this filesystem,
3457	 * including the seed devices but we don't know yet if the replace
3458	 * target is required. So free devices that are not part of this
3459	 * filesystem but skip the replace target device which is checked
3460	 * below in btrfs_init_dev_replace().
3461	 */
3462	btrfs_free_extra_devids(fs_devices);
 
3463	if (!fs_devices->latest_bdev) {
3464		btrfs_err(fs_info, "failed to read devices");
3465		goto fail_tree_roots;
3466	}
3467
3468	ret = init_tree_roots(fs_info);
3469	if (ret)
3470		goto fail_tree_roots;
3471
3472	/*
3473	 * Get zone type information of zoned block devices. This will also
3474	 * handle emulation of a zoned filesystem if a regular device has the
3475	 * zoned incompat feature flag set.
3476	 */
3477	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
3478	if (ret) {
3479		btrfs_err(fs_info,
3480			  "zoned: failed to read device zone info: %d",
3481			  ret);
3482		goto fail_block_groups;
3483	}
3484
3485	/*
3486	 * If we have a uuid root and we're not being told to rescan we need to
3487	 * check the generation here so we can set the
3488	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3489	 * transaction during a balance or the log replay without updating the
3490	 * uuid generation, and then if we crash we would rescan the uuid tree,
3491	 * even though it was perfectly fine.
3492	 */
3493	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3494	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3495		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3496
3497	ret = btrfs_verify_dev_extents(fs_info);
3498	if (ret) {
3499		btrfs_err(fs_info,
3500			  "failed to verify dev extents against chunks: %d",
3501			  ret);
3502		goto fail_block_groups;
3503	}
3504	ret = btrfs_recover_balance(fs_info);
3505	if (ret) {
3506		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3507		goto fail_block_groups;
3508	}
3509
3510	ret = btrfs_init_dev_stats(fs_info);
3511	if (ret) {
3512		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3513		goto fail_block_groups;
3514	}
3515
3516	ret = btrfs_init_dev_replace(fs_info);
3517	if (ret) {
3518		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3519		goto fail_block_groups;
3520	}
3521
3522	ret = btrfs_check_zoned_mode(fs_info);
 
 
3523	if (ret) {
3524		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3525			  ret);
3526		goto fail_block_groups;
3527	}
3528
3529	ret = btrfs_sysfs_add_fsid(fs_devices);
3530	if (ret) {
3531		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3532				ret);
3533		goto fail_block_groups;
3534	}
3535
3536	ret = btrfs_sysfs_add_mounted(fs_info);
3537	if (ret) {
3538		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3539		goto fail_fsdev_sysfs;
3540	}
3541
3542	ret = btrfs_init_space_info(fs_info);
3543	if (ret) {
3544		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3545		goto fail_sysfs;
3546	}
3547
3548	ret = btrfs_read_block_groups(fs_info);
3549	if (ret) {
3550		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3551		goto fail_sysfs;
3552	}
3553
3554	if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
 
 
 
3555		btrfs_warn(fs_info,
3556		"writable mount is not allowed due to too many missing devices");
 
 
3557		goto fail_sysfs;
3558	}
3559
3560	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3561					       "btrfs-cleaner");
3562	if (IS_ERR(fs_info->cleaner_kthread))
3563		goto fail_sysfs;
3564
3565	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3566						   tree_root,
3567						   "btrfs-transaction");
3568	if (IS_ERR(fs_info->transaction_kthread))
3569		goto fail_cleaner;
3570
3571	if (!btrfs_test_opt(fs_info, NOSSD) &&
 
3572	    !fs_info->fs_devices->rotating) {
3573		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
 
3574	}
3575
3576	/*
3577	 * Mount does not set all options immediately, we can do it now and do
3578	 * not have to wait for transaction commit
3579	 */
3580	btrfs_apply_pending_changes(fs_info);
3581
3582#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3583	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3584		ret = btrfsic_mount(fs_info, fs_devices,
3585				    btrfs_test_opt(fs_info,
3586					CHECK_INTEGRITY_DATA) ? 1 : 0,
 
3587				    fs_info->check_integrity_print_mask);
3588		if (ret)
3589			btrfs_warn(fs_info,
3590				"failed to initialize integrity check module: %d",
3591				ret);
3592	}
3593#endif
3594	ret = btrfs_read_qgroup_config(fs_info);
3595	if (ret)
3596		goto fail_trans_kthread;
3597
3598	if (btrfs_build_ref_tree(fs_info))
3599		btrfs_err(fs_info, "couldn't build ref tree");
3600
3601	/* do not make disk changes in broken FS or nologreplay is given */
3602	if (btrfs_super_log_root(disk_super) != 0 &&
3603	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3604		btrfs_info(fs_info, "start tree-log replay");
3605		ret = btrfs_replay_log(fs_info, fs_devices);
3606		if (ret) {
3607			err = ret;
3608			goto fail_qgroup;
3609		}
3610	}
3611
3612	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3613	if (IS_ERR(fs_info->fs_root)) {
3614		err = PTR_ERR(fs_info->fs_root);
3615		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3616		fs_info->fs_root = NULL;
3617		goto fail_qgroup;
3618	}
3619
3620	if (sb_rdonly(sb))
3621		goto clear_oneshot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3622
3623	ret = btrfs_start_pre_rw_mount(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3624	if (ret) {
 
3625		close_ctree(fs_info);
3626		return ret;
3627	}
3628	btrfs_discard_resume(fs_info);
3629
3630	if (fs_info->uuid_root &&
3631	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3632	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
 
 
 
 
 
 
 
 
 
 
 
3633		btrfs_info(fs_info, "checking UUID tree");
3634		ret = btrfs_check_uuid_tree(fs_info);
3635		if (ret) {
3636			btrfs_warn(fs_info,
3637				"failed to check the UUID tree: %d", ret);
3638			close_ctree(fs_info);
3639			return ret;
3640		}
 
 
3641	}
3642
3643	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3644
3645clear_oneshot:
3646	btrfs_clear_oneshot_options(fs_info);
 
 
 
 
3647	return 0;
3648
3649fail_qgroup:
3650	btrfs_free_qgroup_config(fs_info);
3651fail_trans_kthread:
3652	kthread_stop(fs_info->transaction_kthread);
3653	btrfs_cleanup_transaction(fs_info);
3654	btrfs_free_fs_roots(fs_info);
3655fail_cleaner:
3656	kthread_stop(fs_info->cleaner_kthread);
3657
3658	/*
3659	 * make sure we're done with the btree inode before we stop our
3660	 * kthreads
3661	 */
3662	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3663
3664fail_sysfs:
3665	btrfs_sysfs_remove_mounted(fs_info);
3666
3667fail_fsdev_sysfs:
3668	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3669
3670fail_block_groups:
3671	btrfs_put_block_group_cache(fs_info);
 
3672
3673fail_tree_roots:
3674	if (fs_info->data_reloc_root)
3675		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3676	free_root_pointers(fs_info, true);
3677	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3678
3679fail_sb_buffer:
3680	btrfs_stop_all_workers(fs_info);
3681	btrfs_free_block_groups(fs_info);
3682fail_alloc:
 
3683	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3684
3685	iput(fs_info->btree_inode);
 
 
 
 
 
 
 
 
 
 
3686fail:
 
3687	btrfs_close_devices(fs_info->fs_devices);
3688	return err;
3689}
3690ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3691
3692static void btrfs_end_super_write(struct bio *bio)
3693{
3694	struct btrfs_device *device = bio->bi_private;
3695	struct bio_vec *bvec;
3696	struct bvec_iter_all iter_all;
3697	struct page *page;
3698
3699	bio_for_each_segment_all(bvec, bio, iter_all) {
3700		page = bvec->bv_page;
3701
3702		if (bio->bi_status) {
3703			btrfs_warn_rl_in_rcu(device->fs_info,
3704				"lost page write due to IO error on %s (%d)",
3705				rcu_str_deref(device->name),
3706				blk_status_to_errno(bio->bi_status));
3707			ClearPageUptodate(page);
3708			SetPageError(page);
3709			btrfs_dev_stat_inc_and_print(device,
3710						     BTRFS_DEV_STAT_WRITE_ERRS);
3711		} else {
3712			SetPageUptodate(page);
3713		}
3714
3715		put_page(page);
3716		unlock_page(page);
3717	}
3718
3719	bio_put(bio);
 
 
 
 
3720}
3721
3722struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3723						   int copy_num)
3724{
3725	struct btrfs_super_block *super;
3726	struct page *page;
3727	u64 bytenr, bytenr_orig;
3728	struct address_space *mapping = bdev->bd_inode->i_mapping;
3729	int ret;
3730
3731	bytenr_orig = btrfs_sb_offset(copy_num);
3732	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3733	if (ret == -ENOENT)
3734		return ERR_PTR(-EINVAL);
3735	else if (ret)
3736		return ERR_PTR(ret);
 
 
 
 
 
 
3737
 
 
 
 
 
 
 
 
3738	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3739		return ERR_PTR(-EINVAL);
3740
3741	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3742	if (IS_ERR(page))
3743		return ERR_CAST(page);
3744
3745	super = page_address(page);
3746	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3747		btrfs_release_disk_super(super);
3748		return ERR_PTR(-ENODATA);
3749	}
3750
3751	if (btrfs_super_bytenr(super) != bytenr_orig) {
3752		btrfs_release_disk_super(super);
3753		return ERR_PTR(-EINVAL);
 
 
3754	}
3755
3756	return super;
 
3757}
3758
3759
3760struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3761{
3762	struct btrfs_super_block *super, *latest = NULL;
 
 
3763	int i;
3764	u64 transid = 0;
 
3765
3766	/* we would like to check all the supers, but that would make
3767	 * a btrfs mount succeed after a mkfs from a different FS.
3768	 * So, we need to add a special mount option to scan for
3769	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3770	 */
3771	for (i = 0; i < 1; i++) {
3772		super = btrfs_read_dev_one_super(bdev, i);
3773		if (IS_ERR(super))
3774			continue;
3775
3776		if (!latest || btrfs_super_generation(super) > transid) {
3777			if (latest)
3778				btrfs_release_disk_super(super);
3779
3780			latest = super;
 
 
3781			transid = btrfs_super_generation(super);
 
 
3782		}
3783	}
3784
3785	return super;
 
 
 
3786}
3787
3788/*
3789 * Write superblock @sb to the @device. Do not wait for completion, all the
3790 * pages we use for writing are locked.
 
3791 *
3792 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3793 * the expected device size at commit time. Note that max_mirrors must be
3794 * same for write and wait phases.
3795 *
3796 * Return number of errors when page is not found or submission fails.
3797 */
3798static int write_dev_supers(struct btrfs_device *device,
3799			    struct btrfs_super_block *sb, int max_mirrors)
 
3800{
3801	struct btrfs_fs_info *fs_info = device->fs_info;
3802	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3803	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3804	int i;
3805	int errors = 0;
3806	int ret;
3807	u64 bytenr, bytenr_orig;
 
 
3808
3809	if (max_mirrors == 0)
3810		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3811
3812	shash->tfm = fs_info->csum_shash;
3813
3814	for (i = 0; i < max_mirrors; i++) {
3815		struct page *page;
3816		struct bio *bio;
3817		struct btrfs_super_block *disk_super;
3818
3819		bytenr_orig = btrfs_sb_offset(i);
3820		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3821		if (ret == -ENOENT) {
3822			continue;
3823		} else if (ret < 0) {
3824			btrfs_err(device->fs_info,
3825				"couldn't get super block location for mirror %d",
3826				i);
3827			errors++;
3828			continue;
3829		}
3830		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3831		    device->commit_total_bytes)
3832			break;
3833
3834		btrfs_set_super_bytenr(sb, bytenr_orig);
3835
3836		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3837				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3838				    sb->csum);
3839
3840		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3841					   GFP_NOFS);
3842		if (!page) {
3843			btrfs_err(device->fs_info,
3844			    "couldn't get super block page for bytenr %llu",
3845			    bytenr);
3846			errors++;
3847			continue;
3848		}
3849
3850		/* Bump the refcount for wait_dev_supers() */
3851		get_page(page);
3852
3853		disk_super = page_address(page);
3854		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3855
3856		/*
3857		 * Directly use bios here instead of relying on the page cache
3858		 * to do I/O, so we don't lose the ability to do integrity
3859		 * checking.
3860		 */
3861		bio = bio_alloc(GFP_NOFS, 1);
3862		bio_set_dev(bio, device->bdev);
3863		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3864		bio->bi_private = device;
3865		bio->bi_end_io = btrfs_end_super_write;
3866		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3867			       offset_in_page(bytenr));
3868
3869		/*
3870		 * We FUA only the first super block.  The others we allow to
3871		 * go down lazy and there's a short window where the on-disk
3872		 * copies might still contain the older version.
3873		 */
3874		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3875		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3876			bio->bi_opf |= REQ_FUA;
3877
3878		btrfsic_submit_bio(bio);
3879		btrfs_advance_sb_log(device, i);
3880	}
3881	return errors < i ? 0 : -1;
3882}
 
3883
3884/*
3885 * Wait for write completion of superblocks done by write_dev_supers,
3886 * @max_mirrors same for write and wait phases.
3887 *
3888 * Return number of errors when page is not found or not marked up to
3889 * date.
3890 */
3891static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3892{
3893	int i;
3894	int errors = 0;
3895	bool primary_failed = false;
3896	int ret;
3897	u64 bytenr;
3898
3899	if (max_mirrors == 0)
3900		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3901
3902	for (i = 0; i < max_mirrors; i++) {
3903		struct page *page;
3904
3905		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3906		if (ret == -ENOENT) {
3907			break;
3908		} else if (ret < 0) {
3909			errors++;
3910			if (i == 0)
3911				primary_failed = true;
3912			continue;
3913		}
3914		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3915		    device->commit_total_bytes)
3916			break;
3917
3918		page = find_get_page(device->bdev->bd_inode->i_mapping,
3919				     bytenr >> PAGE_SHIFT);
3920		if (!page) {
3921			errors++;
3922			if (i == 0)
3923				primary_failed = true;
3924			continue;
3925		}
3926		/* Page is submitted locked and unlocked once the IO completes */
3927		wait_on_page_locked(page);
3928		if (PageError(page)) {
3929			errors++;
3930			if (i == 0)
3931				primary_failed = true;
3932		}
3933
3934		/* Drop our reference */
3935		put_page(page);
3936
3937		/* Drop the reference from the writing run */
3938		put_page(page);
3939	}
3940
3941	/* log error, force error return */
3942	if (primary_failed) {
3943		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3944			  device->devid);
3945		return -1;
3946	}
3947
3948	return errors < i ? 0 : -1;
3949}
3950
3951/*
3952 * endio for the write_dev_flush, this will wake anyone waiting
3953 * for the barrier when it is done
3954 */
3955static void btrfs_end_empty_barrier(struct bio *bio)
3956{
3957	complete(bio->bi_private);
 
 
3958}
3959
3960/*
3961 * Submit a flush request to the device if it supports it. Error handling is
3962 * done in the waiting counterpart.
 
 
 
3963 */
3964static void write_dev_flush(struct btrfs_device *device)
3965{
3966	struct request_queue *q = bdev_get_queue(device->bdev);
3967	struct bio *bio = device->flush_bio;
3968
3969	if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3970		return;
3971
3972	bio_reset(bio);
3973	bio->bi_end_io = btrfs_end_empty_barrier;
3974	bio_set_dev(bio, device->bdev);
3975	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3976	init_completion(&device->flush_wait);
3977	bio->bi_private = &device->flush_wait;
3978
3979	btrfsic_submit_bio(bio);
3980	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3981}
3982
3983/*
3984 * If the flush bio has been submitted by write_dev_flush, wait for it.
3985 */
3986static blk_status_t wait_dev_flush(struct btrfs_device *device)
3987{
3988	struct bio *bio = device->flush_bio;
3989
3990	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3991		return BLK_STS_OK;
 
3992
3993	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3994	wait_for_completion_io(&device->flush_wait);
3995
3996	return bio->bi_status;
3997}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3998
3999static int check_barrier_error(struct btrfs_fs_info *fs_info)
4000{
4001	if (!btrfs_check_rw_degradable(fs_info, NULL))
4002		return -EIO;
4003	return 0;
4004}
4005
4006/*
4007 * send an empty flush down to each device in parallel,
4008 * then wait for them
4009 */
4010static int barrier_all_devices(struct btrfs_fs_info *info)
4011{
4012	struct list_head *head;
4013	struct btrfs_device *dev;
 
4014	int errors_wait = 0;
4015	blk_status_t ret;
4016
4017	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4018	/* send down all the barriers */
4019	head = &info->fs_devices->devices;
4020	list_for_each_entry(dev, head, dev_list) {
4021		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4022			continue;
4023		if (!dev->bdev)
 
4024			continue;
4025		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4026		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4027			continue;
4028
4029		write_dev_flush(dev);
4030		dev->last_flush_error = BLK_STS_OK;
 
4031	}
4032
4033	/* wait for all the barriers */
4034	list_for_each_entry(dev, head, dev_list) {
4035		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4036			continue;
4037		if (!dev->bdev) {
4038			errors_wait++;
4039			continue;
4040		}
4041		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4042		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4043			continue;
4044
4045		ret = wait_dev_flush(dev);
4046		if (ret) {
4047			dev->last_flush_error = ret;
4048			btrfs_dev_stat_inc_and_print(dev,
4049					BTRFS_DEV_STAT_FLUSH_ERRS);
4050			errors_wait++;
4051		}
4052	}
4053
4054	if (errors_wait) {
4055		/*
4056		 * At some point we need the status of all disks
4057		 * to arrive at the volume status. So error checking
4058		 * is being pushed to a separate loop.
4059		 */
4060		return check_barrier_error(info);
4061	}
 
 
 
4062	return 0;
4063}
4064
4065int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4066{
4067	int raid_type;
4068	int min_tolerated = INT_MAX;
4069
4070	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4071	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4072		min_tolerated = min_t(int, min_tolerated,
4073				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4074				    tolerated_failures);
4075
4076	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4077		if (raid_type == BTRFS_RAID_SINGLE)
4078			continue;
4079		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4080			continue;
4081		min_tolerated = min_t(int, min_tolerated,
4082				    btrfs_raid_array[raid_type].
4083				    tolerated_failures);
4084	}
4085
4086	if (min_tolerated == INT_MAX) {
4087		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4088		min_tolerated = 0;
4089	}
4090
4091	return min_tolerated;
4092}
4093
4094int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4095{
4096	struct list_head *head;
4097	struct btrfs_device *dev;
4098	struct btrfs_super_block *sb;
4099	struct btrfs_dev_item *dev_item;
4100	int ret;
4101	int do_barriers;
4102	int max_errors;
4103	int total_errors = 0;
4104	u64 flags;
4105
4106	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4107
4108	/*
4109	 * max_mirrors == 0 indicates we're from commit_transaction,
4110	 * not from fsync where the tree roots in fs_info have not
4111	 * been consistent on disk.
4112	 */
4113	if (max_mirrors == 0)
4114		backup_super_roots(fs_info);
4115
4116	sb = fs_info->super_for_commit;
4117	dev_item = &sb->dev_item;
4118
4119	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4120	head = &fs_info->fs_devices->devices;
4121	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4122
4123	if (do_barriers) {
4124		ret = barrier_all_devices(fs_info);
4125		if (ret) {
4126			mutex_unlock(
4127				&fs_info->fs_devices->device_list_mutex);
4128			btrfs_handle_fs_error(fs_info, ret,
4129					      "errors while submitting device barriers.");
4130			return ret;
4131		}
4132	}
4133
4134	list_for_each_entry(dev, head, dev_list) {
4135		if (!dev->bdev) {
4136			total_errors++;
4137			continue;
4138		}
4139		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4140		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4141			continue;
4142
4143		btrfs_set_stack_device_generation(dev_item, 0);
4144		btrfs_set_stack_device_type(dev_item, dev->type);
4145		btrfs_set_stack_device_id(dev_item, dev->devid);
4146		btrfs_set_stack_device_total_bytes(dev_item,
4147						   dev->commit_total_bytes);
4148		btrfs_set_stack_device_bytes_used(dev_item,
4149						  dev->commit_bytes_used);
4150		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4151		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4152		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4153		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4154		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4155		       BTRFS_FSID_SIZE);
4156
4157		flags = btrfs_super_flags(sb);
4158		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4159
4160		ret = btrfs_validate_write_super(fs_info, sb);
4161		if (ret < 0) {
4162			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4163			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4164				"unexpected superblock corruption detected");
4165			return -EUCLEAN;
4166		}
4167
4168		ret = write_dev_supers(dev, sb, max_mirrors);
4169		if (ret)
4170			total_errors++;
4171	}
4172	if (total_errors > max_errors) {
4173		btrfs_err(fs_info, "%d errors while writing supers",
4174			  total_errors);
4175		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4176
4177		/* FUA is masked off if unsupported and can't be the reason */
4178		btrfs_handle_fs_error(fs_info, -EIO,
4179				      "%d errors while writing supers",
4180				      total_errors);
4181		return -EIO;
4182	}
4183
4184	total_errors = 0;
4185	list_for_each_entry(dev, head, dev_list) {
4186		if (!dev->bdev)
4187			continue;
4188		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4189		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4190			continue;
4191
4192		ret = wait_dev_supers(dev, max_mirrors);
4193		if (ret)
4194			total_errors++;
4195	}
4196	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4197	if (total_errors > max_errors) {
4198		btrfs_handle_fs_error(fs_info, -EIO,
4199				      "%d errors while writing supers",
4200				      total_errors);
4201		return -EIO;
4202	}
4203	return 0;
4204}
4205
 
 
 
 
 
 
4206/* Drop a fs root from the radix tree and free it. */
4207void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4208				  struct btrfs_root *root)
4209{
4210	bool drop_ref = false;
4211
4212	spin_lock(&fs_info->fs_roots_radix_lock);
4213	radix_tree_delete(&fs_info->fs_roots_radix,
4214			  (unsigned long)root->root_key.objectid);
4215	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4216		drop_ref = true;
4217	spin_unlock(&fs_info->fs_roots_radix_lock);
4218
 
 
 
4219	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4220		ASSERT(root->log_root == NULL);
4221		if (root->reloc_root) {
4222			btrfs_put_root(root->reloc_root);
 
 
4223			root->reloc_root = NULL;
4224		}
4225	}
4226
4227	if (drop_ref)
4228		btrfs_put_root(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4229}
4230
4231int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4232{
4233	u64 root_objectid = 0;
4234	struct btrfs_root *gang[8];
4235	int i = 0;
4236	int err = 0;
4237	unsigned int ret = 0;
 
4238
4239	while (1) {
4240		spin_lock(&fs_info->fs_roots_radix_lock);
4241		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4242					     (void **)gang, root_objectid,
4243					     ARRAY_SIZE(gang));
4244		if (!ret) {
4245			spin_unlock(&fs_info->fs_roots_radix_lock);
4246			break;
4247		}
4248		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4249
4250		for (i = 0; i < ret; i++) {
4251			/* Avoid to grab roots in dead_roots */
4252			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4253				gang[i] = NULL;
4254				continue;
4255			}
4256			/* grab all the search result for later use */
4257			gang[i] = btrfs_grab_root(gang[i]);
4258		}
4259		spin_unlock(&fs_info->fs_roots_radix_lock);
4260
4261		for (i = 0; i < ret; i++) {
4262			if (!gang[i])
4263				continue;
4264			root_objectid = gang[i]->root_key.objectid;
4265			err = btrfs_orphan_cleanup(gang[i]);
4266			if (err)
4267				break;
4268			btrfs_put_root(gang[i]);
4269		}
4270		root_objectid++;
4271	}
4272
4273	/* release the uncleaned roots due to error */
4274	for (; i < ret; i++) {
4275		if (gang[i])
4276			btrfs_put_root(gang[i]);
4277	}
4278	return err;
4279}
4280
4281int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4282{
4283	struct btrfs_root *root = fs_info->tree_root;
4284	struct btrfs_trans_handle *trans;
4285
4286	mutex_lock(&fs_info->cleaner_mutex);
4287	btrfs_run_delayed_iputs(fs_info);
4288	mutex_unlock(&fs_info->cleaner_mutex);
4289	wake_up_process(fs_info->cleaner_kthread);
4290
4291	/* wait until ongoing cleanup work done */
4292	down_write(&fs_info->cleanup_work_sem);
4293	up_write(&fs_info->cleanup_work_sem);
4294
4295	trans = btrfs_join_transaction(root);
4296	if (IS_ERR(trans))
4297		return PTR_ERR(trans);
4298	return btrfs_commit_transaction(trans);
4299}
4300
4301void __cold close_ctree(struct btrfs_fs_info *fs_info)
4302{
 
4303	int ret;
4304
4305	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4306	/*
4307	 * We don't want the cleaner to start new transactions, add more delayed
4308	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4309	 * because that frees the task_struct, and the transaction kthread might
4310	 * still try to wake up the cleaner.
4311	 */
4312	kthread_park(fs_info->cleaner_kthread);
4313
4314	/* wait for the qgroup rescan worker to stop */
4315	btrfs_qgroup_wait_for_completion(fs_info, false);
4316
4317	/* wait for the uuid_scan task to finish */
4318	down(&fs_info->uuid_tree_rescan_sem);
4319	/* avoid complains from lockdep et al., set sem back to initial state */
4320	up(&fs_info->uuid_tree_rescan_sem);
4321
4322	/* pause restriper - we want to resume on mount */
4323	btrfs_pause_balance(fs_info);
4324
4325	btrfs_dev_replace_suspend_for_unmount(fs_info);
4326
4327	btrfs_scrub_cancel(fs_info);
4328
4329	/* wait for any defraggers to finish */
4330	wait_event(fs_info->transaction_wait,
4331		   (atomic_read(&fs_info->defrag_running) == 0));
4332
4333	/* clear out the rbtree of defraggable inodes */
4334	btrfs_cleanup_defrag_inodes(fs_info);
4335
4336	cancel_work_sync(&fs_info->async_reclaim_work);
4337	cancel_work_sync(&fs_info->async_data_reclaim_work);
4338	cancel_work_sync(&fs_info->preempt_reclaim_work);
4339
4340	cancel_work_sync(&fs_info->reclaim_bgs_work);
4341
4342	/* Cancel or finish ongoing discard work */
4343	btrfs_discard_cleanup(fs_info);
4344
4345	if (!sb_rdonly(fs_info->sb)) {
4346		/*
4347		 * The cleaner kthread is stopped, so do one final pass over
4348		 * unused block groups.
 
