Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * NSA Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/tracehook.h>
29#include <linux/errno.h>
30#include <linux/sched/signal.h>
31#include <linux/sched/task.h>
32#include <linux/lsm_hooks.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/fs_context.h>
50#include <linux/fs_parser.h>
51#include <linux/netfilter_ipv4.h>
52#include <linux/netfilter_ipv6.h>
53#include <linux/tty.h>
54#include <net/icmp.h>
55#include <net/ip.h> /* for local_port_range[] */
56#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
57#include <net/inet_connection_sock.h>
58#include <net/net_namespace.h>
59#include <net/netlabel.h>
60#include <linux/uaccess.h>
61#include <asm/ioctls.h>
62#include <linux/atomic.h>
63#include <linux/bitops.h>
64#include <linux/interrupt.h>
65#include <linux/netdevice.h> /* for network interface checks */
66#include <net/netlink.h>
67#include <linux/tcp.h>
68#include <linux/udp.h>
69#include <linux/dccp.h>
70#include <linux/sctp.h>
71#include <net/sctp/structs.h>
72#include <linux/quota.h>
73#include <linux/un.h> /* for Unix socket types */
74#include <net/af_unix.h> /* for Unix socket types */
75#include <linux/parser.h>
76#include <linux/nfs_mount.h>
77#include <net/ipv6.h>
78#include <linux/hugetlb.h>
79#include <linux/personality.h>
80#include <linux/audit.h>
81#include <linux/string.h>
82#include <linux/mutex.h>
83#include <linux/posix-timers.h>
84#include <linux/syslog.h>
85#include <linux/user_namespace.h>
86#include <linux/export.h>
87#include <linux/msg.h>
88#include <linux/shm.h>
89#include <linux/bpf.h>
90#include <linux/kernfs.h>
91#include <linux/stringhash.h> /* for hashlen_string() */
92#include <uapi/linux/mount.h>
93#include <linux/fsnotify.h>
94#include <linux/fanotify.h>
95
96#include "avc.h"
97#include "objsec.h"
98#include "netif.h"
99#include "netnode.h"
100#include "netport.h"
101#include "ibpkey.h"
102#include "xfrm.h"
103#include "netlabel.h"
104#include "audit.h"
105#include "avc_ss.h"
106
107struct selinux_state selinux_state;
108
109/* SECMARK reference count */
110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
111
112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
113static int selinux_enforcing_boot __initdata;
114
115static int __init enforcing_setup(char *str)
116{
117 unsigned long enforcing;
118 if (!kstrtoul(str, 0, &enforcing))
119 selinux_enforcing_boot = enforcing ? 1 : 0;
120 return 1;
121}
122__setup("enforcing=", enforcing_setup);
123#else
124#define selinux_enforcing_boot 1
125#endif
126
127int selinux_enabled_boot __initdata = 1;
128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
129static int __init selinux_enabled_setup(char *str)
130{
131 unsigned long enabled;
132 if (!kstrtoul(str, 0, &enabled))
133 selinux_enabled_boot = enabled ? 1 : 0;
134 return 1;
135}
136__setup("selinux=", selinux_enabled_setup);
137#endif
138
139static unsigned int selinux_checkreqprot_boot =
140 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
141
142static int __init checkreqprot_setup(char *str)
143{
144 unsigned long checkreqprot;
145
146 if (!kstrtoul(str, 0, &checkreqprot)) {
147 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
148 if (checkreqprot)
149 pr_warn("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n");
150 }
151 return 1;
152}
153__setup("checkreqprot=", checkreqprot_setup);
154
155/**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
166static int selinux_secmark_enabled(void)
167{
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170}
171
172/**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
182static int selinux_peerlbl_enabled(void)
183{
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186}
187
188static int selinux_netcache_avc_callback(u32 event)
189{
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197}
198
199static int selinux_lsm_notifier_avc_callback(u32 event)
200{
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207}
208
209/*
210 * initialise the security for the init task
211 */
212static void cred_init_security(void)
213{
214 struct cred *cred = (struct cred *) current->real_cred;
215 struct task_security_struct *tsec;
216
217 tsec = selinux_cred(cred);
218 tsec->osid = tsec->sid = SECINITSID_KERNEL;
219}
220
221/*
222 * get the security ID of a set of credentials
223 */
224static inline u32 cred_sid(const struct cred *cred)
225{
226 const struct task_security_struct *tsec;
227
228 tsec = selinux_cred(cred);
229 return tsec->sid;
230}
231
232/*
233 * get the subjective security ID of a task
234 */
235static inline u32 task_sid_subj(const struct task_struct *task)
236{
237 u32 sid;
238
239 rcu_read_lock();
240 sid = cred_sid(rcu_dereference(task->cred));
241 rcu_read_unlock();
242 return sid;
243}
244
245/*
246 * get the objective security ID of a task
247 */
248static inline u32 task_sid_obj(const struct task_struct *task)
249{
250 u32 sid;
251
252 rcu_read_lock();
253 sid = cred_sid(__task_cred(task));
254 rcu_read_unlock();
255 return sid;
256}
257
258/*
259 * get the security ID of a task for use with binder
260 */
261static inline u32 task_sid_binder(const struct task_struct *task)
262{
263 /*
264 * In many case where this function is used we should be using the
265 * task's subjective SID, but we can't reliably access the subjective
266 * creds of a task other than our own so we must use the objective
267 * creds/SID, which are safe to access. The downside is that if a task
268 * is temporarily overriding it's creds it will not be reflected here;
269 * however, it isn't clear that binder would handle that case well
270 * anyway.
271 *
272 * If this ever changes and we can safely reference the subjective
273 * creds/SID of another task, this function will make it easier to
274 * identify the various places where we make use of the task SIDs in
275 * the binder code. It is also likely that we will need to adjust
276 * the main drivers/android binder code as well.
277 */
278 return task_sid_obj(task);
279}
280
281static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
282
283/*
284 * Try reloading inode security labels that have been marked as invalid. The
285 * @may_sleep parameter indicates when sleeping and thus reloading labels is
286 * allowed; when set to false, returns -ECHILD when the label is
287 * invalid. The @dentry parameter should be set to a dentry of the inode.
288 */
289static int __inode_security_revalidate(struct inode *inode,
290 struct dentry *dentry,
291 bool may_sleep)
292{
293 struct inode_security_struct *isec = selinux_inode(inode);
294
295 might_sleep_if(may_sleep);
296
297 if (selinux_initialized(&selinux_state) &&
298 isec->initialized != LABEL_INITIALIZED) {
299 if (!may_sleep)
300 return -ECHILD;
301
302 /*
303 * Try reloading the inode security label. This will fail if
304 * @opt_dentry is NULL and no dentry for this inode can be
305 * found; in that case, continue using the old label.
306 */
307 inode_doinit_with_dentry(inode, dentry);
308 }
309 return 0;
310}
311
312static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
313{
314 return selinux_inode(inode);
315}
316
317static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
318{
319 int error;
320
321 error = __inode_security_revalidate(inode, NULL, !rcu);
322 if (error)
323 return ERR_PTR(error);
324 return selinux_inode(inode);
325}
326
327/*
328 * Get the security label of an inode.
329 */
330static struct inode_security_struct *inode_security(struct inode *inode)
331{
332 __inode_security_revalidate(inode, NULL, true);
333 return selinux_inode(inode);
334}
335
336static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
337{
338 struct inode *inode = d_backing_inode(dentry);
339
340 return selinux_inode(inode);
341}
342
343/*
344 * Get the security label of a dentry's backing inode.
345 */
346static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
347{
348 struct inode *inode = d_backing_inode(dentry);
349
350 __inode_security_revalidate(inode, dentry, true);
351 return selinux_inode(inode);
352}
353
354static void inode_free_security(struct inode *inode)
355{
356 struct inode_security_struct *isec = selinux_inode(inode);
357 struct superblock_security_struct *sbsec;
358
359 if (!isec)
360 return;
361 sbsec = selinux_superblock(inode->i_sb);
362 /*
363 * As not all inode security structures are in a list, we check for
364 * empty list outside of the lock to make sure that we won't waste
365 * time taking a lock doing nothing.
366 *
367 * The list_del_init() function can be safely called more than once.
368 * It should not be possible for this function to be called with
369 * concurrent list_add(), but for better safety against future changes
370 * in the code, we use list_empty_careful() here.
371 */
372 if (!list_empty_careful(&isec->list)) {
373 spin_lock(&sbsec->isec_lock);
374 list_del_init(&isec->list);
375 spin_unlock(&sbsec->isec_lock);
376 }
377}
378
379struct selinux_mnt_opts {
380 const char *fscontext, *context, *rootcontext, *defcontext;
381};
382
383static void selinux_free_mnt_opts(void *mnt_opts)
384{
385 struct selinux_mnt_opts *opts = mnt_opts;
386 kfree(opts->fscontext);
387 kfree(opts->context);
388 kfree(opts->rootcontext);
389 kfree(opts->defcontext);
390 kfree(opts);
391}
392
393enum {
394 Opt_error = -1,
395 Opt_context = 0,
396 Opt_defcontext = 1,
397 Opt_fscontext = 2,
398 Opt_rootcontext = 3,
399 Opt_seclabel = 4,
400};
401
402#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
403static struct {
404 const char *name;
405 int len;
406 int opt;
407 bool has_arg;
408} tokens[] = {
409 A(context, true),
410 A(fscontext, true),
411 A(defcontext, true),
412 A(rootcontext, true),
413 A(seclabel, false),
414};
415#undef A
416
417static int match_opt_prefix(char *s, int l, char **arg)
418{
419 int i;
420
421 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
422 size_t len = tokens[i].len;
423 if (len > l || memcmp(s, tokens[i].name, len))
424 continue;
425 if (tokens[i].has_arg) {
426 if (len == l || s[len] != '=')
427 continue;
428 *arg = s + len + 1;
429 } else if (len != l)
430 continue;
431 return tokens[i].opt;
432 }
433 return Opt_error;
434}
435
436#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
437
438static int may_context_mount_sb_relabel(u32 sid,
439 struct superblock_security_struct *sbsec,
440 const struct cred *cred)
441{
442 const struct task_security_struct *tsec = selinux_cred(cred);
443 int rc;
444
445 rc = avc_has_perm(&selinux_state,
446 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
447 FILESYSTEM__RELABELFROM, NULL);
448 if (rc)
449 return rc;
450
451 rc = avc_has_perm(&selinux_state,
452 tsec->sid, sid, SECCLASS_FILESYSTEM,
453 FILESYSTEM__RELABELTO, NULL);
454 return rc;
455}
456
457static int may_context_mount_inode_relabel(u32 sid,
458 struct superblock_security_struct *sbsec,
459 const struct cred *cred)
460{
461 const struct task_security_struct *tsec = selinux_cred(cred);
462 int rc;
463 rc = avc_has_perm(&selinux_state,
464 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
465 FILESYSTEM__RELABELFROM, NULL);
466 if (rc)
467 return rc;
468
469 rc = avc_has_perm(&selinux_state,
470 sid, sbsec->sid, SECCLASS_FILESYSTEM,
471 FILESYSTEM__ASSOCIATE, NULL);
472 return rc;
473}
474
475static int selinux_is_genfs_special_handling(struct super_block *sb)
476{
477 /* Special handling. Genfs but also in-core setxattr handler */
478 return !strcmp(sb->s_type->name, "sysfs") ||
479 !strcmp(sb->s_type->name, "pstore") ||
480 !strcmp(sb->s_type->name, "debugfs") ||
481 !strcmp(sb->s_type->name, "tracefs") ||
482 !strcmp(sb->s_type->name, "rootfs") ||
483 (selinux_policycap_cgroupseclabel() &&
484 (!strcmp(sb->s_type->name, "cgroup") ||
485 !strcmp(sb->s_type->name, "cgroup2")));
486}
487
488static int selinux_is_sblabel_mnt(struct super_block *sb)
489{
490 struct superblock_security_struct *sbsec = selinux_superblock(sb);
491
492 /*
493 * IMPORTANT: Double-check logic in this function when adding a new
494 * SECURITY_FS_USE_* definition!
495 */
496 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
497
498 switch (sbsec->behavior) {
499 case SECURITY_FS_USE_XATTR:
500 case SECURITY_FS_USE_TRANS:
501 case SECURITY_FS_USE_TASK:
502 case SECURITY_FS_USE_NATIVE:
503 return 1;
504
505 case SECURITY_FS_USE_GENFS:
506 return selinux_is_genfs_special_handling(sb);
507
508 /* Never allow relabeling on context mounts */
509 case SECURITY_FS_USE_MNTPOINT:
510 case SECURITY_FS_USE_NONE:
511 default:
512 return 0;
513 }
514}
515
516static int sb_check_xattr_support(struct super_block *sb)
517{
518 struct superblock_security_struct *sbsec = sb->s_security;
519 struct dentry *root = sb->s_root;
520 struct inode *root_inode = d_backing_inode(root);
521 u32 sid;
522 int rc;
523
524 /*
525 * Make sure that the xattr handler exists and that no
526 * error other than -ENODATA is returned by getxattr on
527 * the root directory. -ENODATA is ok, as this may be
528 * the first boot of the SELinux kernel before we have
529 * assigned xattr values to the filesystem.
530 */
531 if (!(root_inode->i_opflags & IOP_XATTR)) {
532 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
533 sb->s_id, sb->s_type->name);
534 goto fallback;
535 }
536
537 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
538 if (rc < 0 && rc != -ENODATA) {
539 if (rc == -EOPNOTSUPP) {
540 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
541 sb->s_id, sb->s_type->name);
542 goto fallback;
543 } else {
544 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
545 sb->s_id, sb->s_type->name, -rc);
546 return rc;
547 }
548 }
549 return 0;
550
551fallback:
552 /* No xattr support - try to fallback to genfs if possible. */
553 rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
554 SECCLASS_DIR, &sid);
555 if (rc)
556 return -EOPNOTSUPP;
557
558 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
559 sb->s_id, sb->s_type->name);
560 sbsec->behavior = SECURITY_FS_USE_GENFS;
561 sbsec->sid = sid;
562 return 0;
563}
564
565static int sb_finish_set_opts(struct super_block *sb)
566{
567 struct superblock_security_struct *sbsec = selinux_superblock(sb);
568 struct dentry *root = sb->s_root;
569 struct inode *root_inode = d_backing_inode(root);
570 int rc = 0;
571
572 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
573 rc = sb_check_xattr_support(sb);
574 if (rc)
575 return rc;
576 }
577
578 sbsec->flags |= SE_SBINITIALIZED;
579
580 /*
581 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
582 * leave the flag untouched because sb_clone_mnt_opts might be handing
583 * us a superblock that needs the flag to be cleared.
584 */
585 if (selinux_is_sblabel_mnt(sb))
586 sbsec->flags |= SBLABEL_MNT;
587 else
588 sbsec->flags &= ~SBLABEL_MNT;
589
590 /* Initialize the root inode. */
591 rc = inode_doinit_with_dentry(root_inode, root);
592
593 /* Initialize any other inodes associated with the superblock, e.g.
594 inodes created prior to initial policy load or inodes created
595 during get_sb by a pseudo filesystem that directly
596 populates itself. */
597 spin_lock(&sbsec->isec_lock);
598 while (!list_empty(&sbsec->isec_head)) {
599 struct inode_security_struct *isec =
600 list_first_entry(&sbsec->isec_head,
601 struct inode_security_struct, list);
602 struct inode *inode = isec->inode;
603 list_del_init(&isec->list);
604 spin_unlock(&sbsec->isec_lock);
605 inode = igrab(inode);
606 if (inode) {
607 if (!IS_PRIVATE(inode))
608 inode_doinit_with_dentry(inode, NULL);
609 iput(inode);
610 }
611 spin_lock(&sbsec->isec_lock);
612 }
613 spin_unlock(&sbsec->isec_lock);
614 return rc;
615}
616
617static int bad_option(struct superblock_security_struct *sbsec, char flag,
618 u32 old_sid, u32 new_sid)
619{
620 char mnt_flags = sbsec->flags & SE_MNTMASK;
621
622 /* check if the old mount command had the same options */
623 if (sbsec->flags & SE_SBINITIALIZED)
624 if (!(sbsec->flags & flag) ||
625 (old_sid != new_sid))
626 return 1;
627
628 /* check if we were passed the same options twice,
629 * aka someone passed context=a,context=b
630 */
631 if (!(sbsec->flags & SE_SBINITIALIZED))
632 if (mnt_flags & flag)
633 return 1;
634 return 0;
635}
636
637static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
638{
639 int rc = security_context_str_to_sid(&selinux_state, s,
640 sid, GFP_KERNEL);
641 if (rc)
642 pr_warn("SELinux: security_context_str_to_sid"
643 "(%s) failed for (dev %s, type %s) errno=%d\n",
644 s, sb->s_id, sb->s_type->name, rc);
645 return rc;
646}
647
648/*
649 * Allow filesystems with binary mount data to explicitly set mount point
650 * labeling information.
651 */
652static int selinux_set_mnt_opts(struct super_block *sb,
653 void *mnt_opts,
654 unsigned long kern_flags,
655 unsigned long *set_kern_flags)
656{
657 const struct cred *cred = current_cred();
658 struct superblock_security_struct *sbsec = selinux_superblock(sb);
659 struct dentry *root = sb->s_root;
660 struct selinux_mnt_opts *opts = mnt_opts;
661 struct inode_security_struct *root_isec;
662 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
663 u32 defcontext_sid = 0;
664 int rc = 0;
665
666 mutex_lock(&sbsec->lock);
667
668 if (!selinux_initialized(&selinux_state)) {
669 if (!opts) {
670 /* Defer initialization until selinux_complete_init,
671 after the initial policy is loaded and the security
672 server is ready to handle calls. */
673 goto out;
674 }
675 rc = -EINVAL;
676 pr_warn("SELinux: Unable to set superblock options "
677 "before the security server is initialized\n");
678 goto out;
679 }
680 if (kern_flags && !set_kern_flags) {
681 /* Specifying internal flags without providing a place to
682 * place the results is not allowed */
683 rc = -EINVAL;
684 goto out;
685 }
686
687 /*
688 * Binary mount data FS will come through this function twice. Once
689 * from an explicit call and once from the generic calls from the vfs.
690 * Since the generic VFS calls will not contain any security mount data
691 * we need to skip the double mount verification.
692 *
693 * This does open a hole in which we will not notice if the first
694 * mount using this sb set explict options and a second mount using
695 * this sb does not set any security options. (The first options
696 * will be used for both mounts)
697 */
698 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
699 && !opts)
700 goto out;
701
702 root_isec = backing_inode_security_novalidate(root);
703
704 /*
705 * parse the mount options, check if they are valid sids.
706 * also check if someone is trying to mount the same sb more
707 * than once with different security options.
708 */
709 if (opts) {
710 if (opts->fscontext) {
711 rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
712 if (rc)
713 goto out;
714 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
715 fscontext_sid))
716 goto out_double_mount;
717 sbsec->flags |= FSCONTEXT_MNT;
718 }
719 if (opts->context) {
720 rc = parse_sid(sb, opts->context, &context_sid);
721 if (rc)
722 goto out;
723 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
724 context_sid))
725 goto out_double_mount;
726 sbsec->flags |= CONTEXT_MNT;
727 }
728 if (opts->rootcontext) {
729 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
730 if (rc)
731 goto out;
732 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
733 rootcontext_sid))
734 goto out_double_mount;
735 sbsec->flags |= ROOTCONTEXT_MNT;
736 }
737 if (opts->defcontext) {
738 rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
739 if (rc)
740 goto out;
741 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
742 defcontext_sid))
743 goto out_double_mount;
744 sbsec->flags |= DEFCONTEXT_MNT;
745 }
746 }
747
748 if (sbsec->flags & SE_SBINITIALIZED) {
749 /* previously mounted with options, but not on this attempt? */
750 if ((sbsec->flags & SE_MNTMASK) && !opts)
751 goto out_double_mount;
752 rc = 0;
753 goto out;
754 }
755
756 if (strcmp(sb->s_type->name, "proc") == 0)
757 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
758
759 if (!strcmp(sb->s_type->name, "debugfs") ||
760 !strcmp(sb->s_type->name, "tracefs") ||
761 !strcmp(sb->s_type->name, "binder") ||
762 !strcmp(sb->s_type->name, "bpf") ||
763 !strcmp(sb->s_type->name, "pstore"))
764 sbsec->flags |= SE_SBGENFS;
765
766 if (!strcmp(sb->s_type->name, "sysfs") ||
767 !strcmp(sb->s_type->name, "cgroup") ||
768 !strcmp(sb->s_type->name, "cgroup2"))
769 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
770
771 if (!sbsec->behavior) {
772 /*
773 * Determine the labeling behavior to use for this
774 * filesystem type.
775 */
776 rc = security_fs_use(&selinux_state, sb);
777 if (rc) {
778 pr_warn("%s: security_fs_use(%s) returned %d\n",
779 __func__, sb->s_type->name, rc);
780 goto out;
781 }
782 }
783
784 /*
785 * If this is a user namespace mount and the filesystem type is not
786 * explicitly whitelisted, then no contexts are allowed on the command
787 * line and security labels must be ignored.
788 */
789 if (sb->s_user_ns != &init_user_ns &&
790 strcmp(sb->s_type->name, "tmpfs") &&
791 strcmp(sb->s_type->name, "ramfs") &&
792 strcmp(sb->s_type->name, "devpts") &&
793 strcmp(sb->s_type->name, "overlay")) {
794 if (context_sid || fscontext_sid || rootcontext_sid ||
795 defcontext_sid) {
796 rc = -EACCES;
797 goto out;
798 }
799 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
800 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
801 rc = security_transition_sid(&selinux_state,
802 current_sid(),
803 current_sid(),
804 SECCLASS_FILE, NULL,
805 &sbsec->mntpoint_sid);
806 if (rc)
807 goto out;
808 }
809 goto out_set_opts;
810 }
811
812 /* sets the context of the superblock for the fs being mounted. */
813 if (fscontext_sid) {
814 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
815 if (rc)
816 goto out;
817
818 sbsec->sid = fscontext_sid;
819 }
820
821 /*
822 * Switch to using mount point labeling behavior.
823 * sets the label used on all file below the mountpoint, and will set
824 * the superblock context if not already set.
825 */
826 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
827 sbsec->behavior = SECURITY_FS_USE_NATIVE;
828 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
829 }
830
831 if (context_sid) {
832 if (!fscontext_sid) {
833 rc = may_context_mount_sb_relabel(context_sid, sbsec,
834 cred);
835 if (rc)
836 goto out;
837 sbsec->sid = context_sid;
838 } else {
839 rc = may_context_mount_inode_relabel(context_sid, sbsec,
840 cred);
841 if (rc)
842 goto out;
843 }
844 if (!rootcontext_sid)
845 rootcontext_sid = context_sid;
846
847 sbsec->mntpoint_sid = context_sid;
848 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
849 }
850
851 if (rootcontext_sid) {
852 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
853 cred);
854 if (rc)
855 goto out;
856
857 root_isec->sid = rootcontext_sid;
858 root_isec->initialized = LABEL_INITIALIZED;
859 }
860
861 if (defcontext_sid) {
862 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
863 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
864 rc = -EINVAL;
865 pr_warn("SELinux: defcontext option is "
866 "invalid for this filesystem type\n");
867 goto out;
868 }
869
870 if (defcontext_sid != sbsec->def_sid) {
871 rc = may_context_mount_inode_relabel(defcontext_sid,
872 sbsec, cred);
873 if (rc)
874 goto out;
875 }
876
877 sbsec->def_sid = defcontext_sid;
878 }
879
880out_set_opts:
881 rc = sb_finish_set_opts(sb);
882out:
883 mutex_unlock(&sbsec->lock);
884 return rc;
885out_double_mount:
886 rc = -EINVAL;
887 pr_warn("SELinux: mount invalid. Same superblock, different "
888 "security settings for (dev %s, type %s)\n", sb->s_id,
889 sb->s_type->name);
890 goto out;
891}
892
893static int selinux_cmp_sb_context(const struct super_block *oldsb,
894 const struct super_block *newsb)
895{
896 struct superblock_security_struct *old = selinux_superblock(oldsb);
897 struct superblock_security_struct *new = selinux_superblock(newsb);
898 char oldflags = old->flags & SE_MNTMASK;
899 char newflags = new->flags & SE_MNTMASK;
900
901 if (oldflags != newflags)
902 goto mismatch;
903 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
904 goto mismatch;
905 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
906 goto mismatch;
907 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
908 goto mismatch;
909 if (oldflags & ROOTCONTEXT_MNT) {
910 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
911 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
912 if (oldroot->sid != newroot->sid)
913 goto mismatch;
914 }
915 return 0;
916mismatch:
917 pr_warn("SELinux: mount invalid. Same superblock, "
918 "different security settings for (dev %s, "
919 "type %s)\n", newsb->s_id, newsb->s_type->name);
920 return -EBUSY;
921}
922
923static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
924 struct super_block *newsb,
925 unsigned long kern_flags,
926 unsigned long *set_kern_flags)
927{
928 int rc = 0;
929 const struct superblock_security_struct *oldsbsec =
930 selinux_superblock(oldsb);
931 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
932
933 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
934 int set_context = (oldsbsec->flags & CONTEXT_MNT);
935 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
936
937 /*
938 * if the parent was able to be mounted it clearly had no special lsm
939 * mount options. thus we can safely deal with this superblock later
940 */
941 if (!selinux_initialized(&selinux_state))
942 return 0;
943
944 /*
945 * Specifying internal flags without providing a place to
946 * place the results is not allowed.
947 */
948 if (kern_flags && !set_kern_flags)
949 return -EINVAL;
950
951 /* how can we clone if the old one wasn't set up?? */
952 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
953
954 /* if fs is reusing a sb, make sure that the contexts match */
955 if (newsbsec->flags & SE_SBINITIALIZED) {
956 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
957 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
958 return selinux_cmp_sb_context(oldsb, newsb);
959 }
960
961 mutex_lock(&newsbsec->lock);
962
963 newsbsec->flags = oldsbsec->flags;
964
965 newsbsec->sid = oldsbsec->sid;
966 newsbsec->def_sid = oldsbsec->def_sid;
967 newsbsec->behavior = oldsbsec->behavior;
968
969 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
970 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
971 rc = security_fs_use(&selinux_state, newsb);
972 if (rc)
973 goto out;
974 }
975
976 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
977 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
978 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
979 }
980
981 if (set_context) {
982 u32 sid = oldsbsec->mntpoint_sid;
983
984 if (!set_fscontext)
985 newsbsec->sid = sid;
986 if (!set_rootcontext) {
987 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
988 newisec->sid = sid;
989 }
990 newsbsec->mntpoint_sid = sid;
991 }
992 if (set_rootcontext) {
993 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
994 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
995
996 newisec->sid = oldisec->sid;
997 }
998
999 sb_finish_set_opts(newsb);
1000out:
1001 mutex_unlock(&newsbsec->lock);
1002 return rc;
1003}
1004
1005static int selinux_add_opt(int token, const char *s, void **mnt_opts)
1006{
1007 struct selinux_mnt_opts *opts = *mnt_opts;
1008
1009 if (token == Opt_seclabel) /* eaten and completely ignored */
1010 return 0;
1011
1012 if (!opts) {
1013 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1014 if (!opts)
1015 return -ENOMEM;
1016 *mnt_opts = opts;
1017 }
1018 if (!s)
1019 return -ENOMEM;
1020 switch (token) {
1021 case Opt_context:
1022 if (opts->context || opts->defcontext)
1023 goto Einval;
1024 opts->context = s;
1025 break;
1026 case Opt_fscontext:
1027 if (opts->fscontext)
1028 goto Einval;
1029 opts->fscontext = s;
1030 break;
1031 case Opt_rootcontext:
1032 if (opts->rootcontext)
1033 goto Einval;
1034 opts->rootcontext = s;
1035 break;
1036 case Opt_defcontext:
1037 if (opts->context || opts->defcontext)
1038 goto Einval;
1039 opts->defcontext = s;
1040 break;
1041 }
1042 return 0;
1043Einval:
1044 pr_warn(SEL_MOUNT_FAIL_MSG);
1045 return -EINVAL;
1046}
1047
1048static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1049 void **mnt_opts)
1050{
1051 int token = Opt_error;
1052 int rc, i;
1053
1054 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1055 if (strcmp(option, tokens[i].name) == 0) {
1056 token = tokens[i].opt;
1057 break;
1058 }
1059 }
1060
1061 if (token == Opt_error)
1062 return -EINVAL;
1063
1064 if (token != Opt_seclabel) {
1065 val = kmemdup_nul(val, len, GFP_KERNEL);
1066 if (!val) {
1067 rc = -ENOMEM;
1068 goto free_opt;
1069 }
1070 }
1071 rc = selinux_add_opt(token, val, mnt_opts);
1072 if (unlikely(rc)) {
1073 kfree(val);
1074 goto free_opt;
1075 }
1076 return rc;
1077
1078free_opt:
1079 if (*mnt_opts) {
1080 selinux_free_mnt_opts(*mnt_opts);
1081 *mnt_opts = NULL;
1082 }
1083 return rc;
1084}
1085
1086static int show_sid(struct seq_file *m, u32 sid)
1087{
1088 char *context = NULL;
1089 u32 len;
1090 int rc;
1091
1092 rc = security_sid_to_context(&selinux_state, sid,
1093 &context, &len);
1094 if (!rc) {
1095 bool has_comma = context && strchr(context, ',');
1096
1097 seq_putc(m, '=');
1098 if (has_comma)
1099 seq_putc(m, '\"');
1100 seq_escape(m, context, "\"\n\\");
1101 if (has_comma)
1102 seq_putc(m, '\"');
1103 }
1104 kfree(context);
1105 return rc;
1106}
1107
1108static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109{
1110 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1111 int rc;
1112
1113 if (!(sbsec->flags & SE_SBINITIALIZED))
1114 return 0;
1115
1116 if (!selinux_initialized(&selinux_state))
1117 return 0;
1118
1119 if (sbsec->flags & FSCONTEXT_MNT) {
1120 seq_putc(m, ',');
1121 seq_puts(m, FSCONTEXT_STR);
1122 rc = show_sid(m, sbsec->sid);
1123 if (rc)
1124 return rc;
1125 }
1126 if (sbsec->flags & CONTEXT_MNT) {
1127 seq_putc(m, ',');
1128 seq_puts(m, CONTEXT_STR);
1129 rc = show_sid(m, sbsec->mntpoint_sid);
1130 if (rc)
1131 return rc;
1132 }
1133 if (sbsec->flags & DEFCONTEXT_MNT) {
1134 seq_putc(m, ',');
1135 seq_puts(m, DEFCONTEXT_STR);
1136 rc = show_sid(m, sbsec->def_sid);
1137 if (rc)
1138 return rc;
1139 }
1140 if (sbsec->flags & ROOTCONTEXT_MNT) {
1141 struct dentry *root = sb->s_root;
1142 struct inode_security_struct *isec = backing_inode_security(root);
1143 seq_putc(m, ',');
1144 seq_puts(m, ROOTCONTEXT_STR);
1145 rc = show_sid(m, isec->sid);
1146 if (rc)
1147 return rc;
1148 }
1149 if (sbsec->flags & SBLABEL_MNT) {
1150 seq_putc(m, ',');
1151 seq_puts(m, SECLABEL_STR);
1152 }
1153 return 0;
1154}
1155
1156static inline u16 inode_mode_to_security_class(umode_t mode)
1157{
1158 switch (mode & S_IFMT) {
1159 case S_IFSOCK:
1160 return SECCLASS_SOCK_FILE;
1161 case S_IFLNK:
1162 return SECCLASS_LNK_FILE;
1163 case S_IFREG:
1164 return SECCLASS_FILE;
1165 case S_IFBLK:
1166 return SECCLASS_BLK_FILE;
1167 case S_IFDIR:
1168 return SECCLASS_DIR;
1169 case S_IFCHR:
1170 return SECCLASS_CHR_FILE;
1171 case S_IFIFO:
1172 return SECCLASS_FIFO_FILE;
1173
1174 }
1175
1176 return SECCLASS_FILE;
1177}
1178
1179static inline int default_protocol_stream(int protocol)
1180{
1181 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1182 protocol == IPPROTO_MPTCP);
1183}
1184
1185static inline int default_protocol_dgram(int protocol)
1186{
1187 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1188}
1189
1190static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1191{
1192 int extsockclass = selinux_policycap_extsockclass();
1193
1194 switch (family) {
1195 case PF_UNIX:
1196 switch (type) {
1197 case SOCK_STREAM:
1198 case SOCK_SEQPACKET:
1199 return SECCLASS_UNIX_STREAM_SOCKET;
1200 case SOCK_DGRAM:
1201 case SOCK_RAW:
1202 return SECCLASS_UNIX_DGRAM_SOCKET;
1203 }
1204 break;
1205 case PF_INET:
1206 case PF_INET6:
1207 switch (type) {
1208 case SOCK_STREAM:
1209 case SOCK_SEQPACKET:
1210 if (default_protocol_stream(protocol))
1211 return SECCLASS_TCP_SOCKET;
1212 else if (extsockclass && protocol == IPPROTO_SCTP)
1213 return SECCLASS_SCTP_SOCKET;
1214 else
1215 return SECCLASS_RAWIP_SOCKET;
1216 case SOCK_DGRAM:
1217 if (default_protocol_dgram(protocol))
1218 return SECCLASS_UDP_SOCKET;
1219 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1220 protocol == IPPROTO_ICMPV6))
1221 return SECCLASS_ICMP_SOCKET;
1222 else
1223 return SECCLASS_RAWIP_SOCKET;
1224 case SOCK_DCCP:
1225 return SECCLASS_DCCP_SOCKET;
1226 default:
1227 return SECCLASS_RAWIP_SOCKET;
1228 }
1229 break;
1230 case PF_NETLINK:
1231 switch (protocol) {
1232 case NETLINK_ROUTE:
1233 return SECCLASS_NETLINK_ROUTE_SOCKET;
1234 case NETLINK_SOCK_DIAG:
1235 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1236 case NETLINK_NFLOG:
1237 return SECCLASS_NETLINK_NFLOG_SOCKET;
1238 case NETLINK_XFRM:
1239 return SECCLASS_NETLINK_XFRM_SOCKET;
1240 case NETLINK_SELINUX:
1241 return SECCLASS_NETLINK_SELINUX_SOCKET;
1242 case NETLINK_ISCSI:
1243 return SECCLASS_NETLINK_ISCSI_SOCKET;
1244 case NETLINK_AUDIT:
1245 return SECCLASS_NETLINK_AUDIT_SOCKET;
1246 case NETLINK_FIB_LOOKUP:
1247 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1248 case NETLINK_CONNECTOR:
1249 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1250 case NETLINK_NETFILTER:
1251 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1252 case NETLINK_DNRTMSG:
1253 return SECCLASS_NETLINK_DNRT_SOCKET;
1254 case NETLINK_KOBJECT_UEVENT:
1255 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1256 case NETLINK_GENERIC:
1257 return SECCLASS_NETLINK_GENERIC_SOCKET;
1258 case NETLINK_SCSITRANSPORT:
1259 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1260 case NETLINK_RDMA:
1261 return SECCLASS_NETLINK_RDMA_SOCKET;
1262 case NETLINK_CRYPTO:
1263 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1264 default:
1265 return SECCLASS_NETLINK_SOCKET;
1266 }
1267 case PF_PACKET:
1268 return SECCLASS_PACKET_SOCKET;
1269 case PF_KEY:
1270 return SECCLASS_KEY_SOCKET;
1271 case PF_APPLETALK:
1272 return SECCLASS_APPLETALK_SOCKET;
1273 }
1274
1275 if (extsockclass) {
1276 switch (family) {
1277 case PF_AX25:
1278 return SECCLASS_AX25_SOCKET;
1279 case PF_IPX:
1280 return SECCLASS_IPX_SOCKET;
1281 case PF_NETROM:
1282 return SECCLASS_NETROM_SOCKET;
1283 case PF_ATMPVC:
1284 return SECCLASS_ATMPVC_SOCKET;
1285 case PF_X25:
1286 return SECCLASS_X25_SOCKET;
1287 case PF_ROSE:
1288 return SECCLASS_ROSE_SOCKET;
1289 case PF_DECnet:
1290 return SECCLASS_DECNET_SOCKET;
1291 case PF_ATMSVC:
1292 return SECCLASS_ATMSVC_SOCKET;
1293 case PF_RDS:
1294 return SECCLASS_RDS_SOCKET;
1295 case PF_IRDA:
1296 return SECCLASS_IRDA_SOCKET;
1297 case PF_PPPOX:
1298 return SECCLASS_PPPOX_SOCKET;
1299 case PF_LLC:
1300 return SECCLASS_LLC_SOCKET;
1301 case PF_CAN:
1302 return SECCLASS_CAN_SOCKET;
1303 case PF_TIPC:
1304 return SECCLASS_TIPC_SOCKET;
1305 case PF_BLUETOOTH:
1306 return SECCLASS_BLUETOOTH_SOCKET;
1307 case PF_IUCV:
1308 return SECCLASS_IUCV_SOCKET;
1309 case PF_RXRPC:
1310 return SECCLASS_RXRPC_SOCKET;
1311 case PF_ISDN:
1312 return SECCLASS_ISDN_SOCKET;
1313 case PF_PHONET:
1314 return SECCLASS_PHONET_SOCKET;
1315 case PF_IEEE802154:
1316 return SECCLASS_IEEE802154_SOCKET;
1317 case PF_CAIF:
1318 return SECCLASS_CAIF_SOCKET;
1319 case PF_ALG:
1320 return SECCLASS_ALG_SOCKET;
1321 case PF_NFC:
1322 return SECCLASS_NFC_SOCKET;
1323 case PF_VSOCK:
1324 return SECCLASS_VSOCK_SOCKET;
1325 case PF_KCM:
1326 return SECCLASS_KCM_SOCKET;
1327 case PF_QIPCRTR:
1328 return SECCLASS_QIPCRTR_SOCKET;
1329 case PF_SMC:
1330 return SECCLASS_SMC_SOCKET;
1331 case PF_XDP:
1332 return SECCLASS_XDP_SOCKET;
1333#if PF_MAX > 45
1334#error New address family defined, please update this function.
1335#endif
1336 }
1337 }
1338
1339 return SECCLASS_SOCKET;
1340}
1341
1342static int selinux_genfs_get_sid(struct dentry *dentry,
1343 u16 tclass,
1344 u16 flags,
1345 u32 *sid)
1346{
1347 int rc;
1348 struct super_block *sb = dentry->d_sb;
1349 char *buffer, *path;
1350
1351 buffer = (char *)__get_free_page(GFP_KERNEL);
1352 if (!buffer)
1353 return -ENOMEM;
1354
1355 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1356 if (IS_ERR(path))
1357 rc = PTR_ERR(path);
1358 else {
1359 if (flags & SE_SBPROC) {
1360 /* each process gets a /proc/PID/ entry. Strip off the
1361 * PID part to get a valid selinux labeling.
1362 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1363 while (path[1] >= '0' && path[1] <= '9') {
1364 path[1] = '/';
1365 path++;
1366 }
1367 }
1368 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1369 path, tclass, sid);
1370 if (rc == -ENOENT) {
1371 /* No match in policy, mark as unlabeled. */
1372 *sid = SECINITSID_UNLABELED;
1373 rc = 0;
1374 }
1375 }
1376 free_page((unsigned long)buffer);
1377 return rc;
1378}
1379
1380static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1381 u32 def_sid, u32 *sid)
1382{
1383#define INITCONTEXTLEN 255
1384 char *context;
1385 unsigned int len;
1386 int rc;
1387
1388 len = INITCONTEXTLEN;
1389 context = kmalloc(len + 1, GFP_NOFS);
1390 if (!context)
1391 return -ENOMEM;
1392
1393 context[len] = '\0';
1394 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1395 if (rc == -ERANGE) {
1396 kfree(context);
1397
1398 /* Need a larger buffer. Query for the right size. */
1399 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1400 if (rc < 0)
1401 return rc;
1402
1403 len = rc;
1404 context = kmalloc(len + 1, GFP_NOFS);
1405 if (!context)
1406 return -ENOMEM;
1407
1408 context[len] = '\0';
1409 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1410 context, len);
1411 }
1412 if (rc < 0) {
1413 kfree(context);
1414 if (rc != -ENODATA) {
1415 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1416 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1417 return rc;
1418 }
1419 *sid = def_sid;
1420 return 0;
1421 }
1422
1423 rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1424 def_sid, GFP_NOFS);
1425 if (rc) {
1426 char *dev = inode->i_sb->s_id;
1427 unsigned long ino = inode->i_ino;
1428
1429 if (rc == -EINVAL) {
1430 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1431 ino, dev, context);
1432 } else {
1433 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1434 __func__, context, -rc, dev, ino);
1435 }
1436 }
1437 kfree(context);
1438 return 0;
1439}
1440
1441/* The inode's security attributes must be initialized before first use. */
1442static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1443{
1444 struct superblock_security_struct *sbsec = NULL;
1445 struct inode_security_struct *isec = selinux_inode(inode);
1446 u32 task_sid, sid = 0;
1447 u16 sclass;
1448 struct dentry *dentry;
1449 int rc = 0;
1450
1451 if (isec->initialized == LABEL_INITIALIZED)
1452 return 0;
1453
1454 spin_lock(&isec->lock);
1455 if (isec->initialized == LABEL_INITIALIZED)
1456 goto out_unlock;
1457
1458 if (isec->sclass == SECCLASS_FILE)
1459 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1460
1461 sbsec = selinux_superblock(inode->i_sb);
1462 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1463 /* Defer initialization until selinux_complete_init,
1464 after the initial policy is loaded and the security
1465 server is ready to handle calls. */
1466 spin_lock(&sbsec->isec_lock);
1467 if (list_empty(&isec->list))
1468 list_add(&isec->list, &sbsec->isec_head);
1469 spin_unlock(&sbsec->isec_lock);
1470 goto out_unlock;
1471 }
1472
1473 sclass = isec->sclass;
1474 task_sid = isec->task_sid;
1475 sid = isec->sid;
1476 isec->initialized = LABEL_PENDING;
1477 spin_unlock(&isec->lock);
1478
1479 switch (sbsec->behavior) {
1480 case SECURITY_FS_USE_NATIVE:
1481 break;
1482 case SECURITY_FS_USE_XATTR:
1483 if (!(inode->i_opflags & IOP_XATTR)) {
1484 sid = sbsec->def_sid;
1485 break;
1486 }
1487 /* Need a dentry, since the xattr API requires one.
1488 Life would be simpler if we could just pass the inode. */
1489 if (opt_dentry) {
1490 /* Called from d_instantiate or d_splice_alias. */
1491 dentry = dget(opt_dentry);
1492 } else {
1493 /*
1494 * Called from selinux_complete_init, try to find a dentry.
1495 * Some filesystems really want a connected one, so try
1496 * that first. We could split SECURITY_FS_USE_XATTR in
1497 * two, depending upon that...
1498 */
1499 dentry = d_find_alias(inode);
1500 if (!dentry)
1501 dentry = d_find_any_alias(inode);
1502 }
1503 if (!dentry) {
1504 /*
1505 * this is can be hit on boot when a file is accessed
1506 * before the policy is loaded. When we load policy we
1507 * may find inodes that have no dentry on the
1508 * sbsec->isec_head list. No reason to complain as these
1509 * will get fixed up the next time we go through
1510 * inode_doinit with a dentry, before these inodes could
1511 * be used again by userspace.
1512 */
1513 goto out_invalid;
1514 }
1515
1516 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1517 &sid);
1518 dput(dentry);
1519 if (rc)
1520 goto out;
1521 break;
1522 case SECURITY_FS_USE_TASK:
1523 sid = task_sid;
1524 break;
1525 case SECURITY_FS_USE_TRANS:
1526 /* Default to the fs SID. */
1527 sid = sbsec->sid;
1528
1529 /* Try to obtain a transition SID. */
1530 rc = security_transition_sid(&selinux_state, task_sid, sid,
1531 sclass, NULL, &sid);
1532 if (rc)
1533 goto out;
1534 break;
1535 case SECURITY_FS_USE_MNTPOINT:
1536 sid = sbsec->mntpoint_sid;
1537 break;
1538 default:
1539 /* Default to the fs superblock SID. */
1540 sid = sbsec->sid;
1541
1542 if ((sbsec->flags & SE_SBGENFS) &&
1543 (!S_ISLNK(inode->i_mode) ||
1544 selinux_policycap_genfs_seclabel_symlinks())) {
1545 /* We must have a dentry to determine the label on
1546 * procfs inodes */
1547 if (opt_dentry) {
1548 /* Called from d_instantiate or
1549 * d_splice_alias. */
1550 dentry = dget(opt_dentry);
1551 } else {
1552 /* Called from selinux_complete_init, try to
1553 * find a dentry. Some filesystems really want
1554 * a connected one, so try that first.
1555 */
1556 dentry = d_find_alias(inode);
1557 if (!dentry)
1558 dentry = d_find_any_alias(inode);
1559 }
1560 /*
1561 * This can be hit on boot when a file is accessed
1562 * before the policy is loaded. When we load policy we
1563 * may find inodes that have no dentry on the
1564 * sbsec->isec_head list. No reason to complain as
1565 * these will get fixed up the next time we go through
1566 * inode_doinit() with a dentry, before these inodes
1567 * could be used again by userspace.
1568 */
1569 if (!dentry)
1570 goto out_invalid;
1571 rc = selinux_genfs_get_sid(dentry, sclass,
1572 sbsec->flags, &sid);
1573 if (rc) {
1574 dput(dentry);
1575 goto out;
1576 }
1577
1578 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1579 (inode->i_opflags & IOP_XATTR)) {
1580 rc = inode_doinit_use_xattr(inode, dentry,
1581 sid, &sid);
1582 if (rc) {
1583 dput(dentry);
1584 goto out;
1585 }
1586 }
1587 dput(dentry);
1588 }
1589 break;
1590 }
1591
1592out:
1593 spin_lock(&isec->lock);
1594 if (isec->initialized == LABEL_PENDING) {
1595 if (rc) {
1596 isec->initialized = LABEL_INVALID;
1597 goto out_unlock;
1598 }
1599 isec->initialized = LABEL_INITIALIZED;
1600 isec->sid = sid;
1601 }
1602
1603out_unlock:
1604 spin_unlock(&isec->lock);
1605 return rc;
1606
1607out_invalid:
1608 spin_lock(&isec->lock);
1609 if (isec->initialized == LABEL_PENDING) {
1610 isec->initialized = LABEL_INVALID;
1611 isec->sid = sid;
1612 }
1613 spin_unlock(&isec->lock);
1614 return 0;
1615}
1616
1617/* Convert a Linux signal to an access vector. */
1618static inline u32 signal_to_av(int sig)
1619{
1620 u32 perm = 0;
1621
1622 switch (sig) {
1623 case SIGCHLD:
1624 /* Commonly granted from child to parent. */
1625 perm = PROCESS__SIGCHLD;
1626 break;
1627 case SIGKILL:
1628 /* Cannot be caught or ignored */
1629 perm = PROCESS__SIGKILL;
1630 break;
1631 case SIGSTOP:
1632 /* Cannot be caught or ignored */
1633 perm = PROCESS__SIGSTOP;
1634 break;
1635 default:
1636 /* All other signals. */
1637 perm = PROCESS__SIGNAL;
1638 break;
1639 }
1640
1641 return perm;
1642}
1643
1644#if CAP_LAST_CAP > 63
1645#error Fix SELinux to handle capabilities > 63.
1646#endif
1647
1648/* Check whether a task is allowed to use a capability. */
1649static int cred_has_capability(const struct cred *cred,
1650 int cap, unsigned int opts, bool initns)
1651{
1652 struct common_audit_data ad;
1653 struct av_decision avd;
1654 u16 sclass;
1655 u32 sid = cred_sid(cred);
1656 u32 av = CAP_TO_MASK(cap);
1657 int rc;
1658
1659 ad.type = LSM_AUDIT_DATA_CAP;
1660 ad.u.cap = cap;
1661
1662 switch (CAP_TO_INDEX(cap)) {
1663 case 0:
1664 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1665 break;
1666 case 1:
1667 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1668 break;
1669 default:
1670 pr_err("SELinux: out of range capability %d\n", cap);
1671 BUG();
1672 return -EINVAL;
1673 }
1674
1675 rc = avc_has_perm_noaudit(&selinux_state,
1676 sid, sid, sclass, av, 0, &avd);
1677 if (!(opts & CAP_OPT_NOAUDIT)) {
1678 int rc2 = avc_audit(&selinux_state,
1679 sid, sid, sclass, av, &avd, rc, &ad);
1680 if (rc2)
1681 return rc2;
1682 }
1683 return rc;
1684}
1685
1686/* Check whether a task has a particular permission to an inode.
