Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/tracehook.h>
  29#include <linux/errno.h>
  30#include <linux/sched/signal.h>
  31#include <linux/sched/task.h>
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
  49#include <linux/fs_context.h>
  50#include <linux/fs_parser.h>
  51#include <linux/netfilter_ipv4.h>
  52#include <linux/netfilter_ipv6.h>
  53#include <linux/tty.h>
  54#include <net/icmp.h>
  55#include <net/ip.h>		/* for local_port_range[] */
  56#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  57#include <net/inet_connection_sock.h>
  58#include <net/net_namespace.h>
  59#include <net/netlabel.h>
  60#include <linux/uaccess.h>
  61#include <asm/ioctls.h>
  62#include <linux/atomic.h>
  63#include <linux/bitops.h>
  64#include <linux/interrupt.h>
  65#include <linux/netdevice.h>	/* for network interface checks */
  66#include <net/netlink.h>
  67#include <linux/tcp.h>
  68#include <linux/udp.h>
  69#include <linux/dccp.h>
  70#include <linux/sctp.h>
  71#include <net/sctp/structs.h>
  72#include <linux/quota.h>
  73#include <linux/un.h>		/* for Unix socket types */
  74#include <net/af_unix.h>	/* for Unix socket types */
  75#include <linux/parser.h>
  76#include <linux/nfs_mount.h>
  77#include <net/ipv6.h>
  78#include <linux/hugetlb.h>
  79#include <linux/personality.h>
  80#include <linux/audit.h>
  81#include <linux/string.h>
 
  82#include <linux/mutex.h>
  83#include <linux/posix-timers.h>
  84#include <linux/syslog.h>
  85#include <linux/user_namespace.h>
  86#include <linux/export.h>
  87#include <linux/msg.h>
  88#include <linux/shm.h>
  89#include <linux/bpf.h>
  90#include <linux/kernfs.h>
  91#include <linux/stringhash.h>	/* for hashlen_string() */
  92#include <uapi/linux/mount.h>
  93#include <linux/fsnotify.h>
  94#include <linux/fanotify.h>
  95
  96#include "avc.h"
  97#include "objsec.h"
  98#include "netif.h"
  99#include "netnode.h"
 100#include "netport.h"
 101#include "ibpkey.h"
 102#include "xfrm.h"
 103#include "netlabel.h"
 104#include "audit.h"
 105#include "avc_ss.h"
 106
 107struct selinux_state selinux_state;
 108
 109/* SECMARK reference count */
 110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 111
 112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 113static int selinux_enforcing_boot __initdata;
 114
 115static int __init enforcing_setup(char *str)
 116{
 117	unsigned long enforcing;
 118	if (!kstrtoul(str, 0, &enforcing))
 119		selinux_enforcing_boot = enforcing ? 1 : 0;
 120	return 1;
 121}
 122__setup("enforcing=", enforcing_setup);
 123#else
 124#define selinux_enforcing_boot 1
 125#endif
 126
 127int selinux_enabled_boot __initdata = 1;
 128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 129static int __init selinux_enabled_setup(char *str)
 130{
 131	unsigned long enabled;
 132	if (!kstrtoul(str, 0, &enabled))
 133		selinux_enabled_boot = enabled ? 1 : 0;
 134	return 1;
 135}
 136__setup("selinux=", selinux_enabled_setup);
 
 
 137#endif
 138
 139static unsigned int selinux_checkreqprot_boot =
 140	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 141
 142static int __init checkreqprot_setup(char *str)
 143{
 144	unsigned long checkreqprot;
 145
 146	if (!kstrtoul(str, 0, &checkreqprot)) {
 147		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 148		if (checkreqprot)
 149			pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 214	struct cred *cred = (struct cred *) current->real_cred;
 215	struct task_security_struct *tsec;
 216
 217	tsec = selinux_cred(cred);
 
 
 
 218	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 219}
 220
 221/*
 222 * get the security ID of a set of credentials
 223 */
 224static inline u32 cred_sid(const struct cred *cred)
 225{
 226	const struct task_security_struct *tsec;
 227
 228	tsec = selinux_cred(cred);
 229	return tsec->sid;
 230}
 231
 232/*
 233 * get the subjective security ID of a task
 234 */
 235static inline u32 task_sid_subj(const struct task_struct *task)
 236{
 237	u32 sid;
 238
 239	rcu_read_lock();
 240	sid = cred_sid(rcu_dereference(task->cred));
 241	rcu_read_unlock();
 242	return sid;
 243}
 244
 245/*
 246 * get the objective security ID of a task
 247 */
 248static inline u32 task_sid_obj(const struct task_struct *task)
 249{
 250	u32 sid;
 251
 252	rcu_read_lock();
 253	sid = cred_sid(__task_cred(task));
 254	rcu_read_unlock();
 255	return sid;
 256}
 257
 258/*
 259 * get the security ID of a task for use with binder
 260 */
 261static inline u32 task_sid_binder(const struct task_struct *task)
 262{
 263	/*
 264	 * In many case where this function is used we should be using the
 265	 * task's subjective SID, but we can't reliably access the subjective
 266	 * creds of a task other than our own so we must use the objective
 267	 * creds/SID, which are safe to access.  The downside is that if a task
 268	 * is temporarily overriding it's creds it will not be reflected here;
 269	 * however, it isn't clear that binder would handle that case well
 270	 * anyway.
 271	 *
 272	 * If this ever changes and we can safely reference the subjective
 273	 * creds/SID of another task, this function will make it easier to
 274	 * identify the various places where we make use of the task SIDs in
 275	 * the binder code.  It is also likely that we will need to adjust
 276	 * the main drivers/android binder code as well.
 277	 */
 278	return task_sid_obj(task);
 
 279}
 280
 281static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 282
 283/*
 284 * Try reloading inode security labels that have been marked as invalid.  The
 285 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 286 * allowed; when set to false, returns -ECHILD when the label is
 287 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 
 288 */
 289static int __inode_security_revalidate(struct inode *inode,
 290				       struct dentry *dentry,
 291				       bool may_sleep)
 292{
 293	struct inode_security_struct *isec = selinux_inode(inode);
 294
 295	might_sleep_if(may_sleep);
 296
 297	if (selinux_initialized(&selinux_state) &&
 298	    isec->initialized != LABEL_INITIALIZED) {
 299		if (!may_sleep)
 300			return -ECHILD;
 301
 302		/*
 303		 * Try reloading the inode security label.  This will fail if
 304		 * @opt_dentry is NULL and no dentry for this inode can be
 305		 * found; in that case, continue using the old label.
 306		 */
 307		inode_doinit_with_dentry(inode, dentry);
 308	}
 309	return 0;
 310}
 311
 312static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 313{
 314	return selinux_inode(inode);
 315}
 316
 317static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 318{
 319	int error;
 320
 321	error = __inode_security_revalidate(inode, NULL, !rcu);
 322	if (error)
 323		return ERR_PTR(error);
 324	return selinux_inode(inode);
 325}
 326
 327/*
 328 * Get the security label of an inode.
 329 */
 330static struct inode_security_struct *inode_security(struct inode *inode)
 331{
 332	__inode_security_revalidate(inode, NULL, true);
 333	return selinux_inode(inode);
 334}
 335
 336static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 337{
 338	struct inode *inode = d_backing_inode(dentry);
 339
 340	return selinux_inode(inode);
 341}
 342
 343/*
 344 * Get the security label of a dentry's backing inode.
 345 */
 346static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 347{
 348	struct inode *inode = d_backing_inode(dentry);
 349
 350	__inode_security_revalidate(inode, dentry, true);
 351	return selinux_inode(inode);
 
 
 
 
 
 
 
 
 352}
 353
 354static void inode_free_security(struct inode *inode)
 355{
 356	struct inode_security_struct *isec = selinux_inode(inode);
 357	struct superblock_security_struct *sbsec;
 358
 359	if (!isec)
 360		return;
 361	sbsec = selinux_superblock(inode->i_sb);
 362	/*
 363	 * As not all inode security structures are in a list, we check for
 364	 * empty list outside of the lock to make sure that we won't waste
 365	 * time taking a lock doing nothing.
 366	 *
 367	 * The list_del_init() function can be safely called more than once.
 368	 * It should not be possible for this function to be called with
 369	 * concurrent list_add(), but for better safety against future changes
 370	 * in the code, we use list_empty_careful() here.
 371	 */
 372	if (!list_empty_careful(&isec->list)) {
 373		spin_lock(&sbsec->isec_lock);
 374		list_del_init(&isec->list);
 375		spin_unlock(&sbsec->isec_lock);
 376	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377}
 378
 379struct selinux_mnt_opts {
 380	const char *fscontext, *context, *rootcontext, *defcontext;
 
 
 
 
 
 
 
 
 381};
 382
 383static void selinux_free_mnt_opts(void *mnt_opts)
 384{
 385	struct selinux_mnt_opts *opts = mnt_opts;
 386	kfree(opts->fscontext);
 387	kfree(opts->context);
 388	kfree(opts->rootcontext);
 389	kfree(opts->defcontext);
 390	kfree(opts);
 391}
 392
 393enum {
 394	Opt_error = -1,
 395	Opt_context = 0,
 396	Opt_defcontext = 1,
 397	Opt_fscontext = 2,
 398	Opt_rootcontext = 3,
 399	Opt_seclabel = 4,
 400};
 401
 402#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 403static struct {
 404	const char *name;
 405	int len;
 406	int opt;
 407	bool has_arg;
 408} tokens[] = {
 409	A(context, true),
 410	A(fscontext, true),
 411	A(defcontext, true),
 412	A(rootcontext, true),
 413	A(seclabel, false),
 414};
 415#undef A
 416
 417static int match_opt_prefix(char *s, int l, char **arg)
 418{
 419	int i;
 420
 421	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 422		size_t len = tokens[i].len;
 423		if (len > l || memcmp(s, tokens[i].name, len))
 424			continue;
 425		if (tokens[i].has_arg) {
 426			if (len == l || s[len] != '=')
 427				continue;
 428			*arg = s + len + 1;
 429		} else if (len != l)
 430			continue;
 431		return tokens[i].opt;
 432	}
 433	return Opt_error;
 434}
 435
 436#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 437
 438static int may_context_mount_sb_relabel(u32 sid,
 439			struct superblock_security_struct *sbsec,
 440			const struct cred *cred)
 441{
 442	const struct task_security_struct *tsec = selinux_cred(cred);
 443	int rc;
 444
 445	rc = avc_has_perm(&selinux_state,
 446			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 447			  FILESYSTEM__RELABELFROM, NULL);
 448	if (rc)
 449		return rc;
 450
 451	rc = avc_has_perm(&selinux_state,
 452			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 453			  FILESYSTEM__RELABELTO, NULL);
 454	return rc;
 455}
 456
 457static int may_context_mount_inode_relabel(u32 sid,
 458			struct superblock_security_struct *sbsec,
 459			const struct cred *cred)
 460{
 461	const struct task_security_struct *tsec = selinux_cred(cred);
 462	int rc;
 463	rc = avc_has_perm(&selinux_state,
 464			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 465			  FILESYSTEM__RELABELFROM, NULL);
 466	if (rc)
 467		return rc;
 468
 469	rc = avc_has_perm(&selinux_state,
 470			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 471			  FILESYSTEM__ASSOCIATE, NULL);
 472	return rc;
 473}
 474
 475static int selinux_is_genfs_special_handling(struct super_block *sb)
 476{
 477	/* Special handling. Genfs but also in-core setxattr handler */
 478	return	!strcmp(sb->s_type->name, "sysfs") ||
 479		!strcmp(sb->s_type->name, "pstore") ||
 480		!strcmp(sb->s_type->name, "debugfs") ||
 481		!strcmp(sb->s_type->name, "tracefs") ||
 482		!strcmp(sb->s_type->name, "rootfs") ||
 483		(selinux_policycap_cgroupseclabel() &&
 484		 (!strcmp(sb->s_type->name, "cgroup") ||
 485		  !strcmp(sb->s_type->name, "cgroup2")));
 486}
 487
 488static int selinux_is_sblabel_mnt(struct super_block *sb)
 489{
 490	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 491
 492	/*
 493	 * IMPORTANT: Double-check logic in this function when adding a new
 494	 * SECURITY_FS_USE_* definition!
 495	 */
 496	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 497
 498	switch (sbsec->behavior) {
 499	case SECURITY_FS_USE_XATTR:
 500	case SECURITY_FS_USE_TRANS:
 501	case SECURITY_FS_USE_TASK:
 502	case SECURITY_FS_USE_NATIVE:
 503		return 1;
 504
 505	case SECURITY_FS_USE_GENFS:
 506		return selinux_is_genfs_special_handling(sb);
 507
 508	/* Never allow relabeling on context mounts */
 509	case SECURITY_FS_USE_MNTPOINT:
 510	case SECURITY_FS_USE_NONE:
 511	default:
 512		return 0;
 513	}
 514}
 515
 516static int sb_check_xattr_support(struct super_block *sb)
 517{
 518	struct superblock_security_struct *sbsec = sb->s_security;
 519	struct dentry *root = sb->s_root;
 520	struct inode *root_inode = d_backing_inode(root);
 521	u32 sid;
 522	int rc;
 523
 524	/*
 525	 * Make sure that the xattr handler exists and that no
 526	 * error other than -ENODATA is returned by getxattr on
 527	 * the root directory.  -ENODATA is ok, as this may be
 528	 * the first boot of the SELinux kernel before we have
 529	 * assigned xattr values to the filesystem.
 530	 */
 531	if (!(root_inode->i_opflags & IOP_XATTR)) {
 532		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 533			sb->s_id, sb->s_type->name);
 534		goto fallback;
 535	}
 536
 537	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 538	if (rc < 0 && rc != -ENODATA) {
 539		if (rc == -EOPNOTSUPP) {
 540			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 541				sb->s_id, sb->s_type->name);
 542			goto fallback;
 543		} else {
 544			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 545				sb->s_id, sb->s_type->name, -rc);
 546			return rc;
 547		}
 548	}
 549	return 0;
 550
 551fallback:
 552	/* No xattr support - try to fallback to genfs if possible. */
 553	rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
 554				SECCLASS_DIR, &sid);
 555	if (rc)
 556		return -EOPNOTSUPP;
 557
 558	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 559		sb->s_id, sb->s_type->name);
 560	sbsec->behavior = SECURITY_FS_USE_GENFS;
 561	sbsec->sid = sid;
 562	return 0;
 563}
 564
 565static int sb_finish_set_opts(struct super_block *sb)
 566{
 567	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 568	struct dentry *root = sb->s_root;
 569	struct inode *root_inode = d_backing_inode(root);
 570	int rc = 0;
 571
 572	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 573		rc = sb_check_xattr_support(sb);
 574		if (rc)
 575			return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576	}
 577
 578	sbsec->flags |= SE_SBINITIALIZED;
 
 
 579
 580	/*
 581	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 582	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 583	 * us a superblock that needs the flag to be cleared.
 584	 */
 585	if (selinux_is_sblabel_mnt(sb))
 586		sbsec->flags |= SBLABEL_MNT;
 587	else
 588		sbsec->flags &= ~SBLABEL_MNT;
 589
 590	/* Initialize the root inode. */
 591	rc = inode_doinit_with_dentry(root_inode, root);
 592
 593	/* Initialize any other inodes associated with the superblock, e.g.
 594	   inodes created prior to initial policy load or inodes created
 595	   during get_sb by a pseudo filesystem that directly
 596	   populates itself. */
 597	spin_lock(&sbsec->isec_lock);
 598	while (!list_empty(&sbsec->isec_head)) {
 
 599		struct inode_security_struct *isec =
 600				list_first_entry(&sbsec->isec_head,
 601					   struct inode_security_struct, list);
 602		struct inode *inode = isec->inode;
 603		list_del_init(&isec->list);
 604		spin_unlock(&sbsec->isec_lock);
 605		inode = igrab(inode);
 606		if (inode) {
 607			if (!IS_PRIVATE(inode))
 608				inode_doinit_with_dentry(inode, NULL);
 609			iput(inode);
 610		}
 611		spin_lock(&sbsec->isec_lock);
 
 612	}
 613	spin_unlock(&sbsec->isec_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614	return rc;
 615}
 616
 617static int bad_option(struct superblock_security_struct *sbsec, char flag,
 618		      u32 old_sid, u32 new_sid)
 619{
 620	char mnt_flags = sbsec->flags & SE_MNTMASK;
 621
 622	/* check if the old mount command had the same options */
 623	if (sbsec->flags & SE_SBINITIALIZED)
 624		if (!(sbsec->flags & flag) ||
 625		    (old_sid != new_sid))
 626			return 1;
 627
 628	/* check if we were passed the same options twice,
 629	 * aka someone passed context=a,context=b
 630	 */
 631	if (!(sbsec->flags & SE_SBINITIALIZED))
 632		if (mnt_flags & flag)
 633			return 1;
 634	return 0;
 635}
 636
 637static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
 638{
 639	int rc = security_context_str_to_sid(&selinux_state, s,
 640					     sid, GFP_KERNEL);
 641	if (rc)
 642		pr_warn("SELinux: security_context_str_to_sid"
 643		       "(%s) failed for (dev %s, type %s) errno=%d\n",
 644		       s, sb->s_id, sb->s_type->name, rc);
 645	return rc;
 646}
 647
 648/*
 649 * Allow filesystems with binary mount data to explicitly set mount point
 650 * labeling information.
 651 */
 652static int selinux_set_mnt_opts(struct super_block *sb,
 653				void *mnt_opts,
 654				unsigned long kern_flags,
 655				unsigned long *set_kern_flags)
 656{
 657	const struct cred *cred = current_cred();
 658	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 659	struct dentry *root = sb->s_root;
 660	struct selinux_mnt_opts *opts = mnt_opts;
 
 661	struct inode_security_struct *root_isec;
 662	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 663	u32 defcontext_sid = 0;
 664	int rc = 0;
 
 
 665
 666	mutex_lock(&sbsec->lock);
 667
 668	if (!selinux_initialized(&selinux_state)) {
 669		if (!opts) {
 670			/* Defer initialization until selinux_complete_init,
 671			   after the initial policy is loaded and the security
 672			   server is ready to handle calls. */
 673			goto out;
 674		}
 675		rc = -EINVAL;
 676		pr_warn("SELinux: Unable to set superblock options "
 677			"before the security server is initialized\n");
 678		goto out;
 679	}
 680	if (kern_flags && !set_kern_flags) {
 681		/* Specifying internal flags without providing a place to
 682		 * place the results is not allowed */
 683		rc = -EINVAL;
 684		goto out;
 685	}
 686
 687	/*
 688	 * Binary mount data FS will come through this function twice.  Once
 689	 * from an explicit call and once from the generic calls from the vfs.
 690	 * Since the generic VFS calls will not contain any security mount data
 691	 * we need to skip the double mount verification.
 692	 *
 693	 * This does open a hole in which we will not notice if the first
 694	 * mount using this sb set explict options and a second mount using
 695	 * this sb does not set any security options.  (The first options
 696	 * will be used for both mounts)
 697	 */
 698	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 699	    && !opts)
 700		goto out;
 701
 702	root_isec = backing_inode_security_novalidate(root);
 703
 704	/*
 705	 * parse the mount options, check if they are valid sids.
 706	 * also check if someone is trying to mount the same sb more
 707	 * than once with different security options.
 708	 */
 709	if (opts) {
 710		if (opts->fscontext) {
 711			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
 712			if (rc)
 713				goto out;
 
 
 
 
 
 
 
 
 
 
 
 714			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 715					fscontext_sid))
 716				goto out_double_mount;
 
 717			sbsec->flags |= FSCONTEXT_MNT;
 718		}
 719		if (opts->context) {
 720			rc = parse_sid(sb, opts->context, &context_sid);
 721			if (rc)
 722				goto out;
 723			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 724					context_sid))
 725				goto out_double_mount;
 
 726			sbsec->flags |= CONTEXT_MNT;
 727		}
 728		if (opts->rootcontext) {
 729			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
 730			if (rc)
 731				goto out;
 732			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 733					rootcontext_sid))
 734				goto out_double_mount;
 
 735			sbsec->flags |= ROOTCONTEXT_MNT;
 736		}
 737		if (opts->defcontext) {
 738			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
 739			if (rc)
 740				goto out;
 741			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 742					defcontext_sid))
 743				goto out_double_mount;
 
 744			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 745		}
 746	}
 747
 748	if (sbsec->flags & SE_SBINITIALIZED) {
 749		/* previously mounted with options, but not on this attempt? */
 750		if ((sbsec->flags & SE_MNTMASK) && !opts)
 751			goto out_double_mount;
 752		rc = 0;
 753		goto out;
 754	}
 755
 756	if (strcmp(sb->s_type->name, "proc") == 0)
 757		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 758
 759	if (!strcmp(sb->s_type->name, "debugfs") ||
 760	    !strcmp(sb->s_type->name, "tracefs") ||
 761	    !strcmp(sb->s_type->name, "binder") ||
 762	    !strcmp(sb->s_type->name, "bpf") ||
 763	    !strcmp(sb->s_type->name, "pstore"))
 764		sbsec->flags |= SE_SBGENFS;
 765
 766	if (!strcmp(sb->s_type->name, "sysfs") ||
 767	    !strcmp(sb->s_type->name, "cgroup") ||
 768	    !strcmp(sb->s_type->name, "cgroup2"))
 769		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 770
 771	if (!sbsec->behavior) {
 772		/*
 773		 * Determine the labeling behavior to use for this
 774		 * filesystem type.
 775		 */
 776		rc = security_fs_use(&selinux_state, sb);
 777		if (rc) {
 778			pr_warn("%s: security_fs_use(%s) returned %d\n",
 
 779					__func__, sb->s_type->name, rc);
 780			goto out;
 781		}
 782	}
 783
 784	/*
 785	 * If this is a user namespace mount and the filesystem type is not
 786	 * explicitly whitelisted, then no contexts are allowed on the command
 787	 * line and security labels must be ignored.
 788	 */
 789	if (sb->s_user_ns != &init_user_ns &&
 790	    strcmp(sb->s_type->name, "tmpfs") &&
 791	    strcmp(sb->s_type->name, "ramfs") &&
 792	    strcmp(sb->s_type->name, "devpts") &&
 793	    strcmp(sb->s_type->name, "overlay")) {
 794		if (context_sid || fscontext_sid || rootcontext_sid ||
 795		    defcontext_sid) {
 796			rc = -EACCES;
 797			goto out;
 798		}
 799		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 800			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 801			rc = security_transition_sid(&selinux_state,
 802						     current_sid(),
 803						     current_sid(),
 804						     SECCLASS_FILE, NULL,
 805						     &sbsec->mntpoint_sid);
 806			if (rc)
 807				goto out;
 808		}
 809		goto out_set_opts;
 810	}
 811
 812	/* sets the context of the superblock for the fs being mounted. */
 813	if (fscontext_sid) {
 814		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 815		if (rc)
 816			goto out;
 817
 818		sbsec->sid = fscontext_sid;
 819	}
 820
 821	/*
 822	 * Switch to using mount point labeling behavior.
 823	 * sets the label used on all file below the mountpoint, and will set
 824	 * the superblock context if not already set.
 825	 */
 826	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 827		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 828		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 829	}
 830
 831	if (context_sid) {
 832		if (!fscontext_sid) {
 833			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 834							  cred);
 835			if (rc)
 836				goto out;
 837			sbsec->sid = context_sid;
 838		} else {
 839			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 840							     cred);
 841			if (rc)
 842				goto out;
 843		}
 844		if (!rootcontext_sid)
 845			rootcontext_sid = context_sid;
 846
 847		sbsec->mntpoint_sid = context_sid;
 848		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 849	}
 850
 851	if (rootcontext_sid) {
 852		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 853						     cred);
 854		if (rc)
 855			goto out;
 856
 857		root_isec->sid = rootcontext_sid;
 858		root_isec->initialized = LABEL_INITIALIZED;
 859	}
 860
 861	if (defcontext_sid) {
 862		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 863			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 864			rc = -EINVAL;
 865			pr_warn("SELinux: defcontext option is "
 866			       "invalid for this filesystem type\n");
 867			goto out;
 868		}
 869
 870		if (defcontext_sid != sbsec->def_sid) {
 871			rc = may_context_mount_inode_relabel(defcontext_sid,
 872							     sbsec, cred);
 873			if (rc)
 874				goto out;
 875		}
 876
 877		sbsec->def_sid = defcontext_sid;
 878	}
 879
 880out_set_opts:
 881	rc = sb_finish_set_opts(sb);
 882out:
 883	mutex_unlock(&sbsec->lock);
 884	return rc;
 885out_double_mount:
 886	rc = -EINVAL;
 887	pr_warn("SELinux: mount invalid.  Same superblock, different "
 888	       "security settings for (dev %s, type %s)\n", sb->s_id,
 889	       sb->s_type->name);
 890	goto out;
 891}
 892
 893static int selinux_cmp_sb_context(const struct super_block *oldsb,
 894				    const struct super_block *newsb)
 895{
 896	struct superblock_security_struct *old = selinux_superblock(oldsb);
 897	struct superblock_security_struct *new = selinux_superblock(newsb);
 898	char oldflags = old->flags & SE_MNTMASK;
 899	char newflags = new->flags & SE_MNTMASK;
 900
 901	if (oldflags != newflags)
 902		goto mismatch;
 903	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 904		goto mismatch;
 905	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 906		goto mismatch;
 907	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 908		goto mismatch;
 909	if (oldflags & ROOTCONTEXT_MNT) {
 910		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 911		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 912		if (oldroot->sid != newroot->sid)
 913			goto mismatch;
 914	}
 915	return 0;
 916mismatch:
 917	pr_warn("SELinux: mount invalid.  Same superblock, "
 918			    "different security settings for (dev %s, "
 919			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 920	return -EBUSY;
 921}
 922
 923static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 924					struct super_block *newsb,
 925					unsigned long kern_flags,
 926					unsigned long *set_kern_flags)
 927{
 928	int rc = 0;
 929	const struct superblock_security_struct *oldsbsec =
 930						selinux_superblock(oldsb);
 931	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 932
 933	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 934	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 935	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 936
 937	/*
 938	 * if the parent was able to be mounted it clearly had no special lsm
 939	 * mount options.  thus we can safely deal with this superblock later
 940	 */
 941	if (!selinux_initialized(&selinux_state))
 942		return 0;
 943
 944	/*
 945	 * Specifying internal flags without providing a place to
 946	 * place the results is not allowed.
 947	 */
 948	if (kern_flags && !set_kern_flags)
 949		return -EINVAL;
 950
 951	/* how can we clone if the old one wasn't set up?? */
 952	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 953
 954	/* if fs is reusing a sb, make sure that the contexts match */
 955	if (newsbsec->flags & SE_SBINITIALIZED) {
 956		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 957			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 958		return selinux_cmp_sb_context(oldsb, newsb);
 959	}
 960
 961	mutex_lock(&newsbsec->lock);
 962
 963	newsbsec->flags = oldsbsec->flags;
 964
 965	newsbsec->sid = oldsbsec->sid;
 966	newsbsec->def_sid = oldsbsec->def_sid;
 967	newsbsec->behavior = oldsbsec->behavior;
 968
 969	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 970		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 971		rc = security_fs_use(&selinux_state, newsb);
 972		if (rc)
 973			goto out;
 974	}
 975
 976	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 977		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 978		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 979	}
 980
 981	if (set_context) {
 982		u32 sid = oldsbsec->mntpoint_sid;
 983
 984		if (!set_fscontext)
 985			newsbsec->sid = sid;
 986		if (!set_rootcontext) {
 987			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 988			newisec->sid = sid;
 989		}
 990		newsbsec->mntpoint_sid = sid;
 991	}
 992	if (set_rootcontext) {
 993		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 994		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 995
 996		newisec->sid = oldisec->sid;
 997	}
 998
 999	sb_finish_set_opts(newsb);
1000out:
1001	mutex_unlock(&newsbsec->lock);
1002	return rc;
1003}
1004
1005static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 
1006{
1007	struct selinux_mnt_opts *opts = *mnt_opts;
 
 
 
1008
1009	if (token == Opt_seclabel)	/* eaten and completely ignored */
1010		return 0;
1011
1012	if (!opts) {
1013		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1014		if (!opts)
1015			return -ENOMEM;
1016		*mnt_opts = opts;
1017	}
1018	if (!s)
1019		return -ENOMEM;
1020	switch (token) {
1021	case Opt_context:
1022		if (opts->context || opts->defcontext)
1023			goto Einval;
1024		opts->context = s;
1025		break;
1026	case Opt_fscontext:
1027		if (opts->fscontext)
1028			goto Einval;
1029		opts->fscontext = s;
1030		break;
1031	case Opt_rootcontext:
1032		if (opts->rootcontext)
1033			goto Einval;
1034		opts->rootcontext = s;
1035		break;
1036	case Opt_defcontext:
1037		if (opts->context || opts->defcontext)
1038			goto Einval;
1039		opts->defcontext = s;
1040		break;
1041	}
1042	return 0;
1043Einval:
1044	pr_warn(SEL_MOUNT_FAIL_MSG);
1045	return -EINVAL;
1046}
1047
1048static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1049			       void **mnt_opts)
1050{
1051	int token = Opt_error;
1052	int rc, i;
1053
1054	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1055		if (strcmp(option, tokens[i].name) == 0) {
1056			token = tokens[i].opt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058		}
1059	}
1060
1061	if (token == Opt_error)
1062		return -EINVAL;
 
 
1063
1064	if (token != Opt_seclabel) {
1065		val = kmemdup_nul(val, len, GFP_KERNEL);
1066		if (!val) {
1067			rc = -ENOMEM;
1068			goto free_opt;
1069		}
 
 
 
 
 
 
 
 
 
 
 
 
1070	}
1071	rc = selinux_add_opt(token, val, mnt_opts);
1072	if (unlikely(rc)) {
1073		kfree(val);
1074		goto free_opt;
1075	}
 
 
 
 
 
 
 
 
 
1076	return rc;
 
 
 
 
 
 
 
 
 
1077
1078free_opt:
1079	if (*mnt_opts) {
1080		selinux_free_mnt_opts(*mnt_opts);
1081		*mnt_opts = NULL;
1082	}
 
 
 
 
 
 
 
 
 
 
 
1083	return rc;
1084}
1085
1086static int show_sid(struct seq_file *m, u32 sid)
 
1087{
1088	char *context = NULL;
1089	u32 len;
1090	int rc;
1091
1092	rc = security_sid_to_context(&selinux_state, sid,
1093					     &context, &len);
1094	if (!rc) {
1095		bool has_comma = context && strchr(context, ',');
1096
1097		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098		if (has_comma)
1099			seq_putc(m, '\"');
1100		seq_escape(m, context, "\"\n\\");
1101		if (has_comma)
1102			seq_putc(m, '\"');
1103	}
1104	kfree(context);
1105	return rc;
1106}
1107
1108static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109{
1110	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1111	int rc;
1112
1113	if (!(sbsec->flags & SE_SBINITIALIZED))
1114		return 0;
 
 
 
 
 
1115
1116	if (!selinux_initialized(&selinux_state))
1117		return 0;
1118
1119	if (sbsec->flags & FSCONTEXT_MNT) {
1120		seq_putc(m, ',');
1121		seq_puts(m, FSCONTEXT_STR);
1122		rc = show_sid(m, sbsec->sid);
1123		if (rc)
1124			return rc;
1125	}
1126	if (sbsec->flags & CONTEXT_MNT) {
1127		seq_putc(m, ',');
1128		seq_puts(m, CONTEXT_STR);
1129		rc = show_sid(m, sbsec->mntpoint_sid);
1130		if (rc)
1131			return rc;
1132	}
1133	if (sbsec->flags & DEFCONTEXT_MNT) {
1134		seq_putc(m, ',');
1135		seq_puts(m, DEFCONTEXT_STR);
1136		rc = show_sid(m, sbsec->def_sid);
1137		if (rc)
1138			return rc;
1139	}
1140	if (sbsec->flags & ROOTCONTEXT_MNT) {
1141		struct dentry *root = sb->s_root;
1142		struct inode_security_struct *isec = backing_inode_security(root);
1143		seq_putc(m, ',');
1144		seq_puts(m, ROOTCONTEXT_STR);
1145		rc = show_sid(m, isec->sid);
1146		if (rc)
1147			return rc;
1148	}
1149	if (sbsec->flags & SBLABEL_MNT) {
1150		seq_putc(m, ',');
1151		seq_puts(m, SECLABEL_STR);
1152	}
1153	return 0;
1154}
1155
1156static inline u16 inode_mode_to_security_class(umode_t mode)
1157{
1158	switch (mode & S_IFMT) {
1159	case S_IFSOCK:
1160		return SECCLASS_SOCK_FILE;
1161	case S_IFLNK:
1162		return SECCLASS_LNK_FILE;
1163	case S_IFREG:
1164		return SECCLASS_FILE;
1165	case S_IFBLK:
1166		return SECCLASS_BLK_FILE;
1167	case S_IFDIR:
1168		return SECCLASS_DIR;
1169	case S_IFCHR:
1170		return SECCLASS_CHR_FILE;
1171	case S_IFIFO:
1172		return SECCLASS_FIFO_FILE;
1173
1174	}
1175
1176	return SECCLASS_FILE;
1177}
1178
1179static inline int default_protocol_stream(int protocol)
1180{
1181	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1182		protocol == IPPROTO_MPTCP);
1183}
1184
1185static inline int default_protocol_dgram(int protocol)
1186{
1187	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1188}
1189
1190static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1191{
1192	int extsockclass = selinux_policycap_extsockclass();
1193
1194	switch (family) {
1195	case PF_UNIX:
1196		switch (type) {
1197		case SOCK_STREAM:
1198		case SOCK_SEQPACKET:
1199			return SECCLASS_UNIX_STREAM_SOCKET;
1200		case SOCK_DGRAM:
1201		case SOCK_RAW:
1202			return SECCLASS_UNIX_DGRAM_SOCKET;
1203		}
1204		break;
1205	case PF_INET:
1206	case PF_INET6:
1207		switch (type) {
1208		case SOCK_STREAM:
1209		case SOCK_SEQPACKET:
1210			if (default_protocol_stream(protocol))
1211				return SECCLASS_TCP_SOCKET;
1212			else if (extsockclass && protocol == IPPROTO_SCTP)
1213				return SECCLASS_SCTP_SOCKET;
1214			else
1215				return SECCLASS_RAWIP_SOCKET;
1216		case SOCK_DGRAM:
1217			if (default_protocol_dgram(protocol))
1218				return SECCLASS_UDP_SOCKET;
1219			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1220						  protocol == IPPROTO_ICMPV6))
1221				return SECCLASS_ICMP_SOCKET;
1222			else
1223				return SECCLASS_RAWIP_SOCKET;
1224		case SOCK_DCCP:
1225			return SECCLASS_DCCP_SOCKET;
1226		default:
1227			return SECCLASS_RAWIP_SOCKET;
1228		}
1229		break;
1230	case PF_NETLINK:
1231		switch (protocol) {
1232		case NETLINK_ROUTE:
1233			return SECCLASS_NETLINK_ROUTE_SOCKET;
1234		case NETLINK_SOCK_DIAG:
1235			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1236		case NETLINK_NFLOG:
1237			return SECCLASS_NETLINK_NFLOG_SOCKET;
1238		case NETLINK_XFRM:
1239			return SECCLASS_NETLINK_XFRM_SOCKET;
1240		case NETLINK_SELINUX:
1241			return SECCLASS_NETLINK_SELINUX_SOCKET;
1242		case NETLINK_ISCSI:
1243			return SECCLASS_NETLINK_ISCSI_SOCKET;
1244		case NETLINK_AUDIT:
1245			return SECCLASS_NETLINK_AUDIT_SOCKET;
1246		case NETLINK_FIB_LOOKUP:
1247			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1248		case NETLINK_CONNECTOR:
1249			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1250		case NETLINK_NETFILTER:
1251			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1252		case NETLINK_DNRTMSG:
1253			return SECCLASS_NETLINK_DNRT_SOCKET;
1254		case NETLINK_KOBJECT_UEVENT:
1255			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1256		case NETLINK_GENERIC:
1257			return SECCLASS_NETLINK_GENERIC_SOCKET;
1258		case NETLINK_SCSITRANSPORT:
1259			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1260		case NETLINK_RDMA:
1261			return SECCLASS_NETLINK_RDMA_SOCKET;
1262		case NETLINK_CRYPTO:
1263			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1264		default:
1265			return SECCLASS_NETLINK_SOCKET;
1266		}
1267	case PF_PACKET:
1268		return SECCLASS_PACKET_SOCKET;
1269	case PF_KEY:
1270		return SECCLASS_KEY_SOCKET;
1271	case PF_APPLETALK:
1272		return SECCLASS_APPLETALK_SOCKET;
1273	}
1274
1275	if (extsockclass) {
1276		switch (family) {
1277		case PF_AX25:
1278			return SECCLASS_AX25_SOCKET;
1279		case PF_IPX:
1280			return SECCLASS_IPX_SOCKET;
1281		case PF_NETROM:
1282			return SECCLASS_NETROM_SOCKET;
1283		case PF_ATMPVC:
1284			return SECCLASS_ATMPVC_SOCKET;
1285		case PF_X25:
1286			return SECCLASS_X25_SOCKET;
1287		case PF_ROSE:
1288			return SECCLASS_ROSE_SOCKET;
1289		case PF_DECnet:
1290			return SECCLASS_DECNET_SOCKET;
1291		case PF_ATMSVC:
1292			return SECCLASS_ATMSVC_SOCKET;
1293		case PF_RDS:
1294			return SECCLASS_RDS_SOCKET;
1295		case PF_IRDA:
1296			return SECCLASS_IRDA_SOCKET;
1297		case PF_PPPOX:
1298			return SECCLASS_PPPOX_SOCKET;
1299		case PF_LLC:
1300			return SECCLASS_LLC_SOCKET;
1301		case PF_CAN:
1302			return SECCLASS_CAN_SOCKET;
1303		case PF_TIPC:
1304			return SECCLASS_TIPC_SOCKET;
1305		case PF_BLUETOOTH:
1306			return SECCLASS_BLUETOOTH_SOCKET;
1307		case PF_IUCV:
1308			return SECCLASS_IUCV_SOCKET;
1309		case PF_RXRPC:
1310			return SECCLASS_RXRPC_SOCKET;
1311		case PF_ISDN:
1312			return SECCLASS_ISDN_SOCKET;
1313		case PF_PHONET:
1314			return SECCLASS_PHONET_SOCKET;
1315		case PF_IEEE802154:
1316			return SECCLASS_IEEE802154_SOCKET;
1317		case PF_CAIF:
1318			return SECCLASS_CAIF_SOCKET;
1319		case PF_ALG:
1320			return SECCLASS_ALG_SOCKET;
1321		case PF_NFC:
1322			return SECCLASS_NFC_SOCKET;
1323		case PF_VSOCK:
1324			return SECCLASS_VSOCK_SOCKET;
1325		case PF_KCM:
1326			return SECCLASS_KCM_SOCKET;
1327		case PF_QIPCRTR:
1328			return SECCLASS_QIPCRTR_SOCKET;
1329		case PF_SMC:
1330			return SECCLASS_SMC_SOCKET;
1331		case PF_XDP:
1332			return SECCLASS_XDP_SOCKET;
1333#if PF_MAX > 45
1334#error New address family defined, please update this function.
1335#endif
1336		}
1337	}
1338
1339	return SECCLASS_SOCKET;
1340}
1341
1342static int selinux_genfs_get_sid(struct dentry *dentry,
1343				 u16 tclass,
1344				 u16 flags,
1345				 u32 *sid)
1346{
1347	int rc;
1348	struct super_block *sb = dentry->d_sb;
1349	char *buffer, *path;
1350
1351	buffer = (char *)__get_free_page(GFP_KERNEL);
1352	if (!buffer)
1353		return -ENOMEM;
1354
1355	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1356	if (IS_ERR(path))
1357		rc = PTR_ERR(path);
1358	else {
1359		if (flags & SE_SBPROC) {
1360			/* each process gets a /proc/PID/ entry. Strip off the
1361			 * PID part to get a valid selinux labeling.
1362			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1363			while (path[1] >= '0' && path[1] <= '9') {
1364				path[1] = '/';
1365				path++;
1366			}
1367		}
1368		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1369					path, tclass, sid);
1370		if (rc == -ENOENT) {
1371			/* No match in policy, mark as unlabeled. */
1372			*sid = SECINITSID_UNLABELED;
1373			rc = 0;
1374		}
1375	}
1376	free_page((unsigned long)buffer);
1377	return rc;
1378}
1379
1380static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1381				  u32 def_sid, u32 *sid)
1382{
1383#define INITCONTEXTLEN 255
1384	char *context;
1385	unsigned int len;
1386	int rc;
1387
1388	len = INITCONTEXTLEN;
1389	context = kmalloc(len + 1, GFP_NOFS);
1390	if (!context)
1391		return -ENOMEM;
1392
1393	context[len] = '\0';
1394	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1395	if (rc == -ERANGE) {
1396		kfree(context);
1397
1398		/* Need a larger buffer.  Query for the right size. */
1399		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1400		if (rc < 0)
1401			return rc;
1402
1403		len = rc;
1404		context = kmalloc(len + 1, GFP_NOFS);
1405		if (!context)
1406			return -ENOMEM;
1407
1408		context[len] = '\0';
1409		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1410				    context, len);
1411	}
1412	if (rc < 0) {
1413		kfree(context);
1414		if (rc != -ENODATA) {
1415			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1416				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1417			return rc;
1418		}
1419		*sid = def_sid;
1420		return 0;
1421	}
1422
1423	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1424					     def_sid, GFP_NOFS);
1425	if (rc) {
1426		char *dev = inode->i_sb->s_id;
1427		unsigned long ino = inode->i_ino;
1428
1429		if (rc == -EINVAL) {
1430			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1431					      ino, dev, context);
1432		} else {
1433			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1434				__func__, context, -rc, dev, ino);
1435		}
1436	}
1437	kfree(context);
1438	return 0;
1439}
1440
1441/* The inode's security attributes must be initialized before first use. */
1442static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1443{
1444	struct superblock_security_struct *sbsec = NULL;
1445	struct inode_security_struct *isec = selinux_inode(inode);
1446	u32 task_sid, sid = 0;
1447	u16 sclass;
1448	struct dentry *dentry;
 