4349		 */
4350		btrfs_delete_unused_bgs(fs_info);
4351
4352		/*
4353		 * There might be existing delayed inode workers still running
4354		 * and holding an empty delayed inode item. We must wait for
4355		 * them to complete first because they can create a transaction.
4356		 * This happens when someone calls btrfs_balance_delayed_items()
4357		 * and then a transaction commit runs the same delayed nodes
4358		 * before any delayed worker has done something with the nodes.
4359		 * We must wait for any worker here and not at transaction
4360		 * commit time since that could cause a deadlock.
4361		 * This is a very rare case.
4362		 */
4363		btrfs_flush_workqueue(fs_info->delayed_workers);
4364
4365		ret = btrfs_commit_super(fs_info);
4366		if (ret)
4367			btrfs_err(fs_info, "commit super ret %d", ret);
4368	}
4369
4370	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4371	    test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4372		btrfs_error_commit_super(fs_info);
4373
4374	kthread_stop(fs_info->transaction_kthread);
4375	kthread_stop(fs_info->cleaner_kthread);
4376
4377	ASSERT(list_empty(&fs_info->delayed_iputs));
4378	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4379
4380	if (btrfs_check_quota_leak(fs_info)) {
4381		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4382		btrfs_err(fs_info, "qgroup reserved space leaked");
4383	}
4384
4385	btrfs_free_qgroup_config(fs_info);
4386	ASSERT(list_empty(&fs_info->delalloc_roots));
4387
4388	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4389		btrfs_info(fs_info, "at unmount delalloc count %lld",
4390		       percpu_counter_sum(&fs_info->delalloc_bytes));
4391	}
4392
4393	if (percpu_counter_sum(&fs_info->ordered_bytes))
4394		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4395			   percpu_counter_sum(&fs_info->ordered_bytes));
4396
4397	btrfs_sysfs_remove_mounted(fs_info);
4398	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4399
 
 
4400	btrfs_put_block_group_cache(fs_info);
4401
 
 
4402	/*
4403	 * we must make sure there is not any read request to
4404	 * submit after we stopping all workers.
4405	 */
4406	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4407	btrfs_stop_all_workers(fs_info);
4408
4409	/* We shouldn't have any transaction open at this point */
4410	ASSERT(list_empty(&fs_info->trans_list));
4411
4412	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4413	free_root_pointers(fs_info, true);
4414	btrfs_free_fs_roots(fs_info);
4415
4416	/*
4417	 * We must free the block groups after dropping the fs_roots as we could
4418	 * have had an IO error and have left over tree log blocks that aren't
4419	 * cleaned up until the fs roots are freed.  This makes the block group
4420	 * accounting appear to be wrong because there's pending reserved bytes,
4421	 * so make sure we do the block group cleanup afterwards.
4422	 */
4423	btrfs_free_block_groups(fs_info);
4424
4425	iput(fs_info->btree_inode);
4426
4427#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4428	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4429		btrfsic_unmount(fs_info->fs_devices);
4430#endif
4431
4432	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4433	btrfs_close_devices(fs_info->fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4434}
4435
4436int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4437			  int atomic)
4438{
4439	int ret;
4440	struct inode *btree_inode = buf->pages[0]->mapping->host;
4441
4442	ret = extent_buffer_uptodate(buf);
4443	if (!ret)
4444		return ret;
4445
4446	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4447				    parent_transid, atomic);
4448	if (ret == -EAGAIN)
4449		return ret;
4450	return !ret;
4451}
4452
4453void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4454{
4455	struct btrfs_fs_info *fs_info = buf->fs_info;
 
4456	u64 transid = btrfs_header_generation(buf);
4457	int was_dirty;
4458
4459#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4460	/*
4461	 * This is a fast path so only do this check if we have sanity tests
4462	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4463	 * outside of the sanity tests.
4464	 */
4465	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4466		return;
4467#endif
 
 
4468	btrfs_assert_tree_locked(buf);
4469	if (transid != fs_info->generation)
4470		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4471			buf->start, transid, fs_info->generation);
4472	was_dirty = set_extent_buffer_dirty(buf);
4473	if (!was_dirty)
4474		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4475					 buf->len,
4476					 fs_info->dirty_metadata_batch);
4477#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4478	/*
4479	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4480	 * but item data not updated.
4481	 * So here we should only check item pointers, not item data.
4482	 */
4483	if (btrfs_header_level(buf) == 0 &&
4484	    btrfs_check_leaf_relaxed(buf)) {
4485		btrfs_print_leaf(buf);
4486		ASSERT(0);
4487	}
4488#endif
4489}
4490
4491static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4492					int flush_delayed)
4493{
4494	/*
4495	 * looks as though older kernels can get into trouble with
4496	 * this code, they end up stuck in balance_dirty_pages forever
4497	 */
4498	int ret;
4499
4500	if (current->flags & PF_MEMALLOC)
4501		return;
4502
4503	if (flush_delayed)
4504		btrfs_balance_delayed_items(fs_info);
4505
4506	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4507				     BTRFS_DIRTY_METADATA_THRESH,
4508				     fs_info->dirty_metadata_batch);
4509	if (ret > 0) {
4510		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4511	}
4512}
4513
4514void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4515{
4516	__btrfs_btree_balance_dirty(fs_info, 1);
4517}
4518
4519void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4520{
4521	__btrfs_btree_balance_dirty(fs_info, 0);
4522}
4523
4524int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4525		      struct btrfs_key *first_key)
4526{
4527	return btree_read_extent_buffer_pages(buf, parent_transid,
4528					      level, first_key);
 
 
4529}
4530
4531static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
 
4532{
4533	/* cleanup FS via transaction */
4534	btrfs_cleanup_transaction(fs_info);
 
 
4535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4536	mutex_lock(&fs_info->cleaner_mutex);
4537	btrfs_run_delayed_iputs(fs_info);
4538	mutex_unlock(&fs_info->cleaner_mutex);
4539
4540	down_write(&fs_info->cleanup_work_sem);
4541	up_write(&fs_info->cleanup_work_sem);
4542}
4543
4544static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4545{
4546	struct btrfs_root *gang[8];
4547	u64 root_objectid = 0;
4548	int ret;
4549
4550	spin_lock(&fs_info->fs_roots_radix_lock);
4551	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4552					     (void **)gang, root_objectid,
4553					     ARRAY_SIZE(gang))) != 0) {
4554		int i;
4555
4556		for (i = 0; i < ret; i++)
4557			gang[i] = btrfs_grab_root(gang[i]);
4558		spin_unlock(&fs_info->fs_roots_radix_lock);
4559
4560		for (i = 0; i < ret; i++) {
4561			if (!gang[i])
4562				continue;
4563			root_objectid = gang[i]->root_key.objectid;
4564			btrfs_free_log(NULL, gang[i]);
4565			btrfs_put_root(gang[i]);
4566		}
4567		root_objectid++;
4568		spin_lock(&fs_info->fs_roots_radix_lock);
4569	}
4570	spin_unlock(&fs_info->fs_roots_radix_lock);
4571	btrfs_free_log_root_tree(NULL, fs_info);
4572}
4573
4574static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4575{
4576	struct btrfs_ordered_extent *ordered;
4577
4578	spin_lock(&root->ordered_extent_lock);
4579	/*
4580	 * This will just short circuit the ordered completion stuff which will
4581	 * make sure the ordered extent gets properly cleaned up.
4582	 */
4583	list_for_each_entry(ordered, &root->ordered_extents,
4584			    root_extent_list)
4585		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4586	spin_unlock(&root->ordered_extent_lock);
4587}
4588
4589static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4590{
4591	struct btrfs_root *root;
4592	struct list_head splice;
4593
4594	INIT_LIST_HEAD(&splice);
4595
4596	spin_lock(&fs_info->ordered_root_lock);
4597	list_splice_init(&fs_info->ordered_roots, &splice);
4598	while (!list_empty(&splice)) {
4599		root = list_first_entry(&splice, struct btrfs_root,
4600					ordered_root);
4601		list_move_tail(&root->ordered_root,
4602			       &fs_info->ordered_roots);
4603
4604		spin_unlock(&fs_info->ordered_root_lock);
4605		btrfs_destroy_ordered_extents(root);
4606
4607		cond_resched();
4608		spin_lock(&fs_info->ordered_root_lock);
4609	}
4610	spin_unlock(&fs_info->ordered_root_lock);
4611
4612	/*
4613	 * We need this here because if we've been flipped read-only we won't
4614	 * get sync() from the umount, so we need to make sure any ordered
4615	 * extents that haven't had their dirty pages IO start writeout yet
4616	 * actually get run and error out properly.
4617	 */
4618	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4619}
4620
4621static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4622				      struct btrfs_fs_info *fs_info)
4623{
4624	struct rb_node *node;
4625	struct btrfs_delayed_ref_root *delayed_refs;
4626	struct btrfs_delayed_ref_node *ref;
4627	int ret = 0;
4628
4629	delayed_refs = &trans->delayed_refs;
4630
4631	spin_lock(&delayed_refs->lock);
4632	if (atomic_read(&delayed_refs->num_entries) == 0) {
4633		spin_unlock(&delayed_refs->lock);
4634		btrfs_debug(fs_info, "delayed_refs has NO entry");
4635		return ret;
4636	}
4637
4638	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4639		struct btrfs_delayed_ref_head *head;
4640		struct rb_node *n;
4641		bool pin_bytes = false;
4642
4643		head = rb_entry(node, struct btrfs_delayed_ref_head,
4644				href_node);
4645		if (btrfs_delayed_ref_lock(delayed_refs, head))
 
 
 
 
 
 
 
4646			continue;
4647
4648		spin_lock(&head->lock);
4649		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4650			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4651				       ref_node);
4652			ref->in_tree = 0;
4653			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4654			RB_CLEAR_NODE(&ref->ref_node);
4655			if (!list_empty(&ref->add_list))
4656				list_del(&ref->add_list);
4657			atomic_dec(&delayed_refs->num_entries);
4658			btrfs_put_delayed_ref(ref);
4659		}
4660		if (head->must_insert_reserved)
4661			pin_bytes = true;
4662		btrfs_free_delayed_extent_op(head->extent_op);
4663		btrfs_delete_ref_head(delayed_refs, head);
 
 
 
 
 
4664		spin_unlock(&head->lock);
4665		spin_unlock(&delayed_refs->lock);
4666		mutex_unlock(&head->mutex);
4667
4668		if (pin_bytes) {
4669			struct btrfs_block_group *cache;
4670
4671			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4672			BUG_ON(!cache);
4673
4674			spin_lock(&cache->space_info->lock);
4675			spin_lock(&cache->lock);
4676			cache->pinned += head->num_bytes;
4677			btrfs_space_info_update_bytes_pinned(fs_info,
4678				cache->space_info, head->num_bytes);
4679			cache->reserved -= head->num_bytes;
4680			cache->space_info->bytes_reserved -= head->num_bytes;
4681			spin_unlock(&cache->lock);
4682			spin_unlock(&cache->space_info->lock);
4683
4684			btrfs_put_block_group(cache);
4685
4686			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4687				head->bytenr + head->num_bytes - 1);
4688		}
4689		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4690		btrfs_put_delayed_ref_head(head);
4691		cond_resched();
4692		spin_lock(&delayed_refs->lock);
4693	}
4694	btrfs_qgroup_destroy_extent_records(trans);
4695
4696	spin_unlock(&delayed_refs->lock);
4697
4698	return ret;
4699}
4700
4701static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4702{
4703	struct btrfs_inode *btrfs_inode;
4704	struct list_head splice;
4705
4706	INIT_LIST_HEAD(&splice);
4707
4708	spin_lock(&root->delalloc_lock);
4709	list_splice_init(&root->delalloc_inodes, &splice);
4710
4711	while (!list_empty(&splice)) {
4712		struct inode *inode = NULL;
4713		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4714					       delalloc_inodes);
4715		__btrfs_del_delalloc_inode(root, btrfs_inode);
 
 
 
4716		spin_unlock(&root->delalloc_lock);
4717
4718		/*
4719		 * Make sure we get a live inode and that it'll not disappear
4720		 * meanwhile.
4721		 */
4722		inode = igrab(&btrfs_inode->vfs_inode);
4723		if (inode) {
4724			invalidate_inode_pages2(inode->i_mapping);
4725			iput(inode);
4726		}
4727		spin_lock(&root->delalloc_lock);
4728	}
 
4729	spin_unlock(&root->delalloc_lock);
4730}
4731
4732static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4733{
4734	struct btrfs_root *root;
4735	struct list_head splice;
4736
4737	INIT_LIST_HEAD(&splice);
4738
4739	spin_lock(&fs_info->delalloc_root_lock);
4740	list_splice_init(&fs_info->delalloc_roots, &splice);
4741	while (!list_empty(&splice)) {
4742		root = list_first_entry(&splice, struct btrfs_root,
4743					 delalloc_root);
4744		root = btrfs_grab_root(root);
 
4745		BUG_ON(!root);
4746		spin_unlock(&fs_info->delalloc_root_lock);
4747
4748		btrfs_destroy_delalloc_inodes(root);
4749		btrfs_put_root(root);
4750
4751		spin_lock(&fs_info->delalloc_root_lock);
4752	}
4753	spin_unlock(&fs_info->delalloc_root_lock);
4754}
4755
4756static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4757					struct extent_io_tree *dirty_pages,
4758					int mark)
4759{
4760	int ret;
4761	struct extent_buffer *eb;
4762	u64 start = 0;
4763	u64 end;
4764
4765	while (1) {
4766		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4767					    mark, NULL);
4768		if (ret)
4769			break;
4770
4771		clear_extent_bits(dirty_pages, start, end, mark);
4772		while (start <= end) {
4773			eb = find_extent_buffer(fs_info, start);
4774			start += fs_info->nodesize;
4775			if (!eb)
4776				continue;
4777			wait_on_extent_buffer_writeback(eb);
4778
4779			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4780					       &eb->bflags))
4781				clear_extent_buffer_dirty(eb);
4782			free_extent_buffer_stale(eb);
4783		}
4784	}
4785
4786	return ret;
4787}
4788
4789static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4790				       struct extent_io_tree *unpin)
4791{
 
4792	u64 start;
4793	u64 end;
4794	int ret;
 
4795
 
 
4796	while (1) {
4797		struct extent_state *cached_state = NULL;
4798
4799		/*
4800		 * The btrfs_finish_extent_commit() may get the same range as
4801		 * ours between find_first_extent_bit and clear_extent_dirty.
4802		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4803		 * the same extent range.
4804		 */
4805		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4806		ret = find_first_extent_bit(unpin, 0, &start, &end,
4807					    EXTENT_DIRTY, &cached_state);
4808		if (ret) {
4809			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4810			break;
4811		}
4812
4813		clear_extent_dirty(unpin, start, end, &cached_state);
4814		free_extent_state(cached_state);
4815		btrfs_error_unpin_extent_range(fs_info, start, end);
4816		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4817		cond_resched();
4818	}
4819
 
 
 
 
 
 
 
 
 
4820	return 0;
4821}
4822
4823static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4824{
4825	struct inode *inode;
4826
4827	inode = cache->io_ctl.inode;
4828	if (inode) {
4829		invalidate_inode_pages2(inode->i_mapping);
4830		BTRFS_I(inode)->generation = 0;
4831		cache->io_ctl.inode = NULL;
4832		iput(inode);
4833	}
4834	ASSERT(cache->io_ctl.pages == NULL);
4835	btrfs_put_block_group(cache);
4836}
4837
4838void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4839			     struct btrfs_fs_info *fs_info)
4840{
4841	struct btrfs_block_group *cache;
4842
4843	spin_lock(&cur_trans->dirty_bgs_lock);
4844	while (!list_empty(&cur_trans->dirty_bgs)) {
4845		cache = list_first_entry(&cur_trans->dirty_bgs,
4846					 struct btrfs_block_group,
4847					 dirty_list);
 
 
 
 
 
4848
4849		if (!list_empty(&cache->io_list)) {
4850			spin_unlock(&cur_trans->dirty_bgs_lock);
4851			list_del_init(&cache->io_list);
4852			btrfs_cleanup_bg_io(cache);
4853			spin_lock(&cur_trans->dirty_bgs_lock);
4854		}
4855
4856		list_del_init(&cache->dirty_list);
4857		spin_lock(&cache->lock);
4858		cache->disk_cache_state = BTRFS_DC_ERROR;
4859		spin_unlock(&cache->lock);
4860
4861		spin_unlock(&cur_trans->dirty_bgs_lock);
4862		btrfs_put_block_group(cache);
4863		btrfs_delayed_refs_rsv_release(fs_info, 1);
4864		spin_lock(&cur_trans->dirty_bgs_lock);
4865	}
4866	spin_unlock(&cur_trans->dirty_bgs_lock);
4867
4868	/*
4869	 * Refer to the definition of io_bgs member for details why it's safe
4870	 * to use it without any locking
4871	 */
4872	while (!list_empty(&cur_trans->io_bgs)) {
4873		cache = list_first_entry(&cur_trans->io_bgs,
4874					 struct btrfs_block_group,
4875					 io_list);
 
 
 
 
4876
4877		list_del_init(&cache->io_list);
4878		spin_lock(&cache->lock);
4879		cache->disk_cache_state = BTRFS_DC_ERROR;
4880		spin_unlock(&cache->lock);
4881		btrfs_cleanup_bg_io(cache);
4882	}
4883}
4884
4885void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4886				   struct btrfs_fs_info *fs_info)
4887{
4888	struct btrfs_device *dev, *tmp;
4889
4890	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4891	ASSERT(list_empty(&cur_trans->dirty_bgs));
4892	ASSERT(list_empty(&cur_trans->io_bgs));
4893
4894	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4895				 post_commit_list) {
4896		list_del_init(&dev->post_commit_list);
4897	}
4898
4899	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4900
4901	cur_trans->state = TRANS_STATE_COMMIT_START;
4902	wake_up(&fs_info->transaction_blocked_wait);
4903
4904	cur_trans->state = TRANS_STATE_UNBLOCKED;
4905	wake_up(&fs_info->transaction_wait);
4906
4907	btrfs_destroy_delayed_inodes(fs_info);
 
4908
4909	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4910				     EXTENT_DIRTY);
4911	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4912
4913	btrfs_free_redirty_list(cur_trans);
4914
4915	cur_trans->state =TRANS_STATE_COMPLETED;
4916	wake_up(&cur_trans->commit_wait);
 
 
 
 
 
4917}
4918
4919static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4920{
4921	struct btrfs_transaction *t;
4922
4923	mutex_lock(&fs_info->transaction_kthread_mutex);
4924
4925	spin_lock(&fs_info->trans_lock);
4926	while (!list_empty(&fs_info->trans_list)) {
4927		t = list_first_entry(&fs_info->trans_list,
4928				     struct btrfs_transaction, list);
4929		if (t->state >= TRANS_STATE_COMMIT_START) {
4930			refcount_inc(&t->use_count);
4931			spin_unlock(&fs_info->trans_lock);
4932			btrfs_wait_for_commit(fs_info, t->transid);
4933			btrfs_put_transaction(t);
4934			spin_lock(&fs_info->trans_lock);
4935			continue;
4936		}
4937		if (t == fs_info->running_transaction) {
4938			t->state = TRANS_STATE_COMMIT_DOING;
4939			spin_unlock(&fs_info->trans_lock);
4940			/*
4941			 * We wait for 0 num_writers since we don't hold a trans
4942			 * handle open currently for this transaction.
4943			 */
4944			wait_event(t->writer_wait,
4945				   atomic_read(&t->num_writers) == 0);
4946		} else {
4947			spin_unlock(&fs_info->trans_lock);
4948		}
4949		btrfs_cleanup_one_transaction(t, fs_info);
4950
4951		spin_lock(&fs_info->trans_lock);
4952		if (t == fs_info->running_transaction)
4953			fs_info->running_transaction = NULL;
4954		list_del_init(&t->list);
4955		spin_unlock(&fs_info->trans_lock);
4956
4957		btrfs_put_transaction(t);
4958		trace_btrfs_transaction_commit(fs_info->tree_root);
4959		spin_lock(&fs_info->trans_lock);
4960	}
4961	spin_unlock(&fs_info->trans_lock);
4962	btrfs_destroy_all_ordered_extents(fs_info);
4963	btrfs_destroy_delayed_inodes(fs_info);
4964	btrfs_assert_delayed_root_empty(fs_info);
 
4965	btrfs_destroy_all_delalloc_inodes(fs_info);
4966	btrfs_drop_all_logs(fs_info);
4967	mutex_unlock(&fs_info->transaction_kthread_mutex);
4968
4969	return 0;
4970}
4971
4972int btrfs_init_root_free_objectid(struct btrfs_root *root)
4973{
4974	struct btrfs_path *path;
4975	int ret;
4976	struct extent_buffer *l;
4977	struct btrfs_key search_key;
4978	struct btrfs_key found_key;
4979	int slot;
4980
4981	path = btrfs_alloc_path();
4982	if (!path)
4983		return -ENOMEM;
4984
4985	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4986	search_key.type = -1;
4987	search_key.offset = (u64)-1;
4988	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4989	if (ret < 0)
4990		goto error;
4991	BUG_ON(ret == 0); /* Corruption */
4992	if (path->slots[0] > 0) {
4993		slot = path->slots[0] - 1;
4994		l = path->nodes[0];
4995		btrfs_item_key_to_cpu(l, &found_key, slot);
4996		root->free_objectid = max_t(u64, found_key.objectid + 1,
4997					    BTRFS_FIRST_FREE_OBJECTID);
4998	} else {
4999		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5000	}
5001	ret = 0;
5002error:
5003	btrfs_free_path(path);
5004	return ret;
5005}
5006
5007int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5008{
5009	int ret;
5010	mutex_lock(&root->objectid_mutex);
5011
5012	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5013		btrfs_warn(root->fs_info,
5014			   "the objectid of root %llu reaches its highest value",
5015			   root->root_key.objectid);
5016		ret = -ENOSPC;
5017		goto out;
5018	}
5019
5020	*objectid = root->free_objectid++;
5021	ret = 0;
5022out:
5023	mutex_unlock(&root->objectid_mutex);
5024	return ret;
5025}
v4.10.11
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/slab.h>
  29#include <linux/migrate.h>
  30#include <linux/ratelimit.h>
  31#include <linux/uuid.h>
  32#include <linux/semaphore.h>
 