1687 The 'adp' parameter is optional and allows other audit
1688 data to be passed (e.g. the dentry). */
1689static int inode_has_perm(const struct cred *cred,
1690 struct inode *inode,
1691 u32 perms,
1692 struct common_audit_data *adp)
1693{
1694 struct inode_security_struct *isec;
1695 u32 sid;
1696
1697 validate_creds(cred);
1698
1699 if (unlikely(IS_PRIVATE(inode)))
1700 return 0;
1701
1702 sid = cred_sid(cred);
1703 isec = selinux_inode(inode);
1704
1705 return avc_has_perm(&selinux_state,
1706 sid, isec->sid, isec->sclass, perms, adp);
1707}
1708
1709/* Same as inode_has_perm, but pass explicit audit data containing
1710 the dentry to help the auditing code to more easily generate the
1711 pathname if needed. */
1712static inline int dentry_has_perm(const struct cred *cred,
1713 struct dentry *dentry,
1714 u32 av)
1715{
1716 struct inode *inode = d_backing_inode(dentry);
1717 struct common_audit_data ad;
1718
1719 ad.type = LSM_AUDIT_DATA_DENTRY;
1720 ad.u.dentry = dentry;
1721 __inode_security_revalidate(inode, dentry, true);
1722 return inode_has_perm(cred, inode, av, &ad);
1723}
1724
1725/* Same as inode_has_perm, but pass explicit audit data containing
1726 the path to help the auditing code to more easily generate the
1727 pathname if needed. */
1728static inline int path_has_perm(const struct cred *cred,
1729 const struct path *path,
1730 u32 av)
1731{
1732 struct inode *inode = d_backing_inode(path->dentry);
1733 struct common_audit_data ad;
1734
1735 ad.type = LSM_AUDIT_DATA_PATH;
1736 ad.u.path = *path;
1737 __inode_security_revalidate(inode, path->dentry, true);
1738 return inode_has_perm(cred, inode, av, &ad);
1739}
1740
1741/* Same as path_has_perm, but uses the inode from the file struct. */
1742static inline int file_path_has_perm(const struct cred *cred,
1743 struct file *file,
1744 u32 av)
1745{
1746 struct common_audit_data ad;
1747
1748 ad.type = LSM_AUDIT_DATA_FILE;
1749 ad.u.file = file;
1750 return inode_has_perm(cred, file_inode(file), av, &ad);
1751}
1752
1753#ifdef CONFIG_BPF_SYSCALL
1754static int bpf_fd_pass(struct file *file, u32 sid);
1755#endif
1756
1757/* Check whether a task can use an open file descriptor to
1758 access an inode in a given way. Check access to the
1759 descriptor itself, and then use dentry_has_perm to
1760 check a particular permission to the file.
1761 Access to the descriptor is implicitly granted if it
1762 has the same SID as the process. If av is zero, then
1763 access to the file is not checked, e.g. for cases
1764 where only the descriptor is affected like seek. */
1765static int file_has_perm(const struct cred *cred,
1766 struct file *file,
1767 u32 av)
1768{
1769 struct file_security_struct *fsec = selinux_file(file);
1770 struct inode *inode = file_inode(file);
1771 struct common_audit_data ad;
1772 u32 sid = cred_sid(cred);
1773 int rc;
1774
1775 ad.type = LSM_AUDIT_DATA_FILE;
1776 ad.u.file = file;
1777
1778 if (sid != fsec->sid) {
1779 rc = avc_has_perm(&selinux_state,
1780 sid, fsec->sid,
1781 SECCLASS_FD,
1782 FD__USE,
1783 &ad);
1784 if (rc)
1785 goto out;
1786 }
1787
1788#ifdef CONFIG_BPF_SYSCALL
1789 rc = bpf_fd_pass(file, cred_sid(cred));
1790 if (rc)
1791 return rc;
1792#endif
1793
1794 /* av is zero if only checking access to the descriptor. */
1795 rc = 0;
1796 if (av)
1797 rc = inode_has_perm(cred, inode, av, &ad);
1798
1799out:
1800 return rc;
1801}
1802
1803/*
1804 * Determine the label for an inode that might be unioned.
1805 */
1806static int
1807selinux_determine_inode_label(const struct task_security_struct *tsec,
1808 struct inode *dir,
1809 const struct qstr *name, u16 tclass,
1810 u32 *_new_isid)
1811{
1812 const struct superblock_security_struct *sbsec =
1813 selinux_superblock(dir->i_sb);
1814
1815 if ((sbsec->flags & SE_SBINITIALIZED) &&
1816 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1817 *_new_isid = sbsec->mntpoint_sid;
1818 } else if ((sbsec->flags & SBLABEL_MNT) &&
1819 tsec->create_sid) {
1820 *_new_isid = tsec->create_sid;
1821 } else {
1822 const struct inode_security_struct *dsec = inode_security(dir);
1823 return security_transition_sid(&selinux_state, tsec->sid,
1824 dsec->sid, tclass,
1825 name, _new_isid);
1826 }
1827
1828 return 0;
1829}
1830
1831/* Check whether a task can create a file. */
1832static int may_create(struct inode *dir,
1833 struct dentry *dentry,
1834 u16 tclass)
1835{
1836 const struct task_security_struct *tsec = selinux_cred(current_cred());
1837 struct inode_security_struct *dsec;
1838 struct superblock_security_struct *sbsec;
1839 u32 sid, newsid;
1840 struct common_audit_data ad;
1841 int rc;
1842
1843 dsec = inode_security(dir);
1844 sbsec = selinux_superblock(dir->i_sb);
1845
1846 sid = tsec->sid;
1847
1848 ad.type = LSM_AUDIT_DATA_DENTRY;
1849 ad.u.dentry = dentry;
1850
1851 rc = avc_has_perm(&selinux_state,
1852 sid, dsec->sid, SECCLASS_DIR,
1853 DIR__ADD_NAME | DIR__SEARCH,
1854 &ad);
1855 if (rc)
1856 return rc;
1857
1858 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1859 &newsid);
1860 if (rc)
1861 return rc;
1862
1863 rc = avc_has_perm(&selinux_state,
1864 sid, newsid, tclass, FILE__CREATE, &ad);
1865 if (rc)
1866 return rc;
1867
1868 return avc_has_perm(&selinux_state,
1869 newsid, sbsec->sid,
1870 SECCLASS_FILESYSTEM,
1871 FILESYSTEM__ASSOCIATE, &ad);
1872}
1873
1874#define MAY_LINK 0
1875#define MAY_UNLINK 1
1876#define MAY_RMDIR 2
1877
1878/* Check whether a task can link, unlink, or rmdir a file/directory. */
1879static int may_link(struct inode *dir,
1880 struct dentry *dentry,
1881 int kind)
1882
1883{
1884 struct inode_security_struct *dsec, *isec;
1885 struct common_audit_data ad;
1886 u32 sid = current_sid();
1887 u32 av;
1888 int rc;
1889
1890 dsec = inode_security(dir);
1891 isec = backing_inode_security(dentry);
1892
1893 ad.type = LSM_AUDIT_DATA_DENTRY;
1894 ad.u.dentry = dentry;
1895
1896 av = DIR__SEARCH;
1897 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1898 rc = avc_has_perm(&selinux_state,
1899 sid, dsec->sid, SECCLASS_DIR, av, &ad);
1900 if (rc)
1901 return rc;
1902
1903 switch (kind) {
1904 case MAY_LINK:
1905 av = FILE__LINK;
1906 break;
1907 case MAY_UNLINK:
1908 av = FILE__UNLINK;
1909 break;
1910 case MAY_RMDIR:
1911 av = DIR__RMDIR;
1912 break;
1913 default:
1914 pr_warn("SELinux: %s: unrecognized kind %d\n",
1915 __func__, kind);
1916 return 0;
1917 }
1918
1919 rc = avc_has_perm(&selinux_state,
1920 sid, isec->sid, isec->sclass, av, &ad);
1921 return rc;
1922}
1923
1924static inline int may_rename(struct inode *old_dir,
1925 struct dentry *old_dentry,
1926 struct inode *new_dir,
1927 struct dentry *new_dentry)
1928{
1929 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1930 struct common_audit_data ad;
1931 u32 sid = current_sid();
1932 u32 av;
1933 int old_is_dir, new_is_dir;
1934 int rc;
1935
1936 old_dsec = inode_security(old_dir);
1937 old_isec = backing_inode_security(old_dentry);
1938 old_is_dir = d_is_dir(old_dentry);
1939 new_dsec = inode_security(new_dir);
1940
1941 ad.type = LSM_AUDIT_DATA_DENTRY;
1942
1943 ad.u.dentry = old_dentry;
1944 rc = avc_has_perm(&selinux_state,
1945 sid, old_dsec->sid, SECCLASS_DIR,
1946 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1947 if (rc)
1948 return rc;
1949 rc = avc_has_perm(&selinux_state,
1950 sid, old_isec->sid,
1951 old_isec->sclass, FILE__RENAME, &ad);
1952 if (rc)
1953 return rc;
1954 if (old_is_dir && new_dir != old_dir) {
1955 rc = avc_has_perm(&selinux_state,
1956 sid, old_isec->sid,
1957 old_isec->sclass, DIR__REPARENT, &ad);
1958 if (rc)
1959 return rc;
1960 }
1961
1962 ad.u.dentry = new_dentry;
1963 av = DIR__ADD_NAME | DIR__SEARCH;
1964 if (d_is_positive(new_dentry))
1965 av |= DIR__REMOVE_NAME;
1966 rc = avc_has_perm(&selinux_state,
1967 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1968 if (rc)
1969 return rc;
1970 if (d_is_positive(new_dentry)) {
1971 new_isec = backing_inode_security(new_dentry);
1972 new_is_dir = d_is_dir(new_dentry);
1973 rc = avc_has_perm(&selinux_state,
1974 sid, new_isec->sid,
1975 new_isec->sclass,
1976 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1977 if (rc)
1978 return rc;
1979 }
1980
1981 return 0;
1982}
1983
1984/* Check whether a task can perform a filesystem operation. */
1985static int superblock_has_perm(const struct cred *cred,
1986 struct super_block *sb,
1987 u32 perms,
1988 struct common_audit_data *ad)
1989{
1990 struct superblock_security_struct *sbsec;
1991 u32 sid = cred_sid(cred);
1992
1993 sbsec = selinux_superblock(sb);
1994 return avc_has_perm(&selinux_state,
1995 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1996}
1997
1998/* Convert a Linux mode and permission mask to an access vector. */
1999static inline u32 file_mask_to_av(int mode, int mask)
2000{
2001 u32 av = 0;
2002
2003 if (!S_ISDIR(mode)) {
2004 if (mask & MAY_EXEC)
2005 av |= FILE__EXECUTE;
2006 if (mask & MAY_READ)
2007 av |= FILE__READ;
2008
2009 if (mask & MAY_APPEND)
2010 av |= FILE__APPEND;
2011 else if (mask & MAY_WRITE)
2012 av |= FILE__WRITE;
2013
2014 } else {
2015 if (mask & MAY_EXEC)
2016 av |= DIR__SEARCH;
2017 if (mask & MAY_WRITE)
2018 av |= DIR__WRITE;
2019 if (mask & MAY_READ)
2020 av |= DIR__READ;
2021 }
2022
2023 return av;
2024}
2025
2026/* Convert a Linux file to an access vector. */
2027static inline u32 file_to_av(struct file *file)
2028{
2029 u32 av = 0;
2030
2031 if (file->f_mode & FMODE_READ)
2032 av |= FILE__READ;
2033 if (file->f_mode & FMODE_WRITE) {
2034 if (file->f_flags & O_APPEND)
2035 av |= FILE__APPEND;
2036 else
2037 av |= FILE__WRITE;
2038 }
2039 if (!av) {
2040 /*
2041 * Special file opened with flags 3 for ioctl-only use.
2042 */
2043 av = FILE__IOCTL;
2044 }
2045
2046 return av;
2047}
2048
2049/*
2050 * Convert a file to an access vector and include the correct
2051 * open permission.
2052 */
2053static inline u32 open_file_to_av(struct file *file)
2054{
2055 u32 av = file_to_av(file);
2056 struct inode *inode = file_inode(file);
2057
2058 if (selinux_policycap_openperm() &&
2059 inode->i_sb->s_magic != SOCKFS_MAGIC)
2060 av |= FILE__OPEN;
2061
2062 return av;
2063}
2064
2065/* Hook functions begin here. */
2066
2067static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2068{
2069 return avc_has_perm(&selinux_state,
2070 current_sid(), task_sid_binder(mgr), SECCLASS_BINDER,
2071 BINDER__SET_CONTEXT_MGR, NULL);
2072}
2073
2074static int selinux_binder_transaction(struct task_struct *from,
2075 struct task_struct *to)
2076{
2077 u32 mysid = current_sid();
2078 u32 fromsid = task_sid_binder(from);
2079 int rc;
2080
2081 if (mysid != fromsid) {
2082 rc = avc_has_perm(&selinux_state,
2083 mysid, fromsid, SECCLASS_BINDER,
2084 BINDER__IMPERSONATE, NULL);
2085 if (rc)
2086 return rc;
2087 }
2088
2089 return avc_has_perm(&selinux_state, fromsid, task_sid_binder(to),
2090 SECCLASS_BINDER, BINDER__CALL, NULL);
2091}
2092
2093static int selinux_binder_transfer_binder(struct task_struct *from,
2094 struct task_struct *to)
2095{
2096 return avc_has_perm(&selinux_state,
2097 task_sid_binder(from), task_sid_binder(to),
2098 SECCLASS_BINDER, BINDER__TRANSFER,
2099 NULL);
2100}
2101
2102static int selinux_binder_transfer_file(struct task_struct *from,
2103 struct task_struct *to,
2104 struct file *file)
2105{
2106 u32 sid = task_sid_binder(to);
2107 struct file_security_struct *fsec = selinux_file(file);
2108 struct dentry *dentry = file->f_path.dentry;
2109 struct inode_security_struct *isec;
2110 struct common_audit_data ad;
2111 int rc;
2112
2113 ad.type = LSM_AUDIT_DATA_PATH;
2114 ad.u.path = file->f_path;
2115
2116 if (sid != fsec->sid) {
2117 rc = avc_has_perm(&selinux_state,
2118 sid, fsec->sid,
2119 SECCLASS_FD,
2120 FD__USE,
2121 &ad);
2122 if (rc)
2123 return rc;
2124 }
2125
2126#ifdef CONFIG_BPF_SYSCALL
2127 rc = bpf_fd_pass(file, sid);
2128 if (rc)
2129 return rc;
2130#endif
2131
2132 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2133 return 0;
2134
2135 isec = backing_inode_security(dentry);
2136 return avc_has_perm(&selinux_state,
2137 sid, isec->sid, isec->sclass, file_to_av(file),
2138 &ad);
2139}
2140
2141static int selinux_ptrace_access_check(struct task_struct *child,
2142 unsigned int mode)
2143{
2144 u32 sid = current_sid();
2145 u32 csid = task_sid_obj(child);
2146
2147 if (mode & PTRACE_MODE_READ)
2148 return avc_has_perm(&selinux_state,
2149 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150
2151 return avc_has_perm(&selinux_state,
2152 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157 return avc_has_perm(&selinux_state,
2158 task_sid_obj(parent), task_sid_obj(current),
2159 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2160}
2161
2162static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2163 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2164{
2165 return avc_has_perm(&selinux_state,
2166 current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2167 PROCESS__GETCAP, NULL);
2168}
2169
2170static int selinux_capset(struct cred *new, const struct cred *old,
2171 const kernel_cap_t *effective,
2172 const kernel_cap_t *inheritable,
2173 const kernel_cap_t *permitted)
2174{
2175 return avc_has_perm(&selinux_state,
2176 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2177 PROCESS__SETCAP, NULL);
2178}
2179
2180/*
2181 * (This comment used to live with the selinux_task_setuid hook,
2182 * which was removed).
2183 *
2184 * Since setuid only affects the current process, and since the SELinux
2185 * controls are not based on the Linux identity attributes, SELinux does not
2186 * need to control this operation. However, SELinux does control the use of
2187 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2188 */
2189
2190static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2191 int cap, unsigned int opts)
2192{
2193 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2194}
2195
2196static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2197{
2198 const struct cred *cred = current_cred();
2199 int rc = 0;
2200
2201 if (!sb)
2202 return 0;
2203
2204 switch (cmds) {
2205 case Q_SYNC:
2206 case Q_QUOTAON:
2207 case Q_QUOTAOFF:
2208 case Q_SETINFO:
2209 case Q_SETQUOTA:
2210 case Q_XQUOTAOFF:
2211 case Q_XQUOTAON:
2212 case Q_XSETQLIM:
2213 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2214 break;
2215 case Q_GETFMT:
2216 case Q_GETINFO:
2217 case Q_GETQUOTA:
2218 case Q_XGETQUOTA:
2219 case Q_XGETQSTAT:
2220 case Q_XGETQSTATV:
2221 case Q_XGETNEXTQUOTA:
2222 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2223 break;
2224 default:
2225 rc = 0; /* let the kernel handle invalid cmds */
2226 break;
2227 }
2228 return rc;
2229}
2230
2231static int selinux_quota_on(struct dentry *dentry)
2232{
2233 const struct cred *cred = current_cred();
2234
2235 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2236}
2237
2238static int selinux_syslog(int type)
2239{
2240 switch (type) {
2241 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2242 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2243 return avc_has_perm(&selinux_state,
2244 current_sid(), SECINITSID_KERNEL,
2245 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2246 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2247 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2248 /* Set level of messages printed to console */
2249 case SYSLOG_ACTION_CONSOLE_LEVEL:
2250 return avc_has_perm(&selinux_state,
2251 current_sid(), SECINITSID_KERNEL,
2252 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2253 NULL);
2254 }
2255 /* All other syslog types */
2256 return avc_has_perm(&selinux_state,
2257 current_sid(), SECINITSID_KERNEL,
2258 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2259}
2260
2261/*
2262 * Check that a process has enough memory to allocate a new virtual
2263 * mapping. 0 means there is enough memory for the allocation to
2264 * succeed and -ENOMEM implies there is not.
2265 *
2266 * Do not audit the selinux permission check, as this is applied to all
2267 * processes that allocate mappings.
2268 */
2269static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2270{
2271 int rc, cap_sys_admin = 0;
2272
2273 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2274 CAP_OPT_NOAUDIT, true);
2275 if (rc == 0)
2276 cap_sys_admin = 1;
2277
2278 return cap_sys_admin;
2279}
2280
2281/* binprm security operations */
2282
2283static u32 ptrace_parent_sid(void)
2284{
2285 u32 sid = 0;
2286 struct task_struct *tracer;
2287
2288 rcu_read_lock();
2289 tracer = ptrace_parent(current);
2290 if (tracer)
2291 sid = task_sid_obj(tracer);
2292 rcu_read_unlock();
2293
2294 return sid;
2295}
2296
2297static int check_nnp_nosuid(const struct linux_binprm *bprm,
2298 const struct task_security_struct *old_tsec,
2299 const struct task_security_struct *new_tsec)
2300{
2301 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2302 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2303 int rc;
2304 u32 av;
2305
2306 if (!nnp && !nosuid)
2307 return 0; /* neither NNP nor nosuid */
2308
2309 if (new_tsec->sid == old_tsec->sid)
2310 return 0; /* No change in credentials */
2311
2312 /*
2313 * If the policy enables the nnp_nosuid_transition policy capability,
2314 * then we permit transitions under NNP or nosuid if the
2315 * policy allows the corresponding permission between
2316 * the old and new contexts.
2317 */
2318 if (selinux_policycap_nnp_nosuid_transition()) {
2319 av = 0;
2320 if (nnp)
2321 av |= PROCESS2__NNP_TRANSITION;
2322 if (nosuid)
2323 av |= PROCESS2__NOSUID_TRANSITION;
2324 rc = avc_has_perm(&selinux_state,
2325 old_tsec->sid, new_tsec->sid,
2326 SECCLASS_PROCESS2, av, NULL);
2327 if (!rc)
2328 return 0;
2329 }
2330
2331 /*
2332 * We also permit NNP or nosuid transitions to bounded SIDs,
2333 * i.e. SIDs that are guaranteed to only be allowed a subset
2334 * of the permissions of the current SID.
2335 */
2336 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2337 new_tsec->sid);
2338 if (!rc)
2339 return 0;
2340
2341 /*
2342 * On failure, preserve the errno values for NNP vs nosuid.
2343 * NNP: Operation not permitted for caller.
2344 * nosuid: Permission denied to file.
2345 */
2346 if (nnp)
2347 return -EPERM;
2348 return -EACCES;
2349}
2350
2351static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2352{
2353 const struct task_security_struct *old_tsec;
2354 struct task_security_struct *new_tsec;
2355 struct inode_security_struct *isec;
2356 struct common_audit_data ad;
2357 struct inode *inode = file_inode(bprm->file);
2358 int rc;
2359
2360 /* SELinux context only depends on initial program or script and not
2361 * the script interpreter */
2362
2363 old_tsec = selinux_cred(current_cred());
2364 new_tsec = selinux_cred(bprm->cred);
2365 isec = inode_security(inode);
2366
2367 /* Default to the current task SID. */
2368 new_tsec->sid = old_tsec->sid;
2369 new_tsec->osid = old_tsec->sid;
2370
2371 /* Reset fs, key, and sock SIDs on execve. */
2372 new_tsec->create_sid = 0;
2373 new_tsec->keycreate_sid = 0;
2374 new_tsec->sockcreate_sid = 0;
2375
2376 if (old_tsec->exec_sid) {
2377 new_tsec->sid = old_tsec->exec_sid;
2378 /* Reset exec SID on execve. */
2379 new_tsec->exec_sid = 0;
2380
2381 /* Fail on NNP or nosuid if not an allowed transition. */
2382 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2383 if (rc)
2384 return rc;
2385 } else {
2386 /* Check for a default transition on this program. */
2387 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2388 isec->sid, SECCLASS_PROCESS, NULL,
2389 &new_tsec->sid);
2390 if (rc)
2391 return rc;
2392
2393 /*
2394 * Fallback to old SID on NNP or nosuid if not an allowed
2395 * transition.
2396 */
2397 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2398 if (rc)
2399 new_tsec->sid = old_tsec->sid;
2400 }
2401
2402 ad.type = LSM_AUDIT_DATA_FILE;
2403 ad.u.file = bprm->file;
2404
2405 if (new_tsec->sid == old_tsec->sid) {
2406 rc = avc_has_perm(&selinux_state,
2407 old_tsec->sid, isec->sid,
2408 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2409 if (rc)
2410 return rc;
2411 } else {
2412 /* Check permissions for the transition. */
2413 rc = avc_has_perm(&selinux_state,
2414 old_tsec->sid, new_tsec->sid,
2415 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2416 if (rc)
2417 return rc;
2418
2419 rc = avc_has_perm(&selinux_state,
2420 new_tsec->sid, isec->sid,
2421 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2422 if (rc)
2423 return rc;
2424
2425 /* Check for shared state */
2426 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2427 rc = avc_has_perm(&selinux_state,
2428 old_tsec->sid, new_tsec->sid,
2429 SECCLASS_PROCESS, PROCESS__SHARE,
2430 NULL);
2431 if (rc)
2432 return -EPERM;
2433 }
2434
2435 /* Make sure that anyone attempting to ptrace over a task that
2436 * changes its SID has the appropriate permit */
2437 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2438 u32 ptsid = ptrace_parent_sid();
2439 if (ptsid != 0) {
2440 rc = avc_has_perm(&selinux_state,
2441 ptsid, new_tsec->sid,
2442 SECCLASS_PROCESS,
2443 PROCESS__PTRACE, NULL);
2444 if (rc)
2445 return -EPERM;
2446 }
2447 }
2448
2449 /* Clear any possibly unsafe personality bits on exec: */
2450 bprm->per_clear |= PER_CLEAR_ON_SETID;
2451
2452 /* Enable secure mode for SIDs transitions unless
2453 the noatsecure permission is granted between
2454 the two SIDs, i.e. ahp returns 0. */
2455 rc = avc_has_perm(&selinux_state,
2456 old_tsec->sid, new_tsec->sid,
2457 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2458 NULL);
2459 bprm->secureexec |= !!rc;
2460 }
2461
2462 return 0;
2463}
2464
2465static int match_file(const void *p, struct file *file, unsigned fd)
2466{
2467 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2468}
2469
2470/* Derived from fs/exec.c:flush_old_files. */
2471static inline void flush_unauthorized_files(const struct cred *cred,
2472 struct files_struct *files)
2473{
2474 struct file *file, *devnull = NULL;
2475 struct tty_struct *tty;
2476 int drop_tty = 0;
2477 unsigned n;
2478
2479 tty = get_current_tty();
2480 if (tty) {
2481 spin_lock(&tty->files_lock);
2482 if (!list_empty(&tty->tty_files)) {
2483 struct tty_file_private *file_priv;
2484
2485 /* Revalidate access to controlling tty.
2486 Use file_path_has_perm on the tty path directly
2487 rather than using file_has_perm, as this particular
2488 open file may belong to another process and we are
2489 only interested in the inode-based check here. */
2490 file_priv = list_first_entry(&tty->tty_files,
2491 struct tty_file_private, list);
2492 file = file_priv->file;
2493 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2494 drop_tty = 1;
2495 }
2496 spin_unlock(&tty->files_lock);
2497 tty_kref_put(tty);
2498 }
2499 /* Reset controlling tty. */
2500 if (drop_tty)
2501 no_tty();
2502
2503 /* Revalidate access to inherited open files. */
2504 n = iterate_fd(files, 0, match_file, cred);
2505 if (!n) /* none found? */
2506 return;
2507
2508 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2509 if (IS_ERR(devnull))
2510 devnull = NULL;
2511 /* replace all the matching ones with this */
2512 do {
2513 replace_fd(n - 1, devnull, 0);
2514 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2515 if (devnull)
2516 fput(devnull);
2517}
2518
2519/*
2520 * Prepare a process for imminent new credential changes due to exec
2521 */
2522static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2523{
2524 struct task_security_struct *new_tsec;
2525 struct rlimit *rlim, *initrlim;
2526 int rc, i;
2527
2528 new_tsec = selinux_cred(bprm->cred);
2529 if (new_tsec->sid == new_tsec->osid)
2530 return;
2531
2532 /* Close files for which the new task SID is not authorized. */
2533 flush_unauthorized_files(bprm->cred, current->files);
2534
2535 /* Always clear parent death signal on SID transitions. */
2536 current->pdeath_signal = 0;
2537
2538 /* Check whether the new SID can inherit resource limits from the old
2539 * SID. If not, reset all soft limits to the lower of the current
2540 * task's hard limit and the init task's soft limit.
2541 *
2542 * Note that the setting of hard limits (even to lower them) can be
2543 * controlled by the setrlimit check. The inclusion of the init task's
2544 * soft limit into the computation is to avoid resetting soft limits
2545 * higher than the default soft limit for cases where the default is
2546 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2547 */
2548 rc = avc_has_perm(&selinux_state,
2549 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2550 PROCESS__RLIMITINH, NULL);
2551 if (rc) {
2552 /* protect against do_prlimit() */
2553 task_lock(current);
2554 for (i = 0; i < RLIM_NLIMITS; i++) {
2555 rlim = current->signal->rlim + i;
2556 initrlim = init_task.signal->rlim + i;
2557 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2558 }
2559 task_unlock(current);
2560 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2561 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2562 }
2563}
2564
2565/*
2566 * Clean up the process immediately after the installation of new credentials
2567 * due to exec
2568 */
2569static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2570{
2571 const struct task_security_struct *tsec = selinux_cred(current_cred());
2572 u32 osid, sid;
2573 int rc;
2574
2575 osid = tsec->osid;
2576 sid = tsec->sid;
2577
2578 if (sid == osid)
2579 return;
2580
2581 /* Check whether the new SID can inherit signal state from the old SID.
2582 * If not, clear itimers to avoid subsequent signal generation and
2583 * flush and unblock signals.
2584 *
2585 * This must occur _after_ the task SID has been updated so that any
2586 * kill done after the flush will be checked against the new SID.
2587 */
2588 rc = avc_has_perm(&selinux_state,
2589 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2590 if (rc) {
2591 clear_itimer();
2592
2593 spin_lock_irq(¤t->sighand->siglock);
2594 if (!fatal_signal_pending(current)) {
2595 flush_sigqueue(¤t->pending);
2596 flush_sigqueue(¤t->signal->shared_pending);
2597 flush_signal_handlers(current, 1);
2598 sigemptyset(¤t->blocked);
2599 recalc_sigpending();
2600 }
2601 spin_unlock_irq(¤t->sighand->siglock);
2602 }
2603
2604 /* Wake up the parent if it is waiting so that it can recheck
2605 * wait permission to the new task SID. */
2606 read_lock(&tasklist_lock);
2607 __wake_up_parent(current, current->real_parent);
2608 read_unlock(&tasklist_lock);
2609}
2610
2611/* superblock security operations */
2612
2613static int selinux_sb_alloc_security(struct super_block *sb)
2614{
2615 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2616
2617 mutex_init(&sbsec->lock);
2618 INIT_LIST_HEAD(&sbsec->isec_head);
2619 spin_lock_init(&sbsec->isec_lock);
2620 sbsec->sid = SECINITSID_UNLABELED;
2621 sbsec->def_sid = SECINITSID_FILE;
2622 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2623
2624 return 0;
2625}
2626
2627static inline int opt_len(const char *s)
2628{
2629 bool open_quote = false;
2630 int len;
2631 char c;
2632
2633 for (len = 0; (c = s[len]) != '\0'; len++) {
2634 if (c == '"')
2635 open_quote = !open_quote;
2636 if (c == ',' && !open_quote)
2637 break;
2638 }
2639 return len;
2640}
2641
2642static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2643{
2644 char *from = options;
2645 char *to = options;
2646 bool first = true;
2647 int rc;
2648
2649 while (1) {
2650 int len = opt_len(from);
2651 int token;
2652 char *arg = NULL;
2653
2654 token = match_opt_prefix(from, len, &arg);
2655
2656 if (token != Opt_error) {
2657 char *p, *q;
2658
2659 /* strip quotes */
2660 if (arg) {
2661 for (p = q = arg; p < from + len; p++) {
2662 char c = *p;
2663 if (c != '"')
2664 *q++ = c;
2665 }
2666 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2667 if (!arg) {
2668 rc = -ENOMEM;
2669 goto free_opt;
2670 }
2671 }
2672 rc = selinux_add_opt(token, arg, mnt_opts);
2673 if (unlikely(rc)) {
2674 kfree(arg);
2675 goto free_opt;
2676 }
2677 } else {
2678 if (!first) { // copy with preceding comma
2679 from--;
2680 len++;
2681 }
2682 if (to != from)
2683 memmove(to, from, len);
2684 to += len;
2685 first = false;
2686 }
2687 if (!from[len])
2688 break;
2689 from += len + 1;
2690 }
2691 *to = '\0';
2692 return 0;
2693
2694free_opt:
2695 if (*mnt_opts) {
2696 selinux_free_mnt_opts(*mnt_opts);
2697 *mnt_opts = NULL;
2698 }
2699 return rc;
2700}
2701
2702static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2703{
2704 struct selinux_mnt_opts *opts = mnt_opts;
2705 struct superblock_security_struct *sbsec = sb->s_security;
2706 u32 sid;
2707 int rc;
2708
2709 /*
2710 * Superblock not initialized (i.e. no options) - reject if any
2711 * options specified, otherwise accept.
2712 */
2713 if (!(sbsec->flags & SE_SBINITIALIZED))
2714 return opts ? 1 : 0;
2715
2716 /*
2717 * Superblock initialized and no options specified - reject if
2718 * superblock has any options set, otherwise accept.
2719 */
2720 if (!opts)
2721 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2722
2723 if (opts->fscontext) {
2724 rc = parse_sid(sb, opts->fscontext, &sid);
2725 if (rc)
2726 return 1;
2727 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2728 return 1;
2729 }
2730 if (opts->context) {
2731 rc = parse_sid(sb, opts->context, &sid);
2732 if (rc)
2733 return 1;
2734 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2735 return 1;
2736 }
2737 if (opts->rootcontext) {
2738 struct inode_security_struct *root_isec;
2739
2740 root_isec = backing_inode_security(sb->s_root);
2741 rc = parse_sid(sb, opts->rootcontext, &sid);
2742 if (rc)
2743 return 1;
2744 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2745 return 1;
2746 }
2747 if (opts->defcontext) {
2748 rc = parse_sid(sb, opts->defcontext, &sid);
2749 if (rc)
2750 return 1;
2751 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2752 return 1;
2753 }
2754 return 0;
2755}
2756
2757static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2758{
2759 struct selinux_mnt_opts *opts = mnt_opts;
2760 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2761 u32 sid;
2762 int rc;
2763
2764 if (!(sbsec->flags & SE_SBINITIALIZED))
2765 return 0;
2766
2767 if (!opts)
2768 return 0;
2769
2770 if (opts->fscontext) {
2771 rc = parse_sid(sb, opts->fscontext, &sid);
2772 if (rc)
2773 return rc;
2774 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2775 goto out_bad_option;
2776 }
2777 if (opts->context) {
2778 rc = parse_sid(sb, opts->context, &sid);
2779 if (rc)
2780 return rc;
2781 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2782 goto out_bad_option;
2783 }
2784 if (opts->rootcontext) {
2785 struct inode_security_struct *root_isec;
2786 root_isec = backing_inode_security(sb->s_root);
2787 rc = parse_sid(sb, opts->rootcontext, &sid);
2788 if (rc)
2789 return rc;
2790 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2791 goto out_bad_option;
2792 }
2793 if (opts->defcontext) {
2794 rc = parse_sid(sb, opts->defcontext, &sid);
2795 if (rc)
2796 return rc;
2797 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2798 goto out_bad_option;
2799 }
2800 return 0;
2801
2802out_bad_option:
2803 pr_warn("SELinux: unable to change security options "
2804 "during remount (dev %s, type=%s)\n", sb->s_id,
2805 sb->s_type->name);
2806 return -EINVAL;
2807}
2808
2809static int selinux_sb_kern_mount(struct super_block *sb)
2810{
2811 const struct cred *cred = current_cred();
2812 struct common_audit_data ad;
2813
2814 ad.type = LSM_AUDIT_DATA_DENTRY;
2815 ad.u.dentry = sb->s_root;
2816 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2817}
2818
2819static int selinux_sb_statfs(struct dentry *dentry)
2820{
2821 const struct cred *cred = current_cred();
2822 struct common_audit_data ad;
2823
2824 ad.type = LSM_AUDIT_DATA_DENTRY;
2825 ad.u.dentry = dentry->d_sb->s_root;
2826 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2827}
2828
2829static int selinux_mount(const char *dev_name,
2830 const struct path *path,
2831 const char *type,
2832 unsigned long flags,
2833 void *data)
2834{
2835 const struct cred *cred = current_cred();
2836
2837 if (flags & MS_REMOUNT)
2838 return superblock_has_perm(cred, path->dentry->d_sb,
2839 FILESYSTEM__REMOUNT, NULL);
2840 else
2841 return path_has_perm(cred, path, FILE__MOUNTON);
2842}
2843
2844static int selinux_move_mount(const struct path *from_path,
2845 const struct path *to_path)
2846{
2847 const struct cred *cred = current_cred();
2848
2849 return path_has_perm(cred, to_path, FILE__MOUNTON);
2850}
2851
2852static int selinux_umount(struct vfsmount *mnt, int flags)
2853{
2854 const struct cred *cred = current_cred();
2855
2856 return superblock_has_perm(cred, mnt->mnt_sb,
2857 FILESYSTEM__UNMOUNT, NULL);
2858}
2859
2860static int selinux_fs_context_dup(struct fs_context *fc,
2861 struct fs_context *src_fc)
2862{
2863 const struct selinux_mnt_opts *src = src_fc->security;
2864 struct selinux_mnt_opts *opts;
2865
2866 if (!src)
2867 return 0;
2868
2869 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2870 if (!fc->security)
2871 return -ENOMEM;
2872
2873 opts = fc->security;
2874
2875 if (src->fscontext) {
2876 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2877 if (!opts->fscontext)
2878 return -ENOMEM;
2879 }
2880 if (src->context) {
2881 opts->context = kstrdup(src->context, GFP_KERNEL);
2882 if (!opts->context)
2883 return -ENOMEM;
2884 }
2885 if (src->rootcontext) {
2886 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2887 if (!opts->rootcontext)
2888 return -ENOMEM;
2889 }
2890 if (src->defcontext) {
2891 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2892 if (!opts->defcontext)
2893 return -ENOMEM;
2894 }
2895 return 0;
2896}
2897
2898static const struct fs_parameter_spec selinux_fs_parameters[] = {
2899 fsparam_string(CONTEXT_STR, Opt_context),
2900 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2901 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2902 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2903 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2904 {}
2905};
2906
2907static int selinux_fs_context_parse_param(struct fs_context *fc,
2908 struct fs_parameter *param)
2909{
2910 struct fs_parse_result result;
2911 int opt, rc;
2912
2913 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2914 if (opt < 0)
2915 return opt;
2916
2917 rc = selinux_add_opt(opt, param->string, &fc->security);
2918 if (!rc) {
2919 param->string = NULL;
2920 rc = 1;
2921 }
2922 return rc;
2923}
2924
2925/* inode security operations */
2926
2927static int selinux_inode_alloc_security(struct inode *inode)
2928{
2929 struct inode_security_struct *isec = selinux_inode(inode);
2930 u32 sid = current_sid();
2931
2932 spin_lock_init(&isec->lock);
2933 INIT_LIST_HEAD(&isec->list);
2934 isec->inode = inode;
2935 isec->sid = SECINITSID_UNLABELED;
2936 isec->sclass = SECCLASS_FILE;
2937 isec->task_sid = sid;
2938 isec->initialized = LABEL_INVALID;
2939
2940 return 0;
2941}
2942
2943static void selinux_inode_free_security(struct inode *inode)
2944{
2945 inode_free_security(inode);
2946}
2947
2948static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2949 const struct qstr *name, void **ctx,
2950 u32 *ctxlen)
2951{
2952 u32 newsid;
2953 int rc;
2954
2955 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2956 d_inode(dentry->d_parent), name,
2957 inode_mode_to_security_class(mode),
2958 &newsid);
2959 if (rc)
2960 return rc;
2961
2962 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2963 ctxlen);
2964}
2965
2966static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2967 struct qstr *name,
2968 const struct cred *old,
2969 struct cred *new)
2970{
2971 u32 newsid;
2972 int rc;
2973 struct task_security_struct *tsec;
2974
2975 rc = selinux_determine_inode_label(selinux_cred(old),
2976 d_inode(dentry->d_parent), name,
2977 inode_mode_to_security_class(mode),
2978 &newsid);
2979 if (rc)
2980 return rc;
2981
2982 tsec = selinux_cred(new);
2983 tsec->create_sid = newsid;
2984 return 0;
2985}
2986
2987static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2988 const struct qstr *qstr,
2989 const char **name,
2990 void **value, size_t *len)
2991{
2992 const struct task_security_struct *tsec = selinux_cred(current_cred());
2993 struct superblock_security_struct *sbsec;
2994 u32 newsid, clen;
2995 int rc;
2996 char *context;
2997
2998 sbsec = selinux_superblock(dir->i_sb);
2999
3000 newsid = tsec->create_sid;
3001
3002 rc = selinux_determine_inode_label(tsec, dir, qstr,
3003 inode_mode_to_security_class(inode->i_mode),
3004 &newsid);
3005 if (rc)
3006 return rc;
3007
3008 /* Possibly defer initialization to selinux_complete_init. */
3009 if (sbsec->flags & SE_SBINITIALIZED) {
3010 struct inode_security_struct *isec = selinux_inode(inode);
3011 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3012 isec->sid = newsid;
3013 isec->initialized = LABEL_INITIALIZED;
3014 }
3015
3016 if (!selinux_initialized(&selinux_state) ||
3017 !(sbsec->flags & SBLABEL_MNT))
3018 return -EOPNOTSUPP;
3019
3020 if (name)
3021 *name = XATTR_SELINUX_SUFFIX;
3022
3023 if (value && len) {
3024 rc = security_sid_to_context_force(&selinux_state, newsid,
3025 &context, &clen);
3026 if (rc)
3027 return rc;
3028 *value = context;
3029 *len = clen;
3030 }
3031
3032 return 0;
3033}
3034
3035static int selinux_inode_init_security_anon(struct inode *inode,
3036 const struct qstr *name,
3037 const struct inode *context_inode)
3038{
3039 const struct task_security_struct *tsec = selinux_cred(current_cred());
3040 struct common_audit_data ad;
3041 struct inode_security_struct *isec;
3042 int rc;
3043
3044 if (unlikely(!selinux_initialized(&selinux_state)))
3045 return 0;
3046
3047 isec = selinux_inode(inode);
3048
3049 /*
3050 * We only get here once per ephemeral inode. The inode has
3051 * been initialized via inode_alloc_security but is otherwise
3052 * untouched.
3053 */
3054
3055 if (context_inode) {
3056 struct inode_security_struct *context_isec =
3057 selinux_inode(context_inode);
3058 if (context_isec->initialized != LABEL_INITIALIZED) {
3059 pr_err("SELinux: context_inode is not initialized");
3060 return -EACCES;
3061 }
3062
3063 isec->sclass = context_isec->sclass;
3064 isec->sid = context_isec->sid;
3065 } else {
3066 isec->sclass = SECCLASS_ANON_INODE;
3067 rc = security_transition_sid(
3068 &selinux_state, tsec->sid, tsec->sid,
3069 isec->sclass, name, &isec->sid);
3070 if (rc)
3071 return rc;
3072 }
3073
3074 isec->initialized = LABEL_INITIALIZED;
3075 /*
3076 * Now that we've initialized security, check whether we're
3077 * allowed to actually create this type of anonymous inode.
3078 */
3079
3080 ad.type = LSM_AUDIT_DATA_INODE;
3081 ad.u.inode = inode;
3082
3083 return avc_has_perm(&selinux_state,
3084 tsec->sid,
3085 isec->sid,
3086 isec->sclass,
3087 FILE__CREATE,
3088 &ad);
3089}
3090
3091static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3092{
3093 return may_create(dir, dentry, SECCLASS_FILE);
3094}
3095
3096static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3097{
3098 return may_link(dir, old_dentry, MAY_LINK);
3099}
3100
3101static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3102{
3103 return may_link(dir, dentry, MAY_UNLINK);
3104}
3105
3106static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3107{
3108 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3109}
3110
3111static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3112{
3113 return may_create(dir, dentry, SECCLASS_DIR);
3114}
3115
3116static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3117{
3118 return may_link(dir, dentry, MAY_RMDIR);
3119}
3120
3121static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3122{
3123 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3124}
3125
3126static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3127 struct inode *new_inode, struct dentry *new_dentry)
3128{
3129 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3130}
3131
3132static int selinux_inode_readlink(struct dentry *dentry)
3133{
3134 const struct cred *cred = current_cred();
3135
3136 return dentry_has_perm(cred, dentry, FILE__READ);
3137}
3138
3139static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3140 bool rcu)
3141{
3142 const struct cred *cred = current_cred();
3143 struct common_audit_data ad;
3144 struct inode_security_struct *isec;
3145 u32 sid;
3146
3147 validate_creds(cred);
3148
3149 ad.type = LSM_AUDIT_DATA_DENTRY;
3150 ad.u.dentry = dentry;
3151 sid = cred_sid(cred);
3152 isec = inode_security_rcu(inode, rcu);
3153 if (IS_ERR(isec))
3154 return PTR_ERR(isec);
3155
3156 return avc_has_perm(&selinux_state,
3157 sid, isec->sid, isec->sclass, FILE__READ, &ad);
3158}
3159
3160static noinline int audit_inode_permission(struct inode *inode,
3161 u32 perms, u32 audited, u32 denied,
3162 int result)
3163{
3164 struct common_audit_data ad;
3165 struct inode_security_struct *isec = selinux_inode(inode);
3166
3167 ad.type = LSM_AUDIT_DATA_INODE;
3168 ad.u.inode = inode;
3169
3170 return slow_avc_audit(&selinux_state,
3171 current_sid(), isec->sid, isec->sclass, perms,
3172 audited, denied, result, &ad);
3173}
3174
3175static int selinux_inode_permission(struct inode *inode, int mask)
3176{
3177 const struct cred *cred = current_cred();
3178 u32 perms;
3179 bool from_access;
3180 bool no_block = mask & MAY_NOT_BLOCK;
3181 struct inode_security_struct *isec;
3182 u32 sid;
3183 struct av_decision avd;
3184 int rc, rc2;
3185 u32 audited, denied;
3186
3187 from_access = mask & MAY_ACCESS;
3188 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3189
3190 /* No permission to check. Existence test. */
3191 if (!mask)
3192 return 0;
3193
3194 validate_creds(cred);
3195
3196 if (unlikely(IS_PRIVATE(inode)))
3197 return 0;
3198
3199 perms = file_mask_to_av(inode->i_mode, mask);
3200
3201 sid = cred_sid(cred);
3202 isec = inode_security_rcu(inode, no_block);
3203 if (IS_ERR(isec))
3204 return PTR_ERR(isec);
3205
3206 rc = avc_has_perm_noaudit(&selinux_state,
3207 sid, isec->sid, isec->sclass, perms, 0,
3208 &avd);
3209 audited = avc_audit_required(perms, &avd, rc,
3210 from_access ? FILE__AUDIT_ACCESS : 0,
3211 &denied);
3212 if (likely(!audited))
3213 return rc;
3214
3215 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3216 if (rc2)
3217 return rc2;
3218 return rc;
3219}
3220
3221static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3222{
3223 const struct cred *cred = current_cred();
3224 struct inode *inode = d_backing_inode(dentry);
3225 unsigned int ia_valid = iattr->ia_valid;
3226 __u32 av = FILE__WRITE;
3227
3228 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3229 if (ia_valid & ATTR_FORCE) {
3230 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3231 ATTR_FORCE);
3232 if (!ia_valid)
3233 return 0;
3234 }
3235
3236 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3237 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3238 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3239
3240 if (selinux_policycap_openperm() &&
3241 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3242 (ia_valid & ATTR_SIZE) &&
3243 !(ia_valid & ATTR_FILE))
3244 av |= FILE__OPEN;
3245
3246 return dentry_has_perm(cred, dentry, av);
3247}
3248
3249static int selinux_inode_getattr(const struct path *path)
3250{
3251 return path_has_perm(current_cred(), path, FILE__GETATTR);
3252}
3253
3254static bool has_cap_mac_admin(bool audit)
3255{
3256 const struct cred *cred = current_cred();
3257 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3258
3259 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3260 return false;
3261 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3262 return false;
3263 return true;
3264}
3265
3266static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3267 struct dentry *dentry, const char *name,
3268 const void *value, size_t size, int flags)
3269{
3270 struct inode *inode = d_backing_inode(dentry);
3271 struct inode_security_struct *isec;
3272 struct superblock_security_struct *sbsec;
3273 struct common_audit_data ad;
3274 u32 newsid, sid = current_sid();
3275 int rc = 0;
3276
3277 if (strcmp(name, XATTR_NAME_SELINUX)) {
3278 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3279 if (rc)
3280 return rc;
3281
3282 /* Not an attribute we recognize, so just check the
3283 ordinary setattr permission. */
3284 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3285 }
3286
3287 if (!selinux_initialized(&selinux_state))
3288 return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3289
3290 sbsec = selinux_superblock(inode->i_sb);
3291 if (!(sbsec->flags & SBLABEL_MNT))
3292 return -EOPNOTSUPP;
3293
3294 if (!inode_owner_or_capable(mnt_userns, inode))
3295 return -EPERM;
3296
3297 ad.type = LSM_AUDIT_DATA_DENTRY;
3298 ad.u.dentry = dentry;
3299
3300 isec = backing_inode_security(dentry);
3301 rc = avc_has_perm(&selinux_state,
3302 sid, isec->sid, isec->sclass,
3303 FILE__RELABELFROM, &ad);
3304 if (rc)
3305 return rc;
3306
3307 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3308 GFP_KERNEL);
3309 if (rc == -EINVAL) {
3310 if (!has_cap_mac_admin(true)) {
3311 struct audit_buffer *ab;
3312 size_t audit_size;
3313
3314 /* We strip a nul only if it is at the end, otherwise the
3315 * context contains a nul and we should audit that */
3316 if (value) {
3317 const char *str = value;
3318
3319 if (str[size - 1] == '\0')
3320 audit_size = size - 1;
3321 else
3322 audit_size = size;
3323 } else {
3324 audit_size = 0;
3325 }
3326 ab = audit_log_start(audit_context(),
3327 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3328 audit_log_format(ab, "op=setxattr invalid_context=");
3329 audit_log_n_untrustedstring(ab, value, audit_size);
3330 audit_log_end(ab);
3331
3332 return rc;
3333 }
3334 rc = security_context_to_sid_force(&selinux_state, value,
3335 size, &newsid);
3336 }
3337 if (rc)
3338 return rc;
3339
3340 rc = avc_has_perm(&selinux_state,
3341 sid, newsid, isec->sclass,
3342 FILE__RELABELTO, &ad);
3343 if (rc)
3344 return rc;
3345
3346 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3347 sid, isec->sclass);
3348 if (rc)
3349 return rc;
3350
3351 return avc_has_perm(&selinux_state,
3352 newsid,
3353 sbsec->sid,
3354 SECCLASS_FILESYSTEM,
3355 FILESYSTEM__ASSOCIATE,
3356 &ad);
3357}
3358
3359static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3360 const void *value, size_t size,
3361 int flags)
3362{
3363 struct inode *inode = d_backing_inode(dentry);
3364 struct inode_security_struct *isec;
3365 u32 newsid;
3366 int rc;
3367
3368 if (strcmp(name, XATTR_NAME_SELINUX)) {
3369 /* Not an attribute we recognize, so nothing to do. */
3370 return;
3371 }
3372
3373 if (!selinux_initialized(&selinux_state)) {
3374 /* If we haven't even been initialized, then we can't validate
3375 * against a policy, so leave the label as invalid. It may
3376 * resolve to a valid label on the next revalidation try if
3377 * we've since initialized.
3378 */
3379 return;
3380 }
3381
3382 rc = security_context_to_sid_force(&selinux_state, value, size,
3383 &newsid);
3384 if (rc) {
3385 pr_err("SELinux: unable to map context to SID"
3386 "for (%s, %lu), rc=%d\n",
3387 inode->i_sb->s_id, inode->i_ino, -rc);
3388 return;
3389 }
3390
3391 isec = backing_inode_security(dentry);
3392 spin_lock(&isec->lock);
3393 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3394 isec->sid = newsid;
3395 isec->initialized = LABEL_INITIALIZED;
3396 spin_unlock(&isec->lock);
3397
3398 return;
3399}
3400
3401static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3402{
3403 const struct cred *cred = current_cred();
3404
3405 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3406}
3407
3408static int selinux_inode_listxattr(struct dentry *dentry)
3409{
3410 const struct cred *cred = current_cred();
3411
3412 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3413}
3414
3415static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3416 struct dentry *dentry, const char *name)
3417{
3418 if (strcmp(name, XATTR_NAME_SELINUX)) {
3419 int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3420 if (rc)
3421 return rc;
3422
3423 /* Not an attribute we recognize, so just check the
3424 ordinary setattr permission. */
3425 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3426 }
3427
3428 if (!selinux_initialized(&selinux_state))
3429 return 0;
3430
3431 /* No one is allowed to remove a SELinux security label.