 
 
1449	int rc = 0;
1450
1451	if (isec->initialized == LABEL_INITIALIZED)
1452		return 0;
1453
1454	spin_lock(&isec->lock);
1455	if (isec->initialized == LABEL_INITIALIZED)
1456		goto out_unlock;
1457
1458	if (isec->sclass == SECCLASS_FILE)
1459		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1460
1461	sbsec = selinux_superblock(inode->i_sb);
1462	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1463		/* Defer initialization until selinux_complete_init,
1464		   after the initial policy is loaded and the security
1465		   server is ready to handle calls. */
1466		spin_lock(&sbsec->isec_lock);
1467		if (list_empty(&isec->list))
1468			list_add(&isec->list, &sbsec->isec_head);
1469		spin_unlock(&sbsec->isec_lock);
1470		goto out_unlock;
1471	}
1472
1473	sclass = isec->sclass;
1474	task_sid = isec->task_sid;
1475	sid = isec->sid;
1476	isec->initialized = LABEL_PENDING;
1477	spin_unlock(&isec->lock);
1478
1479	switch (sbsec->behavior) {
1480	case SECURITY_FS_USE_NATIVE:
1481		break;
1482	case SECURITY_FS_USE_XATTR:
1483		if (!(inode->i_opflags & IOP_XATTR)) {
1484			sid = sbsec->def_sid;
1485			break;
1486		}
1487		/* Need a dentry, since the xattr API requires one.
1488		   Life would be simpler if we could just pass the inode. */
1489		if (opt_dentry) {
1490			/* Called from d_instantiate or d_splice_alias. */
1491			dentry = dget(opt_dentry);
1492		} else {
1493			/*
1494			 * Called from selinux_complete_init, try to find a dentry.
1495			 * Some filesystems really want a connected one, so try
1496			 * that first.  We could split SECURITY_FS_USE_XATTR in
1497			 * two, depending upon that...
1498			 */
1499			dentry = d_find_alias(inode);
1500			if (!dentry)
1501				dentry = d_find_any_alias(inode);
1502		}
1503		if (!dentry) {
1504			/*
1505			 * this is can be hit on boot when a file is accessed
1506			 * before the policy is loaded.  When we load policy we
1507			 * may find inodes that have no dentry on the
1508			 * sbsec->isec_head list.  No reason to complain as these
1509			 * will get fixed up the next time we go through
1510			 * inode_doinit with a dentry, before these inodes could
1511			 * be used again by userspace.
1512			 */
1513			goto out_invalid;
1514		}
1515
1516		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1517					    &sid);
1518		dput(dentry);
1519		if (rc)
 
1520			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1521		break;
1522	case SECURITY_FS_USE_TASK:
1523		sid = task_sid;
1524		break;
1525	case SECURITY_FS_USE_TRANS:
1526		/* Default to the fs SID. */
1527		sid = sbsec->sid;
1528
1529		/* Try to obtain a transition SID. */
1530		rc = security_transition_sid(&selinux_state, task_sid, sid,
1531					     sclass, NULL, &sid);
1532		if (rc)
1533			goto out;
1534		break;
1535	case SECURITY_FS_USE_MNTPOINT:
1536		sid = sbsec->mntpoint_sid;
1537		break;
1538	default:
1539		/* Default to the fs superblock SID. */
1540		sid = sbsec->sid;
1541
1542		if ((sbsec->flags & SE_SBGENFS) &&
1543		     (!S_ISLNK(inode->i_mode) ||
1544		      selinux_policycap_genfs_seclabel_symlinks())) {
1545			/* We must have a dentry to determine the label on
1546			 * procfs inodes */
1547			if (opt_dentry) {
1548				/* Called from d_instantiate or
1549				 * d_splice_alias. */
1550				dentry = dget(opt_dentry);
1551			} else {
1552				/* Called from selinux_complete_init, try to
1553				 * find a dentry.  Some filesystems really want
1554				 * a connected one, so try that first.
1555				 */
1556				dentry = d_find_alias(inode);
1557				if (!dentry)
1558					dentry = d_find_any_alias(inode);
1559			}
1560			/*
1561			 * This can be hit on boot when a file is accessed
1562			 * before the policy is loaded.  When we load policy we
1563			 * may find inodes that have no dentry on the
1564			 * sbsec->isec_head list.  No reason to complain as
1565			 * these will get fixed up the next time we go through
1566			 * inode_doinit() with a dentry, before these inodes
1567			 * could be used again by userspace.
1568			 */
1569			if (!dentry)
1570				goto out_invalid;
1571			rc = selinux_genfs_get_sid(dentry, sclass,
1572						   sbsec->flags, &sid);
1573			if (rc) {
1574				dput(dentry);
1575				goto out;
1576			}
1577
1578			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1579			    (inode->i_opflags & IOP_XATTR)) {
1580				rc = inode_doinit_use_xattr(inode, dentry,
1581							    sid, &sid);
1582				if (rc) {
1583					dput(dentry);
1584					goto out;
1585				}
1586			}
1587			dput(dentry);
 
 
1588		}
1589		break;
1590	}
1591
1592out:
1593	spin_lock(&isec->lock);
1594	if (isec->initialized == LABEL_PENDING) {
1595		if (rc) {
1596			isec->initialized = LABEL_INVALID;
1597			goto out_unlock;
1598		}
 
1599		isec->initialized = LABEL_INITIALIZED;
1600		isec->sid = sid;
1601	}
1602
1603out_unlock:
1604	spin_unlock(&isec->lock);
1605	return rc;
1606
1607out_invalid:
1608	spin_lock(&isec->lock);
1609	if (isec->initialized == LABEL_PENDING) {
1610		isec->initialized = LABEL_INVALID;
1611		isec->sid = sid;
1612	}
1613	spin_unlock(&isec->lock);
1614	return 0;
1615}
1616
1617/* Convert a Linux signal to an access vector. */
1618static inline u32 signal_to_av(int sig)
1619{
1620	u32 perm = 0;
1621
1622	switch (sig) {
1623	case SIGCHLD:
1624		/* Commonly granted from child to parent. */
1625		perm = PROCESS__SIGCHLD;
1626		break;
1627	case SIGKILL:
1628		/* Cannot be caught or ignored */
1629		perm = PROCESS__SIGKILL;
1630		break;
1631	case SIGSTOP:
1632		/* Cannot be caught or ignored */
1633		perm = PROCESS__SIGSTOP;
1634		break;
1635	default:
1636		/* All other signals. */
1637		perm = PROCESS__SIGNAL;
1638		break;
1639	}
1640
1641	return perm;
1642}
1643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644#if CAP_LAST_CAP > 63
1645#error Fix SELinux to handle capabilities > 63.
1646#endif
1647
1648/* Check whether a task is allowed to use a capability. */
1649static int cred_has_capability(const struct cred *cred,
1650			       int cap, unsigned int opts, bool initns)
1651{
1652	struct common_audit_data ad;
1653	struct av_decision avd;
1654	u16 sclass;
1655	u32 sid = cred_sid(cred);
1656	u32 av = CAP_TO_MASK(cap);
1657	int rc;
1658
1659	ad.type = LSM_AUDIT_DATA_CAP;
1660	ad.u.cap = cap;
1661
1662	switch (CAP_TO_INDEX(cap)) {
1663	case 0:
1664		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1665		break;
1666	case 1:
1667		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1668		break;
1669	default:
1670		pr_err("SELinux:  out of range capability %d\n", cap);
 
1671		BUG();
1672		return -EINVAL;
1673	}
1674
1675	rc = avc_has_perm_noaudit(&selinux_state,
1676				  sid, sid, sclass, av, 0, &avd);
1677	if (!(opts & CAP_OPT_NOAUDIT)) {
1678		int rc2 = avc_audit(&selinux_state,
1679				    sid, sid, sclass, av, &avd, rc, &ad);
1680		if (rc2)
1681			return rc2;
1682	}
1683	return rc;
1684}
1685
 
 
 
 
 
 
 
 
 
 
1686/* Check whether a task has a particular permission to an inode.
1687   The 'adp' parameter is optional and allows other audit
1688   data to be passed (e.g. the dentry). */
1689static int inode_has_perm(const struct cred *cred,
1690			  struct inode *inode,
1691			  u32 perms,
1692			  struct common_audit_data *adp)
1693{
1694	struct inode_security_struct *isec;
1695	u32 sid;
1696
1697	validate_creds(cred);
1698
1699	if (unlikely(IS_PRIVATE(inode)))
1700		return 0;
1701
1702	sid = cred_sid(cred);
1703	isec = selinux_inode(inode);
1704
1705	return avc_has_perm(&selinux_state,
1706			    sid, isec->sid, isec->sclass, perms, adp);
1707}
1708
1709/* Same as inode_has_perm, but pass explicit audit data containing
1710   the dentry to help the auditing code to more easily generate the
1711   pathname if needed. */
1712static inline int dentry_has_perm(const struct cred *cred,
1713				  struct dentry *dentry,
1714				  u32 av)
1715{
1716	struct inode *inode = d_backing_inode(dentry);
1717	struct common_audit_data ad;
1718
1719	ad.type = LSM_AUDIT_DATA_DENTRY;
1720	ad.u.dentry = dentry;
1721	__inode_security_revalidate(inode, dentry, true);
1722	return inode_has_perm(cred, inode, av, &ad);
1723}
1724
1725/* Same as inode_has_perm, but pass explicit audit data containing
1726   the path to help the auditing code to more easily generate the
1727   pathname if needed. */
1728static inline int path_has_perm(const struct cred *cred,
1729				const struct path *path,
1730				u32 av)
1731{
1732	struct inode *inode = d_backing_inode(path->dentry);
1733	struct common_audit_data ad;
1734
1735	ad.type = LSM_AUDIT_DATA_PATH;
1736	ad.u.path = *path;
1737	__inode_security_revalidate(inode, path->dentry, true);
1738	return inode_has_perm(cred, inode, av, &ad);
1739}
1740
1741/* Same as path_has_perm, but uses the inode from the file struct. */
1742static inline int file_path_has_perm(const struct cred *cred,
1743				     struct file *file,
1744				     u32 av)
1745{
1746	struct common_audit_data ad;
1747
1748	ad.type = LSM_AUDIT_DATA_FILE;
1749	ad.u.file = file;
1750	return inode_has_perm(cred, file_inode(file), av, &ad);
1751}
1752
1753#ifdef CONFIG_BPF_SYSCALL
1754static int bpf_fd_pass(struct file *file, u32 sid);
1755#endif
1756
1757/* Check whether a task can use an open file descriptor to
1758   access an inode in a given way.  Check access to the
1759   descriptor itself, and then use dentry_has_perm to
1760   check a particular permission to the file.
1761   Access to the descriptor is implicitly granted if it
1762   has the same SID as the process.  If av is zero, then
1763   access to the file is not checked, e.g. for cases
1764   where only the descriptor is affected like seek. */
1765static int file_has_perm(const struct cred *cred,
1766			 struct file *file,
1767			 u32 av)
1768{
1769	struct file_security_struct *fsec = selinux_file(file);
1770	struct inode *inode = file_inode(file);
1771	struct common_audit_data ad;
1772	u32 sid = cred_sid(cred);
1773	int rc;
1774
1775	ad.type = LSM_AUDIT_DATA_FILE;
1776	ad.u.file = file;
1777
1778	if (sid != fsec->sid) {
1779		rc = avc_has_perm(&selinux_state,
1780				  sid, fsec->sid,
1781				  SECCLASS_FD,
1782				  FD__USE,
1783				  &ad);
1784		if (rc)
1785			goto out;
1786	}
1787
1788#ifdef CONFIG_BPF_SYSCALL
1789	rc = bpf_fd_pass(file, cred_sid(cred));
1790	if (rc)
1791		return rc;
1792#endif
1793
1794	/* av is zero if only checking access to the descriptor. */
1795	rc = 0;
1796	if (av)
1797		rc = inode_has_perm(cred, inode, av, &ad);
1798
1799out:
1800	return rc;
1801}
1802
1803/*
1804 * Determine the label for an inode that might be unioned.
1805 */
1806static int
1807selinux_determine_inode_label(const struct task_security_struct *tsec,
1808				 struct inode *dir,
1809				 const struct qstr *name, u16 tclass,
1810				 u32 *_new_isid)
1811{
1812	const struct superblock_security_struct *sbsec =
1813						selinux_superblock(dir->i_sb);
1814
1815	if ((sbsec->flags & SE_SBINITIALIZED) &&
1816	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1817		*_new_isid = sbsec->mntpoint_sid;
1818	} else if ((sbsec->flags & SBLABEL_MNT) &&
1819		   tsec->create_sid) {
1820		*_new_isid = tsec->create_sid;
1821	} else {
1822		const struct inode_security_struct *dsec = inode_security(dir);
1823		return security_transition_sid(&selinux_state, tsec->sid,
1824					       dsec->sid, tclass,
1825					       name, _new_isid);
1826	}
1827
1828	return 0;
1829}
1830
1831/* Check whether a task can create a file. */
1832static int may_create(struct inode *dir,
1833		      struct dentry *dentry,
1834		      u16 tclass)
1835{
1836	const struct task_security_struct *tsec = selinux_cred(current_cred());
1837	struct inode_security_struct *dsec;
1838	struct superblock_security_struct *sbsec;
1839	u32 sid, newsid;
1840	struct common_audit_data ad;
1841	int rc;
1842
1843	dsec = inode_security(dir);
1844	sbsec = selinux_superblock(dir->i_sb);
1845
1846	sid = tsec->sid;
1847
1848	ad.type = LSM_AUDIT_DATA_DENTRY;
1849	ad.u.dentry = dentry;
1850
1851	rc = avc_has_perm(&selinux_state,
1852			  sid, dsec->sid, SECCLASS_DIR,
1853			  DIR__ADD_NAME | DIR__SEARCH,
1854			  &ad);
1855	if (rc)
1856		return rc;
1857
1858	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1859					   &newsid);
1860	if (rc)
1861		return rc;
1862
1863	rc = avc_has_perm(&selinux_state,
1864			  sid, newsid, tclass, FILE__CREATE, &ad);
1865	if (rc)
1866		return rc;
1867
1868	return avc_has_perm(&selinux_state,
1869			    newsid, sbsec->sid,
1870			    SECCLASS_FILESYSTEM,
1871			    FILESYSTEM__ASSOCIATE, &ad);
1872}
1873
 
 
 
 
 
 
 
 
 
1874#define MAY_LINK	0
1875#define MAY_UNLINK	1
1876#define MAY_RMDIR	2
1877
1878/* Check whether a task can link, unlink, or rmdir a file/directory. */
1879static int may_link(struct inode *dir,
1880		    struct dentry *dentry,
1881		    int kind)
1882
1883{
1884	struct inode_security_struct *dsec, *isec;
1885	struct common_audit_data ad;
1886	u32 sid = current_sid();
1887	u32 av;
1888	int rc;
1889
1890	dsec = inode_security(dir);
1891	isec = backing_inode_security(dentry);
1892
1893	ad.type = LSM_AUDIT_DATA_DENTRY;
1894	ad.u.dentry = dentry;
1895
1896	av = DIR__SEARCH;
1897	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1898	rc = avc_has_perm(&selinux_state,
1899			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1900	if (rc)
1901		return rc;
1902
1903	switch (kind) {
1904	case MAY_LINK:
1905		av = FILE__LINK;
1906		break;
1907	case MAY_UNLINK:
1908		av = FILE__UNLINK;
1909		break;
1910	case MAY_RMDIR:
1911		av = DIR__RMDIR;
1912		break;
1913	default:
1914		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1915			__func__, kind);
1916		return 0;
1917	}
1918
1919	rc = avc_has_perm(&selinux_state,
1920			  sid, isec->sid, isec->sclass, av, &ad);
1921	return rc;
1922}
1923
1924static inline int may_rename(struct inode *old_dir,
1925			     struct dentry *old_dentry,
1926			     struct inode *new_dir,
1927			     struct dentry *new_dentry)
1928{
1929	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1930	struct common_audit_data ad;
1931	u32 sid = current_sid();
1932	u32 av;
1933	int old_is_dir, new_is_dir;
1934	int rc;
1935
1936	old_dsec = inode_security(old_dir);
1937	old_isec = backing_inode_security(old_dentry);
1938	old_is_dir = d_is_dir(old_dentry);
1939	new_dsec = inode_security(new_dir);
1940
1941	ad.type = LSM_AUDIT_DATA_DENTRY;
1942
1943	ad.u.dentry = old_dentry;
1944	rc = avc_has_perm(&selinux_state,
1945			  sid, old_dsec->sid, SECCLASS_DIR,
1946			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1947	if (rc)
1948		return rc;
1949	rc = avc_has_perm(&selinux_state,
1950			  sid, old_isec->sid,
1951			  old_isec->sclass, FILE__RENAME, &ad);
1952	if (rc)
1953		return rc;
1954	if (old_is_dir && new_dir != old_dir) {
1955		rc = avc_has_perm(&selinux_state,
1956				  sid, old_isec->sid,
1957				  old_isec->sclass, DIR__REPARENT, &ad);
1958		if (rc)
1959			return rc;
1960	}
1961
1962	ad.u.dentry = new_dentry;
1963	av = DIR__ADD_NAME | DIR__SEARCH;
1964	if (d_is_positive(new_dentry))
1965		av |= DIR__REMOVE_NAME;
1966	rc = avc_has_perm(&selinux_state,
1967			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1968	if (rc)
1969		return rc;
1970	if (d_is_positive(new_dentry)) {
1971		new_isec = backing_inode_security(new_dentry);
1972		new_is_dir = d_is_dir(new_dentry);
1973		rc = avc_has_perm(&selinux_state,
1974				  sid, new_isec->sid,
1975				  new_isec->sclass,
1976				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1977		if (rc)
1978			return rc;
1979	}
1980
1981	return 0;
1982}
1983
1984/* Check whether a task can perform a filesystem operation. */
1985static int superblock_has_perm(const struct cred *cred,
1986			       struct super_block *sb,
1987			       u32 perms,
1988			       struct common_audit_data *ad)
1989{
1990	struct superblock_security_struct *sbsec;
1991	u32 sid = cred_sid(cred);
1992
1993	sbsec = selinux_superblock(sb);
1994	return avc_has_perm(&selinux_state,
1995			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1996}
1997
1998/* Convert a Linux mode and permission mask to an access vector. */
1999static inline u32 file_mask_to_av(int mode, int mask)
2000{
2001	u32 av = 0;
2002
2003	if (!S_ISDIR(mode)) {
2004		if (mask & MAY_EXEC)
2005			av |= FILE__EXECUTE;
2006		if (mask & MAY_READ)
2007			av |= FILE__READ;
2008
2009		if (mask & MAY_APPEND)
2010			av |= FILE__APPEND;
2011		else if (mask & MAY_WRITE)
2012			av |= FILE__WRITE;
2013
2014	} else {
2015		if (mask & MAY_EXEC)
2016			av |= DIR__SEARCH;
2017		if (mask & MAY_WRITE)
2018			av |= DIR__WRITE;
2019		if (mask & MAY_READ)
2020			av |= DIR__READ;
2021	}
2022
2023	return av;
2024}
2025
2026/* Convert a Linux file to an access vector. */
2027static inline u32 file_to_av(struct file *file)
2028{
2029	u32 av = 0;
2030
2031	if (file->f_mode & FMODE_READ)
2032		av |= FILE__READ;
2033	if (file->f_mode & FMODE_WRITE) {
2034		if (file->f_flags & O_APPEND)
2035			av |= FILE__APPEND;
2036		else
2037			av |= FILE__WRITE;
2038	}
2039	if (!av) {
2040		/*
2041		 * Special file opened with flags 3 for ioctl-only use.
2042		 */
2043		av = FILE__IOCTL;
2044	}
2045
2046	return av;
2047}
2048
2049/*
2050 * Convert a file to an access vector and include the correct
2051 * open permission.
2052 */
2053static inline u32 open_file_to_av(struct file *file)
2054{
2055	u32 av = file_to_av(file);
2056	struct inode *inode = file_inode(file);
2057
2058	if (selinux_policycap_openperm() &&
2059	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2060		av |= FILE__OPEN;
2061
2062	return av;
2063}
2064
2065/* Hook functions begin here. */
2066
2067static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2068{
2069	return avc_has_perm(&selinux_state,
2070			    current_sid(), task_sid_binder(mgr), SECCLASS_BINDER,
 
 
2071			    BINDER__SET_CONTEXT_MGR, NULL);
2072}
2073
2074static int selinux_binder_transaction(struct task_struct *from,
2075				      struct task_struct *to)
2076{
2077	u32 mysid = current_sid();
2078	u32 fromsid = task_sid_binder(from);
 
2079	int rc;
2080
2081	if (mysid != fromsid) {
2082		rc = avc_has_perm(&selinux_state,
2083				  mysid, fromsid, SECCLASS_BINDER,
2084				  BINDER__IMPERSONATE, NULL);
2085		if (rc)
2086			return rc;
2087	}
2088
2089	return avc_has_perm(&selinux_state, fromsid, task_sid_binder(to),
2090			    SECCLASS_BINDER, BINDER__CALL, NULL);
2091}
2092
2093static int selinux_binder_transfer_binder(struct task_struct *from,
2094					  struct task_struct *to)
2095{
2096	return avc_has_perm(&selinux_state,
2097			    task_sid_binder(from), task_sid_binder(to),
2098			    SECCLASS_BINDER, BINDER__TRANSFER,
 
2099			    NULL);
2100}
2101
2102static int selinux_binder_transfer_file(struct task_struct *from,
2103					struct task_struct *to,
2104					struct file *file)
2105{
2106	u32 sid = task_sid_binder(to);
2107	struct file_security_struct *fsec = selinux_file(file);
2108	struct dentry *dentry = file->f_path.dentry;
2109	struct inode_security_struct *isec;
2110	struct common_audit_data ad;
2111	int rc;
2112
2113	ad.type = LSM_AUDIT_DATA_PATH;
2114	ad.u.path = file->f_path;
2115
2116	if (sid != fsec->sid) {
2117		rc = avc_has_perm(&selinux_state,
2118				  sid, fsec->sid,
2119				  SECCLASS_FD,
2120				  FD__USE,
2121				  &ad);
2122		if (rc)
2123			return rc;
2124	}
2125
2126#ifdef CONFIG_BPF_SYSCALL
2127	rc = bpf_fd_pass(file, sid);
2128	if (rc)
2129		return rc;
2130#endif
2131
2132	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2133		return 0;
2134
2135	isec = backing_inode_security(dentry);
2136	return avc_has_perm(&selinux_state,
2137			    sid, isec->sid, isec->sclass, file_to_av(file),
2138			    &ad);
2139}
2140
2141static int selinux_ptrace_access_check(struct task_struct *child,
2142				       unsigned int mode)
2143{
2144	u32 sid = current_sid();
2145	u32 csid = task_sid_obj(child);
2146
2147	if (mode & PTRACE_MODE_READ)
2148		return avc_has_perm(&selinux_state,
2149				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150
2151	return avc_has_perm(&selinux_state,
2152			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157	return avc_has_perm(&selinux_state,
2158			    task_sid_obj(parent), task_sid_obj(current),
2159			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2160}
2161
2162static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2163			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2164{
2165	return avc_has_perm(&selinux_state,
2166			    current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2167			    PROCESS__GETCAP, NULL);
2168}
2169
2170static int selinux_capset(struct cred *new, const struct cred *old,
2171			  const kernel_cap_t *effective,
2172			  const kernel_cap_t *inheritable,
2173			  const kernel_cap_t *permitted)
2174{
2175	return avc_has_perm(&selinux_state,
2176			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2177			    PROCESS__SETCAP, NULL);
2178}
2179
2180/*
2181 * (This comment used to live with the selinux_task_setuid hook,
2182 * which was removed).
2183 *
2184 * Since setuid only affects the current process, and since the SELinux
2185 * controls are not based on the Linux identity attributes, SELinux does not
2186 * need to control this operation.  However, SELinux does control the use of
2187 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2188 */
2189
2190static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2191			   int cap, unsigned int opts)
2192{
2193	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2194}
2195
2196static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2197{
2198	const struct cred *cred = current_cred();
2199	int rc = 0;
2200
2201	if (!sb)
2202		return 0;
2203
2204	switch (cmds) {
2205	case Q_SYNC:
2206	case Q_QUOTAON:
2207	case Q_QUOTAOFF:
2208	case Q_SETINFO:
2209	case Q_SETQUOTA:
2210	case Q_XQUOTAOFF:
2211	case Q_XQUOTAON:
2212	case Q_XSETQLIM:
2213		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2214		break;
2215	case Q_GETFMT:
2216	case Q_GETINFO:
2217	case Q_GETQUOTA:
2218	case Q_XGETQUOTA:
2219	case Q_XGETQSTAT:
2220	case Q_XGETQSTATV:
2221	case Q_XGETNEXTQUOTA:
2222		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2223		break;
2224	default:
2225		rc = 0;  /* let the kernel handle invalid cmds */
2226		break;
2227	}
2228	return rc;
2229}
2230
2231static int selinux_quota_on(struct dentry *dentry)
2232{
2233	const struct cred *cred = current_cred();
2234
2235	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2236}
2237
2238static int selinux_syslog(int type)
2239{
 
 
2240	switch (type) {
2241	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2242	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2243		return avc_has_perm(&selinux_state,
2244				    current_sid(), SECINITSID_KERNEL,
2245				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2246	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2247	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2248	/* Set level of messages printed to console */
2249	case SYSLOG_ACTION_CONSOLE_LEVEL:
2250		return avc_has_perm(&selinux_state,
2251				    current_sid(), SECINITSID_KERNEL,
2252				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2253				    NULL);
2254	}
2255	/* All other syslog types */
2256	return avc_has_perm(&selinux_state,
2257			    current_sid(), SECINITSID_KERNEL,
2258			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2259}
2260
2261/*
2262 * Check that a process has enough memory to allocate a new virtual
2263 * mapping. 0 means there is enough memory for the allocation to
2264 * succeed and -ENOMEM implies there is not.
2265 *
2266 * Do not audit the selinux permission check, as this is applied to all
2267 * processes that allocate mappings.
2268 */
2269static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2270{
2271	int rc, cap_sys_admin = 0;
2272
2273	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2274				 CAP_OPT_NOAUDIT, true);
2275	if (rc == 0)
2276		cap_sys_admin = 1;
2277
2278	return cap_sys_admin;
2279}
2280
2281/* binprm security operations */
2282
2283static u32 ptrace_parent_sid(void)
2284{
2285	u32 sid = 0;
2286	struct task_struct *tracer;
2287
2288	rcu_read_lock();
2289	tracer = ptrace_parent(current);
2290	if (tracer)
2291		sid = task_sid_obj(tracer);
2292	rcu_read_unlock();
2293
2294	return sid;
2295}
2296
2297static int check_nnp_nosuid(const struct linux_binprm *bprm,
2298			    const struct task_security_struct *old_tsec,
2299			    const struct task_security_struct *new_tsec)
2300{
2301	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2302	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2303	int rc;
2304	u32 av;
2305
2306	if (!nnp && !nosuid)
2307		return 0; /* neither NNP nor nosuid */
2308
2309	if (new_tsec->sid == old_tsec->sid)
2310		return 0; /* No change in credentials */
2311
2312	/*
2313	 * If the policy enables the nnp_nosuid_transition policy capability,
2314	 * then we permit transitions under NNP or nosuid if the
2315	 * policy allows the corresponding permission between
2316	 * the old and new contexts.
2317	 */
2318	if (selinux_policycap_nnp_nosuid_transition()) {
2319		av = 0;
 
 
 
 
 
2320		if (nnp)
2321			av |= PROCESS2__NNP_TRANSITION;
2322		if (nosuid)
2323			av |= PROCESS2__NOSUID_TRANSITION;
2324		rc = avc_has_perm(&selinux_state,
2325				  old_tsec->sid, new_tsec->sid,
2326				  SECCLASS_PROCESS2, av, NULL);
2327		if (!rc)
2328			return 0;
2329	}
2330
2331	/*
2332	 * We also permit NNP or nosuid transitions to bounded SIDs,
2333	 * i.e. SIDs that are guaranteed to only be allowed a subset
2334	 * of the permissions of the current SID.
2335	 */
2336	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2337					 new_tsec->sid);
2338	if (!rc)
2339		return 0;
2340
2341	/*
2342	 * On failure, preserve the errno values for NNP vs nosuid.
2343	 * NNP:  Operation not permitted for caller.
2344	 * nosuid:  Permission denied to file.
2345	 */
2346	if (nnp)
2347		return -EPERM;
2348	return -EACCES;
2349}
2350
2351static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2352{
2353	const struct task_security_struct *old_tsec;
2354	struct task_security_struct *new_tsec;
2355	struct inode_security_struct *isec;
2356	struct common_audit_data ad;
2357	struct inode *inode = file_inode(bprm->file);
2358	int rc;
2359
2360	/* SELinux context only depends on initial program or script and not
2361	 * the script interpreter */
 
 
2362
2363	old_tsec = selinux_cred(current_cred());
2364	new_tsec = selinux_cred(bprm->cred);
2365	isec = inode_security(inode);
2366
2367	/* Default to the current task SID. */
2368	new_tsec->sid = old_tsec->sid;
2369	new_tsec->osid = old_tsec->sid;
2370
2371	/* Reset fs, key, and sock SIDs on execve. */
2372	new_tsec->create_sid = 0;
2373	new_tsec->keycreate_sid = 0;
2374	new_tsec->sockcreate_sid = 0;
2375
2376	if (old_tsec->exec_sid) {
2377		new_tsec->sid = old_tsec->exec_sid;
2378		/* Reset exec SID on execve. */
2379		new_tsec->exec_sid = 0;
2380
2381		/* Fail on NNP or nosuid if not an allowed transition. */
2382		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2383		if (rc)
2384			return rc;
2385	} else {
2386		/* Check for a default transition on this program. */
2387		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2388					     isec->sid, SECCLASS_PROCESS, NULL,
2389					     &new_tsec->sid);
2390		if (rc)
2391			return rc;
2392
2393		/*
2394		 * Fallback to old SID on NNP or nosuid if not an allowed
2395		 * transition.
2396		 */
2397		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2398		if (rc)
2399			new_tsec->sid = old_tsec->sid;
2400	}
2401
2402	ad.type = LSM_AUDIT_DATA_FILE;
2403	ad.u.file = bprm->file;
2404
2405	if (new_tsec->sid == old_tsec->sid) {
2406		rc = avc_has_perm(&selinux_state,
2407				  old_tsec->sid, isec->sid,
2408				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2409		if (rc)
2410			return rc;
2411	} else {
2412		/* Check permissions for the transition. */
2413		rc = avc_has_perm(&selinux_state,
2414				  old_tsec->sid, new_tsec->sid,
2415				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2416		if (rc)
2417			return rc;
2418
2419		rc = avc_has_perm(&selinux_state,
2420				  new_tsec->sid, isec->sid,
2421				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2422		if (rc)
2423			return rc;
2424
2425		/* Check for shared state */
2426		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2427			rc = avc_has_perm(&selinux_state,
2428					  old_tsec->sid, new_tsec->sid,
2429					  SECCLASS_PROCESS, PROCESS__SHARE,
2430					  NULL);
2431			if (rc)
2432				return -EPERM;
2433		}
2434
2435		/* Make sure that anyone attempting to ptrace over a task that
2436		 * changes its SID has the appropriate permit */
2437		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2438			u32 ptsid = ptrace_parent_sid();
 
2439			if (ptsid != 0) {
2440				rc = avc_has_perm(&selinux_state,
2441						  ptsid, new_tsec->sid,
2442						  SECCLASS_PROCESS,
2443						  PROCESS__PTRACE, NULL);
2444				if (rc)
2445					return -EPERM;
2446			}
2447		}
2448
2449		/* Clear any possibly unsafe personality bits on exec: */
2450		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
2451
 
 
 
 
 
 
 
 
 
 
 
 
 
2452		/* Enable secure mode for SIDs transitions unless
2453		   the noatsecure permission is granted between
2454		   the two SIDs, i.e. ahp returns 0. */
2455		rc = avc_has_perm(&selinux_state,
2456				  old_tsec->sid, new_tsec->sid,
2457				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2458				  NULL);
2459		bprm->secureexec |= !!rc;
2460	}
2461
2462	return 0;
2463}
2464
2465static int match_file(const void *p, struct file *file, unsigned fd)
2466{
2467	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2468}
2469
2470/* Derived from fs/exec.c:flush_old_files. */
2471static inline void flush_unauthorized_files(const struct cred *cred,
2472					    struct files_struct *files)
2473{
2474	struct file *file, *devnull = NULL;
2475	struct tty_struct *tty;
2476	int drop_tty = 0;
2477	unsigned n;
2478
2479	tty = get_current_tty();
2480	if (tty) {
2481		spin_lock(&tty->files_lock);
2482		if (!list_empty(&tty->tty_files)) {
2483			struct tty_file_private *file_priv;
2484
2485			/* Revalidate access to controlling tty.
2486			   Use file_path_has_perm on the tty path directly
2487			   rather than using file_has_perm, as this particular
2488			   open file may belong to another process and we are
2489			   only interested in the inode-based check here. */
2490			file_priv = list_first_entry(&tty->tty_files,
2491						struct tty_file_private, list);
2492			file = file_priv->file;
2493			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2494				drop_tty = 1;
2495		}
2496		spin_unlock(&tty->files_lock);
2497		tty_kref_put(tty);
2498	}
2499	/* Reset controlling tty. */
2500	if (drop_tty)
2501		no_tty();
2502
2503	/* Revalidate access to inherited open files. */
2504	n = iterate_fd(files, 0, match_file, cred);
2505	if (!n) /* none found? */
2506		return;
2507
2508	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2509	if (IS_ERR(devnull))
2510		devnull = NULL;
2511	/* replace all the matching ones with this */
2512	do {
2513		replace_fd(n - 1, devnull, 0);
2514	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2515	if (devnull)
2516		fput(devnull);
2517}
2518
2519/*
2520 * Prepare a process for imminent new credential changes due to exec
2521 */
2522static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2523{
2524	struct task_security_struct *new_tsec;
2525	struct rlimit *rlim, *initrlim;
2526	int rc, i;
2527
2528	new_tsec = selinux_cred(bprm->cred);
2529	if (new_tsec->sid == new_tsec->osid)
2530		return;
2531
2532	/* Close files for which the new task SID is not authorized. */
2533	flush_unauthorized_files(bprm->cred, current->files);
2534
2535	/* Always clear parent death signal on SID transitions. */
2536	current->pdeath_signal = 0;
2537
2538	/* Check whether the new SID can inherit resource limits from the old
2539	 * SID.  If not, reset all soft limits to the lower of the current
2540	 * task's hard limit and the init task's soft limit.
2541	 *
2542	 * Note that the setting of hard limits (even to lower them) can be
2543	 * controlled by the setrlimit check.  The inclusion of the init task's
2544	 * soft limit into the computation is to avoid resetting soft limits
2545	 * higher than the default soft limit for cases where the default is
2546	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2547	 */
2548	rc = avc_has_perm(&selinux_state,
2549			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2550			  PROCESS__RLIMITINH, NULL);
2551	if (rc) {
2552		/* protect against do_prlimit() */
2553		task_lock(current);
2554		for (i = 0; i < RLIM_NLIMITS; i++) {
2555			rlim = current->signal->rlim + i;
2556			initrlim = init_task.signal->rlim + i;
2557			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2558		}
2559		task_unlock(current);
2560		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2561			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2562	}
2563}
2564
2565/*
2566 * Clean up the process immediately after the installation of new credentials
2567 * due to exec
2568 */
2569static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2570{
2571	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2572	u32 osid, sid;
2573	int rc;
2574
2575	osid = tsec->osid;
2576	sid = tsec->sid;
2577
2578	if (sid == osid)
2579		return;
2580
2581	/* Check whether the new SID can inherit signal state from the old SID.
2582	 * If not, clear itimers to avoid subsequent signal generation and
2583	 * flush and unblock signals.
2584	 *
2585	 * This must occur _after_ the task SID has been updated so that any
2586	 * kill done after the flush will be checked against the new SID.
2587	 */
2588	rc = avc_has_perm(&selinux_state,
2589			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2590	if (rc) {
2591		clear_itimer();
2592
 