 
 
  33#include <asm/unaligned.h>
 
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "hash.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "locking.h"
  42#include "tree-log.h"
  43#include "free-space-cache.h"
  44#include "free-space-tree.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
  48#include "dev-replace.h"
  49#include "raid56.h"
  50#include "sysfs.h"
  51#include "qgroup.h"
  52#include "compression.h"
  53
  54#ifdef CONFIG_X86
  55#include <asm/cpufeature.h>
  56#endif
 
 
 
  57
  58#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  59				 BTRFS_HEADER_FLAG_RELOC |\
  60				 BTRFS_SUPER_FLAG_ERROR |\
  61				 BTRFS_SUPER_FLAG_SEEDING |\
  62				 BTRFS_SUPER_FLAG_METADUMP)
 
  63
  64static const struct extent_io_ops btree_extent_io_ops;
  65static void end_workqueue_fn(struct btrfs_work *work);
  66static void free_fs_root(struct btrfs_root *root);
  67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  68				    int read_only);
  69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  71				      struct btrfs_fs_info *fs_info);
  72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  73static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  74					struct extent_io_tree *dirty_pages,
  75					int mark);
  76static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  77				       struct extent_io_tree *pinned_extents);
  78static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  79static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  80
  81/*
  82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  83 * is complete.  This is used during reads to verify checksums, and it is used
  84 * by writes to insert metadata for new file extents after IO is complete.
  85 */
  86struct btrfs_end_io_wq {
  87	struct bio *bio;
  88	bio_end_io_t *end_io;
  89	void *private;
  90	struct btrfs_fs_info *info;
  91	int error;
  92	enum btrfs_wq_endio_type metadata;
  93	struct list_head list;
  94	struct btrfs_work work;
  95};
  96
  97static struct kmem_cache *btrfs_end_io_wq_cache;
  98
  99int __init btrfs_end_io_wq_init(void)
 100{
 101	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
 102					sizeof(struct btrfs_end_io_wq),
 103					0,
 104					SLAB_MEM_SPREAD,
 105					NULL);
 106	if (!btrfs_end_io_wq_cache)
 107		return -ENOMEM;
 108	return 0;
 109}
 110
 111void btrfs_end_io_wq_exit(void)
 112{
 113	kmem_cache_destroy(btrfs_end_io_wq_cache);
 114}
 115
 
 
 
 
 
 
 116/*
 117 * async submit bios are used to offload expensive checksumming
 118 * onto the worker threads.  They checksum file and metadata bios
 119 * just before they are sent down the IO stack.
 120 */
 121struct async_submit_bio {
 122	struct inode *inode;
 123	struct bio *bio;
 124	struct list_head list;
 125	extent_submit_bio_hook_t *submit_bio_start;
 126	extent_submit_bio_hook_t *submit_bio_done;
 127	int mirror_num;
 128	unsigned long bio_flags;
 129	/*
 130	 * bio_offset is optional, can be used if the pages in the bio
 131	 * can't tell us where in the file the bio should go
 132	 */
 133	u64 bio_offset;
 134	struct btrfs_work work;
 135	int error;
 136};
 137
 138/*
 139 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 141 * the level the eb occupies in the tree.
 142 *
 143 * Different roots are used for different purposes and may nest inside each
 144 * other and they require separate keysets.  As lockdep keys should be
 145 * static, assign keysets according to the purpose of the root as indicated
 146 * by btrfs_root->objectid.  This ensures that all special purpose roots
 147 * have separate keysets.
 148 *
 149 * Lock-nesting across peer nodes is always done with the immediate parent
 150 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 151 * subclass to avoid triggering lockdep warning in such cases.
 152 *
 153 * The key is set by the readpage_end_io_hook after the buffer has passed
 154 * csum validation but before the pages are unlocked.  It is also set by
 155 * btrfs_init_new_buffer on freshly allocated blocks.
 156 *
 157 * We also add a check to make sure the highest level of the tree is the
 158 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 159 * needs update as well.
 160 */
 161#ifdef CONFIG_DEBUG_LOCK_ALLOC
 162# if BTRFS_MAX_LEVEL != 8
 163#  error
 164# endif
 165
 
 
 
 
 
 
 
 
 
 
 
 
 
 166static struct btrfs_lockdep_keyset {
 167	u64			id;		/* root objectid */
 168	const char		*name_stem;	/* lock name stem */
 169	char			names[BTRFS_MAX_LEVEL + 1][20];
 170	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 171} btrfs_lockdep_keysets[] = {
 172	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 173	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 174	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 175	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 176	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 177	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 178	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 179	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 180	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 181	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 182	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 183	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 184	{ .id = 0,				.name_stem = "tree"	},
 185};
 186
 187void __init btrfs_init_lockdep(void)
 188{
 189	int i, j;
 190
 191	/* initialize lockdep class names */
 192	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 193		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 194
 195		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 196			snprintf(ks->names[j], sizeof(ks->names[j]),
 197				 "btrfs-%s-%02d", ks->name_stem, j);
 198	}
 199}
 200
 201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 202				    int level)
 203{
 204	struct btrfs_lockdep_keyset *ks;
 205
 206	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 207
 208	/* find the matching keyset, id 0 is the default entry */
 209	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 210		if (ks->id == objectid)
 211			break;
 212
 213	lockdep_set_class_and_name(&eb->lock,
 214				   &ks->keys[level], ks->names[level]);
 215}
 216
 217#endif
 218
 219/*
 220 * extents on the btree inode are pretty simple, there's one extent
 221 * that covers the entire device
 222 */
 223static struct extent_map *btree_get_extent(struct inode *inode,
 224		struct page *page, size_t pg_offset, u64 start, u64 len,
 225		int create)
 226{
 227	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 228	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 229	struct extent_map *em;
 230	int ret;
 231
 232	read_lock(&em_tree->lock);
 233	em = lookup_extent_mapping(em_tree, start, len);
 234	if (em) {
 235		em->bdev = fs_info->fs_devices->latest_bdev;
 236		read_unlock(&em_tree->lock);
 237		goto out;
 238	}
 239	read_unlock(&em_tree->lock);
 240
 241	em = alloc_extent_map();
 242	if (!em) {
 243		em = ERR_PTR(-ENOMEM);
 244		goto out;
 245	}
 246	em->start = 0;
 247	em->len = (u64)-1;
 248	em->block_len = (u64)-1;
 249	em->block_start = 0;
 250	em->bdev = fs_info->fs_devices->latest_bdev;
 251
 252	write_lock(&em_tree->lock);
 253	ret = add_extent_mapping(em_tree, em, 0);
 254	if (ret == -EEXIST) {
 255		free_extent_map(em);
 256		em = lookup_extent_mapping(em_tree, start, len);
 257		if (!em)
 258			em = ERR_PTR(-EIO);
 259	} else if (ret) {
 260		free_extent_map(em);
 261		em = ERR_PTR(ret);
 262	}
 263	write_unlock(&em_tree->lock);
 264
 265out:
 266	return em;
 267}
 268
 269u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 270{
 271	return btrfs_crc32c(seed, data, len);
 272}
 273
 274void btrfs_csum_final(u32 crc, u8 *result)
 275{
 276	put_unaligned_le32(~crc, result);
 277}
 278
 279/*
 280 * compute the csum for a btree block, and either verify it or write it
 281 * into the csum field of the block.
 282 */
 283static int csum_tree_block(struct btrfs_fs_info *fs_info,
 284			   struct extent_buffer *buf,
 285			   int verify)
 286{
 287	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 288	char *result = NULL;
 289	unsigned long len;
 290	unsigned long cur_len;
 291	unsigned long offset = BTRFS_CSUM_SIZE;
 292	char *kaddr;
 293	unsigned long map_start;
 294	unsigned long map_len;
 295	int err;
 296	u32 crc = ~(u32)0;
 297	unsigned long inline_result;
 298
 299	len = buf->len - offset;
 300	while (len > 0) {
 301		err = map_private_extent_buffer(buf, offset, 32,
 302					&kaddr, &map_start, &map_len);
 303		if (err)
 304			return err;
 305		cur_len = min(len, map_len - (offset - map_start));
 306		crc = btrfs_csum_data(kaddr + offset - map_start,
 307				      crc, cur_len);
 308		len -= cur_len;
 309		offset += cur_len;
 310	}
 311	if (csum_size > sizeof(inline_result)) {
 312		result = kzalloc(csum_size, GFP_NOFS);
 313		if (!result)
 314			return -ENOMEM;
 315	} else {
 316		result = (char *)&inline_result;
 317	}
 318
 319	btrfs_csum_final(crc, result);
 320
 321	if (verify) {
 322		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 323			u32 val;
 324			u32 found = 0;
 325			memcpy(&found, result, csum_size);
 326
 327			read_extent_buffer(buf, &val, 0, csum_size);
 328			btrfs_warn_rl(fs_info,
 329				"%s checksum verify failed on %llu wanted %X found %X level %d",
 330				fs_info->sb->s_id, buf->start,
 331				val, found, btrfs_header_level(buf));
 332			if (result != (char *)&inline_result)
 333				kfree(result);
 334			return -EUCLEAN;
 335		}
 336	} else {
 337		write_extent_buffer(buf, result, 0, csum_size);
 338	}
 339	if (result != (char *)&inline_result)
 340		kfree(result);
 341	return 0;
 342}
 343
 344/*
 345 * we can't consider a given block up to date unless the transid of the
 346 * block matches the transid in the parent node's pointer.  This is how we
 347 * detect blocks that either didn't get written at all or got written
 348 * in the wrong place.
 349 */
 350static int verify_parent_transid(struct extent_io_tree *io_tree,
 351				 struct extent_buffer *eb, u64 parent_transid,
 352				 int atomic)
 353{
 354	struct extent_state *cached_state = NULL;
 355	int ret;
 356	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 357
 358	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 359		return 0;
 360
 361	if (atomic)
 362		return -EAGAIN;
 363
 364	if (need_lock) {
 365		btrfs_tree_read_lock(eb);
 366		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 367	}
 368
 369	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 370			 &cached_state);
 371	if (extent_buffer_uptodate(eb) &&
 372	    btrfs_header_generation(eb) == parent_transid) {
 373		ret = 0;
 374		goto out;
 375	}
 376	btrfs_err_rl(eb->fs_info,
 377		"parent transid verify failed on %llu wanted %llu found %llu",
 378			eb->start,
 379			parent_transid, btrfs_header_generation(eb));
 380	ret = 1;
 381
 382	/*
 383	 * Things reading via commit roots that don't have normal protection,
 384	 * like send, can have a really old block in cache that may point at a
 385	 * block that has been freed and re-allocated.  So don't clear uptodate
 386	 * if we find an eb that is under IO (dirty/writeback) because we could
 387	 * end up reading in the stale data and then writing it back out and
 388	 * making everybody very sad.
 389	 */
 390	if (!extent_buffer_under_io(eb))
 391		clear_extent_buffer_uptodate(eb);
 392out:
 393	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 394			     &cached_state, GFP_NOFS);
 395	if (need_lock)
 396		btrfs_tree_read_unlock_blocking(eb);
 397	return ret;
 398}
 399
 
 
 
 
 
 
 
 
 
 
 
 
 
 400/*
 401 * Return 0 if the superblock checksum type matches the checksum value of that
 402 * algorithm. Pass the raw disk superblock data.
 403 */
 404static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 405				  char *raw_disk_sb)
 406{
 407	struct btrfs_super_block *disk_sb =
 408		(struct btrfs_super_block *)raw_disk_sb;
 409	u16 csum_type = btrfs_super_csum_type(disk_sb);
 410	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 411
 412	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 413		u32 crc = ~(u32)0;
 414		const int csum_size = sizeof(crc);
 415		char result[csum_size];
 416
 417		/*
 418		 * The super_block structure does not span the whole
 419		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 420		 * is filled with zeros and is included in the checksum.
 421		 */
 422		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 423				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 424		btrfs_csum_final(crc, result);
 425
 426		if (memcmp(raw_disk_sb, result, csum_size))
 427			ret = 1;
 
 
 
 
 
 428	}
 429
 430	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 431		btrfs_err(fs_info, "unsupported checksum algorithm %u",
 432				csum_type);
 433		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434	}
 435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436	return ret;
 437}
 438
 439/*
 440 * helper to read a given tree block, doing retries as required when
 441 * the checksums don't match and we have alternate mirrors to try.
 
 
 
 
 442 */
 443static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
 444					  struct extent_buffer *eb,
 445					  u64 parent_transid)
 446{
 
 447	struct extent_io_tree *io_tree;
 448	int failed = 0;
 449	int ret;
 450	int num_copies = 0;
 451	int mirror_num = 0;
 452	int failed_mirror = 0;
 453
 454	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 455	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 456	while (1) {
 457		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
 458					       btree_get_extent, mirror_num);
 459		if (!ret) {
 460			if (!verify_parent_transid(io_tree, eb,
 461						   parent_transid, 0))
 
 
 
 
 
 462				break;
 463			else
 464				ret = -EIO;
 465		}
 466
 467		/*
 468		 * This buffer's crc is fine, but its contents are corrupted, so
 469		 * there is no reason to read the other copies, they won't be
 470		 * any less wrong.
 471		 */
 472		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 473			break;
 474
 475		num_copies = btrfs_num_copies(fs_info,
 476					      eb->start, eb->len);
 477		if (num_copies == 1)
 478			break;
 479
 480		if (!failed_mirror) {
 481			failed = 1;
 482			failed_mirror = eb->read_mirror;
 483		}
 484
 485		mirror_num++;
 486		if (mirror_num == failed_mirror)
 487			mirror_num++;
 488
 489		if (mirror_num > num_copies)
 490			break;
 491	}
 492
 493	if (failed && !ret && failed_mirror)
 494		repair_eb_io_failure(fs_info, eb, failed_mirror);
 495
 496	return ret;
 497}
 498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499/*
 500 * checksum a dirty tree block before IO.  This has extra checks to make sure
 501 * we only fill in the checksum field in the first page of a multi-page block
 
 502 */
 503
 504static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 505{
 
 506	u64 start = page_offset(page);
 507	u64 found_start;
 508	struct extent_buffer *eb;
 509
 
 
 
 510	eb = (struct extent_buffer *)page->private;
 511	if (page != eb->pages[0])
 512		return 0;
 513
 514	found_start = btrfs_header_bytenr(eb);
 
 
 
 
 
 
 515	/*
 516	 * Please do not consolidate these warnings into a single if.
 517	 * It is useful to know what went wrong.
 518	 */
 519	if (WARN_ON(found_start != start))
 520		return -EUCLEAN;
 521	if (WARN_ON(!PageUptodate(page)))
 522		return -EUCLEAN;
 523
 524	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
 525			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 526
 527	return csum_tree_block(fs_info, eb, 0);
 528}
 529
 530static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 531				 struct extent_buffer *eb)
 532{
 533	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 534	u8 fsid[BTRFS_UUID_SIZE];
 535	int ret = 1;
 
 536
 537	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 538	while (fs_devices) {
 539		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 540			ret = 0;
 541			break;
 542		}
 543		fs_devices = fs_devices->seed;
 544	}
 545	return ret;
 546}
 
 547
 548#define CORRUPT(reason, eb, root, slot)					\
 549	btrfs_crit(root->fs_info,					\
 550		   "corrupt %s, %s: block=%llu, root=%llu, slot=%d",	\
 551		   btrfs_header_level(eb) == 0 ? "leaf" : "node",	\
 552		   reason, btrfs_header_bytenr(eb), root->objectid, slot)
 553
 554static noinline int check_leaf(struct btrfs_root *root,
 555			       struct extent_buffer *leaf)
 556{
 557	struct btrfs_fs_info *fs_info = root->fs_info;
 558	struct btrfs_key key;
 559	struct btrfs_key leaf_key;
 560	u32 nritems = btrfs_header_nritems(leaf);
 561	int slot;
 562
 563	/*
 564	 * Extent buffers from a relocation tree have a owner field that
 565	 * corresponds to the subvolume tree they are based on. So just from an
 566	 * extent buffer alone we can not find out what is the id of the
 567	 * corresponding subvolume tree, so we can not figure out if the extent
 568	 * buffer corresponds to the root of the relocation tree or not. So skip
 569	 * this check for relocation trees.
 570	 */
 571	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
 572		struct btrfs_root *check_root;
 573
 574		key.objectid = btrfs_header_owner(leaf);
 575		key.type = BTRFS_ROOT_ITEM_KEY;
 576		key.offset = (u64)-1;
 577
 578		check_root = btrfs_get_fs_root(fs_info, &key, false);
 579		/*
 580		 * The only reason we also check NULL here is that during
 581		 * open_ctree() some roots has not yet been set up.
 582		 */
 583		if (!IS_ERR_OR_NULL(check_root)) {
 584			struct extent_buffer *eb;
 
 
 
 585
 586			eb = btrfs_root_node(check_root);
 587			/* if leaf is the root, then it's fine */
 588			if (leaf != eb) {
 589				CORRUPT("non-root leaf's nritems is 0",
 590					leaf, check_root, 0);
 591				free_extent_buffer(eb);
 592				return -EIO;
 593			}
 594			free_extent_buffer(eb);
 595		}
 596		return 0;
 
 
 
 
 
 
 
 
 597	}
 598
 599	if (nritems == 0)
 600		return 0;
 601
 602	/* Check the 0 item */
 603	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 604	    BTRFS_LEAF_DATA_SIZE(fs_info)) {
 605		CORRUPT("invalid item offset size pair", leaf, root, 0);
 606		return -EIO;
 
 
 
 
 
 607	}
 608
 609	/*
 610	 * Check to make sure each items keys are in the correct order and their
 611	 * offsets make sense.  We only have to loop through nritems-1 because
 612	 * we check the current slot against the next slot, which verifies the
 613	 * next slot's offset+size makes sense and that the current's slot
 614	 * offset is correct.
 615	 */
 616	for (slot = 0; slot < nritems - 1; slot++) {
 617		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 618		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 619
 620		/* Make sure the keys are in the right order */
 621		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 622			CORRUPT("bad key order", leaf, root, slot);
 623			return -EIO;
 624		}
 625
 626		/*
 627		 * Make sure the offset and ends are right, remember that the
 628		 * item data starts at the end of the leaf and grows towards the
 629		 * front.
 630		 */
 631		if (btrfs_item_offset_nr(leaf, slot) !=
 632			btrfs_item_end_nr(leaf, slot + 1)) {
 633			CORRUPT("slot offset bad", leaf, root, slot);
 634			return -EIO;
 635		}
 636
 637		/*
 638		 * Check to make sure that we don't point outside of the leaf,
 639		 * just in case all the items are consistent to each other, but
 640		 * all point outside of the leaf.
 641		 */
 642		if (btrfs_item_end_nr(leaf, slot) >
 643		    BTRFS_LEAF_DATA_SIZE(fs_info)) {
 644			CORRUPT("slot end outside of leaf", leaf, root, slot);
 645			return -EIO;
 646		}
 647	}
 648
 649	return 0;
 650}
 651
 652static int check_node(struct btrfs_root *root, struct extent_buffer *node)
 
 653{
 654	unsigned long nr = btrfs_header_nritems(node);
 655	struct btrfs_key key, next_key;
 656	int slot;
 657	u64 bytenr;
 658	int ret = 0;
 659
 660	if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
 661		btrfs_crit(root->fs_info,
 662			   "corrupt node: block %llu root %llu nritems %lu",
 663			   node->start, root->objectid, nr);
 664		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665	}
 
 
 
 666
 667	for (slot = 0; slot < nr - 1; slot++) {
 668		bytenr = btrfs_node_blockptr(node, slot);
 669		btrfs_node_key_to_cpu(node, &key, slot);
 670		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
 671
 672		if (!bytenr) {
 673			CORRUPT("invalid item slot", node, root, slot);
 674			ret = -EIO;
 675			goto out;
 676		}
 677
 678		if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
 679			CORRUPT("bad key order", node, root, slot);
 680			ret = -EIO;
 681			goto out;
 682		}
 683	}
 684out:
 
 
 
 685	return ret;
 686}
 687
 688static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 689				      u64 phy_offset, struct page *page,
 690				      u64 start, u64 end, int mirror)
 691{
 692	u64 found_start;
 693	int found_level;
 694	struct extent_buffer *eb;
 695	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 696	struct btrfs_fs_info *fs_info = root->fs_info;
 697	int ret = 0;
 698	int reads_done;
 699
 700	if (!page->private)
 701		goto out;
 
 
 702
 703	eb = (struct extent_buffer *)page->private;
 704
 705	/* the pending IO might have been the only thing that kept this buffer
 
 706	 * in memory.  Make sure we have a ref for all this other checks
 707	 */
 708	extent_buffer_get(eb);
 709
 710	reads_done = atomic_dec_and_test(&eb->io_pages);
 711	if (!reads_done)
 712		goto err;
 713
 714	eb->read_mirror = mirror;
 715	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 716		ret = -EIO;
 717		goto err;
 718	}
 719
 720	found_start = btrfs_header_bytenr(eb);
 721	if (found_start != eb->start) {
 722		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
 723			     found_start, eb->start);
 724		ret = -EIO;
 725		goto err;
 726	}
 727	if (check_tree_block_fsid(fs_info, eb)) {
 728		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 729			     eb->start);
 730		ret = -EIO;
 731		goto err;
 732	}
 733	found_level = btrfs_header_level(eb);
 734	if (found_level >= BTRFS_MAX_LEVEL) {
 735		btrfs_err(fs_info, "bad tree block level %d",
 736			  (int)btrfs_header_level(eb));
 737		ret = -EIO;
 738		goto err;
 739	}
 740
 741	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 742				       eb, found_level);
 743
 744	ret = csum_tree_block(fs_info, eb, 1);
 745	if (ret)
 746		goto err;
 747
 748	/*
 749	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 750	 * that we don't try and read the other copies of this block, just
 751	 * return -EIO.
 752	 */
 753	if (found_level == 0 && check_leaf(root, eb)) {
 754		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 755		ret = -EIO;
 756	}
 757
 758	if (found_level > 0 && check_node(root, eb))
 759		ret = -EIO;
 760
 761	if (!ret)
 762		set_extent_buffer_uptodate(eb);
 763err:
 764	if (reads_done &&
 765	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 766		btree_readahead_hook(fs_info, eb, ret);
 767
 768	if (ret) {
 769		/*
 770		 * our io error hook is going to dec the io pages
 771		 * again, we have to make sure it has something
 772		 * to decrement
 773		 */
 774		atomic_inc(&eb->io_pages);
 775		clear_extent_buffer_uptodate(eb);
 776	}
 777	free_extent_buffer(eb);
 778out:
 779	return ret;
 780}
 781
 782static int btree_io_failed_hook(struct page *page, int failed_mirror)
 783{
 784	struct extent_buffer *eb;
 785
 786	eb = (struct extent_buffer *)page->private;
 787	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 788	eb->read_mirror = failed_mirror;
 789	atomic_dec(&eb->io_pages);
 790	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 791		btree_readahead_hook(eb->fs_info, eb, -EIO);
 792	return -EIO;	/* we fixed nothing */
 793}
 794
 795static void end_workqueue_bio(struct bio *bio)
 796{
 797	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 798	struct btrfs_fs_info *fs_info;
 799	struct btrfs_workqueue *wq;
 800	btrfs_work_func_t func;
 801
 802	fs_info = end_io_wq->info;
 803	end_io_wq->error = bio->bi_error;
 804
 805	if (bio_op(bio) == REQ_OP_WRITE) {
 806		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 807			wq = fs_info->endio_meta_write_workers;
 808			func = btrfs_endio_meta_write_helper;
 809		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 810			wq = fs_info->endio_freespace_worker;
 811			func = btrfs_freespace_write_helper;
 812		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 813			wq = fs_info->endio_raid56_workers;
 814			func = btrfs_endio_raid56_helper;
 815		} else {
 816			wq = fs_info->endio_write_workers;
 817			func = btrfs_endio_write_helper;
 818		}
 819	} else {
 820		if (unlikely(end_io_wq->metadata ==
 821			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 822			wq = fs_info->endio_repair_workers;
 823			func = btrfs_endio_repair_helper;
 824		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 825			wq = fs_info->endio_raid56_workers;
 826			func = btrfs_endio_raid56_helper;
 827		} else if (end_io_wq->metadata) {
 828			wq = fs_info->endio_meta_workers;
 829			func = btrfs_endio_meta_helper;
 830		} else {
 831			wq = fs_info->endio_workers;
 832			func = btrfs_endio_helper;
 833		}
 834	}
 835
 836	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 837	btrfs_queue_work(wq, &end_io_wq->work);
 838}
 839
 840int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 841			enum btrfs_wq_endio_type metadata)
 842{
 843	struct btrfs_end_io_wq *end_io_wq;
 844
 845	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 846	if (!end_io_wq)
 847		return -ENOMEM;
 848
 849	end_io_wq->private = bio->bi_private;
 850	end_io_wq->end_io = bio->bi_end_io;
 851	end_io_wq->info = info;
 852	end_io_wq->error = 0;
 853	end_io_wq->bio = bio;
 854	end_io_wq->metadata = metadata;
 855
 856	bio->bi_private = end_io_wq;
 857	bio->bi_end_io = end_workqueue_bio;
 858	return 0;
 859}
 860
 861unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 862{
 863	unsigned long limit = min_t(unsigned long,
 864				    info->thread_pool_size,
 865				    info->fs_devices->open_devices);
 866	return 256 * limit;
 867}
 868
 869static void run_one_async_start(struct btrfs_work *work)
 870{
 871	struct async_submit_bio *async;
 872	int ret;
 873
 874	async = container_of(work, struct  async_submit_bio, work);
 875	ret = async->submit_bio_start(async->inode, async->bio,
 876				      async->mirror_num, async->bio_flags,
 877				      async->bio_offset);
 878	if (ret)
 879		async->error = ret;
 880}
 881
 