3432 You can change the label, but all data must be labeled. */
3433 return -EACCES;
3434}
3435
3436static int selinux_path_notify(const struct path *path, u64 mask,
3437 unsigned int obj_type)
3438{
3439 int ret;
3440 u32 perm;
3441
3442 struct common_audit_data ad;
3443
3444 ad.type = LSM_AUDIT_DATA_PATH;
3445 ad.u.path = *path;
3446
3447 /*
3448 * Set permission needed based on the type of mark being set.
3449 * Performs an additional check for sb watches.
3450 */
3451 switch (obj_type) {
3452 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3453 perm = FILE__WATCH_MOUNT;
3454 break;
3455 case FSNOTIFY_OBJ_TYPE_SB:
3456 perm = FILE__WATCH_SB;
3457 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3458 FILESYSTEM__WATCH, &ad);
3459 if (ret)
3460 return ret;
3461 break;
3462 case FSNOTIFY_OBJ_TYPE_INODE:
3463 perm = FILE__WATCH;
3464 break;
3465 default:
3466 return -EINVAL;
3467 }
3468
3469 /* blocking watches require the file:watch_with_perm permission */
3470 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3471 perm |= FILE__WATCH_WITH_PERM;
3472
3473 /* watches on read-like events need the file:watch_reads permission */
3474 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3475 perm |= FILE__WATCH_READS;
3476
3477 return path_has_perm(current_cred(), path, perm);
3478}
3479
3480/*
3481 * Copy the inode security context value to the user.
3482 *
3483 * Permission check is handled by selinux_inode_getxattr hook.
3484 */
3485static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3486 struct inode *inode, const char *name,
3487 void **buffer, bool alloc)
3488{
3489 u32 size;
3490 int error;
3491 char *context = NULL;
3492 struct inode_security_struct *isec;
3493
3494 /*
3495 * If we're not initialized yet, then we can't validate contexts, so
3496 * just let vfs_getxattr fall back to using the on-disk xattr.
3497 */
3498 if (!selinux_initialized(&selinux_state) ||
3499 strcmp(name, XATTR_SELINUX_SUFFIX))
3500 return -EOPNOTSUPP;
3501
3502 /*
3503 * If the caller has CAP_MAC_ADMIN, then get the raw context
3504 * value even if it is not defined by current policy; otherwise,
3505 * use the in-core value under current policy.
3506 * Use the non-auditing forms of the permission checks since
3507 * getxattr may be called by unprivileged processes commonly
3508 * and lack of permission just means that we fall back to the
3509 * in-core context value, not a denial.
3510 */
3511 isec = inode_security(inode);
3512 if (has_cap_mac_admin(false))
3513 error = security_sid_to_context_force(&selinux_state,
3514 isec->sid, &context,
3515 &size);
3516 else
3517 error = security_sid_to_context(&selinux_state, isec->sid,
3518 &context, &size);
3519 if (error)
3520 return error;
3521 error = size;
3522 if (alloc) {
3523 *buffer = context;
3524 goto out_nofree;
3525 }
3526 kfree(context);
3527out_nofree:
3528 return error;
3529}
3530
3531static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3532 const void *value, size_t size, int flags)
3533{
3534 struct inode_security_struct *isec = inode_security_novalidate(inode);
3535 struct superblock_security_struct *sbsec;
3536 u32 newsid;
3537 int rc;
3538
3539 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3540 return -EOPNOTSUPP;
3541
3542 sbsec = selinux_superblock(inode->i_sb);
3543 if (!(sbsec->flags & SBLABEL_MNT))
3544 return -EOPNOTSUPP;
3545
3546 if (!value || !size)
3547 return -EACCES;
3548
3549 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3550 GFP_KERNEL);
3551 if (rc)
3552 return rc;
3553
3554 spin_lock(&isec->lock);
3555 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3556 isec->sid = newsid;
3557 isec->initialized = LABEL_INITIALIZED;
3558 spin_unlock(&isec->lock);
3559 return 0;
3560}
3561
3562static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3563{
3564 const int len = sizeof(XATTR_NAME_SELINUX);
3565
3566 if (!selinux_initialized(&selinux_state))
3567 return 0;
3568
3569 if (buffer && len <= buffer_size)
3570 memcpy(buffer, XATTR_NAME_SELINUX, len);
3571 return len;
3572}
3573
3574static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3575{
3576 struct inode_security_struct *isec = inode_security_novalidate(inode);
3577 *secid = isec->sid;
3578}
3579
3580static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3581{
3582 u32 sid;
3583 struct task_security_struct *tsec;
3584 struct cred *new_creds = *new;
3585
3586 if (new_creds == NULL) {
3587 new_creds = prepare_creds();
3588 if (!new_creds)
3589 return -ENOMEM;
3590 }
3591
3592 tsec = selinux_cred(new_creds);
3593 /* Get label from overlay inode and set it in create_sid */
3594 selinux_inode_getsecid(d_inode(src), &sid);
3595 tsec->create_sid = sid;
3596 *new = new_creds;
3597 return 0;
3598}
3599
3600static int selinux_inode_copy_up_xattr(const char *name)
3601{
3602 /* The copy_up hook above sets the initial context on an inode, but we
3603 * don't then want to overwrite it by blindly copying all the lower
3604 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3605 */
3606 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3607 return 1; /* Discard */
3608 /*
3609 * Any other attribute apart from SELINUX is not claimed, supported
3610 * by selinux.
3611 */
3612 return -EOPNOTSUPP;
3613}
3614
3615/* kernfs node operations */
3616
3617static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3618 struct kernfs_node *kn)
3619{
3620 const struct task_security_struct *tsec = selinux_cred(current_cred());
3621 u32 parent_sid, newsid, clen;
3622 int rc;
3623 char *context;
3624
3625 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3626 if (rc == -ENODATA)
3627 return 0;
3628 else if (rc < 0)
3629 return rc;
3630
3631 clen = (u32)rc;
3632 context = kmalloc(clen, GFP_KERNEL);
3633 if (!context)
3634 return -ENOMEM;
3635
3636 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3637 if (rc < 0) {
3638 kfree(context);
3639 return rc;
3640 }
3641
3642 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3643 GFP_KERNEL);
3644 kfree(context);
3645 if (rc)
3646 return rc;
3647
3648 if (tsec->create_sid) {
3649 newsid = tsec->create_sid;
3650 } else {
3651 u16 secclass = inode_mode_to_security_class(kn->mode);
3652 struct qstr q;
3653
3654 q.name = kn->name;
3655 q.hash_len = hashlen_string(kn_dir, kn->name);
3656
3657 rc = security_transition_sid(&selinux_state, tsec->sid,
3658 parent_sid, secclass, &q,
3659 &newsid);
3660 if (rc)
3661 return rc;
3662 }
3663
3664 rc = security_sid_to_context_force(&selinux_state, newsid,
3665 &context, &clen);
3666 if (rc)
3667 return rc;
3668
3669 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3670 XATTR_CREATE);
3671 kfree(context);
3672 return rc;
3673}
3674
3675
3676/* file security operations */
3677
3678static int selinux_revalidate_file_permission(struct file *file, int mask)
3679{
3680 const struct cred *cred = current_cred();
3681 struct inode *inode = file_inode(file);
3682
3683 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3684 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3685 mask |= MAY_APPEND;
3686
3687 return file_has_perm(cred, file,
3688 file_mask_to_av(inode->i_mode, mask));
3689}
3690
3691static int selinux_file_permission(struct file *file, int mask)
3692{
3693 struct inode *inode = file_inode(file);
3694 struct file_security_struct *fsec = selinux_file(file);
3695 struct inode_security_struct *isec;
3696 u32 sid = current_sid();
3697
3698 if (!mask)
3699 /* No permission to check. Existence test. */
3700 return 0;
3701
3702 isec = inode_security(inode);
3703 if (sid == fsec->sid && fsec->isid == isec->sid &&
3704 fsec->pseqno == avc_policy_seqno(&selinux_state))
3705 /* No change since file_open check. */
3706 return 0;
3707
3708 return selinux_revalidate_file_permission(file, mask);
3709}
3710
3711static int selinux_file_alloc_security(struct file *file)
3712{
3713 struct file_security_struct *fsec = selinux_file(file);
3714 u32 sid = current_sid();
3715
3716 fsec->sid = sid;
3717 fsec->fown_sid = sid;
3718
3719 return 0;
3720}
3721
3722/*
3723 * Check whether a task has the ioctl permission and cmd
3724 * operation to an inode.
3725 */
3726static int ioctl_has_perm(const struct cred *cred, struct file *file,
3727 u32 requested, u16 cmd)
3728{
3729 struct common_audit_data ad;
3730 struct file_security_struct *fsec = selinux_file(file);
3731 struct inode *inode = file_inode(file);
3732 struct inode_security_struct *isec;
3733 struct lsm_ioctlop_audit ioctl;
3734 u32 ssid = cred_sid(cred);
3735 int rc;
3736 u8 driver = cmd >> 8;
3737 u8 xperm = cmd & 0xff;
3738
3739 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3740 ad.u.op = &ioctl;
3741 ad.u.op->cmd = cmd;
3742 ad.u.op->path = file->f_path;
3743
3744 if (ssid != fsec->sid) {
3745 rc = avc_has_perm(&selinux_state,
3746 ssid, fsec->sid,
3747 SECCLASS_FD,
3748 FD__USE,
3749 &ad);
3750 if (rc)
3751 goto out;
3752 }
3753
3754 if (unlikely(IS_PRIVATE(inode)))
3755 return 0;
3756
3757 isec = inode_security(inode);
3758 rc = avc_has_extended_perms(&selinux_state,
3759 ssid, isec->sid, isec->sclass,
3760 requested, driver, xperm, &ad);
3761out:
3762 return rc;
3763}
3764
3765static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3766 unsigned long arg)
3767{
3768 const struct cred *cred = current_cred();
3769 int error = 0;
3770
3771 switch (cmd) {
3772 case FIONREAD:
3773 case FIBMAP:
3774 case FIGETBSZ:
3775 case FS_IOC_GETFLAGS:
3776 case FS_IOC_GETVERSION:
3777 error = file_has_perm(cred, file, FILE__GETATTR);
3778 break;
3779
3780 case FS_IOC_SETFLAGS:
3781 case FS_IOC_SETVERSION:
3782 error = file_has_perm(cred, file, FILE__SETATTR);
3783 break;
3784
3785 /* sys_ioctl() checks */
3786 case FIONBIO:
3787 case FIOASYNC:
3788 error = file_has_perm(cred, file, 0);
3789 break;
3790
3791 case KDSKBENT:
3792 case KDSKBSENT:
3793 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3794 CAP_OPT_NONE, true);
3795 break;
3796
3797 /* default case assumes that the command will go
3798 * to the file's ioctl() function.
3799 */
3800 default:
3801 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3802 }
3803 return error;
3804}
3805
3806static int default_noexec __ro_after_init;
3807
3808static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3809{
3810 const struct cred *cred = current_cred();
3811 u32 sid = cred_sid(cred);
3812 int rc = 0;
3813
3814 if (default_noexec &&
3815 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3816 (!shared && (prot & PROT_WRITE)))) {
3817 /*
3818 * We are making executable an anonymous mapping or a
3819 * private file mapping that will also be writable.
3820 * This has an additional check.
3821 */
3822 rc = avc_has_perm(&selinux_state,
3823 sid, sid, SECCLASS_PROCESS,
3824 PROCESS__EXECMEM, NULL);
3825 if (rc)
3826 goto error;
3827 }
3828
3829 if (file) {
3830 /* read access is always possible with a mapping */
3831 u32 av = FILE__READ;
3832
3833 /* write access only matters if the mapping is shared */
3834 if (shared && (prot & PROT_WRITE))
3835 av |= FILE__WRITE;
3836
3837 if (prot & PROT_EXEC)
3838 av |= FILE__EXECUTE;
3839
3840 return file_has_perm(cred, file, av);
3841 }
3842
3843error:
3844 return rc;
3845}
3846
3847static int selinux_mmap_addr(unsigned long addr)
3848{
3849 int rc = 0;
3850
3851 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3852 u32 sid = current_sid();
3853 rc = avc_has_perm(&selinux_state,
3854 sid, sid, SECCLASS_MEMPROTECT,
3855 MEMPROTECT__MMAP_ZERO, NULL);
3856 }
3857
3858 return rc;
3859}
3860
3861static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3862 unsigned long prot, unsigned long flags)
3863{
3864 struct common_audit_data ad;
3865 int rc;
3866
3867 if (file) {
3868 ad.type = LSM_AUDIT_DATA_FILE;
3869 ad.u.file = file;
3870 rc = inode_has_perm(current_cred(), file_inode(file),
3871 FILE__MAP, &ad);
3872 if (rc)
3873 return rc;
3874 }
3875
3876 if (checkreqprot_get(&selinux_state))
3877 prot = reqprot;
3878
3879 return file_map_prot_check(file, prot,
3880 (flags & MAP_TYPE) == MAP_SHARED);
3881}
3882
3883static int selinux_file_mprotect(struct vm_area_struct *vma,
3884 unsigned long reqprot,
3885 unsigned long prot)
3886{
3887 const struct cred *cred = current_cred();
3888 u32 sid = cred_sid(cred);
3889
3890 if (checkreqprot_get(&selinux_state))
3891 prot = reqprot;
3892
3893 if (default_noexec &&
3894 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3895 int rc = 0;
3896 if (vma->vm_start >= vma->vm_mm->start_brk &&
3897 vma->vm_end <= vma->vm_mm->brk) {
3898 rc = avc_has_perm(&selinux_state,
3899 sid, sid, SECCLASS_PROCESS,
3900 PROCESS__EXECHEAP, NULL);
3901 } else if (!vma->vm_file &&
3902 ((vma->vm_start <= vma->vm_mm->start_stack &&
3903 vma->vm_end >= vma->vm_mm->start_stack) ||
3904 vma_is_stack_for_current(vma))) {
3905 rc = avc_has_perm(&selinux_state,
3906 sid, sid, SECCLASS_PROCESS,
3907 PROCESS__EXECSTACK, NULL);
3908 } else if (vma->vm_file && vma->anon_vma) {
3909 /*
3910 * We are making executable a file mapping that has
3911 * had some COW done. Since pages might have been
3912 * written, check ability to execute the possibly
3913 * modified content. This typically should only
3914 * occur for text relocations.
3915 */
3916 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3917 }
3918 if (rc)
3919 return rc;
3920 }
3921
3922 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3923}
3924
3925static int selinux_file_lock(struct file *file, unsigned int cmd)
3926{
3927 const struct cred *cred = current_cred();
3928
3929 return file_has_perm(cred, file, FILE__LOCK);
3930}
3931
3932static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3933 unsigned long arg)
3934{
3935 const struct cred *cred = current_cred();
3936 int err = 0;
3937
3938 switch (cmd) {
3939 case F_SETFL:
3940 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3941 err = file_has_perm(cred, file, FILE__WRITE);
3942 break;
3943 }
3944 fallthrough;
3945 case F_SETOWN:
3946 case F_SETSIG:
3947 case F_GETFL:
3948 case F_GETOWN:
3949 case F_GETSIG:
3950 case F_GETOWNER_UIDS:
3951 /* Just check FD__USE permission */
3952 err = file_has_perm(cred, file, 0);
3953 break;
3954 case F_GETLK:
3955 case F_SETLK:
3956 case F_SETLKW:
3957 case F_OFD_GETLK:
3958 case F_OFD_SETLK:
3959 case F_OFD_SETLKW:
3960#if BITS_PER_LONG == 32
3961 case F_GETLK64:
3962 case F_SETLK64:
3963 case F_SETLKW64:
3964#endif
3965 err = file_has_perm(cred, file, FILE__LOCK);
3966 break;
3967 }
3968
3969 return err;
3970}
3971
3972static void selinux_file_set_fowner(struct file *file)
3973{
3974 struct file_security_struct *fsec;
3975
3976 fsec = selinux_file(file);
3977 fsec->fown_sid = current_sid();
3978}
3979
3980static int selinux_file_send_sigiotask(struct task_struct *tsk,
3981 struct fown_struct *fown, int signum)
3982{
3983 struct file *file;
3984 u32 sid = task_sid_obj(tsk);
3985 u32 perm;
3986 struct file_security_struct *fsec;
3987
3988 /* struct fown_struct is never outside the context of a struct file */
3989 file = container_of(fown, struct file, f_owner);
3990
3991 fsec = selinux_file(file);
3992
3993 if (!signum)
3994 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3995 else
3996 perm = signal_to_av(signum);
3997
3998 return avc_has_perm(&selinux_state,
3999 fsec->fown_sid, sid,
4000 SECCLASS_PROCESS, perm, NULL);
4001}
4002
4003static int selinux_file_receive(struct file *file)
4004{
4005 const struct cred *cred = current_cred();
4006
4007 return file_has_perm(cred, file, file_to_av(file));
4008}
4009
4010static int selinux_file_open(struct file *file)
4011{
4012 struct file_security_struct *fsec;
4013 struct inode_security_struct *isec;
4014
4015 fsec = selinux_file(file);
4016 isec = inode_security(file_inode(file));
4017 /*
4018 * Save inode label and policy sequence number
4019 * at open-time so that selinux_file_permission
4020 * can determine whether revalidation is necessary.
4021 * Task label is already saved in the file security
4022 * struct as its SID.
4023 */
4024 fsec->isid = isec->sid;
4025 fsec->pseqno = avc_policy_seqno(&selinux_state);
4026 /*
4027 * Since the inode label or policy seqno may have changed
4028 * between the selinux_inode_permission check and the saving
4029 * of state above, recheck that access is still permitted.
4030 * Otherwise, access might never be revalidated against the
4031 * new inode label or new policy.
4032 * This check is not redundant - do not remove.
4033 */
4034 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
4035}
4036
4037/* task security operations */
4038
4039static int selinux_task_alloc(struct task_struct *task,
4040 unsigned long clone_flags)
4041{
4042 u32 sid = current_sid();
4043
4044 return avc_has_perm(&selinux_state,
4045 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4046}
4047
4048/*
4049 * prepare a new set of credentials for modification
4050 */
4051static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4052 gfp_t gfp)
4053{
4054 const struct task_security_struct *old_tsec = selinux_cred(old);
4055 struct task_security_struct *tsec = selinux_cred(new);
4056
4057 *tsec = *old_tsec;
4058 return 0;
4059}
4060
4061/*
4062 * transfer the SELinux data to a blank set of creds
4063 */
4064static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4065{
4066 const struct task_security_struct *old_tsec = selinux_cred(old);
4067 struct task_security_struct *tsec = selinux_cred(new);
4068
4069 *tsec = *old_tsec;
4070}
4071
4072static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4073{
4074 *secid = cred_sid(c);
4075}
4076
4077/*
4078 * set the security data for a kernel service
4079 * - all the creation contexts are set to unlabelled
4080 */
4081static int selinux_kernel_act_as(struct cred *new, u32 secid)
4082{
4083 struct task_security_struct *tsec = selinux_cred(new);
4084 u32 sid = current_sid();
4085 int ret;
4086
4087 ret = avc_has_perm(&selinux_state,
4088 sid, secid,
4089 SECCLASS_KERNEL_SERVICE,
4090 KERNEL_SERVICE__USE_AS_OVERRIDE,
4091 NULL);
4092 if (ret == 0) {
4093 tsec->sid = secid;
4094 tsec->create_sid = 0;
4095 tsec->keycreate_sid = 0;
4096 tsec->sockcreate_sid = 0;
4097 }
4098 return ret;
4099}
4100
4101/*
4102 * set the file creation context in a security record to the same as the
4103 * objective context of the specified inode
4104 */
4105static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4106{
4107 struct inode_security_struct *isec = inode_security(inode);
4108 struct task_security_struct *tsec = selinux_cred(new);
4109 u32 sid = current_sid();
4110 int ret;
4111
4112 ret = avc_has_perm(&selinux_state,
4113 sid, isec->sid,
4114 SECCLASS_KERNEL_SERVICE,
4115 KERNEL_SERVICE__CREATE_FILES_AS,
4116 NULL);
4117
4118 if (ret == 0)
4119 tsec->create_sid = isec->sid;
4120 return ret;
4121}
4122
4123static int selinux_kernel_module_request(char *kmod_name)
4124{
4125 struct common_audit_data ad;
4126
4127 ad.type = LSM_AUDIT_DATA_KMOD;
4128 ad.u.kmod_name = kmod_name;
4129
4130 return avc_has_perm(&selinux_state,
4131 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4132 SYSTEM__MODULE_REQUEST, &ad);
4133}
4134
4135static int selinux_kernel_module_from_file(struct file *file)
4136{
4137 struct common_audit_data ad;
4138 struct inode_security_struct *isec;
4139 struct file_security_struct *fsec;
4140 u32 sid = current_sid();
4141 int rc;
4142
4143 /* init_module */
4144 if (file == NULL)
4145 return avc_has_perm(&selinux_state,
4146 sid, sid, SECCLASS_SYSTEM,
4147 SYSTEM__MODULE_LOAD, NULL);
4148
4149 /* finit_module */
4150
4151 ad.type = LSM_AUDIT_DATA_FILE;
4152 ad.u.file = file;
4153
4154 fsec = selinux_file(file);
4155 if (sid != fsec->sid) {
4156 rc = avc_has_perm(&selinux_state,
4157 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4158 if (rc)
4159 return rc;
4160 }
4161
4162 isec = inode_security(file_inode(file));
4163 return avc_has_perm(&selinux_state,
4164 sid, isec->sid, SECCLASS_SYSTEM,
4165 SYSTEM__MODULE_LOAD, &ad);
4166}
4167
4168static int selinux_kernel_read_file(struct file *file,
4169 enum kernel_read_file_id id,
4170 bool contents)
4171{
4172 int rc = 0;
4173
4174 switch (id) {
4175 case READING_MODULE:
4176 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4177 break;
4178 default:
4179 break;
4180 }
4181
4182 return rc;
4183}
4184
4185static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4186{
4187 int rc = 0;
4188
4189 switch (id) {
4190 case LOADING_MODULE:
4191 rc = selinux_kernel_module_from_file(NULL);
4192 break;
4193 default:
4194 break;
4195 }
4196
4197 return rc;
4198}
4199
4200static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4201{
4202 return avc_has_perm(&selinux_state,
4203 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204 PROCESS__SETPGID, NULL);
4205}
4206
4207static int selinux_task_getpgid(struct task_struct *p)
4208{
4209 return avc_has_perm(&selinux_state,
4210 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4211 PROCESS__GETPGID, NULL);
4212}
4213
4214static int selinux_task_getsid(struct task_struct *p)
4215{
4216 return avc_has_perm(&selinux_state,
4217 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4218 PROCESS__GETSESSION, NULL);
4219}
4220
4221static void selinux_task_getsecid_subj(struct task_struct *p, u32 *secid)
4222{
4223 *secid = task_sid_subj(p);
4224}
4225
4226static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4227{
4228 *secid = task_sid_obj(p);
4229}
4230
4231static int selinux_task_setnice(struct task_struct *p, int nice)
4232{
4233 return avc_has_perm(&selinux_state,
4234 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4235 PROCESS__SETSCHED, NULL);
4236}
4237
4238static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4239{
4240 return avc_has_perm(&selinux_state,
4241 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4242 PROCESS__SETSCHED, NULL);
4243}
4244
4245static int selinux_task_getioprio(struct task_struct *p)
4246{
4247 return avc_has_perm(&selinux_state,
4248 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4249 PROCESS__GETSCHED, NULL);
4250}
4251
4252static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4253 unsigned int flags)
4254{
4255 u32 av = 0;
4256
4257 if (!flags)
4258 return 0;
4259 if (flags & LSM_PRLIMIT_WRITE)
4260 av |= PROCESS__SETRLIMIT;
4261 if (flags & LSM_PRLIMIT_READ)
4262 av |= PROCESS__GETRLIMIT;
4263 return avc_has_perm(&selinux_state,
4264 cred_sid(cred), cred_sid(tcred),
4265 SECCLASS_PROCESS, av, NULL);
4266}
4267
4268static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4269 struct rlimit *new_rlim)
4270{
4271 struct rlimit *old_rlim = p->signal->rlim + resource;
4272
4273 /* Control the ability to change the hard limit (whether
4274 lowering or raising it), so that the hard limit can
4275 later be used as a safe reset point for the soft limit
4276 upon context transitions. See selinux_bprm_committing_creds. */
4277 if (old_rlim->rlim_max != new_rlim->rlim_max)
4278 return avc_has_perm(&selinux_state,
4279 current_sid(), task_sid_obj(p),
4280 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4281
4282 return 0;
4283}
4284
4285static int selinux_task_setscheduler(struct task_struct *p)
4286{
4287 return avc_has_perm(&selinux_state,
4288 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4289 PROCESS__SETSCHED, NULL);
4290}
4291
4292static int selinux_task_getscheduler(struct task_struct *p)
4293{
4294 return avc_has_perm(&selinux_state,
4295 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4296 PROCESS__GETSCHED, NULL);
4297}
4298
4299static int selinux_task_movememory(struct task_struct *p)
4300{
4301 return avc_has_perm(&selinux_state,
4302 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4303 PROCESS__SETSCHED, NULL);
4304}
4305
4306static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4307 int sig, const struct cred *cred)
4308{
4309 u32 secid;
4310 u32 perm;
4311
4312 if (!sig)
4313 perm = PROCESS__SIGNULL; /* null signal; existence test */
4314 else
4315 perm = signal_to_av(sig);
4316 if (!cred)
4317 secid = current_sid();
4318 else
4319 secid = cred_sid(cred);
4320 return avc_has_perm(&selinux_state,
4321 secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4322}
4323
4324static void selinux_task_to_inode(struct task_struct *p,
4325 struct inode *inode)
4326{
4327 struct inode_security_struct *isec = selinux_inode(inode);
4328 u32 sid = task_sid_obj(p);
4329
4330 spin_lock(&isec->lock);
4331 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4332 isec->sid = sid;
4333 isec->initialized = LABEL_INITIALIZED;
4334 spin_unlock(&isec->lock);
4335}
4336
4337/* Returns error only if unable to parse addresses */
4338static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4339 struct common_audit_data *ad, u8 *proto)
4340{
4341 int offset, ihlen, ret = -EINVAL;
4342 struct iphdr _iph, *ih;
4343
4344 offset = skb_network_offset(skb);
4345 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4346 if (ih == NULL)
4347 goto out;
4348
4349 ihlen = ih->ihl * 4;
4350 if (ihlen < sizeof(_iph))
4351 goto out;
4352
4353 ad->u.net->v4info.saddr = ih->saddr;
4354 ad->u.net->v4info.daddr = ih->daddr;
4355 ret = 0;
4356
4357 if (proto)
4358 *proto = ih->protocol;
4359
4360 switch (ih->protocol) {
4361 case IPPROTO_TCP: {
4362 struct tcphdr _tcph, *th;
4363
4364 if (ntohs(ih->frag_off) & IP_OFFSET)
4365 break;
4366
4367 offset += ihlen;
4368 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4369 if (th == NULL)
4370 break;
4371
4372 ad->u.net->sport = th->source;
4373 ad->u.net->dport = th->dest;
4374 break;
4375 }
4376
4377 case IPPROTO_UDP: {
4378 struct udphdr _udph, *uh;
4379
4380 if (ntohs(ih->frag_off) & IP_OFFSET)
4381 break;
4382
4383 offset += ihlen;
4384 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4385 if (uh == NULL)
4386 break;
4387
4388 ad->u.net->sport = uh->source;
4389 ad->u.net->dport = uh->dest;
4390 break;
4391 }
4392
4393 case IPPROTO_DCCP: {
4394 struct dccp_hdr _dccph, *dh;
4395
4396 if (ntohs(ih->frag_off) & IP_OFFSET)
4397 break;
4398
4399 offset += ihlen;
4400 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4401 if (dh == NULL)
4402 break;
4403
4404 ad->u.net->sport = dh->dccph_sport;
4405 ad->u.net->dport = dh->dccph_dport;
4406 break;
4407 }
4408
4409#if IS_ENABLED(CONFIG_IP_SCTP)
4410 case IPPROTO_SCTP: {
4411 struct sctphdr _sctph, *sh;
4412
4413 if (ntohs(ih->frag_off) & IP_OFFSET)
4414 break;
4415
4416 offset += ihlen;
4417 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4418 if (sh == NULL)
4419 break;
4420
4421 ad->u.net->sport = sh->source;
4422 ad->u.net->dport = sh->dest;
4423 break;
4424 }
4425#endif
4426 default:
4427 break;
4428 }
4429out:
4430 return ret;
4431}
4432
4433#if IS_ENABLED(CONFIG_IPV6)
4434
4435/* Returns error only if unable to parse addresses */
4436static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4437 struct common_audit_data *ad, u8 *proto)
4438{
4439 u8 nexthdr;
4440 int ret = -EINVAL, offset;
4441 struct ipv6hdr _ipv6h, *ip6;
4442 __be16 frag_off;
4443
4444 offset = skb_network_offset(skb);
4445 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4446 if (ip6 == NULL)
4447 goto out;
4448
4449 ad->u.net->v6info.saddr = ip6->saddr;
4450 ad->u.net->v6info.daddr = ip6->daddr;
4451 ret = 0;
4452
4453 nexthdr = ip6->nexthdr;
4454 offset += sizeof(_ipv6h);
4455 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4456 if (offset < 0)
4457 goto out;
4458
4459 if (proto)
4460 *proto = nexthdr;
4461
4462 switch (nexthdr) {
4463 case IPPROTO_TCP: {
4464 struct tcphdr _tcph, *th;
4465
4466 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4467 if (th == NULL)
4468 break;
4469
4470 ad->u.net->sport = th->source;
4471 ad->u.net->dport = th->dest;
4472 break;
4473 }
4474
4475 case IPPROTO_UDP: {
4476 struct udphdr _udph, *uh;
4477
4478 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4479 if (uh == NULL)
4480 break;
4481
4482 ad->u.net->sport = uh->source;
4483 ad->u.net->dport = uh->dest;
4484 break;
4485 }
4486
4487 case IPPROTO_DCCP: {
4488 struct dccp_hdr _dccph, *dh;
4489
4490 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4491 if (dh == NULL)
4492 break;
4493
4494 ad->u.net->sport = dh->dccph_sport;
4495 ad->u.net->dport = dh->dccph_dport;
4496 break;
4497 }
4498
4499#if IS_ENABLED(CONFIG_IP_SCTP)
4500 case IPPROTO_SCTP: {
4501 struct sctphdr _sctph, *sh;
4502
4503 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4504 if (sh == NULL)
4505 break;
4506
4507 ad->u.net->sport = sh->source;
4508 ad->u.net->dport = sh->dest;
4509 break;
4510 }
4511#endif
4512 /* includes fragments */
4513 default:
4514 break;
4515 }
4516out:
4517 return ret;
4518}
4519
4520#endif /* IPV6 */
4521
4522static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4523 char **_addrp, int src, u8 *proto)
4524{
4525 char *addrp;
4526 int ret;
4527
4528 switch (ad->u.net->family) {
4529 case PF_INET:
4530 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4531 if (ret)
4532 goto parse_error;
4533 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4534 &ad->u.net->v4info.daddr);
4535 goto okay;
4536
4537#if IS_ENABLED(CONFIG_IPV6)
4538 case PF_INET6:
4539 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4540 if (ret)
4541 goto parse_error;
4542 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4543 &ad->u.net->v6info.daddr);
4544 goto okay;
4545#endif /* IPV6 */
4546 default:
4547 addrp = NULL;
4548 goto okay;
4549 }
4550
4551parse_error:
4552 pr_warn(
4553 "SELinux: failure in selinux_parse_skb(),"
4554 " unable to parse packet\n");
4555 return ret;
4556
4557okay:
4558 if (_addrp)
4559 *_addrp = addrp;
4560 return 0;
4561}
4562
4563/**
4564 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4565 * @skb: the packet
4566 * @family: protocol family
4567 * @sid: the packet's peer label SID
4568 *
4569 * Description:
4570 * Check the various different forms of network peer labeling and determine
4571 * the peer label/SID for the packet; most of the magic actually occurs in
4572 * the security server function security_net_peersid_cmp(). The function
4573 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4574 * or -EACCES if @sid is invalid due to inconsistencies with the different
4575 * peer labels.
4576 *
4577 */
4578static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4579{
4580 int err;
4581 u32 xfrm_sid;
4582 u32 nlbl_sid;
4583 u32 nlbl_type;
4584
4585 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4586 if (unlikely(err))
4587 return -EACCES;
4588 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4589 if (unlikely(err))
4590 return -EACCES;
4591
4592 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4593 nlbl_type, xfrm_sid, sid);
4594 if (unlikely(err)) {
4595 pr_warn(
4596 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4597 " unable to determine packet's peer label\n");
4598 return -EACCES;
4599 }
4600
4601 return 0;
4602}
4603
4604/**
4605 * selinux_conn_sid - Determine the child socket label for a connection
4606 * @sk_sid: the parent socket's SID
4607 * @skb_sid: the packet's SID
4608 * @conn_sid: the resulting connection SID
4609 *
4610 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4611 * combined with the MLS information from @skb_sid in order to create
4612 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4613 * of @sk_sid. Returns zero on success, negative values on failure.
4614 *
4615 */
4616static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4617{
4618 int err = 0;
4619
4620 if (skb_sid != SECSID_NULL)
4621 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4622 conn_sid);
4623 else
4624 *conn_sid = sk_sid;
4625
4626 return err;
4627}
4628
4629/* socket security operations */
4630
4631static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4632 u16 secclass, u32 *socksid)
4633{
4634 if (tsec->sockcreate_sid > SECSID_NULL) {
4635 *socksid = tsec->sockcreate_sid;
4636 return 0;
4637 }
4638
4639 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4640 secclass, NULL, socksid);
4641}
4642
4643static int sock_has_perm(struct sock *sk, u32 perms)
4644{
4645 struct sk_security_struct *sksec = sk->sk_security;
4646 struct common_audit_data ad;
4647 struct lsm_network_audit net = {0,};
4648
4649 if (sksec->sid == SECINITSID_KERNEL)
4650 return 0;
4651
4652 ad.type = LSM_AUDIT_DATA_NET;
4653 ad.u.net = &net;
4654 ad.u.net->sk = sk;
4655
4656 return avc_has_perm(&selinux_state,
4657 current_sid(), sksec->sid, sksec->sclass, perms,
4658 &ad);
4659}
4660
4661static int selinux_socket_create(int family, int type,
4662 int protocol, int kern)
4663{
4664 const struct task_security_struct *tsec = selinux_cred(current_cred());
4665 u32 newsid;
4666 u16 secclass;
4667 int rc;
4668
4669 if (kern)
4670 return 0;
4671
4672 secclass = socket_type_to_security_class(family, type, protocol);
4673 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4674 if (rc)
4675 return rc;
4676
4677 return avc_has_perm(&selinux_state,
4678 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4679}
4680
4681static int selinux_socket_post_create(struct socket *sock, int family,
4682 int type, int protocol, int kern)
4683{
4684 const struct task_security_struct *tsec = selinux_cred(current_cred());
4685 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4686 struct sk_security_struct *sksec;
4687 u16 sclass = socket_type_to_security_class(family, type, protocol);
4688 u32 sid = SECINITSID_KERNEL;
4689 int err = 0;
4690
4691 if (!kern) {
4692 err = socket_sockcreate_sid(tsec, sclass, &sid);
4693 if (err)
4694 return err;
4695 }
4696
4697 isec->sclass = sclass;
4698 isec->sid = sid;
4699 isec->initialized = LABEL_INITIALIZED;
4700
4701 if (sock->sk) {
4702 sksec = sock->sk->sk_security;
4703 sksec->sclass = sclass;
4704 sksec->sid = sid;
4705 /* Allows detection of the first association on this socket */
4706 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4707 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4708
4709 err = selinux_netlbl_socket_post_create(sock->sk, family);
4710 }
4711
4712 return err;
4713}
4714
4715static int selinux_socket_socketpair(struct socket *socka,
4716 struct socket *sockb)
4717{
4718 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4719 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4720
4721 sksec_a->peer_sid = sksec_b->sid;
4722 sksec_b->peer_sid = sksec_a->sid;
4723
4724 return 0;
4725}
4726
4727/* Range of port numbers used to automatically bind.
4728 Need to determine whether we should perform a name_bind
4729 permission check between the socket and the port number. */
4730
4731static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4732{
4733 struct sock *sk = sock->sk;
4734 struct sk_security_struct *sksec = sk->sk_security;
4735 u16 family;
4736 int err;
4737
4738 err = sock_has_perm(sk, SOCKET__BIND);
4739 if (err)
4740 goto out;
4741
4742 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4743 family = sk->sk_family;
4744 if (family == PF_INET || family == PF_INET6) {
4745 char *addrp;
4746 struct common_audit_data ad;
4747 struct lsm_network_audit net = {0,};
4748 struct sockaddr_in *addr4 = NULL;
4749 struct sockaddr_in6 *addr6 = NULL;
4750 u16 family_sa;
4751 unsigned short snum;
4752 u32 sid, node_perm;
4753
4754 /*
4755 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4756 * that validates multiple binding addresses. Because of this
4757 * need to check address->sa_family as it is possible to have
4758 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4759 */
4760 if (addrlen < offsetofend(struct sockaddr, sa_family))
4761 return -EINVAL;
4762 family_sa = address->sa_family;
4763 switch (family_sa) {
4764 case AF_UNSPEC:
4765 case AF_INET:
4766 if (addrlen < sizeof(struct sockaddr_in))
4767 return -EINVAL;
4768 addr4 = (struct sockaddr_in *)address;
4769 if (family_sa == AF_UNSPEC) {
4770 /* see __inet_bind(), we only want to allow
4771 * AF_UNSPEC if the address is INADDR_ANY
4772 */
4773 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4774 goto err_af;
4775 family_sa = AF_INET;
4776 }
4777 snum = ntohs(addr4->sin_port);
4778 addrp = (char *)&addr4->sin_addr.s_addr;
4779 break;
4780 case AF_INET6:
4781 if (addrlen < SIN6_LEN_RFC2133)
4782 return -EINVAL;
4783 addr6 = (struct sockaddr_in6 *)address;
4784 snum = ntohs(addr6->sin6_port);
4785 addrp = (char *)&addr6->sin6_addr.s6_addr;
4786 break;
4787 default:
4788 goto err_af;
4789 }
4790
4791 ad.type = LSM_AUDIT_DATA_NET;
4792 ad.u.net = &net;
4793 ad.u.net->sport = htons(snum);
4794 ad.u.net->family = family_sa;
4795
4796 if (snum) {
4797 int low, high;
4798
4799 inet_get_local_port_range(sock_net(sk), &low, &high);
4800
4801 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4802 snum < low || snum > high) {
4803 err = sel_netport_sid(sk->sk_protocol,
4804 snum, &sid);
4805 if (err)
4806 goto out;
4807 err = avc_has_perm(&selinux_state,
4808 sksec->sid, sid,
4809 sksec->sclass,
4810 SOCKET__NAME_BIND, &ad);
4811 if (err)
4812 goto out;
4813 }
4814 }
4815
4816 switch (sksec->sclass) {
4817 case SECCLASS_TCP_SOCKET:
4818 node_perm = TCP_SOCKET__NODE_BIND;
4819 break;
4820
4821 case SECCLASS_UDP_SOCKET:
4822 node_perm = UDP_SOCKET__NODE_BIND;
4823 break;
4824
4825 case SECCLASS_DCCP_SOCKET:
4826 node_perm = DCCP_SOCKET__NODE_BIND;
4827 break;
4828
4829 case SECCLASS_SCTP_SOCKET:
4830 node_perm = SCTP_SOCKET__NODE_BIND;
4831 break;
4832
4833 default:
4834 node_perm = RAWIP_SOCKET__NODE_BIND;
4835 break;
4836 }
4837
4838 err = sel_netnode_sid(addrp, family_sa, &sid);
4839 if (err)
4840 goto out;
4841
4842 if (family_sa == AF_INET)
4843 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4844 else
4845 ad.u.net->v6info.saddr = addr6->sin6_addr;
4846
4847 err = avc_has_perm(&selinux_state,
4848 sksec->sid, sid,
4849 sksec->sclass, node_perm, &ad);
4850 if (err)
4851 goto out;
4852 }
4853out:
4854 return err;
4855err_af:
4856 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4857 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4858 return -EINVAL;
4859 return -EAFNOSUPPORT;
4860}
4861
4862/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4863 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4864 */
4865static int selinux_socket_connect_helper(struct socket *sock,
4866 struct sockaddr *address, int addrlen)
4867{
4868 struct sock *sk = sock->sk;
4869 struct sk_security_struct *sksec = sk->sk_security;
4870 int err;
4871
4872 err = sock_has_perm(sk, SOCKET__CONNECT);
4873 if (err)
4874 return err;
4875 if (addrlen < offsetofend(struct sockaddr, sa_family))
4876 return -EINVAL;
4877
4878 /* connect(AF_UNSPEC) has special handling, as it is a documented
4879 * way to disconnect the socket
4880 */
4881 if (address->sa_family == AF_UNSPEC)
4882 return 0;
4883
4884 /*
4885 * If a TCP, DCCP or SCTP socket, check name_connect permission
4886 * for the port.
4887 */
4888 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4889 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4890 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4891 struct common_audit_data ad;
4892 struct lsm_network_audit net = {0,};
4893 struct sockaddr_in *addr4 = NULL;
4894 struct sockaddr_in6 *addr6 = NULL;
4895 unsigned short snum;
4896 u32 sid, perm;
4897
4898 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4899 * that validates multiple connect addresses. Because of this
4900 * need to check address->sa_family as it is possible to have
4901 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4902 */
4903 switch (address->sa_family) {
4904 case AF_INET:
4905 addr4 = (struct sockaddr_in *)address;
4906 if (addrlen < sizeof(struct sockaddr_in))
4907 return -EINVAL;
4908 snum = ntohs(addr4->sin_port);
4909 break;
4910 case AF_INET6:
4911 addr6 = (struct sockaddr_in6 *)address;
4912 if (addrlen < SIN6_LEN_RFC2133)
4913 return -EINVAL;
4914 snum = ntohs(addr6->sin6_port);
4915 break;
4916 default:
4917 /* Note that SCTP services expect -EINVAL, whereas
4918 * others expect -EAFNOSUPPORT.
4919 */
4920 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4921 return -EINVAL;
4922 else
4923 return -EAFNOSUPPORT;
4924 }
4925
4926 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4927 if (err)
4928 return err;
4929
4930 switch (sksec->sclass) {
4931 case SECCLASS_TCP_SOCKET:
4932 perm = TCP_SOCKET__NAME_CONNECT;
4933 break;
4934 case SECCLASS_DCCP_SOCKET:
4935 perm = DCCP_SOCKET__NAME_CONNECT;
4936 break;
4937 case SECCLASS_SCTP_SOCKET:
4938 perm = SCTP_SOCKET__NAME_CONNECT;
4939 break;
4940 }
4941
4942 ad.type = LSM_AUDIT_DATA_NET;
4943 ad.u.net = &net;
4944 ad.u.net->dport = htons(snum);
4945 ad.u.net->family = address->sa_family;
4946 err = avc_has_perm(&selinux_state,
4947 sksec->sid, sid, sksec->sclass, perm, &ad);
4948 if (err)
4949 return err;
4950 }
4951
4952 return 0;
4953}
4954
4955/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4956static int selinux_socket_connect(struct socket *sock,
4957 struct sockaddr *address, int addrlen)
4958{
4959 int err;
4960 struct sock *sk = sock->sk;
4961
4962 err = selinux_socket_connect_helper(sock, address, addrlen);
4963 if (err)
4964 return err;
4965
4966 return selinux_netlbl_socket_connect(sk, address);
4967}
4968
4969static int selinux_socket_listen(struct socket *sock, int backlog)
4970{
4971 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4972}
4973
4974static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4975{
4976 int err;
4977 struct inode_security_struct *isec;
4978 struct inode_security_struct *newisec;
4979 u16 sclass;
4980 u32 sid;
4981
4982 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4983 if (err)
4984 return err;
4985
4986 isec = inode_security_novalidate(SOCK_INODE(sock));
4987 spin_lock(&isec->lock);
4988 sclass = isec->sclass;
4989 sid = isec->sid;
4990 spin_unlock(&isec->lock);
4991
4992 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4993 newisec->sclass = sclass;
4994 newisec->sid = sid;
4995 newisec->initialized = LABEL_INITIALIZED;
4996
4997 return 0;
4998}
4999
5000static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
5001 int size)
5002{
5003 return sock_has_perm(sock->sk, SOCKET__WRITE);
5004}
5005
5006static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
5007 int size, int flags)
5008{
5009 return sock_has_perm(sock->sk, SOCKET__READ);
5010}
5011
5012static int selinux_socket_getsockname(struct socket *sock)
5013{
5014 return sock_has_perm(sock->sk, SOCKET__GETATTR);
5015}
5016
5017static int selinux_socket_getpeername(struct socket *sock)
5018{
5019 return sock_has_perm(sock->sk, SOCKET__GETATTR);
5020}
5021
5022static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5023{
5024 int err;
5025
5026 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5027 if (err)
5028 return err;
5029
5030 return selinux_netlbl_socket_setsockopt(sock, level, optname);
5031}
5032
5033static int selinux_socket_getsockopt(struct socket *sock, int level,
5034 int optname)
5035{
5036 return sock_has_perm(sock->sk, SOCKET__GETOPT);
5037}
5038
5039static int selinux_socket_shutdown(struct socket *sock, int how)
5040{
5041 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5042}
5043
5044static int selinux_socket_unix_stream_connect(struct sock *sock,
5045 struct sock *other,
5046 struct sock *newsk)
5047{
5048 struct sk_security_struct *sksec_sock = sock->sk_security;
5049 struct sk_security_struct *sksec_other = other->sk_security;
5050 struct sk_security_struct *sksec_new = newsk->sk_security;
5051 struct common_audit_data ad;
5052 struct lsm_network_audit net = {0,};
5053 int err;
5054
5055 ad.type = LSM_AUDIT_DATA_NET;
5056 ad.u.net = &net;
5057 ad.u.net->sk = other;
5058
5059 err = avc_has_perm(&selinux_state,
5060 sksec_sock->sid, sksec_other->sid,
5061 sksec_other->sclass,
5062 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5063 if (err)
5064 return err;
5065
5066 /* server child socket */
5067 sksec_new->peer_sid = sksec_sock->sid;
5068 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
5069 sksec_sock->sid, &sksec_new->sid);
5070 if (err)
5071 return err;
5072
5073 /* connecting socket */
5074 sksec_sock->peer_sid = sksec_new->sid;
5075
5076 return 0;
5077}
5078
5079static int selinux_socket_unix_may_send(struct socket *sock,
5080 struct socket *other)
5081{
5082 struct sk_security_struct *ssec = sock->sk->sk_security;
5083 struct sk_security_struct *osec = other->sk->sk_security;
5084 struct common_audit_data ad;
5085 struct lsm_network_audit net = {0,};
5086
5087 ad.type = LSM_AUDIT_DATA_NET;
5088 ad.u.net = &net;
5089 ad.u.net->sk = other->sk;
5090
5091 return avc_has_perm(&selinux_state,
5092 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5093 &ad);
5094}
5095
5096static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5097 char *addrp, u16 family, u32 peer_sid,
5098 struct common_audit_data *ad)
5099{
5100 int err;
5101 u32 if_sid;
5102 u32 node_sid;
5103
5104 err = sel_netif_sid(ns, ifindex, &if_sid);
5105 if (err)
5106 return err;
5107 err = avc_has_perm(&selinux_state,
5108 peer_sid, if_sid,
5109 SECCLASS_NETIF, NETIF__INGRESS, ad);
5110 if (err)
5111 return err;
5112
5113 err = sel_netnode_sid(addrp, family, &node_sid);
5114 if (err)
5115 return err;
5116 return avc_has_perm(&selinux_state,
5117 peer_sid, node_sid,
5118 SECCLASS_NODE, NODE__RECVFROM, ad);
5119}
5120
5121static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5122 u16 family)
5123{
5124 int err = 0;
5125 struct sk_security_struct *sksec = sk->sk_security;
5126 u32 sk_sid = sksec->sid;
5127 struct common_audit_data ad;
5128 struct lsm_network_audit net = {0,};
5129 char *addrp;
5130
5131 ad.type = LSM_AUDIT_DATA_NET;
5132 ad.u.net = &net;
5133 ad.u.net->netif = skb->skb_iif;
5134 ad.u.net->family = family;
5135 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5136 if (err)
5137 return err;
5138
5139 if (selinux_secmark_enabled()) {
5140 err = avc_has_perm(&selinux_state,
5141 sk_sid, skb->secmark, SECCLASS_PACKET,
5142 PACKET__RECV, &ad);
5143 if (err)
5144 return err;
5145 }
5146
5147 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5148 if (err)
5149 return err;
5150 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5151
5152 return err;
5153}
5154
5155static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5156{
5157 int err;
5158 struct sk_security_struct *sksec = sk->sk_security;
5159 u16 family = sk->sk_family;
5160 u32 sk_sid = sksec->sid;
5161 struct common_audit_data ad;
5162 struct lsm_network_audit net = {0,};
5163 char *addrp;
5164 u8 secmark_active;
5165 u8 peerlbl_active;
5166
5167 if (family != PF_INET && family != PF_INET6)
5168 return 0;
5169
5170 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5171 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5172 family = PF_INET;
5173
5174 /* If any sort of compatibility mode is enabled then handoff processing
5175 * to the selinux_sock_rcv_skb_compat() function to deal with the
5176 * special handling. We do this in an attempt to keep this function
5177 * as fast and as clean as possible. */
5178 if (!selinux_policycap_netpeer())
5179 return selinux_sock_rcv_skb_compat(sk, skb, family);
5180
5181 secmark_active = selinux_secmark_enabled();
5182 peerlbl_active = selinux_peerlbl_enabled();
5183 if (!secmark_active && !peerlbl_active)
5184 return 0;
5185
5186 ad.type = LSM_AUDIT_DATA_NET;
5187 ad.u.net = &net;
5188 ad.u.net->netif = skb->skb_iif;
5189 ad.u.net->family = family;
5190 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5191 if (err)
5192 return err;
5193
5194 if (peerlbl_active) {
5195 u32 peer_sid;
5196
5197 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5198 if (err)
5199 return err;
5200 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5201 addrp, family, peer_sid, &ad);
5202 if (err) {
5203 selinux_netlbl_err(skb, family, err, 0);
5204 return err;
5205 }
5206 err = avc_has_perm(&selinux_state,
5207 sk_sid, peer_sid, SECCLASS_PEER,
5208 PEER__RECV, &ad);
5209 if (err) {
5210 selinux_netlbl_err(skb, family, err, 0);
5211 return err;
5212 }
5213 }
5214
5215 if (secmark_active) {
5216 err = avc_has_perm(&selinux_state,
5217 sk_sid, skb->secmark, SECCLASS_PACKET,
5218 PACKET__RECV, &ad);
5219 if (err)
5220 return err;
5221 }
5222
5223 return err;
5224}
5225
5226static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5227 int __user *optlen, unsigned len)
5228{
5229 int err = 0;
5230 char *scontext;
5231 u32 scontext_len;
5232 struct sk_security_struct *sksec = sock->sk->sk_security;
5233 u32 peer_sid = SECSID_NULL;
5234
5235 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5236 sksec->sclass == SECCLASS_TCP_SOCKET ||
5237 sksec->sclass == SECCLASS_SCTP_SOCKET)
5238 peer_sid = sksec->peer_sid;
5239 if (peer_sid == SECSID_NULL)
5240 return -ENOPROTOOPT;
5241
5242 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5243 &scontext_len);
5244 if (err)
5245 return err;
5246
5247 if (scontext_len > len) {
5248 err = -ERANGE;
5249 goto out_len;
5250 }
5251
5252 if (copy_to_user(optval, scontext, scontext_len))
5253 err = -EFAULT;
5254
5255out_len:
5256 if (put_user(scontext_len, optlen))
5257 err = -EFAULT;
5258 kfree(scontext);
5259 return err;
5260}
5261
5262static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5263{
5264 u32 peer_secid = SECSID_NULL;
5265 u16 family;
5266 struct inode_security_struct *isec;
5267
5268 if (skb && skb->protocol == htons(ETH_P_IP))
5269 family = PF_INET;
5270 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5271 family = PF_INET6;
5272 else if (sock)
5273 family = sock->sk->sk_family;
5274 else
5275 goto out;
5276
5277 if (sock && family == PF_UNIX) {
5278 isec = inode_security_novalidate(SOCK_INODE(sock));
5279 peer_secid = isec->sid;
5280 } else if (skb)
5281 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5282
5283out:
5284 *secid = peer_secid;
5285 if (peer_secid == SECSID_NULL)
5286 return -EINVAL;
5287 return 0;
5288}
5289
5290static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5291{
5292 struct sk_security_struct *sksec;
5293
5294 sksec = kzalloc(sizeof(*sksec), priority);
5295 if (!sksec)
5296 return -ENOMEM;
5297
5298 sksec->peer_sid = SECINITSID_UNLABELED;
5299 sksec->sid = SECINITSID_UNLABELED;
5300 sksec->sclass = SECCLASS_SOCKET;
5301 selinux_netlbl_sk_security_reset(sksec);
5302 sk->sk_security = sksec;
5303
5304 return 0;
5305}
5306
5307static void selinux_sk_free_security(struct sock *sk)
5308{
5309 struct sk_security_struct *sksec = sk->sk_security;
5310
5311 sk->sk_security = NULL;
5312 selinux_netlbl_sk_security_free(sksec);
5313 kfree(sksec);
5314}
5315
5316static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5317{
5318 struct sk_security_struct *sksec = sk->sk_security;
5319 struct sk_security_struct *newsksec = newsk->sk_security;
5320
5321 newsksec->sid = sksec->sid;
5322 newsksec->peer_sid = sksec->peer_sid;
5323 newsksec->sclass = sksec->sclass;
5324
5325 selinux_netlbl_sk_security_reset(newsksec);
5326}
5327
5328static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5329{
5330 if (!sk)
5331 *secid = SECINITSID_ANY_SOCKET;
5332 else {
5333 struct sk_security_struct *sksec = sk->sk_security;
5334
5335 *secid = sksec->sid;
5336 }
5337}
5338
5339static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5340{
5341 struct inode_security_struct *isec =
5342 inode_security_novalidate(SOCK_INODE(parent));
5343 struct sk_security_struct *sksec = sk->sk_security;
5344
5345 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5346 sk->sk_family == PF_UNIX)
5347 isec->sid = sksec->sid;
5348 sksec->sclass = isec->sclass;
5349}
5350
5351/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5352 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5353 * already present).