 
 
2593		spin_lock_irq(&current->sighand->siglock);
2594		if (!fatal_signal_pending(current)) {
2595			flush_sigqueue(&current->pending);
2596			flush_sigqueue(&current->signal->shared_pending);
2597			flush_signal_handlers(current, 1);
2598			sigemptyset(&current->blocked);
2599			recalc_sigpending();
2600		}
2601		spin_unlock_irq(&current->sighand->siglock);
2602	}
2603
2604	/* Wake up the parent if it is waiting so that it can recheck
2605	 * wait permission to the new task SID. */
2606	read_lock(&tasklist_lock);
2607	__wake_up_parent(current, current->real_parent);
2608	read_unlock(&tasklist_lock);
2609}
2610
2611/* superblock security operations */
2612
2613static int selinux_sb_alloc_security(struct super_block *sb)
2614{
2615	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2616
2617	mutex_init(&sbsec->lock);
2618	INIT_LIST_HEAD(&sbsec->isec_head);
2619	spin_lock_init(&sbsec->isec_lock);
2620	sbsec->sid = SECINITSID_UNLABELED;
2621	sbsec->def_sid = SECINITSID_FILE;
2622	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2623
2624	return 0;
 
 
2625}
2626
2627static inline int opt_len(const char *s)
2628{
2629	bool open_quote = false;
2630	int len;
2631	char c;
2632
2633	for (len = 0; (c = s[len]) != '\0'; len++) {
2634		if (c == '"')
2635			open_quote = !open_quote;
2636		if (c == ',' && !open_quote)
2637			break;
2638	}
2639	return len;
2640}
2641
2642static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2643{
2644	char *from = options;
2645	char *to = options;
2646	bool first = true;
2647	int rc;
 
 
2648
2649	while (1) {
2650		int len = opt_len(from);
2651		int token;
2652		char *arg = NULL;
 
 
 
 
 
 
2653
2654		token = match_opt_prefix(from, len, &arg);
 
 
 
2655
2656		if (token != Opt_error) {
2657			char *p, *q;
 
 
 
2658
2659			/* strip quotes */
2660			if (arg) {
2661				for (p = q = arg; p < from + len; p++) {
2662					char c = *p;
2663					if (c != '"')
2664						*q++ = c;
2665				}
2666				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2667				if (!arg) {
2668					rc = -ENOMEM;
2669					goto free_opt;
2670				}
2671			}
2672			rc = selinux_add_opt(token, arg, mnt_opts);
2673			if (unlikely(rc)) {
2674				kfree(arg);
2675				goto free_opt;
2676			}
2677		} else {
2678			if (!first) {	// copy with preceding comma
2679				from--;
2680				len++;
2681			}
2682			if (to != from)
2683				memmove(to, from, len);
2684			to += len;
2685			first = false;
2686		}
2687		if (!from[len])
2688			break;
2689		from += len + 1;
2690	}
2691	*to = '\0';
2692	return 0;
2693
2694free_opt:
2695	if (*mnt_opts) {
2696		selinux_free_mnt_opts(*mnt_opts);
2697		*mnt_opts = NULL;
2698	}
2699	return rc;
2700}
2701
2702static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2703{
2704	struct selinux_mnt_opts *opts = mnt_opts;
2705	struct superblock_security_struct *sbsec = sb->s_security;
2706	u32 sid;
2707	int rc;
2708
2709	/*
2710	 * Superblock not initialized (i.e. no options) - reject if any
2711	 * options specified, otherwise accept.
2712	 */
2713	if (!(sbsec->flags & SE_SBINITIALIZED))
2714		return opts ? 1 : 0;
2715
2716	/*
2717	 * Superblock initialized and no options specified - reject if
2718	 * superblock has any options set, otherwise accept.
2719	 */
2720	if (!opts)
2721		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2722
2723	if (opts->fscontext) {
2724		rc = parse_sid(sb, opts->fscontext, &sid);
2725		if (rc)
2726			return 1;
2727		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2728			return 1;
2729	}
2730	if (opts->context) {
2731		rc = parse_sid(sb, opts->context, &sid);
2732		if (rc)
2733			return 1;
2734		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2735			return 1;
2736	}
2737	if (opts->rootcontext) {
2738		struct inode_security_struct *root_isec;
2739
2740		root_isec = backing_inode_security(sb->s_root);
2741		rc = parse_sid(sb, opts->rootcontext, &sid);
2742		if (rc)
2743			return 1;
2744		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2745			return 1;
2746	}
2747	if (opts->defcontext) {
2748		rc = parse_sid(sb, opts->defcontext, &sid);
2749		if (rc)
2750			return 1;
2751		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2752			return 1;
2753	}
2754	return 0;
 
 
 
 
 
 
 
 
 
2755}
2756
2757static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2758{
2759	struct selinux_mnt_opts *opts = mnt_opts;
2760	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2761	u32 sid;
2762	int rc;
2763
2764	if (!(sbsec->flags & SE_SBINITIALIZED))
2765		return 0;
2766
2767	if (!opts)
2768		return 0;
2769
2770	if (opts->fscontext) {
2771		rc = parse_sid(sb, opts->fscontext, &sid);
2772		if (rc)
2773			return rc;
2774		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2775			goto out_bad_option;
2776	}
2777	if (opts->context) {
2778		rc = parse_sid(sb, opts->context, &sid);
2779		if (rc)
2780			return rc;
2781		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2782			goto out_bad_option;
2783	}
2784	if (opts->rootcontext) {
2785		struct inode_security_struct *root_isec;
2786		root_isec = backing_inode_security(sb->s_root);
2787		rc = parse_sid(sb, opts->rootcontext, &sid);
2788		if (rc)
2789			return rc;
2790		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2791			goto out_bad_option;
2792	}
2793	if (opts->defcontext) {
2794		rc = parse_sid(sb, opts->defcontext, &sid);
2795		if (rc)
2796			return rc;
2797		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2798			goto out_bad_option;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2799	}
2800	return 0;
2801
 
 
 
 
 
 
2802out_bad_option:
2803	pr_warn("SELinux: unable to change security options "
2804	       "during remount (dev %s, type=%s)\n", sb->s_id,
2805	       sb->s_type->name);
2806	return -EINVAL;
2807}
2808
2809static int selinux_sb_kern_mount(struct super_block *sb)
2810{
2811	const struct cred *cred = current_cred();
2812	struct common_audit_data ad;
 
 
 
 
 
 
 
 
 
2813
2814	ad.type = LSM_AUDIT_DATA_DENTRY;
2815	ad.u.dentry = sb->s_root;
2816	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2817}
2818
2819static int selinux_sb_statfs(struct dentry *dentry)
2820{
2821	const struct cred *cred = current_cred();
2822	struct common_audit_data ad;
2823
2824	ad.type = LSM_AUDIT_DATA_DENTRY;
2825	ad.u.dentry = dentry->d_sb->s_root;
2826	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2827}
2828
2829static int selinux_mount(const char *dev_name,
2830			 const struct path *path,
2831			 const char *type,
2832			 unsigned long flags,
2833			 void *data)
2834{
2835	const struct cred *cred = current_cred();
2836
2837	if (flags & MS_REMOUNT)
2838		return superblock_has_perm(cred, path->dentry->d_sb,
2839					   FILESYSTEM__REMOUNT, NULL);
2840	else
2841		return path_has_perm(cred, path, FILE__MOUNTON);
2842}
2843
2844static int selinux_move_mount(const struct path *from_path,
2845			      const struct path *to_path)
2846{
2847	const struct cred *cred = current_cred();
2848
2849	return path_has_perm(cred, to_path, FILE__MOUNTON);
2850}
2851
2852static int selinux_umount(struct vfsmount *mnt, int flags)
2853{
2854	const struct cred *cred = current_cred();
2855
2856	return superblock_has_perm(cred, mnt->mnt_sb,
2857				   FILESYSTEM__UNMOUNT, NULL);
2858}
2859
2860static int selinux_fs_context_dup(struct fs_context *fc,
2861				  struct fs_context *src_fc)
2862{
2863	const struct selinux_mnt_opts *src = src_fc->security;
2864	struct selinux_mnt_opts *opts;
2865
2866	if (!src)
2867		return 0;
2868
2869	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2870	if (!fc->security)
2871		return -ENOMEM;
2872
2873	opts = fc->security;
2874
2875	if (src->fscontext) {
2876		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2877		if (!opts->fscontext)
2878			return -ENOMEM;
2879	}
2880	if (src->context) {
2881		opts->context = kstrdup(src->context, GFP_KERNEL);
2882		if (!opts->context)
2883			return -ENOMEM;
2884	}
2885	if (src->rootcontext) {
2886		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2887		if (!opts->rootcontext)
2888			return -ENOMEM;
2889	}
2890	if (src->defcontext) {
2891		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2892		if (!opts->defcontext)
2893			return -ENOMEM;
2894	}
2895	return 0;
2896}
2897
2898static const struct fs_parameter_spec selinux_fs_parameters[] = {
2899	fsparam_string(CONTEXT_STR,	Opt_context),
2900	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2901	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2902	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2903	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2904	{}
2905};
2906
2907static int selinux_fs_context_parse_param(struct fs_context *fc,
2908					  struct fs_parameter *param)
2909{
2910	struct fs_parse_result result;
2911	int opt, rc;
2912
2913	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2914	if (opt < 0)
2915		return opt;
2916
2917	rc = selinux_add_opt(opt, param->string, &fc->security);
2918	if (!rc) {
2919		param->string = NULL;
2920		rc = 1;
2921	}
2922	return rc;
2923}
2924
2925/* inode security operations */
2926
2927static int selinux_inode_alloc_security(struct inode *inode)
2928{
2929	struct inode_security_struct *isec = selinux_inode(inode);
2930	u32 sid = current_sid();
2931
2932	spin_lock_init(&isec->lock);
2933	INIT_LIST_HEAD(&isec->list);
2934	isec->inode = inode;
2935	isec->sid = SECINITSID_UNLABELED;
2936	isec->sclass = SECCLASS_FILE;
2937	isec->task_sid = sid;
2938	isec->initialized = LABEL_INVALID;
2939
2940	return 0;
2941}
2942
2943static void selinux_inode_free_security(struct inode *inode)
2944{
2945	inode_free_security(inode);
2946}
2947
2948static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2949					const struct qstr *name, void **ctx,
2950					u32 *ctxlen)
2951{
2952	u32 newsid;
2953	int rc;
2954
2955	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2956					   d_inode(dentry->d_parent), name,
2957					   inode_mode_to_security_class(mode),
2958					   &newsid);
2959	if (rc)
2960		return rc;
2961
2962	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2963				       ctxlen);
2964}
2965
2966static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2967					  struct qstr *name,
2968					  const struct cred *old,
2969					  struct cred *new)
2970{
2971	u32 newsid;
2972	int rc;
2973	struct task_security_struct *tsec;
2974
2975	rc = selinux_determine_inode_label(selinux_cred(old),
2976					   d_inode(dentry->d_parent), name,
2977					   inode_mode_to_security_class(mode),
2978					   &newsid);
2979	if (rc)
2980		return rc;
2981
2982	tsec = selinux_cred(new);
2983	tsec->create_sid = newsid;
2984	return 0;
2985}
2986
2987static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2988				       const struct qstr *qstr,
2989				       const char **name,
2990				       void **value, size_t *len)
2991{
2992	const struct task_security_struct *tsec = selinux_cred(current_cred());
2993	struct superblock_security_struct *sbsec;
2994	u32 newsid, clen;
2995	int rc;
2996	char *context;
2997
2998	sbsec = selinux_superblock(dir->i_sb);
2999
 
3000	newsid = tsec->create_sid;
3001
3002	rc = selinux_determine_inode_label(tsec, dir, qstr,
 
3003		inode_mode_to_security_class(inode->i_mode),
3004		&newsid);
3005	if (rc)
3006		return rc;
3007
3008	/* Possibly defer initialization to selinux_complete_init. */
3009	if (sbsec->flags & SE_SBINITIALIZED) {
3010		struct inode_security_struct *isec = selinux_inode(inode);
3011		isec->sclass = inode_mode_to_security_class(inode->i_mode);
3012		isec->sid = newsid;
3013		isec->initialized = LABEL_INITIALIZED;
3014	}
3015
3016	if (!selinux_initialized(&selinux_state) ||
3017	    !(sbsec->flags & SBLABEL_MNT))
3018		return -EOPNOTSUPP;
3019
3020	if (name)
3021		*name = XATTR_SELINUX_SUFFIX;
3022
3023	if (value && len) {
3024		rc = security_sid_to_context_force(&selinux_state, newsid,
3025						   &context, &clen);
3026		if (rc)
3027			return rc;
3028		*value = context;
3029		*len = clen;
3030	}
3031
3032	return 0;
3033}
3034
3035static int selinux_inode_init_security_anon(struct inode *inode,
3036					    const struct qstr *name,
3037					    const struct inode *context_inode)
3038{
3039	const struct task_security_struct *tsec = selinux_cred(current_cred());
3040	struct common_audit_data ad;
3041	struct inode_security_struct *isec;
3042	int rc;
3043
3044	if (unlikely(!selinux_initialized(&selinux_state)))
3045		return 0;
3046
3047	isec = selinux_inode(inode);
3048
3049	/*
3050	 * We only get here once per ephemeral inode.  The inode has
3051	 * been initialized via inode_alloc_security but is otherwise
3052	 * untouched.
3053	 */
3054
3055	if (context_inode) {
3056		struct inode_security_struct *context_isec =
3057			selinux_inode(context_inode);
3058		if (context_isec->initialized != LABEL_INITIALIZED) {
3059			pr_err("SELinux:  context_inode is not initialized");
3060			return -EACCES;
3061		}
3062
3063		isec->sclass = context_isec->sclass;
3064		isec->sid = context_isec->sid;
3065	} else {
3066		isec->sclass = SECCLASS_ANON_INODE;
3067		rc = security_transition_sid(
3068			&selinux_state, tsec->sid, tsec->sid,
3069			isec->sclass, name, &isec->sid);
3070		if (rc)
3071			return rc;
3072	}
3073
3074	isec->initialized = LABEL_INITIALIZED;
3075	/*
3076	 * Now that we've initialized security, check whether we're
3077	 * allowed to actually create this type of anonymous inode.
3078	 */
3079
3080	ad.type = LSM_AUDIT_DATA_INODE;
3081	ad.u.inode = inode;
3082
3083	return avc_has_perm(&selinux_state,
3084			    tsec->sid,
3085			    isec->sid,
3086			    isec->sclass,
3087			    FILE__CREATE,
3088			    &ad);
3089}
3090
3091static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3092{
3093	return may_create(dir, dentry, SECCLASS_FILE);
3094}
3095
3096static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3097{
3098	return may_link(dir, old_dentry, MAY_LINK);
3099}
3100
3101static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3102{
3103	return may_link(dir, dentry, MAY_UNLINK);
3104}
3105
3106static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3107{
3108	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3109}
3110
3111static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3112{
3113	return may_create(dir, dentry, SECCLASS_DIR);
3114}
3115
3116static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3117{
3118	return may_link(dir, dentry, MAY_RMDIR);
3119}
3120
3121static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3122{
3123	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3124}
3125
3126static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3127				struct inode *new_inode, struct dentry *new_dentry)
3128{
3129	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3130}
3131
3132static int selinux_inode_readlink(struct dentry *dentry)
3133{
3134	const struct cred *cred = current_cred();
3135
3136	return dentry_has_perm(cred, dentry, FILE__READ);
3137}
3138
3139static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3140				     bool rcu)
3141{
3142	const struct cred *cred = current_cred();
3143	struct common_audit_data ad;
3144	struct inode_security_struct *isec;
3145	u32 sid;
3146
3147	validate_creds(cred);
3148
3149	ad.type = LSM_AUDIT_DATA_DENTRY;
3150	ad.u.dentry = dentry;
3151	sid = cred_sid(cred);
3152	isec = inode_security_rcu(inode, rcu);
3153	if (IS_ERR(isec))
3154		return PTR_ERR(isec);
3155
3156	return avc_has_perm(&selinux_state,
3157				  sid, isec->sid, isec->sclass, FILE__READ, &ad);
3158}
3159
3160static noinline int audit_inode_permission(struct inode *inode,
3161					   u32 perms, u32 audited, u32 denied,
3162					   int result)
 
3163{
3164	struct common_audit_data ad;
3165	struct inode_security_struct *isec = selinux_inode(inode);
 
3166
3167	ad.type = LSM_AUDIT_DATA_INODE;
3168	ad.u.inode = inode;
3169
3170	return slow_avc_audit(&selinux_state,
3171			    current_sid(), isec->sid, isec->sclass, perms,
3172			    audited, denied, result, &ad);
 
 
3173}
3174
3175static int selinux_inode_permission(struct inode *inode, int mask)
3176{
3177	const struct cred *cred = current_cred();
3178	u32 perms;
3179	bool from_access;
3180	bool no_block = mask & MAY_NOT_BLOCK;
3181	struct inode_security_struct *isec;
3182	u32 sid;
3183	struct av_decision avd;
3184	int rc, rc2;
3185	u32 audited, denied;
3186
3187	from_access = mask & MAY_ACCESS;
3188	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3189
3190	/* No permission to check.  Existence test. */
3191	if (!mask)
3192		return 0;
3193
3194	validate_creds(cred);
3195
3196	if (unlikely(IS_PRIVATE(inode)))
3197		return 0;
3198
3199	perms = file_mask_to_av(inode->i_mode, mask);
3200
3201	sid = cred_sid(cred);
3202	isec = inode_security_rcu(inode, no_block);
3203	if (IS_ERR(isec))
3204		return PTR_ERR(isec);
3205
3206	rc = avc_has_perm_noaudit(&selinux_state,
3207				  sid, isec->sid, isec->sclass, perms, 0,
3208				  &avd);
3209	audited = avc_audit_required(perms, &avd, rc,
3210				     from_access ? FILE__AUDIT_ACCESS : 0,
3211				     &denied);
3212	if (likely(!audited))
3213		return rc;
3214
3215	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3216	if (rc2)
3217		return rc2;
3218	return rc;
3219}
3220
3221static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3222{
3223	const struct cred *cred = current_cred();
3224	struct inode *inode = d_backing_inode(dentry);
3225	unsigned int ia_valid = iattr->ia_valid;
3226	__u32 av = FILE__WRITE;
3227
3228	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3229	if (ia_valid & ATTR_FORCE) {
3230		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3231			      ATTR_FORCE);
3232		if (!ia_valid)
3233			return 0;
3234	}
3235
3236	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3237			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3238		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3239
3240	if (selinux_policycap_openperm() &&
3241	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3242	    (ia_valid & ATTR_SIZE) &&
3243	    !(ia_valid & ATTR_FILE))
3244		av |= FILE__OPEN;
3245
3246	return dentry_has_perm(cred, dentry, av);
3247}
3248
3249static int selinux_inode_getattr(const struct path *path)
3250{
3251	return path_has_perm(current_cred(), path, FILE__GETATTR);
3252}
3253
3254static bool has_cap_mac_admin(bool audit)
3255{
3256	const struct cred *cred = current_cred();
3257	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3258
3259	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3260		return false;
3261	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3262		return false;
3263	return true;
 
 
 
 
 
 
 
 
 
 
3264}
3265
3266static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3267				  struct dentry *dentry, const char *name,
3268				  const void *value, size_t size, int flags)
3269{
3270	struct inode *inode = d_backing_inode(dentry);
3271	struct inode_security_struct *isec;
3272	struct superblock_security_struct *sbsec;
3273	struct common_audit_data ad;
3274	u32 newsid, sid = current_sid();
3275	int rc = 0;
3276
3277	if (strcmp(name, XATTR_NAME_SELINUX)) {
3278		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3279		if (rc)
3280			return rc;
3281
3282		/* Not an attribute we recognize, so just check the
3283		   ordinary setattr permission. */
3284		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3285	}
3286
3287	if (!selinux_initialized(&selinux_state))
3288		return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3289
3290	sbsec = selinux_superblock(inode->i_sb);
3291	if (!(sbsec->flags & SBLABEL_MNT))
3292		return -EOPNOTSUPP;
3293
3294	if (!inode_owner_or_capable(mnt_userns, inode))
3295		return -EPERM;
3296
3297	ad.type = LSM_AUDIT_DATA_DENTRY;
3298	ad.u.dentry = dentry;
3299
3300	isec = backing_inode_security(dentry);
3301	rc = avc_has_perm(&selinux_state,
3302			  sid, isec->sid, isec->sclass,
3303			  FILE__RELABELFROM, &ad);
3304	if (rc)
3305		return rc;
3306
3307	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3308				     GFP_KERNEL);
3309	if (rc == -EINVAL) {
3310		if (!has_cap_mac_admin(true)) {
3311			struct audit_buffer *ab;
3312			size_t audit_size;
 
3313
3314			/* We strip a nul only if it is at the end, otherwise the
3315			 * context contains a nul and we should audit that */
3316			if (value) {
3317				const char *str = value;
3318
3319				if (str[size - 1] == '\0')
3320					audit_size = size - 1;
3321				else
3322					audit_size = size;
3323			} else {
 
3324				audit_size = 0;
3325			}
3326			ab = audit_log_start(audit_context(),
3327					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3328			audit_log_format(ab, "op=setxattr invalid_context=");
3329			audit_log_n_untrustedstring(ab, value, audit_size);
3330			audit_log_end(ab);
3331
3332			return rc;
3333		}
3334		rc = security_context_to_sid_force(&selinux_state, value,
3335						   size, &newsid);
3336	}
3337	if (rc)
3338		return rc;
3339
3340	rc = avc_has_perm(&selinux_state,
3341			  sid, newsid, isec->sclass,
3342			  FILE__RELABELTO, &ad);
3343	if (rc)
3344		return rc;
3345
3346	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3347					  sid, isec->sclass);
3348	if (rc)
3349		return rc;
3350
3351	return avc_has_perm(&selinux_state,
3352			    newsid,
3353			    sbsec->sid,
3354			    SECCLASS_FILESYSTEM,
3355			    FILESYSTEM__ASSOCIATE,
3356			    &ad);
3357}
3358
3359static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3360					const void *value, size_t size,
3361					int flags)
3362{
3363	struct inode *inode = d_backing_inode(dentry);
3364	struct inode_security_struct *isec;
3365	u32 newsid;
3366	int rc;
3367
3368	if (strcmp(name, XATTR_NAME_SELINUX)) {
3369		/* Not an attribute we recognize, so nothing to do. */
3370		return;
3371	}
3372
3373	if (!selinux_initialized(&selinux_state)) {
3374		/* If we haven't even been initialized, then we can't validate
3375		 * against a policy, so leave the label as invalid. It may
3376		 * resolve to a valid label on the next revalidation try if
3377		 * we've since initialized.
3378		 */
3379		return;
3380	}
3381
3382	rc = security_context_to_sid_force(&selinux_state, value, size,
3383					   &newsid);
3384	if (rc) {
3385		pr_err("SELinux:  unable to map context to SID"
3386		       "for (%s, %lu), rc=%d\n",
3387		       inode->i_sb->s_id, inode->i_ino, -rc);
3388		return;
3389	}
3390
3391	isec = backing_inode_security(dentry);
3392	spin_lock(&isec->lock);
3393	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3394	isec->sid = newsid;
3395	isec->initialized = LABEL_INITIALIZED;
3396	spin_unlock(&isec->lock);
3397
3398	return;
3399}
3400
3401static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3402{
3403	const struct cred *cred = current_cred();
3404
3405	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3406}
3407
3408static int selinux_inode_listxattr(struct dentry *dentry)
3409{
3410	const struct cred *cred = current_cred();
3411
3412	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3413}
3414
3415static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3416				     struct dentry *dentry, const char *name)
3417{
3418	if (strcmp(name, XATTR_NAME_SELINUX)) {
3419		int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3420		if (rc)
3421			return rc;
3422
3423		/* Not an attribute we recognize, so just check the
3424		   ordinary setattr permission. */
3425		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3426	}
3427
3428	if (!selinux_initialized(&selinux_state))
3429		return 0;
3430
3431	/* No one is allowed to remove a SELinux security label.
3432	   You can change the label, but all data must be labeled. */
3433	return -EACCES;
3434}
3435
3436static int selinux_path_notify(const struct path *path, u64 mask,
3437						unsigned int obj_type)
3438{
3439	int ret;
3440	u32 perm;
3441
3442	struct common_audit_data ad;
3443
3444	ad.type = LSM_AUDIT_DATA_PATH;
3445	ad.u.path = *path;
3446
3447	/*
3448	 * Set permission needed based on the type of mark being set.
3449	 * Performs an additional check for sb watches.
3450	 */
3451	switch (obj_type) {
3452	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3453		perm = FILE__WATCH_MOUNT;
3454		break;
3455	case FSNOTIFY_OBJ_TYPE_SB:
3456		perm = FILE__WATCH_SB;
3457		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3458						FILESYSTEM__WATCH, &ad);
3459		if (ret)
3460			return ret;
3461		break;
3462	case FSNOTIFY_OBJ_TYPE_INODE:
3463		perm = FILE__WATCH;
3464		break;
3465	default:
3466		return -EINVAL;
3467	}
3468
3469	/* blocking watches require the file:watch_with_perm permission */
3470	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3471		perm |= FILE__WATCH_WITH_PERM;
3472
3473	/* watches on read-like events need the file:watch_reads permission */
3474	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3475		perm |= FILE__WATCH_READS;
3476
3477	return path_has_perm(current_cred(), path, perm);
3478}
3479
3480/*
3481 * Copy the inode security context value to the user.
3482 *
3483 * Permission check is handled by selinux_inode_getxattr hook.
3484 */
3485static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3486				     struct inode *inode, const char *name,
3487				     void **buffer, bool alloc)
3488{
3489	u32 size;
3490	int error;
3491	char *context = NULL;
3492	struct inode_security_struct *isec;
3493
3494	/*
3495	 * If we're not initialized yet, then we can't validate contexts, so
3496	 * just let vfs_getxattr fall back to using the on-disk xattr.
3497	 */
3498	if (!selinux_initialized(&selinux_state) ||
3499	    strcmp(name, XATTR_SELINUX_SUFFIX))
3500		return -EOPNOTSUPP;
3501
3502	/*
3503	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3504	 * value even if it is not defined by current policy; otherwise,
3505	 * use the in-core value under current policy.
3506	 * Use the non-auditing forms of the permission checks since
3507	 * getxattr may be called by unprivileged processes commonly
3508	 * and lack of permission just means that we fall back to the
3509	 * in-core context value, not a denial.
3510	 */
 
 
 
 
 
3511	isec = inode_security(inode);
3512	if (has_cap_mac_admin(false))
3513		error = security_sid_to_context_force(&selinux_state,
3514						      isec->sid, &context,
3515						      &size);
3516	else
3517		error = security_sid_to_context(&selinux_state, isec->sid,
3518						&context, &size);
3519	if (error)
3520		return error;
3521	error = size;
3522	if (alloc) {
3523		*buffer = context;
3524		goto out_nofree;
3525	}
3526	kfree(context);
3527out_nofree:
3528	return error;
3529}
3530
3531static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3532				     const void *value, size_t size, int flags)
3533{
3534	struct inode_security_struct *isec = inode_security_novalidate(inode);
3535	struct superblock_security_struct *sbsec;
3536	u32 newsid;
3537	int rc;
3538
3539	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3540		return -EOPNOTSUPP;
3541
3542	sbsec = selinux_superblock(inode->i_sb);
3543	if (!(sbsec->flags & SBLABEL_MNT))
3544		return -EOPNOTSUPP;
3545
3546	if (!value || !size)
3547		return -EACCES;
3548
3549	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3550				     GFP_KERNEL);
3551	if (rc)
3552		return rc;
3553
3554	spin_lock(&isec->lock);
3555	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3556	isec->sid = newsid;
3557	isec->initialized = LABEL_INITIALIZED;
3558	spin_unlock(&isec->lock);
3559	return 0;
3560}
3561
3562static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3563{
3564	const int len = sizeof(XATTR_NAME_SELINUX);
3565
3566	if (!selinux_initialized(&selinux_state))
3567		return 0;
3568
3569	if (buffer && len <= buffer_size)
3570		memcpy(buffer, XATTR_NAME_SELINUX, len);
3571	return len;
3572}
3573
3574static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3575{
3576	struct inode_security_struct *isec = inode_security_novalidate(inode);
3577	*secid = isec->sid;
3578}
3579
3580static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3581{
3582	u32 sid;
3583	struct task_security_struct *tsec;
3584	struct cred *new_creds = *new;
3585
3586	if (new_creds == NULL) {
3587		new_creds = prepare_creds();
3588		if (!new_creds)
3589			return -ENOMEM;
3590	}
3591
3592	tsec = selinux_cred(new_creds);
3593	/* Get label from overlay inode and set it in create_sid */
3594	selinux_inode_getsecid(d_inode(src), &sid);
3595	tsec->create_sid = sid;
3596	*new = new_creds;
3597	return 0;
3598}
3599
3600static int selinux_inode_copy_up_xattr(const char *name)
3601{
3602	/* The copy_up hook above sets the initial context on an inode, but we
3603	 * don't then want to overwrite it by blindly copying all the lower
3604	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3605	 */
3606	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3607		return 1; /* Discard */
3608	/*
3609	 * Any other attribute apart from SELINUX is not claimed, supported
3610	 * by selinux.
3611	 */
3612	return -EOPNOTSUPP;
3613}
3614
3615/* kernfs node operations */
3616
3617static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3618					struct kernfs_node *kn)
3619{
3620	const struct task_security_struct *tsec = selinux_cred(current_cred());
3621	u32 parent_sid, newsid, clen;
3622	int rc;
3623	char *context;
3624
3625	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3626	if (rc == -ENODATA)
3627		return 0;
3628	else if (rc < 0)
3629		return rc;
3630
3631	clen = (u32)rc;
3632	context = kmalloc(clen, GFP_KERNEL);
3633	if (!context)
3634		return -ENOMEM;
3635
3636	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3637	if (rc < 0) {
3638		kfree(context);
3639		return rc;
3640	}
3641
3642	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3643				     GFP_KERNEL);
3644	kfree(context);
3645	if (rc)
3646		return rc;
3647
3648	if (tsec->create_sid) {
3649		newsid = tsec->create_sid;
3650	} else {
3651		u16 secclass = inode_mode_to_security_class(kn->mode);
3652		struct qstr q;
3653
3654		q.name = kn->name;
3655		q.hash_len = hashlen_string(kn_dir, kn->name);
3656
3657		rc = security_transition_sid(&selinux_state, tsec->sid,
3658					     parent_sid, secclass, &q,
3659					     &newsid);
3660		if (rc)
3661			return rc;
3662	}
3663
3664	rc = security_sid_to_context_force(&selinux_state, newsid,
3665					   &context, &clen);
3666	if (rc)
3667		return rc;
3668
3669	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3670			      XATTR_CREATE);
3671	kfree(context);
3672	return rc;
3673}
3674
3675
3676/* file security operations */
3677
3678static int selinux_revalidate_file_permission(struct file *file, int mask)
3679{
3680	const struct cred *cred = current_cred();
3681	struct inode *inode = file_inode(file);
3682
3683	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3684	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3685		mask |= MAY_APPEND;
3686
3687	return file_has_perm(cred, file,
3688			     file_mask_to_av(inode->i_mode, mask));
3689}
3690
3691static int selinux_file_permission(struct file *file, int mask)
3692{
3693	struct inode *inode = file_inode(file);
3694	struct file_security_struct *fsec = selinux_file(file);
3695	struct inode_security_struct *isec;
3696	u32 sid = current_sid();
3697
3698	if (!mask)
3699		/* No permission to check.  Existence test. */
3700		return 0;
3701
3702	isec = inode_security(inode);
3703	if (sid == fsec->sid && fsec->isid == isec->sid &&
3704	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3705		/* No change since file_open check. */
3706		return 0;
3707
3708	return selinux_revalidate_file_permission(file, mask);
3709}
3710
3711static int selinux_file_alloc_security(struct file *file)
3712{
3713	struct file_security_struct *fsec = selinux_file(file);
3714	u32 sid = current_sid();
3715
3716	fsec->sid = sid;
3717	fsec->fown_sid = sid;
3718
3719	return 0;
 
 
3720}
3721
3722/*
3723 * Check whether a task has the ioctl permission and cmd
3724 * operation to an inode.
3725 */
3726static int ioctl_has_perm(const struct cred *cred, struct file *file,
3727		u32 requested, u16 cmd)
3728{
3729	struct common_audit_data ad;
3730	struct file_security_struct *fsec = selinux_file(file);
3731	struct inode *inode = file_inode(file);
3732	struct inode_security_struct *isec;
3733	struct lsm_ioctlop_audit ioctl;
3734	u32 ssid = cred_sid(cred);
3735	int rc;
3736	u8 driver = cmd >> 8;
3737	u8 xperm = cmd & 0xff;
3738
3739	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3740	ad.u.op = &ioctl;
3741	ad.u.op->cmd = cmd;
3742	ad.u.op->path = file->f_path;
3743
3744	if (ssid != fsec->sid) {
3745		rc = avc_has_perm(&selinux_state,
3746				  ssid, fsec->sid,
3747				SECCLASS_FD,
3748				FD__USE,
3749				&ad);
3750		if (rc)
3751			goto out;
3752	}
3753
3754	if (unlikely(IS_PRIVATE(inode)))
3755		return 0;
3756
3757	isec = inode_security(inode);
3758	rc = avc_has_extended_perms(&selinux_state,
3759				    ssid, isec->sid, isec->sclass,
3760				    requested, driver, xperm, &ad);
3761out:
3762	return rc;
3763}
3764
3765static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3766			      unsigned long arg)
3767{
3768	const struct cred *cred = current_cred();
3769	int error = 0;
3770
3771	switch (cmd) {
3772	case FIONREAD:
 
3773	case FIBMAP:
 
3774	case FIGETBSZ:
 
3775	case FS_IOC_GETFLAGS:
 
3776	case FS_IOC_GETVERSION:
3777		error = file_has_perm(cred, file, FILE__GETATTR);
3778		break;
3779
3780	case FS_IOC_SETFLAGS:
 
3781	case FS_IOC_SETVERSION:
3782		error = file_has_perm(cred, file, FILE__SETATTR);
3783		break;
3784
3785	/* sys_ioctl() checks */
3786	case FIONBIO:
 