 
 
 
 
 
 
 
 882static void run_one_async_done(struct btrfs_work *work)
 883{
 884	struct btrfs_fs_info *fs_info;
 885	struct async_submit_bio *async;
 886	int limit;
 
 887
 888	async = container_of(work, struct  async_submit_bio, work);
 889	fs_info = BTRFS_I(async->inode)->root->fs_info;
 890
 891	limit = btrfs_async_submit_limit(fs_info);
 892	limit = limit * 2 / 3;
 
 
 
 
 893
 894	/*
 895	 * atomic_dec_return implies a barrier for waitqueue_active
 
 
 896	 */
 897	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 898	    waitqueue_active(&fs_info->async_submit_wait))
 899		wake_up(&fs_info->async_submit_wait);
 900
 901	/* If an error occurred we just want to clean up the bio and move on */
 902	if (async->error) {
 903		async->bio->bi_error = async->error;
 904		bio_endio(async->bio);
 905		return;
 906	}
 907
 908	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
 909			       async->bio_flags, async->bio_offset);
 910}
 911
 912static void run_one_async_free(struct btrfs_work *work)
 913{
 914	struct async_submit_bio *async;
 915
 916	async = container_of(work, struct  async_submit_bio, work);
 917	kfree(async);
 918}
 919
 920int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 921			struct bio *bio, int mirror_num,
 922			unsigned long bio_flags,
 923			u64 bio_offset,
 924			extent_submit_bio_hook_t *submit_bio_start,
 925			extent_submit_bio_hook_t *submit_bio_done)
 926{
 
 927	struct async_submit_bio *async;
 928
 929	async = kmalloc(sizeof(*async), GFP_NOFS);
 930	if (!async)
 931		return -ENOMEM;
 932
 933	async->inode = inode;
 934	async->bio = bio;
 935	async->mirror_num = mirror_num;
 936	async->submit_bio_start = submit_bio_start;
 937	async->submit_bio_done = submit_bio_done;
 938
 939	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 940			run_one_async_done, run_one_async_free);
 941
 942	async->bio_flags = bio_flags;
 943	async->bio_offset = bio_offset;
 944
 945	async->error = 0;
 946
 947	atomic_inc(&fs_info->nr_async_submits);
 948
 949	if (op_is_sync(bio->bi_opf))
 950		btrfs_set_work_high_priority(&async->work);
 951
 952	btrfs_queue_work(fs_info->workers, &async->work);
 953
 954	while (atomic_read(&fs_info->async_submit_draining) &&
 955	      atomic_read(&fs_info->nr_async_submits)) {
 956		wait_event(fs_info->async_submit_wait,
 957			   (atomic_read(&fs_info->nr_async_submits) == 0));
 958	}
 959
 960	return 0;
 961}
 962
 963static int btree_csum_one_bio(struct bio *bio)
 964{
 965	struct bio_vec *bvec;
 966	struct btrfs_root *root;
 967	int i, ret = 0;
 
 968
 969	bio_for_each_segment_all(bvec, bio, i) {
 
 970		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 971		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 972		if (ret)
 973			break;
 974	}
 975
 976	return ret;
 977}
 978
 979static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
 980				    int mirror_num, unsigned long bio_flags,
 981				    u64 bio_offset)
 982{
 983	/*
 984	 * when we're called for a write, we're already in the async
 985	 * submission context.  Just jump into btrfs_map_bio
 986	 */
 987	return btree_csum_one_bio(bio);
 988}
 989
 990static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
 991				 int mirror_num, unsigned long bio_flags,
 992				 u64 bio_offset)
 993{
 994	int ret;
 995
 996	/*
 997	 * when we're called for a write, we're already in the async
 998	 * submission context.  Just jump into btrfs_map_bio
 999	 */
1000	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
1001	if (ret) {
1002		bio->bi_error = ret;
1003		bio_endio(bio);
1004	}
1005	return ret;
1006}
1007
1008static int check_async_write(struct inode *inode, unsigned long bio_flags)
1009{
1010	if (bio_flags & EXTENT_BIO_TREE_LOG)
1011		return 0;
1012#ifdef CONFIG_X86
1013	if (static_cpu_has(X86_FEATURE_XMM4_2))
1014		return 0;
1015#endif
1016	return 1;
1017}
1018
1019static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1020				 int mirror_num, unsigned long bio_flags,
1021				 u64 bio_offset)
1022{
1023	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1024	int async = check_async_write(inode, bio_flags);
1025	int ret;
1026
1027	if (bio_op(bio) != REQ_OP_WRITE) {
1028		/*
1029		 * called for a read, do the setup so that checksum validation
1030		 * can happen in the async kernel threads
1031		 */
1032		ret = btrfs_bio_wq_end_io(fs_info, bio,
1033					  BTRFS_WQ_ENDIO_METADATA);
1034		if (ret)
1035			goto out_w_error;
1036		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1037	} else if (!async) {
1038		ret = btree_csum_one_bio(bio);
1039		if (ret)
1040			goto out_w_error;
1041		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1042	} else {
1043		/*
1044		 * kthread helpers are used to submit writes so that
1045		 * checksumming can happen in parallel across all CPUs
1046		 */
1047		ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
1048					  bio_offset,
1049					  __btree_submit_bio_start,
1050					  __btree_submit_bio_done);
1051	}
1052
1053	if (ret)
1054		goto out_w_error;
1055	return 0;
1056
1057out_w_error:
1058	bio->bi_error = ret;
1059	bio_endio(bio);
1060	return ret;
1061}
1062
1063#ifdef CONFIG_MIGRATION
1064static int btree_migratepage(struct address_space *mapping,
1065			struct page *newpage, struct page *page,
1066			enum migrate_mode mode)
1067{
1068	/*
1069	 * we can't safely write a btree page from here,
1070	 * we haven't done the locking hook
1071	 */
1072	if (PageDirty(page))
1073		return -EAGAIN;
1074	/*
1075	 * Buffers may be managed in a filesystem specific way.
1076	 * We must have no buffers or drop them.
1077	 */
1078	if (page_has_private(page) &&
1079	    !try_to_release_page(page, GFP_KERNEL))
1080		return -EAGAIN;
1081	return migrate_page(mapping, newpage, page, mode);
1082}
1083#endif
1084
1085
1086static int btree_writepages(struct address_space *mapping,
1087			    struct writeback_control *wbc)
1088{
1089	struct btrfs_fs_info *fs_info;
1090	int ret;
1091
1092	if (wbc->sync_mode == WB_SYNC_NONE) {
1093
1094		if (wbc->for_kupdate)
1095			return 0;
1096
1097		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1098		/* this is a bit racy, but that's ok */
1099		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1100					     BTRFS_DIRTY_METADATA_THRESH);
 
1101		if (ret < 0)
1102			return 0;
1103	}
1104	return btree_write_cache_pages(mapping, wbc);
1105}
1106
1107static int btree_readpage(struct file *file, struct page *page)
1108{
1109	struct extent_io_tree *tree;
1110	tree = &BTRFS_I(page->mapping->host)->io_tree;
1111	return extent_read_full_page(tree, page, btree_get_extent, 0);
1112}
1113
1114static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1115{
1116	if (PageWriteback(page) || PageDirty(page))
1117		return 0;
1118
1119	return try_release_extent_buffer(page);
1120}
1121
1122static void btree_invalidatepage(struct page *page, unsigned int offset,
1123				 unsigned int length)
1124{
1125	struct extent_io_tree *tree;
1126	tree = &BTRFS_I(page->mapping->host)->io_tree;
1127	extent_invalidatepage(tree, page, offset);
1128	btree_releasepage(page, GFP_NOFS);
1129	if (PagePrivate(page)) {
1130		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1131			   "page private not zero on page %llu",
1132			   (unsigned long long)page_offset(page));
1133		ClearPagePrivate(page);
1134		set_page_private(page, 0);
1135		put_page(page);
1136	}
1137}
1138
1139static int btree_set_page_dirty(struct page *page)
1140{
1141#ifdef DEBUG
 
 
1142	struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143
1144	BUG_ON(!PagePrivate(page));
1145	eb = (struct extent_buffer *)page->private;
1146	BUG_ON(!eb);
1147	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1148	BUG_ON(!atomic_read(&eb->refs));
1149	btrfs_assert_tree_locked(eb);
1150#endif
1151	return __set_page_dirty_nobuffers(page);
1152}
1153
1154static const struct address_space_operations btree_aops = {
1155	.readpage	= btree_readpage,
1156	.writepages	= btree_writepages,
1157	.releasepage	= btree_releasepage,
1158	.invalidatepage = btree_invalidatepage,
1159#ifdef CONFIG_MIGRATION
1160	.migratepage	= btree_migratepage,
1161#endif
1162	.set_page_dirty = btree_set_page_dirty,
1163};
1164
1165void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1166{
1167	struct extent_buffer *buf = NULL;
1168	struct inode *btree_inode = fs_info->btree_inode;
1169
1170	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1171	if (IS_ERR(buf))
1172		return;
1173	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1174				 buf, WAIT_NONE, btree_get_extent, 0);
1175	free_extent_buffer(buf);
1176}
1177
1178int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1179			 int mirror_num, struct extent_buffer **eb)
1180{
1181	struct extent_buffer *buf = NULL;
1182	struct inode *btree_inode = fs_info->btree_inode;
1183	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1184	int ret;
1185
1186	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1187	if (IS_ERR(buf))
1188		return 0;
1189
1190	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1191
1192	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1193				       btree_get_extent, mirror_num);
1194	if (ret) {
1195		free_extent_buffer(buf);
1196		return ret;
1197	}
1198
1199	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1200		free_extent_buffer(buf);
1201		return -EIO;
1202	} else if (extent_buffer_uptodate(buf)) {
1203		*eb = buf;
1204	} else {
1205		free_extent_buffer(buf);
1206	}
1207	return 0;
1208}
1209
1210struct extent_buffer *btrfs_find_create_tree_block(
1211						struct btrfs_fs_info *fs_info,
1212						u64 bytenr)
 
1213{
1214	if (btrfs_is_testing(fs_info))
1215		return alloc_test_extent_buffer(fs_info, bytenr);
1216	return alloc_extent_buffer(fs_info, bytenr);
1217}
1218
1219
1220int btrfs_write_tree_block(struct extent_buffer *buf)
1221{
1222	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1223					buf->start + buf->len - 1);
1224}
1225
1226int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1227{
1228	return filemap_fdatawait_range(buf->pages[0]->mapping,
1229				       buf->start, buf->start + buf->len - 1);
1230}
1231
 
 
 
 
 
 
 
 
 
1232struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1233				      u64 parent_transid)
 
1234{
1235	struct extent_buffer *buf = NULL;
1236	int ret;
1237
1238	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1239	if (IS_ERR(buf))
1240		return buf;
1241
1242	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
 
1243	if (ret) {
1244		free_extent_buffer(buf);
1245		return ERR_PTR(ret);
1246	}
1247	return buf;
1248
1249}
1250
1251void clean_tree_block(struct btrfs_trans_handle *trans,
1252		      struct btrfs_fs_info *fs_info,
1253		      struct extent_buffer *buf)
1254{
 
1255	if (btrfs_header_generation(buf) ==
1256	    fs_info->running_transaction->transid) {
1257		btrfs_assert_tree_locked(buf);
1258
1259		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1260			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1261					     -buf->len,
1262					     fs_info->dirty_metadata_batch);
1263			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1264			btrfs_set_lock_blocking(buf);
1265			clear_extent_buffer_dirty(buf);
1266		}
1267	}
1268}
1269
1270static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1271{
1272	struct btrfs_subvolume_writers *writers;
1273	int ret;
1274
1275	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1276	if (!writers)
1277		return ERR_PTR(-ENOMEM);
1278
1279	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1280	if (ret < 0) {
1281		kfree(writers);
1282		return ERR_PTR(ret);
1283	}
1284
1285	init_waitqueue_head(&writers->wait);
1286	return writers;
1287}
1288
1289static void
1290btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1291{
1292	percpu_counter_destroy(&writers->counter);
1293	kfree(writers);
1294}
1295
1296static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1297			 u64 objectid)
1298{
1299	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
 
1300	root->node = NULL;
1301	root->commit_root = NULL;
1302	root->state = 0;
1303	root->orphan_cleanup_state = 0;
1304
1305	root->objectid = objectid;
1306	root->last_trans = 0;
1307	root->highest_objectid = 0;
1308	root->nr_delalloc_inodes = 0;
1309	root->nr_ordered_extents = 0;
1310	root->name = NULL;
1311	root->inode_tree = RB_ROOT;
1312	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1313	root->block_rsv = NULL;
1314	root->orphan_block_rsv = NULL;
1315
1316	INIT_LIST_HEAD(&root->dirty_list);
1317	INIT_LIST_HEAD(&root->root_list);
1318	INIT_LIST_HEAD(&root->delalloc_inodes);
1319	INIT_LIST_HEAD(&root->delalloc_root);
1320	INIT_LIST_HEAD(&root->ordered_extents);
1321	INIT_LIST_HEAD(&root->ordered_root);
 
1322	INIT_LIST_HEAD(&root->logged_list[0]);
1323	INIT_LIST_HEAD(&root->logged_list[1]);
1324	spin_lock_init(&root->orphan_lock);
1325	spin_lock_init(&root->inode_lock);
1326	spin_lock_init(&root->delalloc_lock);
1327	spin_lock_init(&root->ordered_extent_lock);
1328	spin_lock_init(&root->accounting_lock);
1329	spin_lock_init(&root->log_extents_lock[0]);
1330	spin_lock_init(&root->log_extents_lock[1]);
 
1331	mutex_init(&root->objectid_mutex);
1332	mutex_init(&root->log_mutex);
1333	mutex_init(&root->ordered_extent_mutex);
1334	mutex_init(&root->delalloc_mutex);
 
1335	init_waitqueue_head(&root->log_writer_wait);
1336	init_waitqueue_head(&root->log_commit_wait[0]);
1337	init_waitqueue_head(&root->log_commit_wait[1]);
1338	INIT_LIST_HEAD(&root->log_ctxs[0]);
1339	INIT_LIST_HEAD(&root->log_ctxs[1]);
1340	atomic_set(&root->log_commit[0], 0);
1341	atomic_set(&root->log_commit[1], 0);
1342	atomic_set(&root->log_writers, 0);
1343	atomic_set(&root->log_batch, 0);
1344	atomic_set(&root->orphan_inodes, 0);
1345	atomic_set(&root->refs, 1);
1346	atomic_set(&root->will_be_snapshoted, 0);
1347	atomic_set(&root->qgroup_meta_rsv, 0);
1348	root->log_transid = 0;
1349	root->log_transid_committed = -1;
1350	root->last_log_commit = 0;
1351	if (!dummy)
1352		extent_io_tree_init(&root->dirty_log_pages,
1353				     fs_info->btree_inode->i_mapping);
 
 
 
1354
1355	memset(&root->root_key, 0, sizeof(root->root_key));
1356	memset(&root->root_item, 0, sizeof(root->root_item));
1357	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1358	if (!dummy)
1359		root->defrag_trans_start = fs_info->generation;
1360	else
1361		root->defrag_trans_start = 0;
1362	root->root_key.objectid = objectid;
1363	root->anon_dev = 0;
1364
1365	spin_lock_init(&root->root_item_lock);
 
 
 
 
 
 
 
1366}
1367
1368static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1369		gfp_t flags)
1370{
1371	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1372	if (root)
1373		root->fs_info = fs_info;
1374	return root;
1375}
1376
1377#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1378/* Should only be used by the testing infrastructure */
1379struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1380{
1381	struct btrfs_root *root;
1382
1383	if (!fs_info)
1384		return ERR_PTR(-EINVAL);
1385
1386	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1387	if (!root)
1388		return ERR_PTR(-ENOMEM);
1389
1390	/* We don't use the stripesize in selftest, set it as sectorsize */
1391	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1392	root->alloc_bytenr = 0;
1393
1394	return root;
1395}
1396#endif
1397
1398struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1399				     struct btrfs_fs_info *fs_info,
1400				     u64 objectid)
1401{
 
1402	struct extent_buffer *leaf;
1403	struct btrfs_root *tree_root = fs_info->tree_root;
1404	struct btrfs_root *root;
1405	struct btrfs_key key;
 
1406	int ret = 0;
1407	uuid_le uuid;
1408
1409	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
 
 
 
 
 
1410	if (!root)
1411		return ERR_PTR(-ENOMEM);
1412
1413	__setup_root(root, fs_info, objectid);
1414	root->root_key.objectid = objectid;
1415	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1416	root->root_key.offset = 0;
1417
1418	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
 
1419	if (IS_ERR(leaf)) {
1420		ret = PTR_ERR(leaf);
1421		leaf = NULL;
1422		goto fail;
1423	}
1424
1425	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1426	btrfs_set_header_bytenr(leaf, leaf->start);
1427	btrfs_set_header_generation(leaf, trans->transid);
1428	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1429	btrfs_set_header_owner(leaf, objectid);
1430	root->node = leaf;
1431
1432	write_extent_buffer_fsid(leaf, fs_info->fsid);
1433	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1434	btrfs_mark_buffer_dirty(leaf);
1435
1436	root->commit_root = btrfs_root_node(root);
1437	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1438
1439	root->root_item.flags = 0;
1440	root->root_item.byte_limit = 0;
1441	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1442	btrfs_set_root_generation(&root->root_item, trans->transid);
1443	btrfs_set_root_level(&root->root_item, 0);
1444	btrfs_set_root_refs(&root->root_item, 1);
1445	btrfs_set_root_used(&root->root_item, leaf->len);
1446	btrfs_set_root_last_snapshot(&root->root_item, 0);
1447	btrfs_set_root_dirid(&root->root_item, 0);
1448	uuid_le_gen(&uuid);
1449	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1450	root->root_item.drop_level = 0;
 
 
 
 
1451
1452	key.objectid = objectid;
1453	key.type = BTRFS_ROOT_ITEM_KEY;
1454	key.offset = 0;
1455	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1456	if (ret)
1457		goto fail;
1458
1459	btrfs_tree_unlock(leaf);
1460
1461	return root;
1462
 
 
 
1463fail:
1464	if (leaf) {
1465		btrfs_tree_unlock(leaf);
1466		free_extent_buffer(root->commit_root);
1467		free_extent_buffer(leaf);
1468	}
1469	kfree(root);
1470
1471	return ERR_PTR(ret);
1472}
1473
1474static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1475					 struct btrfs_fs_info *fs_info)
1476{
1477	struct btrfs_root *root;
1478	struct extent_buffer *leaf;
1479
1480	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1481	if (!root)
1482		return ERR_PTR(-ENOMEM);
1483
1484	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1485
1486	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1487	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1488	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1489
 
 
 
 
 
 
 
 
1490	/*
1491	 * DON'T set REF_COWS for log trees
 
 
 
1492	 *
1493	 * log trees do not get reference counted because they go away
1494	 * before a real commit is actually done.  They do store pointers
1495	 * to file data extents, and those reference counts still get
1496	 * updated (along with back refs to the log tree).
1497	 */
1498
1499	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1500			NULL, 0, 0, 0);
1501	if (IS_ERR(leaf)) {
1502		kfree(root);
1503		return ERR_CAST(leaf);
1504	}
1505
1506	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1507	btrfs_set_header_bytenr(leaf, leaf->start);
1508	btrfs_set_header_generation(leaf, trans->transid);
1509	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1510	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1511	root->node = leaf;
1512
1513	write_extent_buffer_fsid(root->node, fs_info->fsid);
1514	btrfs_mark_buffer_dirty(root->node);
1515	btrfs_tree_unlock(root->node);
1516	return root;
 
1517}
1518
1519int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1520			     struct btrfs_fs_info *fs_info)
1521{
1522	struct btrfs_root *log_root;
1523
1524	log_root = alloc_log_tree(trans, fs_info);
1525	if (IS_ERR(log_root))
1526		return PTR_ERR(log_root);
 
 
 
 
 
 
 
 
 
 
1527	WARN_ON(fs_info->log_root_tree);
1528	fs_info->log_root_tree = log_root;
1529	return 0;
1530}
1531
1532int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1533		       struct btrfs_root *root)
1534{
1535	struct btrfs_fs_info *fs_info = root->fs_info;
1536	struct btrfs_root *log_root;
1537	struct btrfs_inode_item *inode_item;
 
1538
1539	log_root = alloc_log_tree(trans, fs_info);
1540	if (IS_ERR(log_root))
1541		return PTR_ERR(log_root);
1542
 
 
 
 
 
 
1543	log_root->last_trans = trans->transid;
1544	log_root->root_key.offset = root->root_key.objectid;
1545
1546	inode_item = &log_root->root_item.inode;
1547	btrfs_set_stack_inode_generation(inode_item, 1);
1548	btrfs_set_stack_inode_size(inode_item, 3);
1549	btrfs_set_stack_inode_nlink(inode_item, 1);
1550	btrfs_set_stack_inode_nbytes(inode_item,
1551				     fs_info->nodesize);
1552	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1553
1554	btrfs_set_root_node(&log_root->root_item, log_root->node);
1555
1556	WARN_ON(root->log_root);
1557	root->log_root = log_root;
1558	root->log_transid = 0;
1559	root->log_transid_committed = -1;
1560	root->last_log_commit = 0;
1561	return 0;
1562}
1563
1564static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1565					       struct btrfs_key *key)
 
1566{
1567	struct btrfs_root *root;
1568	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1569	struct btrfs_path *path;
1570	u64 generation;
1571	int ret;
 
1572
1573	path = btrfs_alloc_path();
1574	if (!path)
1575		return ERR_PTR(-ENOMEM);
1576
1577	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1578	if (!root) {
1579		ret = -ENOMEM;
1580		goto alloc_fail;
1581	}
1582
1583	__setup_root(root, fs_info, key->objectid);
1584
1585	ret = btrfs_find_root(tree_root, key, path,
1586			      &root->root_item, &root->root_key);
1587	if (ret) {
1588		if (ret > 0)
1589			ret = -ENOENT;
1590		goto find_fail;
1591	}
1592
1593	generation = btrfs_root_generation(&root->root_item);
 
1594	root->node = read_tree_block(fs_info,
1595				     btrfs_root_bytenr(&root->root_item),
1596				     generation);
1597	if (IS_ERR(root->node)) {
1598		ret = PTR_ERR(root->node);
1599		goto find_fail;
 