5354 */
5355static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5356 struct sk_buff *skb)
5357{
5358 struct sk_security_struct *sksec = ep->base.sk->sk_security;
5359 struct common_audit_data ad;
5360 struct lsm_network_audit net = {0,};
5361 u8 peerlbl_active;
5362 u32 peer_sid = SECINITSID_UNLABELED;
5363 u32 conn_sid;
5364 int err = 0;
5365
5366 if (!selinux_policycap_extsockclass())
5367 return 0;
5368
5369 peerlbl_active = selinux_peerlbl_enabled();
5370
5371 if (peerlbl_active) {
5372 /* This will return peer_sid = SECSID_NULL if there are
5373 * no peer labels, see security_net_peersid_resolve().
5374 */
5375 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5376 &peer_sid);
5377 if (err)
5378 return err;
5379
5380 if (peer_sid == SECSID_NULL)
5381 peer_sid = SECINITSID_UNLABELED;
5382 }
5383
5384 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5385 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5386
5387 /* Here as first association on socket. As the peer SID
5388 * was allowed by peer recv (and the netif/node checks),
5389 * then it is approved by policy and used as the primary
5390 * peer SID for getpeercon(3).
5391 */
5392 sksec->peer_sid = peer_sid;
5393 } else if (sksec->peer_sid != peer_sid) {
5394 /* Other association peer SIDs are checked to enforce
5395 * consistency among the peer SIDs.
5396 */
5397 ad.type = LSM_AUDIT_DATA_NET;
5398 ad.u.net = &net;
5399 ad.u.net->sk = ep->base.sk;
5400 err = avc_has_perm(&selinux_state,
5401 sksec->peer_sid, peer_sid, sksec->sclass,
5402 SCTP_SOCKET__ASSOCIATION, &ad);
5403 if (err)
5404 return err;
5405 }
5406
5407 /* Compute the MLS component for the connection and store
5408 * the information in ep. This will be used by SCTP TCP type
5409 * sockets and peeled off connections as they cause a new
5410 * socket to be generated. selinux_sctp_sk_clone() will then
5411 * plug this into the new socket.
5412 */
5413 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5414 if (err)
5415 return err;
5416
5417 ep->secid = conn_sid;
5418 ep->peer_secid = peer_sid;
5419
5420 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5421 return selinux_netlbl_sctp_assoc_request(ep, skb);
5422}
5423
5424/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5425 * based on their @optname.
5426 */
5427static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5428 struct sockaddr *address,
5429 int addrlen)
5430{
5431 int len, err = 0, walk_size = 0;
5432 void *addr_buf;
5433 struct sockaddr *addr;
5434 struct socket *sock;
5435
5436 if (!selinux_policycap_extsockclass())
5437 return 0;
5438
5439 /* Process one or more addresses that may be IPv4 or IPv6 */
5440 sock = sk->sk_socket;
5441 addr_buf = address;
5442
5443 while (walk_size < addrlen) {
5444 if (walk_size + sizeof(sa_family_t) > addrlen)
5445 return -EINVAL;
5446
5447 addr = addr_buf;
5448 switch (addr->sa_family) {
5449 case AF_UNSPEC:
5450 case AF_INET:
5451 len = sizeof(struct sockaddr_in);
5452 break;
5453 case AF_INET6:
5454 len = sizeof(struct sockaddr_in6);
5455 break;
5456 default:
5457 return -EINVAL;
5458 }
5459
5460 if (walk_size + len > addrlen)
5461 return -EINVAL;
5462
5463 err = -EINVAL;
5464 switch (optname) {
5465 /* Bind checks */
5466 case SCTP_PRIMARY_ADDR:
5467 case SCTP_SET_PEER_PRIMARY_ADDR:
5468 case SCTP_SOCKOPT_BINDX_ADD:
5469 err = selinux_socket_bind(sock, addr, len);
5470 break;
5471 /* Connect checks */
5472 case SCTP_SOCKOPT_CONNECTX:
5473 case SCTP_PARAM_SET_PRIMARY:
5474 case SCTP_PARAM_ADD_IP:
5475 case SCTP_SENDMSG_CONNECT:
5476 err = selinux_socket_connect_helper(sock, addr, len);
5477 if (err)
5478 return err;
5479
5480 /* As selinux_sctp_bind_connect() is called by the
5481 * SCTP protocol layer, the socket is already locked,
5482 * therefore selinux_netlbl_socket_connect_locked()
5483 * is called here. The situations handled are:
5484 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5485 * whenever a new IP address is added or when a new
5486 * primary address is selected.
5487 * Note that an SCTP connect(2) call happens before
5488 * the SCTP protocol layer and is handled via
5489 * selinux_socket_connect().
5490 */
5491 err = selinux_netlbl_socket_connect_locked(sk, addr);
5492 break;
5493 }
5494
5495 if (err)
5496 return err;
5497
5498 addr_buf += len;
5499 walk_size += len;
5500 }
5501
5502 return 0;
5503}
5504
5505/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5506static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5507 struct sock *newsk)
5508{
5509 struct sk_security_struct *sksec = sk->sk_security;
5510 struct sk_security_struct *newsksec = newsk->sk_security;
5511
5512 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5513 * the non-sctp clone version.
5514 */
5515 if (!selinux_policycap_extsockclass())
5516 return selinux_sk_clone_security(sk, newsk);
5517
5518 newsksec->sid = ep->secid;
5519 newsksec->peer_sid = ep->peer_secid;
5520 newsksec->sclass = sksec->sclass;
5521 selinux_netlbl_sctp_sk_clone(sk, newsk);
5522}
5523
5524static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5525 struct request_sock *req)
5526{
5527 struct sk_security_struct *sksec = sk->sk_security;
5528 int err;
5529 u16 family = req->rsk_ops->family;
5530 u32 connsid;
5531 u32 peersid;
5532
5533 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5534 if (err)
5535 return err;
5536 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5537 if (err)
5538 return err;
5539 req->secid = connsid;
5540 req->peer_secid = peersid;
5541
5542 return selinux_netlbl_inet_conn_request(req, family);
5543}
5544
5545static void selinux_inet_csk_clone(struct sock *newsk,
5546 const struct request_sock *req)
5547{
5548 struct sk_security_struct *newsksec = newsk->sk_security;
5549
5550 newsksec->sid = req->secid;
5551 newsksec->peer_sid = req->peer_secid;
5552 /* NOTE: Ideally, we should also get the isec->sid for the
5553 new socket in sync, but we don't have the isec available yet.
5554 So we will wait until sock_graft to do it, by which
5555 time it will have been created and available. */
5556
5557 /* We don't need to take any sort of lock here as we are the only
5558 * thread with access to newsksec */
5559 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5560}
5561
5562static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5563{
5564 u16 family = sk->sk_family;
5565 struct sk_security_struct *sksec = sk->sk_security;
5566
5567 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5568 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5569 family = PF_INET;
5570
5571 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5572}
5573
5574static int selinux_secmark_relabel_packet(u32 sid)
5575{
5576 const struct task_security_struct *__tsec;
5577 u32 tsid;
5578
5579 __tsec = selinux_cred(current_cred());
5580 tsid = __tsec->sid;
5581
5582 return avc_has_perm(&selinux_state,
5583 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5584 NULL);
5585}
5586
5587static void selinux_secmark_refcount_inc(void)
5588{
5589 atomic_inc(&selinux_secmark_refcount);
5590}
5591
5592static void selinux_secmark_refcount_dec(void)
5593{
5594 atomic_dec(&selinux_secmark_refcount);
5595}
5596
5597static void selinux_req_classify_flow(const struct request_sock *req,
5598 struct flowi_common *flic)
5599{
5600 flic->flowic_secid = req->secid;
5601}
5602
5603static int selinux_tun_dev_alloc_security(void **security)
5604{
5605 struct tun_security_struct *tunsec;
5606
5607 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5608 if (!tunsec)
5609 return -ENOMEM;
5610 tunsec->sid = current_sid();
5611
5612 *security = tunsec;
5613 return 0;
5614}
5615
5616static void selinux_tun_dev_free_security(void *security)
5617{
5618 kfree(security);
5619}
5620
5621static int selinux_tun_dev_create(void)
5622{
5623 u32 sid = current_sid();
5624
5625 /* we aren't taking into account the "sockcreate" SID since the socket
5626 * that is being created here is not a socket in the traditional sense,
5627 * instead it is a private sock, accessible only to the kernel, and
5628 * representing a wide range of network traffic spanning multiple
5629 * connections unlike traditional sockets - check the TUN driver to
5630 * get a better understanding of why this socket is special */
5631
5632 return avc_has_perm(&selinux_state,
5633 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5634 NULL);
5635}
5636
5637static int selinux_tun_dev_attach_queue(void *security)
5638{
5639 struct tun_security_struct *tunsec = security;
5640
5641 return avc_has_perm(&selinux_state,
5642 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5643 TUN_SOCKET__ATTACH_QUEUE, NULL);
5644}
5645
5646static int selinux_tun_dev_attach(struct sock *sk, void *security)
5647{
5648 struct tun_security_struct *tunsec = security;
5649 struct sk_security_struct *sksec = sk->sk_security;
5650
5651 /* we don't currently perform any NetLabel based labeling here and it
5652 * isn't clear that we would want to do so anyway; while we could apply
5653 * labeling without the support of the TUN user the resulting labeled
5654 * traffic from the other end of the connection would almost certainly
5655 * cause confusion to the TUN user that had no idea network labeling
5656 * protocols were being used */
5657
5658 sksec->sid = tunsec->sid;
5659 sksec->sclass = SECCLASS_TUN_SOCKET;
5660
5661 return 0;
5662}
5663
5664static int selinux_tun_dev_open(void *security)
5665{
5666 struct tun_security_struct *tunsec = security;
5667 u32 sid = current_sid();
5668 int err;
5669
5670 err = avc_has_perm(&selinux_state,
5671 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5672 TUN_SOCKET__RELABELFROM, NULL);
5673 if (err)
5674 return err;
5675 err = avc_has_perm(&selinux_state,
5676 sid, sid, SECCLASS_TUN_SOCKET,
5677 TUN_SOCKET__RELABELTO, NULL);
5678 if (err)
5679 return err;
5680 tunsec->sid = sid;
5681
5682 return 0;
5683}
5684
5685#ifdef CONFIG_NETFILTER
5686
5687static unsigned int selinux_ip_forward(struct sk_buff *skb,
5688 const struct net_device *indev,
5689 u16 family)
5690{
5691 int err;
5692 char *addrp;
5693 u32 peer_sid;
5694 struct common_audit_data ad;
5695 struct lsm_network_audit net = {0,};
5696 u8 secmark_active;
5697 u8 netlbl_active;
5698 u8 peerlbl_active;
5699
5700 if (!selinux_policycap_netpeer())
5701 return NF_ACCEPT;
5702
5703 secmark_active = selinux_secmark_enabled();
5704 netlbl_active = netlbl_enabled();
5705 peerlbl_active = selinux_peerlbl_enabled();
5706 if (!secmark_active && !peerlbl_active)
5707 return NF_ACCEPT;
5708
5709 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5710 return NF_DROP;
5711
5712 ad.type = LSM_AUDIT_DATA_NET;
5713 ad.u.net = &net;
5714 ad.u.net->netif = indev->ifindex;
5715 ad.u.net->family = family;
5716 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5717 return NF_DROP;
5718
5719 if (peerlbl_active) {
5720 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5721 addrp, family, peer_sid, &ad);
5722 if (err) {
5723 selinux_netlbl_err(skb, family, err, 1);
5724 return NF_DROP;
5725 }
5726 }
5727
5728 if (secmark_active)
5729 if (avc_has_perm(&selinux_state,
5730 peer_sid, skb->secmark,
5731 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5732 return NF_DROP;
5733
5734 if (netlbl_active)
5735 /* we do this in the FORWARD path and not the POST_ROUTING
5736 * path because we want to make sure we apply the necessary
5737 * labeling before IPsec is applied so we can leverage AH
5738 * protection */
5739 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5740 return NF_DROP;
5741
5742 return NF_ACCEPT;
5743}
5744
5745static unsigned int selinux_ipv4_forward(void *priv,
5746 struct sk_buff *skb,
5747 const struct nf_hook_state *state)
5748{
5749 return selinux_ip_forward(skb, state->in, PF_INET);
5750}
5751
5752#if IS_ENABLED(CONFIG_IPV6)
5753static unsigned int selinux_ipv6_forward(void *priv,
5754 struct sk_buff *skb,
5755 const struct nf_hook_state *state)
5756{
5757 return selinux_ip_forward(skb, state->in, PF_INET6);
5758}
5759#endif /* IPV6 */
5760
5761static unsigned int selinux_ip_output(struct sk_buff *skb,
5762 u16 family)
5763{
5764 struct sock *sk;
5765 u32 sid;
5766
5767 if (!netlbl_enabled())
5768 return NF_ACCEPT;
5769
5770 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5771 * because we want to make sure we apply the necessary labeling
5772 * before IPsec is applied so we can leverage AH protection */
5773 sk = skb->sk;
5774 if (sk) {
5775 struct sk_security_struct *sksec;
5776
5777 if (sk_listener(sk))
5778 /* if the socket is the listening state then this
5779 * packet is a SYN-ACK packet which means it needs to
5780 * be labeled based on the connection/request_sock and
5781 * not the parent socket. unfortunately, we can't
5782 * lookup the request_sock yet as it isn't queued on
5783 * the parent socket until after the SYN-ACK is sent.
5784 * the "solution" is to simply pass the packet as-is
5785 * as any IP option based labeling should be copied
5786 * from the initial connection request (in the IP
5787 * layer). it is far from ideal, but until we get a
5788 * security label in the packet itself this is the
5789 * best we can do. */
5790 return NF_ACCEPT;
5791
5792 /* standard practice, label using the parent socket */
5793 sksec = sk->sk_security;
5794 sid = sksec->sid;
5795 } else
5796 sid = SECINITSID_KERNEL;
5797 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5798 return NF_DROP;
5799
5800 return NF_ACCEPT;
5801}
5802
5803static unsigned int selinux_ipv4_output(void *priv,
5804 struct sk_buff *skb,
5805 const struct nf_hook_state *state)
5806{
5807 return selinux_ip_output(skb, PF_INET);
5808}
5809
5810#if IS_ENABLED(CONFIG_IPV6)
5811static unsigned int selinux_ipv6_output(void *priv,
5812 struct sk_buff *skb,
5813 const struct nf_hook_state *state)
5814{
5815 return selinux_ip_output(skb, PF_INET6);
5816}
5817#endif /* IPV6 */
5818
5819static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5820 int ifindex,
5821 u16 family)
5822{
5823 struct sock *sk = skb_to_full_sk(skb);
5824 struct sk_security_struct *sksec;
5825 struct common_audit_data ad;
5826 struct lsm_network_audit net = {0,};
5827 char *addrp;
5828 u8 proto;
5829
5830 if (sk == NULL)
5831 return NF_ACCEPT;
5832 sksec = sk->sk_security;
5833
5834 ad.type = LSM_AUDIT_DATA_NET;
5835 ad.u.net = &net;
5836 ad.u.net->netif = ifindex;
5837 ad.u.net->family = family;
5838 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5839 return NF_DROP;
5840
5841 if (selinux_secmark_enabled())
5842 if (avc_has_perm(&selinux_state,
5843 sksec->sid, skb->secmark,
5844 SECCLASS_PACKET, PACKET__SEND, &ad))
5845 return NF_DROP_ERR(-ECONNREFUSED);
5846
5847 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5848 return NF_DROP_ERR(-ECONNREFUSED);
5849
5850 return NF_ACCEPT;
5851}
5852
5853static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5854 const struct net_device *outdev,
5855 u16 family)
5856{
5857 u32 secmark_perm;
5858 u32 peer_sid;
5859 int ifindex = outdev->ifindex;
5860 struct sock *sk;
5861 struct common_audit_data ad;
5862 struct lsm_network_audit net = {0,};
5863 char *addrp;
5864 u8 secmark_active;
5865 u8 peerlbl_active;
5866
5867 /* If any sort of compatibility mode is enabled then handoff processing
5868 * to the selinux_ip_postroute_compat() function to deal with the
5869 * special handling. We do this in an attempt to keep this function
5870 * as fast and as clean as possible. */
5871 if (!selinux_policycap_netpeer())
5872 return selinux_ip_postroute_compat(skb, ifindex, family);
5873
5874 secmark_active = selinux_secmark_enabled();
5875 peerlbl_active = selinux_peerlbl_enabled();
5876 if (!secmark_active && !peerlbl_active)
5877 return NF_ACCEPT;
5878
5879 sk = skb_to_full_sk(skb);
5880
5881#ifdef CONFIG_XFRM
5882 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5883 * packet transformation so allow the packet to pass without any checks
5884 * since we'll have another chance to perform access control checks
5885 * when the packet is on it's final way out.
5886 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5887 * is NULL, in this case go ahead and apply access control.
5888 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5889 * TCP listening state we cannot wait until the XFRM processing
5890 * is done as we will miss out on the SA label if we do;
5891 * unfortunately, this means more work, but it is only once per
5892 * connection. */
5893 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5894 !(sk && sk_listener(sk)))
5895 return NF_ACCEPT;
5896#endif
5897
5898 if (sk == NULL) {
5899 /* Without an associated socket the packet is either coming
5900 * from the kernel or it is being forwarded; check the packet
5901 * to determine which and if the packet is being forwarded
5902 * query the packet directly to determine the security label. */
5903 if (skb->skb_iif) {
5904 secmark_perm = PACKET__FORWARD_OUT;
5905 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5906 return NF_DROP;
5907 } else {
5908 secmark_perm = PACKET__SEND;
5909 peer_sid = SECINITSID_KERNEL;
5910 }
5911 } else if (sk_listener(sk)) {
5912 /* Locally generated packet but the associated socket is in the
5913 * listening state which means this is a SYN-ACK packet. In
5914 * this particular case the correct security label is assigned
5915 * to the connection/request_sock but unfortunately we can't
5916 * query the request_sock as it isn't queued on the parent
5917 * socket until after the SYN-ACK packet is sent; the only
5918 * viable choice is to regenerate the label like we do in
5919 * selinux_inet_conn_request(). See also selinux_ip_output()
5920 * for similar problems. */
5921 u32 skb_sid;
5922 struct sk_security_struct *sksec;
5923
5924 sksec = sk->sk_security;
5925 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5926 return NF_DROP;
5927 /* At this point, if the returned skb peerlbl is SECSID_NULL
5928 * and the packet has been through at least one XFRM
5929 * transformation then we must be dealing with the "final"
5930 * form of labeled IPsec packet; since we've already applied
5931 * all of our access controls on this packet we can safely
5932 * pass the packet. */
5933 if (skb_sid == SECSID_NULL) {
5934 switch (family) {
5935 case PF_INET:
5936 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5937 return NF_ACCEPT;
5938 break;
5939 case PF_INET6:
5940 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5941 return NF_ACCEPT;
5942 break;
5943 default:
5944 return NF_DROP_ERR(-ECONNREFUSED);
5945 }
5946 }
5947 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5948 return NF_DROP;
5949 secmark_perm = PACKET__SEND;
5950 } else {
5951 /* Locally generated packet, fetch the security label from the
5952 * associated socket. */
5953 struct sk_security_struct *sksec = sk->sk_security;
5954 peer_sid = sksec->sid;
5955 secmark_perm = PACKET__SEND;
5956 }
5957
5958 ad.type = LSM_AUDIT_DATA_NET;
5959 ad.u.net = &net;
5960 ad.u.net->netif = ifindex;
5961 ad.u.net->family = family;
5962 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5963 return NF_DROP;
5964
5965 if (secmark_active)
5966 if (avc_has_perm(&selinux_state,
5967 peer_sid, skb->secmark,
5968 SECCLASS_PACKET, secmark_perm, &ad))
5969 return NF_DROP_ERR(-ECONNREFUSED);
5970
5971 if (peerlbl_active) {
5972 u32 if_sid;
5973 u32 node_sid;
5974
5975 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5976 return NF_DROP;
5977 if (avc_has_perm(&selinux_state,
5978 peer_sid, if_sid,
5979 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5980 return NF_DROP_ERR(-ECONNREFUSED);
5981
5982 if (sel_netnode_sid(addrp, family, &node_sid))
5983 return NF_DROP;
5984 if (avc_has_perm(&selinux_state,
5985 peer_sid, node_sid,
5986 SECCLASS_NODE, NODE__SENDTO, &ad))
5987 return NF_DROP_ERR(-ECONNREFUSED);
5988 }
5989
5990 return NF_ACCEPT;
5991}
5992
5993static unsigned int selinux_ipv4_postroute(void *priv,
5994 struct sk_buff *skb,
5995 const struct nf_hook_state *state)
5996{
5997 return selinux_ip_postroute(skb, state->out, PF_INET);
5998}
5999
6000#if IS_ENABLED(CONFIG_IPV6)
6001static unsigned int selinux_ipv6_postroute(void *priv,
6002 struct sk_buff *skb,
6003 const struct nf_hook_state *state)
6004{
6005 return selinux_ip_postroute(skb, state->out, PF_INET6);
6006}
6007#endif /* IPV6 */
6008
6009#endif /* CONFIG_NETFILTER */
6010
6011static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
6012{
6013 int rc = 0;
6014 unsigned int msg_len;
6015 unsigned int data_len = skb->len;
6016 unsigned char *data = skb->data;
6017 struct nlmsghdr *nlh;
6018 struct sk_security_struct *sksec = sk->sk_security;
6019 u16 sclass = sksec->sclass;
6020 u32 perm;
6021
6022 while (data_len >= nlmsg_total_size(0)) {
6023 nlh = (struct nlmsghdr *)data;
6024
6025 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
6026 * users which means we can't reject skb's with bogus
6027 * length fields; our solution is to follow what
6028 * netlink_rcv_skb() does and simply skip processing at
6029 * messages with length fields that are clearly junk
6030 */
6031 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
6032 return 0;
6033
6034 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
6035 if (rc == 0) {
6036 rc = sock_has_perm(sk, perm);
6037 if (rc)
6038 return rc;
6039 } else if (rc == -EINVAL) {
6040 /* -EINVAL is a missing msg/perm mapping */
6041 pr_warn_ratelimited("SELinux: unrecognized netlink"
6042 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
6043 " pid=%d comm=%s\n",
6044 sk->sk_protocol, nlh->nlmsg_type,
6045 secclass_map[sclass - 1].name,
6046 task_pid_nr(current), current->comm);
6047 if (enforcing_enabled(&selinux_state) &&
6048 !security_get_allow_unknown(&selinux_state))
6049 return rc;
6050 rc = 0;
6051 } else if (rc == -ENOENT) {
6052 /* -ENOENT is a missing socket/class mapping, ignore */
6053 rc = 0;
6054 } else {
6055 return rc;
6056 }
6057
6058 /* move to the next message after applying netlink padding */
6059 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6060 if (msg_len >= data_len)
6061 return 0;
6062 data_len -= msg_len;
6063 data += msg_len;
6064 }
6065
6066 return rc;
6067}
6068
6069static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6070{
6071 isec->sclass = sclass;
6072 isec->sid = current_sid();
6073}
6074
6075static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6076 u32 perms)
6077{
6078 struct ipc_security_struct *isec;
6079 struct common_audit_data ad;
6080 u32 sid = current_sid();
6081
6082 isec = selinux_ipc(ipc_perms);
6083
6084 ad.type = LSM_AUDIT_DATA_IPC;
6085 ad.u.ipc_id = ipc_perms->key;
6086
6087 return avc_has_perm(&selinux_state,
6088 sid, isec->sid, isec->sclass, perms, &ad);
6089}
6090
6091static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6092{
6093 struct msg_security_struct *msec;
6094
6095 msec = selinux_msg_msg(msg);
6096 msec->sid = SECINITSID_UNLABELED;
6097
6098 return 0;
6099}
6100
6101/* message queue security operations */
6102static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6103{
6104 struct ipc_security_struct *isec;
6105 struct common_audit_data ad;
6106 u32 sid = current_sid();
6107 int rc;
6108
6109 isec = selinux_ipc(msq);
6110 ipc_init_security(isec, SECCLASS_MSGQ);
6111
6112 ad.type = LSM_AUDIT_DATA_IPC;
6113 ad.u.ipc_id = msq->key;
6114
6115 rc = avc_has_perm(&selinux_state,
6116 sid, isec->sid, SECCLASS_MSGQ,
6117 MSGQ__CREATE, &ad);
6118 return rc;
6119}
6120
6121static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6122{
6123 struct ipc_security_struct *isec;
6124 struct common_audit_data ad;
6125 u32 sid = current_sid();
6126
6127 isec = selinux_ipc(msq);
6128
6129 ad.type = LSM_AUDIT_DATA_IPC;
6130 ad.u.ipc_id = msq->key;
6131
6132 return avc_has_perm(&selinux_state,
6133 sid, isec->sid, SECCLASS_MSGQ,
6134 MSGQ__ASSOCIATE, &ad);
6135}
6136
6137static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6138{
6139 int err;
6140 int perms;
6141
6142 switch (cmd) {
6143 case IPC_INFO:
6144 case MSG_INFO:
6145 /* No specific object, just general system-wide information. */
6146 return avc_has_perm(&selinux_state,
6147 current_sid(), SECINITSID_KERNEL,
6148 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6149 case IPC_STAT:
6150 case MSG_STAT:
6151 case MSG_STAT_ANY:
6152 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6153 break;
6154 case IPC_SET:
6155 perms = MSGQ__SETATTR;
6156 break;
6157 case IPC_RMID:
6158 perms = MSGQ__DESTROY;
6159 break;
6160 default:
6161 return 0;
6162 }
6163
6164 err = ipc_has_perm(msq, perms);
6165 return err;
6166}
6167
6168static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6169{
6170 struct ipc_security_struct *isec;
6171 struct msg_security_struct *msec;
6172 struct common_audit_data ad;
6173 u32 sid = current_sid();
6174 int rc;
6175
6176 isec = selinux_ipc(msq);
6177 msec = selinux_msg_msg(msg);
6178
6179 /*
6180 * First time through, need to assign label to the message
6181 */
6182 if (msec->sid == SECINITSID_UNLABELED) {
6183 /*
6184 * Compute new sid based on current process and
6185 * message queue this message will be stored in
6186 */
6187 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6188 SECCLASS_MSG, NULL, &msec->sid);
6189 if (rc)
6190 return rc;
6191 }
6192
6193 ad.type = LSM_AUDIT_DATA_IPC;
6194 ad.u.ipc_id = msq->key;
6195
6196 /* Can this process write to the queue? */
6197 rc = avc_has_perm(&selinux_state,
6198 sid, isec->sid, SECCLASS_MSGQ,
6199 MSGQ__WRITE, &ad);
6200 if (!rc)
6201 /* Can this process send the message */
6202 rc = avc_has_perm(&selinux_state,
6203 sid, msec->sid, SECCLASS_MSG,
6204 MSG__SEND, &ad);
6205 if (!rc)
6206 /* Can the message be put in the queue? */
6207 rc = avc_has_perm(&selinux_state,
6208 msec->sid, isec->sid, SECCLASS_MSGQ,
6209 MSGQ__ENQUEUE, &ad);
6210
6211 return rc;
6212}
6213
6214static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6215 struct task_struct *target,
6216 long type, int mode)
6217{
6218 struct ipc_security_struct *isec;
6219 struct msg_security_struct *msec;
6220 struct common_audit_data ad;
6221 u32 sid = task_sid_obj(target);
6222 int rc;
6223
6224 isec = selinux_ipc(msq);
6225 msec = selinux_msg_msg(msg);
6226
6227 ad.type = LSM_AUDIT_DATA_IPC;
6228 ad.u.ipc_id = msq->key;
6229
6230 rc = avc_has_perm(&selinux_state,
6231 sid, isec->sid,
6232 SECCLASS_MSGQ, MSGQ__READ, &ad);
6233 if (!rc)
6234 rc = avc_has_perm(&selinux_state,
6235 sid, msec->sid,
6236 SECCLASS_MSG, MSG__RECEIVE, &ad);
6237 return rc;
6238}
6239
6240/* Shared Memory security operations */
6241static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6242{
6243 struct ipc_security_struct *isec;
6244 struct common_audit_data ad;
6245 u32 sid = current_sid();
6246 int rc;
6247
6248 isec = selinux_ipc(shp);
6249 ipc_init_security(isec, SECCLASS_SHM);
6250
6251 ad.type = LSM_AUDIT_DATA_IPC;
6252 ad.u.ipc_id = shp->key;
6253
6254 rc = avc_has_perm(&selinux_state,
6255 sid, isec->sid, SECCLASS_SHM,
6256 SHM__CREATE, &ad);
6257 return rc;
6258}
6259
6260static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6261{
6262 struct ipc_security_struct *isec;
6263 struct common_audit_data ad;
6264 u32 sid = current_sid();
6265
6266 isec = selinux_ipc(shp);
6267
6268 ad.type = LSM_AUDIT_DATA_IPC;
6269 ad.u.ipc_id = shp->key;
6270
6271 return avc_has_perm(&selinux_state,
6272 sid, isec->sid, SECCLASS_SHM,
6273 SHM__ASSOCIATE, &ad);
6274}
6275
6276/* Note, at this point, shp is locked down */
6277static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6278{
6279 int perms;
6280 int err;
6281
6282 switch (cmd) {
6283 case IPC_INFO:
6284 case SHM_INFO:
6285 /* No specific object, just general system-wide information. */
6286 return avc_has_perm(&selinux_state,
6287 current_sid(), SECINITSID_KERNEL,
6288 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6289 case IPC_STAT:
6290 case SHM_STAT:
6291 case SHM_STAT_ANY:
6292 perms = SHM__GETATTR | SHM__ASSOCIATE;
6293 break;
6294 case IPC_SET:
6295 perms = SHM__SETATTR;
6296 break;
6297 case SHM_LOCK:
6298 case SHM_UNLOCK:
6299 perms = SHM__LOCK;
6300 break;
6301 case IPC_RMID:
6302 perms = SHM__DESTROY;
6303 break;
6304 default:
6305 return 0;
6306 }
6307
6308 err = ipc_has_perm(shp, perms);
6309 return err;
6310}
6311
6312static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6313 char __user *shmaddr, int shmflg)
6314{
6315 u32 perms;
6316
6317 if (shmflg & SHM_RDONLY)
6318 perms = SHM__READ;
6319 else
6320 perms = SHM__READ | SHM__WRITE;
6321
6322 return ipc_has_perm(shp, perms);
6323}
6324
6325/* Semaphore security operations */
6326static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6327{
6328 struct ipc_security_struct *isec;
6329 struct common_audit_data ad;
6330 u32 sid = current_sid();
6331 int rc;
6332
6333 isec = selinux_ipc(sma);
6334 ipc_init_security(isec, SECCLASS_SEM);
6335
6336 ad.type = LSM_AUDIT_DATA_IPC;
6337 ad.u.ipc_id = sma->key;
6338
6339 rc = avc_has_perm(&selinux_state,
6340 sid, isec->sid, SECCLASS_SEM,
6341 SEM__CREATE, &ad);
6342 return rc;
6343}
6344
6345static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6346{
6347 struct ipc_security_struct *isec;
6348 struct common_audit_data ad;
6349 u32 sid = current_sid();
6350
6351 isec = selinux_ipc(sma);
6352
6353 ad.type = LSM_AUDIT_DATA_IPC;
6354 ad.u.ipc_id = sma->key;
6355
6356 return avc_has_perm(&selinux_state,
6357 sid, isec->sid, SECCLASS_SEM,
6358 SEM__ASSOCIATE, &ad);
6359}
6360
6361/* Note, at this point, sma is locked down */
6362static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6363{
6364 int err;
6365 u32 perms;
6366
6367 switch (cmd) {
6368 case IPC_INFO:
6369 case SEM_INFO:
6370 /* No specific object, just general system-wide information. */
6371 return avc_has_perm(&selinux_state,
6372 current_sid(), SECINITSID_KERNEL,
6373 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6374 case GETPID:
6375 case GETNCNT:
6376 case GETZCNT:
6377 perms = SEM__GETATTR;
6378 break;
6379 case GETVAL:
6380 case GETALL:
6381 perms = SEM__READ;
6382 break;
6383 case SETVAL:
6384 case SETALL:
6385 perms = SEM__WRITE;
6386 break;
6387 case IPC_RMID:
6388 perms = SEM__DESTROY;
6389 break;
6390 case IPC_SET:
6391 perms = SEM__SETATTR;
6392 break;
6393 case IPC_STAT:
6394 case SEM_STAT:
6395 case SEM_STAT_ANY:
6396 perms = SEM__GETATTR | SEM__ASSOCIATE;
6397 break;
6398 default:
6399 return 0;
6400 }
6401
6402 err = ipc_has_perm(sma, perms);
6403 return err;
6404}
6405
6406static int selinux_sem_semop(struct kern_ipc_perm *sma,
6407 struct sembuf *sops, unsigned nsops, int alter)
6408{
6409 u32 perms;
6410
6411 if (alter)
6412 perms = SEM__READ | SEM__WRITE;
6413 else
6414 perms = SEM__READ;
6415
6416 return ipc_has_perm(sma, perms);
6417}
6418
6419static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6420{
6421 u32 av = 0;
6422
6423 av = 0;
6424 if (flag & S_IRUGO)
6425 av |= IPC__UNIX_READ;
6426 if (flag & S_IWUGO)
6427 av |= IPC__UNIX_WRITE;
6428
6429 if (av == 0)
6430 return 0;
6431
6432 return ipc_has_perm(ipcp, av);
6433}
6434
6435static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6436{
6437 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6438 *secid = isec->sid;
6439}
6440
6441static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6442{
6443 if (inode)
6444 inode_doinit_with_dentry(inode, dentry);
6445}
6446
6447static int selinux_getprocattr(struct task_struct *p,
6448 char *name, char **value)
6449{
6450 const struct task_security_struct *__tsec;
6451 u32 sid;
6452 int error;
6453 unsigned len;
6454
6455 rcu_read_lock();
6456 __tsec = selinux_cred(__task_cred(p));
6457
6458 if (current != p) {
6459 error = avc_has_perm(&selinux_state,
6460 current_sid(), __tsec->sid,
6461 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6462 if (error)
6463 goto bad;
6464 }
6465
6466 if (!strcmp(name, "current"))
6467 sid = __tsec->sid;
6468 else if (!strcmp(name, "prev"))
6469 sid = __tsec->osid;
6470 else if (!strcmp(name, "exec"))
6471 sid = __tsec->exec_sid;
6472 else if (!strcmp(name, "fscreate"))
6473 sid = __tsec->create_sid;
6474 else if (!strcmp(name, "keycreate"))
6475 sid = __tsec->keycreate_sid;
6476 else if (!strcmp(name, "sockcreate"))
6477 sid = __tsec->sockcreate_sid;
6478 else {
6479 error = -EINVAL;
6480 goto bad;
6481 }
6482 rcu_read_unlock();
6483
6484 if (!sid)
6485 return 0;
6486
6487 error = security_sid_to_context(&selinux_state, sid, value, &len);
6488 if (error)
6489 return error;
6490 return len;
6491
6492bad:
6493 rcu_read_unlock();
6494 return error;
6495}
6496
6497static int selinux_setprocattr(const char *name, void *value, size_t size)
6498{
6499 struct task_security_struct *tsec;
6500 struct cred *new;
6501 u32 mysid = current_sid(), sid = 0, ptsid;
6502 int error;
6503 char *str = value;
6504
6505 /*
6506 * Basic control over ability to set these attributes at all.
6507 */
6508 if (!strcmp(name, "exec"))
6509 error = avc_has_perm(&selinux_state,
6510 mysid, mysid, SECCLASS_PROCESS,
6511 PROCESS__SETEXEC, NULL);
6512 else if (!strcmp(name, "fscreate"))
6513 error = avc_has_perm(&selinux_state,
6514 mysid, mysid, SECCLASS_PROCESS,
6515 PROCESS__SETFSCREATE, NULL);
6516 else if (!strcmp(name, "keycreate"))
6517 error = avc_has_perm(&selinux_state,
6518 mysid, mysid, SECCLASS_PROCESS,
6519 PROCESS__SETKEYCREATE, NULL);
6520 else if (!strcmp(name, "sockcreate"))
6521 error = avc_has_perm(&selinux_state,
6522 mysid, mysid, SECCLASS_PROCESS,
6523 PROCESS__SETSOCKCREATE, NULL);
6524 else if (!strcmp(name, "current"))
6525 error = avc_has_perm(&selinux_state,
6526 mysid, mysid, SECCLASS_PROCESS,
6527 PROCESS__SETCURRENT, NULL);
6528 else
6529 error = -EINVAL;
6530 if (error)
6531 return error;
6532
6533 /* Obtain a SID for the context, if one was specified. */
6534 if (size && str[0] && str[0] != '\n') {
6535 if (str[size-1] == '\n') {
6536 str[size-1] = 0;
6537 size--;
6538 }
6539 error = security_context_to_sid(&selinux_state, value, size,
6540 &sid, GFP_KERNEL);
6541 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6542 if (!has_cap_mac_admin(true)) {
6543 struct audit_buffer *ab;
6544 size_t audit_size;
6545
6546 /* We strip a nul only if it is at the end, otherwise the
6547 * context contains a nul and we should audit that */
6548 if (str[size - 1] == '\0')
6549 audit_size = size - 1;
6550 else
6551 audit_size = size;
6552 ab = audit_log_start(audit_context(),
6553 GFP_ATOMIC,
6554 AUDIT_SELINUX_ERR);
6555 audit_log_format(ab, "op=fscreate invalid_context=");
6556 audit_log_n_untrustedstring(ab, value, audit_size);
6557 audit_log_end(ab);
6558
6559 return error;
6560 }
6561 error = security_context_to_sid_force(
6562 &selinux_state,
6563 value, size, &sid);
6564 }
6565 if (error)
6566 return error;
6567 }
6568
6569 new = prepare_creds();
6570 if (!new)
6571 return -ENOMEM;
6572
6573 /* Permission checking based on the specified context is
6574 performed during the actual operation (execve,
6575 open/mkdir/...), when we know the full context of the
6576 operation. See selinux_bprm_creds_for_exec for the execve
6577 checks and may_create for the file creation checks. The
6578 operation will then fail if the context is not permitted. */
6579 tsec = selinux_cred(new);
6580 if (!strcmp(name, "exec")) {
6581 tsec->exec_sid = sid;
6582 } else if (!strcmp(name, "fscreate")) {
6583 tsec->create_sid = sid;
6584 } else if (!strcmp(name, "keycreate")) {
6585 if (sid) {
6586 error = avc_has_perm(&selinux_state, mysid, sid,
6587 SECCLASS_KEY, KEY__CREATE, NULL);
6588 if (error)
6589 goto abort_change;
6590 }
6591 tsec->keycreate_sid = sid;
6592 } else if (!strcmp(name, "sockcreate")) {
6593 tsec->sockcreate_sid = sid;
6594 } else if (!strcmp(name, "current")) {
6595 error = -EINVAL;
6596 if (sid == 0)
6597 goto abort_change;
6598
6599 /* Only allow single threaded processes to change context */
6600 error = -EPERM;
6601 if (!current_is_single_threaded()) {
6602 error = security_bounded_transition(&selinux_state,
6603 tsec->sid, sid);
6604 if (error)
6605 goto abort_change;
6606 }
6607
6608 /* Check permissions for the transition. */
6609 error = avc_has_perm(&selinux_state,
6610 tsec->sid, sid, SECCLASS_PROCESS,
6611 PROCESS__DYNTRANSITION, NULL);
6612 if (error)
6613 goto abort_change;
6614
6615 /* Check for ptracing, and update the task SID if ok.
6616 Otherwise, leave SID unchanged and fail. */
6617 ptsid = ptrace_parent_sid();
6618 if (ptsid != 0) {
6619 error = avc_has_perm(&selinux_state,
6620 ptsid, sid, SECCLASS_PROCESS,
6621 PROCESS__PTRACE, NULL);
6622 if (error)
6623 goto abort_change;
6624 }
6625
6626 tsec->sid = sid;
6627 } else {
6628 error = -EINVAL;
6629 goto abort_change;
6630 }
6631
6632 commit_creds(new);
6633 return size;
6634
6635abort_change:
6636 abort_creds(new);
6637 return error;
6638}
6639
6640static int selinux_ismaclabel(const char *name)
6641{
6642 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6643}
6644
6645static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6646{
6647 return security_sid_to_context(&selinux_state, secid,
6648 secdata, seclen);
6649}
6650
6651static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6652{
6653 return security_context_to_sid(&selinux_state, secdata, seclen,
6654 secid, GFP_KERNEL);
6655}
6656
6657static void selinux_release_secctx(char *secdata, u32 seclen)
6658{
6659 kfree(secdata);
6660}
6661
6662static void selinux_inode_invalidate_secctx(struct inode *inode)
6663{
6664 struct inode_security_struct *isec = selinux_inode(inode);
6665
6666 spin_lock(&isec->lock);
6667 isec->initialized = LABEL_INVALID;
6668 spin_unlock(&isec->lock);
6669}
6670
6671/*
6672 * called with inode->i_mutex locked
6673 */
6674static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6675{
6676 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6677 ctx, ctxlen, 0);
6678 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6679 return rc == -EOPNOTSUPP ? 0 : rc;
6680}
6681
6682/*
6683 * called with inode->i_mutex locked
6684 */
6685static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6686{
6687 return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6688 ctx, ctxlen, 0);
6689}
6690
6691static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6692{
6693 int len = 0;
6694 len = selinux_inode_getsecurity(&init_user_ns, inode,
6695 XATTR_SELINUX_SUFFIX, ctx, true);
6696 if (len < 0)
6697 return len;
6698 *ctxlen = len;
6699 return 0;
6700}
6701#ifdef CONFIG_KEYS
6702
6703static int selinux_key_alloc(struct key *k, const struct cred *cred,
6704 unsigned long flags)
6705{
6706 const struct task_security_struct *tsec;
6707 struct key_security_struct *ksec;
6708
6709 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6710 if (!ksec)
6711 return -ENOMEM;
6712
6713 tsec = selinux_cred(cred);
6714 if (tsec->keycreate_sid)
6715 ksec->sid = tsec->keycreate_sid;
6716 else
6717 ksec->sid = tsec->sid;
6718
6719 k->security = ksec;
6720 return 0;
6721}
6722
6723static void selinux_key_free(struct key *k)
6724{
6725 struct key_security_struct *ksec = k->security;
6726
6727 k->security = NULL;
6728 kfree(ksec);
6729}
6730
6731static int selinux_key_permission(key_ref_t key_ref,
6732 const struct cred *cred,
6733 enum key_need_perm need_perm)
6734{
6735 struct key *key;
6736 struct key_security_struct *ksec;
6737 u32 perm, sid;
6738
6739 switch (need_perm) {
6740 case KEY_NEED_VIEW:
6741 perm = KEY__VIEW;
6742 break;
6743 case KEY_NEED_READ:
6744 perm = KEY__READ;
6745 break;
6746 case KEY_NEED_WRITE:
6747 perm = KEY__WRITE;
6748 break;
6749 case KEY_NEED_SEARCH:
6750 perm = KEY__SEARCH;
6751 break;
6752 case KEY_NEED_LINK:
6753 perm = KEY__LINK;
6754 break;
6755 case KEY_NEED_SETATTR:
6756 perm = KEY__SETATTR;
6757 break;
6758 case KEY_NEED_UNLINK:
6759 case KEY_SYSADMIN_OVERRIDE:
6760 case KEY_AUTHTOKEN_OVERRIDE:
6761 case KEY_DEFER_PERM_CHECK:
6762 return 0;
6763 default:
6764 WARN_ON(1);
6765 return -EPERM;
6766
6767 }
6768
6769 sid = cred_sid(cred);
6770 key = key_ref_to_ptr(key_ref);
6771 ksec = key->security;
6772
6773 return avc_has_perm(&selinux_state,
6774 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6775}
6776
6777static int selinux_key_getsecurity(struct key *key, char **_buffer)
6778{
6779 struct key_security_struct *ksec = key->security;
6780 char *context = NULL;
6781 unsigned len;
6782 int rc;
6783
6784 rc = security_sid_to_context(&selinux_state, ksec->sid,
6785 &context, &len);
6786 if (!rc)
6787 rc = len;
6788 *_buffer = context;
6789 return rc;
6790}
6791
6792#ifdef CONFIG_KEY_NOTIFICATIONS
6793static int selinux_watch_key(struct key *key)
6794{
6795 struct key_security_struct *ksec = key->security;
6796 u32 sid = current_sid();
6797
6798 return avc_has_perm(&selinux_state,
6799 sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6800}
6801#endif
6802#endif
6803
6804#ifdef CONFIG_SECURITY_INFINIBAND
6805static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6806{
6807 struct common_audit_data ad;
6808 int err;
6809 u32 sid = 0;
6810 struct ib_security_struct *sec = ib_sec;
6811 struct lsm_ibpkey_audit ibpkey;
6812
6813 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6814 if (err)
6815 return err;
6816
6817 ad.type = LSM_AUDIT_DATA_IBPKEY;
6818 ibpkey.subnet_prefix = subnet_prefix;
6819 ibpkey.pkey = pkey_val;
6820 ad.u.ibpkey = &ibpkey;
6821 return avc_has_perm(&selinux_state,
6822 sec->sid, sid,
6823 SECCLASS_INFINIBAND_PKEY,
6824 INFINIBAND_PKEY__ACCESS, &ad);
6825}
6826
6827static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6828 u8 port_num)
6829{
6830 struct common_audit_data ad;
6831 int err;
6832 u32 sid = 0;
6833 struct ib_security_struct *sec = ib_sec;
6834 struct lsm_ibendport_audit ibendport;
6835
6836 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6837 &sid);
6838
6839 if (err)
6840 return err;
6841
6842 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6843 ibendport.dev_name = dev_name;
6844 ibendport.port = port_num;
6845 ad.u.ibendport = &ibendport;
6846 return avc_has_perm(&selinux_state,
6847 sec->sid, sid,
6848 SECCLASS_INFINIBAND_ENDPORT,
6849 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6850}
6851
6852static int selinux_ib_alloc_security(void **ib_sec)
6853{
6854 struct ib_security_struct *sec;
6855
6856 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6857 if (!sec)
6858 return -ENOMEM;
6859 sec->sid = current_sid();
6860
6861 *ib_sec = sec;
6862 return 0;
6863}
6864
6865static void selinux_ib_free_security(void *ib_sec)
6866{
6867 kfree(ib_sec);
6868}
6869#endif
6870
6871#ifdef CONFIG_BPF_SYSCALL
6872static int selinux_bpf(int cmd, union bpf_attr *attr,
6873 unsigned int size)
6874{
6875 u32 sid = current_sid();
6876 int ret;
6877
6878 switch (cmd) {
6879 case BPF_MAP_CREATE:
6880 ret = avc_has_perm(&selinux_state,
6881 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6882 NULL);
6883 break;
6884 case BPF_PROG_LOAD:
6885 ret = avc_has_perm(&selinux_state,
6886 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6887 NULL);
6888 break;
6889 default:
6890 ret = 0;
6891 break;
6892 }
6893
6894 return ret;
6895}
6896
6897static u32 bpf_map_fmode_to_av(fmode_t fmode)
6898{
6899 u32 av = 0;
6900
6901 if (fmode & FMODE_READ)
6902 av |= BPF__MAP_READ;
6903 if (fmode & FMODE_WRITE)
6904 av |= BPF__MAP_WRITE;
6905 return av;
6906}
6907
6908/* This function will check the file pass through unix socket or binder to see
6909 * if it is a bpf related object. And apply correspinding checks on the bpf
6910 * object based on the type. The bpf maps and programs, not like other files and
6911 * socket, are using a shared anonymous inode inside the kernel as their inode.