3787	case FIOASYNC:
3788		error = file_has_perm(cred, file, 0);
3789		break;
3790
3791	case KDSKBENT:
3792	case KDSKBSENT:
3793		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3794					    CAP_OPT_NONE, true);
3795		break;
3796
3797	/* default case assumes that the command will go
3798	 * to the file's ioctl() function.
3799	 */
3800	default:
3801		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3802	}
3803	return error;
3804}
3805
3806static int default_noexec __ro_after_init;
3807
3808static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3809{
3810	const struct cred *cred = current_cred();
3811	u32 sid = cred_sid(cred);
3812	int rc = 0;
3813
3814	if (default_noexec &&
3815	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3816				   (!shared && (prot & PROT_WRITE)))) {
3817		/*
3818		 * We are making executable an anonymous mapping or a
3819		 * private file mapping that will also be writable.
3820		 * This has an additional check.
3821		 */
3822		rc = avc_has_perm(&selinux_state,
3823				  sid, sid, SECCLASS_PROCESS,
3824				  PROCESS__EXECMEM, NULL);
3825		if (rc)
3826			goto error;
3827	}
3828
3829	if (file) {
3830		/* read access is always possible with a mapping */
3831		u32 av = FILE__READ;
3832
3833		/* write access only matters if the mapping is shared */
3834		if (shared && (prot & PROT_WRITE))
3835			av |= FILE__WRITE;
3836
3837		if (prot & PROT_EXEC)
3838			av |= FILE__EXECUTE;
3839
3840		return file_has_perm(cred, file, av);
3841	}
3842
3843error:
3844	return rc;
3845}
3846
3847static int selinux_mmap_addr(unsigned long addr)
3848{
3849	int rc = 0;
3850
3851	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3852		u32 sid = current_sid();
3853		rc = avc_has_perm(&selinux_state,
3854				  sid, sid, SECCLASS_MEMPROTECT,
3855				  MEMPROTECT__MMAP_ZERO, NULL);
3856	}
3857
3858	return rc;
3859}
3860
3861static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3862			     unsigned long prot, unsigned long flags)
3863{
3864	struct common_audit_data ad;
3865	int rc;
3866
3867	if (file) {
3868		ad.type = LSM_AUDIT_DATA_FILE;
3869		ad.u.file = file;
3870		rc = inode_has_perm(current_cred(), file_inode(file),
3871				    FILE__MAP, &ad);
3872		if (rc)
3873			return rc;
3874	}
3875
3876	if (checkreqprot_get(&selinux_state))
3877		prot = reqprot;
3878
3879	return file_map_prot_check(file, prot,
3880				   (flags & MAP_TYPE) == MAP_SHARED);
3881}
3882
3883static int selinux_file_mprotect(struct vm_area_struct *vma,
3884				 unsigned long reqprot,
3885				 unsigned long prot)
3886{
3887	const struct cred *cred = current_cred();
3888	u32 sid = cred_sid(cred);
3889
3890	if (checkreqprot_get(&selinux_state))
3891		prot = reqprot;
3892
3893	if (default_noexec &&
3894	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3895		int rc = 0;
3896		if (vma->vm_start >= vma->vm_mm->start_brk &&
3897		    vma->vm_end <= vma->vm_mm->brk) {
3898			rc = avc_has_perm(&selinux_state,
3899					  sid, sid, SECCLASS_PROCESS,
3900					  PROCESS__EXECHEAP, NULL);
3901		} else if (!vma->vm_file &&
3902			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3903			     vma->vm_end >= vma->vm_mm->start_stack) ||
3904			    vma_is_stack_for_current(vma))) {
3905			rc = avc_has_perm(&selinux_state,
3906					  sid, sid, SECCLASS_PROCESS,
3907					  PROCESS__EXECSTACK, NULL);
3908		} else if (vma->vm_file && vma->anon_vma) {
3909			/*
3910			 * We are making executable a file mapping that has
3911			 * had some COW done. Since pages might have been
3912			 * written, check ability to execute the possibly
3913			 * modified content.  This typically should only
3914			 * occur for text relocations.
3915			 */
3916			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3917		}
3918		if (rc)
3919			return rc;
3920	}
3921
3922	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3923}
3924
3925static int selinux_file_lock(struct file *file, unsigned int cmd)
3926{
3927	const struct cred *cred = current_cred();
3928
3929	return file_has_perm(cred, file, FILE__LOCK);
3930}
3931
3932static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3933			      unsigned long arg)
3934{
3935	const struct cred *cred = current_cred();
3936	int err = 0;
3937
3938	switch (cmd) {
3939	case F_SETFL:
3940		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3941			err = file_has_perm(cred, file, FILE__WRITE);
3942			break;
3943		}
3944		fallthrough;
3945	case F_SETOWN:
3946	case F_SETSIG:
3947	case F_GETFL:
3948	case F_GETOWN:
3949	case F_GETSIG:
3950	case F_GETOWNER_UIDS:
3951		/* Just check FD__USE permission */
3952		err = file_has_perm(cred, file, 0);
3953		break;
3954	case F_GETLK:
3955	case F_SETLK:
3956	case F_SETLKW:
3957	case F_OFD_GETLK:
3958	case F_OFD_SETLK:
3959	case F_OFD_SETLKW:
3960#if BITS_PER_LONG == 32
3961	case F_GETLK64:
3962	case F_SETLK64:
3963	case F_SETLKW64:
3964#endif
3965		err = file_has_perm(cred, file, FILE__LOCK);
3966		break;
3967	}
3968
3969	return err;
3970}
3971
3972static void selinux_file_set_fowner(struct file *file)
3973{
3974	struct file_security_struct *fsec;
3975
3976	fsec = selinux_file(file);
3977	fsec->fown_sid = current_sid();
3978}
3979
3980static int selinux_file_send_sigiotask(struct task_struct *tsk,
3981				       struct fown_struct *fown, int signum)
3982{
3983	struct file *file;
3984	u32 sid = task_sid_obj(tsk);
3985	u32 perm;
3986	struct file_security_struct *fsec;
3987
3988	/* struct fown_struct is never outside the context of a struct file */
3989	file = container_of(fown, struct file, f_owner);
3990
3991	fsec = selinux_file(file);
3992
3993	if (!signum)
3994		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3995	else
3996		perm = signal_to_av(signum);
3997
3998	return avc_has_perm(&selinux_state,
3999			    fsec->fown_sid, sid,
4000			    SECCLASS_PROCESS, perm, NULL);
4001}
4002
4003static int selinux_file_receive(struct file *file)
4004{
4005	const struct cred *cred = current_cred();
4006
4007	return file_has_perm(cred, file, file_to_av(file));
4008}
4009
4010static int selinux_file_open(struct file *file)
4011{
4012	struct file_security_struct *fsec;
4013	struct inode_security_struct *isec;
4014
4015	fsec = selinux_file(file);
4016	isec = inode_security(file_inode(file));
4017	/*
4018	 * Save inode label and policy sequence number
4019	 * at open-time so that selinux_file_permission
4020	 * can determine whether revalidation is necessary.
4021	 * Task label is already saved in the file security
4022	 * struct as its SID.
4023	 */
4024	fsec->isid = isec->sid;
4025	fsec->pseqno = avc_policy_seqno(&selinux_state);
4026	/*
4027	 * Since the inode label or policy seqno may have changed
4028	 * between the selinux_inode_permission check and the saving
4029	 * of state above, recheck that access is still permitted.
4030	 * Otherwise, access might never be revalidated against the
4031	 * new inode label or new policy.
4032	 * This check is not redundant - do not remove.
4033	 */
4034	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
4035}
4036
4037/* task security operations */
4038
4039static int selinux_task_alloc(struct task_struct *task,
4040			      unsigned long clone_flags)
4041{
4042	u32 sid = current_sid();
 
 
 
 
 
 
 
 
4043
4044	return avc_has_perm(&selinux_state,
4045			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4046}
4047
4048/*
4049 * prepare a new set of credentials for modification
4050 */
4051static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4052				gfp_t gfp)
4053{
4054	const struct task_security_struct *old_tsec = selinux_cred(old);
4055	struct task_security_struct *tsec = selinux_cred(new);
4056
4057	*tsec = *old_tsec;
 
 
 
 
 
 
4058	return 0;
4059}
4060
4061/*
4062 * transfer the SELinux data to a blank set of creds
4063 */
4064static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4065{
4066	const struct task_security_struct *old_tsec = selinux_cred(old);
4067	struct task_security_struct *tsec = selinux_cred(new);
4068
4069	*tsec = *old_tsec;
4070}
4071
4072static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4073{
4074	*secid = cred_sid(c);
4075}
4076
4077/*
4078 * set the security data for a kernel service
4079 * - all the creation contexts are set to unlabelled
4080 */
4081static int selinux_kernel_act_as(struct cred *new, u32 secid)
4082{
4083	struct task_security_struct *tsec = selinux_cred(new);
4084	u32 sid = current_sid();
4085	int ret;
4086
4087	ret = avc_has_perm(&selinux_state,
4088			   sid, secid,
4089			   SECCLASS_KERNEL_SERVICE,
4090			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4091			   NULL);
4092	if (ret == 0) {
4093		tsec->sid = secid;
4094		tsec->create_sid = 0;
4095		tsec->keycreate_sid = 0;
4096		tsec->sockcreate_sid = 0;
4097	}
4098	return ret;
4099}
4100
4101/*
4102 * set the file creation context in a security record to the same as the
4103 * objective context of the specified inode
4104 */
4105static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4106{
4107	struct inode_security_struct *isec = inode_security(inode);
4108	struct task_security_struct *tsec = selinux_cred(new);
4109	u32 sid = current_sid();
4110	int ret;
4111
4112	ret = avc_has_perm(&selinux_state,
4113			   sid, isec->sid,
4114			   SECCLASS_KERNEL_SERVICE,
4115			   KERNEL_SERVICE__CREATE_FILES_AS,
4116			   NULL);
4117
4118	if (ret == 0)
4119		tsec->create_sid = isec->sid;
4120	return ret;
4121}
4122
4123static int selinux_kernel_module_request(char *kmod_name)
4124{
 
4125	struct common_audit_data ad;
4126
 
 
4127	ad.type = LSM_AUDIT_DATA_KMOD;
4128	ad.u.kmod_name = kmod_name;
4129
4130	return avc_has_perm(&selinux_state,
4131			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4132			    SYSTEM__MODULE_REQUEST, &ad);
4133}
4134
4135static int selinux_kernel_module_from_file(struct file *file)
4136{
4137	struct common_audit_data ad;
4138	struct inode_security_struct *isec;
4139	struct file_security_struct *fsec;
4140	u32 sid = current_sid();
4141	int rc;
4142
4143	/* init_module */
4144	if (file == NULL)
4145		return avc_has_perm(&selinux_state,
4146				    sid, sid, SECCLASS_SYSTEM,
4147					SYSTEM__MODULE_LOAD, NULL);
4148
4149	/* finit_module */
4150
4151	ad.type = LSM_AUDIT_DATA_FILE;
4152	ad.u.file = file;
4153
4154	fsec = selinux_file(file);
4155	if (sid != fsec->sid) {
4156		rc = avc_has_perm(&selinux_state,
4157				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4158		if (rc)
4159			return rc;
4160	}
4161
4162	isec = inode_security(file_inode(file));
4163	return avc_has_perm(&selinux_state,
4164			    sid, isec->sid, SECCLASS_SYSTEM,
4165				SYSTEM__MODULE_LOAD, &ad);
4166}
4167
4168static int selinux_kernel_read_file(struct file *file,
4169				    enum kernel_read_file_id id,
4170				    bool contents)
4171{
4172	int rc = 0;
4173
4174	switch (id) {
4175	case READING_MODULE:
4176		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4177		break;
4178	default:
4179		break;
4180	}
4181
4182	return rc;
4183}
4184
4185static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4186{
4187	int rc = 0;
4188
4189	switch (id) {
4190	case LOADING_MODULE:
4191		rc = selinux_kernel_module_from_file(NULL);
4192		break;
4193	default:
4194		break;
4195	}
4196
4197	return rc;
4198}
4199
4200static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4201{
4202	return avc_has_perm(&selinux_state,
4203			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204			    PROCESS__SETPGID, NULL);
4205}
4206
4207static int selinux_task_getpgid(struct task_struct *p)
4208{
4209	return avc_has_perm(&selinux_state,
4210			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4211			    PROCESS__GETPGID, NULL);
4212}
4213
4214static int selinux_task_getsid(struct task_struct *p)
4215{
4216	return avc_has_perm(&selinux_state,
4217			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4218			    PROCESS__GETSESSION, NULL);
4219}
4220
4221static void selinux_task_getsecid_subj(struct task_struct *p, u32 *secid)
4222{
4223	*secid = task_sid_subj(p);
4224}
4225
4226static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4227{
4228	*secid = task_sid_obj(p);
4229}
4230
4231static int selinux_task_setnice(struct task_struct *p, int nice)
4232{
4233	return avc_has_perm(&selinux_state,
4234			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4235			    PROCESS__SETSCHED, NULL);
4236}
4237
4238static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4239{
4240	return avc_has_perm(&selinux_state,
4241			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4242			    PROCESS__SETSCHED, NULL);
4243}
4244
4245static int selinux_task_getioprio(struct task_struct *p)
4246{
4247	return avc_has_perm(&selinux_state,
4248			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4249			    PROCESS__GETSCHED, NULL);
4250}
4251
4252static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4253				unsigned int flags)
4254{
4255	u32 av = 0;
4256
4257	if (!flags)
4258		return 0;
4259	if (flags & LSM_PRLIMIT_WRITE)
4260		av |= PROCESS__SETRLIMIT;
4261	if (flags & LSM_PRLIMIT_READ)
4262		av |= PROCESS__GETRLIMIT;
4263	return avc_has_perm(&selinux_state,
4264			    cred_sid(cred), cred_sid(tcred),
4265			    SECCLASS_PROCESS, av, NULL);
4266}
4267
4268static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4269		struct rlimit *new_rlim)
4270{
4271	struct rlimit *old_rlim = p->signal->rlim + resource;
4272
4273	/* Control the ability to change the hard limit (whether
4274	   lowering or raising it), so that the hard limit can
4275	   later be used as a safe reset point for the soft limit
4276	   upon context transitions.  See selinux_bprm_committing_creds. */
4277	if (old_rlim->rlim_max != new_rlim->rlim_max)
4278		return avc_has_perm(&selinux_state,
4279				    current_sid(), task_sid_obj(p),
4280				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4281
4282	return 0;
4283}
4284
4285static int selinux_task_setscheduler(struct task_struct *p)
4286{
4287	return avc_has_perm(&selinux_state,
4288			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4289			    PROCESS__SETSCHED, NULL);
4290}
4291
4292static int selinux_task_getscheduler(struct task_struct *p)
4293{
4294	return avc_has_perm(&selinux_state,
4295			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4296			    PROCESS__GETSCHED, NULL);
4297}
4298
4299static int selinux_task_movememory(struct task_struct *p)
4300{
4301	return avc_has_perm(&selinux_state,
4302			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4303			    PROCESS__SETSCHED, NULL);
4304}
4305
4306static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4307				int sig, const struct cred *cred)
4308{
4309	u32 secid;
4310	u32 perm;
 
4311
4312	if (!sig)
4313		perm = PROCESS__SIGNULL; /* null signal; existence test */
4314	else
4315		perm = signal_to_av(sig);
4316	if (!cred)
4317		secid = current_sid();
 
4318	else
4319		secid = cred_sid(cred);
4320	return avc_has_perm(&selinux_state,
4321			    secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4322}
4323
4324static void selinux_task_to_inode(struct task_struct *p,
4325				  struct inode *inode)
4326{
4327	struct inode_security_struct *isec = selinux_inode(inode);
4328	u32 sid = task_sid_obj(p);
4329
4330	spin_lock(&isec->lock);
4331	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4332	isec->sid = sid;
4333	isec->initialized = LABEL_INITIALIZED;
4334	spin_unlock(&isec->lock);
4335}
4336
4337/* Returns error only if unable to parse addresses */
4338static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4339			struct common_audit_data *ad, u8 *proto)
4340{
4341	int offset, ihlen, ret = -EINVAL;
4342	struct iphdr _iph, *ih;
4343
4344	offset = skb_network_offset(skb);
4345	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4346	if (ih == NULL)
4347		goto out;
4348
4349	ihlen = ih->ihl * 4;
4350	if (ihlen < sizeof(_iph))
4351		goto out;
4352
4353	ad->u.net->v4info.saddr = ih->saddr;
4354	ad->u.net->v4info.daddr = ih->daddr;
4355	ret = 0;
4356
4357	if (proto)
4358		*proto = ih->protocol;
4359
4360	switch (ih->protocol) {
4361	case IPPROTO_TCP: {
4362		struct tcphdr _tcph, *th;
4363
4364		if (ntohs(ih->frag_off) & IP_OFFSET)
4365			break;
4366
4367		offset += ihlen;
4368		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4369		if (th == NULL)
4370			break;
4371
4372		ad->u.net->sport = th->source;
4373		ad->u.net->dport = th->dest;
4374		break;
4375	}
4376
4377	case IPPROTO_UDP: {
4378		struct udphdr _udph, *uh;
4379
4380		if (ntohs(ih->frag_off) & IP_OFFSET)
4381			break;
4382
4383		offset += ihlen;
4384		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4385		if (uh == NULL)
4386			break;
4387
4388		ad->u.net->sport = uh->source;
4389		ad->u.net->dport = uh->dest;
4390		break;
4391	}
4392
4393	case IPPROTO_DCCP: {
4394		struct dccp_hdr _dccph, *dh;
4395
4396		if (ntohs(ih->frag_off) & IP_OFFSET)
4397			break;
4398
4399		offset += ihlen;
4400		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4401		if (dh == NULL)
4402			break;
4403
4404		ad->u.net->sport = dh->dccph_sport;
4405		ad->u.net->dport = dh->dccph_dport;
4406		break;
4407	}
4408
4409#if IS_ENABLED(CONFIG_IP_SCTP)
4410	case IPPROTO_SCTP: {
4411		struct sctphdr _sctph, *sh;
4412
4413		if (ntohs(ih->frag_off) & IP_OFFSET)
4414			break;
4415
4416		offset += ihlen;
4417		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4418		if (sh == NULL)
4419			break;
4420
4421		ad->u.net->sport = sh->source;
4422		ad->u.net->dport = sh->dest;
4423		break;
4424	}
4425#endif
4426	default:
4427		break;
4428	}
4429out:
4430	return ret;
4431}
4432
4433#if IS_ENABLED(CONFIG_IPV6)
4434
4435/* Returns error only if unable to parse addresses */
4436static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4437			struct common_audit_data *ad, u8 *proto)
4438{
4439	u8 nexthdr;
4440	int ret = -EINVAL, offset;
4441	struct ipv6hdr _ipv6h, *ip6;
4442	__be16 frag_off;
4443
4444	offset = skb_network_offset(skb);
4445	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4446	if (ip6 == NULL)
4447		goto out;
4448
4449	ad->u.net->v6info.saddr = ip6->saddr;
4450	ad->u.net->v6info.daddr = ip6->daddr;
4451	ret = 0;
4452
4453	nexthdr = ip6->nexthdr;
4454	offset += sizeof(_ipv6h);
4455	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4456	if (offset < 0)
4457		goto out;
4458
4459	if (proto)
4460		*proto = nexthdr;
4461
4462	switch (nexthdr) {
4463	case IPPROTO_TCP: {
4464		struct tcphdr _tcph, *th;
4465
4466		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4467		if (th == NULL)
4468			break;
4469
4470		ad->u.net->sport = th->source;
4471		ad->u.net->dport = th->dest;
4472		break;
4473	}
4474
4475	case IPPROTO_UDP: {
4476		struct udphdr _udph, *uh;
4477
4478		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4479		if (uh == NULL)
4480			break;
4481
4482		ad->u.net->sport = uh->source;
4483		ad->u.net->dport = uh->dest;
4484		break;
4485	}
4486
4487	case IPPROTO_DCCP: {
4488		struct dccp_hdr _dccph, *dh;
4489
4490		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4491		if (dh == NULL)
4492			break;
4493
4494		ad->u.net->sport = dh->dccph_sport;
4495		ad->u.net->dport = dh->dccph_dport;
4496		break;
4497	}
4498
4499#if IS_ENABLED(CONFIG_IP_SCTP)
4500	case IPPROTO_SCTP: {
4501		struct sctphdr _sctph, *sh;
4502
4503		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4504		if (sh == NULL)
4505			break;
4506
4507		ad->u.net->sport = sh->source;
4508		ad->u.net->dport = sh->dest;
4509		break;
4510	}
4511#endif
4512	/* includes fragments */
4513	default:
4514		break;
4515	}
4516out:
4517	return ret;
4518}
4519
4520#endif /* IPV6 */
4521
4522static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4523			     char **_addrp, int src, u8 *proto)
4524{
4525	char *addrp;
4526	int ret;
4527
4528	switch (ad->u.net->family) {
4529	case PF_INET:
4530		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4531		if (ret)
4532			goto parse_error;
4533		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4534				       &ad->u.net->v4info.daddr);
4535		goto okay;
4536
4537#if IS_ENABLED(CONFIG_IPV6)
4538	case PF_INET6:
4539		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4540		if (ret)
4541			goto parse_error;
4542		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4543				       &ad->u.net->v6info.daddr);
4544		goto okay;
4545#endif	/* IPV6 */
4546	default:
4547		addrp = NULL;
4548		goto okay;
4549	}
4550
4551parse_error:
4552	pr_warn(
4553	       "SELinux: failure in selinux_parse_skb(),"
4554	       " unable to parse packet\n");
4555	return ret;
4556
4557okay:
4558	if (_addrp)
4559		*_addrp = addrp;
4560	return 0;
4561}
4562
4563/**
4564 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4565 * @skb: the packet
4566 * @family: protocol family
4567 * @sid: the packet's peer label SID
4568 *
4569 * Description:
4570 * Check the various different forms of network peer labeling and determine
4571 * the peer label/SID for the packet; most of the magic actually occurs in
4572 * the security server function security_net_peersid_cmp().  The function
4573 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4574 * or -EACCES if @sid is invalid due to inconsistencies with the different
4575 * peer labels.
4576 *
4577 */
4578static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4579{
4580	int err;
4581	u32 xfrm_sid;
4582	u32 nlbl_sid;
4583	u32 nlbl_type;
4584
4585	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4586	if (unlikely(err))
4587		return -EACCES;
4588	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4589	if (unlikely(err))
4590		return -EACCES;
4591
4592	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4593					   nlbl_type, xfrm_sid, sid);
4594	if (unlikely(err)) {
4595		pr_warn(
4596		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4597		       " unable to determine packet's peer label\n");
4598		return -EACCES;
4599	}
4600
4601	return 0;
4602}
4603
4604/**
4605 * selinux_conn_sid - Determine the child socket label for a connection
4606 * @sk_sid: the parent socket's SID
4607 * @skb_sid: the packet's SID
4608 * @conn_sid: the resulting connection SID
4609 *
4610 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4611 * combined with the MLS information from @skb_sid in order to create
4612 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4613 * of @sk_sid.  Returns zero on success, negative values on failure.
4614 *
4615 */
4616static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4617{
4618	int err = 0;
4619
4620	if (skb_sid != SECSID_NULL)
4621		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4622					    conn_sid);
4623	else
4624		*conn_sid = sk_sid;
4625
4626	return err;
4627}
4628
4629/* socket security operations */
4630
4631static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4632				 u16 secclass, u32 *socksid)
4633{
4634	if (tsec->sockcreate_sid > SECSID_NULL) {
4635		*socksid = tsec->sockcreate_sid;
4636		return 0;
4637	}
4638
4639	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4640				       secclass, NULL, socksid);
4641}
4642
4643static int sock_has_perm(struct sock *sk, u32 perms)
4644{
4645	struct sk_security_struct *sksec = sk->sk_security;
4646	struct common_audit_data ad;
4647	struct lsm_network_audit net = {0,};
 
4648
4649	if (sksec->sid == SECINITSID_KERNEL)
4650		return 0;
4651
4652	ad.type = LSM_AUDIT_DATA_NET;
4653	ad.u.net = &net;
4654	ad.u.net->sk = sk;
4655
4656	return avc_has_perm(&selinux_state,
4657			    current_sid(), sksec->sid, sksec->sclass, perms,
4658			    &ad);
4659}
4660
4661static int selinux_socket_create(int family, int type,
4662				 int protocol, int kern)
4663{
4664	const struct task_security_struct *tsec = selinux_cred(current_cred());
4665	u32 newsid;
4666	u16 secclass;
4667	int rc;
4668
4669	if (kern)
4670		return 0;
4671
4672	secclass = socket_type_to_security_class(family, type, protocol);
4673	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4674	if (rc)
4675		return rc;
4676
4677	return avc_has_perm(&selinux_state,
4678			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4679}
4680
4681static int selinux_socket_post_create(struct socket *sock, int family,
4682				      int type, int protocol, int kern)
4683{
4684	const struct task_security_struct *tsec = selinux_cred(current_cred());
4685	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4686	struct sk_security_struct *sksec;
4687	u16 sclass = socket_type_to_security_class(family, type, protocol);
4688	u32 sid = SECINITSID_KERNEL;
4689	int err = 0;
4690
4691	if (!kern) {
4692		err = socket_sockcreate_sid(tsec, sclass, &sid);
4693		if (err)
4694			return err;
4695	}
4696
4697	isec->sclass = sclass;
4698	isec->sid = sid;
4699	isec->initialized = LABEL_INITIALIZED;
4700
4701	if (sock->sk) {
4702		sksec = sock->sk->sk_security;
4703		sksec->sclass = sclass;
4704		sksec->sid = sid;
4705		/* Allows detection of the first association on this socket */
4706		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4707			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4708
4709		err = selinux_netlbl_socket_post_create(sock->sk, family);
4710	}
4711
4712	return err;
4713}
4714
4715static int selinux_socket_socketpair(struct socket *socka,
4716				     struct socket *sockb)
4717{
4718	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4719	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4720
4721	sksec_a->peer_sid = sksec_b->sid;
4722	sksec_b->peer_sid = sksec_a->sid;
4723
4724	return 0;
4725}
4726
4727/* Range of port numbers used to automatically bind.
4728   Need to determine whether we should perform a name_bind
4729   permission check between the socket and the port number. */
4730
4731static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4732{
4733	struct sock *sk = sock->sk;
4734	struct sk_security_struct *sksec = sk->sk_security;
4735	u16 family;
4736	int err;
4737
4738	err = sock_has_perm(sk, SOCKET__BIND);
4739	if (err)
4740		goto out;
4741
4742	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4743	family = sk->sk_family;
4744	if (family == PF_INET || family == PF_INET6) {
4745		char *addrp;
 
4746		struct common_audit_data ad;
4747		struct lsm_network_audit net = {0,};
4748		struct sockaddr_in *addr4 = NULL;
4749		struct sockaddr_in6 *addr6 = NULL;
4750		u16 family_sa;
4751		unsigned short snum;
4752		u32 sid, node_perm;
4753
4754		/*
4755		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4756		 * that validates multiple binding addresses. Because of this
4757		 * need to check address->sa_family as it is possible to have
4758		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4759		 */
4760		if (addrlen < offsetofend(struct sockaddr, sa_family))
4761			return -EINVAL;
4762		family_sa = address->sa_family;
4763		switch (family_sa) {
4764		case AF_UNSPEC:
4765		case AF_INET:
4766			if (addrlen < sizeof(struct sockaddr_in))
4767				return -EINVAL;
4768			addr4 = (struct sockaddr_in *)address;
4769			if (family_sa == AF_UNSPEC) {
4770				/* see __inet_bind(), we only want to allow
4771				 * AF_UNSPEC if the address is INADDR_ANY
4772				 */
4773				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4774					goto err_af;
4775				family_sa = AF_INET;
4776			}
4777			snum = ntohs(addr4->sin_port);
4778			addrp = (char *)&addr4->sin_addr.s_addr;
4779			break;
4780		case AF_INET6:
4781			if (addrlen < SIN6_LEN_RFC2133)
4782				return -EINVAL;
4783			addr6 = (struct sockaddr_in6 *)address;
4784			snum = ntohs(addr6->sin6_port);
4785			addrp = (char *)&addr6->sin6_addr.s6_addr;
4786			break;
4787		default:
4788			goto err_af;
4789		}
4790
4791		ad.type = LSM_AUDIT_DATA_NET;
4792		ad.u.net = &net;
4793		ad.u.net->sport = htons(snum);
4794		ad.u.net->family = family_sa;
4795
4796		if (snum) {
4797			int low, high;
4798
4799			inet_get_local_port_range(sock_net(sk), &low, &high);
4800
4801			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4802			    snum < low || snum > high) {
4803				err = sel_netport_sid(sk->sk_protocol,
4804						      snum, &sid);
4805				if (err)
4806					goto out;
4807				err = avc_has_perm(&selinux_state,
4808						   sksec->sid, sid,
 
 
 
4809						   sksec->sclass,
4810						   SOCKET__NAME_BIND, &ad);
4811				if (err)
4812					goto out;
4813			}
4814		}
4815
4816		switch (sksec->sclass) {
4817		case SECCLASS_TCP_SOCKET:
4818			node_perm = TCP_SOCKET__NODE_BIND;
4819			break;
4820
4821		case SECCLASS_UDP_SOCKET:
4822			node_perm = UDP_SOCKET__NODE_BIND;
4823			break;
4824
4825		case SECCLASS_DCCP_SOCKET:
4826			node_perm = DCCP_SOCKET__NODE_BIND;
4827			break;
4828
4829		case SECCLASS_SCTP_SOCKET:
4830			node_perm = SCTP_SOCKET__NODE_BIND;
4831			break;
4832
4833		default:
4834			node_perm = RAWIP_SOCKET__NODE_BIND;
4835			break;
4836		}
4837
4838		err = sel_netnode_sid(addrp, family_sa, &sid);
4839		if (err)
4840			goto out;
4841
4842		if (family_sa == AF_INET)
 
 
 
 
 