1600	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1601		ret = -EIO;
1602		free_extent_buffer(root->node);
1603		goto find_fail;
1604	}
1605	root->commit_root = btrfs_root_node(root);
1606out:
1607	btrfs_free_path(path);
1608	return root;
1609
1610find_fail:
1611	kfree(root);
1612alloc_fail:
1613	root = ERR_PTR(ret);
1614	goto out;
1615}
1616
1617struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1618				      struct btrfs_key *location)
1619{
1620	struct btrfs_root *root;
 
1621
1622	root = btrfs_read_tree_root(tree_root, location);
1623	if (IS_ERR(root))
1624		return root;
1625
1626	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1627		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1628		btrfs_check_and_init_root_item(&root->root_item);
1629	}
1630
1631	return root;
1632}
1633
1634int btrfs_init_fs_root(struct btrfs_root *root)
 
 
 
 
 
1635{
1636	int ret;
1637	struct btrfs_subvolume_writers *writers;
1638
1639	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1640	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1641					GFP_NOFS);
1642	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1643		ret = -ENOMEM;
 
 
 
1644		goto fail;
 
 
 
 
 
1645	}
1646
1647	writers = btrfs_alloc_subvolume_writers();
1648	if (IS_ERR(writers)) {
1649		ret = PTR_ERR(writers);
1650		goto fail;
 
 
 
 
 
 
 
 
 
1651	}
1652	root->subv_writers = writers;
1653
1654	btrfs_init_free_ino_ctl(root);
1655	spin_lock_init(&root->ino_cache_lock);
1656	init_waitqueue_head(&root->ino_cache_wait);
1657
1658	ret = get_anon_bdev(&root->anon_dev);
1659	if (ret)
1660		goto fail;
1661
1662	mutex_lock(&root->objectid_mutex);
1663	ret = btrfs_find_highest_objectid(root,
1664					&root->highest_objectid);
1665	if (ret) {
1666		mutex_unlock(&root->objectid_mutex);
1667		goto fail;
1668	}
1669
1670	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1671
1672	mutex_unlock(&root->objectid_mutex);
1673
1674	return 0;
1675fail:
1676	/* the caller is responsible to call free_fs_root */
1677	return ret;
1678}
1679
1680struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1681					u64 root_id)
1682{
1683	struct btrfs_root *root;
1684
1685	spin_lock(&fs_info->fs_roots_radix_lock);
1686	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1687				 (unsigned long)root_id);
 
 
1688	spin_unlock(&fs_info->fs_roots_radix_lock);
1689	return root;
1690}
1691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1693			 struct btrfs_root *root)
1694{
1695	int ret;
1696
1697	ret = radix_tree_preload(GFP_NOFS);
1698	if (ret)
1699		return ret;
1700
1701	spin_lock(&fs_info->fs_roots_radix_lock);
1702	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1703				(unsigned long)root->root_key.objectid,
1704				root);
1705	if (ret == 0)
 
1706		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
 
1707	spin_unlock(&fs_info->fs_roots_radix_lock);
1708	radix_tree_preload_end();
1709
1710	return ret;
1711}
1712
1713struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1714				     struct btrfs_key *location,
1715				     bool check_ref)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716{
1717	struct btrfs_root *root;
1718	struct btrfs_path *path;
1719	struct btrfs_key key;
1720	int ret;
1721
1722	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1723		return fs_info->tree_root;
1724	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1725		return fs_info->extent_root;
1726	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1727		return fs_info->chunk_root;
1728	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1729		return fs_info->dev_root;
1730	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1731		return fs_info->csum_root;
1732	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1733		return fs_info->quota_root ? fs_info->quota_root :
1734					     ERR_PTR(-ENOENT);
1735	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1736		return fs_info->uuid_root ? fs_info->uuid_root :
1737					    ERR_PTR(-ENOENT);
1738	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1739		return fs_info->free_space_root ? fs_info->free_space_root :
1740						  ERR_PTR(-ENOENT);
1741again:
1742	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1743	if (root) {
1744		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
 
 
 
1745			return ERR_PTR(-ENOENT);
 
1746		return root;
1747	}
1748
1749	root = btrfs_read_fs_root(fs_info->tree_root, location);
 
 
 
1750	if (IS_ERR(root))
1751		return root;
1752
1753	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1754		ret = -ENOENT;
1755		goto fail;
1756	}
1757
1758	ret = btrfs_init_fs_root(root);
1759	if (ret)
1760		goto fail;
1761
1762	path = btrfs_alloc_path();
1763	if (!path) {
1764		ret = -ENOMEM;
1765		goto fail;
1766	}
1767	key.objectid = BTRFS_ORPHAN_OBJECTID;
1768	key.type = BTRFS_ORPHAN_ITEM_KEY;
1769	key.offset = location->objectid;
1770
1771	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1772	btrfs_free_path(path);
1773	if (ret < 0)
1774		goto fail;
1775	if (ret == 0)
1776		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1777
1778	ret = btrfs_insert_fs_root(fs_info, root);
1779	if (ret) {
1780		if (ret == -EEXIST) {
1781			free_fs_root(root);
1782			goto again;
1783		}
1784		goto fail;
1785	}
1786	return root;
1787fail:
1788	free_fs_root(root);
1789	return ERR_PTR(ret);
1790}
1791
1792static int btrfs_congested_fn(void *congested_data, int bdi_bits)
 
 
 
 
 
 
 
 
1793{
1794	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1795	int ret = 0;
1796	struct btrfs_device *device;
1797	struct backing_dev_info *bdi;
1798
1799	rcu_read_lock();
1800	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1801		if (!device->bdev)
1802			continue;
1803		bdi = blk_get_backing_dev_info(device->bdev);
1804		if (bdi_congested(bdi, bdi_bits)) {
1805			ret = 1;
1806			break;
1807		}
1808	}
1809	rcu_read_unlock();
1810	return ret;
1811}
1812
1813static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1814{
1815	int err;
 
1816
1817	err = bdi_setup_and_register(bdi, "btrfs");
1818	if (err)
1819		return err;
1820
1821	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1822	bdi->congested_fn	= btrfs_congested_fn;
1823	bdi->congested_data	= info;
1824	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1825	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826}
1827
1828/*
1829 * called by the kthread helper functions to finally call the bio end_io
1830 * functions.  This is where read checksum verification actually happens
1831 */
1832static void end_workqueue_fn(struct btrfs_work *work)
1833{
1834	struct bio *bio;
1835	struct btrfs_end_io_wq *end_io_wq;
1836
1837	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1838	bio = end_io_wq->bio;
1839
1840	bio->bi_error = end_io_wq->error;
1841	bio->bi_private = end_io_wq->private;
1842	bio->bi_end_io = end_io_wq->end_io;
 
1843	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1844	bio_endio(bio);
1845}
1846
1847static int cleaner_kthread(void *arg)
1848{
1849	struct btrfs_root *root = arg;
1850	struct btrfs_fs_info *fs_info = root->fs_info;
1851	int again;
1852	struct btrfs_trans_handle *trans;
1853
1854	do {
1855		again = 0;
1856
 
 
1857		/* Make the cleaner go to sleep early. */
1858		if (btrfs_need_cleaner_sleep(fs_info))
1859			goto sleep;
1860
1861		/*
1862		 * Do not do anything if we might cause open_ctree() to block
1863		 * before we have finished mounting the filesystem.
1864		 */
1865		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1866			goto sleep;
1867
1868		if (!mutex_trylock(&fs_info->cleaner_mutex))
1869			goto sleep;
1870
1871		/*
1872		 * Avoid the problem that we change the status of the fs
1873		 * during the above check and trylock.
1874		 */
1875		if (btrfs_need_cleaner_sleep(fs_info)) {
1876			mutex_unlock(&fs_info->cleaner_mutex);
1877			goto sleep;
1878		}
1879
1880		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1881		btrfs_run_delayed_iputs(fs_info);
1882		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1883
1884		again = btrfs_clean_one_deleted_snapshot(root);
1885		mutex_unlock(&fs_info->cleaner_mutex);
1886
1887		/*
1888		 * The defragger has dealt with the R/O remount and umount,
1889		 * needn't do anything special here.
1890		 */
1891		btrfs_run_defrag_inodes(fs_info);
1892
1893		/*
1894		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1895		 * with relocation (btrfs_relocate_chunk) and relocation
1896		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1897		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1898		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1899		 * unused block groups.
1900		 */
1901		btrfs_delete_unused_bgs(fs_info);
 
 
 
 
 
 
 
1902sleep:
 
 
 
 
 
1903		if (!again) {
1904			set_current_state(TASK_INTERRUPTIBLE);
1905			if (!kthread_should_stop())
1906				schedule();
1907			__set_current_state(TASK_RUNNING);
1908		}
1909	} while (!kthread_should_stop());
1910
1911	/*
1912	 * Transaction kthread is stopped before us and wakes us up.
1913	 * However we might have started a new transaction and COWed some
1914	 * tree blocks when deleting unused block groups for example. So
1915	 * make sure we commit the transaction we started to have a clean
1916	 * shutdown when evicting the btree inode - if it has dirty pages
1917	 * when we do the final iput() on it, eviction will trigger a
1918	 * writeback for it which will fail with null pointer dereferences
1919	 * since work queues and other resources were already released and
1920	 * destroyed by the time the iput/eviction/writeback is made.
1921	 */
1922	trans = btrfs_attach_transaction(root);
1923	if (IS_ERR(trans)) {
1924		if (PTR_ERR(trans) != -ENOENT)
1925			btrfs_err(fs_info,
1926				  "cleaner transaction attach returned %ld",
1927				  PTR_ERR(trans));
1928	} else {
1929		int ret;
1930
1931		ret = btrfs_commit_transaction(trans);
1932		if (ret)
1933			btrfs_err(fs_info,
1934				  "cleaner open transaction commit returned %d",
1935				  ret);
1936	}
1937
1938	return 0;
1939}
1940
1941static int transaction_kthread(void *arg)
1942{
1943	struct btrfs_root *root = arg;
1944	struct btrfs_fs_info *fs_info = root->fs_info;
1945	struct btrfs_trans_handle *trans;
1946	struct btrfs_transaction *cur;
1947	u64 transid;
1948	unsigned long now;
1949	unsigned long delay;
1950	bool cannot_commit;
1951
1952	do {
1953		cannot_commit = false;
1954		delay = HZ * fs_info->commit_interval;
1955		mutex_lock(&fs_info->transaction_kthread_mutex);
1956
1957		spin_lock(&fs_info->trans_lock);
1958		cur = fs_info->running_transaction;
1959		if (!cur) {
1960			spin_unlock(&fs_info->trans_lock);
1961			goto sleep;
1962		}
1963
1964		now = get_seconds();
1965		if (cur->state < TRANS_STATE_BLOCKED &&
1966		    (now < cur->start_time ||
1967		     now - cur->start_time < fs_info->commit_interval)) {
1968			spin_unlock(&fs_info->trans_lock);
1969			delay = HZ * 5;
 
 
1970			goto sleep;
1971		}
1972		transid = cur->transid;
1973		spin_unlock(&fs_info->trans_lock);
1974
1975		/* If the file system is aborted, this will always fail. */
1976		trans = btrfs_attach_transaction(root);
1977		if (IS_ERR(trans)) {
1978			if (PTR_ERR(trans) != -ENOENT)
1979				cannot_commit = true;
1980			goto sleep;
1981		}
1982		if (transid == trans->transid) {
1983			btrfs_commit_transaction(trans);
1984		} else {
1985			btrfs_end_transaction(trans);
1986		}
1987sleep:
1988		wake_up_process(fs_info->cleaner_kthread);
1989		mutex_unlock(&fs_info->transaction_kthread_mutex);
1990
1991		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1992				      &fs_info->fs_state)))
1993			btrfs_cleanup_transaction(fs_info);
1994		set_current_state(TASK_INTERRUPTIBLE);
1995		if (!kthread_should_stop() &&
1996				(!btrfs_transaction_blocked(fs_info) ||
1997				 cannot_commit))
1998			schedule_timeout(delay);
1999		__set_current_state(TASK_RUNNING);
2000	} while (!kthread_should_stop());
2001	return 0;
2002}
2003
2004/*
2005 * this will find the highest generation in the array of
2006 * root backups.  The index of the highest array is returned,
2007 * or -1 if we can't find anything.
2008 *
2009 * We check to make sure the array is valid by comparing the
2010 * generation of the latest  root in the array with the generation
2011 * in the super block.  If they don't match we pitch it.
2012 */
2013static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2014{
 
2015	u64 cur;
2016	int newest_index = -1;
2017	struct btrfs_root_backup *root_backup;
2018	int i;
2019
2020	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2021		root_backup = info->super_copy->super_roots + i;
2022		cur = btrfs_backup_tree_root_gen(root_backup);
2023		if (cur == newest_gen)
2024			newest_index = i;
2025	}
2026
2027	/* check to see if we actually wrapped around */
2028	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2029		root_backup = info->super_copy->super_roots;
2030		cur = btrfs_backup_tree_root_gen(root_backup);
2031		if (cur == newest_gen)
2032			newest_index = 0;
2033	}
2034	return newest_index;
2035}
2036
2037
2038/*
2039 * find the oldest backup so we know where to store new entries
2040 * in the backup array.  This will set the backup_root_index
2041 * field in the fs_info struct
2042 */
2043static void find_oldest_super_backup(struct btrfs_fs_info *info,
2044				     u64 newest_gen)
2045{
2046	int newest_index = -1;
2047
2048	newest_index = find_newest_super_backup(info, newest_gen);
2049	/* if there was garbage in there, just move along */
2050	if (newest_index == -1) {
2051		info->backup_root_index = 0;
2052	} else {
2053		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2054	}
2055}
2056
2057/*
2058 * copy all the root pointers into the super backup array.
2059 * this will bump the backup pointer by one when it is
2060 * done
2061 */
2062static void backup_super_roots(struct btrfs_fs_info *info)
2063{
2064	int next_backup;
2065	struct btrfs_root_backup *root_backup;
2066	int last_backup;
2067
2068	next_backup = info->backup_root_index;
2069	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2070		BTRFS_NUM_BACKUP_ROOTS;
2071
2072	/*
2073	 * just overwrite the last backup if we're at the same generation
2074	 * this happens only at umount
2075	 */
2076	root_backup = info->super_for_commit->super_roots + last_backup;
2077	if (btrfs_backup_tree_root_gen(root_backup) ==
2078	    btrfs_header_generation(info->tree_root->node))
2079		next_backup = last_backup;
2080
2081	root_backup = info->super_for_commit->super_roots + next_backup;
2082
2083	/*
2084	 * make sure all of our padding and empty slots get zero filled
2085	 * regardless of which ones we use today
2086	 */
2087	memset(root_backup, 0, sizeof(*root_backup));
2088
2089	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2090
2091	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2092	btrfs_set_backup_tree_root_gen(root_backup,
2093			       btrfs_header_generation(info->tree_root->node));
2094
2095	btrfs_set_backup_tree_root_level(root_backup,
2096			       btrfs_header_level(info->tree_root->node));
2097
2098	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2099	btrfs_set_backup_chunk_root_gen(root_backup,
2100			       btrfs_header_generation(info->chunk_root->node));
2101	btrfs_set_backup_chunk_root_level(root_backup,
2102			       btrfs_header_level(info->chunk_root->node));
2103
2104	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2105	btrfs_set_backup_extent_root_gen(root_backup,
2106			       btrfs_header_generation(info->extent_root->node));
2107	btrfs_set_backup_extent_root_level(root_backup,
2108			       btrfs_header_level(info->extent_root->node));
2109
2110	/*
2111	 * we might commit during log recovery, which happens before we set
2112	 * the fs_root.  Make sure it is valid before we fill it in.
2113	 */
2114	if (info->fs_root && info->fs_root->node) {
2115		btrfs_set_backup_fs_root(root_backup,
2116					 info->fs_root->node->start);
2117		btrfs_set_backup_fs_root_gen(root_backup,
2118			       btrfs_header_generation(info->fs_root->node));
2119		btrfs_set_backup_fs_root_level(root_backup,
2120			       btrfs_header_level(info->fs_root->node));
2121	}
2122
2123	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2124	btrfs_set_backup_dev_root_gen(root_backup,
2125			       btrfs_header_generation(info->dev_root->node));
2126	btrfs_set_backup_dev_root_level(root_backup,
2127				       btrfs_header_level(info->dev_root->node));
2128
2129	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2130	btrfs_set_backup_csum_root_gen(root_backup,
2131			       btrfs_header_generation(info->csum_root->node));
2132	btrfs_set_backup_csum_root_level(root_backup,
2133			       btrfs_header_level(info->csum_root->node));
2134
2135	btrfs_set_backup_total_bytes(root_backup,
2136			     btrfs_super_total_bytes(info->super_copy));
2137	btrfs_set_backup_bytes_used(root_backup,
2138			     btrfs_super_bytes_used(info->super_copy));
2139	btrfs_set_backup_num_devices(root_backup,
2140			     btrfs_super_num_devices(info->super_copy));
2141
2142	/*
2143	 * if we don't copy this out to the super_copy, it won't get remembered
2144	 * for the next commit
2145	 */
2146	memcpy(&info->super_copy->super_roots,
2147	       &info->super_for_commit->super_roots,
2148	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2149}
2150
2151/*
2152 * this copies info out of the root backup array and back into
2153 * the in-memory super block.  It is meant to help iterate through
2154 * the array, so you send it the number of backups you've already
2155 * tried and the last backup index you used.
 
2156 *
2157 * this returns -1 when it has tried all the backups
2158 */
2159static noinline int next_root_backup(struct btrfs_fs_info *info,
2160				     struct btrfs_super_block *super,
2161				     int *num_backups_tried, int *backup_index)
2162{
 
 
2163	struct btrfs_root_backup *root_backup;
2164	int newest = *backup_index;
2165
2166	if (*num_backups_tried == 0) {
2167		u64 gen = btrfs_super_generation(super);
 
2168
2169		newest = find_newest_super_backup(info, gen);
2170		if (newest == -1)
2171			return -1;
2172
2173		*backup_index = newest;
2174		*num_backups_tried = 1;
2175	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2176		/* we've tried all the backups, all done */
2177		return -1;
2178	} else {
2179		/* jump to the next oldest backup */
2180		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2181			BTRFS_NUM_BACKUP_ROOTS;
2182		*backup_index = newest;
2183		*num_backups_tried += 1;
2184	}
2185	root_backup = super->super_roots + newest;
 
2186
2187	btrfs_set_super_generation(super,
2188				   btrfs_backup_tree_root_gen(root_backup));
2189	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2190	btrfs_set_super_root_level(super,
2191				   btrfs_backup_tree_root_level(root_backup));
2192	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2193
2194	/*
2195	 * fixme: the total bytes and num_devices need to match or we should
2196	 * need a fsck
2197	 */
2198	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2199	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2200	return 0;
 
2201}
2202
2203/* helper to cleanup workers */
2204static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2205{
2206	btrfs_destroy_workqueue(fs_info->fixup_workers);
2207	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2208	btrfs_destroy_workqueue(fs_info->workers);
2209	btrfs_destroy_workqueue(fs_info->endio_workers);
2210	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2211	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2212	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2213	btrfs_destroy_workqueue(fs_info->rmw_workers);
2214	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2215	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2216	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2217	btrfs_destroy_workqueue(fs_info->submit_workers);
2218	btrfs_destroy_workqueue(fs_info->delayed_workers);
2219	btrfs_destroy_workqueue(fs_info->caching_workers);
2220	btrfs_destroy_workqueue(fs_info->readahead_workers);
2221	btrfs_destroy_workqueue(fs_info->flush_workers);
2222	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2223	btrfs_destroy_workqueue(fs_info->extent_workers);
 
 
 
 
 
 
 
 
2224}
2225
2226static void free_root_extent_buffers(struct btrfs_root *root)
2227{
2228	if (root) {
2229		free_extent_buffer(root->node);
2230		free_extent_buffer(root->commit_root);
2231		root->node = NULL;
2232		root->commit_root = NULL;
2233	}
2234}
2235
2236/* helper to cleanup tree roots */
2237static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2238{
2239	free_root_extent_buffers(info->tree_root);
2240
2241	free_root_extent_buffers(info->dev_root);
2242	free_root_extent_buffers(info->extent_root);
2243	free_root_extent_buffers(info->csum_root);
2244	free_root_extent_buffers(info->quota_root);
2245	free_root_extent_buffers(info->uuid_root);
2246	if (chunk_root)
 
 
2247		free_root_extent_buffers(info->chunk_root);
2248	free_root_extent_buffers(info->free_space_root);
2249}
2250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2251void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2252{
2253	int ret;
2254	struct btrfs_root *gang[8];
2255	int i;
2256
2257	while (!list_empty(&fs_info->dead_roots)) {
2258		gang[0] = list_entry(fs_info->dead_roots.next,
2259				     struct btrfs_root, root_list);
2260		list_del(&gang[0]->root_list);
2261
2262		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2263			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2264		} else {
2265			free_extent_buffer(gang[0]->node);
2266			free_extent_buffer(gang[0]->commit_root);
2267			btrfs_put_fs_root(gang[0]);
2268		}
2269	}
2270
2271	while (1) {
2272		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2273					     (void **)gang, 0,
2274					     ARRAY_SIZE(gang));
2275		if (!ret)
2276			break;
2277		for (i = 0; i < ret; i++)
2278			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2279	}
2280
2281	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2282		btrfs_free_log_root_tree(NULL, fs_info);
2283		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2284	}
2285}
2286
2287static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2288{
2289	mutex_init(&fs_info->scrub_lock);
2290	atomic_set(&fs_info->scrubs_running, 0);
2291	atomic_set(&fs_info->scrub_pause_req, 0);
2292	atomic_set(&fs_info->scrubs_paused, 0);
2293	atomic_set(&fs_info->scrub_cancel_req, 0);
2294	init_waitqueue_head(&fs_info->scrub_pause_wait);
2295	fs_info->scrub_workers_refcnt = 0;
2296}
2297
2298static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2299{
2300	spin_lock_init(&fs_info->balance_lock);
2301	mutex_init(&fs_info->balance_mutex);
2302	atomic_set(&fs_info->balance_running, 0);
2303	atomic_set(&fs_info->balance_pause_req, 0);
2304	atomic_set(&fs_info->balance_cancel_req, 0);
2305	fs_info->balance_ctl = NULL;
2306	init_waitqueue_head(&fs_info->balance_wait_q);
 
2307}
2308
2309static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2310{
2311	struct inode *inode = fs_info->btree_inode;
2312
2313	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2314	set_nlink(inode, 1);
2315	/*
2316	 * we set the i_size on the btree inode to the max possible int.
2317	 * the real end of the address space is determined by all of
2318	 * the devices in the system
2319	 */
2320	inode->i_size = OFFSET_MAX;
2321	inode->i_mapping->a_ops = &btree_aops;
2322
2323	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2324	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2325	BTRFS_I(inode)->io_tree.track_uptodate = 0;
 