6912 * So checking that inode cannot identify if the process have privilege to
6913 * access the bpf object and that's why we have to add this additional check in
6914 * selinux_file_receive and selinux_binder_transfer_files.
6915 */
6916static int bpf_fd_pass(struct file *file, u32 sid)
6917{
6918 struct bpf_security_struct *bpfsec;
6919 struct bpf_prog *prog;
6920 struct bpf_map *map;
6921 int ret;
6922
6923 if (file->f_op == &bpf_map_fops) {
6924 map = file->private_data;
6925 bpfsec = map->security;
6926 ret = avc_has_perm(&selinux_state,
6927 sid, bpfsec->sid, SECCLASS_BPF,
6928 bpf_map_fmode_to_av(file->f_mode), NULL);
6929 if (ret)
6930 return ret;
6931 } else if (file->f_op == &bpf_prog_fops) {
6932 prog = file->private_data;
6933 bpfsec = prog->aux->security;
6934 ret = avc_has_perm(&selinux_state,
6935 sid, bpfsec->sid, SECCLASS_BPF,
6936 BPF__PROG_RUN, NULL);
6937 if (ret)
6938 return ret;
6939 }
6940 return 0;
6941}
6942
6943static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6944{
6945 u32 sid = current_sid();
6946 struct bpf_security_struct *bpfsec;
6947
6948 bpfsec = map->security;
6949 return avc_has_perm(&selinux_state,
6950 sid, bpfsec->sid, SECCLASS_BPF,
6951 bpf_map_fmode_to_av(fmode), NULL);
6952}
6953
6954static int selinux_bpf_prog(struct bpf_prog *prog)
6955{
6956 u32 sid = current_sid();
6957 struct bpf_security_struct *bpfsec;
6958
6959 bpfsec = prog->aux->security;
6960 return avc_has_perm(&selinux_state,
6961 sid, bpfsec->sid, SECCLASS_BPF,
6962 BPF__PROG_RUN, NULL);
6963}
6964
6965static int selinux_bpf_map_alloc(struct bpf_map *map)
6966{
6967 struct bpf_security_struct *bpfsec;
6968
6969 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6970 if (!bpfsec)
6971 return -ENOMEM;
6972
6973 bpfsec->sid = current_sid();
6974 map->security = bpfsec;
6975
6976 return 0;
6977}
6978
6979static void selinux_bpf_map_free(struct bpf_map *map)
6980{
6981 struct bpf_security_struct *bpfsec = map->security;
6982
6983 map->security = NULL;
6984 kfree(bpfsec);
6985}
6986
6987static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6988{
6989 struct bpf_security_struct *bpfsec;
6990
6991 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6992 if (!bpfsec)
6993 return -ENOMEM;
6994
6995 bpfsec->sid = current_sid();
6996 aux->security = bpfsec;
6997
6998 return 0;
6999}
7000
7001static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
7002{
7003 struct bpf_security_struct *bpfsec = aux->security;
7004
7005 aux->security = NULL;
7006 kfree(bpfsec);
7007}
7008#endif
7009
7010static int selinux_lockdown(enum lockdown_reason what)
7011{
7012 struct common_audit_data ad;
7013 u32 sid = current_sid();
7014 int invalid_reason = (what <= LOCKDOWN_NONE) ||
7015 (what == LOCKDOWN_INTEGRITY_MAX) ||
7016 (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
7017
7018 if (WARN(invalid_reason, "Invalid lockdown reason")) {
7019 audit_log(audit_context(),
7020 GFP_ATOMIC, AUDIT_SELINUX_ERR,
7021 "lockdown_reason=invalid");
7022 return -EINVAL;
7023 }
7024
7025 ad.type = LSM_AUDIT_DATA_LOCKDOWN;
7026 ad.u.reason = what;
7027
7028 if (what <= LOCKDOWN_INTEGRITY_MAX)
7029 return avc_has_perm(&selinux_state,
7030 sid, sid, SECCLASS_LOCKDOWN,
7031 LOCKDOWN__INTEGRITY, &ad);
7032 else
7033 return avc_has_perm(&selinux_state,
7034 sid, sid, SECCLASS_LOCKDOWN,
7035 LOCKDOWN__CONFIDENTIALITY, &ad);
7036}
7037
7038struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
7039 .lbs_cred = sizeof(struct task_security_struct),
7040 .lbs_file = sizeof(struct file_security_struct),
7041 .lbs_inode = sizeof(struct inode_security_struct),
7042 .lbs_ipc = sizeof(struct ipc_security_struct),
7043 .lbs_msg_msg = sizeof(struct msg_security_struct),
7044 .lbs_superblock = sizeof(struct superblock_security_struct),
7045};
7046
7047#ifdef CONFIG_PERF_EVENTS
7048static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7049{
7050 u32 requested, sid = current_sid();
7051
7052 if (type == PERF_SECURITY_OPEN)
7053 requested = PERF_EVENT__OPEN;
7054 else if (type == PERF_SECURITY_CPU)
7055 requested = PERF_EVENT__CPU;
7056 else if (type == PERF_SECURITY_KERNEL)
7057 requested = PERF_EVENT__KERNEL;
7058 else if (type == PERF_SECURITY_TRACEPOINT)
7059 requested = PERF_EVENT__TRACEPOINT;
7060 else
7061 return -EINVAL;
7062
7063 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
7064 requested, NULL);
7065}
7066
7067static int selinux_perf_event_alloc(struct perf_event *event)
7068{
7069 struct perf_event_security_struct *perfsec;
7070
7071 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7072 if (!perfsec)
7073 return -ENOMEM;
7074
7075 perfsec->sid = current_sid();
7076 event->security = perfsec;
7077
7078 return 0;
7079}
7080
7081static void selinux_perf_event_free(struct perf_event *event)
7082{
7083 struct perf_event_security_struct *perfsec = event->security;
7084
7085 event->security = NULL;
7086 kfree(perfsec);
7087}
7088
7089static int selinux_perf_event_read(struct perf_event *event)
7090{
7091 struct perf_event_security_struct *perfsec = event->security;
7092 u32 sid = current_sid();
7093
7094 return avc_has_perm(&selinux_state, sid, perfsec->sid,
7095 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7096}
7097
7098static int selinux_perf_event_write(struct perf_event *event)
7099{
7100 struct perf_event_security_struct *perfsec = event->security;
7101 u32 sid = current_sid();
7102
7103 return avc_has_perm(&selinux_state, sid, perfsec->sid,
7104 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7105}
7106#endif
7107
7108/*
7109 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7110 * 1. any hooks that don't belong to (2.) or (3.) below,
7111 * 2. hooks that both access structures allocated by other hooks, and allocate
7112 * structures that can be later accessed by other hooks (mostly "cloning"
7113 * hooks),
7114 * 3. hooks that only allocate structures that can be later accessed by other
7115 * hooks ("allocating" hooks).
7116 *
7117 * Please follow block comment delimiters in the list to keep this order.
7118 *
7119 * This ordering is needed for SELinux runtime disable to work at least somewhat
7120 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7121 * when disabling SELinux at runtime.
7122 */
7123static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7124 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7125 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7126 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7127 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7128
7129 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7130 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7131 LSM_HOOK_INIT(capget, selinux_capget),
7132 LSM_HOOK_INIT(capset, selinux_capset),
7133 LSM_HOOK_INIT(capable, selinux_capable),
7134 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7135 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7136 LSM_HOOK_INIT(syslog, selinux_syslog),
7137 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7138
7139 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7140
7141 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7142 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7143 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7144
7145 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7146 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7147 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7148 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7149 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7150 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7151 LSM_HOOK_INIT(sb_mount, selinux_mount),
7152 LSM_HOOK_INIT(sb_umount, selinux_umount),
7153 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7154 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7155
7156 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7157
7158 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7159 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7160
7161 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7162 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7163 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7164 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7165 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7166 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7167 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7168 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7169 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7170 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7171 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7172 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7173 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7174 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7175 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7176 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7177 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7178 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7179 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7180 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7181 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7182 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7183 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7184 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7185 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7186 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7187 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7188 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7189
7190 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7191
7192 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7193 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7194 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7195 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7196 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7197 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7198 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7199 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7200 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7201 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7202 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7203
7204 LSM_HOOK_INIT(file_open, selinux_file_open),
7205
7206 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7207 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7208 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7209 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7210 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7211 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7212 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7213 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7214 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7215 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7216 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7217 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7218 LSM_HOOK_INIT(task_getsecid_subj, selinux_task_getsecid_subj),
7219 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7220 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7221 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7222 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7223 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7224 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7225 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7226 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7227 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7228 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7229 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7230
7231 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7232 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7233
7234 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7235 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7236 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7237 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7238
7239 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7240 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7241 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7242
7243 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7244 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7245 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7246
7247 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7248
7249 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7250 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7251
7252 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7253 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7254 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7255 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7256 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7257 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7258
7259 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7260 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7261
7262 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7263 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7264 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7265 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7266 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7267 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7268 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7269 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7270 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7271 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7272 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7273 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7274 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7275 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7276 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7277 LSM_HOOK_INIT(socket_getpeersec_stream,
7278 selinux_socket_getpeersec_stream),
7279 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7280 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7281 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7282 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7283 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7284 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7285 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7286 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7287 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7288 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7289 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7290 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7291 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7292 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7293 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7294 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7295 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7296 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7297 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7298 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7299#ifdef CONFIG_SECURITY_INFINIBAND
7300 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7301 LSM_HOOK_INIT(ib_endport_manage_subnet,
7302 selinux_ib_endport_manage_subnet),
7303 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7304#endif
7305#ifdef CONFIG_SECURITY_NETWORK_XFRM
7306 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7307 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7308 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7309 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7310 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7311 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7312 selinux_xfrm_state_pol_flow_match),
7313 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7314#endif
7315
7316#ifdef CONFIG_KEYS
7317 LSM_HOOK_INIT(key_free, selinux_key_free),
7318 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7319 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7320#ifdef CONFIG_KEY_NOTIFICATIONS
7321 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7322#endif
7323#endif
7324
7325#ifdef CONFIG_AUDIT
7326 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7327 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7328 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7329#endif
7330
7331#ifdef CONFIG_BPF_SYSCALL
7332 LSM_HOOK_INIT(bpf, selinux_bpf),
7333 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7334 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7335 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7336 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7337#endif
7338
7339#ifdef CONFIG_PERF_EVENTS
7340 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7341 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7342 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7343 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7344#endif
7345
7346 LSM_HOOK_INIT(locked_down, selinux_lockdown),
7347
7348 /*
7349 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7350 */
7351 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7352 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7353 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7354 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7355#ifdef CONFIG_SECURITY_NETWORK_XFRM
7356 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7357#endif
7358
7359 /*
7360 * PUT "ALLOCATING" HOOKS HERE
7361 */
7362 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7363 LSM_HOOK_INIT(msg_queue_alloc_security,
7364 selinux_msg_queue_alloc_security),
7365 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7366 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7367 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7368 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7369 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7370 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7371 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7372 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7373#ifdef CONFIG_SECURITY_INFINIBAND
7374 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7375#endif
7376#ifdef CONFIG_SECURITY_NETWORK_XFRM
7377 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7378 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7379 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7380 selinux_xfrm_state_alloc_acquire),
7381#endif
7382#ifdef CONFIG_KEYS
7383 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7384#endif
7385#ifdef CONFIG_AUDIT
7386 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7387#endif
7388#ifdef CONFIG_BPF_SYSCALL
7389 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7390 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7391#endif
7392#ifdef CONFIG_PERF_EVENTS
7393 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7394#endif
7395};
7396
7397static __init int selinux_init(void)
7398{
7399 pr_info("SELinux: Initializing.\n");
7400
7401 memset(&selinux_state, 0, sizeof(selinux_state));
7402 enforcing_set(&selinux_state, selinux_enforcing_boot);
7403 checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7404 selinux_avc_init(&selinux_state.avc);
7405 mutex_init(&selinux_state.status_lock);
7406 mutex_init(&selinux_state.policy_mutex);
7407
7408 /* Set the security state for the initial task. */
7409 cred_init_security();
7410
7411 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7412
7413 avc_init();
7414
7415 avtab_cache_init();
7416
7417 ebitmap_cache_init();
7418
7419 hashtab_cache_init();
7420
7421 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7422
7423 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7424 panic("SELinux: Unable to register AVC netcache callback\n");
7425
7426 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7427 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7428
7429 if (selinux_enforcing_boot)
7430 pr_debug("SELinux: Starting in enforcing mode\n");
7431 else
7432 pr_debug("SELinux: Starting in permissive mode\n");
7433
7434 fs_validate_description("selinux", selinux_fs_parameters);
7435
7436 return 0;
7437}
7438
7439static void delayed_superblock_init(struct super_block *sb, void *unused)
7440{
7441 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7442}
7443
7444void selinux_complete_init(void)
7445{
7446 pr_debug("SELinux: Completing initialization.\n");
7447
7448 /* Set up any superblocks initialized prior to the policy load. */
7449 pr_debug("SELinux: Setting up existing superblocks.\n");
7450 iterate_supers(delayed_superblock_init, NULL);
7451}
7452
7453/* SELinux requires early initialization in order to label
7454 all processes and objects when they are created. */
7455DEFINE_LSM(selinux) = {
7456 .name = "selinux",
7457 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7458 .enabled = &selinux_enabled_boot,
7459 .blobs = &selinux_blob_sizes,
7460 .init = selinux_init,
7461};
7462
7463#if defined(CONFIG_NETFILTER)
7464
7465static const struct nf_hook_ops selinux_nf_ops[] = {
7466 {
7467 .hook = selinux_ipv4_postroute,
7468 .pf = NFPROTO_IPV4,
7469 .hooknum = NF_INET_POST_ROUTING,
7470 .priority = NF_IP_PRI_SELINUX_LAST,
7471 },
7472 {
7473 .hook = selinux_ipv4_forward,
7474 .pf = NFPROTO_IPV4,
7475 .hooknum = NF_INET_FORWARD,
7476 .priority = NF_IP_PRI_SELINUX_FIRST,
7477 },
7478 {
7479 .hook = selinux_ipv4_output,
7480 .pf = NFPROTO_IPV4,
7481 .hooknum = NF_INET_LOCAL_OUT,
7482 .priority = NF_IP_PRI_SELINUX_FIRST,
7483 },
7484#if IS_ENABLED(CONFIG_IPV6)
7485 {
7486 .hook = selinux_ipv6_postroute,
7487 .pf = NFPROTO_IPV6,
7488 .hooknum = NF_INET_POST_ROUTING,
7489 .priority = NF_IP6_PRI_SELINUX_LAST,
7490 },
7491 {
7492 .hook = selinux_ipv6_forward,
7493 .pf = NFPROTO_IPV6,
7494 .hooknum = NF_INET_FORWARD,
7495 .priority = NF_IP6_PRI_SELINUX_FIRST,
7496 },
7497 {
7498 .hook = selinux_ipv6_output,
7499 .pf = NFPROTO_IPV6,
7500 .hooknum = NF_INET_LOCAL_OUT,
7501 .priority = NF_IP6_PRI_SELINUX_FIRST,
7502 },
7503#endif /* IPV6 */
7504};
7505
7506static int __net_init selinux_nf_register(struct net *net)
7507{
7508 return nf_register_net_hooks(net, selinux_nf_ops,
7509 ARRAY_SIZE(selinux_nf_ops));
7510}
7511
7512static void __net_exit selinux_nf_unregister(struct net *net)
7513{
7514 nf_unregister_net_hooks(net, selinux_nf_ops,
7515 ARRAY_SIZE(selinux_nf_ops));
7516}
7517
7518static struct pernet_operations selinux_net_ops = {
7519 .init = selinux_nf_register,
7520 .exit = selinux_nf_unregister,
7521};
7522
7523static int __init selinux_nf_ip_init(void)
7524{
7525 int err;
7526
7527 if (!selinux_enabled_boot)
7528 return 0;
7529
7530 pr_debug("SELinux: Registering netfilter hooks\n");
7531
7532 err = register_pernet_subsys(&selinux_net_ops);
7533 if (err)
7534 panic("SELinux: register_pernet_subsys: error %d\n", err);
7535
7536 return 0;
7537}
7538__initcall(selinux_nf_ip_init);
7539
7540#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7541static void selinux_nf_ip_exit(void)
7542{
7543 pr_debug("SELinux: Unregistering netfilter hooks\n");
7544
7545 unregister_pernet_subsys(&selinux_net_ops);
7546}
7547#endif
7548
7549#else /* CONFIG_NETFILTER */
7550
7551#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7552#define selinux_nf_ip_exit()
7553#endif
7554
7555#endif /* CONFIG_NETFILTER */
7556
7557#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7558int selinux_disable(struct selinux_state *state)
7559{
7560 if (selinux_initialized(state)) {
7561 /* Not permitted after initial policy load. */
7562 return -EINVAL;
7563 }
7564
7565 if (selinux_disabled(state)) {
7566 /* Only do this once. */
7567 return -EINVAL;
7568 }
7569
7570 selinux_mark_disabled(state);
7571
7572 pr_info("SELinux: Disabled at runtime.\n");
7573
7574 /*
7575 * Unregister netfilter hooks.
7576 * Must be done before security_delete_hooks() to avoid breaking
7577 * runtime disable.
7578 */
7579 selinux_nf_ip_exit();
7580
7581 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7582
7583 /* Try to destroy the avc node cache */
7584 avc_disable();
7585
7586 /* Unregister selinuxfs. */
7587 exit_sel_fs();
7588
7589 return 0;
7590}
7591#endif
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/sched.h>
32#include <linux/lsm_hooks.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/netfilter_ipv4.h>
50#include <linux/netfilter_ipv6.h>
51#include <linux/tty.h>
52#include <net/icmp.h>
53#include <net/ip.h> /* for local_port_range[] */
54#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55#include <net/inet_connection_sock.h>
56#include <net/net_namespace.h>
57#include <net/netlabel.h>
58#include <linux/uaccess.h>
59#include <asm/ioctls.h>
60#include <linux/atomic.h>
61#include <linux/bitops.h>
62#include <linux/interrupt.h>
63#include <linux/netdevice.h> /* for network interface checks */
64#include <net/netlink.h>
65#include <linux/tcp.h>
66#include <linux/udp.h>
67#include <linux/dccp.h>
68#include <linux/quota.h>
69#include <linux/un.h> /* for Unix socket types */
70#include <net/af_unix.h> /* for Unix socket types */
71#include <linux/parser.h>
72#include <linux/nfs_mount.h>
73#include <net/ipv6.h>
74#include <linux/hugetlb.h>
75#include <linux/personality.h>
76#include <linux/audit.h>
77#include <linux/string.h>
78#include <linux/selinux.h>
79#include <linux/mutex.h>
80#include <linux/posix-timers.h>
81#include <linux/syslog.h>
82#include <linux/user_namespace.h>
83#include <linux/export.h>
84#include <linux/msg.h>
85#include <linux/shm.h>
86
87#include "avc.h"
88#include "objsec.h"
89#include "netif.h"
90#include "netnode.h"
91#include "netport.h"
92#include "xfrm.h"
93#include "netlabel.h"
94#include "audit.h"
95#include "avc_ss.h"
96
97/* SECMARK reference count */
98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101int selinux_enforcing;
102
103static int __init enforcing_setup(char *str)
104{
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109}
110__setup("enforcing=", enforcing_setup);
111#endif
112
113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116static int __init selinux_enabled_setup(char *str)
117{
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122}
123__setup("selinux=", selinux_enabled_setup);
124#else
125int selinux_enabled = 1;
126#endif
127
128static struct kmem_cache *sel_inode_cache;
129static struct kmem_cache *file_security_cache;
130
131/**
132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133 *
134 * Description:
135 * This function checks the SECMARK reference counter to see if any SECMARK
136 * targets are currently configured, if the reference counter is greater than
137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
138 * enabled, false (0) if SECMARK is disabled. If the always_check_network
139 * policy capability is enabled, SECMARK is always considered enabled.
140 *
141 */
142static int selinux_secmark_enabled(void)
143{
144 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
145}
146
147/**
148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
149 *
150 * Description:
151 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
152 * (1) if any are enabled or false (0) if neither are enabled. If the
153 * always_check_network policy capability is enabled, peer labeling
154 * is always considered enabled.
155 *
156 */
157static int selinux_peerlbl_enabled(void)
158{
159 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
160}
161
162static int selinux_netcache_avc_callback(u32 event)
163{
164 if (event == AVC_CALLBACK_RESET) {
165 sel_netif_flush();
166 sel_netnode_flush();
167 sel_netport_flush();
168 synchronize_net();
169 }
170 return 0;
171}
172
173/*
174 * initialise the security for the init task
175 */
176static void cred_init_security(void)
177{
178 struct cred *cred = (struct cred *) current->real_cred;
179 struct task_security_struct *tsec;
180
181 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
182 if (!tsec)
183 panic("SELinux: Failed to initialize initial task.\n");
184
185 tsec->osid = tsec->sid = SECINITSID_KERNEL;
186 cred->security = tsec;
187}
188
189/*
190 * get the security ID of a set of credentials
191 */
192static inline u32 cred_sid(const struct cred *cred)
193{
194 const struct task_security_struct *tsec;
195
196 tsec = cred->security;
197 return tsec->sid;
198}
199
200/*
201 * get the objective security ID of a task
202 */
203static inline u32 task_sid(const struct task_struct *task)
204{
205 u32 sid;
206
207 rcu_read_lock();
208 sid = cred_sid(__task_cred(task));
209 rcu_read_unlock();
210 return sid;
211}
212
213/*
214 * get the subjective security ID of the current task
215 */
216static inline u32 current_sid(void)
217{
218 const struct task_security_struct *tsec = current_security();
219
220 return tsec->sid;
221}
222
223/* Allocate and free functions for each kind of security blob. */
224
225static int inode_alloc_security(struct inode *inode)
226{
227 struct inode_security_struct *isec;
228 u32 sid = current_sid();
229
230 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
231 if (!isec)
232 return -ENOMEM;
233
234 spin_lock_init(&isec->lock);
235 INIT_LIST_HEAD(&isec->list);
236 isec->inode = inode;
237 isec->sid = SECINITSID_UNLABELED;
238 isec->sclass = SECCLASS_FILE;
239 isec->task_sid = sid;
240 isec->initialized = LABEL_INVALID;
241 inode->i_security = isec;
242
243 return 0;
244}
245
246static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
247
248/*
249 * Try reloading inode security labels that have been marked as invalid. The
250 * @may_sleep parameter indicates when sleeping and thus reloading labels is
251 * allowed; when set to false, returns -ECHILD when the label is
252 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
253 * when no dentry is available, set it to NULL instead.
254 */
255static int __inode_security_revalidate(struct inode *inode,
256 struct dentry *opt_dentry,
257 bool may_sleep)
258{
259 struct inode_security_struct *isec = inode->i_security;
260
261 might_sleep_if(may_sleep);
262
263 if (ss_initialized && isec->initialized != LABEL_INITIALIZED) {
264 if (!may_sleep)
265 return -ECHILD;
266
267 /*
268 * Try reloading the inode security label. This will fail if
269 * @opt_dentry is NULL and no dentry for this inode can be
270 * found; in that case, continue using the old label.
271 */
272 inode_doinit_with_dentry(inode, opt_dentry);
273 }
274 return 0;
275}
276
277static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
278{
279 return inode->i_security;
280}
281
282static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
283{
284 int error;
285
286 error = __inode_security_revalidate(inode, NULL, !rcu);
287 if (error)
288 return ERR_PTR(error);
289 return inode->i_security;
290}
291
292/*
293 * Get the security label of an inode.
294 */
295static struct inode_security_struct *inode_security(struct inode *inode)
296{
297 __inode_security_revalidate(inode, NULL, true);
298 return inode->i_security;
299}
300
301static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
302{
303 struct inode *inode = d_backing_inode(dentry);
304
305 return inode->i_security;
306}
307
308/*
309 * Get the security label of a dentry's backing inode.
310 */
311static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
312{
313 struct inode *inode = d_backing_inode(dentry);
314
315 __inode_security_revalidate(inode, dentry, true);
316 return inode->i_security;
317}
318
319static void inode_free_rcu(struct rcu_head *head)
320{
321 struct inode_security_struct *isec;
322
323 isec = container_of(head, struct inode_security_struct, rcu);
324 kmem_cache_free(sel_inode_cache, isec);
325}
326
327static void inode_free_security(struct inode *inode)
328{
329 struct inode_security_struct *isec = inode->i_security;
330 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
331
332 /*
333 * As not all inode security structures are in a list, we check for
334 * empty list outside of the lock to make sure that we won't waste
335 * time taking a lock doing nothing.
336 *
337 * The list_del_init() function can be safely called more than once.
338 * It should not be possible for this function to be called with
339 * concurrent list_add(), but for better safety against future changes
340 * in the code, we use list_empty_careful() here.
341 */
342 if (!list_empty_careful(&isec->list)) {
343 spin_lock(&sbsec->isec_lock);
344 list_del_init(&isec->list);
345 spin_unlock(&sbsec->isec_lock);
346 }
347
348 /*
349 * The inode may still be referenced in a path walk and
350 * a call to selinux_inode_permission() can be made
351 * after inode_free_security() is called. Ideally, the VFS
352 * wouldn't do this, but fixing that is a much harder
353 * job. For now, simply free the i_security via RCU, and
354 * leave the current inode->i_security pointer intact.
355 * The inode will be freed after the RCU grace period too.
356 */
357 call_rcu(&isec->rcu, inode_free_rcu);
358}
359
360static int file_alloc_security(struct file *file)
361{
362 struct file_security_struct *fsec;
363 u32 sid = current_sid();
364
365 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
366 if (!fsec)
367 return -ENOMEM;
368
369 fsec->sid = sid;
370 fsec->fown_sid = sid;
371 file->f_security = fsec;
372
373 return 0;
374}
375
376static void file_free_security(struct file *file)
377{
378 struct file_security_struct *fsec = file->f_security;
379 file->f_security = NULL;
380 kmem_cache_free(file_security_cache, fsec);
381}
382
383static int superblock_alloc_security(struct super_block *sb)
384{
385 struct superblock_security_struct *sbsec;
386
387 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
388 if (!sbsec)
389 return -ENOMEM;
390
391 mutex_init(&sbsec->lock);
392 INIT_LIST_HEAD(&sbsec->isec_head);
393 spin_lock_init(&sbsec->isec_lock);
394 sbsec->sb = sb;
395 sbsec->sid = SECINITSID_UNLABELED;
396 sbsec->def_sid = SECINITSID_FILE;
397 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
398 sb->s_security = sbsec;
399
400 return 0;
401}
402
403static void superblock_free_security(struct super_block *sb)
404{
405 struct superblock_security_struct *sbsec = sb->s_security;
406 sb->s_security = NULL;
407 kfree(sbsec);
408}
409
410/* The file system's label must be initialized prior to use. */
411
412static const char *labeling_behaviors[7] = {
413 "uses xattr",
414 "uses transition SIDs",
415 "uses task SIDs",
416 "uses genfs_contexts",
417 "not configured for labeling",
418 "uses mountpoint labeling",
419 "uses native labeling",
420};
421
422static inline int inode_doinit(struct inode *inode)
423{
424 return inode_doinit_with_dentry(inode, NULL);
425}
426
427enum {
428 Opt_error = -1,
429 Opt_context = 1,
430 Opt_fscontext = 2,
431 Opt_defcontext = 3,
432 Opt_rootcontext = 4,
433 Opt_labelsupport = 5,
434 Opt_nextmntopt = 6,
435};
436
437#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
438
439static const match_table_t tokens = {
440 {Opt_context, CONTEXT_STR "%s"},
441 {Opt_fscontext, FSCONTEXT_STR "%s"},
442 {Opt_defcontext, DEFCONTEXT_STR "%s"},
443 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
444 {Opt_labelsupport, LABELSUPP_STR},
445 {Opt_error, NULL},
446};
447
448#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
449
450static int may_context_mount_sb_relabel(u32 sid,
451 struct superblock_security_struct *sbsec,
452 const struct cred *cred)
453{
454 const struct task_security_struct *tsec = cred->security;
455 int rc;
456
457 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
458 FILESYSTEM__RELABELFROM, NULL);
459 if (rc)
460 return rc;
461
462 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
463 FILESYSTEM__RELABELTO, NULL);
464 return rc;
465}
466
467static int may_context_mount_inode_relabel(u32 sid,
468 struct superblock_security_struct *sbsec,
469 const struct cred *cred)
470{
471 const struct task_security_struct *tsec = cred->security;
472 int rc;
473 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
474 FILESYSTEM__RELABELFROM, NULL);
475 if (rc)
476 return rc;
477
478 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
479 FILESYSTEM__ASSOCIATE, NULL);
480 return rc;
481}
482
483static int selinux_is_sblabel_mnt(struct super_block *sb)
484{
485 struct superblock_security_struct *sbsec = sb->s_security;
486
487 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
488 sbsec->behavior == SECURITY_FS_USE_TRANS ||
489 sbsec->behavior == SECURITY_FS_USE_TASK ||
490 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
491 /* Special handling. Genfs but also in-core setxattr handler */
492 !strcmp(sb->s_type->name, "sysfs") ||
493 !strcmp(sb->s_type->name, "pstore") ||
494 !strcmp(sb->s_type->name, "debugfs") ||
495 !strcmp(sb->s_type->name, "rootfs");
496}
497
498static int sb_finish_set_opts(struct super_block *sb)
499{
500 struct superblock_security_struct *sbsec = sb->s_security;
501 struct dentry *root = sb->s_root;
502 struct inode *root_inode = d_backing_inode(root);
503 int rc = 0;
504
505 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
506 /* Make sure that the xattr handler exists and that no
507 error other than -ENODATA is returned by getxattr on
508 the root directory. -ENODATA is ok, as this may be
509 the first boot of the SELinux kernel before we have
510 assigned xattr values to the filesystem. */
511 if (!(root_inode->i_opflags & IOP_XATTR)) {
512 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
513 "xattr support\n", sb->s_id, sb->s_type->name);
514 rc = -EOPNOTSUPP;
515 goto out;
516 }
517
518 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
519 if (rc < 0 && rc != -ENODATA) {
520 if (rc == -EOPNOTSUPP)
521 printk(KERN_WARNING "SELinux: (dev %s, type "
522 "%s) has no security xattr handler\n",
523 sb->s_id, sb->s_type->name);
524 else
525 printk(KERN_WARNING "SELinux: (dev %s, type "
526 "%s) getxattr errno %d\n", sb->s_id,
527 sb->s_type->name, -rc);
528 goto out;
529 }
530 }
531
532 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
533 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
534 sb->s_id, sb->s_type->name);
535
536 sbsec->flags |= SE_SBINITIALIZED;
537 if (selinux_is_sblabel_mnt(sb))
538 sbsec->flags |= SBLABEL_MNT;
539
540 /* Initialize the root inode. */
541 rc = inode_doinit_with_dentry(root_inode, root);
542
543 /* Initialize any other inodes associated with the superblock, e.g.
544 inodes created prior to initial policy load or inodes created
545 during get_sb by a pseudo filesystem that directly
546 populates itself. */
547 spin_lock(&sbsec->isec_lock);
548next_inode:
549 if (!list_empty(&sbsec->isec_head)) {
550 struct inode_security_struct *isec =
551 list_entry(sbsec->isec_head.next,
552 struct inode_security_struct, list);
553 struct inode *inode = isec->inode;
554 list_del_init(&isec->list);
555 spin_unlock(&sbsec->isec_lock);
556 inode = igrab(inode);
557 if (inode) {
558 if (!IS_PRIVATE(inode))
559 inode_doinit(inode);
560 iput(inode);
561 }
562 spin_lock(&sbsec->isec_lock);
563 goto next_inode;
564 }
565 spin_unlock(&sbsec->isec_lock);
566out:
567 return rc;
568}
569
570/*
571 * This function should allow an FS to ask what it's mount security
572 * options were so it can use those later for submounts, displaying
573 * mount options, or whatever.
574 */
575static int selinux_get_mnt_opts(const struct super_block *sb,
576 struct security_mnt_opts *opts)
577{
578 int rc = 0, i;
579 struct superblock_security_struct *sbsec = sb->s_security;
580 char *context = NULL;
581 u32 len;
582 char tmp;
583
584 security_init_mnt_opts(opts);
585
586 if (!(sbsec->flags & SE_SBINITIALIZED))
587 return -EINVAL;
588
589 if (!ss_initialized)
590 return -EINVAL;
591
592 /* make sure we always check enough bits to cover the mask */
593 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
594
595 tmp = sbsec->flags & SE_MNTMASK;
596 /* count the number of mount options for this sb */
597 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
598 if (tmp & 0x01)
599 opts->num_mnt_opts++;
600 tmp >>= 1;
601 }
602 /* Check if the Label support flag is set */
603 if (sbsec->flags & SBLABEL_MNT)
604 opts->num_mnt_opts++;
605
606 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
607 if (!opts->mnt_opts) {
608 rc = -ENOMEM;
609 goto out_free;
610 }
611
612 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
613 if (!opts->mnt_opts_flags) {
614 rc = -ENOMEM;
615 goto out_free;
616 }
617
618 i = 0;
619 if (sbsec->flags & FSCONTEXT_MNT) {
620 rc = security_sid_to_context(sbsec->sid, &context, &len);
621 if (rc)
622 goto out_free;
623 opts->mnt_opts[i] = context;
624 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
625 }
626 if (sbsec->flags & CONTEXT_MNT) {
627 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
628 if (rc)
629 goto out_free;
630 opts->mnt_opts[i] = context;
631 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
632 }
633 if (sbsec->flags & DEFCONTEXT_MNT) {
634 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
635 if (rc)
636 goto out_free;
637 opts->mnt_opts[i] = context;
638 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
639 }
640 if (sbsec->flags & ROOTCONTEXT_MNT) {
641 struct dentry *root = sbsec->sb->s_root;
642 struct inode_security_struct *isec = backing_inode_security(root);
643
644 rc = security_sid_to_context(isec->sid, &context, &len);
645 if (rc)
646 goto out_free;
647 opts->mnt_opts[i] = context;
648 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
649 }
650 if (sbsec->flags & SBLABEL_MNT) {
651 opts->mnt_opts[i] = NULL;
652 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
653 }
654
655 BUG_ON(i != opts->num_mnt_opts);
656
657 return 0;
658
659out_free:
660 security_free_mnt_opts(opts);
661 return rc;
662}
663
664static int bad_option(struct superblock_security_struct *sbsec, char flag,
665 u32 old_sid, u32 new_sid)
666{
667 char mnt_flags = sbsec->flags & SE_MNTMASK;
668
669 /* check if the old mount command had the same options */
670 if (sbsec->flags & SE_SBINITIALIZED)
671 if (!(sbsec->flags & flag) ||
672 (old_sid != new_sid))
673 return 1;
674
675 /* check if we were passed the same options twice,
676 * aka someone passed context=a,context=b
677 */
678 if (!(sbsec->flags & SE_SBINITIALIZED))
679 if (mnt_flags & flag)
680 return 1;
681 return 0;
682}
683
684/*
685 * Allow filesystems with binary mount data to explicitly set mount point
686 * labeling information.
687 */
688static int selinux_set_mnt_opts(struct super_block *sb,
689 struct security_mnt_opts *opts,
690 unsigned long kern_flags,
691 unsigned long *set_kern_flags)
692{
693 const struct cred *cred = current_cred();
694 int rc = 0, i;
695 struct superblock_security_struct *sbsec = sb->s_security;
696 const char *name = sb->s_type->name;
697 struct dentry *root = sbsec->sb->s_root;
698 struct inode_security_struct *root_isec;
699 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
700 u32 defcontext_sid = 0;
701 char **mount_options = opts->mnt_opts;
702 int *flags = opts->mnt_opts_flags;
703 int num_opts = opts->num_mnt_opts;
704
705 mutex_lock(&sbsec->lock);
706
707 if (!ss_initialized) {
708 if (!num_opts) {
709 /* Defer initialization until selinux_complete_init,
710 after the initial policy is loaded and the security
711 server is ready to handle calls. */
712 goto out;
713 }
714 rc = -EINVAL;
715 printk(KERN_WARNING "SELinux: Unable to set superblock options "
716 "before the security server is initialized\n");
717 goto out;
718 }
719 if (kern_flags && !set_kern_flags) {
720 /* Specifying internal flags without providing a place to
721 * place the results is not allowed */
722 rc = -EINVAL;
723 goto out;
724 }
725
726 /*
727 * Binary mount data FS will come through this function twice. Once
728 * from an explicit call and once from the generic calls from the vfs.
729 * Since the generic VFS calls will not contain any security mount data
730 * we need to skip the double mount verification.
731 *
732 * This does open a hole in which we will not notice if the first
733 * mount using this sb set explict options and a second mount using
734 * this sb does not set any security options. (The first options
735 * will be used for both mounts)
736 */
737 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
738 && (num_opts == 0))
739 goto out;
740
741 root_isec = backing_inode_security_novalidate(root);
742
743 /*
744 * parse the mount options, check if they are valid sids.
745 * also check if someone is trying to mount the same sb more
746 * than once with different security options.
747 */
748 for (i = 0; i < num_opts; i++) {
749 u32 sid;
750
751 if (flags[i] == SBLABEL_MNT)
752 continue;
753 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
754 if (rc) {
755 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
756 "(%s) failed for (dev %s, type %s) errno=%d\n",
757 mount_options[i], sb->s_id, name, rc);
758 goto out;
759 }
760 switch (flags[i]) {
761 case FSCONTEXT_MNT:
762 fscontext_sid = sid;
763
764 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
765 fscontext_sid))
766 goto out_double_mount;
767
768 sbsec->flags |= FSCONTEXT_MNT;
769 break;
770 case CONTEXT_MNT:
771 context_sid = sid;
772
773 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
774 context_sid))
775 goto out_double_mount;
776
777 sbsec->flags |= CONTEXT_MNT;
778 break;
779 case ROOTCONTEXT_MNT:
780 rootcontext_sid = sid;
781
782 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
783 rootcontext_sid))
784 goto out_double_mount;
785
786 sbsec->flags |= ROOTCONTEXT_MNT;
787
788 break;
789 case DEFCONTEXT_MNT:
790 defcontext_sid = sid;
791
792 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
793 defcontext_sid))
794 goto out_double_mount;
795
796 sbsec->flags |= DEFCONTEXT_MNT;
797
798 break;
799 default:
800 rc = -EINVAL;
801 goto out;
802 }
803 }
804
805 if (sbsec->flags & SE_SBINITIALIZED) {
806 /* previously mounted with options, but not on this attempt? */
807 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
808 goto out_double_mount;
809 rc = 0;
810 goto out;
811 }
812
813 if (strcmp(sb->s_type->name, "proc") == 0)
814 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
815
816 if (!strcmp(sb->s_type->name, "debugfs") ||
817 !strcmp(sb->s_type->name, "sysfs") ||
818 !strcmp(sb->s_type->name, "pstore"))
819 sbsec->flags |= SE_SBGENFS;
820
821 if (!sbsec->behavior) {
822 /*
823 * Determine the labeling behavior to use for this
824 * filesystem type.
825 */
826 rc = security_fs_use(sb);
827 if (rc) {
828 printk(KERN_WARNING
829 "%s: security_fs_use(%s) returned %d\n",
830 __func__, sb->s_type->name, rc);
831 goto out;
832 }
833 }
834
835 /*
836 * If this is a user namespace mount, no contexts are allowed
837 * on the command line and security labels must be ignored.
838 */
839 if (sb->s_user_ns != &init_user_ns) {
840 if (context_sid || fscontext_sid || rootcontext_sid ||
841 defcontext_sid) {
842 rc = -EACCES;
843 goto out;
844 }
845 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
846 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
847 rc = security_transition_sid(current_sid(), current_sid(),
848 SECCLASS_FILE, NULL,
849 &sbsec->mntpoint_sid);
850 if (rc)
851 goto out;
852 }
853 goto out_set_opts;
854 }
855
856 /* sets the context of the superblock for the fs being mounted. */
857 if (fscontext_sid) {
858 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
859 if (rc)
860 goto out;
861
862 sbsec->sid = fscontext_sid;
863 }
864
865 /*
866 * Switch to using mount point labeling behavior.
867 * sets the label used on all file below the mountpoint, and will set
868 * the superblock context if not already set.