4843			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4844		else
4845			ad.u.net->v6info.saddr = addr6->sin6_addr;
4846
4847		err = avc_has_perm(&selinux_state,
4848				   sksec->sid, sid,
4849				   sksec->sclass, node_perm, &ad);
4850		if (err)
4851			goto out;
4852	}
4853out:
4854	return err;
4855err_af:
4856	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4857	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4858		return -EINVAL;
4859	return -EAFNOSUPPORT;
4860}
4861
4862/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4863 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4864 */
4865static int selinux_socket_connect_helper(struct socket *sock,
4866					 struct sockaddr *address, int addrlen)
4867{
4868	struct sock *sk = sock->sk;
4869	struct sk_security_struct *sksec = sk->sk_security;
4870	int err;
4871
4872	err = sock_has_perm(sk, SOCKET__CONNECT);
4873	if (err)
4874		return err;
4875	if (addrlen < offsetofend(struct sockaddr, sa_family))
4876		return -EINVAL;
4877
4878	/* connect(AF_UNSPEC) has special handling, as it is a documented
4879	 * way to disconnect the socket
4880	 */
4881	if (address->sa_family == AF_UNSPEC)
4882		return 0;
4883
4884	/*
4885	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4886	 * for the port.
4887	 */
4888	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4889	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4890	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4891		struct common_audit_data ad;
4892		struct lsm_network_audit net = {0,};
4893		struct sockaddr_in *addr4 = NULL;
4894		struct sockaddr_in6 *addr6 = NULL;
4895		unsigned short snum;
4896		u32 sid, perm;
4897
4898		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4899		 * that validates multiple connect addresses. Because of this
4900		 * need to check address->sa_family as it is possible to have
4901		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4902		 */
4903		switch (address->sa_family) {
4904		case AF_INET:
4905			addr4 = (struct sockaddr_in *)address;
4906			if (addrlen < sizeof(struct sockaddr_in))
4907				return -EINVAL;
4908			snum = ntohs(addr4->sin_port);
4909			break;
4910		case AF_INET6:
4911			addr6 = (struct sockaddr_in6 *)address;
4912			if (addrlen < SIN6_LEN_RFC2133)
4913				return -EINVAL;
4914			snum = ntohs(addr6->sin6_port);
4915			break;
4916		default:
4917			/* Note that SCTP services expect -EINVAL, whereas
4918			 * others expect -EAFNOSUPPORT.
4919			 */
4920			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4921				return -EINVAL;
4922			else
4923				return -EAFNOSUPPORT;
4924		}
4925
4926		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4927		if (err)
4928			return err;
4929
4930		switch (sksec->sclass) {
4931		case SECCLASS_TCP_SOCKET:
4932			perm = TCP_SOCKET__NAME_CONNECT;
4933			break;
4934		case SECCLASS_DCCP_SOCKET:
4935			perm = DCCP_SOCKET__NAME_CONNECT;
4936			break;
4937		case SECCLASS_SCTP_SOCKET:
4938			perm = SCTP_SOCKET__NAME_CONNECT;
4939			break;
4940		}
4941
4942		ad.type = LSM_AUDIT_DATA_NET;
4943		ad.u.net = &net;
4944		ad.u.net->dport = htons(snum);
4945		ad.u.net->family = address->sa_family;
4946		err = avc_has_perm(&selinux_state,
4947				   sksec->sid, sid, sksec->sclass, perm, &ad);
4948		if (err)
4949			return err;
4950	}
4951
4952	return 0;
4953}
4954
4955/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4956static int selinux_socket_connect(struct socket *sock,
4957				  struct sockaddr *address, int addrlen)
4958{
4959	int err;
4960	struct sock *sk = sock->sk;
4961
4962	err = selinux_socket_connect_helper(sock, address, addrlen);
4963	if (err)
4964		return err;
4965
4966	return selinux_netlbl_socket_connect(sk, address);
4967}
4968
4969static int selinux_socket_listen(struct socket *sock, int backlog)
4970{
4971	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4972}
4973
4974static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4975{
4976	int err;
4977	struct inode_security_struct *isec;
4978	struct inode_security_struct *newisec;
4979	u16 sclass;
4980	u32 sid;
4981
4982	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4983	if (err)
4984		return err;
4985
4986	isec = inode_security_novalidate(SOCK_INODE(sock));
4987	spin_lock(&isec->lock);
4988	sclass = isec->sclass;
4989	sid = isec->sid;
4990	spin_unlock(&isec->lock);
4991
4992	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4993	newisec->sclass = sclass;
4994	newisec->sid = sid;
4995	newisec->initialized = LABEL_INITIALIZED;
4996
4997	return 0;
4998}
4999
5000static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
5001				  int size)
5002{
5003	return sock_has_perm(sock->sk, SOCKET__WRITE);
5004}
5005
5006static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
5007				  int size, int flags)
5008{
5009	return sock_has_perm(sock->sk, SOCKET__READ);
5010}
5011
5012static int selinux_socket_getsockname(struct socket *sock)
5013{
5014	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5015}
5016
5017static int selinux_socket_getpeername(struct socket *sock)
5018{
5019	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5020}
5021
5022static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5023{
5024	int err;
5025
5026	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5027	if (err)
5028		return err;
5029
5030	return selinux_netlbl_socket_setsockopt(sock, level, optname);
5031}
5032
5033static int selinux_socket_getsockopt(struct socket *sock, int level,
5034				     int optname)
5035{
5036	return sock_has_perm(sock->sk, SOCKET__GETOPT);
5037}
5038
5039static int selinux_socket_shutdown(struct socket *sock, int how)
5040{
5041	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5042}
5043
5044static int selinux_socket_unix_stream_connect(struct sock *sock,
5045					      struct sock *other,
5046					      struct sock *newsk)
5047{
5048	struct sk_security_struct *sksec_sock = sock->sk_security;
5049	struct sk_security_struct *sksec_other = other->sk_security;
5050	struct sk_security_struct *sksec_new = newsk->sk_security;
5051	struct common_audit_data ad;
5052	struct lsm_network_audit net = {0,};
5053	int err;
5054
5055	ad.type = LSM_AUDIT_DATA_NET;
5056	ad.u.net = &net;
5057	ad.u.net->sk = other;
5058
5059	err = avc_has_perm(&selinux_state,
5060			   sksec_sock->sid, sksec_other->sid,
5061			   sksec_other->sclass,
5062			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5063	if (err)
5064		return err;
5065
5066	/* server child socket */
5067	sksec_new->peer_sid = sksec_sock->sid;
5068	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
5069				    sksec_sock->sid, &sksec_new->sid);
5070	if (err)
5071		return err;
5072
5073	/* connecting socket */
5074	sksec_sock->peer_sid = sksec_new->sid;
5075
5076	return 0;
5077}
5078
5079static int selinux_socket_unix_may_send(struct socket *sock,
5080					struct socket *other)
5081{
5082	struct sk_security_struct *ssec = sock->sk->sk_security;
5083	struct sk_security_struct *osec = other->sk->sk_security;
5084	struct common_audit_data ad;
5085	struct lsm_network_audit net = {0,};
5086
5087	ad.type = LSM_AUDIT_DATA_NET;
5088	ad.u.net = &net;
5089	ad.u.net->sk = other->sk;
5090
5091	return avc_has_perm(&selinux_state,
5092			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5093			    &ad);
5094}
5095
5096static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5097				    char *addrp, u16 family, u32 peer_sid,
5098				    struct common_audit_data *ad)
5099{
5100	int err;
5101	u32 if_sid;
5102	u32 node_sid;
5103
5104	err = sel_netif_sid(ns, ifindex, &if_sid);
5105	if (err)
5106		return err;
5107	err = avc_has_perm(&selinux_state,
5108			   peer_sid, if_sid,
5109			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5110	if (err)
5111		return err;
5112
5113	err = sel_netnode_sid(addrp, family, &node_sid);
5114	if (err)
5115		return err;
5116	return avc_has_perm(&selinux_state,
5117			    peer_sid, node_sid,
5118			    SECCLASS_NODE, NODE__RECVFROM, ad);
5119}
5120
5121static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5122				       u16 family)
5123{
5124	int err = 0;
5125	struct sk_security_struct *sksec = sk->sk_security;
5126	u32 sk_sid = sksec->sid;
5127	struct common_audit_data ad;
5128	struct lsm_network_audit net = {0,};
5129	char *addrp;
5130
5131	ad.type = LSM_AUDIT_DATA_NET;
5132	ad.u.net = &net;
5133	ad.u.net->netif = skb->skb_iif;
5134	ad.u.net->family = family;
5135	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5136	if (err)
5137		return err;
5138
5139	if (selinux_secmark_enabled()) {
5140		err = avc_has_perm(&selinux_state,
5141				   sk_sid, skb->secmark, SECCLASS_PACKET,
5142				   PACKET__RECV, &ad);
5143		if (err)
5144			return err;
5145	}
5146
5147	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5148	if (err)
5149		return err;
5150	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5151
5152	return err;
5153}
5154
5155static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5156{
5157	int err;
5158	struct sk_security_struct *sksec = sk->sk_security;
5159	u16 family = sk->sk_family;
5160	u32 sk_sid = sksec->sid;
5161	struct common_audit_data ad;
5162	struct lsm_network_audit net = {0,};
5163	char *addrp;
5164	u8 secmark_active;
5165	u8 peerlbl_active;
5166
5167	if (family != PF_INET && family != PF_INET6)
5168		return 0;
5169
5170	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5171	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5172		family = PF_INET;
5173
5174	/* If any sort of compatibility mode is enabled then handoff processing
5175	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5176	 * special handling.  We do this in an attempt to keep this function
5177	 * as fast and as clean as possible. */
5178	if (!selinux_policycap_netpeer())
5179		return selinux_sock_rcv_skb_compat(sk, skb, family);
5180
5181	secmark_active = selinux_secmark_enabled();
5182	peerlbl_active = selinux_peerlbl_enabled();
5183	if (!secmark_active && !peerlbl_active)
5184		return 0;
5185
5186	ad.type = LSM_AUDIT_DATA_NET;
5187	ad.u.net = &net;
5188	ad.u.net->netif = skb->skb_iif;
5189	ad.u.net->family = family;
5190	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5191	if (err)
5192		return err;
5193
5194	if (peerlbl_active) {
5195		u32 peer_sid;
5196
5197		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5198		if (err)
5199			return err;
5200		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5201					       addrp, family, peer_sid, &ad);
5202		if (err) {
5203			selinux_netlbl_err(skb, family, err, 0);
5204			return err;
5205		}
5206		err = avc_has_perm(&selinux_state,
5207				   sk_sid, peer_sid, SECCLASS_PEER,
5208				   PEER__RECV, &ad);
5209		if (err) {
5210			selinux_netlbl_err(skb, family, err, 0);
5211			return err;
5212		}
5213	}
5214
5215	if (secmark_active) {
5216		err = avc_has_perm(&selinux_state,
5217				   sk_sid, skb->secmark, SECCLASS_PACKET,
5218				   PACKET__RECV, &ad);
5219		if (err)
5220			return err;
5221	}
5222
5223	return err;
5224}
5225
5226static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5227					    int __user *optlen, unsigned len)
5228{
5229	int err = 0;
5230	char *scontext;
5231	u32 scontext_len;
5232	struct sk_security_struct *sksec = sock->sk->sk_security;
5233	u32 peer_sid = SECSID_NULL;
5234
5235	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5236	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5237	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5238		peer_sid = sksec->peer_sid;
5239	if (peer_sid == SECSID_NULL)
5240		return -ENOPROTOOPT;
5241
5242	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5243				      &scontext_len);
5244	if (err)
5245		return err;
5246
5247	if (scontext_len > len) {
5248		err = -ERANGE;
5249		goto out_len;
5250	}
5251
5252	if (copy_to_user(optval, scontext, scontext_len))
5253		err = -EFAULT;
5254
5255out_len:
5256	if (put_user(scontext_len, optlen))
5257		err = -EFAULT;
5258	kfree(scontext);
5259	return err;
5260}
5261
5262static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5263{
5264	u32 peer_secid = SECSID_NULL;
5265	u16 family;
5266	struct inode_security_struct *isec;
5267
5268	if (skb && skb->protocol == htons(ETH_P_IP))
5269		family = PF_INET;
5270	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5271		family = PF_INET6;
5272	else if (sock)
5273		family = sock->sk->sk_family;
5274	else
5275		goto out;
5276
5277	if (sock && family == PF_UNIX) {
5278		isec = inode_security_novalidate(SOCK_INODE(sock));
5279		peer_secid = isec->sid;
5280	} else if (skb)
5281		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5282
5283out:
5284	*secid = peer_secid;
5285	if (peer_secid == SECSID_NULL)
5286		return -EINVAL;
5287	return 0;
5288}
5289
5290static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5291{
5292	struct sk_security_struct *sksec;
5293
5294	sksec = kzalloc(sizeof(*sksec), priority);
5295	if (!sksec)
5296		return -ENOMEM;
5297
5298	sksec->peer_sid = SECINITSID_UNLABELED;
5299	sksec->sid = SECINITSID_UNLABELED;
5300	sksec->sclass = SECCLASS_SOCKET;
5301	selinux_netlbl_sk_security_reset(sksec);
5302	sk->sk_security = sksec;
5303
5304	return 0;
5305}
5306
5307static void selinux_sk_free_security(struct sock *sk)
5308{
5309	struct sk_security_struct *sksec = sk->sk_security;
5310
5311	sk->sk_security = NULL;
5312	selinux_netlbl_sk_security_free(sksec);
5313	kfree(sksec);
5314}
5315
5316static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5317{
5318	struct sk_security_struct *sksec = sk->sk_security;
5319	struct sk_security_struct *newsksec = newsk->sk_security;
5320
5321	newsksec->sid = sksec->sid;
5322	newsksec->peer_sid = sksec->peer_sid;
5323	newsksec->sclass = sksec->sclass;
5324
5325	selinux_netlbl_sk_security_reset(newsksec);
5326}
5327
5328static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5329{
5330	if (!sk)
5331		*secid = SECINITSID_ANY_SOCKET;
5332	else {
5333		struct sk_security_struct *sksec = sk->sk_security;
5334
5335		*secid = sksec->sid;
5336	}
5337}
5338
5339static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5340{
5341	struct inode_security_struct *isec =
5342		inode_security_novalidate(SOCK_INODE(parent));
5343	struct sk_security_struct *sksec = sk->sk_security;
5344
5345	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5346	    sk->sk_family == PF_UNIX)
5347		isec->sid = sksec->sid;
5348	sksec->sclass = isec->sclass;
5349}
5350
5351/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5352 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5353 * already present).
5354 */
5355static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5356				      struct sk_buff *skb)
5357{
5358	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5359	struct common_audit_data ad;
5360	struct lsm_network_audit net = {0,};
5361	u8 peerlbl_active;
5362	u32 peer_sid = SECINITSID_UNLABELED;
5363	u32 conn_sid;
5364	int err = 0;
5365
5366	if (!selinux_policycap_extsockclass())
5367		return 0;
5368
5369	peerlbl_active = selinux_peerlbl_enabled();
5370
5371	if (peerlbl_active) {
5372		/* This will return peer_sid = SECSID_NULL if there are
5373		 * no peer labels, see security_net_peersid_resolve().
5374		 */
5375		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5376					      &peer_sid);
5377		if (err)
5378			return err;
5379
5380		if (peer_sid == SECSID_NULL)
5381			peer_sid = SECINITSID_UNLABELED;
5382	}
5383
5384	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5385		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5386
5387		/* Here as first association on socket. As the peer SID
5388		 * was allowed by peer recv (and the netif/node checks),
5389		 * then it is approved by policy and used as the primary
5390		 * peer SID for getpeercon(3).
5391		 */
5392		sksec->peer_sid = peer_sid;
5393	} else if  (sksec->peer_sid != peer_sid) {
5394		/* Other association peer SIDs are checked to enforce
5395		 * consistency among the peer SIDs.
5396		 */
5397		ad.type = LSM_AUDIT_DATA_NET;
5398		ad.u.net = &net;
5399		ad.u.net->sk = ep->base.sk;
5400		err = avc_has_perm(&selinux_state,
5401				   sksec->peer_sid, peer_sid, sksec->sclass,
5402				   SCTP_SOCKET__ASSOCIATION, &ad);
5403		if (err)
5404			return err;
5405	}
5406
5407	/* Compute the MLS component for the connection and store
5408	 * the information in ep. This will be used by SCTP TCP type
5409	 * sockets and peeled off connections as they cause a new
5410	 * socket to be generated. selinux_sctp_sk_clone() will then
5411	 * plug this into the new socket.
5412	 */
5413	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5414	if (err)
5415		return err;
5416
5417	ep->secid = conn_sid;
5418	ep->peer_secid = peer_sid;
5419
5420	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5421	return selinux_netlbl_sctp_assoc_request(ep, skb);
5422}
5423
5424/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5425 * based on their @optname.
5426 */
5427static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5428				     struct sockaddr *address,
5429				     int addrlen)
5430{
5431	int len, err = 0, walk_size = 0;
5432	void *addr_buf;
5433	struct sockaddr *addr;
5434	struct socket *sock;
5435
5436	if (!selinux_policycap_extsockclass())
5437		return 0;
5438
5439	/* Process one or more addresses that may be IPv4 or IPv6 */
5440	sock = sk->sk_socket;
5441	addr_buf = address;
5442
5443	while (walk_size < addrlen) {
5444		if (walk_size + sizeof(sa_family_t) > addrlen)
5445			return -EINVAL;
5446
5447		addr = addr_buf;
5448		switch (addr->sa_family) {
5449		case AF_UNSPEC:
5450		case AF_INET:
5451			len = sizeof(struct sockaddr_in);
5452			break;
5453		case AF_INET6:
5454			len = sizeof(struct sockaddr_in6);
5455			break;
5456		default:
5457			return -EINVAL;
5458		}
5459
5460		if (walk_size + len > addrlen)
5461			return -EINVAL;
5462
5463		err = -EINVAL;
5464		switch (optname) {
5465		/* Bind checks */
5466		case SCTP_PRIMARY_ADDR:
5467		case SCTP_SET_PEER_PRIMARY_ADDR:
5468		case SCTP_SOCKOPT_BINDX_ADD:
5469			err = selinux_socket_bind(sock, addr, len);
5470			break;
5471		/* Connect checks */
5472		case SCTP_SOCKOPT_CONNECTX:
5473		case SCTP_PARAM_SET_PRIMARY:
5474		case SCTP_PARAM_ADD_IP:
5475		case SCTP_SENDMSG_CONNECT:
5476			err = selinux_socket_connect_helper(sock, addr, len);
5477			if (err)
5478				return err;
5479
5480			/* As selinux_sctp_bind_connect() is called by the
5481			 * SCTP protocol layer, the socket is already locked,
5482			 * therefore selinux_netlbl_socket_connect_locked()
5483			 * is called here. The situations handled are:
5484			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5485			 * whenever a new IP address is added or when a new
5486			 * primary address is selected.
5487			 * Note that an SCTP connect(2) call happens before
5488			 * the SCTP protocol layer and is handled via
5489			 * selinux_socket_connect().
5490			 */
5491			err = selinux_netlbl_socket_connect_locked(sk, addr);
5492			break;
5493		}
5494
5495		if (err)
5496			return err;
5497
5498		addr_buf += len;
5499		walk_size += len;
5500	}
5501
5502	return 0;
5503}
5504
5505/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5506static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5507				  struct sock *newsk)
5508{
5509	struct sk_security_struct *sksec = sk->sk_security;
5510	struct sk_security_struct *newsksec = newsk->sk_security;
5511
5512	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5513	 * the non-sctp clone version.
5514	 */
5515	if (!selinux_policycap_extsockclass())
5516		return selinux_sk_clone_security(sk, newsk);
5517
5518	newsksec->sid = ep->secid;
5519	newsksec->peer_sid = ep->peer_secid;
5520	newsksec->sclass = sksec->sclass;
5521	selinux_netlbl_sctp_sk_clone(sk, newsk);
5522}
5523
5524static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5525				     struct request_sock *req)
5526{
5527	struct sk_security_struct *sksec = sk->sk_security;
5528	int err;
5529	u16 family = req->rsk_ops->family;
5530	u32 connsid;
5531	u32 peersid;
5532
5533	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5534	if (err)
5535		return err;
5536	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5537	if (err)
5538		return err;
5539	req->secid = connsid;
5540	req->peer_secid = peersid;
5541
5542	return selinux_netlbl_inet_conn_request(req, family);
5543}
5544
5545static void selinux_inet_csk_clone(struct sock *newsk,
5546				   const struct request_sock *req)
5547{
5548	struct sk_security_struct *newsksec = newsk->sk_security;
5549
5550	newsksec->sid = req->secid;
5551	newsksec->peer_sid = req->peer_secid;
5552	/* NOTE: Ideally, we should also get the isec->sid for the
5553	   new socket in sync, but we don't have the isec available yet.
5554	   So we will wait until sock_graft to do it, by which
5555	   time it will have been created and available. */
5556
5557	/* We don't need to take any sort of lock here as we are the only
5558	 * thread with access to newsksec */
5559	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5560}
5561
5562static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5563{
5564	u16 family = sk->sk_family;
5565	struct sk_security_struct *sksec = sk->sk_security;
5566
5567	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5568	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5569		family = PF_INET;
5570
5571	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5572}
5573
5574static int selinux_secmark_relabel_packet(u32 sid)
5575{
5576	const struct task_security_struct *__tsec;
5577	u32 tsid;
5578
5579	__tsec = selinux_cred(current_cred());
5580	tsid = __tsec->sid;
5581
5582	return avc_has_perm(&selinux_state,
5583			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5584			    NULL);
5585}
5586
5587static void selinux_secmark_refcount_inc(void)
5588{
5589	atomic_inc(&selinux_secmark_refcount);
5590}
5591
5592static void selinux_secmark_refcount_dec(void)
5593{
5594	atomic_dec(&selinux_secmark_refcount);
5595}
5596
5597static void selinux_req_classify_flow(const struct request_sock *req,
5598				      struct flowi_common *flic)
5599{
5600	flic->flowic_secid = req->secid;
5601}
5602
5603static int selinux_tun_dev_alloc_security(void **security)
5604{
5605	struct tun_security_struct *tunsec;
5606
5607	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5608	if (!tunsec)
5609		return -ENOMEM;
5610	tunsec->sid = current_sid();
5611
5612	*security = tunsec;
5613	return 0;
5614}
5615
5616static void selinux_tun_dev_free_security(void *security)
5617{
5618	kfree(security);
5619}
5620
5621static int selinux_tun_dev_create(void)
5622{
5623	u32 sid = current_sid();
5624
5625	/* we aren't taking into account the "sockcreate" SID since the socket
5626	 * that is being created here is not a socket in the traditional sense,
5627	 * instead it is a private sock, accessible only to the kernel, and
5628	 * representing a wide range of network traffic spanning multiple
5629	 * connections unlike traditional sockets - check the TUN driver to
5630	 * get a better understanding of why this socket is special */
5631
5632	return avc_has_perm(&selinux_state,
5633			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5634			    NULL);
5635}
5636
5637static int selinux_tun_dev_attach_queue(void *security)
5638{
5639	struct tun_security_struct *tunsec = security;
5640
5641	return avc_has_perm(&selinux_state,
5642			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5643			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5644}
5645
5646static int selinux_tun_dev_attach(struct sock *sk, void *security)
5647{
5648	struct tun_security_struct *tunsec = security;
5649	struct sk_security_struct *sksec = sk->sk_security;
5650
5651	/* we don't currently perform any NetLabel based labeling here and it
5652	 * isn't clear that we would want to do so anyway; while we could apply
5653	 * labeling without the support of the TUN user the resulting labeled
5654	 * traffic from the other end of the connection would almost certainly
5655	 * cause confusion to the TUN user that had no idea network labeling
5656	 * protocols were being used */
5657
5658	sksec->sid = tunsec->sid;
5659	sksec->sclass = SECCLASS_TUN_SOCKET;
5660
5661	return 0;
5662}
5663
5664static int selinux_tun_dev_open(void *security)
5665{
5666	struct tun_security_struct *tunsec = security;
5667	u32 sid = current_sid();
5668	int err;
5669
5670	err = avc_has_perm(&selinux_state,
5671			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5672			   TUN_SOCKET__RELABELFROM, NULL);
5673	if (err)
5674		return err;
5675	err = avc_has_perm(&selinux_state,
5676			   sid, sid, SECCLASS_TUN_SOCKET,
5677			   TUN_SOCKET__RELABELTO, NULL);
5678	if (err)
5679		return err;
5680	tunsec->sid = sid;
5681
5682	return 0;
5683}
5684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5685#ifdef CONFIG_NETFILTER
5686
5687static unsigned int selinux_ip_forward(struct sk_buff *skb,
5688				       const struct net_device *indev,
5689				       u16 family)
5690{
5691	int err;
5692	char *addrp;
5693	u32 peer_sid;
5694	struct common_audit_data ad;
5695	struct lsm_network_audit net = {0,};
5696	u8 secmark_active;
5697	u8 netlbl_active;
5698	u8 peerlbl_active;
5699
5700	if (!selinux_policycap_netpeer())
5701		return NF_ACCEPT;
5702
5703	secmark_active = selinux_secmark_enabled();
5704	netlbl_active = netlbl_enabled();
5705	peerlbl_active = selinux_peerlbl_enabled();
5706	if (!secmark_active && !peerlbl_active)
5707		return NF_ACCEPT;
5708
5709	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5710		return NF_DROP;
5711
5712	ad.type = LSM_AUDIT_DATA_NET;
5713	ad.u.net = &net;
5714	ad.u.net->netif = indev->ifindex;
5715	ad.u.net->family = family;
5716	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5717		return NF_DROP;
5718
5719	if (peerlbl_active) {
5720		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5721					       addrp, family, peer_sid, &ad);
5722		if (err) {
5723			selinux_netlbl_err(skb, family, err, 1);
5724			return NF_DROP;
5725		}
5726	}
5727
5728	if (secmark_active)
5729		if (avc_has_perm(&selinux_state,
5730				 peer_sid, skb->secmark,
5731				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5732			return NF_DROP;
5733
5734	if (netlbl_active)
5735		/* we do this in the FORWARD path and not the POST_ROUTING
5736		 * path because we want to make sure we apply the necessary
5737		 * labeling before IPsec is applied so we can leverage AH
5738		 * protection */
5739		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5740			return NF_DROP;
5741
5742	return NF_ACCEPT;
5743}
5744
5745static unsigned int selinux_ipv4_forward(void *priv,
5746					 struct sk_buff *skb,
5747					 const struct nf_hook_state *state)
5748{
5749	return selinux_ip_forward(skb, state->in, PF_INET);
5750}
5751
5752#if IS_ENABLED(CONFIG_IPV6)
5753static unsigned int selinux_ipv6_forward(void *priv,
5754					 struct sk_buff *skb,
5755					 const struct nf_hook_state *state)
5756{
5757	return selinux_ip_forward(skb, state->in, PF_INET6);
5758}
5759#endif	/* IPV6 */
5760
5761static unsigned int selinux_ip_output(struct sk_buff *skb,
5762				      u16 family)
5763{
5764	struct sock *sk;
5765	u32 sid;
5766
5767	if (!netlbl_enabled())
5768		return NF_ACCEPT;
5769
5770	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5771	 * because we want to make sure we apply the necessary labeling
5772	 * before IPsec is applied so we can leverage AH protection */
5773	sk = skb->sk;
5774	if (sk) {
5775		struct sk_security_struct *sksec;
5776
5777		if (sk_listener(sk))
5778			/* if the socket is the listening state then this
5779			 * packet is a SYN-ACK packet which means it needs to
5780			 * be labeled based on the connection/request_sock and
5781			 * not the parent socket.  unfortunately, we can't
5782			 * lookup the request_sock yet as it isn't queued on
5783			 * the parent socket until after the SYN-ACK is sent.
5784			 * the "solution" is to simply pass the packet as-is
5785			 * as any IP option based labeling should be copied
5786			 * from the initial connection request (in the IP
5787			 * layer).  it is far from ideal, but until we get a
5788			 * security label in the packet itself this is the
5789			 * best we can do. */
5790			return NF_ACCEPT;
5791
5792		/* standard practice, label using the parent socket */
5793		sksec = sk->sk_security;
5794		sid = sksec->sid;
5795	} else
5796		sid = SECINITSID_KERNEL;
5797	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5798		return NF_DROP;
5799
5800	return NF_ACCEPT;
5801}
5802
5803static unsigned int selinux_ipv4_output(void *priv,
5804					struct sk_buff *skb,
5805					const struct nf_hook_state *state)
5806{
5807	return selinux_ip_output(skb, PF_INET);
5808}
5809
5810#if IS_ENABLED(CONFIG_IPV6)
5811static unsigned int selinux_ipv6_output(void *priv,
5812					struct sk_buff *skb,
5813					const struct nf_hook_state *state)
5814{
5815	return selinux_ip_output(skb, PF_INET6);
5816}
5817#endif	/* IPV6 */
5818
5819static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5820						int ifindex,
5821						u16 family)
5822{
5823	struct sock *sk = skb_to_full_sk(skb);
5824	struct sk_security_struct *sksec;
5825	struct common_audit_data ad;
5826	struct lsm_network_audit net = {0,};
5827	char *addrp;
5828	u8 proto;
5829
5830	if (sk == NULL)
5831		return NF_ACCEPT;
5832	sksec = sk->sk_security;
5833
5834	ad.type = LSM_AUDIT_DATA_NET;
5835	ad.u.net = &net;
5836	ad.u.net->netif = ifindex;
5837	ad.u.net->family = family;
5838	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5839		return NF_DROP;
5840
5841	if (selinux_secmark_enabled())
5842		if (avc_has_perm(&selinux_state,
5843				 sksec->sid, skb->secmark,
5844				 SECCLASS_PACKET, PACKET__SEND, &ad))
5845			return NF_DROP_ERR(-ECONNREFUSED);
5846
5847	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5848		return NF_DROP_ERR(-ECONNREFUSED);
5849
5850	return NF_ACCEPT;
5851}
5852
5853static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5854					 const struct net_device *outdev,
5855					 u16 family)
5856{
5857	u32 secmark_perm;
5858	u32 peer_sid;
5859	int ifindex = outdev->ifindex;
5860	struct sock *sk;
5861	struct common_audit_data ad;
5862	struct lsm_network_audit net = {0,};
5863	char *addrp;
5864	u8 secmark_active;
5865	u8 peerlbl_active;
5866
5867	/* If any sort of compatibility mode is enabled then handoff processing
5868	 * to the selinux_ip_postroute_compat() function to deal with the
5869	 * special handling.  We do this in an attempt to keep this function
5870	 * as fast and as clean as possible. */
5871	if (!selinux_policycap_netpeer())
5872		return selinux_ip_postroute_compat(skb, ifindex, family);
5873
5874	secmark_active = selinux_secmark_enabled();
5875	peerlbl_active = selinux_peerlbl_enabled();
5876	if (!secmark_active && !peerlbl_active)
5877		return NF_ACCEPT;
5878
5879	sk = skb_to_full_sk(skb);
5880
5881#ifdef CONFIG_XFRM
5882	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5883	 * packet transformation so allow the packet to pass without any checks
5884	 * since we'll have another chance to perform access control checks
5885	 * when the packet is on it's final way out.
5886	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5887	 *       is NULL, in this case go ahead and apply access control.
5888	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5889	 *       TCP listening state we cannot wait until the XFRM processing
5890	 *       is done as we will miss out on the SA label if we do;
5891	 *       unfortunately, this means more work, but it is only once per
5892	 *       connection. */
5893	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5894	    !(sk && sk_listener(sk)))
5895		return NF_ACCEPT;
5896#endif
5897
5898	if (sk == NULL) {
5899		/* Without an associated socket the packet is either coming
5900		 * from the kernel or it is being forwarded; check the packet
5901		 * to determine which and if the packet is being forwarded
5902		 * query the packet directly to determine the security label. */
5903		if (skb->skb_iif) {
5904			secmark_perm = PACKET__FORWARD_OUT;
5905			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5906				return NF_DROP;
5907		} else {
5908			secmark_perm = PACKET__SEND;
5909			peer_sid = SECINITSID_KERNEL;
5910		}
5911	} else if (sk_listener(sk)) {
5912		/* Locally generated packet but the associated socket is in the
5913		 * listening state which means this is a SYN-ACK packet.  In
5914		 * this particular case the correct security label is assigned
5915		 * to the connection/request_sock but unfortunately we can't
5916		 * query the request_sock as it isn't queued on the parent
5917		 * socket until after the SYN-ACK packet is sent; the only
5918		 * viable choice is to regenerate the label like we do in
5919		 * selinux_inet_conn_request().  See also selinux_ip_output()
5920		 * for similar problems. */
5921		u32 skb_sid;
5922		struct sk_security_struct *sksec;
5923
5924		sksec = sk->sk_security;
5925		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5926			return NF_DROP;
5927		/* At this point, if the returned skb peerlbl is SECSID_NULL
5928		 * and the packet has been through at least one XFRM
5929		 * transformation then we must be dealing with the "final"
5930		 * form of labeled IPsec packet; since we've already applied
5931		 * all of our access controls on this packet we can safely
5932		 * pass the packet. */
5933		if (skb_sid == SECSID_NULL) {
5934			switch (family) {
5935			case PF_INET:
5936				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5937					return NF_ACCEPT;
5938				break;
5939			case PF_INET6:
5940				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5941					return NF_ACCEPT;
5942				break;
5943			default:
5944				return NF_DROP_ERR(-ECONNREFUSED);
5945			}
5946		}
5947		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5948			return NF_DROP;
5949		secmark_perm = PACKET__SEND;
5950	} else {
5951		/* Locally generated packet, fetch the security label from the
5952		 * associated socket. */
5953		struct sk_security_struct *sksec = sk->sk_security;
5954		peer_sid = sksec->sid;
5955		secmark_perm = PACKET__SEND;
5956	}
5957
5958	ad.type = LSM_AUDIT_DATA_NET;
5959	ad.u.net = &net;
5960	ad.u.net->netif = ifindex;
5961	ad.u.net->family = family;
5962	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5963		return NF_DROP;
5964
5965	if (secmark_active)
5966		if (avc_has_perm(&selinux_state,
5967				 peer_sid, skb->secmark,
5968				 SECCLASS_PACKET, secmark_perm, &ad))
5969			return NF_DROP_ERR(-ECONNREFUSED);
5970
5971	if (peerlbl_active) {
5972		u32 if_sid;
5973		u32 node_sid;
5974
5975		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5976			return NF_DROP;
5977		if (avc_has_perm(&selinux_state,
5978				 peer_sid, if_sid,
5979				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5980			return NF_DROP_ERR(-ECONNREFUSED);
5981
5982		if (sel_netnode_sid(addrp, family, &node_sid))
5983			return NF_DROP;
5984		if (avc_has_perm(&selinux_state,
5985				 peer_sid, node_sid,
5986				 SECCLASS_NODE, NODE__SENDTO, &ad))
5987			return NF_DROP_ERR(-ECONNREFUSED);
5988	}
5989
5990	return NF_ACCEPT;
5991}
5992
5993static unsigned int selinux_ipv4_postroute(void *priv,
5994					   struct sk_buff *skb,
5995					   const struct nf_hook_state *state)
5996{
5997	return selinux_ip_postroute(skb, state->out, PF_INET);
5998}
5999
6000#if IS_ENABLED(CONFIG_IPV6)
6001static unsigned int selinux_ipv6_postroute(void *priv,
6002					   struct sk_buff *skb,
6003					   const struct nf_hook_state *state)
6004{
6005	return selinux_ip_postroute(skb, state->out, PF_INET6);
6006}
6007#endif	/* IPV6 */
6008
6009#endif	/* CONFIG_NETFILTER */
6010
6011static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
6012{
6013	int rc = 0;
6014	unsigned int msg_len;
6015	unsigned int data_len = skb->len;
6016	unsigned char *data = skb->data;
6017	struct nlmsghdr *nlh;
6018	struct sk_security_struct *sksec = sk->sk_security;
6019	u16 sclass = sksec->sclass;
6020	u32 perm;
6021
6022	while (data_len >= nlmsg_total_size(0)) {
6023		nlh = (struct nlmsghdr *)data;
 
 
 
 
6024
6025		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
6026		 *       users which means we can't reject skb's with bogus
6027		 *       length fields; our solution is to follow what
6028		 *       netlink_rcv_skb() does and simply skip processing at
6029		 *       messages with length fields that are clearly junk
6030		 */
6031		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
6032			return 0;
6033
6034		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
6035		if (rc == 0) {
6036			rc = sock_has_perm(sk, perm);
6037			if (rc)
6038				return rc;
6039		} else if (rc == -EINVAL) {
6040			/* -EINVAL is a missing msg/perm mapping */
6041			pr_warn_ratelimited("SELinux: unrecognized netlink"
6042				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
6043				" pid=%d comm=%s\n",
6044				sk->sk_protocol, nlh->nlmsg_type,
6045				secclass_map[sclass - 1].name,
6046				task_pid_nr(current), current->comm);
6047			if (enforcing_enabled(&selinux_state) &&
6048			    !security_get_allow_unknown(&selinux_state))
6049				return rc;
6050			rc = 0;
6051		} else if (rc == -ENOENT) {
6052			/* -ENOENT is a missing socket/class mapping, ignore */
6053			rc = 0;
6054		} else {
6055			return rc;
6056		}
6057
6058		/* move to the next message after applying netlink padding */
6059		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6060		if (msg_len >= data_len)
6061			return 0;
6062		data_len -= msg_len;
6063		data += msg_len;
6064	}
6065
6066	return rc;
 
 
 
 
6067}
6068
6069static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6070{
6071	isec->sclass = sclass;
6072	isec->sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6073}
6074
6075static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6076			u32 perms)
6077{
6078	struct ipc_security_struct *isec;
6079	struct common_audit_data ad;
6080	u32 sid = current_sid();
6081
6082	isec = selinux_ipc(ipc_perms);
6083
6084	ad.type = LSM_AUDIT_DATA_IPC;
6085	ad.u.ipc_id = ipc_perms->key;
6086
6087	return avc_has_perm(&selinux_state,
6088			    sid, isec->sid, isec->sclass, perms, &ad);
6089}
6090
6091static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6092{
6093	struct msg_security_struct *msec;
6094
6095	msec = selinux_msg_msg(msg);
6096	msec->sid = SECINITSID_UNLABELED;
6097
6098	return 0;
 
 
6099}
6100
6101/* message queue security operations */
6102static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6103{
6104	struct ipc_security_struct *isec;
6105	struct common_audit_data ad;
6106	u32 sid = current_sid();
6107	int rc;
6108
6109	isec = selinux_ipc(msq);
6110	ipc_init_security(isec, SECCLASS_MSGQ);
 
 
 
6111
6112	ad.type = LSM_AUDIT_DATA_IPC;
6113	ad.u.ipc_id = msq->key;
6114
6115	rc = avc_has_perm(&selinux_state,
6116			  sid, isec->sid, SECCLASS_MSGQ,
6117			  MSGQ__CREATE, &ad);
6118	return rc;
 
 
 
 
6119}
6120
6121static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
 
 
 
 
 
6122{
6123	struct ipc_security_struct *isec;
6124	struct common_audit_data ad;
6125	u32 sid = current_sid();
6126
6127	isec = selinux_ipc(msq);
6128
6129	ad.type = LSM_AUDIT_DATA_IPC;
6130	ad.u.ipc_id = msq->key;
6131
6132	return avc_has_perm(&selinux_state,
6133			    sid, isec->sid, SECCLASS_MSGQ,
6134			    MSGQ__ASSOCIATE, &ad);
6135}
6136
6137static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6138{
6139	int err;
6140	int perms;
6141
6142	switch (cmd) {
6143	case IPC_INFO:
6144	case MSG_INFO:
6145		/* No specific object, just general system-wide information. */
6146		return avc_has_perm(&selinux_state,
6147				    current_sid(), SECINITSID_KERNEL,
6148				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6149	case IPC_STAT:
6150	case MSG_STAT:
6151	case MSG_STAT_ANY:
6152		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6153		break;
6154	case IPC_SET:
6155		perms = MSGQ__SETATTR;
6156		break;
6157	case IPC_RMID:
6158		perms = MSGQ__DESTROY;
6159		break;
6160	default:
6161		return 0;
6162	}
6163
6164	err = ipc_has_perm(msq, perms);
6165	return err;
6166}
6167
6168static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6169{
6170	struct ipc_security_struct *isec;
6171	struct msg_security_struct *msec;
6172	struct common_audit_data ad;
6173	u32 sid = current_sid();
6174	int rc;
6175
6176	isec = selinux_ipc(msq);
6177	msec = selinux_msg_msg(msg);
6178
6179	/*
6180	 * First time through, need to assign label to the message
6181	 */
6182	if (msec->sid == SECINITSID_UNLABELED) {
6183		/*
6184		 * Compute new sid based on current process and
6185		 * message queue this message will be stored in
6186		 */
6187		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6188					     SECCLASS_MSG, NULL, &msec->sid);
6189		if (rc)
6190			return rc;
6191	}
6192
6193	ad.type = LSM_AUDIT_DATA_IPC;
6194	ad.u.ipc_id = msq->key;
6195
6196	/* Can this process write to the queue? */
6197	rc = avc_has_perm(&selinux_state,
6198			  sid, isec->sid, SECCLASS_MSGQ,
6199			  MSGQ__WRITE, &ad);
6200	if (!rc)
6201		/* Can this process send the message */
6202		rc = avc_has_perm(&selinux_state,
6203				  sid, msec->sid, SECCLASS_MSG,
6204				  MSG__SEND, &ad);
6205	if (!rc)
6206		/* Can the message be put in the queue? */
6207		rc = avc_has_perm(&selinux_state,
6208				  msec->sid, isec->sid, SECCLASS_MSGQ,
6209				  MSGQ__ENQUEUE, &ad);
6210
6211	return rc;
6212}
6213
6214static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6215				    struct task_struct *target,
6216				    long type, int mode)
6217{
6218	struct ipc_security_struct *isec;
6219	struct msg_security_struct *msec;
6220	struct common_audit_data ad;
6221	u32 sid = task_sid_obj(target);
6222	int rc;
6223
6224	isec = selinux_ipc(msq);
6225	msec = selinux_msg_msg(msg);
6226
6227	ad.type = LSM_AUDIT_DATA_IPC;
6228	ad.u.ipc_id = msq->key;
6229
6230	rc = avc_has_perm(&selinux_state,
6231			  sid, isec->sid,
6232			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6233	if (!rc)
6234		rc = avc_has_perm(&selinux_state,
6235				  sid, msec->sid,
6236				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6237	return rc;
6238}
6239
6240/* Shared Memory security operations */
6241static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6242{
6243	struct ipc_security_struct *isec;
6244	struct common_audit_data ad;
6245	u32 sid = current_sid();
6246	int rc;
6247
6248	isec = selinux_ipc(shp);
6249	ipc_init_security(isec, SECCLASS_SHM);
 
 
 
6250
6251	ad.type = LSM_AUDIT_DATA_IPC;
6252	ad.u.ipc_id = shp->key;
6253
6254	rc = avc_has_perm(&selinux_state,
6255			  sid, isec->sid, SECCLASS_SHM,
6256			  SHM__CREATE, &ad);
6257	return rc;
 
 
 
 
6258}
6259
6260static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
 
 
 
 
 
6261{
6262	struct ipc_security_struct *isec;
6263	struct common_audit_data ad;
6264	u32 sid = current_sid();
6265
6266	isec = selinux_ipc(shp);
6267
6268	ad.type = LSM_AUDIT_DATA_IPC;
6269	ad.u.ipc_id = shp->key;
6270
6271	return avc_has_perm(&selinux_state,
6272			    sid, isec->sid, SECCLASS_SHM,
6273			    SHM__ASSOCIATE, &ad);
6274}
6275
6276/* Note, at this point, shp is locked down */
6277static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6278{
6279	int perms;
6280	int err;
6281
6282	switch (cmd) {
6283	case IPC_INFO:
6284	case SHM_INFO:
6285		/* No specific object, just general system-wide information. */
6286		return avc_has_perm(&selinux_state,
6287				    current_sid(), SECINITSID_KERNEL,
6288				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6289	case IPC_STAT:
6290	case SHM_STAT:
6291	case SHM_STAT_ANY:
6292		perms = SHM__GETATTR | SHM__ASSOCIATE;
6293		break;
6294	case IPC_SET:
6295		perms = SHM__SETATTR;
6296		break;
6297	case SHM_LOCK:
6298	case SHM_UNLOCK:
6299		perms = SHM__LOCK;
6300		break;
6301	case IPC_RMID:
6302		perms = SHM__DESTROY;
6303		break;
6304	default:
6305		return 0;
6306	}
6307
6308	err = ipc_has_perm(shp, perms);
6309	return err;
6310}
6311
6312static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6313			     char __user *shmaddr, int shmflg)
6314{
6315	u32 perms;
6316
6317	if (shmflg & SHM_RDONLY)
6318		perms = SHM__READ;
6319	else
6320		perms = SHM__READ | SHM__WRITE;
6321
6322	return ipc_has_perm(shp, perms);
6323}
6324
6325/* Semaphore security operations */
6326static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6327{
6328	struct ipc_security_struct *isec;
6329	struct common_audit_data ad;
6330	u32 sid = current_sid();
6331	int rc;
6332
6333	isec = selinux_ipc(sma);
6334	ipc_init_security(isec, SECCLASS_SEM);
 
 
 
6335
6336	ad.type = LSM_AUDIT_DATA_IPC;
6337	ad.u.ipc_id = sma->key;
6338
6339	rc = avc_has_perm(&selinux_state,
6340			  sid, isec->sid, SECCLASS_SEM,
6341			  SEM__CREATE, &ad);
6342	return rc;
 
 
 
 
6343}
6344
6345static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
 
 
 
 
 
6346{
6347	struct ipc_security_struct *isec;
6348	struct common_audit_data ad;
6349	u32 sid = current_sid();
6350
6351	isec = selinux_ipc(sma);
6352
6353	ad.type = LSM_AUDIT_DATA_IPC;
6354	ad.u.ipc_id = sma->key;
6355
6356	return avc_has_perm(&selinux_state,
6357			    sid, isec->sid, SECCLASS_SEM,
6358			    SEM__ASSOCIATE, &ad);
6359}
6360
6361/* Note, at this point, sma is locked down */
6362static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6363{
6364	int err;
6365	u32 perms;
6366
6367	switch (cmd) {
6368	case IPC_INFO:
6369	case SEM_INFO:
6370		/* No specific object, just general system-wide information. */
6371		return avc_has_perm(&selinux_state,
6372				    current_sid(), SECINITSID_KERNEL,
6373				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6374	case GETPID:
6375	case GETNCNT:
6376	case GETZCNT:
6377		perms = SEM__GETATTR;
6378		break;
6379	case GETVAL:
6380	case GETALL:
6381		perms = SEM__READ;
6382		break;
6383	case SETVAL:
6384	case SETALL:
6385		perms = SEM__WRITE;
6386		break;
6387	case IPC_RMID:
6388		perms = SEM__DESTROY;
6389		break;
6390	case IPC_SET:
6391		perms = SEM__SETATTR;
6392		break;
6393	case IPC_STAT:
6394	case SEM_STAT:
6395	case SEM_STAT_ANY:
6396		perms = SEM__GETATTR | SEM__ASSOCIATE;
6397		break;
6398	default:
6399		return 0;
6400	}
6401
6402	err = ipc_has_perm(sma, perms);
6403	return err;
6404}
6405
6406static int selinux_sem_semop(struct kern_ipc_perm *sma,
6407			     struct sembuf *sops, unsigned nsops, int alter)
6408{
6409	u32 perms;
6410
6411	if (alter)
6412		perms = SEM__READ | SEM__WRITE;
6413	else
6414		perms = SEM__READ;
6415
6416	return ipc_has_perm(sma, perms);
6417}
6418
6419static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6420{
6421	u32 av = 0;
6422
6423	av = 0;
6424	if (flag & S_IRUGO)
6425		av |= IPC__UNIX_READ;
6426	if (flag & S_IWUGO)
6427		av |= IPC__UNIX_WRITE;
6428
6429	if (av == 0)
6430		return 0;
6431
6432	return ipc_has_perm(ipcp, av);
6433}
6434
6435static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6436{
6437	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6438	*secid = isec->sid;
6439}
6440
6441static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6442{
6443	if (inode)
6444		inode_doinit_with_dentry(inode, dentry);
6445}
6446
6447static int selinux_getprocattr(struct task_struct *p,
6448			       char *name, char **value)
6449{
6450	const struct task_security_struct *__tsec;
6451	u32 sid;
6452	int error;
6453	unsigned len;
6454
6455	rcu_read_lock();
6456	__tsec = selinux_cred(__task_cred(p));
6457
6458	if (current != p) {
6459		error = avc_has_perm(&selinux_state,
6460				     current_sid(), __tsec->sid,
6461				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6462		if (error)
6463			goto bad;
6464	}
6465
 
 
 
6466	if (!strcmp(name, "current"))
6467		sid = __tsec->sid;
6468	else if (!strcmp(name, "prev"))
6469		sid = __tsec->osid;
6470	else if (!strcmp(name, "exec"))
6471		sid = __tsec->exec_sid;
6472	else if (!strcmp(name, "fscreate"))
6473		sid = __tsec->create_sid;
6474	else if (!strcmp(name, "keycreate"))
6475		sid = __tsec->keycreate_sid;
6476	else if (!strcmp(name, "sockcreate"))
6477		sid = __tsec->sockcreate_sid;
6478	else {
6479		error = -EINVAL;
6480		goto bad;
6481	}
6482	rcu_read_unlock();
6483
6484	if (!sid)
6485		return 0;
6486
6487	error = security_sid_to_context(&selinux_state, sid, value, &len);
6488	if (error)
6489		return error;
6490	return len;
6491
6492bad:
6493	rcu_read_unlock();
6494	return error;
6495}
6496
6497static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6498{
6499	struct task_security_struct *tsec;
6500	struct cred *new;
6501	u32 mysid = current_sid(), sid = 0, ptsid;
6502	int error;
6503	char *str = value;
6504
 
 
 
 
 
 
6505	/*
6506	 * Basic control over ability to set these attributes at all.
 