2326	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2327
2328	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2329
2330	BTRFS_I(inode)->root = fs_info->tree_root;
2331	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2332	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2333	btrfs_insert_inode_hash(inode);
2334}
2335
2336static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2337{
2338	fs_info->dev_replace.lock_owner = 0;
2339	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2340	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2341	rwlock_init(&fs_info->dev_replace.lock);
2342	atomic_set(&fs_info->dev_replace.read_locks, 0);
2343	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2344	init_waitqueue_head(&fs_info->replace_wait);
2345	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2346}
2347
2348static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2349{
2350	spin_lock_init(&fs_info->qgroup_lock);
2351	mutex_init(&fs_info->qgroup_ioctl_lock);
2352	fs_info->qgroup_tree = RB_ROOT;
2353	fs_info->qgroup_op_tree = RB_ROOT;
2354	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2355	fs_info->qgroup_seq = 1;
2356	fs_info->qgroup_ulist = NULL;
2357	fs_info->qgroup_rescan_running = false;
2358	mutex_init(&fs_info->qgroup_rescan_lock);
2359}
2360
2361static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2362		struct btrfs_fs_devices *fs_devices)
2363{
2364	int max_active = fs_info->thread_pool_size;
2365	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2366
2367	fs_info->workers =
2368		btrfs_alloc_workqueue(fs_info, "worker",
2369				      flags | WQ_HIGHPRI, max_active, 16);
2370
2371	fs_info->delalloc_workers =
2372		btrfs_alloc_workqueue(fs_info, "delalloc",
2373				      flags, max_active, 2);
2374
2375	fs_info->flush_workers =
2376		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2377				      flags, max_active, 0);
2378
2379	fs_info->caching_workers =
2380		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2381
2382	/*
2383	 * a higher idle thresh on the submit workers makes it much more
2384	 * likely that bios will be send down in a sane order to the
2385	 * devices
2386	 */
2387	fs_info->submit_workers =
2388		btrfs_alloc_workqueue(fs_info, "submit", flags,
2389				      min_t(u64, fs_devices->num_devices,
2390					    max_active), 64);
2391
2392	fs_info->fixup_workers =
2393		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2394
2395	/*
2396	 * endios are largely parallel and should have a very
2397	 * low idle thresh
2398	 */
2399	fs_info->endio_workers =
2400		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2401	fs_info->endio_meta_workers =
2402		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2403				      max_active, 4);
2404	fs_info->endio_meta_write_workers =
2405		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2406				      max_active, 2);
2407	fs_info->endio_raid56_workers =
2408		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2409				      max_active, 4);
2410	fs_info->endio_repair_workers =
2411		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2412	fs_info->rmw_workers =
2413		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2414	fs_info->endio_write_workers =
2415		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2416				      max_active, 2);
2417	fs_info->endio_freespace_worker =
2418		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2419				      max_active, 0);
2420	fs_info->delayed_workers =
2421		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2422				      max_active, 0);
2423	fs_info->readahead_workers =
2424		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2425				      max_active, 2);
2426	fs_info->qgroup_rescan_workers =
2427		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2428	fs_info->extent_workers =
2429		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2430				      min_t(u64, fs_devices->num_devices,
2431					    max_active), 8);
2432
2433	if (!(fs_info->workers && fs_info->delalloc_workers &&
2434	      fs_info->submit_workers && fs_info->flush_workers &&
2435	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2436	      fs_info->endio_meta_write_workers &&
2437	      fs_info->endio_repair_workers &&
2438	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2439	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2440	      fs_info->caching_workers && fs_info->readahead_workers &&
2441	      fs_info->fixup_workers && fs_info->delayed_workers &&
2442	      fs_info->extent_workers &&
2443	      fs_info->qgroup_rescan_workers)) {
2444		return -ENOMEM;
2445	}
2446
2447	return 0;
2448}
2449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2451			    struct btrfs_fs_devices *fs_devices)
2452{
2453	int ret;
2454	struct btrfs_root *log_tree_root;
2455	struct btrfs_super_block *disk_super = fs_info->super_copy;
2456	u64 bytenr = btrfs_super_log_root(disk_super);
 
2457
2458	if (fs_devices->rw_devices == 0) {
2459		btrfs_warn(fs_info, "log replay required on RO media");
2460		return -EIO;
2461	}
2462
2463	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
2464	if (!log_tree_root)
2465		return -ENOMEM;
2466
2467	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2468
2469	log_tree_root->node = read_tree_block(fs_info, bytenr,
2470					      fs_info->generation + 1);
 
 
2471	if (IS_ERR(log_tree_root->node)) {
2472		btrfs_warn(fs_info, "failed to read log tree");
2473		ret = PTR_ERR(log_tree_root->node);
2474		kfree(log_tree_root);
 
2475		return ret;
2476	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
2477		btrfs_err(fs_info, "failed to read log tree");
2478		free_extent_buffer(log_tree_root->node);
2479		kfree(log_tree_root);
2480		return -EIO;
2481	}
2482	/* returns with log_tree_root freed on success */
2483	ret = btrfs_recover_log_trees(log_tree_root);
2484	if (ret) {
2485		btrfs_handle_fs_error(fs_info, ret,
2486				      "Failed to recover log tree");
2487		free_extent_buffer(log_tree_root->node);
2488		kfree(log_tree_root);
2489		return ret;
2490	}
2491
2492	if (fs_info->sb->s_flags & MS_RDONLY) {
2493		ret = btrfs_commit_super(fs_info);
2494		if (ret)
2495			return ret;
2496	}
2497
2498	return 0;
2499}
2500
2501static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2502{
2503	struct btrfs_root *tree_root = fs_info->tree_root;
2504	struct btrfs_root *root;
2505	struct btrfs_key location;
2506	int ret;
2507
2508	BUG_ON(!fs_info->tree_root);
2509
2510	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2511	location.type = BTRFS_ROOT_ITEM_KEY;
2512	location.offset = 0;
2513
2514	root = btrfs_read_tree_root(tree_root, &location);
2515	if (IS_ERR(root))
2516		return PTR_ERR(root);
2517	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2518	fs_info->extent_root = root;
 
 
 
 
 
2519
2520	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2521	root = btrfs_read_tree_root(tree_root, &location);
2522	if (IS_ERR(root))
2523		return PTR_ERR(root);
2524	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2525	fs_info->dev_root = root;
 
 
 
 
 
 
2526	btrfs_init_devices_late(fs_info);
2527
2528	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2529	root = btrfs_read_tree_root(tree_root, &location);
2530	if (IS_ERR(root))
2531		return PTR_ERR(root);
2532	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2533	fs_info->csum_root = root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2534
2535	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2536	root = btrfs_read_tree_root(tree_root, &location);
2537	if (!IS_ERR(root)) {
2538		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2539		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2540		fs_info->quota_root = root;
2541	}
2542
2543	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2544	root = btrfs_read_tree_root(tree_root, &location);
2545	if (IS_ERR(root)) {
2546		ret = PTR_ERR(root);
2547		if (ret != -ENOENT)
2548			return ret;
 
 
2549	} else {
2550		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551		fs_info->uuid_root = root;
2552	}
2553
2554	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2555		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2556		root = btrfs_read_tree_root(tree_root, &location);
2557		if (IS_ERR(root))
2558			return PTR_ERR(root);
2559		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2560		fs_info->free_space_root = root;
 
 
 
 
 
2561	}
2562
2563	return 0;
 
 
 
 
2564}
2565
2566int open_ctree(struct super_block *sb,
2567	       struct btrfs_fs_devices *fs_devices,
2568	       char *options)
 
 
 
 
 
 
 
 
 
2569{
2570	u32 sectorsize;
2571	u32 nodesize;
2572	u32 stripesize;
2573	u64 generation;
2574	u64 features;
2575	struct btrfs_key location;
2576	struct buffer_head *bh;
2577	struct btrfs_super_block *disk_super;
2578	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2579	struct btrfs_root *tree_root;
2580	struct btrfs_root *chunk_root;
2581	int ret;
2582	int err = -EINVAL;
2583	int num_backups_tried = 0;
2584	int backup_index = 0;
2585	int max_active;
2586	int clear_free_space_tree = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2587
2588	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2589	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2590	if (!tree_root || !chunk_root) {
2591		err = -ENOMEM;
2592		goto fail;
 
 
 
2593	}
2594
2595	ret = init_srcu_struct(&fs_info->subvol_srcu);
2596	if (ret) {
2597		err = ret;
2598		goto fail;
 
 
2599	}
2600
2601	ret = setup_bdi(fs_info, &fs_info->bdi);
2602	if (ret) {
2603		err = ret;
2604		goto fail_srcu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2605	}
2606
2607	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2608	if (ret) {
2609		err = ret;
2610		goto fail_bdi;
 
2611	}
2612	fs_info->dirty_metadata_batch = PAGE_SIZE *
2613					(1 + ilog2(nr_cpu_ids));
2614
2615	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2616	if (ret) {
2617		err = ret;
2618		goto fail_dirty_metadata_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
2619	}
2620
2621	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2622	if (ret) {
2623		err = ret;
2624		goto fail_delalloc_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2625	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2626
2627	fs_info->btree_inode = new_inode(sb);
2628	if (!fs_info->btree_inode) {
2629		err = -ENOMEM;
2630		goto fail_bio_counter;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631	}
2632
2633	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
 
2634
 
 
2635	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2636	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2637	INIT_LIST_HEAD(&fs_info->trans_list);
2638	INIT_LIST_HEAD(&fs_info->dead_roots);
2639	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2640	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2641	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2642	spin_lock_init(&fs_info->delalloc_root_lock);
2643	spin_lock_init(&fs_info->trans_lock);
2644	spin_lock_init(&fs_info->fs_roots_radix_lock);
2645	spin_lock_init(&fs_info->delayed_iput_lock);
2646	spin_lock_init(&fs_info->defrag_inodes_lock);
2647	spin_lock_init(&fs_info->free_chunk_lock);
2648	spin_lock_init(&fs_info->tree_mod_seq_lock);
2649	spin_lock_init(&fs_info->super_lock);
2650	spin_lock_init(&fs_info->qgroup_op_lock);
2651	spin_lock_init(&fs_info->buffer_lock);
2652	spin_lock_init(&fs_info->unused_bgs_lock);
 
2653	rwlock_init(&fs_info->tree_mod_log_lock);
2654	mutex_init(&fs_info->unused_bg_unpin_mutex);
2655	mutex_init(&fs_info->delete_unused_bgs_mutex);
2656	mutex_init(&fs_info->reloc_mutex);
2657	mutex_init(&fs_info->delalloc_root_mutex);
2658	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2659	seqlock_init(&fs_info->profiles_lock);
2660
2661	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2662	INIT_LIST_HEAD(&fs_info->space_info);
2663	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2664	INIT_LIST_HEAD(&fs_info->unused_bgs);
2665	btrfs_mapping_init(&fs_info->mapping_tree);
 
 
 
 
 
 
2666	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2667			     BTRFS_BLOCK_RSV_GLOBAL);
2668	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2669			     BTRFS_BLOCK_RSV_DELALLOC);
2670	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2671	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2672	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2673	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2674			     BTRFS_BLOCK_RSV_DELOPS);
2675	atomic_set(&fs_info->nr_async_submits, 0);
 
 
2676	atomic_set(&fs_info->async_delalloc_pages, 0);
2677	atomic_set(&fs_info->async_submit_draining, 0);
2678	atomic_set(&fs_info->nr_async_bios, 0);
2679	atomic_set(&fs_info->defrag_running, 0);
2680	atomic_set(&fs_info->qgroup_op_seq, 0);
2681	atomic_set(&fs_info->reada_works_cnt, 0);
 
2682	atomic64_set(&fs_info->tree_mod_seq, 0);
2683	fs_info->fs_frozen = 0;
2684	fs_info->sb = sb;
2685	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2686	fs_info->metadata_ratio = 0;
2687	fs_info->defrag_inodes = RB_ROOT;
2688	fs_info->free_chunk_space = 0;
2689	fs_info->tree_mod_log = RB_ROOT;
2690	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2691	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2692	/* readahead state */
2693	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2694	spin_lock_init(&fs_info->reada_lock);
 
2695
2696	fs_info->thread_pool_size = min_t(unsigned long,
2697					  num_online_cpus() + 2, 8);
2698
2699	INIT_LIST_HEAD(&fs_info->ordered_roots);
2700	spin_lock_init(&fs_info->ordered_root_lock);
2701	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2702					GFP_KERNEL);
2703	if (!fs_info->delayed_root) {
2704		err = -ENOMEM;
2705		goto fail_iput;
2706	}
2707	btrfs_init_delayed_root(fs_info->delayed_root);
2708
2709	btrfs_init_scrub(fs_info);
2710#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2711	fs_info->check_integrity_print_mask = 0;
2712#endif
2713	btrfs_init_balance(fs_info);
2714	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2715
2716	sb->s_blocksize = 4096;
2717	sb->s_blocksize_bits = blksize_bits(4096);
2718	sb->s_bdi = &fs_info->bdi;
2719
2720	btrfs_init_btree_inode(fs_info);
2721
2722	spin_lock_init(&fs_info->block_group_cache_lock);
2723	fs_info->block_group_cache_tree = RB_ROOT;
2724	fs_info->first_logical_byte = (u64)-1;
2725
2726	extent_io_tree_init(&fs_info->freed_extents[0],
2727			     fs_info->btree_inode->i_mapping);
2728	extent_io_tree_init(&fs_info->freed_extents[1],
2729			     fs_info->btree_inode->i_mapping);
2730	fs_info->pinned_extents = &fs_info->freed_extents[0];
2731	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2732
2733	mutex_init(&fs_info->ordered_operations_mutex);
2734	mutex_init(&fs_info->tree_log_mutex);
2735	mutex_init(&fs_info->chunk_mutex);
2736	mutex_init(&fs_info->transaction_kthread_mutex);
2737	mutex_init(&fs_info->cleaner_mutex);
2738	mutex_init(&fs_info->volume_mutex);
2739	mutex_init(&fs_info->ro_block_group_mutex);
2740	init_rwsem(&fs_info->commit_root_sem);
2741	init_rwsem(&fs_info->cleanup_work_sem);
2742	init_rwsem(&fs_info->subvol_sem);
2743	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2744
2745	btrfs_init_dev_replace_locks(fs_info);
2746	btrfs_init_qgroup(fs_info);
 
2747
2748	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2749	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2750
2751	init_waitqueue_head(&fs_info->transaction_throttle);
2752	init_waitqueue_head(&fs_info->transaction_wait);
2753	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2754	init_waitqueue_head(&fs_info->async_submit_wait);
2755
2756	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2757
2758	/* Usable values until the real ones are cached from the superblock */
2759	fs_info->nodesize = 4096;
2760	fs_info->sectorsize = 4096;
 
2761	fs_info->stripesize = 4096;
2762
2763	ret = btrfs_alloc_stripe_hash_table(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2764	if (ret) {
2765		err = ret;
2766		goto fail_alloc;
2767	}
2768
2769	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2770
2771	invalidate_bdev(fs_devices->latest_bdev);
2772
2773	/*
2774	 * Read super block and check the signature bytes only
2775	 */
2776	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2777	if (IS_ERR(bh)) {
2778		err = PTR_ERR(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779		goto fail_alloc;
2780	}
2781
2782	/*
2783	 * We want to check superblock checksum, the type is stored inside.
2784	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2785	 */
2786	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2787		btrfs_err(fs_info, "superblock checksum mismatch");
2788		err = -EINVAL;
2789		brelse(bh);
2790		goto fail_alloc;
2791	}
2792
2793	/*
2794	 * super_copy is zeroed at allocation time and we never touch the
2795	 * following bytes up to INFO_SIZE, the checksum is calculated from
2796	 * the whole block of INFO_SIZE
2797	 */
2798	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
 
 
 
 
 
 
 
 
 
 
 
 
 
2799	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2800	       sizeof(*fs_info->super_for_commit));
2801	brelse(bh);
2802
2803	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2804
2805	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2806	if (ret) {
2807		btrfs_err(fs_info, "superblock contains fatal errors");
2808		err = -EINVAL;
2809		goto fail_alloc;
2810	}
2811
2812	disk_super = fs_info->super_copy;
2813	if (!btrfs_super_root(disk_super))
2814		goto fail_alloc;
2815
2816	/* check FS state, whether FS is broken. */
2817	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2818		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2819
2820	/*
2821	 * run through our array of backup supers and setup
2822	 * our ring pointer to the oldest one
2823	 */
2824	generation = btrfs_super_generation(disk_super);
2825	find_oldest_super_backup(fs_info, generation);
2826
2827	/*
2828	 * In the long term, we'll store the compression type in the super
2829	 * block, and it'll be used for per file compression control.
2830	 */
2831	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2832
2833	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2834	if (ret) {
2835		err = ret;
2836		goto fail_alloc;
2837	}
2838
2839	features = btrfs_super_incompat_flags(disk_super) &
2840		~BTRFS_FEATURE_INCOMPAT_SUPP;
2841	if (features) {
2842		btrfs_err(fs_info,
2843		    "cannot mount because of unsupported optional features (%llx)",
2844		    features);
2845		err = -EINVAL;
2846		goto fail_alloc;
2847	}
2848
2849	features = btrfs_super_incompat_flags(disk_super);
2850	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2851	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2852		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
 
 
2853
2854	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2855		btrfs_info(fs_info, "has skinny extents");
2856
2857	/*
2858	 * flag our filesystem as having big metadata blocks if
2859	 * they are bigger than the page size
2860	 */
2861	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2862		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2863			btrfs_info(fs_info,
2864				"flagging fs with big metadata feature");
2865		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2866	}
2867
2868	nodesize = btrfs_super_nodesize(disk_super);
2869	sectorsize = btrfs_super_sectorsize(disk_super);
2870	stripesize = sectorsize;
2871	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2872	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2873
2874	/* Cache block sizes */
2875	fs_info->nodesize = nodesize;
2876	fs_info->sectorsize = sectorsize;
2877	fs_info->stripesize = stripesize;
2878
2879	/*
2880	 * mixed block groups end up with duplicate but slightly offset
2881	 * extent buffers for the same range.  It leads to corruptions
2882	 */
2883	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2884	    (sectorsize != nodesize)) {
2885		btrfs_err(fs_info,
2886"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2887			nodesize, sectorsize);
2888		goto fail_alloc;
2889	}
2890
2891	/*
2892	 * Needn't use the lock because there is no other task which will
2893	 * update the flag.
2894	 */
2895	btrfs_set_super_incompat_flags(disk_super, features);
2896
2897	features = btrfs_super_compat_ro_flags(disk_super) &
2898		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2899	if (!(sb->s_flags & MS_RDONLY) && features) {
2900		btrfs_err(fs_info,
2901	"cannot mount read-write because of unsupported optional features (%llx)",
2902		       features);
2903		err = -EINVAL;
2904		goto fail_alloc;
2905	}
2906
2907	max_active = fs_info->thread_pool_size;
 
 
 
 
 
 
 
 
 
2908
2909	ret = btrfs_init_workqueues(fs_info, fs_devices);
2910	if (ret) {
2911		err = ret;
2912		goto fail_sb_buffer;
2913	}
2914
2915	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2916	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2917				    SZ_4M / PAGE_SIZE);
2918
2919	sb->s_blocksize = sectorsize;
2920	sb->s_blocksize_bits = blksize_bits(sectorsize);
 
2921
2922	mutex_lock(&fs_info->chunk_mutex);
2923	ret = btrfs_read_sys_array(fs_info);
2924	mutex_unlock(&fs_info->chunk_mutex);
2925	if (ret) {
2926		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2927		goto fail_sb_buffer;
2928	}
2929
2930	generation = btrfs_super_chunk_root_generation(disk_super);
2931
2932	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2933
2934	chunk_root->node = read_tree_block(fs_info,
2935					   btrfs_super_chunk_root(disk_super),
2936					   generation);
 
2937	if (IS_ERR(chunk_root->node) ||
2938	    !extent_buffer_uptodate(chunk_root->node)) {
2939		btrfs_err(fs_info, "failed to read chunk root");
2940		if (!IS_ERR(chunk_root->node))
2941			free_extent_buffer(chunk_root->node);
2942		chunk_root->node = NULL;
2943		goto fail_tree_roots;
2944	}
2945	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2946	chunk_root->commit_root = btrfs_root_node(chunk_root);
2947
2948	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2949	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
 
2950
2951	ret = btrfs_read_chunk_tree(fs_info);
2952	if (ret) {
2953		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2954		goto fail_tree_roots;
2955	}
2956
2957	/*
2958	 * keep the device that is marked to be the target device for the
2959	 * dev_replace procedure
 
 
 
2960	 */
2961	btrfs_close_extra_devices(fs_devices, 0);
2962
2963	if (!fs_devices->latest_bdev) {
2964		btrfs_err(fs_info, "failed to read devices");
2965		goto fail_tree_roots;
2966	}
2967
2968retry_root_backup:
2969	generation = btrfs_super_generation(disk_super);
 
2970
2971	tree_root->node = read_tree_block(fs_info,
2972					  btrfs_super_root(disk_super),
2973					  generation);
2974	if (IS_ERR(tree_root->node) ||
2975	    !extent_buffer_uptodate(tree_root->node)) {
2976		btrfs_warn(fs_info, "failed to read tree root");
2977		if (!IS_ERR(tree_root->node))
2978			free_extent_buffer(tree_root->node);
2979		tree_root->node = NULL;
2980		goto recovery_tree_root;
2981	}
2982
2983	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2984	tree_root->commit_root = btrfs_root_node(tree_root);
2985	btrfs_set_root_refs(&tree_root->root_item, 1);
2986
2987	mutex_lock(&tree_root->objectid_mutex);
2988	ret = btrfs_find_highest_objectid(tree_root,
2989					&tree_root->highest_objectid);
2990	if (ret) {
2991		mutex_unlock(&tree_root->objectid_mutex);
2992		goto recovery_tree_root;
 
 
2993	}
2994
2995	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2996
2997	mutex_unlock(&tree_root->objectid_mutex);
2998
2999	ret = btrfs_read_roots(fs_info);
3000	if (ret)
3001		goto recovery_tree_root;
3002
3003	fs_info->generation = generation;
3004	fs_info->last_trans_committed = generation;
 
3005
 
 
 
 
 
 
 
3006	ret = btrfs_recover_balance(fs_info);
3007	if (ret) {
3008		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3009		goto fail_block_groups;
3010	}
3011
3012	ret = btrfs_init_dev_stats(fs_info);
3013	if (ret) {
3014		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3015		goto fail_block_groups;
3016	}
3017
3018	ret = btrfs_init_dev_replace(fs_info);
3019	if (ret) {
3020		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3021		goto fail_block_groups;
3022	}
3023
3024	btrfs_close_extra_devices(fs_devices, 1);
3025
3026	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3027	if (ret) {
3028		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3029				ret);
3030		goto fail_block_groups;
3031	}
3032
3033	ret = btrfs_sysfs_add_device(fs_devices);
3034	if (ret) {
3035		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3036				ret);
3037		goto fail_fsdev_sysfs;
3038	}
3039
3040	ret = btrfs_sysfs_add_mounted(fs_info);
3041	if (ret) {
3042		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3043		goto fail_fsdev_sysfs;
3044	}
3045
3046	ret = btrfs_init_space_info(fs_info);
3047	if (ret) {
3048		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3049		goto fail_sysfs;
3050	}
3051
3052	ret = btrfs_read_block_groups(fs_info);
3053	if (ret) {
3054		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3055		goto fail_sysfs;
3056	}
3057	fs_info->num_tolerated_disk_barrier_failures =
3058		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3059	if (fs_info->fs_devices->missing_devices >
3060	     fs_info->num_tolerated_disk_barrier_failures &&
3061	    !(sb->s_flags & MS_RDONLY)) {
3062		btrfs_warn(fs_info,
3063"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3064			fs_info->fs_devices->missing_devices,
3065			fs_info->num_tolerated_disk_barrier_failures);
3066		goto fail_sysfs;
3067	}
3068
3069	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3070					       "btrfs-cleaner");
3071	if (IS_ERR(fs_info->cleaner_kthread))
3072		goto fail_sysfs;
3073
3074	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3075						   tree_root,
3076						   "btrfs-transaction");
3077	if (IS_ERR(fs_info->transaction_kthread))
3078		goto fail_cleaner;
3079
3080	if (!btrfs_test_opt(fs_info, SSD) &&
3081	    !btrfs_test_opt(fs_info, NOSSD) &&
3082	    !fs_info->fs_devices->rotating) {
3083		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3084		btrfs_set_opt(fs_info->mount_opt, SSD);
3085	}
3086
3087	/*
3088	 * Mount does not set all options immediately, we can do it now and do
3089	 * not have to wait for transaction commit
3090	 */
3091	btrfs_apply_pending_changes(fs_info);
3092
3093#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3094	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3095		ret = btrfsic_mount(fs_info, fs_devices,
3096				    btrfs_test_opt(fs_info,
3097					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3098				    1 : 0,
3099				    fs_info->check_integrity_print_mask);
3100		if (ret)
3101			btrfs_warn(fs_info,
3102				"failed to initialize integrity check module: %d",
3103				ret);
3104	}
3105#endif
3106	ret = btrfs_read_qgroup_config(fs_info);
3107	if (ret)
3108		goto fail_trans_kthread;
3109
 
 
 
3110	/* do not make disk changes in broken FS or nologreplay is given */
3111	if (btrfs_super_log_root(disk_super) != 0 &&
3112	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
 