869 */
870 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
871 sbsec->behavior = SECURITY_FS_USE_NATIVE;
872 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
873 }
874
875 if (context_sid) {
876 if (!fscontext_sid) {
877 rc = may_context_mount_sb_relabel(context_sid, sbsec,
878 cred);
879 if (rc)
880 goto out;
881 sbsec->sid = context_sid;
882 } else {
883 rc = may_context_mount_inode_relabel(context_sid, sbsec,
884 cred);
885 if (rc)
886 goto out;
887 }
888 if (!rootcontext_sid)
889 rootcontext_sid = context_sid;
890
891 sbsec->mntpoint_sid = context_sid;
892 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
893 }
894
895 if (rootcontext_sid) {
896 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
897 cred);
898 if (rc)
899 goto out;
900
901 root_isec->sid = rootcontext_sid;
902 root_isec->initialized = LABEL_INITIALIZED;
903 }
904
905 if (defcontext_sid) {
906 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
907 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
908 rc = -EINVAL;
909 printk(KERN_WARNING "SELinux: defcontext option is "
910 "invalid for this filesystem type\n");
911 goto out;
912 }
913
914 if (defcontext_sid != sbsec->def_sid) {
915 rc = may_context_mount_inode_relabel(defcontext_sid,
916 sbsec, cred);
917 if (rc)
918 goto out;
919 }
920
921 sbsec->def_sid = defcontext_sid;
922 }
923
924out_set_opts:
925 rc = sb_finish_set_opts(sb);
926out:
927 mutex_unlock(&sbsec->lock);
928 return rc;
929out_double_mount:
930 rc = -EINVAL;
931 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
932 "security settings for (dev %s, type %s)\n", sb->s_id, name);
933 goto out;
934}
935
936static int selinux_cmp_sb_context(const struct super_block *oldsb,
937 const struct super_block *newsb)
938{
939 struct superblock_security_struct *old = oldsb->s_security;
940 struct superblock_security_struct *new = newsb->s_security;
941 char oldflags = old->flags & SE_MNTMASK;
942 char newflags = new->flags & SE_MNTMASK;
943
944 if (oldflags != newflags)
945 goto mismatch;
946 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
947 goto mismatch;
948 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
949 goto mismatch;
950 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
951 goto mismatch;
952 if (oldflags & ROOTCONTEXT_MNT) {
953 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
954 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
955 if (oldroot->sid != newroot->sid)
956 goto mismatch;
957 }
958 return 0;
959mismatch:
960 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
961 "different security settings for (dev %s, "
962 "type %s)\n", newsb->s_id, newsb->s_type->name);
963 return -EBUSY;
964}
965
966static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
967 struct super_block *newsb)
968{
969 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
970 struct superblock_security_struct *newsbsec = newsb->s_security;
971
972 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
973 int set_context = (oldsbsec->flags & CONTEXT_MNT);
974 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
975
976 /*
977 * if the parent was able to be mounted it clearly had no special lsm
978 * mount options. thus we can safely deal with this superblock later
979 */
980 if (!ss_initialized)
981 return 0;
982
983 /* how can we clone if the old one wasn't set up?? */
984 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
985
986 /* if fs is reusing a sb, make sure that the contexts match */
987 if (newsbsec->flags & SE_SBINITIALIZED)
988 return selinux_cmp_sb_context(oldsb, newsb);
989
990 mutex_lock(&newsbsec->lock);
991
992 newsbsec->flags = oldsbsec->flags;
993
994 newsbsec->sid = oldsbsec->sid;
995 newsbsec->def_sid = oldsbsec->def_sid;
996 newsbsec->behavior = oldsbsec->behavior;
997
998 if (set_context) {
999 u32 sid = oldsbsec->mntpoint_sid;
1000
1001 if (!set_fscontext)
1002 newsbsec->sid = sid;
1003 if (!set_rootcontext) {
1004 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1005 newisec->sid = sid;
1006 }
1007 newsbsec->mntpoint_sid = sid;
1008 }
1009 if (set_rootcontext) {
1010 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1011 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1012
1013 newisec->sid = oldisec->sid;
1014 }
1015
1016 sb_finish_set_opts(newsb);
1017 mutex_unlock(&newsbsec->lock);
1018 return 0;
1019}
1020
1021static int selinux_parse_opts_str(char *options,
1022 struct security_mnt_opts *opts)
1023{
1024 char *p;
1025 char *context = NULL, *defcontext = NULL;
1026 char *fscontext = NULL, *rootcontext = NULL;
1027 int rc, num_mnt_opts = 0;
1028
1029 opts->num_mnt_opts = 0;
1030
1031 /* Standard string-based options. */
1032 while ((p = strsep(&options, "|")) != NULL) {
1033 int token;
1034 substring_t args[MAX_OPT_ARGS];
1035
1036 if (!*p)
1037 continue;
1038
1039 token = match_token(p, tokens, args);
1040
1041 switch (token) {
1042 case Opt_context:
1043 if (context || defcontext) {
1044 rc = -EINVAL;
1045 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1046 goto out_err;
1047 }
1048 context = match_strdup(&args[0]);
1049 if (!context) {
1050 rc = -ENOMEM;
1051 goto out_err;
1052 }
1053 break;
1054
1055 case Opt_fscontext:
1056 if (fscontext) {
1057 rc = -EINVAL;
1058 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1059 goto out_err;
1060 }
1061 fscontext = match_strdup(&args[0]);
1062 if (!fscontext) {
1063 rc = -ENOMEM;
1064 goto out_err;
1065 }
1066 break;
1067
1068 case Opt_rootcontext:
1069 if (rootcontext) {
1070 rc = -EINVAL;
1071 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1072 goto out_err;
1073 }
1074 rootcontext = match_strdup(&args[0]);
1075 if (!rootcontext) {
1076 rc = -ENOMEM;
1077 goto out_err;
1078 }
1079 break;
1080
1081 case Opt_defcontext:
1082 if (context || defcontext) {
1083 rc = -EINVAL;
1084 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1085 goto out_err;
1086 }
1087 defcontext = match_strdup(&args[0]);
1088 if (!defcontext) {
1089 rc = -ENOMEM;
1090 goto out_err;
1091 }
1092 break;
1093 case Opt_labelsupport:
1094 break;
1095 default:
1096 rc = -EINVAL;
1097 printk(KERN_WARNING "SELinux: unknown mount option\n");
1098 goto out_err;
1099
1100 }
1101 }
1102
1103 rc = -ENOMEM;
1104 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1105 if (!opts->mnt_opts)
1106 goto out_err;
1107
1108 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1109 GFP_KERNEL);
1110 if (!opts->mnt_opts_flags) {
1111 kfree(opts->mnt_opts);
1112 goto out_err;
1113 }
1114
1115 if (fscontext) {
1116 opts->mnt_opts[num_mnt_opts] = fscontext;
1117 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1118 }
1119 if (context) {
1120 opts->mnt_opts[num_mnt_opts] = context;
1121 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1122 }
1123 if (rootcontext) {
1124 opts->mnt_opts[num_mnt_opts] = rootcontext;
1125 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1126 }
1127 if (defcontext) {
1128 opts->mnt_opts[num_mnt_opts] = defcontext;
1129 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1130 }
1131
1132 opts->num_mnt_opts = num_mnt_opts;
1133 return 0;
1134
1135out_err:
1136 kfree(context);
1137 kfree(defcontext);
1138 kfree(fscontext);
1139 kfree(rootcontext);
1140 return rc;
1141}
1142/*
1143 * string mount options parsing and call set the sbsec
1144 */
1145static int superblock_doinit(struct super_block *sb, void *data)
1146{
1147 int rc = 0;
1148 char *options = data;
1149 struct security_mnt_opts opts;
1150
1151 security_init_mnt_opts(&opts);
1152
1153 if (!data)
1154 goto out;
1155
1156 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1157
1158 rc = selinux_parse_opts_str(options, &opts);
1159 if (rc)
1160 goto out_err;
1161
1162out:
1163 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1164
1165out_err:
1166 security_free_mnt_opts(&opts);
1167 return rc;
1168}
1169
1170static void selinux_write_opts(struct seq_file *m,
1171 struct security_mnt_opts *opts)
1172{
1173 int i;
1174 char *prefix;
1175
1176 for (i = 0; i < opts->num_mnt_opts; i++) {
1177 char *has_comma;
1178
1179 if (opts->mnt_opts[i])
1180 has_comma = strchr(opts->mnt_opts[i], ',');
1181 else
1182 has_comma = NULL;
1183
1184 switch (opts->mnt_opts_flags[i]) {
1185 case CONTEXT_MNT:
1186 prefix = CONTEXT_STR;
1187 break;
1188 case FSCONTEXT_MNT:
1189 prefix = FSCONTEXT_STR;
1190 break;
1191 case ROOTCONTEXT_MNT:
1192 prefix = ROOTCONTEXT_STR;
1193 break;
1194 case DEFCONTEXT_MNT:
1195 prefix = DEFCONTEXT_STR;
1196 break;
1197 case SBLABEL_MNT:
1198 seq_putc(m, ',');
1199 seq_puts(m, LABELSUPP_STR);
1200 continue;
1201 default:
1202 BUG();
1203 return;
1204 };
1205 /* we need a comma before each option */
1206 seq_putc(m, ',');
1207 seq_puts(m, prefix);
1208 if (has_comma)
1209 seq_putc(m, '\"');
1210 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1211 if (has_comma)
1212 seq_putc(m, '\"');
1213 }
1214}
1215
1216static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1217{
1218 struct security_mnt_opts opts;
1219 int rc;
1220
1221 rc = selinux_get_mnt_opts(sb, &opts);
1222 if (rc) {
1223 /* before policy load we may get EINVAL, don't show anything */
1224 if (rc == -EINVAL)
1225 rc = 0;
1226 return rc;
1227 }
1228
1229 selinux_write_opts(m, &opts);
1230
1231 security_free_mnt_opts(&opts);
1232
1233 return rc;
1234}
1235
1236static inline u16 inode_mode_to_security_class(umode_t mode)
1237{
1238 switch (mode & S_IFMT) {
1239 case S_IFSOCK:
1240 return SECCLASS_SOCK_FILE;
1241 case S_IFLNK:
1242 return SECCLASS_LNK_FILE;
1243 case S_IFREG:
1244 return SECCLASS_FILE;
1245 case S_IFBLK:
1246 return SECCLASS_BLK_FILE;
1247 case S_IFDIR:
1248 return SECCLASS_DIR;
1249 case S_IFCHR:
1250 return SECCLASS_CHR_FILE;
1251 case S_IFIFO:
1252 return SECCLASS_FIFO_FILE;
1253
1254 }
1255
1256 return SECCLASS_FILE;
1257}
1258
1259static inline int default_protocol_stream(int protocol)
1260{
1261 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1262}
1263
1264static inline int default_protocol_dgram(int protocol)
1265{
1266 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1267}
1268
1269static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1270{
1271 switch (family) {
1272 case PF_UNIX:
1273 switch (type) {
1274 case SOCK_STREAM:
1275 case SOCK_SEQPACKET:
1276 return SECCLASS_UNIX_STREAM_SOCKET;
1277 case SOCK_DGRAM:
1278 return SECCLASS_UNIX_DGRAM_SOCKET;
1279 }
1280 break;
1281 case PF_INET:
1282 case PF_INET6:
1283 switch (type) {
1284 case SOCK_STREAM:
1285 if (default_protocol_stream(protocol))
1286 return SECCLASS_TCP_SOCKET;
1287 else
1288 return SECCLASS_RAWIP_SOCKET;
1289 case SOCK_DGRAM:
1290 if (default_protocol_dgram(protocol))
1291 return SECCLASS_UDP_SOCKET;
1292 else
1293 return SECCLASS_RAWIP_SOCKET;
1294 case SOCK_DCCP:
1295 return SECCLASS_DCCP_SOCKET;
1296 default:
1297 return SECCLASS_RAWIP_SOCKET;
1298 }
1299 break;
1300 case PF_NETLINK:
1301 switch (protocol) {
1302 case NETLINK_ROUTE:
1303 return SECCLASS_NETLINK_ROUTE_SOCKET;
1304 case NETLINK_SOCK_DIAG:
1305 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1306 case NETLINK_NFLOG:
1307 return SECCLASS_NETLINK_NFLOG_SOCKET;
1308 case NETLINK_XFRM:
1309 return SECCLASS_NETLINK_XFRM_SOCKET;
1310 case NETLINK_SELINUX:
1311 return SECCLASS_NETLINK_SELINUX_SOCKET;
1312 case NETLINK_ISCSI:
1313 return SECCLASS_NETLINK_ISCSI_SOCKET;
1314 case NETLINK_AUDIT:
1315 return SECCLASS_NETLINK_AUDIT_SOCKET;
1316 case NETLINK_FIB_LOOKUP:
1317 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1318 case NETLINK_CONNECTOR:
1319 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1320 case NETLINK_NETFILTER:
1321 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1322 case NETLINK_DNRTMSG:
1323 return SECCLASS_NETLINK_DNRT_SOCKET;
1324 case NETLINK_KOBJECT_UEVENT:
1325 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1326 case NETLINK_GENERIC:
1327 return SECCLASS_NETLINK_GENERIC_SOCKET;
1328 case NETLINK_SCSITRANSPORT:
1329 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1330 case NETLINK_RDMA:
1331 return SECCLASS_NETLINK_RDMA_SOCKET;
1332 case NETLINK_CRYPTO:
1333 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1334 default:
1335 return SECCLASS_NETLINK_SOCKET;
1336 }
1337 case PF_PACKET:
1338 return SECCLASS_PACKET_SOCKET;
1339 case PF_KEY:
1340 return SECCLASS_KEY_SOCKET;
1341 case PF_APPLETALK:
1342 return SECCLASS_APPLETALK_SOCKET;
1343 }
1344
1345 return SECCLASS_SOCKET;
1346}
1347
1348static int selinux_genfs_get_sid(struct dentry *dentry,
1349 u16 tclass,
1350 u16 flags,
1351 u32 *sid)
1352{
1353 int rc;
1354 struct super_block *sb = dentry->d_sb;
1355 char *buffer, *path;
1356
1357 buffer = (char *)__get_free_page(GFP_KERNEL);
1358 if (!buffer)
1359 return -ENOMEM;
1360
1361 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1362 if (IS_ERR(path))
1363 rc = PTR_ERR(path);
1364 else {
1365 if (flags & SE_SBPROC) {
1366 /* each process gets a /proc/PID/ entry. Strip off the
1367 * PID part to get a valid selinux labeling.
1368 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1369 while (path[1] >= '0' && path[1] <= '9') {
1370 path[1] = '/';
1371 path++;
1372 }
1373 }
1374 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1375 }
1376 free_page((unsigned long)buffer);
1377 return rc;
1378}
1379
1380/* The inode's security attributes must be initialized before first use. */
1381static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1382{
1383 struct superblock_security_struct *sbsec = NULL;
1384 struct inode_security_struct *isec = inode->i_security;
1385 u32 task_sid, sid = 0;
1386 u16 sclass;
1387 struct dentry *dentry;
1388#define INITCONTEXTLEN 255
1389 char *context = NULL;
1390 unsigned len = 0;
1391 int rc = 0;
1392
1393 if (isec->initialized == LABEL_INITIALIZED)
1394 return 0;
1395
1396 spin_lock(&isec->lock);
1397 if (isec->initialized == LABEL_INITIALIZED)
1398 goto out_unlock;
1399
1400 if (isec->sclass == SECCLASS_FILE)
1401 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1402
1403 sbsec = inode->i_sb->s_security;
1404 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1405 /* Defer initialization until selinux_complete_init,
1406 after the initial policy is loaded and the security
1407 server is ready to handle calls. */
1408 spin_lock(&sbsec->isec_lock);
1409 if (list_empty(&isec->list))
1410 list_add(&isec->list, &sbsec->isec_head);
1411 spin_unlock(&sbsec->isec_lock);
1412 goto out_unlock;
1413 }
1414
1415 sclass = isec->sclass;
1416 task_sid = isec->task_sid;
1417 sid = isec->sid;
1418 isec->initialized = LABEL_PENDING;
1419 spin_unlock(&isec->lock);
1420
1421 switch (sbsec->behavior) {
1422 case SECURITY_FS_USE_NATIVE:
1423 break;
1424 case SECURITY_FS_USE_XATTR:
1425 if (!(inode->i_opflags & IOP_XATTR)) {
1426 sid = sbsec->def_sid;
1427 break;
1428 }
1429 /* Need a dentry, since the xattr API requires one.
1430 Life would be simpler if we could just pass the inode. */
1431 if (opt_dentry) {
1432 /* Called from d_instantiate or d_splice_alias. */
1433 dentry = dget(opt_dentry);
1434 } else {
1435 /* Called from selinux_complete_init, try to find a dentry. */
1436 dentry = d_find_alias(inode);
1437 }
1438 if (!dentry) {
1439 /*
1440 * this is can be hit on boot when a file is accessed
1441 * before the policy is loaded. When we load policy we
1442 * may find inodes that have no dentry on the
1443 * sbsec->isec_head list. No reason to complain as these
1444 * will get fixed up the next time we go through
1445 * inode_doinit with a dentry, before these inodes could
1446 * be used again by userspace.
1447 */
1448 goto out;
1449 }
1450
1451 len = INITCONTEXTLEN;
1452 context = kmalloc(len+1, GFP_NOFS);
1453 if (!context) {
1454 rc = -ENOMEM;
1455 dput(dentry);
1456 goto out;
1457 }
1458 context[len] = '\0';
1459 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1460 if (rc == -ERANGE) {
1461 kfree(context);
1462
1463 /* Need a larger buffer. Query for the right size. */
1464 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1465 if (rc < 0) {
1466 dput(dentry);
1467 goto out;
1468 }
1469 len = rc;
1470 context = kmalloc(len+1, GFP_NOFS);
1471 if (!context) {
1472 rc = -ENOMEM;
1473 dput(dentry);
1474 goto out;
1475 }
1476 context[len] = '\0';
1477 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1478 }
1479 dput(dentry);
1480 if (rc < 0) {
1481 if (rc != -ENODATA) {
1482 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1483 "%d for dev=%s ino=%ld\n", __func__,
1484 -rc, inode->i_sb->s_id, inode->i_ino);
1485 kfree(context);
1486 goto out;
1487 }
1488 /* Map ENODATA to the default file SID */
1489 sid = sbsec->def_sid;
1490 rc = 0;
1491 } else {
1492 rc = security_context_to_sid_default(context, rc, &sid,
1493 sbsec->def_sid,
1494 GFP_NOFS);
1495 if (rc) {
1496 char *dev = inode->i_sb->s_id;
1497 unsigned long ino = inode->i_ino;
1498
1499 if (rc == -EINVAL) {
1500 if (printk_ratelimit())
1501 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1502 "context=%s. This indicates you may need to relabel the inode or the "
1503 "filesystem in question.\n", ino, dev, context);
1504 } else {
1505 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1506 "returned %d for dev=%s ino=%ld\n",
1507 __func__, context, -rc, dev, ino);
1508 }
1509 kfree(context);
1510 /* Leave with the unlabeled SID */
1511 rc = 0;
1512 break;
1513 }
1514 }
1515 kfree(context);
1516 break;
1517 case SECURITY_FS_USE_TASK:
1518 sid = task_sid;
1519 break;
1520 case SECURITY_FS_USE_TRANS:
1521 /* Default to the fs SID. */
1522 sid = sbsec->sid;
1523
1524 /* Try to obtain a transition SID. */
1525 rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid);
1526 if (rc)
1527 goto out;
1528 break;
1529 case SECURITY_FS_USE_MNTPOINT:
1530 sid = sbsec->mntpoint_sid;
1531 break;
1532 default:
1533 /* Default to the fs superblock SID. */
1534 sid = sbsec->sid;
1535
1536 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1537 /* We must have a dentry to determine the label on
1538 * procfs inodes */
1539 if (opt_dentry)
1540 /* Called from d_instantiate or
1541 * d_splice_alias. */
1542 dentry = dget(opt_dentry);
1543 else
1544 /* Called from selinux_complete_init, try to
1545 * find a dentry. */
1546 dentry = d_find_alias(inode);
1547 /*
1548 * This can be hit on boot when a file is accessed
1549 * before the policy is loaded. When we load policy we
1550 * may find inodes that have no dentry on the
1551 * sbsec->isec_head list. No reason to complain as
1552 * these will get fixed up the next time we go through
1553 * inode_doinit() with a dentry, before these inodes
1554 * could be used again by userspace.
1555 */
1556 if (!dentry)
1557 goto out;
1558 rc = selinux_genfs_get_sid(dentry, sclass,
1559 sbsec->flags, &sid);
1560 dput(dentry);
1561 if (rc)
1562 goto out;
1563 }
1564 break;
1565 }
1566
1567out:
1568 spin_lock(&isec->lock);
1569 if (isec->initialized == LABEL_PENDING) {
1570 if (!sid || rc) {
1571 isec->initialized = LABEL_INVALID;
1572 goto out_unlock;
1573 }
1574
1575 isec->initialized = LABEL_INITIALIZED;
1576 isec->sid = sid;
1577 }
1578
1579out_unlock:
1580 spin_unlock(&isec->lock);
1581 return rc;
1582}
1583
1584/* Convert a Linux signal to an access vector. */
1585static inline u32 signal_to_av(int sig)
1586{
1587 u32 perm = 0;
1588
1589 switch (sig) {
1590 case SIGCHLD:
1591 /* Commonly granted from child to parent. */
1592 perm = PROCESS__SIGCHLD;
1593 break;
1594 case SIGKILL:
1595 /* Cannot be caught or ignored */
1596 perm = PROCESS__SIGKILL;
1597 break;
1598 case SIGSTOP:
1599 /* Cannot be caught or ignored */
1600 perm = PROCESS__SIGSTOP;
1601 break;
1602 default:
1603 /* All other signals. */
1604 perm = PROCESS__SIGNAL;
1605 break;
1606 }
1607
1608 return perm;
1609}
1610
1611/*
1612 * Check permission between a pair of credentials
1613 * fork check, ptrace check, etc.
1614 */
1615static int cred_has_perm(const struct cred *actor,
1616 const struct cred *target,
1617 u32 perms)
1618{
1619 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1620
1621 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1622}
1623
1624/*
1625 * Check permission between a pair of tasks, e.g. signal checks,
1626 * fork check, ptrace check, etc.
1627 * tsk1 is the actor and tsk2 is the target
1628 * - this uses the default subjective creds of tsk1
1629 */
1630static int task_has_perm(const struct task_struct *tsk1,
1631 const struct task_struct *tsk2,
1632 u32 perms)
1633{
1634 const struct task_security_struct *__tsec1, *__tsec2;
1635 u32 sid1, sid2;
1636
1637 rcu_read_lock();
1638 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1639 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1640 rcu_read_unlock();
1641 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1642}
1643
1644/*
1645 * Check permission between current and another task, e.g. signal checks,
1646 * fork check, ptrace check, etc.
1647 * current is the actor and tsk2 is the target
1648 * - this uses current's subjective creds
1649 */
1650static int current_has_perm(const struct task_struct *tsk,
1651 u32 perms)
1652{
1653 u32 sid, tsid;
1654
1655 sid = current_sid();
1656 tsid = task_sid(tsk);
1657 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1658}
1659
1660#if CAP_LAST_CAP > 63
1661#error Fix SELinux to handle capabilities > 63.
1662#endif
1663
1664/* Check whether a task is allowed to use a capability. */
1665static int cred_has_capability(const struct cred *cred,
1666 int cap, int audit, bool initns)
1667{
1668 struct common_audit_data ad;
1669 struct av_decision avd;
1670 u16 sclass;
1671 u32 sid = cred_sid(cred);
1672 u32 av = CAP_TO_MASK(cap);
1673 int rc;
1674
1675 ad.type = LSM_AUDIT_DATA_CAP;
1676 ad.u.cap = cap;
1677
1678 switch (CAP_TO_INDEX(cap)) {
1679 case 0:
1680 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1681 break;
1682 case 1:
1683 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1684 break;
1685 default:
1686 printk(KERN_ERR
1687 "SELinux: out of range capability %d\n", cap);
1688 BUG();
1689 return -EINVAL;
1690 }
1691
1692 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1693 if (audit == SECURITY_CAP_AUDIT) {
1694 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1695 if (rc2)
1696 return rc2;
1697 }
1698 return rc;
1699}
1700
1701/* Check whether a task is allowed to use a system operation. */
1702static int task_has_system(struct task_struct *tsk,
1703 u32 perms)
1704{
1705 u32 sid = task_sid(tsk);
1706
1707 return avc_has_perm(sid, SECINITSID_KERNEL,
1708 SECCLASS_SYSTEM, perms, NULL);
1709}
1710
1711/* Check whether a task has a particular permission to an inode.
1712 The 'adp' parameter is optional and allows other audit
1713 data to be passed (e.g. the dentry). */
1714static int inode_has_perm(const struct cred *cred,
1715 struct inode *inode,
1716 u32 perms,
1717 struct common_audit_data *adp)
1718{
1719 struct inode_security_struct *isec;
1720 u32 sid;
1721
1722 validate_creds(cred);
1723
1724 if (unlikely(IS_PRIVATE(inode)))
1725 return 0;
1726
1727 sid = cred_sid(cred);
1728 isec = inode->i_security;
1729
1730 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1731}
1732
1733/* Same as inode_has_perm, but pass explicit audit data containing
1734 the dentry to help the auditing code to more easily generate the
1735 pathname if needed. */
1736static inline int dentry_has_perm(const struct cred *cred,
1737 struct dentry *dentry,
1738 u32 av)
1739{
1740 struct inode *inode = d_backing_inode(dentry);
1741 struct common_audit_data ad;
1742
1743 ad.type = LSM_AUDIT_DATA_DENTRY;
1744 ad.u.dentry = dentry;
1745 __inode_security_revalidate(inode, dentry, true);
1746 return inode_has_perm(cred, inode, av, &ad);
1747}
1748
1749/* Same as inode_has_perm, but pass explicit audit data containing
1750 the path to help the auditing code to more easily generate the
1751 pathname if needed. */
1752static inline int path_has_perm(const struct cred *cred,
1753 const struct path *path,
1754 u32 av)
1755{
1756 struct inode *inode = d_backing_inode(path->dentry);
1757 struct common_audit_data ad;
1758
1759 ad.type = LSM_AUDIT_DATA_PATH;
1760 ad.u.path = *path;
1761 __inode_security_revalidate(inode, path->dentry, true);
1762 return inode_has_perm(cred, inode, av, &ad);
1763}
1764
1765/* Same as path_has_perm, but uses the inode from the file struct. */
1766static inline int file_path_has_perm(const struct cred *cred,
1767 struct file *file,
1768 u32 av)
1769{
1770 struct common_audit_data ad;
1771
1772 ad.type = LSM_AUDIT_DATA_FILE;
1773 ad.u.file = file;
1774 return inode_has_perm(cred, file_inode(file), av, &ad);
1775}
1776
1777/* Check whether a task can use an open file descriptor to
1778 access an inode in a given way. Check access to the
1779 descriptor itself, and then use dentry_has_perm to
1780 check a particular permission to the file.
1781 Access to the descriptor is implicitly granted if it
1782 has the same SID as the process. If av is zero, then
1783 access to the file is not checked, e.g. for cases
1784 where only the descriptor is affected like seek. */
1785static int file_has_perm(const struct cred *cred,
1786 struct file *file,
1787 u32 av)
1788{
1789 struct file_security_struct *fsec = file->f_security;
1790 struct inode *inode = file_inode(file);
1791 struct common_audit_data ad;
1792 u32 sid = cred_sid(cred);
1793 int rc;
1794
1795 ad.type = LSM_AUDIT_DATA_FILE;
1796 ad.u.file = file;
1797
1798 if (sid != fsec->sid) {
1799 rc = avc_has_perm(sid, fsec->sid,
1800 SECCLASS_FD,
1801 FD__USE,
1802 &ad);
1803 if (rc)
1804 goto out;
1805 }
1806
1807 /* av is zero if only checking access to the descriptor. */
1808 rc = 0;
1809 if (av)
1810 rc = inode_has_perm(cred, inode, av, &ad);
1811
1812out:
1813 return rc;
1814}
1815
1816/*
1817 * Determine the label for an inode that might be unioned.
1818 */
1819static int
1820selinux_determine_inode_label(const struct task_security_struct *tsec,
1821 struct inode *dir,
1822 const struct qstr *name, u16 tclass,
1823 u32 *_new_isid)
1824{
1825 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1826
1827 if ((sbsec->flags & SE_SBINITIALIZED) &&
1828 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1829 *_new_isid = sbsec->mntpoint_sid;
1830 } else if ((sbsec->flags & SBLABEL_MNT) &&
1831 tsec->create_sid) {
1832 *_new_isid = tsec->create_sid;
1833 } else {
1834 const struct inode_security_struct *dsec = inode_security(dir);
1835 return security_transition_sid(tsec->sid, dsec->sid, tclass,
1836 name, _new_isid);
1837 }
1838
1839 return 0;
1840}
1841
1842/* Check whether a task can create a file. */
1843static int may_create(struct inode *dir,
1844 struct dentry *dentry,
1845 u16 tclass)
1846{
1847 const struct task_security_struct *tsec = current_security();
1848 struct inode_security_struct *dsec;
1849 struct superblock_security_struct *sbsec;
1850 u32 sid, newsid;
1851 struct common_audit_data ad;
1852 int rc;
1853
1854 dsec = inode_security(dir);
1855 sbsec = dir->i_sb->s_security;
1856
1857 sid = tsec->sid;
1858
1859 ad.type = LSM_AUDIT_DATA_DENTRY;
1860 ad.u.dentry = dentry;
1861
1862 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1863 DIR__ADD_NAME | DIR__SEARCH,
1864 &ad);
1865 if (rc)
1866 return rc;
1867
1868 rc = selinux_determine_inode_label(current_security(), dir,
1869 &dentry->d_name, tclass, &newsid);
1870 if (rc)
1871 return rc;
1872
1873 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1874 if (rc)
1875 return rc;
1876
1877 return avc_has_perm(newsid, sbsec->sid,
1878 SECCLASS_FILESYSTEM,
1879 FILESYSTEM__ASSOCIATE, &ad);
1880}
1881
1882/* Check whether a task can create a key. */
1883static int may_create_key(u32 ksid,
1884 struct task_struct *ctx)
1885{
1886 u32 sid = task_sid(ctx);
1887
1888 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1889}
1890
1891#define MAY_LINK 0
1892#define MAY_UNLINK 1
1893#define MAY_RMDIR 2
1894
1895/* Check whether a task can link, unlink, or rmdir a file/directory. */
1896static int may_link(struct inode *dir,
1897 struct dentry *dentry,
1898 int kind)
1899
1900{
1901 struct inode_security_struct *dsec, *isec;
1902 struct common_audit_data ad;
1903 u32 sid = current_sid();
1904 u32 av;
1905 int rc;
1906
1907 dsec = inode_security(dir);
1908 isec = backing_inode_security(dentry);
1909
1910 ad.type = LSM_AUDIT_DATA_DENTRY;
1911 ad.u.dentry = dentry;
1912
1913 av = DIR__SEARCH;
1914 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1915 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1916 if (rc)
1917 return rc;
1918
1919 switch (kind) {
1920 case MAY_LINK:
1921 av = FILE__LINK;
1922 break;
1923 case MAY_UNLINK:
1924 av = FILE__UNLINK;
1925 break;
1926 case MAY_RMDIR:
1927 av = DIR__RMDIR;
1928 break;
1929 default:
1930 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1931 __func__, kind);
1932 return 0;
1933 }
1934
1935 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1936 return rc;
1937}
1938
1939static inline int may_rename(struct inode *old_dir,
1940 struct dentry *old_dentry,
1941 struct inode *new_dir,
1942 struct dentry *new_dentry)
1943{
1944 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1945 struct common_audit_data ad;
1946 u32 sid = current_sid();
1947 u32 av;
1948 int old_is_dir, new_is_dir;
1949 int rc;
1950
1951 old_dsec = inode_security(old_dir);
1952 old_isec = backing_inode_security(old_dentry);
1953 old_is_dir = d_is_dir(old_dentry);
1954 new_dsec = inode_security(new_dir);
1955
1956 ad.type = LSM_AUDIT_DATA_DENTRY;
1957
1958 ad.u.dentry = old_dentry;
1959 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1960 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1961 if (rc)
1962 return rc;
1963 rc = avc_has_perm(sid, old_isec->sid,
1964 old_isec->sclass, FILE__RENAME, &ad);
1965 if (rc)
1966 return rc;
1967 if (old_is_dir && new_dir != old_dir) {
1968 rc = avc_has_perm(sid, old_isec->sid,
1969 old_isec->sclass, DIR__REPARENT, &ad);
1970 if (rc)
1971 return rc;
1972 }
1973
1974 ad.u.dentry = new_dentry;
1975 av = DIR__ADD_NAME | DIR__SEARCH;
1976 if (d_is_positive(new_dentry))
1977 av |= DIR__REMOVE_NAME;
1978 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1979 if (rc)
1980 return rc;
1981 if (d_is_positive(new_dentry)) {
1982 new_isec = backing_inode_security(new_dentry);
1983 new_is_dir = d_is_dir(new_dentry);
1984 rc = avc_has_perm(sid, new_isec->sid,
1985 new_isec->sclass,
1986 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1987 if (rc)
1988 return rc;
1989 }
1990
1991 return 0;
1992}
1993
1994/* Check whether a task can perform a filesystem operation. */
1995static int superblock_has_perm(const struct cred *cred,
1996 struct super_block *sb,
1997 u32 perms,
1998 struct common_audit_data *ad)
1999{
2000 struct superblock_security_struct *sbsec;
2001 u32 sid = cred_sid(cred);
2002
2003 sbsec = sb->s_security;
2004 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
2005}
2006
2007/* Convert a Linux mode and permission mask to an access vector. */
2008static inline u32 file_mask_to_av(int mode, int mask)
2009{
2010 u32 av = 0;
2011
2012 if (!S_ISDIR(mode)) {
2013 if (mask & MAY_EXEC)
2014 av |= FILE__EXECUTE;
2015 if (mask & MAY_READ)
2016 av |= FILE__READ;
2017
2018 if (mask & MAY_APPEND)
2019 av |= FILE__APPEND;
2020 else if (mask & MAY_WRITE)
2021 av |= FILE__WRITE;
2022
2023 } else {
2024 if (mask & MAY_EXEC)
2025 av |= DIR__SEARCH;
2026 if (mask & MAY_WRITE)
2027 av |= DIR__WRITE;
2028 if (mask & MAY_READ)
2029 av |= DIR__READ;
2030 }
2031
2032 return av;
2033}
2034
2035/* Convert a Linux file to an access vector. */
2036static inline u32 file_to_av(struct file *file)
2037{
2038 u32 av = 0;
2039
2040 if (file->f_mode & FMODE_READ)
2041 av |= FILE__READ;
2042 if (file->f_mode & FMODE_WRITE) {
2043 if (file->f_flags & O_APPEND)
2044 av |= FILE__APPEND;
2045 else
2046 av |= FILE__WRITE;
2047 }
2048 if (!av) {
2049 /*
2050 * Special file opened with flags 3 for ioctl-only use.
2051 */
2052 av = FILE__IOCTL;
2053 }
2054
2055 return av;
2056}
2057
2058/*
2059 * Convert a file to an access vector and include the correct open
2060 * open permission.
2061 */
2062static inline u32 open_file_to_av(struct file *file)
2063{
2064 u32 av = file_to_av(file);
2065
2066 if (selinux_policycap_openperm)
2067 av |= FILE__OPEN;
2068
2069 return av;
2070}
2071
2072/* Hook functions begin here. */
2073
2074static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2075{
2076 u32 mysid = current_sid();
2077 u32 mgrsid = task_sid(mgr);
2078
2079 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2080 BINDER__SET_CONTEXT_MGR, NULL);
2081}
2082
2083static int selinux_binder_transaction(struct task_struct *from,
2084 struct task_struct *to)
2085{
2086 u32 mysid = current_sid();
2087 u32 fromsid = task_sid(from);
2088 u32 tosid = task_sid(to);
2089 int rc;
2090
2091 if (mysid != fromsid) {
2092 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2093 BINDER__IMPERSONATE, NULL);
2094 if (rc)
2095 return rc;
2096 }
2097
2098 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2099 NULL);
2100}
2101
2102static int selinux_binder_transfer_binder(struct task_struct *from,
2103 struct task_struct *to)
2104{
2105 u32 fromsid = task_sid(from);
2106 u32 tosid = task_sid(to);
2107
2108 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2109 NULL);
2110}
2111
2112static int selinux_binder_transfer_file(struct task_struct *from,
2113 struct task_struct *to,
2114 struct file *file)
2115{
2116 u32 sid = task_sid(to);
2117 struct file_security_struct *fsec = file->f_security;
2118 struct dentry *dentry = file->f_path.dentry;
2119 struct inode_security_struct *isec;
2120 struct common_audit_data ad;
2121 int rc;
2122
2123 ad.type = LSM_AUDIT_DATA_PATH;
2124 ad.u.path = file->f_path;
2125
2126 if (sid != fsec->sid) {
2127 rc = avc_has_perm(sid, fsec->sid,
2128 SECCLASS_FD,
2129 FD__USE,
2130 &ad);
2131 if (rc)
2132 return rc;
2133 }
2134
2135 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2136 return 0;
2137
2138 isec = backing_inode_security(dentry);
2139 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2140 &ad);
2141}
2142
2143static int selinux_ptrace_access_check(struct task_struct *child,
2144 unsigned int mode)
2145{
2146 if (mode & PTRACE_MODE_READ) {
2147 u32 sid = current_sid();
2148 u32 csid = task_sid(child);
2149 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150 }
2151
2152 return current_has_perm(child, PROCESS__PTRACE);
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157 return task_has_perm(parent, current, PROCESS__PTRACE);
2158}
2159
2160static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2161 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2162{
2163 return current_has_perm(target, PROCESS__GETCAP);
2164}
2165
2166static int selinux_capset(struct cred *new, const struct cred *old,
2167 const kernel_cap_t *effective,
2168 const kernel_cap_t *inheritable,
2169 const kernel_cap_t *permitted)
2170{
2171 return cred_has_perm(old, new, PROCESS__SETCAP);
2172}
2173
2174/*
2175 * (This comment used to live with the selinux_task_setuid hook,
2176 * which was removed).
2177 *
2178 * Since setuid only affects the current process, and since the SELinux
2179 * controls are not based on the Linux identity attributes, SELinux does not
2180 * need to control this operation. However, SELinux does control the use of
2181 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2182 */
2183
2184static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2185 int cap, int audit)
2186{
2187 return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2188}
2189
2190static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2191{
2192 const struct cred *cred = current_cred();
2193 int rc = 0;
2194
2195 if (!sb)
2196 return 0;
2197
2198 switch (cmds) {
2199 case Q_SYNC:
2200 case Q_QUOTAON:
2201 case Q_QUOTAOFF:
2202 case Q_SETINFO:
2203 case Q_SETQUOTA:
2204 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2205 break;
2206 case Q_GETFMT:
2207 case Q_GETINFO:
2208 case Q_GETQUOTA:
2209 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2210 break;
2211 default:
2212 rc = 0; /* let the kernel handle invalid cmds */
2213 break;
2214 }
2215 return rc;
2216}
2217
2218static int selinux_quota_on(struct dentry *dentry)
2219{
2220 const struct cred *cred = current_cred();
2221
2222 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2223}
2224
2225static int selinux_syslog(int type)
2226{
2227 int rc;
2228
2229 switch (type) {
2230 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2231 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2232 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2233 break;
2234 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2235 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2236 /* Set level of messages printed to console */
2237 case SYSLOG_ACTION_CONSOLE_LEVEL:
2238 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2239 break;
2240 case SYSLOG_ACTION_CLOSE: /* Close log */
2241 case SYSLOG_ACTION_OPEN: /* Open log */
2242 case SYSLOG_ACTION_READ: /* Read from log */
2243 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2244 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2245 default:
2246 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2247 break;
2248 }
2249 return rc;
2250}
2251
2252/*
2253 * Check that a process has enough memory to allocate a new virtual
2254 * mapping. 0 means there is enough memory for the allocation to
2255 * succeed and -ENOMEM implies there is not.
2256 *
2257 * Do not audit the selinux permission check, as this is applied to all
2258 * processes that allocate mappings.
2259 */
2260static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2261{
2262 int rc, cap_sys_admin = 0;
2263
2264 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2265 SECURITY_CAP_NOAUDIT, true);
2266 if (rc == 0)
2267 cap_sys_admin = 1;
2268
2269 return cap_sys_admin;
2270}
2271
2272/* binprm security operations */
2273
2274static u32 ptrace_parent_sid(struct task_struct *task)
2275{
2276 u32 sid = 0;
2277 struct task_struct *tracer;
2278
2279 rcu_read_lock();
2280 tracer = ptrace_parent(task);
2281 if (tracer)
2282 sid = task_sid(tracer);
2283 rcu_read_unlock();
2284
2285 return sid;
2286}
2287
2288static int check_nnp_nosuid(const struct linux_binprm *bprm,
2289 const struct task_security_struct *old_tsec,
2290 const struct task_security_struct *new_tsec)
2291{
2292 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2293 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2294 int rc;
2295
2296 if (!nnp && !nosuid)
2297 return 0; /* neither NNP nor nosuid */
2298
2299 if (new_tsec->sid == old_tsec->sid)
2300 return 0; /* No change in credentials */
2301
2302 /*
2303 * The only transitions we permit under NNP or nosuid
2304 * are transitions to bounded SIDs, i.e. SIDs that are
2305 * guaranteed to only be allowed a subset of the permissions
2306 * of the current SID.
2307 */
2308 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2309 if (rc) {
2310 /*
2311 * On failure, preserve the errno values for NNP vs nosuid.
2312 * NNP: Operation not permitted for caller.
2313 * nosuid: Permission denied to file.
2314 */
2315 if (nnp)
2316 return -EPERM;
2317 else
2318 return -EACCES;
2319 }
2320 return 0;
2321}
2322
2323static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2324{
2325 const struct task_security_struct *old_tsec;
2326 struct task_security_struct *new_tsec;
2327 struct inode_security_struct *isec;
2328 struct common_audit_data ad;
2329 struct inode *inode = file_inode(bprm->file);
2330 int rc;
2331
2332 /* SELinux context only depends on initial program or script and not
2333 * the script interpreter */
2334 if (bprm->cred_prepared)
2335 return 0;
2336
2337 old_tsec = current_security();
2338 new_tsec = bprm->cred->security;
2339 isec = inode_security(inode);
2340
2341 /* Default to the current task SID. */
2342 new_tsec->sid = old_tsec->sid;
2343 new_tsec->osid = old_tsec->sid;
2344
2345 /* Reset fs, key, and sock SIDs on execve. */
2346 new_tsec->create_sid = 0;
2347 new_tsec->keycreate_sid = 0;
2348 new_tsec->sockcreate_sid = 0;
2349
2350 if (old_tsec->exec_sid) {
2351 new_tsec->sid = old_tsec->exec_sid;
2352 /* Reset exec SID on execve. */
2353 new_tsec->exec_sid = 0;
2354
2355 /* Fail on NNP or nosuid if not an allowed transition. */
2356 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2357 if (rc)
2358 return rc;
2359 } else {
2360 /* Check for a default transition on this program. */
2361 rc = security_transition_sid(old_tsec->sid, isec->sid,
2362 SECCLASS_PROCESS, NULL,
2363 &new_tsec->sid);
2364 if (rc)
2365 return rc;
2366
2367 /*
2368 * Fallback to old SID on NNP or nosuid if not an allowed
2369 * transition.
2370 */
2371 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2372 if (rc)
2373 new_tsec->sid = old_tsec->sid;
2374 }
2375
2376 ad.type = LSM_AUDIT_DATA_FILE;
2377 ad.u.file = bprm->file;
2378
2379 if (new_tsec->sid == old_tsec->sid) {
2380 rc = avc_has_perm(old_tsec->sid, isec->sid,
2381 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2382 if (rc)
2383 return rc;
2384 } else {
2385 /* Check permissions for the transition. */
2386 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2387 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2388 if (rc)
2389 return rc;
2390
2391 rc = avc_has_perm(new_tsec->sid, isec->sid,
2392 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2393 if (rc)
2394 return rc;
2395
2396 /* Check for shared state */
2397 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2398 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2399 SECCLASS_PROCESS, PROCESS__SHARE,
2400 NULL);
2401 if (rc)
2402 return -EPERM;
2403 }
2404
2405 /* Make sure that anyone attempting to ptrace over a task that
2406 * changes its SID has the appropriate permit */
2407 if (bprm->unsafe &
2408 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2409 u32 ptsid = ptrace_parent_sid(current);
2410 if (ptsid != 0) {
2411 rc = avc_has_perm(ptsid, new_tsec->sid,
2412 SECCLASS_PROCESS,
2413 PROCESS__PTRACE, NULL);
2414 if (rc)
2415 return -EPERM;
2416 }
2417 }
2418
2419 /* Clear any possibly unsafe personality bits on exec: */
2420 bprm->per_clear |= PER_CLEAR_ON_SETID;
2421 }
2422
2423 return 0;
2424}
2425
2426static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2427{
2428 const struct task_security_struct *tsec = current_security();
2429 u32 sid, osid;
2430 int atsecure = 0;
2431
2432 sid = tsec->sid;
2433 osid = tsec->osid;
2434
2435 if (osid != sid) {
2436 /* Enable secure mode for SIDs transitions unless
2437 the noatsecure permission is granted between
2438 the two SIDs, i.e. ahp returns 0. */
2439 atsecure = avc_has_perm(osid, sid,
2440 SECCLASS_PROCESS,
2441 PROCESS__NOATSECURE, NULL);
2442 }
2443
2444 return !!atsecure;
2445}
2446
2447static int match_file(const void *p, struct file *file, unsigned fd)
2448{
2449 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2450}
2451
2452/* Derived from fs/exec.c:flush_old_files. */
2453static inline void flush_unauthorized_files(const struct cred *cred,
2454 struct files_struct *files)
2455{
2456 struct file *file, *devnull = NULL;
2457 struct tty_struct *tty;
2458 int drop_tty = 0;
2459 unsigned n;
2460
2461 tty = get_current_tty();
2462 if (tty) {
2463 spin_lock(&tty->files_lock);
2464 if (!list_empty(&tty->tty_files)) {
2465 struct tty_file_private *file_priv;
2466
2467 /* Revalidate access to controlling tty.
2468 Use file_path_has_perm on the tty path directly
2469 rather than using file_has_perm, as this particular
2470 open file may belong to another process and we are
2471 only interested in the inode-based check here. */
2472 file_priv = list_first_entry(&tty->tty_files,
2473 struct tty_file_private, list);
2474 file = file_priv->file;
2475 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2476 drop_tty = 1;
2477 }
2478 spin_unlock(&tty->files_lock);
2479 tty_kref_put(tty);
2480 }
2481 /* Reset controlling tty. */
2482 if (drop_tty)
2483 no_tty();
2484
2485 /* Revalidate access to inherited open files. */
2486 n = iterate_fd(files, 0, match_file, cred);
2487 if (!n) /* none found? */
2488 return;
2489
2490 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2491 if (IS_ERR(devnull))
2492 devnull = NULL;
2493 /* replace all the matching ones with this */
2494 do {
2495 replace_fd(n - 1, devnull, 0);
2496 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2497 if (devnull)
2498 fput(devnull);
2499}
2500
2501/*
2502 * Prepare a process for imminent new credential changes due to exec
2503 */
2504static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2505{
2506 struct task_security_struct *new_tsec;
2507 struct rlimit *rlim, *initrlim;
2508 int rc, i;
2509
2510 new_tsec = bprm->cred->security;
2511 if (new_tsec->sid == new_tsec->osid)
2512 return;
2513
2514 /* Close files for which the new task SID is not authorized. */
2515 flush_unauthorized_files(bprm->cred, current->files);
2516
2517 /* Always clear parent death signal on SID transitions. */
2518 current->pdeath_signal = 0;
2519
2520 /* Check whether the new SID can inherit resource limits from the old
2521 * SID. If not, reset all soft limits to the lower of the current
2522 * task's hard limit and the init task's soft limit.
2523 *
2524 * Note that the setting of hard limits (even to lower them) can be
2525 * controlled by the setrlimit check. The inclusion of the init task's
2526 * soft limit into the computation is to avoid resetting soft limits
2527 * higher than the default soft limit for cases where the default is
2528 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2529 */
2530 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2531 PROCESS__RLIMITINH, NULL);
2532 if (rc) {
2533 /* protect against do_prlimit() */
2534 task_lock(current);
2535 for (i = 0; i < RLIM_NLIMITS; i++) {
2536 rlim = current->signal->rlim + i;
2537 initrlim = init_task.signal->rlim + i;
2538 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2539 }
2540 task_unlock(current);
2541 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2542 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2543 }
2544}
2545
2546/*
2547 * Clean up the process immediately after the installation of new credentials
2548 * due to exec
2549 */
2550static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2551{
2552 const struct task_security_struct *tsec = current_security();
2553 struct itimerval itimer;
2554 u32 osid, sid;
2555 int rc, i;
2556
2557 osid = tsec->osid;
2558 sid = tsec->sid;
2559
2560 if (sid == osid)
2561 return;
2562
2563 /* Check whether the new SID can inherit signal state from the old SID.
2564 * If not, clear itimers to avoid subsequent signal generation and
2565 * flush and unblock signals.
2566 *
2567 * This must occur _after_ the task SID has been updated so that any
2568 * kill done after the flush will be checked against the new SID.