 
6507	 */
6508	if (!strcmp(name, "exec"))
6509		error = avc_has_perm(&selinux_state,
6510				     mysid, mysid, SECCLASS_PROCESS,
6511				     PROCESS__SETEXEC, NULL);
6512	else if (!strcmp(name, "fscreate"))
6513		error = avc_has_perm(&selinux_state,
6514				     mysid, mysid, SECCLASS_PROCESS,
6515				     PROCESS__SETFSCREATE, NULL);
6516	else if (!strcmp(name, "keycreate"))
6517		error = avc_has_perm(&selinux_state,
6518				     mysid, mysid, SECCLASS_PROCESS,
6519				     PROCESS__SETKEYCREATE, NULL);
6520	else if (!strcmp(name, "sockcreate"))
6521		error = avc_has_perm(&selinux_state,
6522				     mysid, mysid, SECCLASS_PROCESS,
6523				     PROCESS__SETSOCKCREATE, NULL);
6524	else if (!strcmp(name, "current"))
6525		error = avc_has_perm(&selinux_state,
6526				     mysid, mysid, SECCLASS_PROCESS,
6527				     PROCESS__SETCURRENT, NULL);
6528	else
6529		error = -EINVAL;
6530	if (error)
6531		return error;
6532
6533	/* Obtain a SID for the context, if one was specified. */
6534	if (size && str[0] && str[0] != '\n') {
6535		if (str[size-1] == '\n') {
6536			str[size-1] = 0;
6537			size--;
6538		}
6539		error = security_context_to_sid(&selinux_state, value, size,
6540						&sid, GFP_KERNEL);
6541		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6542			if (!has_cap_mac_admin(true)) {
6543				struct audit_buffer *ab;
6544				size_t audit_size;
6545
6546				/* We strip a nul only if it is at the end, otherwise the
6547				 * context contains a nul and we should audit that */
6548				if (str[size - 1] == '\0')
6549					audit_size = size - 1;
6550				else
6551					audit_size = size;
6552				ab = audit_log_start(audit_context(),
6553						     GFP_ATOMIC,
6554						     AUDIT_SELINUX_ERR);
6555				audit_log_format(ab, "op=fscreate invalid_context=");
6556				audit_log_n_untrustedstring(ab, value, audit_size);
6557				audit_log_end(ab);
6558
6559				return error;
6560			}
6561			error = security_context_to_sid_force(
6562						      &selinux_state,
6563						      value, size, &sid);
6564		}
6565		if (error)
6566			return error;
6567	}
6568
6569	new = prepare_creds();
6570	if (!new)
6571		return -ENOMEM;
6572
6573	/* Permission checking based on the specified context is
6574	   performed during the actual operation (execve,
6575	   open/mkdir/...), when we know the full context of the
6576	   operation.  See selinux_bprm_creds_for_exec for the execve
6577	   checks and may_create for the file creation checks. The
6578	   operation will then fail if the context is not permitted. */
6579	tsec = selinux_cred(new);
6580	if (!strcmp(name, "exec")) {
6581		tsec->exec_sid = sid;
6582	} else if (!strcmp(name, "fscreate")) {
6583		tsec->create_sid = sid;
6584	} else if (!strcmp(name, "keycreate")) {
6585		if (sid) {
6586			error = avc_has_perm(&selinux_state, mysid, sid,
6587					     SECCLASS_KEY, KEY__CREATE, NULL);
6588			if (error)
6589				goto abort_change;
6590		}
6591		tsec->keycreate_sid = sid;
6592	} else if (!strcmp(name, "sockcreate")) {
6593		tsec->sockcreate_sid = sid;
6594	} else if (!strcmp(name, "current")) {
6595		error = -EINVAL;
6596		if (sid == 0)
6597			goto abort_change;
6598
6599		/* Only allow single threaded processes to change context */
6600		error = -EPERM;
6601		if (!current_is_single_threaded()) {
6602			error = security_bounded_transition(&selinux_state,
6603							    tsec->sid, sid);
6604			if (error)
6605				goto abort_change;
6606		}
6607
6608		/* Check permissions for the transition. */
6609		error = avc_has_perm(&selinux_state,
6610				     tsec->sid, sid, SECCLASS_PROCESS,
6611				     PROCESS__DYNTRANSITION, NULL);
6612		if (error)
6613			goto abort_change;
6614
6615		/* Check for ptracing, and update the task SID if ok.
6616		   Otherwise, leave SID unchanged and fail. */
6617		ptsid = ptrace_parent_sid();
6618		if (ptsid != 0) {
6619			error = avc_has_perm(&selinux_state,
6620					     ptsid, sid, SECCLASS_PROCESS,
6621					     PROCESS__PTRACE, NULL);
6622			if (error)
6623				goto abort_change;
6624		}
6625
6626		tsec->sid = sid;
6627	} else {
6628		error = -EINVAL;
6629		goto abort_change;
6630	}
6631
6632	commit_creds(new);
6633	return size;
6634
6635abort_change:
6636	abort_creds(new);
6637	return error;
6638}
6639
6640static int selinux_ismaclabel(const char *name)
6641{
6642	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6643}
6644
6645static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6646{
6647	return security_sid_to_context(&selinux_state, secid,
6648				       secdata, seclen);
6649}
6650
6651static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6652{
6653	return security_context_to_sid(&selinux_state, secdata, seclen,
6654				       secid, GFP_KERNEL);
6655}
6656
6657static void selinux_release_secctx(char *secdata, u32 seclen)
6658{
6659	kfree(secdata);
6660}
6661
6662static void selinux_inode_invalidate_secctx(struct inode *inode)
6663{
6664	struct inode_security_struct *isec = selinux_inode(inode);
6665
6666	spin_lock(&isec->lock);
6667	isec->initialized = LABEL_INVALID;
6668	spin_unlock(&isec->lock);
6669}
6670
6671/*
6672 *	called with inode->i_mutex locked
6673 */
6674static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6675{
6676	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6677					   ctx, ctxlen, 0);
6678	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6679	return rc == -EOPNOTSUPP ? 0 : rc;
6680}
6681
6682/*
6683 *	called with inode->i_mutex locked
6684 */
6685static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6686{
6687	return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6688				     ctx, ctxlen, 0);
6689}
6690
6691static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6692{
6693	int len = 0;
6694	len = selinux_inode_getsecurity(&init_user_ns, inode,
6695					XATTR_SELINUX_SUFFIX, ctx, true);
6696	if (len < 0)
6697		return len;
6698	*ctxlen = len;
6699	return 0;
6700}
6701#ifdef CONFIG_KEYS
6702
6703static int selinux_key_alloc(struct key *k, const struct cred *cred,
6704			     unsigned long flags)
6705{
6706	const struct task_security_struct *tsec;
6707	struct key_security_struct *ksec;
6708
6709	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6710	if (!ksec)
6711		return -ENOMEM;
6712
6713	tsec = selinux_cred(cred);
6714	if (tsec->keycreate_sid)
6715		ksec->sid = tsec->keycreate_sid;
6716	else
6717		ksec->sid = tsec->sid;
6718
6719	k->security = ksec;
6720	return 0;
6721}
6722
6723static void selinux_key_free(struct key *k)
6724{
6725	struct key_security_struct *ksec = k->security;
6726
6727	k->security = NULL;
6728	kfree(ksec);
6729}
6730
6731static int selinux_key_permission(key_ref_t key_ref,
6732				  const struct cred *cred,
6733				  enum key_need_perm need_perm)
6734{
6735	struct key *key;
6736	struct key_security_struct *ksec;
6737	u32 perm, sid;
6738
6739	switch (need_perm) {
6740	case KEY_NEED_VIEW:
6741		perm = KEY__VIEW;
6742		break;
6743	case KEY_NEED_READ:
6744		perm = KEY__READ;
6745		break;
6746	case KEY_NEED_WRITE:
6747		perm = KEY__WRITE;
6748		break;
6749	case KEY_NEED_SEARCH:
6750		perm = KEY__SEARCH;
6751		break;
6752	case KEY_NEED_LINK:
6753		perm = KEY__LINK;
6754		break;
6755	case KEY_NEED_SETATTR:
6756		perm = KEY__SETATTR;
6757		break;
6758	case KEY_NEED_UNLINK:
6759	case KEY_SYSADMIN_OVERRIDE:
6760	case KEY_AUTHTOKEN_OVERRIDE:
6761	case KEY_DEFER_PERM_CHECK:
6762		return 0;
6763	default:
6764		WARN_ON(1);
6765		return -EPERM;
6766
6767	}
6768
6769	sid = cred_sid(cred);
 
6770	key = key_ref_to_ptr(key_ref);
6771	ksec = key->security;
6772
6773	return avc_has_perm(&selinux_state,
6774			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6775}
6776
6777static int selinux_key_getsecurity(struct key *key, char **_buffer)
6778{
6779	struct key_security_struct *ksec = key->security;
6780	char *context = NULL;
6781	unsigned len;
6782	int rc;
6783
6784	rc = security_sid_to_context(&selinux_state, ksec->sid,
6785				     &context, &len);
6786	if (!rc)
6787		rc = len;
6788	*_buffer = context;
6789	return rc;
6790}
6791
6792#ifdef CONFIG_KEY_NOTIFICATIONS
6793static int selinux_watch_key(struct key *key)
6794{
6795	struct key_security_struct *ksec = key->security;
6796	u32 sid = current_sid();
6797
6798	return avc_has_perm(&selinux_state,
6799			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6800}
6801#endif
6802#endif
6803
6804#ifdef CONFIG_SECURITY_INFINIBAND
6805static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6806{
6807	struct common_audit_data ad;
6808	int err;
6809	u32 sid = 0;
6810	struct ib_security_struct *sec = ib_sec;
6811	struct lsm_ibpkey_audit ibpkey;
6812
6813	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6814	if (err)
6815		return err;
6816
6817	ad.type = LSM_AUDIT_DATA_IBPKEY;
6818	ibpkey.subnet_prefix = subnet_prefix;
6819	ibpkey.pkey = pkey_val;
6820	ad.u.ibpkey = &ibpkey;
6821	return avc_has_perm(&selinux_state,
6822			    sec->sid, sid,
6823			    SECCLASS_INFINIBAND_PKEY,
6824			    INFINIBAND_PKEY__ACCESS, &ad);
6825}
6826
6827static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6828					    u8 port_num)
6829{
6830	struct common_audit_data ad;
6831	int err;
6832	u32 sid = 0;
6833	struct ib_security_struct *sec = ib_sec;
6834	struct lsm_ibendport_audit ibendport;
6835
6836	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6837				      &sid);
6838
6839	if (err)
6840		return err;
6841
6842	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6843	ibendport.dev_name = dev_name;
6844	ibendport.port = port_num;
6845	ad.u.ibendport = &ibendport;
6846	return avc_has_perm(&selinux_state,
6847			    sec->sid, sid,
6848			    SECCLASS_INFINIBAND_ENDPORT,
6849			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6850}
6851
6852static int selinux_ib_alloc_security(void **ib_sec)
6853{
6854	struct ib_security_struct *sec;
6855
6856	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6857	if (!sec)
6858		return -ENOMEM;
6859	sec->sid = current_sid();
6860
6861	*ib_sec = sec;
6862	return 0;
6863}
6864
6865static void selinux_ib_free_security(void *ib_sec)
6866{
6867	kfree(ib_sec);
6868}
6869#endif
6870
6871#ifdef CONFIG_BPF_SYSCALL
6872static int selinux_bpf(int cmd, union bpf_attr *attr,
6873				     unsigned int size)
6874{
6875	u32 sid = current_sid();
6876	int ret;
6877
6878	switch (cmd) {
6879	case BPF_MAP_CREATE:
6880		ret = avc_has_perm(&selinux_state,
6881				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6882				   NULL);
6883		break;
6884	case BPF_PROG_LOAD:
6885		ret = avc_has_perm(&selinux_state,
6886				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6887				   NULL);
6888		break;
6889	default:
6890		ret = 0;
6891		break;
6892	}
6893
6894	return ret;
6895}
6896
6897static u32 bpf_map_fmode_to_av(fmode_t fmode)
6898{
6899	u32 av = 0;
6900
6901	if (fmode & FMODE_READ)
6902		av |= BPF__MAP_READ;
6903	if (fmode & FMODE_WRITE)
6904		av |= BPF__MAP_WRITE;
6905	return av;
6906}
6907
6908/* This function will check the file pass through unix socket or binder to see
6909 * if it is a bpf related object. And apply correspinding checks on the bpf
6910 * object based on the type. The bpf maps and programs, not like other files and
6911 * socket, are using a shared anonymous inode inside the kernel as their inode.
6912 * So checking that inode cannot identify if the process have privilege to
6913 * access the bpf object and that's why we have to add this additional check in
6914 * selinux_file_receive and selinux_binder_transfer_files.
6915 */
6916static int bpf_fd_pass(struct file *file, u32 sid)
6917{
6918	struct bpf_security_struct *bpfsec;
6919	struct bpf_prog *prog;
6920	struct bpf_map *map;
6921	int ret;
6922
6923	if (file->f_op == &bpf_map_fops) {
6924		map = file->private_data;
6925		bpfsec = map->security;
6926		ret = avc_has_perm(&selinux_state,
6927				   sid, bpfsec->sid, SECCLASS_BPF,
6928				   bpf_map_fmode_to_av(file->f_mode), NULL);
6929		if (ret)
6930			return ret;
6931	} else if (file->f_op == &bpf_prog_fops) {
6932		prog = file->private_data;
6933		bpfsec = prog->aux->security;
6934		ret = avc_has_perm(&selinux_state,
6935				   sid, bpfsec->sid, SECCLASS_BPF,
6936				   BPF__PROG_RUN, NULL);
6937		if (ret)
6938			return ret;
6939	}
6940	return 0;
6941}
6942
6943static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6944{
6945	u32 sid = current_sid();
6946	struct bpf_security_struct *bpfsec;
6947
6948	bpfsec = map->security;
6949	return avc_has_perm(&selinux_state,
6950			    sid, bpfsec->sid, SECCLASS_BPF,
6951			    bpf_map_fmode_to_av(fmode), NULL);
6952}
6953
6954static int selinux_bpf_prog(struct bpf_prog *prog)
6955{
6956	u32 sid = current_sid();
6957	struct bpf_security_struct *bpfsec;
6958
6959	bpfsec = prog->aux->security;
6960	return avc_has_perm(&selinux_state,
6961			    sid, bpfsec->sid, SECCLASS_BPF,
6962			    BPF__PROG_RUN, NULL);
6963}
6964
6965static int selinux_bpf_map_alloc(struct bpf_map *map)
6966{
6967	struct bpf_security_struct *bpfsec;
6968
6969	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6970	if (!bpfsec)
6971		return -ENOMEM;
6972
6973	bpfsec->sid = current_sid();
6974	map->security = bpfsec;
6975
6976	return 0;
6977}
6978
6979static void selinux_bpf_map_free(struct bpf_map *map)
6980{
6981	struct bpf_security_struct *bpfsec = map->security;
6982
6983	map->security = NULL;
6984	kfree(bpfsec);
6985}
6986
6987static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6988{
6989	struct bpf_security_struct *bpfsec;
6990
6991	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6992	if (!bpfsec)
6993		return -ENOMEM;
6994
6995	bpfsec->sid = current_sid();
6996	aux->security = bpfsec;
6997
6998	return 0;
6999}
7000
7001static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
7002{
7003	struct bpf_security_struct *bpfsec = aux->security;
7004
7005	aux->security = NULL;
7006	kfree(bpfsec);
7007}
7008#endif
7009
7010static int selinux_lockdown(enum lockdown_reason what)
7011{
7012	struct common_audit_data ad;
7013	u32 sid = current_sid();
7014	int invalid_reason = (what <= LOCKDOWN_NONE) ||
7015			     (what == LOCKDOWN_INTEGRITY_MAX) ||
7016			     (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
7017
7018	if (WARN(invalid_reason, "Invalid lockdown reason")) {
7019		audit_log(audit_context(),
7020			  GFP_ATOMIC, AUDIT_SELINUX_ERR,
7021			  "lockdown_reason=invalid");
7022		return -EINVAL;
7023	}
7024
7025	ad.type = LSM_AUDIT_DATA_LOCKDOWN;
7026	ad.u.reason = what;
7027
7028	if (what <= LOCKDOWN_INTEGRITY_MAX)
7029		return avc_has_perm(&selinux_state,
7030				    sid, sid, SECCLASS_LOCKDOWN,
7031				    LOCKDOWN__INTEGRITY, &ad);
7032	else
7033		return avc_has_perm(&selinux_state,
7034				    sid, sid, SECCLASS_LOCKDOWN,
7035				    LOCKDOWN__CONFIDENTIALITY, &ad);
7036}
7037
7038struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
7039	.lbs_cred = sizeof(struct task_security_struct),
7040	.lbs_file = sizeof(struct file_security_struct),
7041	.lbs_inode = sizeof(struct inode_security_struct),
7042	.lbs_ipc = sizeof(struct ipc_security_struct),
7043	.lbs_msg_msg = sizeof(struct msg_security_struct),
7044	.lbs_superblock = sizeof(struct superblock_security_struct),
7045};
7046
7047#ifdef CONFIG_PERF_EVENTS
7048static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7049{
7050	u32 requested, sid = current_sid();
7051
7052	if (type == PERF_SECURITY_OPEN)
7053		requested = PERF_EVENT__OPEN;
7054	else if (type == PERF_SECURITY_CPU)
7055		requested = PERF_EVENT__CPU;
7056	else if (type == PERF_SECURITY_KERNEL)
7057		requested = PERF_EVENT__KERNEL;
7058	else if (type == PERF_SECURITY_TRACEPOINT)
7059		requested = PERF_EVENT__TRACEPOINT;
7060	else
7061		return -EINVAL;
7062
7063	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
7064			    requested, NULL);
7065}
7066
7067static int selinux_perf_event_alloc(struct perf_event *event)
7068{
7069	struct perf_event_security_struct *perfsec;
7070
7071	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7072	if (!perfsec)
7073		return -ENOMEM;
7074
7075	perfsec->sid = current_sid();
7076	event->security = perfsec;
7077
7078	return 0;
7079}
7080
7081static void selinux_perf_event_free(struct perf_event *event)
7082{
7083	struct perf_event_security_struct *perfsec = event->security;
7084
7085	event->security = NULL;
7086	kfree(perfsec);
7087}
7088
7089static int selinux_perf_event_read(struct perf_event *event)
7090{
7091	struct perf_event_security_struct *perfsec = event->security;
7092	u32 sid = current_sid();
7093
7094	return avc_has_perm(&selinux_state, sid, perfsec->sid,
7095			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7096}
7097
7098static int selinux_perf_event_write(struct perf_event *event)
7099{
7100	struct perf_event_security_struct *perfsec = event->security;
7101	u32 sid = current_sid();
7102
7103	return avc_has_perm(&selinux_state, sid, perfsec->sid,
7104			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7105}
7106#endif
7107
7108/*
7109 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7110 * 1. any hooks that don't belong to (2.) or (3.) below,
7111 * 2. hooks that both access structures allocated by other hooks, and allocate
7112 *    structures that can be later accessed by other hooks (mostly "cloning"
7113 *    hooks),
7114 * 3. hooks that only allocate structures that can be later accessed by other
7115 *    hooks ("allocating" hooks).
7116 *
7117 * Please follow block comment delimiters in the list to keep this order.
7118 *
7119 * This ordering is needed for SELinux runtime disable to work at least somewhat
7120 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7121 * when disabling SELinux at runtime.
7122 */
7123static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7124	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7125	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7126	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7127	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7128
7129	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7130	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7131	LSM_HOOK_INIT(capget, selinux_capget),
7132	LSM_HOOK_INIT(capset, selinux_capset),
7133	LSM_HOOK_INIT(capable, selinux_capable),
7134	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7135	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7136	LSM_HOOK_INIT(syslog, selinux_syslog),
7137	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7138
7139	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7140
7141	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7142	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7143	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
 
7144
7145	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7146	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
 
7147	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7148	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7149	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7150	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7151	LSM_HOOK_INIT(sb_mount, selinux_mount),
7152	LSM_HOOK_INIT(sb_umount, selinux_umount),
7153	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7154	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7155
7156	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7157
7158	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7159	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7160
 
7161	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7162	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7163	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7164	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7165	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7166	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7167	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7168	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7169	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7170	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7171	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7172	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7173	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7174	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7175	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7176	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7177	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7178	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7179	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7180	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7181	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7182	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7183	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7184	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7185	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7186	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7187	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7188	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7189
7190	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7191
7192	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7193	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
 
7194	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7195	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7196	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7197	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7198	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7199	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7200	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7201	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7202	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7203
7204	LSM_HOOK_INIT(file_open, selinux_file_open),
7205
7206	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
 
 
7207	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7208	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7209	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7210	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7211	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7212	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7213	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7214	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7215	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7216	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7217	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7218	LSM_HOOK_INIT(task_getsecid_subj, selinux_task_getsecid_subj),
7219	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7220	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7221	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7222	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7223	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7224	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7225	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7226	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7227	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7228	LSM_HOOK_INIT(task_kill, selinux_task_kill),
 
7229	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7230
7231	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7232	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7233
 
 
 
 
 
 
7234	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7235	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7236	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7237	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7238
 
 
7239	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7240	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7241	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7242
 
 
7243	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7244	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7245	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7246
7247	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7248
7249	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7250	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7251
7252	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
 
7253	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7254	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7255	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7256	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7257	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
 
7258
7259	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7260	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7261
7262	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7263	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7264	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7265	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7266	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7267	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7268	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7269	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7270	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7271	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7272	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7273	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7274	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7275	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7276	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7277	LSM_HOOK_INIT(socket_getpeersec_stream,
7278			selinux_socket_getpeersec_stream),
7279	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
 
7280	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7281	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7282	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7283	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7284	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7285	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7286	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7287	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7288	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7289	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7290	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7291	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7292	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7293	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
 
7294	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7295	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7296	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7297	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7298	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7299#ifdef CONFIG_SECURITY_INFINIBAND
7300	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7301	LSM_HOOK_INIT(ib_endport_manage_subnet,
7302		      selinux_ib_endport_manage_subnet),
7303	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7304#endif
7305#ifdef CONFIG_SECURITY_NETWORK_XFRM
 
 
7306	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7307	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
 
 
 
7308	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7309	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7310	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7311	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7312			selinux_xfrm_state_pol_flow_match),
7313	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7314#endif
7315
7316#ifdef CONFIG_KEYS
 
7317	LSM_HOOK_INIT(key_free, selinux_key_free),
7318	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7319	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7320#ifdef CONFIG_KEY_NOTIFICATIONS
7321	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7322#endif
7323#endif
7324
7325#ifdef CONFIG_AUDIT
 
7326	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7327	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7328	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7329#endif
7330
7331#ifdef CONFIG_BPF_SYSCALL
7332	LSM_HOOK_INIT(bpf, selinux_bpf),
7333	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7334	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7335	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7336	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7337#endif
7338
7339#ifdef CONFIG_PERF_EVENTS
7340	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7341	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7342	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7343	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7344#endif
7345
7346	LSM_HOOK_INIT(locked_down, selinux_lockdown),
7347
7348	/*
7349	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7350	 */
7351	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7352	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7353	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7354	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7355#ifdef CONFIG_SECURITY_NETWORK_XFRM
7356	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7357#endif
7358
7359	/*
7360	 * PUT "ALLOCATING" HOOKS HERE
7361	 */
7362	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7363	LSM_HOOK_INIT(msg_queue_alloc_security,
7364		      selinux_msg_queue_alloc_security),
7365	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7366	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7367	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7368	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7369	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7370	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7371	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7372	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7373#ifdef CONFIG_SECURITY_INFINIBAND
7374	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7375#endif
7376#ifdef CONFIG_SECURITY_NETWORK_XFRM
7377	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7378	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7379	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7380		      selinux_xfrm_state_alloc_acquire),
7381#endif
7382#ifdef CONFIG_KEYS
7383	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7384#endif
7385#ifdef CONFIG_AUDIT
7386	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7387#endif
7388#ifdef CONFIG_BPF_SYSCALL
7389	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7390	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7391#endif
7392#ifdef CONFIG_PERF_EVENTS
7393	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7394#endif
7395};
7396
7397static __init int selinux_init(void)
7398{
7399	pr_info("SELinux:  Initializing.\n");
 
 
 
 
 
 
 
 
7400
7401	memset(&selinux_state, 0, sizeof(selinux_state));
7402	enforcing_set(&selinux_state, selinux_enforcing_boot);
7403	checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7404	selinux_avc_init(&selinux_state.avc);
7405	mutex_init(&selinux_state.status_lock);
7406	mutex_init(&selinux_state.policy_mutex);
7407
7408	/* Set the security state for the initial task. */
7409	cred_init_security();
7410
7411	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7412
 
 
 
 
 
 
7413	avc_init();
7414
7415	avtab_cache_init();
7416
7417	ebitmap_cache_init();
7418
7419	hashtab_cache_init();
7420
7421	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7422
7423	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7424		panic("SELinux: Unable to register AVC netcache callback\n");
7425
7426	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7427		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7428
7429	if (selinux_enforcing_boot)
7430		pr_debug("SELinux:  Starting in enforcing mode\n");
7431	else
7432		pr_debug("SELinux:  Starting in permissive mode\n");
7433
7434	fs_validate_description("selinux", selinux_fs_parameters);
7435
7436	return 0;
7437}
7438
7439static void delayed_superblock_init(struct super_block *sb, void *unused)
7440{
7441	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7442}
7443
7444void selinux_complete_init(void)
7445{
7446	pr_debug("SELinux:  Completing initialization.\n");
7447
7448	/* Set up any superblocks initialized prior to the policy load. */
7449	pr_debug("SELinux:  Setting up existing superblocks.\n");
7450	iterate_supers(delayed_superblock_init, NULL);
7451}
7452
7453/* SELinux requires early initialization in order to label
7454   all processes and objects when they are created. */
7455DEFINE_LSM(selinux) = {
7456	.name = "selinux",
7457	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7458	.enabled = &selinux_enabled_boot,
7459	.blobs = &selinux_blob_sizes,
7460	.init = selinux_init,
7461};
7462
7463#if defined(CONFIG_NETFILTER)
7464
7465static const struct nf_hook_ops selinux_nf_ops[] = {
7466	{
7467		.hook =		selinux_ipv4_postroute,
7468		.pf =		NFPROTO_IPV4,
7469		.hooknum =	NF_INET_POST_ROUTING,
7470		.priority =	NF_IP_PRI_SELINUX_LAST,
7471	},
7472	{
7473		.hook =		selinux_ipv4_forward,
7474		.pf =		NFPROTO_IPV4,
7475		.hooknum =	NF_INET_FORWARD,
7476		.priority =	NF_IP_PRI_SELINUX_FIRST,
7477	},
7478	{
7479		.hook =		selinux_ipv4_output,
7480		.pf =		NFPROTO_IPV4,
7481		.hooknum =	NF_INET_LOCAL_OUT,
7482		.priority =	NF_IP_PRI_SELINUX_FIRST,
7483	},
7484#if IS_ENABLED(CONFIG_IPV6)
7485	{
7486		.hook =		selinux_ipv6_postroute,
7487		.pf =		NFPROTO_IPV6,
7488		.hooknum =	NF_INET_POST_ROUTING,
7489		.priority =	NF_IP6_PRI_SELINUX_LAST,
7490	},
7491	{
7492		.hook =		selinux_ipv6_forward,
7493		.pf =		NFPROTO_IPV6,
7494		.hooknum =	NF_INET_FORWARD,
7495		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7496	},
7497	{
7498		.hook =		selinux_ipv6_output,
7499		.pf =		NFPROTO_IPV6,
7500		.hooknum =	NF_INET_LOCAL_OUT,
7501		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7502	},
7503#endif	/* IPV6 */
7504};
7505
7506static int __net_init selinux_nf_register(struct net *net)
7507{
7508	return nf_register_net_hooks(net, selinux_nf_ops,
7509				     ARRAY_SIZE(selinux_nf_ops));
7510}
7511
7512static void __net_exit selinux_nf_unregister(struct net *net)
7513{
7514	nf_unregister_net_hooks(net, selinux_nf_ops,
7515				ARRAY_SIZE(selinux_nf_ops));
7516}
7517
7518static struct pernet_operations selinux_net_ops = {
7519	.init = selinux_nf_register,
7520	.exit = selinux_nf_unregister,
7521};
7522
7523static int __init selinux_nf_ip_init(void)
7524{
7525	int err;
7526
7527	if (!selinux_enabled_boot)
7528		return 0;
7529
7530	pr_debug("SELinux:  Registering netfilter hooks\n");
7531
7532	err = register_pernet_subsys(&selinux_net_ops);
7533	if (err)
7534		panic("SELinux: register_pernet_subsys: error %d\n", err);
7535
7536	return 0;
7537}
 
7538__initcall(selinux_nf_ip_init);
7539
7540#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7541static void selinux_nf_ip_exit(void)
7542{
7543	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7544
7545	unregister_pernet_subsys(&selinux_net_ops);
7546}
7547#endif
7548
7549#else /* CONFIG_NETFILTER */
7550
7551#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7552#define selinux_nf_ip_exit()
7553#endif
7554
7555#endif /* CONFIG_NETFILTER */
7556
7557#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7558int selinux_disable(struct selinux_state *state)
 
 
7559{
7560	if (selinux_initialized(state)) {
7561		/* Not permitted after initial policy load. */
7562		return -EINVAL;
7563	}
7564
7565	if (selinux_disabled(state)) {
7566		/* Only do this once. */
7567		return -EINVAL;
7568	}
7569
7570	selinux_mark_disabled(state);
7571
7572	pr_info("SELinux:  Disabled at runtime.\n");
7573
7574	/*
7575	 * Unregister netfilter hooks.
7576	 * Must be done before security_delete_hooks() to avoid breaking
7577	 * runtime disable.
7578	 */
7579	selinux_nf_ip_exit();
7580
7581	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7582
7583	/* Try to destroy the avc node cache */
7584	avc_disable();
 
 
 
7585
7586	/* Unregister selinuxfs. */
7587	exit_sel_fs();
7588
7589	return 0;
7590}
7591#endif
v4.10.11
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
 
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
 
  32#include <linux/lsm_hooks.h>
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
 
 
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  55#include <net/inet_connection_sock.h>
  56#include <net/net_namespace.h>
  57#include <net/netlabel.h>
  58#include <linux/uaccess.h>
  59#include <asm/ioctls.h>
  60#include <linux/atomic.h>
  61#include <linux/bitops.h>
  62#include <linux/interrupt.h>
  63#include <linux/netdevice.h>	/* for network interface checks */
  64#include <net/netlink.h>
  65#include <linux/tcp.h>
  66#include <linux/udp.h>
  67#include <linux/dccp.h>
 
 
  68#include <linux/quota.h>
  69#include <linux/un.h>		/* for Unix socket types */
  70#include <net/af_unix.h>	/* for Unix socket types */
  71#include <linux/parser.h>
  72#include <linux/nfs_mount.h>
  73#include <net/ipv6.h>
  74#include <linux/hugetlb.h>
  75#include <linux/personality.h>
  76#include <linux/audit.h>
  77#include <linux/string.h>
  78#include <linux/selinux.h>
  79#include <linux/mutex.h>
  80#include <linux/posix-timers.h>
  81#include <linux/syslog.h>
  82#include <linux/user_namespace.h>
  83#include <linux/export.h>
  84#include <linux/msg.h>
  85#include <linux/shm.h>
 
 
 
 
 
 
  86
  87#include "avc.h"
  88#include "objsec.h"
  89#include "netif.h"
  90#include "netnode.h"
  91#include "netport.h"
 
  92#include "xfrm.h"
  93#include "netlabel.h"
  94#include "audit.h"
  95#include "avc_ss.h"
  96
 
 
  97/* SECMARK reference count */
  98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
  99
 100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 101int selinux_enforcing;
 102
 103static int __init enforcing_setup(char *str)
 104{
 105	unsigned long enforcing;
 106	if (!kstrtoul(str, 0, &enforcing))
 107		selinux_enforcing = enforcing ? 1 : 0;
 108	return 1;
 109}
 110__setup("enforcing=", enforcing_setup);
 
 
 111#endif
 112
 
 113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 115
 116static int __init selinux_enabled_setup(char *str)
 117{
 118	unsigned long enabled;
 119	if (!kstrtoul(str, 0, &enabled))
 120		selinux_enabled = enabled ? 1 : 0;
 121	return 1;
 122}
 123__setup("selinux=", selinux_enabled_setup);
 124#else
 125int selinux_enabled = 1;
 126#endif
 127
 128static struct kmem_cache *sel_inode_cache;
 129static struct kmem_cache *file_security_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 130
 131/**
 132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 133 *
 134 * Description:
 135 * This function checks the SECMARK reference counter to see if any SECMARK
 136 * targets are currently configured, if the reference counter is greater than
 137 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 138 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 139 * policy capability is enabled, SECMARK is always considered enabled.
 140 *
 141 */
 142static int selinux_secmark_enabled(void)
 143{
 144	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 
 145}
 146
 147/**
 148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 149 *
 150 * Description:
 151 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 152 * (1) if any are enabled or false (0) if neither are enabled.  If the
 153 * always_check_network policy capability is enabled, peer labeling
 154 * is always considered enabled.
 155 *
 156 */
 157static int selinux_peerlbl_enabled(void)
 158{
 159	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 
 160}
 161
 162static int selinux_netcache_avc_callback(u32 event)
 163{
 164	if (event == AVC_CALLBACK_RESET) {
 165		sel_netif_flush();
 166		sel_netnode_flush();
 167		sel_netport_flush();
 168		synchronize_net();
 169	}
 170	return 0;
 171}
 172
 
 
 
 
 
 
 
 
 
 
 173/*
 174 * initialise the security for the init task
 175 */
 176static void cred_init_security(void)
 177{
 178	struct cred *cred = (struct cred *) current->real_cred;
 179	struct task_security_struct *tsec;
 180
 181	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 182	if (!tsec)
 183		panic("SELinux:  Failed to initialize initial task.\n");
 184
 185	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 186	cred->security = tsec;
 187}
 188
 189/*
 190 * get the security ID of a set of credentials
 191 */
 192static inline u32 cred_sid(const struct cred *cred)
 193{
 194	const struct task_security_struct *tsec;
 195
 196	tsec = cred->security;
 197	return tsec->sid;
 198}
 199
 200/*
 201 * get the objective security ID of a task
 202 */
 203static inline u32 task_sid(const struct task_struct *task)
 204{
 205	u32 sid;
 206
 207	rcu_read_lock();
 208	sid = cred_sid(__task_cred(task));
 209	rcu_read_unlock();
 210	return sid;
 211}
 212
 213/*
 214 * get the subjective security ID of the current task
 215 */
 216static inline u32 current_sid(void)
 217{
 218	const struct task_security_struct *tsec = current_security();
 219
 220	return tsec->sid;
 
 
 
 221}
 222
 223/* Allocate and free functions for each kind of security blob. */
 224
 225static int inode_alloc_security(struct inode *inode)
 
 226{
 227	struct inode_security_struct *isec;
 228	u32 sid = current_sid();
 229
 230	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 231	if (!isec)
 232		return -ENOMEM;
 233
 234	spin_lock_init(&isec->lock);
 235	INIT_LIST_HEAD(&isec->list);
 236	isec->inode = inode;
 237	isec->sid = SECINITSID_UNLABELED;
 238	isec->sclass = SECCLASS_FILE;
 239	isec->task_sid = sid;
 240	isec->initialized = LABEL_INVALID;
 241	inode->i_security = isec;
 242
 243	return 0;
 244}
 245
 246static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 247
 248/*
 249 * Try reloading inode security labels that have been marked as invalid.  The
 250 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 251 * allowed; when set to false, returns -ECHILD when the label is
 252 * invalid.  The @opt_dentry parameter should be set to a dentry of the inode;
 253 * when no dentry is available, set it to NULL instead.
 254 */
 255static int __inode_security_revalidate(struct inode *inode,
 256				       struct dentry *opt_dentry,
 257				       bool may_sleep)
 258{
 259	struct inode_security_struct *isec = inode->i_security;
 260
 261	might_sleep_if(may_sleep);
 262
 263	if (ss_initialized && isec->initialized != LABEL_INITIALIZED) {
 
 264		if (!may_sleep)
 265			return -ECHILD;
 266
 267		/*
 268		 * Try reloading the inode security label.  This will fail if
 269		 * @opt_dentry is NULL and no dentry for this inode can be
 270		 * found; in that case, continue using the old label.
 271		 */
 272		inode_doinit_with_dentry(inode, opt_dentry);
 273	}
 274	return 0;
 275}
 276
 277static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 278{
 279	return inode->i_security;
 280}
 281
 282static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 283{
 284	int error;
 285
 286	error = __inode_security_revalidate(inode, NULL, !rcu);
 287	if (error)
 288		return ERR_PTR(error);
 289	return inode->i_security;
 290}
 291
 292/*
 293 * Get the security label of an inode.
 294 */
 295static struct inode_security_struct *inode_security(struct inode *inode)
 296{
 297	__inode_security_revalidate(inode, NULL, true);
 298	return inode->i_security;
 299}
 300
 301static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 302{
 303	struct inode *inode = d_backing_inode(dentry);
 304
 305	return inode->i_security;
 306}
 307
 308/*
 309 * Get the security label of a dentry's backing inode.
 310 */
 311static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 312{
 313	struct inode *inode = d_backing_inode(dentry);
 314
 315	__inode_security_revalidate(inode, dentry, true);
 316	return inode->i_security;
 317}
 318
 319static void inode_free_rcu(struct rcu_head *head)
 320{
 321	struct inode_security_struct *isec;
 322
 323	isec = container_of(head, struct inode_security_struct, rcu);
 324	kmem_cache_free(sel_inode_cache, isec);
 325}
 326
 327static void inode_free_security(struct inode *inode)
 328{
 329	struct inode_security_struct *isec = inode->i_security;
 330	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 331
 
 
 