3113		ret = btrfs_replay_log(fs_info, fs_devices);
3114		if (ret) {
3115			err = ret;
3116			goto fail_qgroup;
3117		}
3118	}
3119
3120	ret = btrfs_find_orphan_roots(fs_info);
3121	if (ret)
3122		goto fail_qgroup;
3123
3124	if (!(sb->s_flags & MS_RDONLY)) {
3125		ret = btrfs_cleanup_fs_roots(fs_info);
3126		if (ret)
3127			goto fail_qgroup;
3128
3129		mutex_lock(&fs_info->cleaner_mutex);
3130		ret = btrfs_recover_relocation(tree_root);
3131		mutex_unlock(&fs_info->cleaner_mutex);
3132		if (ret < 0) {
3133			btrfs_warn(fs_info, "failed to recover relocation: %d",
3134					ret);
3135			err = -EINVAL;
3136			goto fail_qgroup;
3137		}
3138	}
3139
3140	location.objectid = BTRFS_FS_TREE_OBJECTID;
3141	location.type = BTRFS_ROOT_ITEM_KEY;
3142	location.offset = 0;
3143
3144	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3145	if (IS_ERR(fs_info->fs_root)) {
3146		err = PTR_ERR(fs_info->fs_root);
 
 
3147		goto fail_qgroup;
3148	}
3149
3150	if (sb->s_flags & MS_RDONLY)
3151		return 0;
3152
3153	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3154	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3155		clear_free_space_tree = 1;
3156	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3157		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3158		btrfs_warn(fs_info, "free space tree is invalid");
3159		clear_free_space_tree = 1;
3160	}
3161
3162	if (clear_free_space_tree) {
3163		btrfs_info(fs_info, "clearing free space tree");
3164		ret = btrfs_clear_free_space_tree(fs_info);
3165		if (ret) {
3166			btrfs_warn(fs_info,
3167				   "failed to clear free space tree: %d", ret);
3168			close_ctree(fs_info);
3169			return ret;
3170		}
3171	}
3172
3173	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3174	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3175		btrfs_info(fs_info, "creating free space tree");
3176		ret = btrfs_create_free_space_tree(fs_info);
3177		if (ret) {
3178			btrfs_warn(fs_info,
3179				"failed to create free space tree: %d", ret);
3180			close_ctree(fs_info);
3181			return ret;
3182		}
3183	}
3184
3185	down_read(&fs_info->cleanup_work_sem);
3186	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3187	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3188		up_read(&fs_info->cleanup_work_sem);
3189		close_ctree(fs_info);
3190		return ret;
3191	}
3192	up_read(&fs_info->cleanup_work_sem);
3193
3194	ret = btrfs_resume_balance_async(fs_info);
3195	if (ret) {
3196		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3197		close_ctree(fs_info);
3198		return ret;
3199	}
3200
3201	ret = btrfs_resume_dev_replace_async(fs_info);
3202	if (ret) {
3203		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3204		close_ctree(fs_info);
3205		return ret;
3206	}
 
3207
3208	btrfs_qgroup_rescan_resume(fs_info);
3209
3210	if (!fs_info->uuid_root) {
3211		btrfs_info(fs_info, "creating UUID tree");
3212		ret = btrfs_create_uuid_tree(fs_info);
3213		if (ret) {
3214			btrfs_warn(fs_info,
3215				"failed to create the UUID tree: %d", ret);
3216			close_ctree(fs_info);
3217			return ret;
3218		}
3219	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3220		   fs_info->generation !=
3221				btrfs_super_uuid_tree_generation(disk_super)) {
3222		btrfs_info(fs_info, "checking UUID tree");
3223		ret = btrfs_check_uuid_tree(fs_info);
3224		if (ret) {
3225			btrfs_warn(fs_info,
3226				"failed to check the UUID tree: %d", ret);
3227			close_ctree(fs_info);
3228			return ret;
3229		}
3230	} else {
3231		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3232	}
 
3233	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3234
3235	/*
3236	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3237	 * no need to keep the flag
3238	 */
3239	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3240
3241	return 0;
3242
3243fail_qgroup:
3244	btrfs_free_qgroup_config(fs_info);
3245fail_trans_kthread:
3246	kthread_stop(fs_info->transaction_kthread);
3247	btrfs_cleanup_transaction(fs_info);
3248	btrfs_free_fs_roots(fs_info);
3249fail_cleaner:
3250	kthread_stop(fs_info->cleaner_kthread);
3251
3252	/*
3253	 * make sure we're done with the btree inode before we stop our
3254	 * kthreads
3255	 */
3256	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3257
3258fail_sysfs:
3259	btrfs_sysfs_remove_mounted(fs_info);
3260
3261fail_fsdev_sysfs:
3262	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3263
3264fail_block_groups:
3265	btrfs_put_block_group_cache(fs_info);
3266	btrfs_free_block_groups(fs_info);
3267
3268fail_tree_roots:
3269	free_root_pointers(fs_info, 1);
 
 
3270	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3271
3272fail_sb_buffer:
3273	btrfs_stop_all_workers(fs_info);
 
3274fail_alloc:
3275fail_iput:
3276	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3277
3278	iput(fs_info->btree_inode);
3279fail_bio_counter:
3280	percpu_counter_destroy(&fs_info->bio_counter);
3281fail_delalloc_bytes:
3282	percpu_counter_destroy(&fs_info->delalloc_bytes);
3283fail_dirty_metadata_bytes:
3284	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3285fail_bdi:
3286	bdi_destroy(&fs_info->bdi);
3287fail_srcu:
3288	cleanup_srcu_struct(&fs_info->subvol_srcu);
3289fail:
3290	btrfs_free_stripe_hash_table(fs_info);
3291	btrfs_close_devices(fs_info->fs_devices);
3292	return err;
 
 
3293
3294recovery_tree_root:
3295	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3296		goto fail_tree_roots;
 
 
 
3297
3298	free_root_pointers(fs_info, 0);
 
3299
3300	/* don't use the log in recovery mode, it won't be valid */
3301	btrfs_set_super_log_root(disk_super, 0);
 
 
 
 
 
 
 
 
 
 
3302
3303	/* we can't trust the free space cache either */
3304	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
 
3305
3306	ret = next_root_backup(fs_info, fs_info->super_copy,
3307			       &num_backups_tried, &backup_index);
3308	if (ret == -1)
3309		goto fail_block_groups;
3310	goto retry_root_backup;
3311}
3312
3313static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 
3314{
3315	if (uptodate) {
3316		set_buffer_uptodate(bh);
3317	} else {
3318		struct btrfs_device *device = (struct btrfs_device *)
3319			bh->b_private;
3320
3321		btrfs_warn_rl_in_rcu(device->fs_info,
3322				"lost page write due to IO error on %s",
3323					  rcu_str_deref(device->name));
3324		/* note, we don't set_buffer_write_io_error because we have
3325		 * our own ways of dealing with the IO errors
3326		 */
3327		clear_buffer_uptodate(bh);
3328		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3329	}
3330	unlock_buffer(bh);
3331	put_bh(bh);
3332}
3333
3334int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3335			struct buffer_head **bh_ret)
3336{
3337	struct buffer_head *bh;
3338	struct btrfs_super_block *super;
3339	u64 bytenr;
3340
3341	bytenr = btrfs_sb_offset(copy_num);
3342	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3343		return -EINVAL;
3344
3345	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3346	/*
3347	 * If we fail to read from the underlying devices, as of now
3348	 * the best option we have is to mark it EIO.
3349	 */
3350	if (!bh)
3351		return -EIO;
 
 
3352
3353	super = (struct btrfs_super_block *)bh->b_data;
3354	if (btrfs_super_bytenr(super) != bytenr ||
3355		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3356		brelse(bh);
3357		return -EINVAL;
3358	}
3359
3360	*bh_ret = bh;
3361	return 0;
3362}
3363
3364
3365struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3366{
3367	struct buffer_head *bh;
3368	struct buffer_head *latest = NULL;
3369	struct btrfs_super_block *super;
3370	int i;
3371	u64 transid = 0;
3372	int ret = -EINVAL;
3373
3374	/* we would like to check all the supers, but that would make
3375	 * a btrfs mount succeed after a mkfs from a different FS.
3376	 * So, we need to add a special mount option to scan for
3377	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3378	 */
3379	for (i = 0; i < 1; i++) {
3380		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3381		if (ret)
3382			continue;
3383
3384		super = (struct btrfs_super_block *)bh->b_data;
 
 
3385
3386		if (!latest || btrfs_super_generation(super) > transid) {
3387			brelse(latest);
3388			latest = bh;
3389			transid = btrfs_super_generation(super);
3390		} else {
3391			brelse(bh);
3392		}
3393	}
3394
3395	if (!latest)
3396		return ERR_PTR(ret);
3397
3398	return latest;
3399}
3400
3401/*
3402 * this should be called twice, once with wait == 0 and
3403 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3404 * we write are pinned.
3405 *
3406 * They are released when wait == 1 is done.
3407 * max_mirrors must be the same for both runs, and it indicates how
3408 * many supers on this one device should be written.
3409 *
3410 * max_mirrors == 0 means to write them all.
3411 */
3412static int write_dev_supers(struct btrfs_device *device,
3413			    struct btrfs_super_block *sb,
3414			    int do_barriers, int wait, int max_mirrors)
3415{
3416	struct buffer_head *bh;
 
 
3417	int i;
 
3418	int ret;
3419	int errors = 0;
3420	u32 crc;
3421	u64 bytenr;
3422
3423	if (max_mirrors == 0)
3424		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3425
 
 
3426	for (i = 0; i < max_mirrors; i++) {
3427		bytenr = btrfs_sb_offset(i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3428		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3429		    device->commit_total_bytes)
3430			break;
3431
3432		if (wait) {
3433			bh = __find_get_block(device->bdev, bytenr / 4096,
3434					      BTRFS_SUPER_INFO_SIZE);
3435			if (!bh) {
3436				errors++;
3437				continue;
3438			}
3439			wait_on_buffer(bh);
3440			if (!buffer_uptodate(bh))
3441				errors++;
 
 
 
 
 
 
 
 
 
 
 
3442
3443			/* drop our reference */
3444			brelse(bh);
 
 
 
 
 
 
 
 
 
 
3445
3446			/* drop the reference from the wait == 0 run */
3447			brelse(bh);
3448			continue;
3449		} else {
3450			btrfs_set_super_bytenr(sb, bytenr);
 
 
 
3451
3452			crc = ~(u32)0;
3453			crc = btrfs_csum_data((char *)sb +
3454					      BTRFS_CSUM_SIZE, crc,
3455					      BTRFS_SUPER_INFO_SIZE -
3456					      BTRFS_CSUM_SIZE);
3457			btrfs_csum_final(crc, sb->csum);
3458
3459			/*
3460			 * one reference for us, and we leave it for the
3461			 * caller
3462			 */
3463			bh = __getblk(device->bdev, bytenr / 4096,
3464				      BTRFS_SUPER_INFO_SIZE);
3465			if (!bh) {
3466				btrfs_err(device->fs_info,
3467				    "couldn't get super buffer head for bytenr %llu",
3468				    bytenr);
3469				errors++;
3470				continue;
3471			}
 
3472
3473			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
 
3474
3475			/* one reference for submit_bh */
3476			get_bh(bh);
3477
3478			set_buffer_uptodate(bh);
3479			lock_buffer(bh);
3480			bh->b_end_io = btrfs_end_buffer_write_sync;
3481			bh->b_private = device;
 
 
 
 
3482		}
 
 
 
3483
3484		/*
3485		 * we fua the first super.  The others we allow
3486		 * to go down lazy.
3487		 */
3488		if (i == 0)
3489			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
3490		else
3491			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
3492		if (ret)
 
 
3493			errors++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3494	}
 
3495	return errors < i ? 0 : -1;
3496}
3497
3498/*
3499 * endio for the write_dev_flush, this will wake anyone waiting
3500 * for the barrier when it is done
3501 */
3502static void btrfs_end_empty_barrier(struct bio *bio)
3503{
3504	if (bio->bi_private)
3505		complete(bio->bi_private);
3506	bio_put(bio);
3507}
3508
3509/*
3510 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3511 * sent down.  With wait == 1, it waits for the previous flush.
3512 *
3513 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3514 * capable
3515 */
3516static int write_dev_flush(struct btrfs_device *device, int wait)
3517{
3518	struct bio *bio;
3519	int ret = 0;
3520
3521	if (device->nobarriers)
3522		return 0;
3523
3524	if (wait) {
3525		bio = device->flush_bio;
3526		if (!bio)
3527			return 0;
 
 
3528
3529		wait_for_completion(&device->flush_wait);
 
 
3530
3531		if (bio->bi_error) {
3532			ret = bio->bi_error;
3533			btrfs_dev_stat_inc_and_print(device,
3534				BTRFS_DEV_STAT_FLUSH_ERRS);
3535		}
 
3536
3537		/* drop the reference from the wait == 0 run */
3538		bio_put(bio);
3539		device->flush_bio = NULL;
3540
3541		return ret;
3542	}
3543
3544	/*
3545	 * one reference for us, and we leave it for the
3546	 * caller
3547	 */
3548	device->flush_bio = NULL;
3549	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3550	if (!bio)
3551		return -ENOMEM;
3552
3553	bio->bi_end_io = btrfs_end_empty_barrier;
3554	bio->bi_bdev = device->bdev;
3555	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3556	init_completion(&device->flush_wait);
3557	bio->bi_private = &device->flush_wait;
3558	device->flush_bio = bio;
3559
3560	bio_get(bio);
3561	btrfsic_submit_bio(bio);
3562
 
 
 
 
3563	return 0;
3564}
3565
3566/*
3567 * send an empty flush down to each device in parallel,
3568 * then wait for them
3569 */
3570static int barrier_all_devices(struct btrfs_fs_info *info)
3571{
3572	struct list_head *head;
3573	struct btrfs_device *dev;
3574	int errors_send = 0;
3575	int errors_wait = 0;
3576	int ret;
3577
 
3578	/* send down all the barriers */
3579	head = &info->fs_devices->devices;
3580	list_for_each_entry_rcu(dev, head, dev_list) {
3581		if (dev->missing)
3582			continue;
3583		if (!dev->bdev) {
3584			errors_send++;
3585			continue;
3586		}
3587		if (!dev->in_fs_metadata || !dev->writeable)
3588			continue;
3589
3590		ret = write_dev_flush(dev, 0);
3591		if (ret)
3592			errors_send++;
3593	}
3594
3595	/* wait for all the barriers */
3596	list_for_each_entry_rcu(dev, head, dev_list) {
3597		if (dev->missing)
3598			continue;
3599		if (!dev->bdev) {
3600			errors_wait++;
3601			continue;
3602		}
3603		if (!dev->in_fs_metadata || !dev->writeable)
 
3604			continue;
3605
3606		ret = write_dev_flush(dev, 1);
3607		if (ret)
 
 
 
3608			errors_wait++;
 
 
 
 
 
 
 
 
 
 
3609	}
3610	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3611	    errors_wait > info->num_tolerated_disk_barrier_failures)
3612		return -EIO;
3613	return 0;
3614}
3615
3616int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3617{
3618	int raid_type;
3619	int min_tolerated = INT_MAX;
3620
3621	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3622	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3623		min_tolerated = min(min_tolerated,
3624				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3625				    tolerated_failures);
3626
3627	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3628		if (raid_type == BTRFS_RAID_SINGLE)
3629			continue;
3630		if (!(flags & btrfs_raid_group[raid_type]))
3631			continue;
3632		min_tolerated = min(min_tolerated,
3633				    btrfs_raid_array[raid_type].
3634				    tolerated_failures);
3635	}
3636
3637	if (min_tolerated == INT_MAX) {
3638		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3639		min_tolerated = 0;
3640	}
3641
3642	return min_tolerated;
3643}
3644
3645int btrfs_calc_num_tolerated_disk_barrier_failures(
3646	struct btrfs_fs_info *fs_info)
3647{
3648	struct btrfs_ioctl_space_info space;
3649	struct btrfs_space_info *sinfo;
3650	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3651		       BTRFS_BLOCK_GROUP_SYSTEM,
3652		       BTRFS_BLOCK_GROUP_METADATA,
3653		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3654	int i;
3655	int c;
3656	int num_tolerated_disk_barrier_failures =
3657		(int)fs_info->fs_devices->num_devices;
3658
3659	for (i = 0; i < ARRAY_SIZE(types); i++) {
3660		struct btrfs_space_info *tmp;
3661
3662		sinfo = NULL;
3663		rcu_read_lock();
3664		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3665			if (tmp->flags == types[i]) {
3666				sinfo = tmp;
3667				break;
3668			}
3669		}
3670		rcu_read_unlock();
3671
3672		if (!sinfo)
3673			continue;
3674
3675		down_read(&sinfo->groups_sem);
3676		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3677			u64 flags;
3678
3679			if (list_empty(&sinfo->block_groups[c]))
3680				continue;
3681
3682			btrfs_get_block_group_info(&sinfo->block_groups[c],
3683						   &space);
3684			if (space.total_bytes == 0 || space.used_bytes == 0)
3685				continue;
3686			flags = space.flags;
3687
3688			num_tolerated_disk_barrier_failures = min(
3689				num_tolerated_disk_barrier_failures,
3690				btrfs_get_num_tolerated_disk_barrier_failures(
3691					flags));
3692		}
3693		up_read(&sinfo->groups_sem);
3694	}
3695
3696	return num_tolerated_disk_barrier_failures;
3697}
3698
3699static int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3700{
3701	struct list_head *head;
3702	struct btrfs_device *dev;
3703	struct btrfs_super_block *sb;
3704	struct btrfs_dev_item *dev_item;
3705	int ret;
3706	int do_barriers;
3707	int max_errors;
3708	int total_errors = 0;
3709	u64 flags;
3710
3711	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3712	backup_super_roots(fs_info);
 
 
 
 
 
 
 
3713
3714	sb = fs_info->super_for_commit;
3715	dev_item = &sb->dev_item;
3716
3717	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3718	head = &fs_info->fs_devices->devices;
3719	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3720
3721	if (do_barriers) {
3722		ret = barrier_all_devices(fs_info);
3723		if (ret) {
3724			mutex_unlock(
3725				&fs_info->fs_devices->device_list_mutex);
3726			btrfs_handle_fs_error(fs_info, ret,
3727					      "errors while submitting device barriers.");
3728			return ret;
3729		}
3730	}
3731
3732	list_for_each_entry_rcu(dev, head, dev_list) {
3733		if (!dev->bdev) {
3734			total_errors++;
3735			continue;
3736		}
3737		if (!dev->in_fs_metadata || !dev->writeable)
 
3738			continue;
3739
3740		btrfs_set_stack_device_generation(dev_item, 0);
3741		btrfs_set_stack_device_type(dev_item, dev->type);
3742		btrfs_set_stack_device_id(dev_item, dev->devid);
3743		btrfs_set_stack_device_total_bytes(dev_item,
3744						   dev->commit_total_bytes);
3745		btrfs_set_stack_device_bytes_used(dev_item,
3746						  dev->commit_bytes_used);
3747		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3748		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3749		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3750		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3751		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
 
3752
3753		flags = btrfs_super_flags(sb);
3754		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3755
3756		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
 
 
 
 
 
 
 
 
3757		if (ret)
3758			total_errors++;
3759	}
3760	if (total_errors > max_errors) {
3761		btrfs_err(fs_info, "%d errors while writing supers",
3762			  total_errors);
3763		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3764
3765		/* FUA is masked off if unsupported and can't be the reason */
3766		btrfs_handle_fs_error(fs_info, -EIO,
3767				      "%d errors while writing supers",
3768				      total_errors);
3769		return -EIO;
3770	}
3771
3772	total_errors = 0;
3773	list_for_each_entry_rcu(dev, head, dev_list) {
3774		if (!dev->bdev)
3775			continue;
3776		if (!dev->in_fs_metadata || !dev->writeable)
 
3777			continue;
3778
3779		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3780		if (ret)
3781			total_errors++;
3782	}
3783	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3784	if (total_errors > max_errors) {
3785		btrfs_handle_fs_error(fs_info, -EIO,
3786				      "%d errors while writing supers",
3787				      total_errors);
3788		return -EIO;
3789	}
3790	return 0;
3791}
3792
3793int write_ctree_super(struct btrfs_trans_handle *trans,
3794		      struct btrfs_fs_info *fs_info, int max_mirrors)
3795{
3796	return write_all_supers(fs_info, max_mirrors);
3797}
3798
3799/* Drop a fs root from the radix tree and free it. */
3800void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3801				  struct btrfs_root *root)
3802{
 
 
3803	spin_lock(&fs_info->fs_roots_radix_lock);
3804	radix_tree_delete(&fs_info->fs_roots_radix,
3805			  (unsigned long)root->root_key.objectid);
 
 
3806	spin_unlock(&fs_info->fs_roots_radix_lock);
3807
3808	if (btrfs_root_refs(&root->root_item) == 0)
3809		synchronize_srcu(&fs_info->subvol_srcu);
3810
3811	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3812		btrfs_free_log(NULL, root);
3813		if (root->reloc_root) {
3814			free_extent_buffer(root->reloc_root->node);
3815			free_extent_buffer(root->reloc_root->commit_root);
3816			btrfs_put_fs_root(root->reloc_root);
3817			root->reloc_root = NULL;
3818		}
3819	}
3820
3821	if (root->free_ino_pinned)
3822		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3823	if (root->free_ino_ctl)
3824		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3825	free_fs_root(root);
3826}
3827
3828static void free_fs_root(struct btrfs_root *root)
3829{
3830	iput(root->ino_cache_inode);
3831	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3832	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3833	root->orphan_block_rsv = NULL;
3834	if (root->anon_dev)
3835		free_anon_bdev(root->anon_dev);
3836	if (root->subv_writers)
3837		btrfs_free_subvolume_writers(root->subv_writers);
3838	free_extent_buffer(root->node);
3839	free_extent_buffer(root->commit_root);
3840	kfree(root->free_ino_ctl);
3841	kfree(root->free_ino_pinned);
3842	kfree(root->name);
3843	btrfs_put_fs_root(root);
3844}
3845
3846void btrfs_free_fs_root(struct btrfs_root *root)
3847{
3848	free_fs_root(root);
3849}
3850
3851int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3852{
3853	u64 root_objectid = 0;
3854	struct btrfs_root *gang[8];
3855	int i = 0;
3856	int err = 0;
3857	unsigned int ret = 0;
3858	int index;
3859
3860	while (1) {
3861		index = srcu_read_lock(&fs_info->subvol_srcu);
3862		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3863					     (void **)gang, root_objectid,
3864					     ARRAY_SIZE(gang));
3865		if (!ret) {
3866			srcu_read_unlock(&fs_info->subvol_srcu, index);
3867			break;
3868		}
3869		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3870
3871		for (i = 0; i < ret; i++) {
3872			/* Avoid to grab roots in dead_roots */
3873			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3874				gang[i] = NULL;
3875				continue;
3876			}
3877			/* grab all the search result for later use */
3878			gang[i] = btrfs_grab_fs_root(gang[i]);
3879		}
3880		srcu_read_unlock(&fs_info->subvol_srcu, index);
3881
3882		for (i = 0; i < ret; i++) {
3883			if (!gang[i])
3884				continue;
3885			root_objectid = gang[i]->root_key.objectid;
3886			err = btrfs_orphan_cleanup(gang[i]);
3887			if (err)
3888				break;
3889			btrfs_put_fs_root(gang[i]);
3890		}
3891		root_objectid++;
3892	}
3893
3894	/* release the uncleaned roots due to error */
3895	for (; i < ret; i++) {
3896		if (gang[i])
3897			btrfs_put_fs_root(gang[i]);
3898	}
3899	return err;
3900}
3901
3902int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3903{
3904	struct btrfs_root *root = fs_info->tree_root;
3905	struct btrfs_trans_handle *trans;
3906
3907	mutex_lock(&fs_info->cleaner_mutex);
3908	btrfs_run_delayed_iputs(fs_info);
3909	mutex_unlock(&fs_info->cleaner_mutex);
3910	wake_up_process(fs_info->cleaner_kthread);
3911
3912	/* wait until ongoing cleanup work done */
3913	down_write(&fs_info->cleanup_work_sem);
3914	up_write(&fs_info->cleanup_work_sem);
3915
3916	trans = btrfs_join_transaction(root);
3917	if (IS_ERR(trans))
3918		return PTR_ERR(trans);
3919	return btrfs_commit_transaction(trans);
3920}
3921
3922void close_ctree(struct btrfs_fs_info *fs_info)
3923{
3924	struct btrfs_root *root = fs_info->tree_root;
3925	int ret;
3926
3927	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
 