2569 */
2570 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571 if (rc) {
2572 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573 memset(&itimer, 0, sizeof itimer);
2574 for (i = 0; i < 3; i++)
2575 do_setitimer(i, &itimer, NULL);
2576 }
2577 spin_lock_irq(¤t->sighand->siglock);
2578 if (!fatal_signal_pending(current)) {
2579 flush_sigqueue(¤t->pending);
2580 flush_sigqueue(¤t->signal->shared_pending);
2581 flush_signal_handlers(current, 1);
2582 sigemptyset(¤t->blocked);
2583 recalc_sigpending();
2584 }
2585 spin_unlock_irq(¤t->sighand->siglock);
2586 }
2587
2588 /* Wake up the parent if it is waiting so that it can recheck
2589 * wait permission to the new task SID. */
2590 read_lock(&tasklist_lock);
2591 __wake_up_parent(current, current->real_parent);
2592 read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599 return superblock_alloc_security(sb);
2600}
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604 superblock_free_security(sb);
2605}
2606
2607static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2608{
2609 if (plen > olen)
2610 return 0;
2611
2612 return !memcmp(prefix, option, plen);
2613}
2614
2615static inline int selinux_option(char *option, int len)
2616{
2617 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2618 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2619 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2620 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2621 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2622}
2623
2624static inline void take_option(char **to, char *from, int *first, int len)
2625{
2626 if (!*first) {
2627 **to = ',';
2628 *to += 1;
2629 } else
2630 *first = 0;
2631 memcpy(*to, from, len);
2632 *to += len;
2633}
2634
2635static inline void take_selinux_option(char **to, char *from, int *first,
2636 int len)
2637{
2638 int current_size = 0;
2639
2640 if (!*first) {
2641 **to = '|';
2642 *to += 1;
2643 } else
2644 *first = 0;
2645
2646 while (current_size < len) {
2647 if (*from != '"') {
2648 **to = *from;
2649 *to += 1;
2650 }
2651 from += 1;
2652 current_size += 1;
2653 }
2654}
2655
2656static int selinux_sb_copy_data(char *orig, char *copy)
2657{
2658 int fnosec, fsec, rc = 0;
2659 char *in_save, *in_curr, *in_end;
2660 char *sec_curr, *nosec_save, *nosec;
2661 int open_quote = 0;
2662
2663 in_curr = orig;
2664 sec_curr = copy;
2665
2666 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2667 if (!nosec) {
2668 rc = -ENOMEM;
2669 goto out;
2670 }
2671
2672 nosec_save = nosec;
2673 fnosec = fsec = 1;
2674 in_save = in_end = orig;
2675
2676 do {
2677 if (*in_end == '"')
2678 open_quote = !open_quote;
2679 if ((*in_end == ',' && open_quote == 0) ||
2680 *in_end == '\0') {
2681 int len = in_end - in_curr;
2682
2683 if (selinux_option(in_curr, len))
2684 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2685 else
2686 take_option(&nosec, in_curr, &fnosec, len);
2687
2688 in_curr = in_end + 1;
2689 }
2690 } while (*in_end++);
2691
2692 strcpy(in_save, nosec_save);
2693 free_page((unsigned long)nosec_save);
2694out:
2695 return rc;
2696}
2697
2698static int selinux_sb_remount(struct super_block *sb, void *data)
2699{
2700 int rc, i, *flags;
2701 struct security_mnt_opts opts;
2702 char *secdata, **mount_options;
2703 struct superblock_security_struct *sbsec = sb->s_security;
2704
2705 if (!(sbsec->flags & SE_SBINITIALIZED))
2706 return 0;
2707
2708 if (!data)
2709 return 0;
2710
2711 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2712 return 0;
2713
2714 security_init_mnt_opts(&opts);
2715 secdata = alloc_secdata();
2716 if (!secdata)
2717 return -ENOMEM;
2718 rc = selinux_sb_copy_data(data, secdata);
2719 if (rc)
2720 goto out_free_secdata;
2721
2722 rc = selinux_parse_opts_str(secdata, &opts);
2723 if (rc)
2724 goto out_free_secdata;
2725
2726 mount_options = opts.mnt_opts;
2727 flags = opts.mnt_opts_flags;
2728
2729 for (i = 0; i < opts.num_mnt_opts; i++) {
2730 u32 sid;
2731
2732 if (flags[i] == SBLABEL_MNT)
2733 continue;
2734 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2735 if (rc) {
2736 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2737 "(%s) failed for (dev %s, type %s) errno=%d\n",
2738 mount_options[i], sb->s_id, sb->s_type->name, rc);
2739 goto out_free_opts;
2740 }
2741 rc = -EINVAL;
2742 switch (flags[i]) {
2743 case FSCONTEXT_MNT:
2744 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2745 goto out_bad_option;
2746 break;
2747 case CONTEXT_MNT:
2748 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2749 goto out_bad_option;
2750 break;
2751 case ROOTCONTEXT_MNT: {
2752 struct inode_security_struct *root_isec;
2753 root_isec = backing_inode_security(sb->s_root);
2754
2755 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2756 goto out_bad_option;
2757 break;
2758 }
2759 case DEFCONTEXT_MNT:
2760 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2761 goto out_bad_option;
2762 break;
2763 default:
2764 goto out_free_opts;
2765 }
2766 }
2767
2768 rc = 0;
2769out_free_opts:
2770 security_free_mnt_opts(&opts);
2771out_free_secdata:
2772 free_secdata(secdata);
2773 return rc;
2774out_bad_option:
2775 printk(KERN_WARNING "SELinux: unable to change security options "
2776 "during remount (dev %s, type=%s)\n", sb->s_id,
2777 sb->s_type->name);
2778 goto out_free_opts;
2779}
2780
2781static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2782{
2783 const struct cred *cred = current_cred();
2784 struct common_audit_data ad;
2785 int rc;
2786
2787 rc = superblock_doinit(sb, data);
2788 if (rc)
2789 return rc;
2790
2791 /* Allow all mounts performed by the kernel */
2792 if (flags & MS_KERNMOUNT)
2793 return 0;
2794
2795 ad.type = LSM_AUDIT_DATA_DENTRY;
2796 ad.u.dentry = sb->s_root;
2797 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2798}
2799
2800static int selinux_sb_statfs(struct dentry *dentry)
2801{
2802 const struct cred *cred = current_cred();
2803 struct common_audit_data ad;
2804
2805 ad.type = LSM_AUDIT_DATA_DENTRY;
2806 ad.u.dentry = dentry->d_sb->s_root;
2807 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2808}
2809
2810static int selinux_mount(const char *dev_name,
2811 const struct path *path,
2812 const char *type,
2813 unsigned long flags,
2814 void *data)
2815{
2816 const struct cred *cred = current_cred();
2817
2818 if (flags & MS_REMOUNT)
2819 return superblock_has_perm(cred, path->dentry->d_sb,
2820 FILESYSTEM__REMOUNT, NULL);
2821 else
2822 return path_has_perm(cred, path, FILE__MOUNTON);
2823}
2824
2825static int selinux_umount(struct vfsmount *mnt, int flags)
2826{
2827 const struct cred *cred = current_cred();
2828
2829 return superblock_has_perm(cred, mnt->mnt_sb,
2830 FILESYSTEM__UNMOUNT, NULL);
2831}
2832
2833/* inode security operations */
2834
2835static int selinux_inode_alloc_security(struct inode *inode)
2836{
2837 return inode_alloc_security(inode);
2838}
2839
2840static void selinux_inode_free_security(struct inode *inode)
2841{
2842 inode_free_security(inode);
2843}
2844
2845static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2846 const struct qstr *name, void **ctx,
2847 u32 *ctxlen)
2848{
2849 u32 newsid;
2850 int rc;
2851
2852 rc = selinux_determine_inode_label(current_security(),
2853 d_inode(dentry->d_parent), name,
2854 inode_mode_to_security_class(mode),
2855 &newsid);
2856 if (rc)
2857 return rc;
2858
2859 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2860}
2861
2862static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2863 struct qstr *name,
2864 const struct cred *old,
2865 struct cred *new)
2866{
2867 u32 newsid;
2868 int rc;
2869 struct task_security_struct *tsec;
2870
2871 rc = selinux_determine_inode_label(old->security,
2872 d_inode(dentry->d_parent), name,
2873 inode_mode_to_security_class(mode),
2874 &newsid);
2875 if (rc)
2876 return rc;
2877
2878 tsec = new->security;
2879 tsec->create_sid = newsid;
2880 return 0;
2881}
2882
2883static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2884 const struct qstr *qstr,
2885 const char **name,
2886 void **value, size_t *len)
2887{
2888 const struct task_security_struct *tsec = current_security();
2889 struct superblock_security_struct *sbsec;
2890 u32 sid, newsid, clen;
2891 int rc;
2892 char *context;
2893
2894 sbsec = dir->i_sb->s_security;
2895
2896 sid = tsec->sid;
2897 newsid = tsec->create_sid;
2898
2899 rc = selinux_determine_inode_label(current_security(),
2900 dir, qstr,
2901 inode_mode_to_security_class(inode->i_mode),
2902 &newsid);
2903 if (rc)
2904 return rc;
2905
2906 /* Possibly defer initialization to selinux_complete_init. */
2907 if (sbsec->flags & SE_SBINITIALIZED) {
2908 struct inode_security_struct *isec = inode->i_security;
2909 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2910 isec->sid = newsid;
2911 isec->initialized = LABEL_INITIALIZED;
2912 }
2913
2914 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2915 return -EOPNOTSUPP;
2916
2917 if (name)
2918 *name = XATTR_SELINUX_SUFFIX;
2919
2920 if (value && len) {
2921 rc = security_sid_to_context_force(newsid, &context, &clen);
2922 if (rc)
2923 return rc;
2924 *value = context;
2925 *len = clen;
2926 }
2927
2928 return 0;
2929}
2930
2931static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2932{
2933 return may_create(dir, dentry, SECCLASS_FILE);
2934}
2935
2936static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2937{
2938 return may_link(dir, old_dentry, MAY_LINK);
2939}
2940
2941static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2942{
2943 return may_link(dir, dentry, MAY_UNLINK);
2944}
2945
2946static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2947{
2948 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2949}
2950
2951static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2952{
2953 return may_create(dir, dentry, SECCLASS_DIR);
2954}
2955
2956static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2957{
2958 return may_link(dir, dentry, MAY_RMDIR);
2959}
2960
2961static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2962{
2963 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2964}
2965
2966static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2967 struct inode *new_inode, struct dentry *new_dentry)
2968{
2969 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2970}
2971
2972static int selinux_inode_readlink(struct dentry *dentry)
2973{
2974 const struct cred *cred = current_cred();
2975
2976 return dentry_has_perm(cred, dentry, FILE__READ);
2977}
2978
2979static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2980 bool rcu)
2981{
2982 const struct cred *cred = current_cred();
2983 struct common_audit_data ad;
2984 struct inode_security_struct *isec;
2985 u32 sid;
2986
2987 validate_creds(cred);
2988
2989 ad.type = LSM_AUDIT_DATA_DENTRY;
2990 ad.u.dentry = dentry;
2991 sid = cred_sid(cred);
2992 isec = inode_security_rcu(inode, rcu);
2993 if (IS_ERR(isec))
2994 return PTR_ERR(isec);
2995
2996 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2997 rcu ? MAY_NOT_BLOCK : 0);
2998}
2999
3000static noinline int audit_inode_permission(struct inode *inode,
3001 u32 perms, u32 audited, u32 denied,
3002 int result,
3003 unsigned flags)
3004{
3005 struct common_audit_data ad;
3006 struct inode_security_struct *isec = inode->i_security;
3007 int rc;
3008
3009 ad.type = LSM_AUDIT_DATA_INODE;
3010 ad.u.inode = inode;
3011
3012 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3013 audited, denied, result, &ad, flags);
3014 if (rc)
3015 return rc;
3016 return 0;
3017}
3018
3019static int selinux_inode_permission(struct inode *inode, int mask)
3020{
3021 const struct cred *cred = current_cred();
3022 u32 perms;
3023 bool from_access;
3024 unsigned flags = mask & MAY_NOT_BLOCK;
3025 struct inode_security_struct *isec;
3026 u32 sid;
3027 struct av_decision avd;
3028 int rc, rc2;
3029 u32 audited, denied;
3030
3031 from_access = mask & MAY_ACCESS;
3032 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3033
3034 /* No permission to check. Existence test. */
3035 if (!mask)
3036 return 0;
3037
3038 validate_creds(cred);
3039
3040 if (unlikely(IS_PRIVATE(inode)))
3041 return 0;
3042
3043 perms = file_mask_to_av(inode->i_mode, mask);
3044
3045 sid = cred_sid(cred);
3046 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3047 if (IS_ERR(isec))
3048 return PTR_ERR(isec);
3049
3050 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
3051 audited = avc_audit_required(perms, &avd, rc,
3052 from_access ? FILE__AUDIT_ACCESS : 0,
3053 &denied);
3054 if (likely(!audited))
3055 return rc;
3056
3057 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3058 if (rc2)
3059 return rc2;
3060 return rc;
3061}
3062
3063static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3064{
3065 const struct cred *cred = current_cred();
3066 unsigned int ia_valid = iattr->ia_valid;
3067 __u32 av = FILE__WRITE;
3068
3069 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3070 if (ia_valid & ATTR_FORCE) {
3071 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3072 ATTR_FORCE);
3073 if (!ia_valid)
3074 return 0;
3075 }
3076
3077 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3078 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3079 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3080
3081 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3082 && !(ia_valid & ATTR_FILE))
3083 av |= FILE__OPEN;
3084
3085 return dentry_has_perm(cred, dentry, av);
3086}
3087
3088static int selinux_inode_getattr(const struct path *path)
3089{
3090 return path_has_perm(current_cred(), path, FILE__GETATTR);
3091}
3092
3093static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3094{
3095 const struct cred *cred = current_cred();
3096
3097 if (!strncmp(name, XATTR_SECURITY_PREFIX,
3098 sizeof XATTR_SECURITY_PREFIX - 1)) {
3099 if (!strcmp(name, XATTR_NAME_CAPS)) {
3100 if (!capable(CAP_SETFCAP))
3101 return -EPERM;
3102 } else if (!capable(CAP_SYS_ADMIN)) {
3103 /* A different attribute in the security namespace.
3104 Restrict to administrator. */
3105 return -EPERM;
3106 }
3107 }
3108
3109 /* Not an attribute we recognize, so just check the
3110 ordinary setattr permission. */
3111 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3112}
3113
3114static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115 const void *value, size_t size, int flags)
3116{
3117 struct inode *inode = d_backing_inode(dentry);
3118 struct inode_security_struct *isec;
3119 struct superblock_security_struct *sbsec;
3120 struct common_audit_data ad;
3121 u32 newsid, sid = current_sid();
3122 int rc = 0;
3123
3124 if (strcmp(name, XATTR_NAME_SELINUX))
3125 return selinux_inode_setotherxattr(dentry, name);
3126
3127 sbsec = inode->i_sb->s_security;
3128 if (!(sbsec->flags & SBLABEL_MNT))
3129 return -EOPNOTSUPP;
3130
3131 if (!inode_owner_or_capable(inode))
3132 return -EPERM;
3133
3134 ad.type = LSM_AUDIT_DATA_DENTRY;
3135 ad.u.dentry = dentry;
3136
3137 isec = backing_inode_security(dentry);
3138 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3139 FILE__RELABELFROM, &ad);
3140 if (rc)
3141 return rc;
3142
3143 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3144 if (rc == -EINVAL) {
3145 if (!capable(CAP_MAC_ADMIN)) {
3146 struct audit_buffer *ab;
3147 size_t audit_size;
3148 const char *str;
3149
3150 /* We strip a nul only if it is at the end, otherwise the
3151 * context contains a nul and we should audit that */
3152 if (value) {
3153 str = value;
3154 if (str[size - 1] == '\0')
3155 audit_size = size - 1;
3156 else
3157 audit_size = size;
3158 } else {
3159 str = "";
3160 audit_size = 0;
3161 }
3162 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3163 audit_log_format(ab, "op=setxattr invalid_context=");
3164 audit_log_n_untrustedstring(ab, value, audit_size);
3165 audit_log_end(ab);
3166
3167 return rc;
3168 }
3169 rc = security_context_to_sid_force(value, size, &newsid);
3170 }
3171 if (rc)
3172 return rc;
3173
3174 rc = avc_has_perm(sid, newsid, isec->sclass,
3175 FILE__RELABELTO, &ad);
3176 if (rc)
3177 return rc;
3178
3179 rc = security_validate_transition(isec->sid, newsid, sid,
3180 isec->sclass);
3181 if (rc)
3182 return rc;
3183
3184 return avc_has_perm(newsid,
3185 sbsec->sid,
3186 SECCLASS_FILESYSTEM,
3187 FILESYSTEM__ASSOCIATE,
3188 &ad);
3189}
3190
3191static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3192 const void *value, size_t size,
3193 int flags)
3194{
3195 struct inode *inode = d_backing_inode(dentry);
3196 struct inode_security_struct *isec;
3197 u32 newsid;
3198 int rc;
3199
3200 if (strcmp(name, XATTR_NAME_SELINUX)) {
3201 /* Not an attribute we recognize, so nothing to do. */
3202 return;
3203 }
3204
3205 rc = security_context_to_sid_force(value, size, &newsid);
3206 if (rc) {
3207 printk(KERN_ERR "SELinux: unable to map context to SID"
3208 "for (%s, %lu), rc=%d\n",
3209 inode->i_sb->s_id, inode->i_ino, -rc);
3210 return;
3211 }
3212
3213 isec = backing_inode_security(dentry);
3214 spin_lock(&isec->lock);
3215 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3216 isec->sid = newsid;
3217 isec->initialized = LABEL_INITIALIZED;
3218 spin_unlock(&isec->lock);
3219
3220 return;
3221}
3222
3223static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3224{
3225 const struct cred *cred = current_cred();
3226
3227 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3228}
3229
3230static int selinux_inode_listxattr(struct dentry *dentry)
3231{
3232 const struct cred *cred = current_cred();
3233
3234 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3235}
3236
3237static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3238{
3239 if (strcmp(name, XATTR_NAME_SELINUX))
3240 return selinux_inode_setotherxattr(dentry, name);
3241
3242 /* No one is allowed to remove a SELinux security label.
3243 You can change the label, but all data must be labeled. */
3244 return -EACCES;
3245}
3246
3247/*
3248 * Copy the inode security context value to the user.
3249 *
3250 * Permission check is handled by selinux_inode_getxattr hook.
3251 */
3252static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3253{
3254 u32 size;
3255 int error;
3256 char *context = NULL;
3257 struct inode_security_struct *isec;
3258
3259 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3260 return -EOPNOTSUPP;
3261
3262 /*
3263 * If the caller has CAP_MAC_ADMIN, then get the raw context
3264 * value even if it is not defined by current policy; otherwise,
3265 * use the in-core value under current policy.
3266 * Use the non-auditing forms of the permission checks since
3267 * getxattr may be called by unprivileged processes commonly
3268 * and lack of permission just means that we fall back to the
3269 * in-core context value, not a denial.
3270 */
3271 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3272 SECURITY_CAP_NOAUDIT);
3273 if (!error)
3274 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3275 SECURITY_CAP_NOAUDIT, true);
3276 isec = inode_security(inode);
3277 if (!error)
3278 error = security_sid_to_context_force(isec->sid, &context,
3279 &size);
3280 else
3281 error = security_sid_to_context(isec->sid, &context, &size);
3282 if (error)
3283 return error;
3284 error = size;
3285 if (alloc) {
3286 *buffer = context;
3287 goto out_nofree;
3288 }
3289 kfree(context);
3290out_nofree:
3291 return error;
3292}
3293
3294static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3295 const void *value, size_t size, int flags)
3296{
3297 struct inode_security_struct *isec = inode_security_novalidate(inode);
3298 u32 newsid;
3299 int rc;
3300
3301 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3302 return -EOPNOTSUPP;
3303
3304 if (!value || !size)
3305 return -EACCES;
3306
3307 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3308 if (rc)
3309 return rc;
3310
3311 spin_lock(&isec->lock);
3312 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3313 isec->sid = newsid;
3314 isec->initialized = LABEL_INITIALIZED;
3315 spin_unlock(&isec->lock);
3316 return 0;
3317}
3318
3319static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3320{
3321 const int len = sizeof(XATTR_NAME_SELINUX);
3322 if (buffer && len <= buffer_size)
3323 memcpy(buffer, XATTR_NAME_SELINUX, len);
3324 return len;
3325}
3326
3327static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3328{
3329 struct inode_security_struct *isec = inode_security_novalidate(inode);
3330 *secid = isec->sid;
3331}
3332
3333static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3334{
3335 u32 sid;
3336 struct task_security_struct *tsec;
3337 struct cred *new_creds = *new;
3338
3339 if (new_creds == NULL) {
3340 new_creds = prepare_creds();
3341 if (!new_creds)
3342 return -ENOMEM;
3343 }
3344
3345 tsec = new_creds->security;
3346 /* Get label from overlay inode and set it in create_sid */
3347 selinux_inode_getsecid(d_inode(src), &sid);
3348 tsec->create_sid = sid;
3349 *new = new_creds;
3350 return 0;
3351}
3352
3353static int selinux_inode_copy_up_xattr(const char *name)
3354{
3355 /* The copy_up hook above sets the initial context on an inode, but we
3356 * don't then want to overwrite it by blindly copying all the lower
3357 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3358 */
3359 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3360 return 1; /* Discard */
3361 /*
3362 * Any other attribute apart from SELINUX is not claimed, supported
3363 * by selinux.
3364 */
3365 return -EOPNOTSUPP;
3366}
3367
3368/* file security operations */
3369
3370static int selinux_revalidate_file_permission(struct file *file, int mask)
3371{
3372 const struct cred *cred = current_cred();
3373 struct inode *inode = file_inode(file);
3374
3375 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3376 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3377 mask |= MAY_APPEND;
3378
3379 return file_has_perm(cred, file,
3380 file_mask_to_av(inode->i_mode, mask));
3381}
3382
3383static int selinux_file_permission(struct file *file, int mask)
3384{
3385 struct inode *inode = file_inode(file);
3386 struct file_security_struct *fsec = file->f_security;
3387 struct inode_security_struct *isec;
3388 u32 sid = current_sid();
3389
3390 if (!mask)
3391 /* No permission to check. Existence test. */
3392 return 0;
3393
3394 isec = inode_security(inode);
3395 if (sid == fsec->sid && fsec->isid == isec->sid &&
3396 fsec->pseqno == avc_policy_seqno())
3397 /* No change since file_open check. */
3398 return 0;
3399
3400 return selinux_revalidate_file_permission(file, mask);
3401}
3402
3403static int selinux_file_alloc_security(struct file *file)
3404{
3405 return file_alloc_security(file);
3406}
3407
3408static void selinux_file_free_security(struct file *file)
3409{
3410 file_free_security(file);
3411}
3412
3413/*
3414 * Check whether a task has the ioctl permission and cmd
3415 * operation to an inode.
3416 */
3417static int ioctl_has_perm(const struct cred *cred, struct file *file,
3418 u32 requested, u16 cmd)
3419{
3420 struct common_audit_data ad;
3421 struct file_security_struct *fsec = file->f_security;
3422 struct inode *inode = file_inode(file);
3423 struct inode_security_struct *isec;
3424 struct lsm_ioctlop_audit ioctl;
3425 u32 ssid = cred_sid(cred);
3426 int rc;
3427 u8 driver = cmd >> 8;
3428 u8 xperm = cmd & 0xff;
3429
3430 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3431 ad.u.op = &ioctl;
3432 ad.u.op->cmd = cmd;
3433 ad.u.op->path = file->f_path;
3434
3435 if (ssid != fsec->sid) {
3436 rc = avc_has_perm(ssid, fsec->sid,
3437 SECCLASS_FD,
3438 FD__USE,
3439 &ad);
3440 if (rc)
3441 goto out;
3442 }
3443
3444 if (unlikely(IS_PRIVATE(inode)))
3445 return 0;
3446
3447 isec = inode_security(inode);
3448 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3449 requested, driver, xperm, &ad);
3450out:
3451 return rc;
3452}
3453
3454static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3455 unsigned long arg)
3456{
3457 const struct cred *cred = current_cred();
3458 int error = 0;
3459
3460 switch (cmd) {
3461 case FIONREAD:
3462 /* fall through */
3463 case FIBMAP:
3464 /* fall through */
3465 case FIGETBSZ:
3466 /* fall through */
3467 case FS_IOC_GETFLAGS:
3468 /* fall through */
3469 case FS_IOC_GETVERSION:
3470 error = file_has_perm(cred, file, FILE__GETATTR);
3471 break;
3472
3473 case FS_IOC_SETFLAGS:
3474 /* fall through */
3475 case FS_IOC_SETVERSION:
3476 error = file_has_perm(cred, file, FILE__SETATTR);
3477 break;
3478
3479 /* sys_ioctl() checks */
3480 case FIONBIO:
3481 /* fall through */
3482 case FIOASYNC:
3483 error = file_has_perm(cred, file, 0);
3484 break;
3485
3486 case KDSKBENT:
3487 case KDSKBSENT:
3488 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3489 SECURITY_CAP_AUDIT, true);
3490 break;
3491
3492 /* default case assumes that the command will go
3493 * to the file's ioctl() function.
3494 */
3495 default:
3496 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3497 }
3498 return error;
3499}
3500
3501static int default_noexec;
3502
3503static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3504{
3505 const struct cred *cred = current_cred();
3506 int rc = 0;
3507
3508 if (default_noexec &&
3509 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3510 (!shared && (prot & PROT_WRITE)))) {
3511 /*
3512 * We are making executable an anonymous mapping or a
3513 * private file mapping that will also be writable.
3514 * This has an additional check.
3515 */
3516 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3517 if (rc)
3518 goto error;
3519 }
3520
3521 if (file) {
3522 /* read access is always possible with a mapping */
3523 u32 av = FILE__READ;
3524
3525 /* write access only matters if the mapping is shared */
3526 if (shared && (prot & PROT_WRITE))
3527 av |= FILE__WRITE;
3528
3529 if (prot & PROT_EXEC)
3530 av |= FILE__EXECUTE;
3531
3532 return file_has_perm(cred, file, av);
3533 }
3534
3535error:
3536 return rc;
3537}
3538
3539static int selinux_mmap_addr(unsigned long addr)
3540{
3541 int rc = 0;
3542
3543 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3544 u32 sid = current_sid();
3545 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3546 MEMPROTECT__MMAP_ZERO, NULL);
3547 }
3548
3549 return rc;
3550}
3551
3552static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3553 unsigned long prot, unsigned long flags)
3554{
3555 if (selinux_checkreqprot)
3556 prot = reqprot;
3557
3558 return file_map_prot_check(file, prot,
3559 (flags & MAP_TYPE) == MAP_SHARED);
3560}
3561
3562static int selinux_file_mprotect(struct vm_area_struct *vma,
3563 unsigned long reqprot,
3564 unsigned long prot)
3565{
3566 const struct cred *cred = current_cred();
3567
3568 if (selinux_checkreqprot)
3569 prot = reqprot;
3570
3571 if (default_noexec &&
3572 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3573 int rc = 0;
3574 if (vma->vm_start >= vma->vm_mm->start_brk &&
3575 vma->vm_end <= vma->vm_mm->brk) {
3576 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3577 } else if (!vma->vm_file &&
3578 ((vma->vm_start <= vma->vm_mm->start_stack &&
3579 vma->vm_end >= vma->vm_mm->start_stack) ||
3580 vma_is_stack_for_current(vma))) {
3581 rc = current_has_perm(current, PROCESS__EXECSTACK);
3582 } else if (vma->vm_file && vma->anon_vma) {
3583 /*
3584 * We are making executable a file mapping that has
3585 * had some COW done. Since pages might have been
3586 * written, check ability to execute the possibly
3587 * modified content. This typically should only
3588 * occur for text relocations.
3589 */
3590 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3591 }
3592 if (rc)
3593 return rc;
3594 }
3595
3596 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3597}
3598
3599static int selinux_file_lock(struct file *file, unsigned int cmd)
3600{
3601 const struct cred *cred = current_cred();
3602
3603 return file_has_perm(cred, file, FILE__LOCK);
3604}
3605
3606static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3607 unsigned long arg)
3608{
3609 const struct cred *cred = current_cred();
3610 int err = 0;
3611
3612 switch (cmd) {
3613 case F_SETFL:
3614 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3615 err = file_has_perm(cred, file, FILE__WRITE);
3616 break;
3617 }
3618 /* fall through */
3619 case F_SETOWN:
3620 case F_SETSIG:
3621 case F_GETFL:
3622 case F_GETOWN:
3623 case F_GETSIG:
3624 case F_GETOWNER_UIDS:
3625 /* Just check FD__USE permission */
3626 err = file_has_perm(cred, file, 0);
3627 break;
3628 case F_GETLK:
3629 case F_SETLK:
3630 case F_SETLKW:
3631 case F_OFD_GETLK:
3632 case F_OFD_SETLK:
3633 case F_OFD_SETLKW:
3634#if BITS_PER_LONG == 32
3635 case F_GETLK64:
3636 case F_SETLK64:
3637 case F_SETLKW64:
3638#endif
3639 err = file_has_perm(cred, file, FILE__LOCK);
3640 break;
3641 }
3642
3643 return err;
3644}
3645
3646static void selinux_file_set_fowner(struct file *file)
3647{
3648 struct file_security_struct *fsec;
3649
3650 fsec = file->f_security;
3651 fsec->fown_sid = current_sid();
3652}
3653
3654static int selinux_file_send_sigiotask(struct task_struct *tsk,
3655 struct fown_struct *fown, int signum)
3656{
3657 struct file *file;
3658 u32 sid = task_sid(tsk);
3659 u32 perm;
3660 struct file_security_struct *fsec;
3661
3662 /* struct fown_struct is never outside the context of a struct file */
3663 file = container_of(fown, struct file, f_owner);
3664
3665 fsec = file->f_security;
3666
3667 if (!signum)
3668 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3669 else
3670 perm = signal_to_av(signum);
3671
3672 return avc_has_perm(fsec->fown_sid, sid,
3673 SECCLASS_PROCESS, perm, NULL);
3674}
3675
3676static int selinux_file_receive(struct file *file)
3677{
3678 const struct cred *cred = current_cred();
3679
3680 return file_has_perm(cred, file, file_to_av(file));
3681}
3682
3683static int selinux_file_open(struct file *file, const struct cred *cred)
3684{
3685 struct file_security_struct *fsec;
3686 struct inode_security_struct *isec;
3687
3688 fsec = file->f_security;
3689 isec = inode_security(file_inode(file));
3690 /*
3691 * Save inode label and policy sequence number
3692 * at open-time so that selinux_file_permission
3693 * can determine whether revalidation is necessary.
3694 * Task label is already saved in the file security
3695 * struct as its SID.
3696 */
3697 fsec->isid = isec->sid;
3698 fsec->pseqno = avc_policy_seqno();
3699 /*
3700 * Since the inode label or policy seqno may have changed
3701 * between the selinux_inode_permission check and the saving
3702 * of state above, recheck that access is still permitted.
3703 * Otherwise, access might never be revalidated against the
3704 * new inode label or new policy.
3705 * This check is not redundant - do not remove.
3706 */
3707 return file_path_has_perm(cred, file, open_file_to_av(file));
3708}
3709
3710/* task security operations */
3711
3712static int selinux_task_create(unsigned long clone_flags)
3713{
3714 return current_has_perm(current, PROCESS__FORK);
3715}
3716
3717/*
3718 * allocate the SELinux part of blank credentials
3719 */
3720static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3721{
3722 struct task_security_struct *tsec;
3723
3724 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3725 if (!tsec)
3726 return -ENOMEM;
3727
3728 cred->security = tsec;
3729 return 0;
3730}
3731
3732/*
3733 * detach and free the LSM part of a set of credentials
3734 */
3735static void selinux_cred_free(struct cred *cred)
3736{
3737 struct task_security_struct *tsec = cred->security;
3738
3739 /*
3740 * cred->security == NULL if security_cred_alloc_blank() or
3741 * security_prepare_creds() returned an error.
3742 */
3743 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3744 cred->security = (void *) 0x7UL;
3745 kfree(tsec);
3746}
3747
3748/*
3749 * prepare a new set of credentials for modification
3750 */
3751static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3752 gfp_t gfp)
3753{
3754 const struct task_security_struct *old_tsec;
3755 struct task_security_struct *tsec;
3756
3757 old_tsec = old->security;
3758
3759 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3760 if (!tsec)
3761 return -ENOMEM;
3762
3763 new->security = tsec;
3764 return 0;
3765}
3766
3767/*
3768 * transfer the SELinux data to a blank set of creds
3769 */
3770static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3771{
3772 const struct task_security_struct *old_tsec = old->security;
3773 struct task_security_struct *tsec = new->security;
3774
3775 *tsec = *old_tsec;
3776}
3777
3778/*
3779 * set the security data for a kernel service
3780 * - all the creation contexts are set to unlabelled
3781 */
3782static int selinux_kernel_act_as(struct cred *new, u32 secid)
3783{
3784 struct task_security_struct *tsec = new->security;
3785 u32 sid = current_sid();
3786 int ret;
3787
3788 ret = avc_has_perm(sid, secid,
3789 SECCLASS_KERNEL_SERVICE,
3790 KERNEL_SERVICE__USE_AS_OVERRIDE,
3791 NULL);
3792 if (ret == 0) {
3793 tsec->sid = secid;
3794 tsec->create_sid = 0;
3795 tsec->keycreate_sid = 0;
3796 tsec->sockcreate_sid = 0;
3797 }
3798 return ret;
3799}
3800
3801/*
3802 * set the file creation context in a security record to the same as the
3803 * objective context of the specified inode
3804 */
3805static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3806{
3807 struct inode_security_struct *isec = inode_security(inode);
3808 struct task_security_struct *tsec = new->security;
3809 u32 sid = current_sid();
3810 int ret;
3811
3812 ret = avc_has_perm(sid, isec->sid,
3813 SECCLASS_KERNEL_SERVICE,
3814 KERNEL_SERVICE__CREATE_FILES_AS,
3815 NULL);
3816
3817 if (ret == 0)
3818 tsec->create_sid = isec->sid;
3819 return ret;
3820}
3821
3822static int selinux_kernel_module_request(char *kmod_name)
3823{
3824 u32 sid;
3825 struct common_audit_data ad;
3826
3827 sid = task_sid(current);
3828
3829 ad.type = LSM_AUDIT_DATA_KMOD;
3830 ad.u.kmod_name = kmod_name;
3831
3832 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3833 SYSTEM__MODULE_REQUEST, &ad);
3834}
3835
3836static int selinux_kernel_module_from_file(struct file *file)
3837{
3838 struct common_audit_data ad;
3839 struct inode_security_struct *isec;
3840 struct file_security_struct *fsec;
3841 u32 sid = current_sid();
3842 int rc;
3843
3844 /* init_module */
3845 if (file == NULL)
3846 return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
3847 SYSTEM__MODULE_LOAD, NULL);
3848
3849 /* finit_module */
3850
3851 ad.type = LSM_AUDIT_DATA_FILE;
3852 ad.u.file = file;
3853
3854 fsec = file->f_security;
3855 if (sid != fsec->sid) {
3856 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3857 if (rc)
3858 return rc;
3859 }
3860
3861 isec = inode_security(file_inode(file));
3862 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
3863 SYSTEM__MODULE_LOAD, &ad);
3864}
3865
3866static int selinux_kernel_read_file(struct file *file,
3867 enum kernel_read_file_id id)
3868{
3869 int rc = 0;
3870
3871 switch (id) {
3872 case READING_MODULE:
3873 rc = selinux_kernel_module_from_file(file);
3874 break;
3875 default:
3876 break;
3877 }
3878
3879 return rc;
3880}
3881
3882static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3883{
3884 return current_has_perm(p, PROCESS__SETPGID);
3885}
3886
3887static int selinux_task_getpgid(struct task_struct *p)
3888{
3889 return current_has_perm(p, PROCESS__GETPGID);
3890}
3891
3892static int selinux_task_getsid(struct task_struct *p)
3893{
3894 return current_has_perm(p, PROCESS__GETSESSION);
3895}
3896
3897static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3898{
3899 *secid = task_sid(p);
3900}
3901
3902static int selinux_task_setnice(struct task_struct *p, int nice)
3903{
3904 return current_has_perm(p, PROCESS__SETSCHED);
3905}
3906
3907static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3908{
3909 return current_has_perm(p, PROCESS__SETSCHED);
3910}
3911
3912static int selinux_task_getioprio(struct task_struct *p)
3913{
3914 return current_has_perm(p, PROCESS__GETSCHED);
3915}
3916
3917static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3918 struct rlimit *new_rlim)
3919{
3920 struct rlimit *old_rlim = p->signal->rlim + resource;
3921
3922 /* Control the ability to change the hard limit (whether
3923 lowering or raising it), so that the hard limit can
3924 later be used as a safe reset point for the soft limit
3925 upon context transitions. See selinux_bprm_committing_creds. */
3926 if (old_rlim->rlim_max != new_rlim->rlim_max)
3927 return current_has_perm(p, PROCESS__SETRLIMIT);
3928
3929 return 0;
3930}
3931
3932static int selinux_task_setscheduler(struct task_struct *p)
3933{
3934 return current_has_perm(p, PROCESS__SETSCHED);
3935}
3936
3937static int selinux_task_getscheduler(struct task_struct *p)
3938{
3939 return current_has_perm(p, PROCESS__GETSCHED);
3940}
3941
3942static int selinux_task_movememory(struct task_struct *p)
3943{
3944 return current_has_perm(p, PROCESS__SETSCHED);
3945}
3946
3947static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3948 int sig, u32 secid)
3949{
3950 u32 perm;
3951 int rc;
3952
3953 if (!sig)
3954 perm = PROCESS__SIGNULL; /* null signal; existence test */
3955 else
3956 perm = signal_to_av(sig);
3957 if (secid)
3958 rc = avc_has_perm(secid, task_sid(p),
3959 SECCLASS_PROCESS, perm, NULL);
3960 else
3961 rc = current_has_perm(p, perm);
3962 return rc;
3963}
3964
3965static int selinux_task_wait(struct task_struct *p)
3966{
3967 return task_has_perm(p, current, PROCESS__SIGCHLD);
3968}
3969
3970static void selinux_task_to_inode(struct task_struct *p,
3971 struct inode *inode)
3972{
3973 struct inode_security_struct *isec = inode->i_security;
3974 u32 sid = task_sid(p);
3975
3976 spin_lock(&isec->lock);
3977 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3978 isec->sid = sid;
3979 isec->initialized = LABEL_INITIALIZED;
3980 spin_unlock(&isec->lock);
3981}
3982
3983/* Returns error only if unable to parse addresses */
3984static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3985 struct common_audit_data *ad, u8 *proto)
3986{
3987 int offset, ihlen, ret = -EINVAL;
3988 struct iphdr _iph, *ih;
3989
3990 offset = skb_network_offset(skb);
3991 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3992 if (ih == NULL)
3993 goto out;
3994
3995 ihlen = ih->ihl * 4;
3996 if (ihlen < sizeof(_iph))
3997 goto out;
3998
3999 ad->u.net->v4info.saddr = ih->saddr;
4000 ad->u.net->v4info.daddr = ih->daddr;
4001 ret = 0;
4002
4003 if (proto)
4004 *proto = ih->protocol;
4005
4006 switch (ih->protocol) {
4007 case IPPROTO_TCP: {
4008 struct tcphdr _tcph, *th;
4009
4010 if (ntohs(ih->frag_off) & IP_OFFSET)
4011 break;
4012
4013 offset += ihlen;
4014 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4015 if (th == NULL)
4016 break;
4017
4018 ad->u.net->sport = th->source;
4019 ad->u.net->dport = th->dest;
4020 break;
4021 }
4022
4023 case IPPROTO_UDP: {
4024 struct udphdr _udph, *uh;
4025
4026 if (ntohs(ih->frag_off) & IP_OFFSET)
4027 break;
4028
4029 offset += ihlen;
4030 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4031 if (uh == NULL)
4032 break;
4033
4034 ad->u.net->sport = uh->source;
4035 ad->u.net->dport = uh->dest;
4036 break;
4037 }
4038
4039 case IPPROTO_DCCP: {
4040 struct dccp_hdr _dccph, *dh;
4041
4042 if (ntohs(ih->frag_off) & IP_OFFSET)
4043 break;
4044
4045 offset += ihlen;
4046 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4047 if (dh == NULL)
4048 break;
4049
4050 ad->u.net->sport = dh->dccph_sport;
4051 ad->u.net->dport = dh->dccph_dport;
4052 break;
4053 }
4054
4055 default:
4056 break;
4057 }
4058out:
4059 return ret;
4060}
4061
4062#if IS_ENABLED(CONFIG_IPV6)
4063
4064/* Returns error only if unable to parse addresses */
4065static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4066 struct common_audit_data *ad, u8 *proto)
4067{
4068 u8 nexthdr;
4069 int ret = -EINVAL, offset;
4070 struct ipv6hdr _ipv6h, *ip6;
4071 __be16 frag_off;
4072
4073 offset = skb_network_offset(skb);
4074 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4075 if (ip6 == NULL)
4076 goto out;
4077
4078 ad->u.net->v6info.saddr = ip6->saddr;
4079 ad->u.net->v6info.daddr = ip6->daddr;
4080 ret = 0;
4081
4082 nexthdr = ip6->nexthdr;
4083 offset += sizeof(_ipv6h);
4084 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4085 if (offset < 0)
4086 goto out;
4087
4088 if (proto)
4089 *proto = nexthdr;
4090
4091 switch (nexthdr) {
4092 case IPPROTO_TCP: {
4093 struct tcphdr _tcph, *th;
4094
4095 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4096 if (th == NULL)
4097 break;
4098
4099 ad->u.net->sport = th->source;
4100 ad->u.net->dport = th->dest;
4101 break;
4102 }
4103
4104 case IPPROTO_UDP: {
4105 struct udphdr _udph, *uh;
4106
4107 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4108 if (uh == NULL)
4109 break;
4110
4111 ad->u.net->sport = uh->source;
4112 ad->u.net->dport = uh->dest;
4113 break;
4114 }
4115
4116 case IPPROTO_DCCP: {
4117 struct dccp_hdr _dccph, *dh;
4118
4119 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4120 if (dh == NULL)
4121 break;
4122
4123 ad->u.net->sport = dh->dccph_sport;
4124 ad->u.net->dport = dh->dccph_dport;
4125 break;
4126 }
4127
4128 /* includes fragments */
4129 default:
4130 break;
4131 }
4132out:
4133 return ret;
4134}
4135
4136#endif /* IPV6 */
4137
4138static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4139 char **_addrp, int src, u8 *proto)
4140{
4141 char *addrp;
4142 int ret;
4143
4144 switch (ad->u.net->family) {
4145 case PF_INET:
4146 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4147 if (ret)
4148 goto parse_error;
4149 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4150 &ad->u.net->v4info.daddr);
4151 goto okay;
4152
4153#if IS_ENABLED(CONFIG_IPV6)
4154 case PF_INET6:
4155 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4156 if (ret)
4157 goto parse_error;
4158 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4159 &ad->u.net->v6info.daddr);
4160 goto okay;
4161#endif /* IPV6 */
4162 default:
4163 addrp = NULL;
4164 goto okay;
4165 }
4166
4167parse_error:
4168 printk(KERN_WARNING
4169 "SELinux: failure in selinux_parse_skb(),"
4170 " unable to parse packet\n");
4171 return ret;
4172
4173okay:
4174 if (_addrp)
4175 *_addrp = addrp;
4176 return 0;
4177}
4178
4179/**
4180 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4181 * @skb: the packet
4182 * @family: protocol family
4183 * @sid: the packet's peer label SID
4184 *
4185 * Description:
4186 * Check the various different forms of network peer labeling and determine
4187 * the peer label/SID for the packet; most of the magic actually occurs in
4188 * the security server function security_net_peersid_cmp(). The function
4189 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4190 * or -EACCES if @sid is invalid due to inconsistencies with the different
4191 * peer labels.
4192 *
4193 */
4194static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4195{
4196 int err;
4197 u32 xfrm_sid;
4198 u32 nlbl_sid;
4199 u32 nlbl_type;
4200
4201 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4202 if (unlikely(err))
4203 return -EACCES;
4204 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4205 if (unlikely(err))
4206 return -EACCES;
4207
4208 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4209 if (unlikely(err)) {
4210 printk(KERN_WARNING
4211 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4212 " unable to determine packet's peer label\n");
4213 return -EACCES;
4214 }
4215
4216 return 0;
4217}
4218
4219/**
4220 * selinux_conn_sid - Determine the child socket label for a connection
4221 * @sk_sid: the parent socket's SID
4222 * @skb_sid: the packet's SID
4223 * @conn_sid: the resulting connection SID
4224 *
4225 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4226 * combined with the MLS information from @skb_sid in order to create
4227 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4228 * of @sk_sid. Returns zero on success, negative values on failure.
4229 *
4230 */
4231static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4232{
4233 int err = 0;
4234
4235 if (skb_sid != SECSID_NULL)
4236 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4237 else
4238 *conn_sid = sk_sid;
4239
4240 return err;
4241}
4242
4243/* socket security operations */
4244
4245static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4246 u16 secclass, u32 *socksid)
4247{
4248 if (tsec->sockcreate_sid > SECSID_NULL) {
4249 *socksid = tsec->sockcreate_sid;
4250 return 0;
4251 }
4252
4253 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4254 socksid);
4255}
4256
4257static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4258{
4259 struct sk_security_struct *sksec = sk->sk_security;
4260 struct common_audit_data ad;
4261 struct lsm_network_audit net = {0,};
4262 u32 tsid = task_sid(task);
4263
4264 if (sksec->sid == SECINITSID_KERNEL)
4265 return 0;
4266
4267 ad.type = LSM_AUDIT_DATA_NET;
4268 ad.u.net = &net;
4269 ad.u.net->sk = sk;
4270
4271 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4272}
4273
4274static int selinux_socket_create(int family, int type,
4275 int protocol, int kern)
4276{
4277 const struct task_security_struct *tsec = current_security();
4278 u32 newsid;
4279 u16 secclass;
4280 int rc;
4281
4282 if (kern)
4283 return 0;
4284
4285 secclass = socket_type_to_security_class(family, type, protocol);
4286 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4287 if (rc)
4288 return rc;
4289
4290 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4291}
4292
4293static int selinux_socket_post_create(struct socket *sock, int family,
4294 int type, int protocol, int kern)
4295{
4296 const struct task_security_struct *tsec = current_security();
4297 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4298 struct sk_security_struct *sksec;
4299 u16 sclass = socket_type_to_security_class(family, type, protocol);
4300 u32 sid = SECINITSID_KERNEL;
4301 int err = 0;
4302
4303 if (!kern) {
4304 err = socket_sockcreate_sid(tsec, sclass, &sid);
4305 if (err)
4306 return err;
4307 }
4308
4309 isec->sclass = sclass;
4310 isec->sid = sid;
4311 isec->initialized = LABEL_INITIALIZED;
4312
4313 if (sock->sk) {
4314 sksec = sock->sk->sk_security;
4315 sksec->sclass = sclass;
4316 sksec->sid = sid;
4317 err = selinux_netlbl_socket_post_create(sock->sk, family);
4318 }
4319
4320 return err;
4321}
4322
4323/* Range of port numbers used to automatically bind.
4324 Need to determine whether we should perform a name_bind
4325 permission check between the socket and the port number. */
4326
4327static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4328{
4329 struct sock *sk = sock->sk;
4330 u16 family;
4331 int err;
4332
4333 err = sock_has_perm(current, sk, SOCKET__BIND);
4334 if (err)
4335 goto out;
4336
4337 /*
4338 * If PF_INET or PF_INET6, check name_bind permission for the port.
4339 * Multiple address binding for SCTP is not supported yet: we just
4340 * check the first address now.
4341 */
4342 family = sk->sk_family;
4343 if (family == PF_INET || family == PF_INET6) {
4344 char *addrp;
4345 struct sk_security_struct *sksec = sk->sk_security;
4346 struct common_audit_data ad;
4347 struct lsm_network_audit net = {0,};
4348 struct sockaddr_in *addr4 = NULL;
4349 struct sockaddr_in6 *addr6 = NULL;
4350 unsigned short snum;
4351 u32 sid, node_perm;
4352
4353 if (family == PF_INET) {
4354 addr4 = (struct sockaddr_in *)address;
4355 snum = ntohs(addr4->sin_port);
4356 addrp = (char *)&addr4->sin_addr.s_addr;
4357 } else {
4358 addr6 = (struct sockaddr_in6 *)address;
4359 snum = ntohs(addr6->sin6_port);
4360 addrp = (char *)&addr6->sin6_addr.s6_addr;
4361 }
4362
4363 if (snum) {
4364 int low, high;
4365
4366 inet_get_local_port_range(sock_net(sk), &low, &high);
4367
4368 if (snum < max(PROT_SOCK, low) || snum > high) {
4369 err = sel_netport_sid(sk->sk_protocol,
4370 snum, &sid);
4371 if (err)
4372 goto out;
4373 ad.type = LSM_AUDIT_DATA_NET;
4374 ad.u.net = &net;
4375 ad.u.net->sport = htons(snum);
4376 ad.u.net->family = family;
4377 err = avc_has_perm(sksec->sid, sid,
4378 sksec->sclass,
4379 SOCKET__NAME_BIND, &ad);
4380 if (err)
4381 goto out;
4382 }
4383 }
4384
4385 switch (sksec->sclass) {
4386 case SECCLASS_TCP_SOCKET:
4387 node_perm = TCP_SOCKET__NODE_BIND;
4388 break;
4389
4390 case SECCLASS_UDP_SOCKET:
4391 node_perm = UDP_SOCKET__NODE_BIND;
4392 break;
4393
4394 case SECCLASS_DCCP_SOCKET:
4395 node_perm = DCCP_SOCKET__NODE_BIND;
4396 break;
4397
4398 default:
4399 node_perm = RAWIP_SOCKET__NODE_BIND;
4400 break;
4401 }
4402
4403 err = sel_netnode_sid(addrp, family, &sid);
4404 if (err)
4405 goto out;
4406
4407 ad.type = LSM_AUDIT_DATA_NET;
4408 ad.u.net = &net;
4409 ad.u.net->sport = htons(snum);
4410 ad.u.net->family = family;
4411
4412 if (family == PF_INET)
4413 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4414 else
4415 ad.u.net->v6info.saddr = addr6->sin6_addr;
4416
4417 err = avc_has_perm(sksec->sid, sid,
4418 sksec->sclass, node_perm, &ad);
4419 if (err)
4420 goto out;
4421 }
4422out:
4423 return err;
4424}
4425
4426static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4427{
4428 struct sock *sk = sock->sk;
4429 struct sk_security_struct *sksec = sk->sk_security;
4430 int err;
4431
4432 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4433 if (err)
4434 return err;
4435
4436 /*
4437 * If a TCP or DCCP socket, check name_connect permission for the port.