 332	/*
 333	 * As not all inode security structures are in a list, we check for
 334	 * empty list outside of the lock to make sure that we won't waste
 335	 * time taking a lock doing nothing.
 336	 *
 337	 * The list_del_init() function can be safely called more than once.
 338	 * It should not be possible for this function to be called with
 339	 * concurrent list_add(), but for better safety against future changes
 340	 * in the code, we use list_empty_careful() here.
 341	 */
 342	if (!list_empty_careful(&isec->list)) {
 343		spin_lock(&sbsec->isec_lock);
 344		list_del_init(&isec->list);
 345		spin_unlock(&sbsec->isec_lock);
 346	}
 347
 348	/*
 349	 * The inode may still be referenced in a path walk and
 350	 * a call to selinux_inode_permission() can be made
 351	 * after inode_free_security() is called. Ideally, the VFS
 352	 * wouldn't do this, but fixing that is a much harder
 353	 * job. For now, simply free the i_security via RCU, and
 354	 * leave the current inode->i_security pointer intact.
 355	 * The inode will be freed after the RCU grace period too.
 356	 */
 357	call_rcu(&isec->rcu, inode_free_rcu);
 358}
 359
 360static int file_alloc_security(struct file *file)
 361{
 362	struct file_security_struct *fsec;
 363	u32 sid = current_sid();
 364
 365	fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
 366	if (!fsec)
 367		return -ENOMEM;
 368
 369	fsec->sid = sid;
 370	fsec->fown_sid = sid;
 371	file->f_security = fsec;
 372
 373	return 0;
 374}
 375
 376static void file_free_security(struct file *file)
 377{
 378	struct file_security_struct *fsec = file->f_security;
 379	file->f_security = NULL;
 380	kmem_cache_free(file_security_cache, fsec);
 381}
 382
 383static int superblock_alloc_security(struct super_block *sb)
 384{
 385	struct superblock_security_struct *sbsec;
 386
 387	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 388	if (!sbsec)
 389		return -ENOMEM;
 390
 391	mutex_init(&sbsec->lock);
 392	INIT_LIST_HEAD(&sbsec->isec_head);
 393	spin_lock_init(&sbsec->isec_lock);
 394	sbsec->sb = sb;
 395	sbsec->sid = SECINITSID_UNLABELED;
 396	sbsec->def_sid = SECINITSID_FILE;
 397	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 398	sb->s_security = sbsec;
 399
 400	return 0;
 401}
 402
 403static void superblock_free_security(struct super_block *sb)
 404{
 405	struct superblock_security_struct *sbsec = sb->s_security;
 406	sb->s_security = NULL;
 407	kfree(sbsec);
 408}
 409
 410/* The file system's label must be initialized prior to use. */
 411
 412static const char *labeling_behaviors[7] = {
 413	"uses xattr",
 414	"uses transition SIDs",
 415	"uses task SIDs",
 416	"uses genfs_contexts",
 417	"not configured for labeling",
 418	"uses mountpoint labeling",
 419	"uses native labeling",
 420};
 421
 422static inline int inode_doinit(struct inode *inode)
 423{
 424	return inode_doinit_with_dentry(inode, NULL);
 
 
 
 
 
 425}
 426
 427enum {
 428	Opt_error = -1,
 429	Opt_context = 1,
 
 430	Opt_fscontext = 2,
 431	Opt_defcontext = 3,
 432	Opt_rootcontext = 4,
 433	Opt_labelsupport = 5,
 434	Opt_nextmntopt = 6,
 
 
 
 
 
 
 
 
 
 
 
 
 435};
 
 436
 437#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 
 
 438
 439static const match_table_t tokens = {
 440	{Opt_context, CONTEXT_STR "%s"},
 441	{Opt_fscontext, FSCONTEXT_STR "%s"},
 442	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 443	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 444	{Opt_labelsupport, LABELSUPP_STR},
 445	{Opt_error, NULL},
 446};
 
 
 
 
 
 
 447
 448#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 449
 450static int may_context_mount_sb_relabel(u32 sid,
 451			struct superblock_security_struct *sbsec,
 452			const struct cred *cred)
 453{
 454	const struct task_security_struct *tsec = cred->security;
 455	int rc;
 456
 457	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 458			  FILESYSTEM__RELABELFROM, NULL);
 459	if (rc)
 460		return rc;
 461
 462	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 463			  FILESYSTEM__RELABELTO, NULL);
 464	return rc;
 465}
 466
 467static int may_context_mount_inode_relabel(u32 sid,
 468			struct superblock_security_struct *sbsec,
 469			const struct cred *cred)
 470{
 471	const struct task_security_struct *tsec = cred->security;
 472	int rc;
 473	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 474			  FILESYSTEM__RELABELFROM, NULL);
 475	if (rc)
 476		return rc;
 477
 478	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 479			  FILESYSTEM__ASSOCIATE, NULL);
 480	return rc;
 481}
 482
 
 
 
 
 
 
 
 
 
 
 
 
 
 483static int selinux_is_sblabel_mnt(struct super_block *sb)
 484{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485	struct superblock_security_struct *sbsec = sb->s_security;
 
 
 
 
 486
 487	return sbsec->behavior == SECURITY_FS_USE_XATTR ||
 488		sbsec->behavior == SECURITY_FS_USE_TRANS ||
 489		sbsec->behavior == SECURITY_FS_USE_TASK ||
 490		sbsec->behavior == SECURITY_FS_USE_NATIVE ||
 491		/* Special handling. Genfs but also in-core setxattr handler */
 492		!strcmp(sb->s_type->name, "sysfs") ||
 493		!strcmp(sb->s_type->name, "pstore") ||
 494		!strcmp(sb->s_type->name, "debugfs") ||
 495		!strcmp(sb->s_type->name, "rootfs");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496}
 497
 498static int sb_finish_set_opts(struct super_block *sb)
 499{
 500	struct superblock_security_struct *sbsec = sb->s_security;
 501	struct dentry *root = sb->s_root;
 502	struct inode *root_inode = d_backing_inode(root);
 503	int rc = 0;
 504
 505	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 506		/* Make sure that the xattr handler exists and that no
 507		   error other than -ENODATA is returned by getxattr on
 508		   the root directory.  -ENODATA is ok, as this may be
 509		   the first boot of the SELinux kernel before we have
 510		   assigned xattr values to the filesystem. */
 511		if (!(root_inode->i_opflags & IOP_XATTR)) {
 512			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 513			       "xattr support\n", sb->s_id, sb->s_type->name);
 514			rc = -EOPNOTSUPP;
 515			goto out;
 516		}
 517
 518		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 519		if (rc < 0 && rc != -ENODATA) {
 520			if (rc == -EOPNOTSUPP)
 521				printk(KERN_WARNING "SELinux: (dev %s, type "
 522				       "%s) has no security xattr handler\n",
 523				       sb->s_id, sb->s_type->name);
 524			else
 525				printk(KERN_WARNING "SELinux: (dev %s, type "
 526				       "%s) getxattr errno %d\n", sb->s_id,
 527				       sb->s_type->name, -rc);
 528			goto out;
 529		}
 530	}
 531
 532	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 533		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 534		       sb->s_id, sb->s_type->name);
 535
 536	sbsec->flags |= SE_SBINITIALIZED;
 
 
 
 
 537	if (selinux_is_sblabel_mnt(sb))
 538		sbsec->flags |= SBLABEL_MNT;
 
 
 539
 540	/* Initialize the root inode. */
 541	rc = inode_doinit_with_dentry(root_inode, root);
 542
 543	/* Initialize any other inodes associated with the superblock, e.g.
 544	   inodes created prior to initial policy load or inodes created
 545	   during get_sb by a pseudo filesystem that directly
 546	   populates itself. */
 547	spin_lock(&sbsec->isec_lock);
 548next_inode:
 549	if (!list_empty(&sbsec->isec_head)) {
 550		struct inode_security_struct *isec =
 551				list_entry(sbsec->isec_head.next,
 552					   struct inode_security_struct, list);
 553		struct inode *inode = isec->inode;
 554		list_del_init(&isec->list);
 555		spin_unlock(&sbsec->isec_lock);
 556		inode = igrab(inode);
 557		if (inode) {
 558			if (!IS_PRIVATE(inode))
 559				inode_doinit(inode);
 560			iput(inode);
 561		}
 562		spin_lock(&sbsec->isec_lock);
 563		goto next_inode;
 564	}
 565	spin_unlock(&sbsec->isec_lock);
 566out:
 567	return rc;
 568}
 569
 570/*
 571 * This function should allow an FS to ask what it's mount security
 572 * options were so it can use those later for submounts, displaying
 573 * mount options, or whatever.
 574 */
 575static int selinux_get_mnt_opts(const struct super_block *sb,
 576				struct security_mnt_opts *opts)
 577{
 578	int rc = 0, i;
 579	struct superblock_security_struct *sbsec = sb->s_security;
 580	char *context = NULL;
 581	u32 len;
 582	char tmp;
 583
 584	security_init_mnt_opts(opts);
 585
 586	if (!(sbsec->flags & SE_SBINITIALIZED))
 587		return -EINVAL;
 588
 589	if (!ss_initialized)
 590		return -EINVAL;
 591
 592	/* make sure we always check enough bits to cover the mask */
 593	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 594
 595	tmp = sbsec->flags & SE_MNTMASK;
 596	/* count the number of mount options for this sb */
 597	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 598		if (tmp & 0x01)
 599			opts->num_mnt_opts++;
 600		tmp >>= 1;
 601	}
 602	/* Check if the Label support flag is set */
 603	if (sbsec->flags & SBLABEL_MNT)
 604		opts->num_mnt_opts++;
 605
 606	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 607	if (!opts->mnt_opts) {
 608		rc = -ENOMEM;
 609		goto out_free;
 610	}
 611
 612	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 613	if (!opts->mnt_opts_flags) {
 614		rc = -ENOMEM;
 615		goto out_free;
 616	}
 617
 618	i = 0;
 619	if (sbsec->flags & FSCONTEXT_MNT) {
 620		rc = security_sid_to_context(sbsec->sid, &context, &len);
 621		if (rc)
 622			goto out_free;
 623		opts->mnt_opts[i] = context;
 624		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 625	}
 626	if (sbsec->flags & CONTEXT_MNT) {
 627		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 628		if (rc)
 629			goto out_free;
 630		opts->mnt_opts[i] = context;
 631		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 632	}
 633	if (sbsec->flags & DEFCONTEXT_MNT) {
 634		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 635		if (rc)
 636			goto out_free;
 637		opts->mnt_opts[i] = context;
 638		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 639	}
 640	if (sbsec->flags & ROOTCONTEXT_MNT) {
 641		struct dentry *root = sbsec->sb->s_root;
 642		struct inode_security_struct *isec = backing_inode_security(root);
 643
 644		rc = security_sid_to_context(isec->sid, &context, &len);
 645		if (rc)
 646			goto out_free;
 647		opts->mnt_opts[i] = context;
 648		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 649	}
 650	if (sbsec->flags & SBLABEL_MNT) {
 651		opts->mnt_opts[i] = NULL;
 652		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 653	}
 654
 655	BUG_ON(i != opts->num_mnt_opts);
 656
 657	return 0;
 658
 659out_free:
 660	security_free_mnt_opts(opts);
 661	return rc;
 662}
 663
 664static int bad_option(struct superblock_security_struct *sbsec, char flag,
 665		      u32 old_sid, u32 new_sid)
 666{
 667	char mnt_flags = sbsec->flags & SE_MNTMASK;
 668
 669	/* check if the old mount command had the same options */
 670	if (sbsec->flags & SE_SBINITIALIZED)
 671		if (!(sbsec->flags & flag) ||
 672		    (old_sid != new_sid))
 673			return 1;
 674
 675	/* check if we were passed the same options twice,
 676	 * aka someone passed context=a,context=b
 677	 */
 678	if (!(sbsec->flags & SE_SBINITIALIZED))
 679		if (mnt_flags & flag)
 680			return 1;
 681	return 0;
 682}
 683
 
 
 
 
 
 
 
 
 
 
 
 684/*
 685 * Allow filesystems with binary mount data to explicitly set mount point
 686 * labeling information.
 687 */
 688static int selinux_set_mnt_opts(struct super_block *sb,
 689				struct security_mnt_opts *opts,
 690				unsigned long kern_flags,
 691				unsigned long *set_kern_flags)
 692{
 693	const struct cred *cred = current_cred();
 694	int rc = 0, i;
 695	struct superblock_security_struct *sbsec = sb->s_security;
 696	const char *name = sb->s_type->name;
 697	struct dentry *root = sbsec->sb->s_root;
 698	struct inode_security_struct *root_isec;
 699	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 700	u32 defcontext_sid = 0;
 701	char **mount_options = opts->mnt_opts;
 702	int *flags = opts->mnt_opts_flags;
 703	int num_opts = opts->num_mnt_opts;
 704
 705	mutex_lock(&sbsec->lock);
 706
 707	if (!ss_initialized) {
 708		if (!num_opts) {
 709			/* Defer initialization until selinux_complete_init,
 710			   after the initial policy is loaded and the security
 711			   server is ready to handle calls. */
 712			goto out;
 713		}
 714		rc = -EINVAL;
 715		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 716			"before the security server is initialized\n");
 717		goto out;
 718	}
 719	if (kern_flags && !set_kern_flags) {
 720		/* Specifying internal flags without providing a place to
 721		 * place the results is not allowed */
 722		rc = -EINVAL;
 723		goto out;
 724	}
 725
 726	/*
 727	 * Binary mount data FS will come through this function twice.  Once
 728	 * from an explicit call and once from the generic calls from the vfs.
 729	 * Since the generic VFS calls will not contain any security mount data
 730	 * we need to skip the double mount verification.
 731	 *
 732	 * This does open a hole in which we will not notice if the first
 733	 * mount using this sb set explict options and a second mount using
 734	 * this sb does not set any security options.  (The first options
 735	 * will be used for both mounts)
 736	 */
 737	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 738	    && (num_opts == 0))
 739		goto out;
 740
 741	root_isec = backing_inode_security_novalidate(root);
 742
 743	/*
 744	 * parse the mount options, check if they are valid sids.
 745	 * also check if someone is trying to mount the same sb more
 746	 * than once with different security options.
 747	 */
 748	for (i = 0; i < num_opts; i++) {
 749		u32 sid;
 750
 751		if (flags[i] == SBLABEL_MNT)
 752			continue;
 753		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
 754		if (rc) {
 755			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
 756			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 757			       mount_options[i], sb->s_id, name, rc);
 758			goto out;
 759		}
 760		switch (flags[i]) {
 761		case FSCONTEXT_MNT:
 762			fscontext_sid = sid;
 763
 764			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 765					fscontext_sid))
 766				goto out_double_mount;
 767
 768			sbsec->flags |= FSCONTEXT_MNT;
 769			break;
 770		case CONTEXT_MNT:
 771			context_sid = sid;
 772
 
 773			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 774					context_sid))
 775				goto out_double_mount;
 776
 777			sbsec->flags |= CONTEXT_MNT;
 778			break;
 779		case ROOTCONTEXT_MNT:
 780			rootcontext_sid = sid;
 781
 
 782			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 783					rootcontext_sid))
 784				goto out_double_mount;
 785
 786			sbsec->flags |= ROOTCONTEXT_MNT;
 787
 788			break;
 789		case DEFCONTEXT_MNT:
 790			defcontext_sid = sid;
 791
 792			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 793					defcontext_sid))
 794				goto out_double_mount;
 795
 796			sbsec->flags |= DEFCONTEXT_MNT;
 797
 798			break;
 799		default:
 800			rc = -EINVAL;
 801			goto out;
 802		}
 803	}
 804
 805	if (sbsec->flags & SE_SBINITIALIZED) {
 806		/* previously mounted with options, but not on this attempt? */
 807		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 808			goto out_double_mount;
 809		rc = 0;
 810		goto out;
 811	}
 812
 813	if (strcmp(sb->s_type->name, "proc") == 0)
 814		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 815
 816	if (!strcmp(sb->s_type->name, "debugfs") ||
 817	    !strcmp(sb->s_type->name, "sysfs") ||
 
 
 818	    !strcmp(sb->s_type->name, "pstore"))
 819		sbsec->flags |= SE_SBGENFS;
 820
 
 
 
 
 
 821	if (!sbsec->behavior) {
 822		/*
 823		 * Determine the labeling behavior to use for this
 824		 * filesystem type.
 825		 */
 826		rc = security_fs_use(sb);
 827		if (rc) {
 828			printk(KERN_WARNING
 829				"%s: security_fs_use(%s) returned %d\n",
 830					__func__, sb->s_type->name, rc);
 831			goto out;
 832		}
 833	}
 834
 835	/*
 836	 * If this is a user namespace mount, no contexts are allowed
 837	 * on the command line and security labels must be ignored.
 
 838	 */
 839	if (sb->s_user_ns != &init_user_ns) {
 
 
 
 
 840		if (context_sid || fscontext_sid || rootcontext_sid ||
 841		    defcontext_sid) {
 842			rc = -EACCES;
 843			goto out;
 844		}
 845		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 846			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 847			rc = security_transition_sid(current_sid(), current_sid(),
 
 
 848						     SECCLASS_FILE, NULL,
 849						     &sbsec->mntpoint_sid);
 850			if (rc)
 851				goto out;
 852		}
 853		goto out_set_opts;
 854	}
 855
 856	/* sets the context of the superblock for the fs being mounted. */
 857	if (fscontext_sid) {
 858		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 859		if (rc)
 860			goto out;
 861
 862		sbsec->sid = fscontext_sid;
 863	}
 864
 865	/*
 866	 * Switch to using mount point labeling behavior.
 867	 * sets the label used on all file below the mountpoint, and will set
 868	 * the superblock context if not already set.
 869	 */
 870	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 871		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 872		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 873	}
 874
 875	if (context_sid) {
 876		if (!fscontext_sid) {
 877			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 878							  cred);
 879			if (rc)
 880				goto out;
 881			sbsec->sid = context_sid;
 882		} else {
 883			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 884							     cred);
 885			if (rc)
 886				goto out;
 887		}
 888		if (!rootcontext_sid)
 889			rootcontext_sid = context_sid;
 890
 891		sbsec->mntpoint_sid = context_sid;
 892		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 893	}
 894
 895	if (rootcontext_sid) {
 896		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 897						     cred);
 898		if (rc)
 899			goto out;
 900
 901		root_isec->sid = rootcontext_sid;
 902		root_isec->initialized = LABEL_INITIALIZED;
 903	}
 904
 905	if (defcontext_sid) {
 906		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 907			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 908			rc = -EINVAL;
 909			printk(KERN_WARNING "SELinux: defcontext option is "
 910			       "invalid for this filesystem type\n");
 911			goto out;
 912		}
 913
 914		if (defcontext_sid != sbsec->def_sid) {
 915			rc = may_context_mount_inode_relabel(defcontext_sid,
 916							     sbsec, cred);
 917			if (rc)
 918				goto out;
 919		}
 920
 921		sbsec->def_sid = defcontext_sid;
 922	}
 923
 924out_set_opts:
 925	rc = sb_finish_set_opts(sb);
 926out:
 927	mutex_unlock(&sbsec->lock);
 928	return rc;
 929out_double_mount:
 930	rc = -EINVAL;
 931	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 932	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 933	goto out;
 934}
 935
 936static int selinux_cmp_sb_context(const struct super_block *oldsb,
 937				    const struct super_block *newsb)
 938{
 939	struct superblock_security_struct *old = oldsb->s_security;
 940	struct superblock_security_struct *new = newsb->s_security;
 941	char oldflags = old->flags & SE_MNTMASK;
 942	char newflags = new->flags & SE_MNTMASK;
 943
 944	if (oldflags != newflags)
 945		goto mismatch;
 946	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 947		goto mismatch;
 948	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 949		goto mismatch;
 950	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 951		goto mismatch;
 952	if (oldflags & ROOTCONTEXT_MNT) {
 953		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 954		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 955		if (oldroot->sid != newroot->sid)
 956			goto mismatch;
 957	}
 958	return 0;
 959mismatch:
 960	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 961			    "different security settings for (dev %s, "
 962			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 963	return -EBUSY;
 964}
 965
 966static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 967					struct super_block *newsb)
 
 
 968{
 969	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 970	struct superblock_security_struct *newsbsec = newsb->s_security;
 
 
 971
 972	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 973	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 974	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 975
 976	/*
 977	 * if the parent was able to be mounted it clearly had no special lsm
 978	 * mount options.  thus we can safely deal with this superblock later
 979	 */
 980	if (!ss_initialized)
 981		return 0;
 982
 
 
 
 
 
 
 
 983	/* how can we clone if the old one wasn't set up?? */
 984	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 985
 986	/* if fs is reusing a sb, make sure that the contexts match */
 987	if (newsbsec->flags & SE_SBINITIALIZED)
 
 
 988		return selinux_cmp_sb_context(oldsb, newsb);
 
 989
 990	mutex_lock(&newsbsec->lock);
 991
 992	newsbsec->flags = oldsbsec->flags;
 993
 994	newsbsec->sid = oldsbsec->sid;
 995	newsbsec->def_sid = oldsbsec->def_sid;
 996	newsbsec->behavior = oldsbsec->behavior;
 997
 
 
 
 
 
 
 
 
 
 
 
 
 998	if (set_context) {
 999		u32 sid = oldsbsec->mntpoint_sid;
1000
1001		if (!set_fscontext)
1002			newsbsec->sid = sid;
1003		if (!set_rootcontext) {
1004			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1005			newisec->sid = sid;
1006		}
1007		newsbsec->mntpoint_sid = sid;
1008	}
1009	if (set_rootcontext) {
1010		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
1011		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
1012
1013		newisec->sid = oldisec->sid;
1014	}
1015
1016	sb_finish_set_opts(newsb);
 
1017	mutex_unlock(&newsbsec->lock);
1018	return 0;
1019}
1020
1021static int selinux_parse_opts_str(char *options,
1022				  struct security_mnt_opts *opts)
1023{
1024	char *p;
1025	char *context = NULL, *defcontext = NULL;
1026	char *fscontext = NULL, *rootcontext = NULL;
1027	int rc, num_mnt_opts = 0;
1028
1029	opts->num_mnt_opts = 0;
 
1030
1031	/* Standard string-based options. */
1032	while ((p = strsep(&options, "|")) != NULL) {
1033		int token;
1034		substring_t args[MAX_OPT_ARGS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035
1036		if (!*p)
1037			continue;
1038
1039		token = match_token(p, tokens, args);
 
1040
1041		switch (token) {
1042		case Opt_context:
1043			if (context || defcontext) {
1044				rc = -EINVAL;
1045				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1046				goto out_err;
1047			}
1048			context = match_strdup(&args[0]);
1049			if (!context) {
1050				rc = -ENOMEM;
1051				goto out_err;
1052			}
1053			break;
1054
1055		case Opt_fscontext:
1056			if (fscontext) {
1057				rc = -EINVAL;
1058				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1059				goto out_err;
1060			}
1061			fscontext = match_strdup(&args[0]);
1062			if (!fscontext) {
1063				rc = -ENOMEM;
1064				goto out_err;
1065			}
1066			break;
1067
1068		case Opt_rootcontext:
1069			if (rootcontext) {
1070				rc = -EINVAL;
1071				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1072				goto out_err;
1073			}
1074			rootcontext = match_strdup(&args[0]);
1075			if (!rootcontext) {
1076				rc = -ENOMEM;
1077				goto out_err;
1078			}
1079			break;
1080
1081		case Opt_defcontext:
1082			if (context || defcontext) {
1083				rc = -EINVAL;
1084				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1085				goto out_err;
1086			}
1087			defcontext = match_strdup(&args[0]);
1088			if (!defcontext) {
1089				rc = -ENOMEM;
1090				goto out_err;
1091			}
1092			break;
1093		case Opt_labelsupport:
1094			break;
1095		default:
1096			rc = -EINVAL;
1097			printk(KERN_WARNING "SELinux:  unknown mount option\n");
1098			goto out_err;
1099
1100		}
1101	}
1102
1103	rc = -ENOMEM;
1104	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL);
1105	if (!opts->mnt_opts)
1106		goto out_err;
1107
1108	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int),
1109				       GFP_KERNEL);
1110	if (!opts->mnt_opts_flags) {
1111		kfree(opts->mnt_opts);
1112		goto out_err;
1113	}
1114
1115	if (fscontext) {
1116		opts->mnt_opts[num_mnt_opts] = fscontext;
1117		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1118	}
1119	if (context) {
1120		opts->mnt_opts[num_mnt_opts] = context;
1121		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1122	}
1123	if (rootcontext) {
1124		opts->mnt_opts[num_mnt_opts] = rootcontext;
1125		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1126	}
1127	if (defcontext) {
1128		opts->mnt_opts[num_mnt_opts] = defcontext;
1129		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
 
1130	}
1131
1132	opts->num_mnt_opts = num_mnt_opts;
1133	return 0;
1134
1135out_err:
1136	kfree(context);
1137	kfree(defcontext);
1138	kfree(fscontext);
1139	kfree(rootcontext);
1140	return rc;
1141}
1142/*
1143 * string mount options parsing and call set the sbsec
1144 */
1145static int superblock_doinit(struct super_block *sb, void *data)
1146{
1147	int rc = 0;
1148	char *options = data;
1149	struct security_mnt_opts opts;
1150
1151	security_init_mnt_opts(&opts);
1152
1153	if (!data)
1154		goto out;
1155
1156	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1157
1158	rc = selinux_parse_opts_str(options, &opts);
1159	if (rc)
1160		goto out_err;
1161
1162out:
1163	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1164
1165out_err:
1166	security_free_mnt_opts(&opts);
1167	return rc;
1168}
1169
1170static void selinux_write_opts(struct seq_file *m,
1171			       struct security_mnt_opts *opts)
1172{
1173	int i;
1174	char *prefix;
 
1175
1176	for (i = 0; i < opts->num_mnt_opts; i++) {
1177		char *has_comma;
 
 
1178
1179		if (opts->mnt_opts[i])
1180			has_comma = strchr(opts->mnt_opts[i], ',');
1181		else
1182			has_comma = NULL;
1183
1184		switch (opts->mnt_opts_flags[i]) {
1185		case CONTEXT_MNT:
1186			prefix = CONTEXT_STR;
1187			break;
1188		case FSCONTEXT_MNT:
1189			prefix = FSCONTEXT_STR;
1190			break;
1191		case ROOTCONTEXT_MNT:
1192			prefix = ROOTCONTEXT_STR;
1193			break;
1194		case DEFCONTEXT_MNT:
1195			prefix = DEFCONTEXT_STR;
1196			break;
1197		case SBLABEL_MNT:
1198			seq_putc(m, ',');
1199			seq_puts(m, LABELSUPP_STR);
1200			continue;
1201		default:
1202			BUG();
1203			return;
1204		};
1205		/* we need a comma before each option */
1206		seq_putc(m, ',');
1207		seq_puts(m, prefix);
1208		if (has_comma)
1209			seq_putc(m, '\"');
1210		seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1211		if (has_comma)
1212			seq_putc(m, '\"');
1213	}
 
 
1214}
1215
1216static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1217{
1218	struct security_mnt_opts opts;
1219	int rc;
1220
1221	rc = selinux_get_mnt_opts(sb, &opts);
1222	if (rc) {
1223		/* before policy load we may get EINVAL, don't show anything */
1224		if (rc == -EINVAL)
1225			rc = 0;
1226		return rc;
1227	}
1228
1229	selinux_write_opts(m, &opts);
 
1230
1231	security_free_mnt_opts(&opts);
1232
1233	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1234}
1235
1236static inline u16 inode_mode_to_security_class(umode_t mode)
1237{
1238	switch (mode & S_IFMT) {
1239	case S_IFSOCK:
1240		return SECCLASS_SOCK_FILE;
1241	case S_IFLNK:
1242		return SECCLASS_LNK_FILE;
1243	case S_IFREG:
1244		return SECCLASS_FILE;
1245	case S_IFBLK:
1246		return SECCLASS_BLK_FILE;
1247	case S_IFDIR:
1248		return SECCLASS_DIR;
1249	case S_IFCHR:
1250		return SECCLASS_CHR_FILE;
1251	case S_IFIFO:
1252		return SECCLASS_FIFO_FILE;
1253
1254	}
1255
1256	return SECCLASS_FILE;
1257}
1258
1259static inline int default_protocol_stream(int protocol)
1260{
1261	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
 
1262}
1263
1264static inline int default_protocol_dgram(int protocol)
1265{
1266	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1267}
1268
1269static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1270{
 
 
1271	switch (family) {
1272	case PF_UNIX:
1273		switch (type) {
1274		case SOCK_STREAM:
1275		case SOCK_SEQPACKET:
1276			return SECCLASS_UNIX_STREAM_SOCKET;
1277		case SOCK_DGRAM:
 
1278			return SECCLASS_UNIX_DGRAM_SOCKET;
1279		}
1280		break;
1281	case PF_INET:
1282	case PF_INET6:
1283		switch (type) {
1284		case SOCK_STREAM:
 
1285			if (default_protocol_stream(protocol))
1286				return SECCLASS_TCP_SOCKET;
 
 
1287			else
1288				return SECCLASS_RAWIP_SOCKET;
1289		case SOCK_DGRAM:
1290			if (default_protocol_dgram(protocol))
1291				return SECCLASS_UDP_SOCKET;
 
 
 
1292			else
1293				return SECCLASS_RAWIP_SOCKET;
1294		case SOCK_DCCP:
1295			return SECCLASS_DCCP_SOCKET;
1296		default:
1297			return SECCLASS_RAWIP_SOCKET;
1298		}
1299		break;
1300	case PF_NETLINK:
1301		switch (protocol) {
1302		case NETLINK_ROUTE:
1303			return SECCLASS_NETLINK_ROUTE_SOCKET;
1304		case NETLINK_SOCK_DIAG:
1305			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1306		case NETLINK_NFLOG:
1307			return SECCLASS_NETLINK_NFLOG_SOCKET;
1308		case NETLINK_XFRM:
1309			return SECCLASS_NETLINK_XFRM_SOCKET;
1310		case NETLINK_SELINUX:
1311			return SECCLASS_NETLINK_SELINUX_SOCKET;
1312		case NETLINK_ISCSI:
1313			return SECCLASS_NETLINK_ISCSI_SOCKET;
1314		case NETLINK_AUDIT:
1315			return SECCLASS_NETLINK_AUDIT_SOCKET;
1316		case NETLINK_FIB_LOOKUP:
1317			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1318		case NETLINK_CONNECTOR:
1319			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1320		case NETLINK_NETFILTER:
1321			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1322		case NETLINK_DNRTMSG:
1323			return SECCLASS_NETLINK_DNRT_SOCKET;
1324		case NETLINK_KOBJECT_UEVENT:
1325			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1326		case NETLINK_GENERIC:
1327			return SECCLASS_NETLINK_GENERIC_SOCKET;
1328		case NETLINK_SCSITRANSPORT:
1329			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1330		case NETLINK_RDMA:
1331			return SECCLASS_NETLINK_RDMA_SOCKET;
1332		case NETLINK_CRYPTO:
1333			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1334		default:
1335			return SECCLASS_NETLINK_SOCKET;
1336		}
1337	case PF_PACKET:
1338		return SECCLASS_PACKET_SOCKET;
1339	case PF_KEY:
1340		return SECCLASS_KEY_SOCKET;
1341	case PF_APPLETALK:
1342		return SECCLASS_APPLETALK_SOCKET;
1343	}
1344
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1345	return SECCLASS_SOCKET;
1346}
1347
1348static int selinux_genfs_get_sid(struct dentry *dentry,
1349				 u16 tclass,
1350				 u16 flags,
1351				 u32 *sid)
1352{
1353	int rc;
1354	struct super_block *sb = dentry->d_sb;
1355	char *buffer, *path;
1356
1357	buffer = (char *)__get_free_page(GFP_KERNEL);
1358	if (!buffer)
1359		return -ENOMEM;
1360
1361	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1362	if (IS_ERR(path))
1363		rc = PTR_ERR(path);
1364	else {
1365		if (flags & SE_SBPROC) {
1366			/* each process gets a /proc/PID/ entry. Strip off the
1367			 * PID part to get a valid selinux labeling.
1368			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1369			while (path[1] >= '0' && path[1] <= '9') {
1370				path[1] = '/';
1371				path++;
1372			}
1373		}
1374		rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
 
 
 
 
 
 
1375	}
1376	free_page((unsigned long)buffer);
1377	return rc;
1378}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380/* The inode's security attributes must be initialized before first use. */
1381static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1382{
1383	struct superblock_security_struct *sbsec = NULL;
1384	struct inode_security_struct *isec = inode->i_security;
1385	u32 task_sid, sid = 0;
1386	u16 sclass;
1387	struct dentry *dentry;
1388#define INITCONTEXTLEN 255
1389	char *context = NULL;
1390	unsigned len = 0;
1391	int rc = 0;
1392
1393	if (isec->initialized == LABEL_INITIALIZED)
1394		return 0;
1395
1396	spin_lock(&isec->lock);
1397	if (isec->initialized == LABEL_INITIALIZED)
1398		goto out_unlock;
1399
1400	if (isec->sclass == SECCLASS_FILE)
1401		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1402
1403	sbsec = inode->i_sb->s_security;
1404	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1405		/* Defer initialization until selinux_complete_init,
1406		   after the initial policy is loaded and the security
1407		   server is ready to handle calls. */
1408		spin_lock(&sbsec->isec_lock);
1409		if (list_empty(&isec->list))
1410			list_add(&isec->list, &sbsec->isec_head);
1411		spin_unlock(&sbsec->isec_lock);
1412		goto out_unlock;
1413	}
1414
1415	sclass = isec->sclass;
1416	task_sid = isec->task_sid;
1417	sid = isec->sid;
1418	isec->initialized = LABEL_PENDING;
1419	spin_unlock(&isec->lock);
1420
1421	switch (sbsec->behavior) {
1422	case SECURITY_FS_USE_NATIVE:
1423		break;
1424	case SECURITY_FS_USE_XATTR:
1425		if (!(inode->i_opflags & IOP_XATTR)) {
1426			sid = sbsec->def_sid;
1427			break;
1428		}
1429		/* Need a dentry, since the xattr API requires one.
1430		   Life would be simpler if we could just pass the inode. */
1431		if (opt_dentry) {
1432			/* Called from d_instantiate or d_splice_alias. */
1433			dentry = dget(opt_dentry);
1434		} else {
1435			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1436			dentry = d_find_alias(inode);
 
 
1437		}
1438		if (!dentry) {
1439			/*
1440			 * this is can be hit on boot when a file is accessed
1441			 * before the policy is loaded.  When we load policy we
1442			 * may find inodes that have no dentry on the
1443			 * sbsec->isec_head list.  No reason to complain as these
1444			 * will get fixed up the next time we go through
1445			 * inode_doinit with a dentry, before these inodes could
1446			 * be used again by userspace.
1447			 */
1448			goto out;
1449		}
1450
1451		len = INITCONTEXTLEN;
1452		context = kmalloc(len+1, GFP_NOFS);
1453		if (!context) {
1454			rc = -ENOMEM;
1455			dput(dentry);
1456			goto out;
1457		}
1458		context[len] = '\0';
1459		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1460		if (rc == -ERANGE) {
1461			kfree(context);
1462
1463			/* Need a larger buffer.  Query for the right size. */
1464			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1465			if (rc < 0) {
1466				dput(dentry);
1467				goto out;
1468			}
1469			len = rc;
1470			context = kmalloc(len+1, GFP_NOFS);
1471			if (!context) {
1472				rc = -ENOMEM;
1473				dput(dentry);
1474				goto out;
1475			}
1476			context[len] = '\0';
1477			rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1478		}
1479		dput(dentry);
1480		if (rc < 0) {
1481			if (rc != -ENODATA) {
1482				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1483				       "%d for dev=%s ino=%ld\n", __func__,
1484				       -rc, inode->i_sb->s_id, inode->i_ino);
1485				kfree(context);
1486				goto out;
1487			}
1488			/* Map ENODATA to the default file SID */
1489			sid = sbsec->def_sid;
1490			rc = 0;
1491		} else {
1492			rc = security_context_to_sid_default(context, rc, &sid,
1493							     sbsec->def_sid,
1494							     GFP_NOFS);
1495			if (rc) {
1496				char *dev = inode->i_sb->s_id;
1497				unsigned long ino = inode->i_ino;
1498
1499				if (rc == -EINVAL) {
1500					if (printk_ratelimit())
1501						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1502							"context=%s.  This indicates you may need to relabel the inode or the "
1503							"filesystem in question.\n", ino, dev, context);
1504				} else {
1505					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1506					       "returned %d for dev=%s ino=%ld\n",
1507					       __func__, context, -rc, dev, ino);
1508				}
1509				kfree(context);
1510				/* Leave with the unlabeled SID */
1511				rc = 0;
1512				break;
1513			}
1514		}
1515		kfree(context);
1516		break;
1517	case SECURITY_FS_USE_TASK:
1518		sid = task_sid;
1519		break;
1520	case SECURITY_FS_USE_TRANS:
1521		/* Default to the fs SID. */
1522		sid = sbsec->sid;
1523
1524		/* Try to obtain a transition SID. */
1525		rc = security_transition_sid(task_sid, sid, sclass, NULL, &sid);
 
1526		if (rc)
1527			goto out;
1528		break;
1529	case SECURITY_FS_USE_MNTPOINT:
1530		sid = sbsec->mntpoint_sid;
1531		break;
1532	default:
1533		/* Default to the fs superblock SID. */
1534		sid = sbsec->sid;
1535
1536		if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
 
 
1537			/* We must have a dentry to determine the label on
1538			 * procfs inodes */
1539			if (opt_dentry)
1540				/* Called from d_instantiate or
1541				 * d_splice_alias. */
1542				dentry = dget(opt_dentry);
1543			else
1544				/* Called from selinux_complete_init, try to
1545				 * find a dentry. */
 
 
1546				dentry = d_find_alias(inode);
 
 
 
1547			/*
1548			 * This can be hit on boot when a file is accessed
1549			 * before the policy is loaded.  When we load policy we
1550			 * may find inodes that have no dentry on the
1551			 * sbsec->isec_head list.  No reason to complain as
1552			 * these will get fixed up the next time we go through
1553			 * inode_doinit() with a dentry, before these inodes
1554			 * could be used again by userspace.
1555			 */
1556			if (!dentry)
1557				goto out;
1558			rc = selinux_genfs_get_sid(dentry, sclass,
1559						   sbsec->flags, &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1560			dput(dentry);
1561			if (rc)
1562				goto out;
1563		}
1564		break;
1565	}
1566
1567out:
1568	spin_lock(&isec->lock);
1569	if (isec->initialized == LABEL_PENDING) {
1570		if (!sid || rc) {
1571			isec->initialized = LABEL_INVALID;
1572			goto out_unlock;
1573		}
1574
1575		isec->initialized = LABEL_INITIALIZED;
1576		isec->sid = sid;
1577	}
1578
1579out_unlock:
1580	spin_unlock(&isec->lock);
1581	return rc;
 
 
 
 
 
 
 
 
 