 
 
 
 
 
 
3928
3929	/* wait for the qgroup rescan worker to stop */
3930	btrfs_qgroup_wait_for_completion(fs_info, false);
3931
3932	/* wait for the uuid_scan task to finish */
3933	down(&fs_info->uuid_tree_rescan_sem);
3934	/* avoid complains from lockdep et al., set sem back to initial state */
3935	up(&fs_info->uuid_tree_rescan_sem);
3936
3937	/* pause restriper - we want to resume on mount */
3938	btrfs_pause_balance(fs_info);
3939
3940	btrfs_dev_replace_suspend_for_unmount(fs_info);
3941
3942	btrfs_scrub_cancel(fs_info);
3943
3944	/* wait for any defraggers to finish */
3945	wait_event(fs_info->transaction_wait,
3946		   (atomic_read(&fs_info->defrag_running) == 0));
3947
3948	/* clear out the rbtree of defraggable inodes */
3949	btrfs_cleanup_defrag_inodes(fs_info);
3950
3951	cancel_work_sync(&fs_info->async_reclaim_work);
 
 
 
 
3952
3953	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
 
 
 
3954		/*
3955		 * If the cleaner thread is stopped and there are
3956		 * block groups queued for removal, the deletion will be
3957		 * skipped when we quit the cleaner thread.
3958		 */
3959		btrfs_delete_unused_bgs(fs_info);
3960
 
 
 
 
 
 
 
 
 
 
 
 
 
3961		ret = btrfs_commit_super(fs_info);
3962		if (ret)
3963			btrfs_err(fs_info, "commit super ret %d", ret);
3964	}
3965
3966	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
 
3967		btrfs_error_commit_super(fs_info);
3968
3969	kthread_stop(fs_info->transaction_kthread);
3970	kthread_stop(fs_info->cleaner_kthread);
3971
 
3972	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3973
 
 
 
 
 
3974	btrfs_free_qgroup_config(fs_info);
 
3975
3976	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3977		btrfs_info(fs_info, "at unmount delalloc count %lld",
3978		       percpu_counter_sum(&fs_info->delalloc_bytes));
3979	}
3980
 
 
 
 
3981	btrfs_sysfs_remove_mounted(fs_info);
3982	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3983
3984	btrfs_free_fs_roots(fs_info);
3985
3986	btrfs_put_block_group_cache(fs_info);
3987
3988	btrfs_free_block_groups(fs_info);
3989
3990	/*
3991	 * we must make sure there is not any read request to
3992	 * submit after we stopping all workers.
3993	 */
3994	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3995	btrfs_stop_all_workers(fs_info);
3996
 
 
 
3997	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3998	free_root_pointers(fs_info, 1);
 
 
 
 
 
 
 
 
 
 
3999
4000	iput(fs_info->btree_inode);
4001
4002#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4003	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4004		btrfsic_unmount(fs_info->fs_devices);
4005#endif
4006
 
4007	btrfs_close_devices(fs_info->fs_devices);
4008	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4009
4010	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4011	percpu_counter_destroy(&fs_info->delalloc_bytes);
4012	percpu_counter_destroy(&fs_info->bio_counter);
4013	bdi_destroy(&fs_info->bdi);
4014	cleanup_srcu_struct(&fs_info->subvol_srcu);
4015
4016	btrfs_free_stripe_hash_table(fs_info);
4017
4018	__btrfs_free_block_rsv(root->orphan_block_rsv);
4019	root->orphan_block_rsv = NULL;
4020
4021	mutex_lock(&fs_info->chunk_mutex);
4022	while (!list_empty(&fs_info->pinned_chunks)) {
4023		struct extent_map *em;
4024
4025		em = list_first_entry(&fs_info->pinned_chunks,
4026				      struct extent_map, list);
4027		list_del_init(&em->list);
4028		free_extent_map(em);
4029	}
4030	mutex_unlock(&fs_info->chunk_mutex);
4031}
4032
4033int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4034			  int atomic)
4035{
4036	int ret;
4037	struct inode *btree_inode = buf->pages[0]->mapping->host;
4038
4039	ret = extent_buffer_uptodate(buf);
4040	if (!ret)
4041		return ret;
4042
4043	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4044				    parent_transid, atomic);
4045	if (ret == -EAGAIN)
4046		return ret;
4047	return !ret;
4048}
4049
4050void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4051{
4052	struct btrfs_fs_info *fs_info;
4053	struct btrfs_root *root;
4054	u64 transid = btrfs_header_generation(buf);
4055	int was_dirty;
4056
4057#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4058	/*
4059	 * This is a fast path so only do this check if we have sanity tests
4060	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4061	 * outside of the sanity tests.
4062	 */
4063	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4064		return;
4065#endif
4066	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4067	fs_info = root->fs_info;
4068	btrfs_assert_tree_locked(buf);
4069	if (transid != fs_info->generation)
4070		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4071			buf->start, transid, fs_info->generation);
4072	was_dirty = set_extent_buffer_dirty(buf);
4073	if (!was_dirty)
4074		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
4075				     buf->len,
4076				     fs_info->dirty_metadata_batch);
4077#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4078	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4079		btrfs_print_leaf(fs_info, buf);
 
 
 
 
 
 
4080		ASSERT(0);
4081	}
4082#endif
4083}
4084
4085static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4086					int flush_delayed)
4087{
4088	/*
4089	 * looks as though older kernels can get into trouble with
4090	 * this code, they end up stuck in balance_dirty_pages forever
4091	 */
4092	int ret;
4093
4094	if (current->flags & PF_MEMALLOC)
4095		return;
4096
4097	if (flush_delayed)
4098		btrfs_balance_delayed_items(fs_info);
4099
4100	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4101				     BTRFS_DIRTY_METADATA_THRESH);
 
4102	if (ret > 0) {
4103		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4104	}
4105}
4106
4107void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4108{
4109	__btrfs_btree_balance_dirty(fs_info, 1);
4110}
4111
4112void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4113{
4114	__btrfs_btree_balance_dirty(fs_info, 0);
4115}
4116
4117int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
 
4118{
4119	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4120	struct btrfs_fs_info *fs_info = root->fs_info;
4121
4122	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
4123}
4124
4125static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4126			      int read_only)
4127{
4128	struct btrfs_super_block *sb = fs_info->super_copy;
4129	u64 nodesize = btrfs_super_nodesize(sb);
4130	u64 sectorsize = btrfs_super_sectorsize(sb);
4131	int ret = 0;
4132
4133	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4134		btrfs_err(fs_info, "no valid FS found");
4135		ret = -EINVAL;
4136	}
4137	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4138		btrfs_warn(fs_info, "unrecognized super flag: %llu",
4139				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4140	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4141		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4142				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4143		ret = -EINVAL;
4144	}
4145	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4146		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4147				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4148		ret = -EINVAL;
4149	}
4150	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4151		btrfs_err(fs_info, "log_root level too big: %d >= %d",
4152				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4153		ret = -EINVAL;
4154	}
4155
4156	/*
4157	 * Check sectorsize and nodesize first, other check will need it.
4158	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4159	 */
4160	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4161	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4162		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4163		ret = -EINVAL;
4164	}
4165	/* Only PAGE SIZE is supported yet */
4166	if (sectorsize != PAGE_SIZE) {
4167		btrfs_err(fs_info,
4168			"sectorsize %llu not supported yet, only support %lu",
4169			sectorsize, PAGE_SIZE);
4170		ret = -EINVAL;
4171	}
4172	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4173	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4174		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4175		ret = -EINVAL;
4176	}
4177	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4178		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4179			  le32_to_cpu(sb->__unused_leafsize), nodesize);
4180		ret = -EINVAL;
4181	}
4182
4183	/* Root alignment check */
4184	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4185		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4186			   btrfs_super_root(sb));
4187		ret = -EINVAL;
4188	}
4189	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4190		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4191			   btrfs_super_chunk_root(sb));
4192		ret = -EINVAL;
4193	}
4194	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4195		btrfs_warn(fs_info, "log_root block unaligned: %llu",
4196			   btrfs_super_log_root(sb));
4197		ret = -EINVAL;
4198	}
4199
4200	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4201		btrfs_err(fs_info,
4202			   "dev_item UUID does not match fsid: %pU != %pU",
4203			   fs_info->fsid, sb->dev_item.fsid);
4204		ret = -EINVAL;
4205	}
4206
4207	/*
4208	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4209	 * done later
4210	 */
4211	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4212		btrfs_err(fs_info, "bytes_used is too small %llu",
4213			  btrfs_super_bytes_used(sb));
4214		ret = -EINVAL;
4215	}
4216	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4217		btrfs_err(fs_info, "invalid stripesize %u",
4218			  btrfs_super_stripesize(sb));
4219		ret = -EINVAL;
4220	}
4221	if (btrfs_super_num_devices(sb) > (1UL << 31))
4222		btrfs_warn(fs_info, "suspicious number of devices: %llu",
4223			   btrfs_super_num_devices(sb));
4224	if (btrfs_super_num_devices(sb) == 0) {
4225		btrfs_err(fs_info, "number of devices is 0");
4226		ret = -EINVAL;
4227	}
4228
4229	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4230		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4231			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4232		ret = -EINVAL;
4233	}
4234
4235	/*
4236	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4237	 * and one chunk
4238	 */
4239	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4240		btrfs_err(fs_info, "system chunk array too big %u > %u",
4241			  btrfs_super_sys_array_size(sb),
4242			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4243		ret = -EINVAL;
4244	}
4245	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4246			+ sizeof(struct btrfs_chunk)) {
4247		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4248			  btrfs_super_sys_array_size(sb),
4249			  sizeof(struct btrfs_disk_key)
4250			  + sizeof(struct btrfs_chunk));
4251		ret = -EINVAL;
4252	}
4253
4254	/*
4255	 * The generation is a global counter, we'll trust it more than the others
4256	 * but it's still possible that it's the one that's wrong.
4257	 */
4258	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4259		btrfs_warn(fs_info,
4260			"suspicious: generation < chunk_root_generation: %llu < %llu",
4261			btrfs_super_generation(sb),
4262			btrfs_super_chunk_root_generation(sb));
4263	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4264	    && btrfs_super_cache_generation(sb) != (u64)-1)
4265		btrfs_warn(fs_info,
4266			"suspicious: generation < cache_generation: %llu < %llu",
4267			btrfs_super_generation(sb),
4268			btrfs_super_cache_generation(sb));
4269
4270	return ret;
4271}
4272
4273static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4274{
4275	mutex_lock(&fs_info->cleaner_mutex);
4276	btrfs_run_delayed_iputs(fs_info);
4277	mutex_unlock(&fs_info->cleaner_mutex);
4278
4279	down_write(&fs_info->cleanup_work_sem);
4280	up_write(&fs_info->cleanup_work_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4281
4282	/* cleanup FS via transaction */
4283	btrfs_cleanup_transaction(fs_info);
 
 
 
 
 
 
 
 
 
 
4284}
4285
4286static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4287{
4288	struct btrfs_ordered_extent *ordered;
4289
4290	spin_lock(&root->ordered_extent_lock);
4291	/*
4292	 * This will just short circuit the ordered completion stuff which will
4293	 * make sure the ordered extent gets properly cleaned up.
4294	 */
4295	list_for_each_entry(ordered, &root->ordered_extents,
4296			    root_extent_list)
4297		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4298	spin_unlock(&root->ordered_extent_lock);
4299}
4300
4301static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4302{
4303	struct btrfs_root *root;
4304	struct list_head splice;
4305
4306	INIT_LIST_HEAD(&splice);
4307
4308	spin_lock(&fs_info->ordered_root_lock);
4309	list_splice_init(&fs_info->ordered_roots, &splice);
4310	while (!list_empty(&splice)) {
4311		root = list_first_entry(&splice, struct btrfs_root,
4312					ordered_root);
4313		list_move_tail(&root->ordered_root,
4314			       &fs_info->ordered_roots);
4315
4316		spin_unlock(&fs_info->ordered_root_lock);
4317		btrfs_destroy_ordered_extents(root);
4318
4319		cond_resched();
4320		spin_lock(&fs_info->ordered_root_lock);
4321	}
4322	spin_unlock(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
4323}
4324
4325static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4326				      struct btrfs_fs_info *fs_info)
4327{
4328	struct rb_node *node;
4329	struct btrfs_delayed_ref_root *delayed_refs;
4330	struct btrfs_delayed_ref_node *ref;
4331	int ret = 0;
4332
4333	delayed_refs = &trans->delayed_refs;
4334
4335	spin_lock(&delayed_refs->lock);
4336	if (atomic_read(&delayed_refs->num_entries) == 0) {
4337		spin_unlock(&delayed_refs->lock);
4338		btrfs_info(fs_info, "delayed_refs has NO entry");
4339		return ret;
4340	}
4341
4342	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4343		struct btrfs_delayed_ref_head *head;
4344		struct btrfs_delayed_ref_node *tmp;
4345		bool pin_bytes = false;
4346
4347		head = rb_entry(node, struct btrfs_delayed_ref_head,
4348				href_node);
4349		if (!mutex_trylock(&head->mutex)) {
4350			atomic_inc(&head->node.refs);
4351			spin_unlock(&delayed_refs->lock);
4352
4353			mutex_lock(&head->mutex);
4354			mutex_unlock(&head->mutex);
4355			btrfs_put_delayed_ref(&head->node);
4356			spin_lock(&delayed_refs->lock);
4357			continue;
4358		}
4359		spin_lock(&head->lock);
4360		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4361						 list) {
 
4362			ref->in_tree = 0;
4363			list_del(&ref->list);
 
4364			if (!list_empty(&ref->add_list))
4365				list_del(&ref->add_list);
4366			atomic_dec(&delayed_refs->num_entries);
4367			btrfs_put_delayed_ref(ref);
4368		}
4369		if (head->must_insert_reserved)
4370			pin_bytes = true;
4371		btrfs_free_delayed_extent_op(head->extent_op);
4372		delayed_refs->num_heads--;
4373		if (head->processing == 0)
4374			delayed_refs->num_heads_ready--;
4375		atomic_dec(&delayed_refs->num_entries);
4376		head->node.in_tree = 0;
4377		rb_erase(&head->href_node, &delayed_refs->href_root);
4378		spin_unlock(&head->lock);
4379		spin_unlock(&delayed_refs->lock);
4380		mutex_unlock(&head->mutex);
4381
4382		if (pin_bytes)
4383			btrfs_pin_extent(fs_info, head->node.bytenr,
4384					 head->node.num_bytes, 1);
4385		btrfs_put_delayed_ref(&head->node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4386		cond_resched();
4387		spin_lock(&delayed_refs->lock);
4388	}
 
4389
4390	spin_unlock(&delayed_refs->lock);
4391
4392	return ret;
4393}
4394
4395static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4396{
4397	struct btrfs_inode *btrfs_inode;
4398	struct list_head splice;
4399
4400	INIT_LIST_HEAD(&splice);
4401
4402	spin_lock(&root->delalloc_lock);
4403	list_splice_init(&root->delalloc_inodes, &splice);
4404
4405	while (!list_empty(&splice)) {
 
4406		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4407					       delalloc_inodes);
4408
4409		list_del_init(&btrfs_inode->delalloc_inodes);
4410		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4411			  &btrfs_inode->runtime_flags);
4412		spin_unlock(&root->delalloc_lock);
4413
4414		btrfs_invalidate_inodes(btrfs_inode->root);
4415
 
 
 
 
 
 
 
4416		spin_lock(&root->delalloc_lock);
4417	}
4418
4419	spin_unlock(&root->delalloc_lock);
4420}
4421
4422static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4423{
4424	struct btrfs_root *root;
4425	struct list_head splice;
4426
4427	INIT_LIST_HEAD(&splice);
4428
4429	spin_lock(&fs_info->delalloc_root_lock);
4430	list_splice_init(&fs_info->delalloc_roots, &splice);
4431	while (!list_empty(&splice)) {
4432		root = list_first_entry(&splice, struct btrfs_root,
4433					 delalloc_root);
4434		list_del_init(&root->delalloc_root);
4435		root = btrfs_grab_fs_root(root);
4436		BUG_ON(!root);
4437		spin_unlock(&fs_info->delalloc_root_lock);
4438
4439		btrfs_destroy_delalloc_inodes(root);
4440		btrfs_put_fs_root(root);
4441
4442		spin_lock(&fs_info->delalloc_root_lock);
4443	}
4444	spin_unlock(&fs_info->delalloc_root_lock);
4445}
4446
4447static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4448					struct extent_io_tree *dirty_pages,
4449					int mark)
4450{
4451	int ret;
4452	struct extent_buffer *eb;
4453	u64 start = 0;
4454	u64 end;
4455
4456	while (1) {
4457		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4458					    mark, NULL);
4459		if (ret)
4460			break;
4461
4462		clear_extent_bits(dirty_pages, start, end, mark);
4463		while (start <= end) {
4464			eb = find_extent_buffer(fs_info, start);
4465			start += fs_info->nodesize;
4466			if (!eb)
4467				continue;
4468			wait_on_extent_buffer_writeback(eb);
4469
4470			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4471					       &eb->bflags))
4472				clear_extent_buffer_dirty(eb);
4473			free_extent_buffer_stale(eb);
4474		}
4475	}
4476
4477	return ret;
4478}
4479
4480static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4481				       struct extent_io_tree *pinned_extents)
4482{
4483	struct extent_io_tree *unpin;
4484	u64 start;
4485	u64 end;
4486	int ret;
4487	bool loop = true;
4488
4489	unpin = pinned_extents;
4490again:
4491	while (1) {
 
 
 
 
 
 
 
 
 
4492		ret = find_first_extent_bit(unpin, 0, &start, &end,
4493					    EXTENT_DIRTY, NULL);
4494		if (ret)
 
4495			break;
 
4496
4497		clear_extent_dirty(unpin, start, end);
 
4498		btrfs_error_unpin_extent_range(fs_info, start, end);
 
4499		cond_resched();
4500	}
4501
4502	if (loop) {
4503		if (unpin == &fs_info->freed_extents[0])
4504			unpin = &fs_info->freed_extents[1];
4505		else
4506			unpin = &fs_info->freed_extents[0];
4507		loop = false;
4508		goto again;
4509	}
4510
4511	return 0;
4512}
4513
4514static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4515{
4516	struct inode *inode;
4517
4518	inode = cache->io_ctl.inode;
4519	if (inode) {
4520		invalidate_inode_pages2(inode->i_mapping);
4521		BTRFS_I(inode)->generation = 0;
4522		cache->io_ctl.inode = NULL;
4523		iput(inode);
4524	}
 
4525	btrfs_put_block_group(cache);
4526}
4527
4528void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4529			     struct btrfs_fs_info *fs_info)
4530{
4531	struct btrfs_block_group_cache *cache;
4532
4533	spin_lock(&cur_trans->dirty_bgs_lock);
4534	while (!list_empty(&cur_trans->dirty_bgs)) {
4535		cache = list_first_entry(&cur_trans->dirty_bgs,
4536					 struct btrfs_block_group_cache,
4537					 dirty_list);
4538		if (!cache) {
4539			btrfs_err(fs_info, "orphan block group dirty_bgs list");
4540			spin_unlock(&cur_trans->dirty_bgs_lock);
4541			return;
4542		}
4543
4544		if (!list_empty(&cache->io_list)) {
4545			spin_unlock(&cur_trans->dirty_bgs_lock);
4546			list_del_init(&cache->io_list);
4547			btrfs_cleanup_bg_io(cache);
4548			spin_lock(&cur_trans->dirty_bgs_lock);
4549		}
4550
4551		list_del_init(&cache->dirty_list);
4552		spin_lock(&cache->lock);
4553		cache->disk_cache_state = BTRFS_DC_ERROR;
4554		spin_unlock(&cache->lock);
4555
4556		spin_unlock(&cur_trans->dirty_bgs_lock);
4557		btrfs_put_block_group(cache);
 
4558		spin_lock(&cur_trans->dirty_bgs_lock);
4559	}
4560	spin_unlock(&cur_trans->dirty_bgs_lock);
4561
 
 
 
 
4562	while (!list_empty(&cur_trans->io_bgs)) {
4563		cache = list_first_entry(&cur_trans->io_bgs,
4564					 struct btrfs_block_group_cache,
4565					 io_list);
4566		if (!cache) {
4567			btrfs_err(fs_info, "orphan block group on io_bgs list");
4568			return;
4569		}
4570
4571		list_del_init(&cache->io_list);
4572		spin_lock(&cache->lock);
4573		cache->disk_cache_state = BTRFS_DC_ERROR;
4574		spin_unlock(&cache->lock);
4575		btrfs_cleanup_bg_io(cache);
4576	}
4577}
4578
4579void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4580				   struct btrfs_fs_info *fs_info)
4581{
 
 
4582	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4583	ASSERT(list_empty(&cur_trans->dirty_bgs));
4584	ASSERT(list_empty(&cur_trans->io_bgs));
4585
 
 
 
 
 
4586	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4587
4588	cur_trans->state = TRANS_STATE_COMMIT_START;
4589	wake_up(&fs_info->transaction_blocked_wait);
4590
4591	cur_trans->state = TRANS_STATE_UNBLOCKED;
4592	wake_up(&fs_info->transaction_wait);
4593
4594	btrfs_destroy_delayed_inodes(fs_info);
4595	btrfs_assert_delayed_root_empty(fs_info);
4596
4597	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4598				     EXTENT_DIRTY);
4599	btrfs_destroy_pinned_extent(fs_info,
4600				    fs_info->pinned_extents);
 
4601
4602	cur_trans->state =TRANS_STATE_COMPLETED;
4603	wake_up(&cur_trans->commit_wait);
4604
4605	/*
4606	memset(cur_trans, 0, sizeof(*cur_trans));
4607	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4608	*/
4609}
4610
4611static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4612{
4613	struct btrfs_transaction *t;
4614
4615	mutex_lock(&fs_info->transaction_kthread_mutex);
4616
4617	spin_lock(&fs_info->trans_lock);
4618	while (!list_empty(&fs_info->trans_list)) {
4619		t = list_first_entry(&fs_info->trans_list,
4620				     struct btrfs_transaction, list);
4621		if (t->state >= TRANS_STATE_COMMIT_START) {
4622			atomic_inc(&t->use_count);
4623			spin_unlock(&fs_info->trans_lock);
4624			btrfs_wait_for_commit(fs_info, t->transid);
4625			btrfs_put_transaction(t);
4626			spin_lock(&fs_info->trans_lock);
4627			continue;
4628		}
4629		if (t == fs_info->running_transaction) {
4630			t->state = TRANS_STATE_COMMIT_DOING;
4631			spin_unlock(&fs_info->trans_lock);
4632			/*
4633			 * We wait for 0 num_writers since we don't hold a trans
4634			 * handle open currently for this transaction.
4635			 */
4636			wait_event(t->writer_wait,
4637				   atomic_read(&t->num_writers) == 0);
4638		} else {
4639			spin_unlock(&fs_info->trans_lock);
4640		}
4641		btrfs_cleanup_one_transaction(t, fs_info);
4642
4643		spin_lock(&fs_info->trans_lock);
4644		if (t == fs_info->running_transaction)
4645			fs_info->running_transaction = NULL;
4646		list_del_init(&t->list);
4647		spin_unlock(&fs_info->trans_lock);
4648
4649		btrfs_put_transaction(t);
4650		trace_btrfs_transaction_commit(fs_info->tree_root);
4651		spin_lock(&fs_info->trans_lock);
4652	}
4653	spin_unlock(&fs_info->trans_lock);
4654	btrfs_destroy_all_ordered_extents(fs_info);
4655	btrfs_destroy_delayed_inodes(fs_info);
4656	btrfs_assert_delayed_root_empty(fs_info);
4657	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4658	btrfs_destroy_all_delalloc_inodes(fs_info);
 
4659	mutex_unlock(&fs_info->transaction_kthread_mutex);
4660
4661	return 0;
4662}
4663
4664static const struct extent_io_ops btree_extent_io_ops = {
4665	.readpage_end_io_hook = btree_readpage_end_io_hook,
4666	.readpage_io_failed_hook = btree_io_failed_hook,
4667	.submit_bio_hook = btree_submit_bio_hook,
4668	/* note we're sharing with inode.c for the merge bio hook */
4669	.merge_bio_hook = btrfs_merge_bio_hook,
4670};