4438 */
4439 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4440 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4441 struct common_audit_data ad;
4442 struct lsm_network_audit net = {0,};
4443 struct sockaddr_in *addr4 = NULL;
4444 struct sockaddr_in6 *addr6 = NULL;
4445 unsigned short snum;
4446 u32 sid, perm;
4447
4448 if (sk->sk_family == PF_INET) {
4449 addr4 = (struct sockaddr_in *)address;
4450 if (addrlen < sizeof(struct sockaddr_in))
4451 return -EINVAL;
4452 snum = ntohs(addr4->sin_port);
4453 } else {
4454 addr6 = (struct sockaddr_in6 *)address;
4455 if (addrlen < SIN6_LEN_RFC2133)
4456 return -EINVAL;
4457 snum = ntohs(addr6->sin6_port);
4458 }
4459
4460 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4461 if (err)
4462 goto out;
4463
4464 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4465 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4466
4467 ad.type = LSM_AUDIT_DATA_NET;
4468 ad.u.net = &net;
4469 ad.u.net->dport = htons(snum);
4470 ad.u.net->family = sk->sk_family;
4471 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4472 if (err)
4473 goto out;
4474 }
4475
4476 err = selinux_netlbl_socket_connect(sk, address);
4477
4478out:
4479 return err;
4480}
4481
4482static int selinux_socket_listen(struct socket *sock, int backlog)
4483{
4484 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4485}
4486
4487static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4488{
4489 int err;
4490 struct inode_security_struct *isec;
4491 struct inode_security_struct *newisec;
4492 u16 sclass;
4493 u32 sid;
4494
4495 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4496 if (err)
4497 return err;
4498
4499 isec = inode_security_novalidate(SOCK_INODE(sock));
4500 spin_lock(&isec->lock);
4501 sclass = isec->sclass;
4502 sid = isec->sid;
4503 spin_unlock(&isec->lock);
4504
4505 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4506 newisec->sclass = sclass;
4507 newisec->sid = sid;
4508 newisec->initialized = LABEL_INITIALIZED;
4509
4510 return 0;
4511}
4512
4513static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4514 int size)
4515{
4516 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4517}
4518
4519static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4520 int size, int flags)
4521{
4522 return sock_has_perm(current, sock->sk, SOCKET__READ);
4523}
4524
4525static int selinux_socket_getsockname(struct socket *sock)
4526{
4527 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4528}
4529
4530static int selinux_socket_getpeername(struct socket *sock)
4531{
4532 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4533}
4534
4535static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4536{
4537 int err;
4538
4539 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4540 if (err)
4541 return err;
4542
4543 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4544}
4545
4546static int selinux_socket_getsockopt(struct socket *sock, int level,
4547 int optname)
4548{
4549 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4550}
4551
4552static int selinux_socket_shutdown(struct socket *sock, int how)
4553{
4554 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4555}
4556
4557static int selinux_socket_unix_stream_connect(struct sock *sock,
4558 struct sock *other,
4559 struct sock *newsk)
4560{
4561 struct sk_security_struct *sksec_sock = sock->sk_security;
4562 struct sk_security_struct *sksec_other = other->sk_security;
4563 struct sk_security_struct *sksec_new = newsk->sk_security;
4564 struct common_audit_data ad;
4565 struct lsm_network_audit net = {0,};
4566 int err;
4567
4568 ad.type = LSM_AUDIT_DATA_NET;
4569 ad.u.net = &net;
4570 ad.u.net->sk = other;
4571
4572 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4573 sksec_other->sclass,
4574 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4575 if (err)
4576 return err;
4577
4578 /* server child socket */
4579 sksec_new->peer_sid = sksec_sock->sid;
4580 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4581 &sksec_new->sid);
4582 if (err)
4583 return err;
4584
4585 /* connecting socket */
4586 sksec_sock->peer_sid = sksec_new->sid;
4587
4588 return 0;
4589}
4590
4591static int selinux_socket_unix_may_send(struct socket *sock,
4592 struct socket *other)
4593{
4594 struct sk_security_struct *ssec = sock->sk->sk_security;
4595 struct sk_security_struct *osec = other->sk->sk_security;
4596 struct common_audit_data ad;
4597 struct lsm_network_audit net = {0,};
4598
4599 ad.type = LSM_AUDIT_DATA_NET;
4600 ad.u.net = &net;
4601 ad.u.net->sk = other->sk;
4602
4603 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4604 &ad);
4605}
4606
4607static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4608 char *addrp, u16 family, u32 peer_sid,
4609 struct common_audit_data *ad)
4610{
4611 int err;
4612 u32 if_sid;
4613 u32 node_sid;
4614
4615 err = sel_netif_sid(ns, ifindex, &if_sid);
4616 if (err)
4617 return err;
4618 err = avc_has_perm(peer_sid, if_sid,
4619 SECCLASS_NETIF, NETIF__INGRESS, ad);
4620 if (err)
4621 return err;
4622
4623 err = sel_netnode_sid(addrp, family, &node_sid);
4624 if (err)
4625 return err;
4626 return avc_has_perm(peer_sid, node_sid,
4627 SECCLASS_NODE, NODE__RECVFROM, ad);
4628}
4629
4630static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4631 u16 family)
4632{
4633 int err = 0;
4634 struct sk_security_struct *sksec = sk->sk_security;
4635 u32 sk_sid = sksec->sid;
4636 struct common_audit_data ad;
4637 struct lsm_network_audit net = {0,};
4638 char *addrp;
4639
4640 ad.type = LSM_AUDIT_DATA_NET;
4641 ad.u.net = &net;
4642 ad.u.net->netif = skb->skb_iif;
4643 ad.u.net->family = family;
4644 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4645 if (err)
4646 return err;
4647
4648 if (selinux_secmark_enabled()) {
4649 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4650 PACKET__RECV, &ad);
4651 if (err)
4652 return err;
4653 }
4654
4655 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4656 if (err)
4657 return err;
4658 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4659
4660 return err;
4661}
4662
4663static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4664{
4665 int err;
4666 struct sk_security_struct *sksec = sk->sk_security;
4667 u16 family = sk->sk_family;
4668 u32 sk_sid = sksec->sid;
4669 struct common_audit_data ad;
4670 struct lsm_network_audit net = {0,};
4671 char *addrp;
4672 u8 secmark_active;
4673 u8 peerlbl_active;
4674
4675 if (family != PF_INET && family != PF_INET6)
4676 return 0;
4677
4678 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4679 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4680 family = PF_INET;
4681
4682 /* If any sort of compatibility mode is enabled then handoff processing
4683 * to the selinux_sock_rcv_skb_compat() function to deal with the
4684 * special handling. We do this in an attempt to keep this function
4685 * as fast and as clean as possible. */
4686 if (!selinux_policycap_netpeer)
4687 return selinux_sock_rcv_skb_compat(sk, skb, family);
4688
4689 secmark_active = selinux_secmark_enabled();
4690 peerlbl_active = selinux_peerlbl_enabled();
4691 if (!secmark_active && !peerlbl_active)
4692 return 0;
4693
4694 ad.type = LSM_AUDIT_DATA_NET;
4695 ad.u.net = &net;
4696 ad.u.net->netif = skb->skb_iif;
4697 ad.u.net->family = family;
4698 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4699 if (err)
4700 return err;
4701
4702 if (peerlbl_active) {
4703 u32 peer_sid;
4704
4705 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4706 if (err)
4707 return err;
4708 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4709 addrp, family, peer_sid, &ad);
4710 if (err) {
4711 selinux_netlbl_err(skb, family, err, 0);
4712 return err;
4713 }
4714 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4715 PEER__RECV, &ad);
4716 if (err) {
4717 selinux_netlbl_err(skb, family, err, 0);
4718 return err;
4719 }
4720 }
4721
4722 if (secmark_active) {
4723 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4724 PACKET__RECV, &ad);
4725 if (err)
4726 return err;
4727 }
4728
4729 return err;
4730}
4731
4732static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4733 int __user *optlen, unsigned len)
4734{
4735 int err = 0;
4736 char *scontext;
4737 u32 scontext_len;
4738 struct sk_security_struct *sksec = sock->sk->sk_security;
4739 u32 peer_sid = SECSID_NULL;
4740
4741 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4742 sksec->sclass == SECCLASS_TCP_SOCKET)
4743 peer_sid = sksec->peer_sid;
4744 if (peer_sid == SECSID_NULL)
4745 return -ENOPROTOOPT;
4746
4747 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4748 if (err)
4749 return err;
4750
4751 if (scontext_len > len) {
4752 err = -ERANGE;
4753 goto out_len;
4754 }
4755
4756 if (copy_to_user(optval, scontext, scontext_len))
4757 err = -EFAULT;
4758
4759out_len:
4760 if (put_user(scontext_len, optlen))
4761 err = -EFAULT;
4762 kfree(scontext);
4763 return err;
4764}
4765
4766static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4767{
4768 u32 peer_secid = SECSID_NULL;
4769 u16 family;
4770 struct inode_security_struct *isec;
4771
4772 if (skb && skb->protocol == htons(ETH_P_IP))
4773 family = PF_INET;
4774 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4775 family = PF_INET6;
4776 else if (sock)
4777 family = sock->sk->sk_family;
4778 else
4779 goto out;
4780
4781 if (sock && family == PF_UNIX) {
4782 isec = inode_security_novalidate(SOCK_INODE(sock));
4783 peer_secid = isec->sid;
4784 } else if (skb)
4785 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4786
4787out:
4788 *secid = peer_secid;
4789 if (peer_secid == SECSID_NULL)
4790 return -EINVAL;
4791 return 0;
4792}
4793
4794static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4795{
4796 struct sk_security_struct *sksec;
4797
4798 sksec = kzalloc(sizeof(*sksec), priority);
4799 if (!sksec)
4800 return -ENOMEM;
4801
4802 sksec->peer_sid = SECINITSID_UNLABELED;
4803 sksec->sid = SECINITSID_UNLABELED;
4804 sksec->sclass = SECCLASS_SOCKET;
4805 selinux_netlbl_sk_security_reset(sksec);
4806 sk->sk_security = sksec;
4807
4808 return 0;
4809}
4810
4811static void selinux_sk_free_security(struct sock *sk)
4812{
4813 struct sk_security_struct *sksec = sk->sk_security;
4814
4815 sk->sk_security = NULL;
4816 selinux_netlbl_sk_security_free(sksec);
4817 kfree(sksec);
4818}
4819
4820static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4821{
4822 struct sk_security_struct *sksec = sk->sk_security;
4823 struct sk_security_struct *newsksec = newsk->sk_security;
4824
4825 newsksec->sid = sksec->sid;
4826 newsksec->peer_sid = sksec->peer_sid;
4827 newsksec->sclass = sksec->sclass;
4828
4829 selinux_netlbl_sk_security_reset(newsksec);
4830}
4831
4832static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4833{
4834 if (!sk)
4835 *secid = SECINITSID_ANY_SOCKET;
4836 else {
4837 struct sk_security_struct *sksec = sk->sk_security;
4838
4839 *secid = sksec->sid;
4840 }
4841}
4842
4843static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4844{
4845 struct inode_security_struct *isec =
4846 inode_security_novalidate(SOCK_INODE(parent));
4847 struct sk_security_struct *sksec = sk->sk_security;
4848
4849 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4850 sk->sk_family == PF_UNIX)
4851 isec->sid = sksec->sid;
4852 sksec->sclass = isec->sclass;
4853}
4854
4855static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4856 struct request_sock *req)
4857{
4858 struct sk_security_struct *sksec = sk->sk_security;
4859 int err;
4860 u16 family = req->rsk_ops->family;
4861 u32 connsid;
4862 u32 peersid;
4863
4864 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4865 if (err)
4866 return err;
4867 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4868 if (err)
4869 return err;
4870 req->secid = connsid;
4871 req->peer_secid = peersid;
4872
4873 return selinux_netlbl_inet_conn_request(req, family);
4874}
4875
4876static void selinux_inet_csk_clone(struct sock *newsk,
4877 const struct request_sock *req)
4878{
4879 struct sk_security_struct *newsksec = newsk->sk_security;
4880
4881 newsksec->sid = req->secid;
4882 newsksec->peer_sid = req->peer_secid;
4883 /* NOTE: Ideally, we should also get the isec->sid for the
4884 new socket in sync, but we don't have the isec available yet.
4885 So we will wait until sock_graft to do it, by which
4886 time it will have been created and available. */
4887
4888 /* We don't need to take any sort of lock here as we are the only
4889 * thread with access to newsksec */
4890 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4891}
4892
4893static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4894{
4895 u16 family = sk->sk_family;
4896 struct sk_security_struct *sksec = sk->sk_security;
4897
4898 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4899 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4900 family = PF_INET;
4901
4902 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4903}
4904
4905static int selinux_secmark_relabel_packet(u32 sid)
4906{
4907 const struct task_security_struct *__tsec;
4908 u32 tsid;
4909
4910 __tsec = current_security();
4911 tsid = __tsec->sid;
4912
4913 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4914}
4915
4916static void selinux_secmark_refcount_inc(void)
4917{
4918 atomic_inc(&selinux_secmark_refcount);
4919}
4920
4921static void selinux_secmark_refcount_dec(void)
4922{
4923 atomic_dec(&selinux_secmark_refcount);
4924}
4925
4926static void selinux_req_classify_flow(const struct request_sock *req,
4927 struct flowi *fl)
4928{
4929 fl->flowi_secid = req->secid;
4930}
4931
4932static int selinux_tun_dev_alloc_security(void **security)
4933{
4934 struct tun_security_struct *tunsec;
4935
4936 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4937 if (!tunsec)
4938 return -ENOMEM;
4939 tunsec->sid = current_sid();
4940
4941 *security = tunsec;
4942 return 0;
4943}
4944
4945static void selinux_tun_dev_free_security(void *security)
4946{
4947 kfree(security);
4948}
4949
4950static int selinux_tun_dev_create(void)
4951{
4952 u32 sid = current_sid();
4953
4954 /* we aren't taking into account the "sockcreate" SID since the socket
4955 * that is being created here is not a socket in the traditional sense,
4956 * instead it is a private sock, accessible only to the kernel, and
4957 * representing a wide range of network traffic spanning multiple
4958 * connections unlike traditional sockets - check the TUN driver to
4959 * get a better understanding of why this socket is special */
4960
4961 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4962 NULL);
4963}
4964
4965static int selinux_tun_dev_attach_queue(void *security)
4966{
4967 struct tun_security_struct *tunsec = security;
4968
4969 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4970 TUN_SOCKET__ATTACH_QUEUE, NULL);
4971}
4972
4973static int selinux_tun_dev_attach(struct sock *sk, void *security)
4974{
4975 struct tun_security_struct *tunsec = security;
4976 struct sk_security_struct *sksec = sk->sk_security;
4977
4978 /* we don't currently perform any NetLabel based labeling here and it
4979 * isn't clear that we would want to do so anyway; while we could apply
4980 * labeling without the support of the TUN user the resulting labeled
4981 * traffic from the other end of the connection would almost certainly
4982 * cause confusion to the TUN user that had no idea network labeling
4983 * protocols were being used */
4984
4985 sksec->sid = tunsec->sid;
4986 sksec->sclass = SECCLASS_TUN_SOCKET;
4987
4988 return 0;
4989}
4990
4991static int selinux_tun_dev_open(void *security)
4992{
4993 struct tun_security_struct *tunsec = security;
4994 u32 sid = current_sid();
4995 int err;
4996
4997 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4998 TUN_SOCKET__RELABELFROM, NULL);
4999 if (err)
5000 return err;
5001 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5002 TUN_SOCKET__RELABELTO, NULL);
5003 if (err)
5004 return err;
5005 tunsec->sid = sid;
5006
5007 return 0;
5008}
5009
5010static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5011{
5012 int err = 0;
5013 u32 perm;
5014 struct nlmsghdr *nlh;
5015 struct sk_security_struct *sksec = sk->sk_security;
5016
5017 if (skb->len < NLMSG_HDRLEN) {
5018 err = -EINVAL;
5019 goto out;
5020 }
5021 nlh = nlmsg_hdr(skb);
5022
5023 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5024 if (err) {
5025 if (err == -EINVAL) {
5026 pr_warn_ratelimited("SELinux: unrecognized netlink"
5027 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5028 " pig=%d comm=%s\n",
5029 sk->sk_protocol, nlh->nlmsg_type,
5030 secclass_map[sksec->sclass - 1].name,
5031 task_pid_nr(current), current->comm);
5032 if (!selinux_enforcing || security_get_allow_unknown())
5033 err = 0;
5034 }
5035
5036 /* Ignore */
5037 if (err == -ENOENT)
5038 err = 0;
5039 goto out;
5040 }
5041
5042 err = sock_has_perm(current, sk, perm);
5043out:
5044 return err;
5045}
5046
5047#ifdef CONFIG_NETFILTER
5048
5049static unsigned int selinux_ip_forward(struct sk_buff *skb,
5050 const struct net_device *indev,
5051 u16 family)
5052{
5053 int err;
5054 char *addrp;
5055 u32 peer_sid;
5056 struct common_audit_data ad;
5057 struct lsm_network_audit net = {0,};
5058 u8 secmark_active;
5059 u8 netlbl_active;
5060 u8 peerlbl_active;
5061
5062 if (!selinux_policycap_netpeer)
5063 return NF_ACCEPT;
5064
5065 secmark_active = selinux_secmark_enabled();
5066 netlbl_active = netlbl_enabled();
5067 peerlbl_active = selinux_peerlbl_enabled();
5068 if (!secmark_active && !peerlbl_active)
5069 return NF_ACCEPT;
5070
5071 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5072 return NF_DROP;
5073
5074 ad.type = LSM_AUDIT_DATA_NET;
5075 ad.u.net = &net;
5076 ad.u.net->netif = indev->ifindex;
5077 ad.u.net->family = family;
5078 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5079 return NF_DROP;
5080
5081 if (peerlbl_active) {
5082 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5083 addrp, family, peer_sid, &ad);
5084 if (err) {
5085 selinux_netlbl_err(skb, family, err, 1);
5086 return NF_DROP;
5087 }
5088 }
5089
5090 if (secmark_active)
5091 if (avc_has_perm(peer_sid, skb->secmark,
5092 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5093 return NF_DROP;
5094
5095 if (netlbl_active)
5096 /* we do this in the FORWARD path and not the POST_ROUTING
5097 * path because we want to make sure we apply the necessary
5098 * labeling before IPsec is applied so we can leverage AH
5099 * protection */
5100 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5101 return NF_DROP;
5102
5103 return NF_ACCEPT;
5104}
5105
5106static unsigned int selinux_ipv4_forward(void *priv,
5107 struct sk_buff *skb,
5108 const struct nf_hook_state *state)
5109{
5110 return selinux_ip_forward(skb, state->in, PF_INET);
5111}
5112
5113#if IS_ENABLED(CONFIG_IPV6)
5114static unsigned int selinux_ipv6_forward(void *priv,
5115 struct sk_buff *skb,
5116 const struct nf_hook_state *state)
5117{
5118 return selinux_ip_forward(skb, state->in, PF_INET6);
5119}
5120#endif /* IPV6 */
5121
5122static unsigned int selinux_ip_output(struct sk_buff *skb,
5123 u16 family)
5124{
5125 struct sock *sk;
5126 u32 sid;
5127
5128 if (!netlbl_enabled())
5129 return NF_ACCEPT;
5130
5131 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5132 * because we want to make sure we apply the necessary labeling
5133 * before IPsec is applied so we can leverage AH protection */
5134 sk = skb->sk;
5135 if (sk) {
5136 struct sk_security_struct *sksec;
5137
5138 if (sk_listener(sk))
5139 /* if the socket is the listening state then this
5140 * packet is a SYN-ACK packet which means it needs to
5141 * be labeled based on the connection/request_sock and
5142 * not the parent socket. unfortunately, we can't
5143 * lookup the request_sock yet as it isn't queued on
5144 * the parent socket until after the SYN-ACK is sent.
5145 * the "solution" is to simply pass the packet as-is
5146 * as any IP option based labeling should be copied
5147 * from the initial connection request (in the IP
5148 * layer). it is far from ideal, but until we get a
5149 * security label in the packet itself this is the
5150 * best we can do. */
5151 return NF_ACCEPT;
5152
5153 /* standard practice, label using the parent socket */
5154 sksec = sk->sk_security;
5155 sid = sksec->sid;
5156 } else
5157 sid = SECINITSID_KERNEL;
5158 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5159 return NF_DROP;
5160
5161 return NF_ACCEPT;
5162}
5163
5164static unsigned int selinux_ipv4_output(void *priv,
5165 struct sk_buff *skb,
5166 const struct nf_hook_state *state)
5167{
5168 return selinux_ip_output(skb, PF_INET);
5169}
5170
5171#if IS_ENABLED(CONFIG_IPV6)
5172static unsigned int selinux_ipv6_output(void *priv,
5173 struct sk_buff *skb,
5174 const struct nf_hook_state *state)
5175{
5176 return selinux_ip_output(skb, PF_INET6);
5177}
5178#endif /* IPV6 */
5179
5180static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5181 int ifindex,
5182 u16 family)
5183{
5184 struct sock *sk = skb_to_full_sk(skb);
5185 struct sk_security_struct *sksec;
5186 struct common_audit_data ad;
5187 struct lsm_network_audit net = {0,};
5188 char *addrp;
5189 u8 proto;
5190
5191 if (sk == NULL)
5192 return NF_ACCEPT;
5193 sksec = sk->sk_security;
5194
5195 ad.type = LSM_AUDIT_DATA_NET;
5196 ad.u.net = &net;
5197 ad.u.net->netif = ifindex;
5198 ad.u.net->family = family;
5199 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5200 return NF_DROP;
5201
5202 if (selinux_secmark_enabled())
5203 if (avc_has_perm(sksec->sid, skb->secmark,
5204 SECCLASS_PACKET, PACKET__SEND, &ad))
5205 return NF_DROP_ERR(-ECONNREFUSED);
5206
5207 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5208 return NF_DROP_ERR(-ECONNREFUSED);
5209
5210 return NF_ACCEPT;
5211}
5212
5213static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5214 const struct net_device *outdev,
5215 u16 family)
5216{
5217 u32 secmark_perm;
5218 u32 peer_sid;
5219 int ifindex = outdev->ifindex;
5220 struct sock *sk;
5221 struct common_audit_data ad;
5222 struct lsm_network_audit net = {0,};
5223 char *addrp;
5224 u8 secmark_active;
5225 u8 peerlbl_active;
5226
5227 /* If any sort of compatibility mode is enabled then handoff processing
5228 * to the selinux_ip_postroute_compat() function to deal with the
5229 * special handling. We do this in an attempt to keep this function
5230 * as fast and as clean as possible. */
5231 if (!selinux_policycap_netpeer)
5232 return selinux_ip_postroute_compat(skb, ifindex, family);
5233
5234 secmark_active = selinux_secmark_enabled();
5235 peerlbl_active = selinux_peerlbl_enabled();
5236 if (!secmark_active && !peerlbl_active)
5237 return NF_ACCEPT;
5238
5239 sk = skb_to_full_sk(skb);
5240
5241#ifdef CONFIG_XFRM
5242 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5243 * packet transformation so allow the packet to pass without any checks
5244 * since we'll have another chance to perform access control checks
5245 * when the packet is on it's final way out.
5246 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5247 * is NULL, in this case go ahead and apply access control.
5248 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5249 * TCP listening state we cannot wait until the XFRM processing
5250 * is done as we will miss out on the SA label if we do;
5251 * unfortunately, this means more work, but it is only once per
5252 * connection. */
5253 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5254 !(sk && sk_listener(sk)))
5255 return NF_ACCEPT;
5256#endif
5257
5258 if (sk == NULL) {
5259 /* Without an associated socket the packet is either coming
5260 * from the kernel or it is being forwarded; check the packet
5261 * to determine which and if the packet is being forwarded
5262 * query the packet directly to determine the security label. */
5263 if (skb->skb_iif) {
5264 secmark_perm = PACKET__FORWARD_OUT;
5265 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5266 return NF_DROP;
5267 } else {
5268 secmark_perm = PACKET__SEND;
5269 peer_sid = SECINITSID_KERNEL;
5270 }
5271 } else if (sk_listener(sk)) {
5272 /* Locally generated packet but the associated socket is in the
5273 * listening state which means this is a SYN-ACK packet. In
5274 * this particular case the correct security label is assigned
5275 * to the connection/request_sock but unfortunately we can't
5276 * query the request_sock as it isn't queued on the parent
5277 * socket until after the SYN-ACK packet is sent; the only
5278 * viable choice is to regenerate the label like we do in
5279 * selinux_inet_conn_request(). See also selinux_ip_output()
5280 * for similar problems. */
5281 u32 skb_sid;
5282 struct sk_security_struct *sksec;
5283
5284 sksec = sk->sk_security;
5285 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5286 return NF_DROP;
5287 /* At this point, if the returned skb peerlbl is SECSID_NULL
5288 * and the packet has been through at least one XFRM
5289 * transformation then we must be dealing with the "final"
5290 * form of labeled IPsec packet; since we've already applied
5291 * all of our access controls on this packet we can safely
5292 * pass the packet. */
5293 if (skb_sid == SECSID_NULL) {
5294 switch (family) {
5295 case PF_INET:
5296 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5297 return NF_ACCEPT;
5298 break;
5299 case PF_INET6:
5300 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5301 return NF_ACCEPT;
5302 break;
5303 default:
5304 return NF_DROP_ERR(-ECONNREFUSED);
5305 }
5306 }
5307 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5308 return NF_DROP;
5309 secmark_perm = PACKET__SEND;
5310 } else {
5311 /* Locally generated packet, fetch the security label from the
5312 * associated socket. */
5313 struct sk_security_struct *sksec = sk->sk_security;
5314 peer_sid = sksec->sid;
5315 secmark_perm = PACKET__SEND;
5316 }
5317
5318 ad.type = LSM_AUDIT_DATA_NET;
5319 ad.u.net = &net;
5320 ad.u.net->netif = ifindex;
5321 ad.u.net->family = family;
5322 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5323 return NF_DROP;
5324
5325 if (secmark_active)
5326 if (avc_has_perm(peer_sid, skb->secmark,
5327 SECCLASS_PACKET, secmark_perm, &ad))
5328 return NF_DROP_ERR(-ECONNREFUSED);
5329
5330 if (peerlbl_active) {
5331 u32 if_sid;
5332 u32 node_sid;
5333
5334 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5335 return NF_DROP;
5336 if (avc_has_perm(peer_sid, if_sid,
5337 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5338 return NF_DROP_ERR(-ECONNREFUSED);
5339
5340 if (sel_netnode_sid(addrp, family, &node_sid))
5341 return NF_DROP;
5342 if (avc_has_perm(peer_sid, node_sid,
5343 SECCLASS_NODE, NODE__SENDTO, &ad))
5344 return NF_DROP_ERR(-ECONNREFUSED);
5345 }
5346
5347 return NF_ACCEPT;
5348}
5349
5350static unsigned int selinux_ipv4_postroute(void *priv,
5351 struct sk_buff *skb,
5352 const struct nf_hook_state *state)
5353{
5354 return selinux_ip_postroute(skb, state->out, PF_INET);
5355}
5356
5357#if IS_ENABLED(CONFIG_IPV6)
5358static unsigned int selinux_ipv6_postroute(void *priv,
5359 struct sk_buff *skb,
5360 const struct nf_hook_state *state)
5361{
5362 return selinux_ip_postroute(skb, state->out, PF_INET6);
5363}
5364#endif /* IPV6 */
5365
5366#endif /* CONFIG_NETFILTER */
5367
5368static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5369{
5370 return selinux_nlmsg_perm(sk, skb);
5371}
5372
5373static int ipc_alloc_security(struct task_struct *task,
5374 struct kern_ipc_perm *perm,
5375 u16 sclass)
5376{
5377 struct ipc_security_struct *isec;
5378 u32 sid;
5379
5380 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5381 if (!isec)
5382 return -ENOMEM;
5383
5384 sid = task_sid(task);
5385 isec->sclass = sclass;
5386 isec->sid = sid;
5387 perm->security = isec;
5388
5389 return 0;
5390}
5391
5392static void ipc_free_security(struct kern_ipc_perm *perm)
5393{
5394 struct ipc_security_struct *isec = perm->security;
5395 perm->security = NULL;
5396 kfree(isec);
5397}
5398
5399static int msg_msg_alloc_security(struct msg_msg *msg)
5400{
5401 struct msg_security_struct *msec;
5402
5403 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5404 if (!msec)
5405 return -ENOMEM;
5406
5407 msec->sid = SECINITSID_UNLABELED;
5408 msg->security = msec;
5409
5410 return 0;
5411}
5412
5413static void msg_msg_free_security(struct msg_msg *msg)
5414{
5415 struct msg_security_struct *msec = msg->security;
5416
5417 msg->security = NULL;
5418 kfree(msec);
5419}
5420
5421static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5422 u32 perms)
5423{
5424 struct ipc_security_struct *isec;
5425 struct common_audit_data ad;
5426 u32 sid = current_sid();
5427
5428 isec = ipc_perms->security;
5429
5430 ad.type = LSM_AUDIT_DATA_IPC;
5431 ad.u.ipc_id = ipc_perms->key;
5432
5433 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5434}
5435
5436static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5437{
5438 return msg_msg_alloc_security(msg);
5439}
5440
5441static void selinux_msg_msg_free_security(struct msg_msg *msg)
5442{
5443 msg_msg_free_security(msg);
5444}
5445
5446/* message queue security operations */
5447static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5448{
5449 struct ipc_security_struct *isec;
5450 struct common_audit_data ad;
5451 u32 sid = current_sid();
5452 int rc;
5453
5454 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5455 if (rc)
5456 return rc;
5457
5458 isec = msq->q_perm.security;
5459
5460 ad.type = LSM_AUDIT_DATA_IPC;
5461 ad.u.ipc_id = msq->q_perm.key;
5462
5463 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5464 MSGQ__CREATE, &ad);
5465 if (rc) {
5466 ipc_free_security(&msq->q_perm);
5467 return rc;
5468 }
5469 return 0;
5470}
5471
5472static void selinux_msg_queue_free_security(struct msg_queue *msq)
5473{
5474 ipc_free_security(&msq->q_perm);
5475}
5476
5477static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5478{
5479 struct ipc_security_struct *isec;
5480 struct common_audit_data ad;
5481 u32 sid = current_sid();
5482
5483 isec = msq->q_perm.security;
5484
5485 ad.type = LSM_AUDIT_DATA_IPC;
5486 ad.u.ipc_id = msq->q_perm.key;
5487
5488 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5489 MSGQ__ASSOCIATE, &ad);
5490}
5491
5492static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5493{
5494 int err;
5495 int perms;
5496
5497 switch (cmd) {
5498 case IPC_INFO:
5499 case MSG_INFO:
5500 /* No specific object, just general system-wide information. */
5501 return task_has_system(current, SYSTEM__IPC_INFO);
5502 case IPC_STAT:
5503 case MSG_STAT:
5504 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5505 break;
5506 case IPC_SET:
5507 perms = MSGQ__SETATTR;
5508 break;
5509 case IPC_RMID:
5510 perms = MSGQ__DESTROY;
5511 break;
5512 default:
5513 return 0;
5514 }
5515
5516 err = ipc_has_perm(&msq->q_perm, perms);
5517 return err;
5518}
5519
5520static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5521{
5522 struct ipc_security_struct *isec;
5523 struct msg_security_struct *msec;
5524 struct common_audit_data ad;
5525 u32 sid = current_sid();
5526 int rc;
5527
5528 isec = msq->q_perm.security;
5529 msec = msg->security;
5530
5531 /*
5532 * First time through, need to assign label to the message
5533 */
5534 if (msec->sid == SECINITSID_UNLABELED) {
5535 /*
5536 * Compute new sid based on current process and
5537 * message queue this message will be stored in
5538 */
5539 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5540 NULL, &msec->sid);
5541 if (rc)
5542 return rc;
5543 }
5544
5545 ad.type = LSM_AUDIT_DATA_IPC;
5546 ad.u.ipc_id = msq->q_perm.key;
5547
5548 /* Can this process write to the queue? */
5549 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5550 MSGQ__WRITE, &ad);
5551 if (!rc)
5552 /* Can this process send the message */
5553 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5554 MSG__SEND, &ad);
5555 if (!rc)
5556 /* Can the message be put in the queue? */
5557 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5558 MSGQ__ENQUEUE, &ad);
5559
5560 return rc;
5561}
5562
5563static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5564 struct task_struct *target,
5565 long type, int mode)
5566{
5567 struct ipc_security_struct *isec;
5568 struct msg_security_struct *msec;
5569 struct common_audit_data ad;
5570 u32 sid = task_sid(target);
5571 int rc;
5572
5573 isec = msq->q_perm.security;
5574 msec = msg->security;
5575
5576 ad.type = LSM_AUDIT_DATA_IPC;
5577 ad.u.ipc_id = msq->q_perm.key;
5578
5579 rc = avc_has_perm(sid, isec->sid,
5580 SECCLASS_MSGQ, MSGQ__READ, &ad);
5581 if (!rc)
5582 rc = avc_has_perm(sid, msec->sid,
5583 SECCLASS_MSG, MSG__RECEIVE, &ad);
5584 return rc;
5585}
5586
5587/* Shared Memory security operations */
5588static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5589{
5590 struct ipc_security_struct *isec;
5591 struct common_audit_data ad;
5592 u32 sid = current_sid();
5593 int rc;
5594
5595 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5596 if (rc)
5597 return rc;
5598
5599 isec = shp->shm_perm.security;
5600
5601 ad.type = LSM_AUDIT_DATA_IPC;
5602 ad.u.ipc_id = shp->shm_perm.key;
5603
5604 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5605 SHM__CREATE, &ad);
5606 if (rc) {
5607 ipc_free_security(&shp->shm_perm);
5608 return rc;
5609 }
5610 return 0;
5611}
5612
5613static void selinux_shm_free_security(struct shmid_kernel *shp)
5614{
5615 ipc_free_security(&shp->shm_perm);
5616}
5617
5618static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5619{
5620 struct ipc_security_struct *isec;
5621 struct common_audit_data ad;
5622 u32 sid = current_sid();
5623
5624 isec = shp->shm_perm.security;
5625
5626 ad.type = LSM_AUDIT_DATA_IPC;
5627 ad.u.ipc_id = shp->shm_perm.key;
5628
5629 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5630 SHM__ASSOCIATE, &ad);
5631}
5632
5633/* Note, at this point, shp is locked down */
5634static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5635{
5636 int perms;
5637 int err;
5638
5639 switch (cmd) {
5640 case IPC_INFO:
5641 case SHM_INFO:
5642 /* No specific object, just general system-wide information. */
5643 return task_has_system(current, SYSTEM__IPC_INFO);
5644 case IPC_STAT:
5645 case SHM_STAT:
5646 perms = SHM__GETATTR | SHM__ASSOCIATE;
5647 break;
5648 case IPC_SET:
5649 perms = SHM__SETATTR;
5650 break;
5651 case SHM_LOCK:
5652 case SHM_UNLOCK:
5653 perms = SHM__LOCK;
5654 break;
5655 case IPC_RMID:
5656 perms = SHM__DESTROY;
5657 break;
5658 default:
5659 return 0;
5660 }
5661
5662 err = ipc_has_perm(&shp->shm_perm, perms);
5663 return err;
5664}
5665
5666static int selinux_shm_shmat(struct shmid_kernel *shp,
5667 char __user *shmaddr, int shmflg)
5668{
5669 u32 perms;
5670
5671 if (shmflg & SHM_RDONLY)
5672 perms = SHM__READ;
5673 else
5674 perms = SHM__READ | SHM__WRITE;
5675
5676 return ipc_has_perm(&shp->shm_perm, perms);
5677}
5678
5679/* Semaphore security operations */
5680static int selinux_sem_alloc_security(struct sem_array *sma)
5681{
5682 struct ipc_security_struct *isec;
5683 struct common_audit_data ad;
5684 u32 sid = current_sid();
5685 int rc;
5686
5687 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5688 if (rc)
5689 return rc;
5690
5691 isec = sma->sem_perm.security;
5692
5693 ad.type = LSM_AUDIT_DATA_IPC;
5694 ad.u.ipc_id = sma->sem_perm.key;
5695
5696 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5697 SEM__CREATE, &ad);
5698 if (rc) {
5699 ipc_free_security(&sma->sem_perm);
5700 return rc;
5701 }
5702 return 0;
5703}
5704
5705static void selinux_sem_free_security(struct sem_array *sma)
5706{
5707 ipc_free_security(&sma->sem_perm);
5708}
5709
5710static int selinux_sem_associate(struct sem_array *sma, int semflg)
5711{
5712 struct ipc_security_struct *isec;
5713 struct common_audit_data ad;
5714 u32 sid = current_sid();
5715
5716 isec = sma->sem_perm.security;
5717
5718 ad.type = LSM_AUDIT_DATA_IPC;
5719 ad.u.ipc_id = sma->sem_perm.key;
5720
5721 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5722 SEM__ASSOCIATE, &ad);
5723}
5724
5725/* Note, at this point, sma is locked down */
5726static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5727{
5728 int err;
5729 u32 perms;
5730
5731 switch (cmd) {
5732 case IPC_INFO:
5733 case SEM_INFO:
5734 /* No specific object, just general system-wide information. */
5735 return task_has_system(current, SYSTEM__IPC_INFO);
5736 case GETPID:
5737 case GETNCNT:
5738 case GETZCNT:
5739 perms = SEM__GETATTR;
5740 break;
5741 case GETVAL:
5742 case GETALL:
5743 perms = SEM__READ;
5744 break;
5745 case SETVAL:
5746 case SETALL:
5747 perms = SEM__WRITE;
5748 break;
5749 case IPC_RMID:
5750 perms = SEM__DESTROY;
5751 break;
5752 case IPC_SET:
5753 perms = SEM__SETATTR;
5754 break;
5755 case IPC_STAT:
5756 case SEM_STAT:
5757 perms = SEM__GETATTR | SEM__ASSOCIATE;
5758 break;
5759 default:
5760 return 0;
5761 }
5762
5763 err = ipc_has_perm(&sma->sem_perm, perms);
5764 return err;
5765}
5766
5767static int selinux_sem_semop(struct sem_array *sma,
5768 struct sembuf *sops, unsigned nsops, int alter)
5769{
5770 u32 perms;
5771
5772 if (alter)
5773 perms = SEM__READ | SEM__WRITE;
5774 else
5775 perms = SEM__READ;
5776
5777 return ipc_has_perm(&sma->sem_perm, perms);
5778}
5779
5780static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5781{
5782 u32 av = 0;
5783
5784 av = 0;
5785 if (flag & S_IRUGO)
5786 av |= IPC__UNIX_READ;
5787 if (flag & S_IWUGO)
5788 av |= IPC__UNIX_WRITE;
5789
5790 if (av == 0)
5791 return 0;
5792
5793 return ipc_has_perm(ipcp, av);
5794}
5795
5796static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5797{
5798 struct ipc_security_struct *isec = ipcp->security;
5799 *secid = isec->sid;
5800}
5801
5802static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5803{
5804 if (inode)
5805 inode_doinit_with_dentry(inode, dentry);
5806}
5807
5808static int selinux_getprocattr(struct task_struct *p,
5809 char *name, char **value)
5810{
5811 const struct task_security_struct *__tsec;
5812 u32 sid;
5813 int error;
5814 unsigned len;
5815
5816 if (current != p) {
5817 error = current_has_perm(p, PROCESS__GETATTR);
5818 if (error)
5819 return error;
5820 }
5821
5822 rcu_read_lock();
5823 __tsec = __task_cred(p)->security;
5824
5825 if (!strcmp(name, "current"))
5826 sid = __tsec->sid;
5827 else if (!strcmp(name, "prev"))
5828 sid = __tsec->osid;
5829 else if (!strcmp(name, "exec"))
5830 sid = __tsec->exec_sid;
5831 else if (!strcmp(name, "fscreate"))
5832 sid = __tsec->create_sid;
5833 else if (!strcmp(name, "keycreate"))
5834 sid = __tsec->keycreate_sid;
5835 else if (!strcmp(name, "sockcreate"))
5836 sid = __tsec->sockcreate_sid;
5837 else
5838 goto invalid;
5839 rcu_read_unlock();
5840
5841 if (!sid)
5842 return 0;
5843
5844 error = security_sid_to_context(sid, value, &len);
5845 if (error)
5846 return error;
5847 return len;
5848
5849invalid:
5850 rcu_read_unlock();
5851 return -EINVAL;
5852}
5853
5854static int selinux_setprocattr(struct task_struct *p,
5855 char *name, void *value, size_t size)
5856{
5857 struct task_security_struct *tsec;
5858 struct cred *new;
5859 u32 sid = 0, ptsid;
5860 int error;
5861 char *str = value;
5862
5863 if (current != p) {
5864 /* SELinux only allows a process to change its own
5865 security attributes. */
5866 return -EACCES;
5867 }
5868
5869 /*
5870 * Basic control over ability to set these attributes at all.
5871 * current == p, but we'll pass them separately in case the
5872 * above restriction is ever removed.
5873 */
5874 if (!strcmp(name, "exec"))
5875 error = current_has_perm(p, PROCESS__SETEXEC);
5876 else if (!strcmp(name, "fscreate"))
5877 error = current_has_perm(p, PROCESS__SETFSCREATE);
5878 else if (!strcmp(name, "keycreate"))
5879 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5880 else if (!strcmp(name, "sockcreate"))
5881 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5882 else if (!strcmp(name, "current"))
5883 error = current_has_perm(p, PROCESS__SETCURRENT);
5884 else
5885 error = -EINVAL;
5886 if (error)
5887 return error;
5888
5889 /* Obtain a SID for the context, if one was specified. */
5890 if (size && str[0] && str[0] != '\n') {
5891 if (str[size-1] == '\n') {
5892 str[size-1] = 0;
5893 size--;
5894 }
5895 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5896 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5897 if (!capable(CAP_MAC_ADMIN)) {
5898 struct audit_buffer *ab;
5899 size_t audit_size;
5900
5901 /* We strip a nul only if it is at the end, otherwise the
5902 * context contains a nul and we should audit that */
5903 if (str[size - 1] == '\0')
5904 audit_size = size - 1;
5905 else
5906 audit_size = size;
5907 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5908 audit_log_format(ab, "op=fscreate invalid_context=");
5909 audit_log_n_untrustedstring(ab, value, audit_size);
5910 audit_log_end(ab);
5911
5912 return error;
5913 }
5914 error = security_context_to_sid_force(value, size,
5915 &sid);
5916 }
5917 if (error)
5918 return error;
5919 }
5920
5921 new = prepare_creds();
5922 if (!new)
5923 return -ENOMEM;
5924
5925 /* Permission checking based on the specified context is
5926 performed during the actual operation (execve,
5927 open/mkdir/...), when we know the full context of the
5928 operation. See selinux_bprm_set_creds for the execve
5929 checks and may_create for the file creation checks. The
5930 operation will then fail if the context is not permitted. */
5931 tsec = new->security;
5932 if (!strcmp(name, "exec")) {
5933 tsec->exec_sid = sid;
5934 } else if (!strcmp(name, "fscreate")) {
5935 tsec->create_sid = sid;
5936 } else if (!strcmp(name, "keycreate")) {
5937 error = may_create_key(sid, p);
5938 if (error)
5939 goto abort_change;
5940 tsec->keycreate_sid = sid;
5941 } else if (!strcmp(name, "sockcreate")) {
5942 tsec->sockcreate_sid = sid;
5943 } else if (!strcmp(name, "current")) {
5944 error = -EINVAL;
5945 if (sid == 0)
5946 goto abort_change;
5947
5948 /* Only allow single threaded processes to change context */
5949 error = -EPERM;
5950 if (!current_is_single_threaded()) {
5951 error = security_bounded_transition(tsec->sid, sid);
5952 if (error)
5953 goto abort_change;
5954 }
5955
5956 /* Check permissions for the transition. */
5957 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5958 PROCESS__DYNTRANSITION, NULL);
5959 if (error)
5960 goto abort_change;
5961
5962 /* Check for ptracing, and update the task SID if ok.
5963 Otherwise, leave SID unchanged and fail. */
5964 ptsid = ptrace_parent_sid(p);
5965 if (ptsid != 0) {
5966 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5967 PROCESS__PTRACE, NULL);
5968 if (error)
5969 goto abort_change;
5970 }
5971
5972 tsec->sid = sid;
5973 } else {
5974 error = -EINVAL;
5975 goto abort_change;
5976 }
5977
5978 commit_creds(new);
5979 return size;
5980
5981abort_change:
5982 abort_creds(new);
5983 return error;
5984}
5985
5986static int selinux_ismaclabel(const char *name)
5987{
5988 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5989}
5990
5991static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5992{
5993 return security_sid_to_context(secid, secdata, seclen);
5994}
5995
5996static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5997{
5998 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5999}
6000
6001static void selinux_release_secctx(char *secdata, u32 seclen)
6002{
6003 kfree(secdata);
6004}
6005
6006static void selinux_inode_invalidate_secctx(struct inode *inode)
6007{
6008 struct inode_security_struct *isec = inode->i_security;
6009
6010 spin_lock(&isec->lock);
6011 isec->initialized = LABEL_INVALID;
6012 spin_unlock(&isec->lock);
6013}
6014
6015/*
6016 * called with inode->i_mutex locked
6017 */
6018static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6019{
6020 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
6021}
6022
6023/*
6024 * called with inode->i_mutex locked
6025 */
6026static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6027{
6028 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6029}
6030
6031static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6032{
6033 int len = 0;
6034 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6035 ctx, true);
6036 if (len < 0)
6037 return len;
6038 *ctxlen = len;
6039 return 0;
6040}
6041#ifdef CONFIG_KEYS
6042
6043static int selinux_key_alloc(struct key *k, const struct cred *cred,
6044 unsigned long flags)
6045{
6046 const struct task_security_struct *tsec;
6047 struct key_security_struct *ksec;
6048
6049 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6050 if (!ksec)
6051 return -ENOMEM;
6052
6053 tsec = cred->security;
6054 if (tsec->keycreate_sid)
6055 ksec->sid = tsec->keycreate_sid;
6056 else
6057 ksec->sid = tsec->sid;
6058
6059 k->security = ksec;
6060 return 0;
6061}
6062
6063static void selinux_key_free(struct key *k)
6064{
6065 struct key_security_struct *ksec = k->security;
6066
6067 k->security = NULL;
6068 kfree(ksec);
6069}
6070
6071static int selinux_key_permission(key_ref_t key_ref,
6072 const struct cred *cred,
6073 unsigned perm)
6074{
6075 struct key *key;
6076 struct key_security_struct *ksec;
6077 u32 sid;
6078
6079 /* if no specific permissions are requested, we skip the
6080 permission check. No serious, additional covert channels
6081 appear to be created. */
6082 if (perm == 0)
6083 return 0;
6084
6085 sid = cred_sid(cred);
6086
6087 key = key_ref_to_ptr(key_ref);
6088 ksec = key->security;
6089
6090 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6091}
6092
6093static int selinux_key_getsecurity(struct key *key, char **_buffer)
6094{
6095 struct key_security_struct *ksec = key->security;
6096 char *context = NULL;
6097 unsigned len;
6098 int rc;
6099
6100 rc = security_sid_to_context(ksec->sid, &context, &len);
6101 if (!rc)
6102 rc = len;
6103 *_buffer = context;
6104 return rc;
6105}
6106
6107#endif
6108
6109static struct security_hook_list selinux_hooks[] = {
6110 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6111 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6112 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6113 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6114
6115 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6116 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6117 LSM_HOOK_INIT(capget, selinux_capget),
6118 LSM_HOOK_INIT(capset, selinux_capset),
6119 LSM_HOOK_INIT(capable, selinux_capable),
6120 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6121 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6122 LSM_HOOK_INIT(syslog, selinux_syslog),
6123 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6124
6125 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6126
6127 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6128 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6129 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6130 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
6131
6132 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6133 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6134 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6135 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6136 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6137 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6138 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6139 LSM_HOOK_INIT(sb_mount, selinux_mount),
6140 LSM_HOOK_INIT(sb_umount, selinux_umount),
6141 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6142 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6143 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
6144
6145 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6146 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6147
6148 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6149 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6150 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6151 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6152 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6153 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6154 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6155 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6156 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6157 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6158 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6159 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6160 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6161 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6162 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6163 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6164 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6165 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6166 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6167 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6168 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6169 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6170 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6171 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6172 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6173 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6174 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6175
6176 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6177 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6178 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6179 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6180 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6181 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6182 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6183 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6184 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6185 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6186 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6187 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6188
6189 LSM_HOOK_INIT(file_open, selinux_file_open),
6190
6191 LSM_HOOK_INIT(task_create, selinux_task_create),
6192 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6193 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6194 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6195 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6196 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6197 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6198 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6199 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6200 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6201 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6202 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6203 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6204 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6205 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6206 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6207 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6208 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6209 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6210 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6211 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6212 LSM_HOOK_INIT(task_wait, selinux_task_wait),
6213 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6214
6215 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6216 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6217
6218 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6219 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6220
6221 LSM_HOOK_INIT(msg_queue_alloc_security,
6222 selinux_msg_queue_alloc_security),
6223 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6224 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6225 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6226 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6227 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6228
6229 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6230 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6231 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6232 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6233 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6234
6235 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6236 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6237 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6238 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6239 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6240
6241 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6242
6243 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6244 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6245
6246 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6247 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6248 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6249 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6250 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6251 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6252 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6253 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6254
6255 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6256 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6257
6258 LSM_HOOK_INIT(socket_create, selinux_socket_create),
6259 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6260 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6261 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6262 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6263 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6264 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6265 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6266 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6267 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6268 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6269 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6270 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6271 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6272 LSM_HOOK_INIT(socket_getpeersec_stream,
6273 selinux_socket_getpeersec_stream),
6274 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6275 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6276 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6277 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6278 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6279 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6280 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6281 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6282 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6283 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6284 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6285 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6286 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6287 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6288 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6289 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6290 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6291 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6292 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6293
6294#ifdef CONFIG_SECURITY_NETWORK_XFRM
6295 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6296 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6297 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6298 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6299 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6300 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6301 selinux_xfrm_state_alloc_acquire),
6302 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6303 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6304 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6305 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6306 selinux_xfrm_state_pol_flow_match),
6307 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6308#endif
6309
6310#ifdef CONFIG_KEYS
6311 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6312 LSM_HOOK_INIT(key_free, selinux_key_free),
6313 LSM_HOOK_INIT(key_permission, selinux_key_permission),
6314 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6315#endif
6316
6317#ifdef CONFIG_AUDIT
6318 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6319 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6320 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6321 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6322#endif
6323};
6324
6325static __init int selinux_init(void)
6326{
6327 if (!security_module_enable("selinux")) {
6328 selinux_enabled = 0;
6329 return 0;
6330 }
6331
6332 if (!selinux_enabled) {
6333 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6334 return 0;
6335 }
6336
6337 printk(KERN_INFO "SELinux: Initializing.\n");
6338
6339 /* Set the security state for the initial task. */
6340 cred_init_security();
6341
6342 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6343
6344 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6345 sizeof(struct inode_security_struct),
6346 0, SLAB_PANIC, NULL);
6347 file_security_cache = kmem_cache_create("selinux_file_security",
6348 sizeof(struct file_security_struct),
6349 0, SLAB_PANIC, NULL);
6350 avc_init();
6351
6352 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6353
6354 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6355 panic("SELinux: Unable to register AVC netcache callback\n");
6356
6357 if (selinux_enforcing)
6358 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6359 else
6360 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6361
6362 return 0;
6363}
6364
6365static void delayed_superblock_init(struct super_block *sb, void *unused)
6366{
6367 superblock_doinit(sb, NULL);
6368}
6369
6370void selinux_complete_init(void)
6371{
6372 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6373
6374 /* Set up any superblocks initialized prior to the policy load. */
6375 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6376 iterate_supers(delayed_superblock_init, NULL);
6377}
6378
6379/* SELinux requires early initialization in order to label
6380 all processes and objects when they are created. */
6381security_initcall(selinux_init);
6382
6383#if defined(CONFIG_NETFILTER)
6384
6385static struct nf_hook_ops selinux_nf_ops[] = {
6386 {
6387 .hook = selinux_ipv4_postroute,
6388 .pf = NFPROTO_IPV4,
6389 .hooknum = NF_INET_POST_ROUTING,
6390 .priority = NF_IP_PRI_SELINUX_LAST,
6391 },
6392 {
6393 .hook = selinux_ipv4_forward,
6394 .pf = NFPROTO_IPV4,
6395 .hooknum = NF_INET_FORWARD,
6396 .priority = NF_IP_PRI_SELINUX_FIRST,
6397 },
6398 {
6399 .hook = selinux_ipv4_output,
6400 .pf = NFPROTO_IPV4,
6401 .hooknum = NF_INET_LOCAL_OUT,
6402 .priority = NF_IP_PRI_SELINUX_FIRST,
6403 },
6404#if IS_ENABLED(CONFIG_IPV6)
6405 {
6406 .hook = selinux_ipv6_postroute,
6407 .pf = NFPROTO_IPV6,
6408 .hooknum = NF_INET_POST_ROUTING,
6409 .priority = NF_IP6_PRI_SELINUX_LAST,
6410 },
6411 {
6412 .hook = selinux_ipv6_forward,
6413 .pf = NFPROTO_IPV6,
6414 .hooknum = NF_INET_FORWARD,
6415 .priority = NF_IP6_PRI_SELINUX_FIRST,
6416 },
6417 {
6418 .hook = selinux_ipv6_output,
6419 .pf = NFPROTO_IPV6,
6420 .hooknum = NF_INET_LOCAL_OUT,
6421 .priority = NF_IP6_PRI_SELINUX_FIRST,
6422 },
6423#endif /* IPV6 */
6424};
6425
6426static int __init selinux_nf_ip_init(void)
6427{
6428 int err;
6429
6430 if (!selinux_enabled)
6431 return 0;
6432
6433 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6434
6435 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6436 if (err)
6437 panic("SELinux: nf_register_hooks: error %d\n", err);
6438
6439 return 0;
6440}
6441
6442__initcall(selinux_nf_ip_init);
6443
6444#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6445static void selinux_nf_ip_exit(void)
6446{
6447 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6448
6449 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6450}
6451#endif
6452
6453#else /* CONFIG_NETFILTER */
6454
6455#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6456#define selinux_nf_ip_exit()
6457#endif
6458
6459#endif /* CONFIG_NETFILTER */
6460
6461#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6462static int selinux_disabled;
6463
6464int selinux_disable(void)
6465{
6466 if (ss_initialized) {
6467 /* Not permitted after initial policy load. */
6468 return -EINVAL;
6469 }
6470
6471 if (selinux_disabled) {
6472 /* Only do this once. */
6473 return -EINVAL;
6474 }
6475
6476 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6477
6478 selinux_disabled = 1;
6479 selinux_enabled = 0;
6480
6481 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6482
6483 /* Try to destroy the avc node cache */
6484 avc_disable();
6485
6486 /* Unregister netfilter hooks. */
6487 selinux_nf_ip_exit();
6488
6489 /* Unregister selinuxfs. */
6490 exit_sel_fs();
6491
6492 return 0;
6493}
6494#endif