1582}
1583
1584/* Convert a Linux signal to an access vector. */
1585static inline u32 signal_to_av(int sig)
1586{
1587	u32 perm = 0;
1588
1589	switch (sig) {
1590	case SIGCHLD:
1591		/* Commonly granted from child to parent. */
1592		perm = PROCESS__SIGCHLD;
1593		break;
1594	case SIGKILL:
1595		/* Cannot be caught or ignored */
1596		perm = PROCESS__SIGKILL;
1597		break;
1598	case SIGSTOP:
1599		/* Cannot be caught or ignored */
1600		perm = PROCESS__SIGSTOP;
1601		break;
1602	default:
1603		/* All other signals. */
1604		perm = PROCESS__SIGNAL;
1605		break;
1606	}
1607
1608	return perm;
1609}
1610
1611/*
1612 * Check permission between a pair of credentials
1613 * fork check, ptrace check, etc.
1614 */
1615static int cred_has_perm(const struct cred *actor,
1616			 const struct cred *target,
1617			 u32 perms)
1618{
1619	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1620
1621	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1622}
1623
1624/*
1625 * Check permission between a pair of tasks, e.g. signal checks,
1626 * fork check, ptrace check, etc.
1627 * tsk1 is the actor and tsk2 is the target
1628 * - this uses the default subjective creds of tsk1
1629 */
1630static int task_has_perm(const struct task_struct *tsk1,
1631			 const struct task_struct *tsk2,
1632			 u32 perms)
1633{
1634	const struct task_security_struct *__tsec1, *__tsec2;
1635	u32 sid1, sid2;
1636
1637	rcu_read_lock();
1638	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1639	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1640	rcu_read_unlock();
1641	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1642}
1643
1644/*
1645 * Check permission between current and another task, e.g. signal checks,
1646 * fork check, ptrace check, etc.
1647 * current is the actor and tsk2 is the target
1648 * - this uses current's subjective creds
1649 */
1650static int current_has_perm(const struct task_struct *tsk,
1651			    u32 perms)
1652{
1653	u32 sid, tsid;
1654
1655	sid = current_sid();
1656	tsid = task_sid(tsk);
1657	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1658}
1659
1660#if CAP_LAST_CAP > 63
1661#error Fix SELinux to handle capabilities > 63.
1662#endif
1663
1664/* Check whether a task is allowed to use a capability. */
1665static int cred_has_capability(const struct cred *cred,
1666			       int cap, int audit, bool initns)
1667{
1668	struct common_audit_data ad;
1669	struct av_decision avd;
1670	u16 sclass;
1671	u32 sid = cred_sid(cred);
1672	u32 av = CAP_TO_MASK(cap);
1673	int rc;
1674
1675	ad.type = LSM_AUDIT_DATA_CAP;
1676	ad.u.cap = cap;
1677
1678	switch (CAP_TO_INDEX(cap)) {
1679	case 0:
1680		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1681		break;
1682	case 1:
1683		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1684		break;
1685	default:
1686		printk(KERN_ERR
1687		       "SELinux:  out of range capability %d\n", cap);
1688		BUG();
1689		return -EINVAL;
1690	}
1691
1692	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1693	if (audit == SECURITY_CAP_AUDIT) {
1694		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
 
 
1695		if (rc2)
1696			return rc2;
1697	}
1698	return rc;
1699}
1700
1701/* Check whether a task is allowed to use a system operation. */
1702static int task_has_system(struct task_struct *tsk,
1703			   u32 perms)
1704{
1705	u32 sid = task_sid(tsk);
1706
1707	return avc_has_perm(sid, SECINITSID_KERNEL,
1708			    SECCLASS_SYSTEM, perms, NULL);
1709}
1710
1711/* Check whether a task has a particular permission to an inode.
1712   The 'adp' parameter is optional and allows other audit
1713   data to be passed (e.g. the dentry). */
1714static int inode_has_perm(const struct cred *cred,
1715			  struct inode *inode,
1716			  u32 perms,
1717			  struct common_audit_data *adp)
1718{
1719	struct inode_security_struct *isec;
1720	u32 sid;
1721
1722	validate_creds(cred);
1723
1724	if (unlikely(IS_PRIVATE(inode)))
1725		return 0;
1726
1727	sid = cred_sid(cred);
1728	isec = inode->i_security;
1729
1730	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1731}
1732
1733/* Same as inode_has_perm, but pass explicit audit data containing
1734   the dentry to help the auditing code to more easily generate the
1735   pathname if needed. */
1736static inline int dentry_has_perm(const struct cred *cred,
1737				  struct dentry *dentry,
1738				  u32 av)
1739{
1740	struct inode *inode = d_backing_inode(dentry);
1741	struct common_audit_data ad;
1742
1743	ad.type = LSM_AUDIT_DATA_DENTRY;
1744	ad.u.dentry = dentry;
1745	__inode_security_revalidate(inode, dentry, true);
1746	return inode_has_perm(cred, inode, av, &ad);
1747}
1748
1749/* Same as inode_has_perm, but pass explicit audit data containing
1750   the path to help the auditing code to more easily generate the
1751   pathname if needed. */
1752static inline int path_has_perm(const struct cred *cred,
1753				const struct path *path,
1754				u32 av)
1755{
1756	struct inode *inode = d_backing_inode(path->dentry);
1757	struct common_audit_data ad;
1758
1759	ad.type = LSM_AUDIT_DATA_PATH;
1760	ad.u.path = *path;
1761	__inode_security_revalidate(inode, path->dentry, true);
1762	return inode_has_perm(cred, inode, av, &ad);
1763}
1764
1765/* Same as path_has_perm, but uses the inode from the file struct. */
1766static inline int file_path_has_perm(const struct cred *cred,
1767				     struct file *file,
1768				     u32 av)
1769{
1770	struct common_audit_data ad;
1771
1772	ad.type = LSM_AUDIT_DATA_FILE;
1773	ad.u.file = file;
1774	return inode_has_perm(cred, file_inode(file), av, &ad);
1775}
1776
 
 
 
 
1777/* Check whether a task can use an open file descriptor to
1778   access an inode in a given way.  Check access to the
1779   descriptor itself, and then use dentry_has_perm to
1780   check a particular permission to the file.
1781   Access to the descriptor is implicitly granted if it
1782   has the same SID as the process.  If av is zero, then
1783   access to the file is not checked, e.g. for cases
1784   where only the descriptor is affected like seek. */
1785static int file_has_perm(const struct cred *cred,
1786			 struct file *file,
1787			 u32 av)
1788{
1789	struct file_security_struct *fsec = file->f_security;
1790	struct inode *inode = file_inode(file);
1791	struct common_audit_data ad;
1792	u32 sid = cred_sid(cred);
1793	int rc;
1794
1795	ad.type = LSM_AUDIT_DATA_FILE;
1796	ad.u.file = file;
1797
1798	if (sid != fsec->sid) {
1799		rc = avc_has_perm(sid, fsec->sid,
 
1800				  SECCLASS_FD,
1801				  FD__USE,
1802				  &ad);
1803		if (rc)
1804			goto out;
1805	}
1806
 
 
 
 
 
 
1807	/* av is zero if only checking access to the descriptor. */
1808	rc = 0;
1809	if (av)
1810		rc = inode_has_perm(cred, inode, av, &ad);
1811
1812out:
1813	return rc;
1814}
1815
1816/*
1817 * Determine the label for an inode that might be unioned.
1818 */
1819static int
1820selinux_determine_inode_label(const struct task_security_struct *tsec,
1821				 struct inode *dir,
1822				 const struct qstr *name, u16 tclass,
1823				 u32 *_new_isid)
1824{
1825	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
 
1826
1827	if ((sbsec->flags & SE_SBINITIALIZED) &&
1828	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1829		*_new_isid = sbsec->mntpoint_sid;
1830	} else if ((sbsec->flags & SBLABEL_MNT) &&
1831		   tsec->create_sid) {
1832		*_new_isid = tsec->create_sid;
1833	} else {
1834		const struct inode_security_struct *dsec = inode_security(dir);
1835		return security_transition_sid(tsec->sid, dsec->sid, tclass,
 
1836					       name, _new_isid);
1837	}
1838
1839	return 0;
1840}
1841
1842/* Check whether a task can create a file. */
1843static int may_create(struct inode *dir,
1844		      struct dentry *dentry,
1845		      u16 tclass)
1846{
1847	const struct task_security_struct *tsec = current_security();
1848	struct inode_security_struct *dsec;
1849	struct superblock_security_struct *sbsec;
1850	u32 sid, newsid;
1851	struct common_audit_data ad;
1852	int rc;
1853
1854	dsec = inode_security(dir);
1855	sbsec = dir->i_sb->s_security;
1856
1857	sid = tsec->sid;
1858
1859	ad.type = LSM_AUDIT_DATA_DENTRY;
1860	ad.u.dentry = dentry;
1861
1862	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1863			  DIR__ADD_NAME | DIR__SEARCH,
1864			  &ad);
1865	if (rc)
1866		return rc;
1867
1868	rc = selinux_determine_inode_label(current_security(), dir,
1869					   &dentry->d_name, tclass, &newsid);
1870	if (rc)
1871		return rc;
1872
1873	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1874	if (rc)
1875		return rc;
1876
1877	return avc_has_perm(newsid, sbsec->sid,
 
1878			    SECCLASS_FILESYSTEM,
1879			    FILESYSTEM__ASSOCIATE, &ad);
1880}
1881
1882/* Check whether a task can create a key. */
1883static int may_create_key(u32 ksid,
1884			  struct task_struct *ctx)
1885{
1886	u32 sid = task_sid(ctx);
1887
1888	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1889}
1890
1891#define MAY_LINK	0
1892#define MAY_UNLINK	1
1893#define MAY_RMDIR	2
1894
1895/* Check whether a task can link, unlink, or rmdir a file/directory. */
1896static int may_link(struct inode *dir,
1897		    struct dentry *dentry,
1898		    int kind)
1899
1900{
1901	struct inode_security_struct *dsec, *isec;
1902	struct common_audit_data ad;
1903	u32 sid = current_sid();
1904	u32 av;
1905	int rc;
1906
1907	dsec = inode_security(dir);
1908	isec = backing_inode_security(dentry);
1909
1910	ad.type = LSM_AUDIT_DATA_DENTRY;
1911	ad.u.dentry = dentry;
1912
1913	av = DIR__SEARCH;
1914	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1915	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1916	if (rc)
1917		return rc;
1918
1919	switch (kind) {
1920	case MAY_LINK:
1921		av = FILE__LINK;
1922		break;
1923	case MAY_UNLINK:
1924		av = FILE__UNLINK;
1925		break;
1926	case MAY_RMDIR:
1927		av = DIR__RMDIR;
1928		break;
1929	default:
1930		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1931			__func__, kind);
1932		return 0;
1933	}
1934
1935	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1936	return rc;
1937}
1938
1939static inline int may_rename(struct inode *old_dir,
1940			     struct dentry *old_dentry,
1941			     struct inode *new_dir,
1942			     struct dentry *new_dentry)
1943{
1944	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1945	struct common_audit_data ad;
1946	u32 sid = current_sid();
1947	u32 av;
1948	int old_is_dir, new_is_dir;
1949	int rc;
1950
1951	old_dsec = inode_security(old_dir);
1952	old_isec = backing_inode_security(old_dentry);
1953	old_is_dir = d_is_dir(old_dentry);
1954	new_dsec = inode_security(new_dir);
1955
1956	ad.type = LSM_AUDIT_DATA_DENTRY;
1957
1958	ad.u.dentry = old_dentry;
1959	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1960			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1961	if (rc)
1962		return rc;
1963	rc = avc_has_perm(sid, old_isec->sid,
 
1964			  old_isec->sclass, FILE__RENAME, &ad);
1965	if (rc)
1966		return rc;
1967	if (old_is_dir && new_dir != old_dir) {
1968		rc = avc_has_perm(sid, old_isec->sid,
 
1969				  old_isec->sclass, DIR__REPARENT, &ad);
1970		if (rc)
1971			return rc;
1972	}
1973
1974	ad.u.dentry = new_dentry;
1975	av = DIR__ADD_NAME | DIR__SEARCH;
1976	if (d_is_positive(new_dentry))
1977		av |= DIR__REMOVE_NAME;
1978	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1979	if (rc)
1980		return rc;
1981	if (d_is_positive(new_dentry)) {
1982		new_isec = backing_inode_security(new_dentry);
1983		new_is_dir = d_is_dir(new_dentry);
1984		rc = avc_has_perm(sid, new_isec->sid,
 
1985				  new_isec->sclass,
1986				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1987		if (rc)
1988			return rc;
1989	}
1990
1991	return 0;
1992}
1993
1994/* Check whether a task can perform a filesystem operation. */
1995static int superblock_has_perm(const struct cred *cred,
1996			       struct super_block *sb,
1997			       u32 perms,
1998			       struct common_audit_data *ad)
1999{
2000	struct superblock_security_struct *sbsec;
2001	u32 sid = cred_sid(cred);
2002
2003	sbsec = sb->s_security;
2004	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
2005}
2006
2007/* Convert a Linux mode and permission mask to an access vector. */
2008static inline u32 file_mask_to_av(int mode, int mask)
2009{
2010	u32 av = 0;
2011
2012	if (!S_ISDIR(mode)) {
2013		if (mask & MAY_EXEC)
2014			av |= FILE__EXECUTE;
2015		if (mask & MAY_READ)
2016			av |= FILE__READ;
2017
2018		if (mask & MAY_APPEND)
2019			av |= FILE__APPEND;
2020		else if (mask & MAY_WRITE)
2021			av |= FILE__WRITE;
2022
2023	} else {
2024		if (mask & MAY_EXEC)
2025			av |= DIR__SEARCH;
2026		if (mask & MAY_WRITE)
2027			av |= DIR__WRITE;
2028		if (mask & MAY_READ)
2029			av |= DIR__READ;
2030	}
2031
2032	return av;
2033}
2034
2035/* Convert a Linux file to an access vector. */
2036static inline u32 file_to_av(struct file *file)
2037{
2038	u32 av = 0;
2039
2040	if (file->f_mode & FMODE_READ)
2041		av |= FILE__READ;
2042	if (file->f_mode & FMODE_WRITE) {
2043		if (file->f_flags & O_APPEND)
2044			av |= FILE__APPEND;
2045		else
2046			av |= FILE__WRITE;
2047	}
2048	if (!av) {
2049		/*
2050		 * Special file opened with flags 3 for ioctl-only use.
2051		 */
2052		av = FILE__IOCTL;
2053	}
2054
2055	return av;
2056}
2057
2058/*
2059 * Convert a file to an access vector and include the correct open
2060 * open permission.
2061 */
2062static inline u32 open_file_to_av(struct file *file)
2063{
2064	u32 av = file_to_av(file);
 
2065
2066	if (selinux_policycap_openperm)
 
2067		av |= FILE__OPEN;
2068
2069	return av;
2070}
2071
2072/* Hook functions begin here. */
2073
2074static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2075{
2076	u32 mysid = current_sid();
2077	u32 mgrsid = task_sid(mgr);
2078
2079	return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2080			    BINDER__SET_CONTEXT_MGR, NULL);
2081}
2082
2083static int selinux_binder_transaction(struct task_struct *from,
2084				      struct task_struct *to)
2085{
2086	u32 mysid = current_sid();
2087	u32 fromsid = task_sid(from);
2088	u32 tosid = task_sid(to);
2089	int rc;
2090
2091	if (mysid != fromsid) {
2092		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
 
2093				  BINDER__IMPERSONATE, NULL);
2094		if (rc)
2095			return rc;
2096	}
2097
2098	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2099			    NULL);
2100}
2101
2102static int selinux_binder_transfer_binder(struct task_struct *from,
2103					  struct task_struct *to)
2104{
2105	u32 fromsid = task_sid(from);
2106	u32 tosid = task_sid(to);
2107
2108	return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2109			    NULL);
2110}
2111
2112static int selinux_binder_transfer_file(struct task_struct *from,
2113					struct task_struct *to,
2114					struct file *file)
2115{
2116	u32 sid = task_sid(to);
2117	struct file_security_struct *fsec = file->f_security;
2118	struct dentry *dentry = file->f_path.dentry;
2119	struct inode_security_struct *isec;
2120	struct common_audit_data ad;
2121	int rc;
2122
2123	ad.type = LSM_AUDIT_DATA_PATH;
2124	ad.u.path = file->f_path;
2125
2126	if (sid != fsec->sid) {
2127		rc = avc_has_perm(sid, fsec->sid,
 
2128				  SECCLASS_FD,
2129				  FD__USE,
2130				  &ad);
2131		if (rc)
2132			return rc;
2133	}
2134
 
 
 
 
 
 
2135	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2136		return 0;
2137
2138	isec = backing_inode_security(dentry);
2139	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
 
2140			    &ad);
2141}
2142
2143static int selinux_ptrace_access_check(struct task_struct *child,
2144				     unsigned int mode)
2145{
2146	if (mode & PTRACE_MODE_READ) {
2147		u32 sid = current_sid();
2148		u32 csid = task_sid(child);
2149		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150	}
 
2151
2152	return current_has_perm(child, PROCESS__PTRACE);
 
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
2158}
2159
2160static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2161			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2162{
2163	return current_has_perm(target, PROCESS__GETCAP);
 
 
2164}
2165
2166static int selinux_capset(struct cred *new, const struct cred *old,
2167			  const kernel_cap_t *effective,
2168			  const kernel_cap_t *inheritable,
2169			  const kernel_cap_t *permitted)
2170{
2171	return cred_has_perm(old, new, PROCESS__SETCAP);
 
 
2172}
2173
2174/*
2175 * (This comment used to live with the selinux_task_setuid hook,
2176 * which was removed).
2177 *
2178 * Since setuid only affects the current process, and since the SELinux
2179 * controls are not based on the Linux identity attributes, SELinux does not
2180 * need to control this operation.  However, SELinux does control the use of
2181 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2182 */
2183
2184static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2185			   int cap, int audit)
2186{
2187	return cred_has_capability(cred, cap, audit, ns == &init_user_ns);
2188}
2189
2190static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2191{
2192	const struct cred *cred = current_cred();
2193	int rc = 0;
2194
2195	if (!sb)
2196		return 0;
2197
2198	switch (cmds) {
2199	case Q_SYNC:
2200	case Q_QUOTAON:
2201	case Q_QUOTAOFF:
2202	case Q_SETINFO:
2203	case Q_SETQUOTA:
 
 
 
2204		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2205		break;
2206	case Q_GETFMT:
2207	case Q_GETINFO:
2208	case Q_GETQUOTA:
 
 
 
 
2209		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2210		break;
2211	default:
2212		rc = 0;  /* let the kernel handle invalid cmds */
2213		break;
2214	}
2215	return rc;
2216}
2217
2218static int selinux_quota_on(struct dentry *dentry)
2219{
2220	const struct cred *cred = current_cred();
2221
2222	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2223}
2224
2225static int selinux_syslog(int type)
2226{
2227	int rc;
2228
2229	switch (type) {
2230	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2231	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2232		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2233		break;
 
2234	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2235	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2236	/* Set level of messages printed to console */
2237	case SYSLOG_ACTION_CONSOLE_LEVEL:
2238		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2239		break;
2240	case SYSLOG_ACTION_CLOSE:	/* Close log */
2241	case SYSLOG_ACTION_OPEN:	/* Open log */
2242	case SYSLOG_ACTION_READ:	/* Read from log */
2243	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2244	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2245	default:
2246		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2247		break;
2248	}
2249	return rc;
2250}
2251
2252/*
2253 * Check that a process has enough memory to allocate a new virtual
2254 * mapping. 0 means there is enough memory for the allocation to
2255 * succeed and -ENOMEM implies there is not.
2256 *
2257 * Do not audit the selinux permission check, as this is applied to all
2258 * processes that allocate mappings.
2259 */
2260static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2261{
2262	int rc, cap_sys_admin = 0;
2263
2264	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2265				 SECURITY_CAP_NOAUDIT, true);
2266	if (rc == 0)
2267		cap_sys_admin = 1;
2268
2269	return cap_sys_admin;
2270}
2271
2272/* binprm security operations */
2273
2274static u32 ptrace_parent_sid(struct task_struct *task)
2275{
2276	u32 sid = 0;
2277	struct task_struct *tracer;
2278
2279	rcu_read_lock();
2280	tracer = ptrace_parent(task);
2281	if (tracer)
2282		sid = task_sid(tracer);
2283	rcu_read_unlock();
2284
2285	return sid;
2286}
2287
2288static int check_nnp_nosuid(const struct linux_binprm *bprm,
2289			    const struct task_security_struct *old_tsec,
2290			    const struct task_security_struct *new_tsec)
2291{
2292	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2293	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2294	int rc;
 
2295
2296	if (!nnp && !nosuid)
2297		return 0; /* neither NNP nor nosuid */
2298
2299	if (new_tsec->sid == old_tsec->sid)
2300		return 0; /* No change in credentials */
2301
2302	/*
2303	 * The only transitions we permit under NNP or nosuid
2304	 * are transitions to bounded SIDs, i.e. SIDs that are
2305	 * guaranteed to only be allowed a subset of the permissions
2306	 * of the current SID.
2307	 */
2308	rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2309	if (rc) {
2310		/*
2311		 * On failure, preserve the errno values for NNP vs nosuid.
2312		 * NNP:  Operation not permitted for caller.
2313		 * nosuid:  Permission denied to file.
2314		 */
2315		if (nnp)
2316			return -EPERM;
2317		else
2318			return -EACCES;
 
 
 
 
 
2319	}
2320	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2321}
2322
2323static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2324{
2325	const struct task_security_struct *old_tsec;
2326	struct task_security_struct *new_tsec;
2327	struct inode_security_struct *isec;
2328	struct common_audit_data ad;
2329	struct inode *inode = file_inode(bprm->file);
2330	int rc;
2331
2332	/* SELinux context only depends on initial program or script and not
2333	 * the script interpreter */
2334	if (bprm->cred_prepared)
2335		return 0;
2336
2337	old_tsec = current_security();
2338	new_tsec = bprm->cred->security;
2339	isec = inode_security(inode);
2340
2341	/* Default to the current task SID. */
2342	new_tsec->sid = old_tsec->sid;
2343	new_tsec->osid = old_tsec->sid;
2344
2345	/* Reset fs, key, and sock SIDs on execve. */
2346	new_tsec->create_sid = 0;
2347	new_tsec->keycreate_sid = 0;
2348	new_tsec->sockcreate_sid = 0;
2349
2350	if (old_tsec->exec_sid) {
2351		new_tsec->sid = old_tsec->exec_sid;
2352		/* Reset exec SID on execve. */
2353		new_tsec->exec_sid = 0;
2354
2355		/* Fail on NNP or nosuid if not an allowed transition. */
2356		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2357		if (rc)
2358			return rc;
2359	} else {
2360		/* Check for a default transition on this program. */
2361		rc = security_transition_sid(old_tsec->sid, isec->sid,
2362					     SECCLASS_PROCESS, NULL,
2363					     &new_tsec->sid);
2364		if (rc)
2365			return rc;
2366
2367		/*
2368		 * Fallback to old SID on NNP or nosuid if not an allowed
2369		 * transition.
2370		 */
2371		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2372		if (rc)
2373			new_tsec->sid = old_tsec->sid;
2374	}
2375
2376	ad.type = LSM_AUDIT_DATA_FILE;
2377	ad.u.file = bprm->file;
2378
2379	if (new_tsec->sid == old_tsec->sid) {
2380		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2381				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2382		if (rc)
2383			return rc;
2384	} else {
2385		/* Check permissions for the transition. */
2386		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2387				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2388		if (rc)
2389			return rc;
2390
2391		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2392				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2393		if (rc)
2394			return rc;
2395
2396		/* Check for shared state */
2397		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2398			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2399					  SECCLASS_PROCESS, PROCESS__SHARE,
2400					  NULL);
2401			if (rc)
2402				return -EPERM;
2403		}
2404
2405		/* Make sure that anyone attempting to ptrace over a task that
2406		 * changes its SID has the appropriate permit */
2407		if (bprm->unsafe &
2408		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2409			u32 ptsid = ptrace_parent_sid(current);
2410			if (ptsid != 0) {
2411				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2412						  SECCLASS_PROCESS,
2413						  PROCESS__PTRACE, NULL);
2414				if (rc)
2415					return -EPERM;
2416			}
2417		}
2418
2419		/* Clear any possibly unsafe personality bits on exec: */
2420		bprm->per_clear |= PER_CLEAR_ON_SETID;
2421	}
2422
2423	return 0;
2424}
2425
2426static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2427{
2428	const struct task_security_struct *tsec = current_security();
2429	u32 sid, osid;
2430	int atsecure = 0;
2431
2432	sid = tsec->sid;
2433	osid = tsec->osid;
2434
2435	if (osid != sid) {
2436		/* Enable secure mode for SIDs transitions unless
2437		   the noatsecure permission is granted between
2438		   the two SIDs, i.e. ahp returns 0. */
2439		atsecure = avc_has_perm(osid, sid,
2440					SECCLASS_PROCESS,
2441					PROCESS__NOATSECURE, NULL);
 
 
2442	}
2443
2444	return !!atsecure;
2445}
2446
2447static int match_file(const void *p, struct file *file, unsigned fd)
2448{
2449	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2450}
2451
2452/* Derived from fs/exec.c:flush_old_files. */
2453static inline void flush_unauthorized_files(const struct cred *cred,
2454					    struct files_struct *files)
2455{
2456	struct file *file, *devnull = NULL;
2457	struct tty_struct *tty;
2458	int drop_tty = 0;
2459	unsigned n;
2460
2461	tty = get_current_tty();
2462	if (tty) {
2463		spin_lock(&tty->files_lock);
2464		if (!list_empty(&tty->tty_files)) {
2465			struct tty_file_private *file_priv;
2466
2467			/* Revalidate access to controlling tty.
2468			   Use file_path_has_perm on the tty path directly
2469			   rather than using file_has_perm, as this particular
2470			   open file may belong to another process and we are
2471			   only interested in the inode-based check here. */
2472			file_priv = list_first_entry(&tty->tty_files,
2473						struct tty_file_private, list);
2474			file = file_priv->file;
2475			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2476				drop_tty = 1;
2477		}
2478		spin_unlock(&tty->files_lock);
2479		tty_kref_put(tty);
2480	}
2481	/* Reset controlling tty. */
2482	if (drop_tty)
2483		no_tty();
2484
2485	/* Revalidate access to inherited open files. */
2486	n = iterate_fd(files, 0, match_file, cred);
2487	if (!n) /* none found? */
2488		return;
2489
2490	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2491	if (IS_ERR(devnull))
2492		devnull = NULL;
2493	/* replace all the matching ones with this */
2494	do {
2495		replace_fd(n - 1, devnull, 0);
2496	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2497	if (devnull)
2498		fput(devnull);
2499}
2500
2501/*
2502 * Prepare a process for imminent new credential changes due to exec
2503 */
2504static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2505{
2506	struct task_security_struct *new_tsec;
2507	struct rlimit *rlim, *initrlim;
2508	int rc, i;
2509
2510	new_tsec = bprm->cred->security;
2511	if (new_tsec->sid == new_tsec->osid)
2512		return;
2513
2514	/* Close files for which the new task SID is not authorized. */
2515	flush_unauthorized_files(bprm->cred, current->files);
2516
2517	/* Always clear parent death signal on SID transitions. */
2518	current->pdeath_signal = 0;
2519
2520	/* Check whether the new SID can inherit resource limits from the old
2521	 * SID.  If not, reset all soft limits to the lower of the current
2522	 * task's hard limit and the init task's soft limit.
2523	 *
2524	 * Note that the setting of hard limits (even to lower them) can be
2525	 * controlled by the setrlimit check.  The inclusion of the init task's
2526	 * soft limit into the computation is to avoid resetting soft limits
2527	 * higher than the default soft limit for cases where the default is
2528	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2529	 */
2530	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2531			  PROCESS__RLIMITINH, NULL);
2532	if (rc) {
2533		/* protect against do_prlimit() */
2534		task_lock(current);
2535		for (i = 0; i < RLIM_NLIMITS; i++) {
2536			rlim = current->signal->rlim + i;
2537			initrlim = init_task.signal->rlim + i;
2538			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2539		}
2540		task_unlock(current);
2541		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2542			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2543	}
2544}
2545
2546/*
2547 * Clean up the process immediately after the installation of new credentials
2548 * due to exec
2549 */
2550static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2551{
2552	const struct task_security_struct *tsec = current_security();
2553	struct itimerval itimer;
2554	u32 osid, sid;
2555	int rc, i;
2556
2557	osid = tsec->osid;
2558	sid = tsec->sid;
2559
2560	if (sid == osid)
2561		return;
2562
2563	/* Check whether the new SID can inherit signal state from the old SID.
2564	 * If not, clear itimers to avoid subsequent signal generation and
2565	 * flush and unblock signals.
2566	 *
2567	 * This must occur _after_ the task SID has been updated so that any
2568	 * kill done after the flush will be checked against the new SID.
2569	 */
2570	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2571	if (rc) {
2572		if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573			memset(&itimer, 0, sizeof itimer);
2574			for (i = 0; i < 3; i++)
2575				do_setitimer(i, &itimer, NULL);
2576		}
2577		spin_lock_irq(&current->sighand->siglock);
2578		if (!fatal_signal_pending(current)) {
2579			flush_sigqueue(&current->pending);
2580			flush_sigqueue(&current->signal->shared_pending);
2581			flush_signal_handlers(current, 1);
2582			sigemptyset(&current->blocked);
2583			recalc_sigpending();
2584		}
2585		spin_unlock_irq(&current->sighand->siglock);
2586	}
2587
2588	/* Wake up the parent if it is waiting so that it can recheck
2589	 * wait permission to the new task SID. */
2590	read_lock(&tasklist_lock);
2591	__wake_up_parent(current, current->real_parent);
2592	read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599	return superblock_alloc_security(sb);
2600}
 
 
 
 
 
 
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604	superblock_free_security(sb);
2605}
2606
2607static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2608{
2609	if (plen > olen)
2610		return 0;
 
2611
2612	return !memcmp(prefix, option, plen);
 
 
 
 
 
 
2613}
2614
2615static inline int selinux_option(char *option, int len)
2616{
2617	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2618		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2619		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2620		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2621		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2622}
2623
2624static inline void take_option(char **to, char *from, int *first, int len)
2625{
2626	if (!*first) {
2627		**to = ',';
2628		*to += 1;
2629	} else
2630		*first = 0;
2631	memcpy(*to, from, len);
2632	*to += len;
2633}
2634
2635static inline void take_selinux_option(char **to, char *from, int *first,
2636				       int len)
2637{
2638	int current_size = 0;
2639
2640	if (!*first) {
2641		**to = '|';
2642		*to += 1;
2643	} else
2644		*first = 0;
2645
2646	while (current_size < len) {
2647		if (*from != '"') {
2648			**to = *from;
2649			*to += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650		}
2651		from += 1;
2652		current_size += 1;
 
2653	}
 
 
 
 
 
 
 
 
 
2654}
2655
2656static int selinux_sb_copy_data(char *orig, char *copy)
2657{
2658	int fnosec, fsec, rc = 0;
2659	char *in_save, *in_curr, *in_end;
2660	char *sec_curr, *nosec_save, *nosec;
2661	int open_quote = 0;
2662
2663	in_curr = orig;
2664	sec_curr = copy;
 
 
 
 
 
 
 
 
 
 
 
2665
2666	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2667	if (!nosec) {
2668		rc = -ENOMEM;
2669		goto out;
 
 
 
 
 
 
 
 
 
2670	}
 
 
2671
2672	nosec_save = nosec;
2673	fnosec = fsec = 1;
2674	in_save = in_end = orig;
2675
2676	do {
2677		if (*in_end == '"')
2678			open_quote = !open_quote;
2679		if ((*in_end == ',' && open_quote == 0) ||
2680				*in_end == '\0') {
2681			int len = in_end - in_curr;
2682
2683			if (selinux_option(in_curr, len))
2684				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2685			else
2686				take_option(&nosec, in_curr, &fnosec, len);
2687
2688			in_curr = in_end + 1;
2689		}
2690	} while (*in_end++);
2691
2692	strcpy(in_save, nosec_save);
2693	free_page((unsigned long)nosec_save);
2694out:
2695	return rc;
2696}
2697
2698static int selinux_sb_remount(struct super_block *sb, void *data)
2699{
2700	int rc, i, *flags;
2701	struct security_mnt_opts opts;
2702	char *secdata, **mount_options;
2703	struct superblock_security_struct *sbsec = sb->s_security;
2704
2705	if (!(sbsec->flags & SE_SBINITIALIZED))
2706		return 0;
2707
2708	if (!data)
2709		return 0;
2710
2711	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2712		return 0;
2713
2714	security_init_mnt_opts(&opts);
2715	secdata = alloc_secdata();
2716	if (!secdata)
2717		return -ENOMEM;
2718	rc = selinux_sb_copy_data(data, secdata);
2719	if (rc)
2720		goto out_free_secdata;
2721
2722	rc = selinux_parse_opts_str(secdata, &opts);
2723	if (rc)
2724		goto out_free_secdata;
2725
2726	mount_options = opts.mnt_opts;
2727	flags = opts.mnt_opts_flags;
2728
2729	for (i = 0; i < opts.num_mnt_opts; i++) {
2730		u32 sid;
2731
2732		if (flags[i] == SBLABEL_MNT)
2733			continue;
2734		rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2735		if (rc) {
2736			printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2737			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2738			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2739			goto out_free_opts;
2740		}
2741		rc = -EINVAL;
2742		switch (flags[i]) {
2743		case FSCONTEXT_MNT:
2744			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2745				goto out_bad_option;
2746			break;
2747		case CONTEXT_MNT:
2748			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2749				goto out_bad_option;
2750			break;
2751		case ROOTCONTEXT_MNT: {
2752			struct inode_security_struct *root_isec;
2753			root_isec = backing_inode_security(sb->s_root);
2754
2755			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2756				goto out_bad_option;
2757			break;
2758		}
2759		case DEFCONTEXT_MNT:
2760			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2761				goto out_bad_option;
2762			break;
2763		default:
2764			goto out_free_opts;
2765		}
2766	}
 
2767
2768	rc = 0;
2769out_free_opts:
2770	security_free_mnt_opts(&opts);
2771out_free_secdata:
2772	free_secdata(secdata);
2773	return rc;
2774out_bad_option:
2775	printk(KERN_WARNING "SELinux: unable to change security options "
2776	       "during remount (dev %s, type=%s)\n", sb->s_id,
2777	       sb->s_type->name);
2778	goto out_free_opts;
2779}
2780
2781static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2782{
2783	const struct cred *cred = current_cred();
2784	struct common_audit_data ad;
2785	int rc;
2786
2787	rc = superblock_doinit(sb, data);
2788	if (rc)
2789		return rc;
2790
2791	/* Allow all mounts performed by the kernel */
2792	if (flags & MS_KERNMOUNT)
2793		return 0;
2794
2795	ad.type = LSM_AUDIT_DATA_DENTRY;
2796	ad.u.dentry = sb->s_root;
2797	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2798}
2799
2800static int selinux_sb_statfs(struct dentry *dentry)
2801{
2802	const struct cred *cred = current_cred();
2803	struct common_audit_data ad;
2804
2805	ad.type = LSM_AUDIT_DATA_DENTRY;
2806	ad.u.dentry = dentry->d_sb->s_root;
2807	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2808}
2809
2810static int selinux_mount(const char *dev_name,
2811			 const struct path *path,
2812			 const char *type,
2813			 unsigned long flags,
2814			 void *data)
2815{
2816	const struct cred *cred = current_cred();
2817
2818	if (flags & MS_REMOUNT)
2819		return superblock_has_perm(cred, path->dentry->d_sb,
2820					   FILESYSTEM__REMOUNT, NULL);
2821	else
2822		return path_has_perm(cred, path, FILE__MOUNTON);
2823}
2824
 
 
 
 
 
 
 
 
2825static int selinux_umount(struct vfsmount *mnt, int flags)
2826{
2827	const struct cred *cred = current_cred();
2828
2829	return superblock_has_perm(cred, mnt->mnt_sb,
2830				   FILESYSTEM__UNMOUNT, NULL);
2831}
2832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833/* inode security operations */
2834
2835static int selinux_inode_alloc_security(struct inode *inode)
2836{
2837	return inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
2838}
2839
2840static void selinux_inode_free_security(struct inode *inode)
2841{
2842	inode_free_security(inode);
2843}
2844
2845static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2846					const struct qstr *name, void **ctx,
2847					u32 *ctxlen)
2848{
2849	u32 newsid;
2850	int rc;
2851
2852	rc = selinux_determine_inode_label(current_security(),
2853					   d_inode(dentry->d_parent), name,
2854					   inode_mode_to_security_class(mode),
2855					   &newsid);
2856	if (rc)
2857		return rc;
2858
2859	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
 
2860}
2861
2862static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2863					  struct qstr *name,
2864					  const struct cred *old,
2865					  struct cred *new)
2866{
2867	u32 newsid;
2868	int rc;
2869	struct task_security_struct *tsec;
2870
2871	rc = selinux_determine_inode_label(old->security,
2872					   d_inode(dentry->d_parent), name,
2873					   inode_mode_to_security_class(mode),
2874					   &newsid);
2875	if (rc)
2876		return rc;
2877
2878	tsec = new->security;
2879	tsec->create_sid = newsid;
2880	return 0;
2881}
2882
2883static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2884				       const struct qstr *qstr,
2885				       const char **name,
2886				       void **value, size_t *len)
2887{
2888	const struct task_security_struct *tsec = current_security();
2889	struct superblock_security_struct *sbsec;
2890	u32 sid, newsid, clen;
2891	int rc;
2892	char *context;
2893
2894	sbsec = dir->i_sb->s_security;
2895
2896	sid = tsec->sid;
2897	newsid = tsec->create_sid;
2898
2899	rc = selinux_determine_inode_label(current_security(),
2900		dir, qstr,
2901		inode_mode_to_security_class(inode->i_mode),
2902		&newsid);
2903	if (rc)
2904		return rc;
2905
2906	/* Possibly defer initialization to selinux_complete_init. */
2907	if (sbsec->flags & SE_SBINITIALIZED) {
2908		struct inode_security_struct *isec = inode->i_security;
2909		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2910		isec->sid = newsid;
2911		isec->initialized = LABEL_INITIALIZED;
2912	}
2913
2914	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
 
2915		return -EOPNOTSUPP;
2916
2917	if (name)
2918		*name = XATTR_SELINUX_SUFFIX;
2919
2920	if (value && len) {
2921		rc = security_sid_to_context_force(newsid, &context, &clen);
 
2922		if (rc)
2923			return rc;
2924		*value = context;
2925		*len = clen;
2926	}
2927
2928	return 0;
2929}
2930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2932{
2933	return may_create(dir, dentry, SECCLASS_FILE);
2934}
2935
2936static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2937{
2938	return may_link(dir, old_dentry, MAY_LINK);
2939}
2940
2941static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2942{
2943	return may_link(dir, dentry, MAY_UNLINK);
2944}
2945
2946static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2947{
2948	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2949}
2950
2951static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2952{
2953	return may_create(dir, dentry, SECCLASS_DIR);
2954}
2955
2956static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2957{
2958	return may_link(dir, dentry, MAY_RMDIR);
2959}
2960
2961static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2962{
2963	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2964}
2965
2966static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2967				struct inode *new_inode, struct dentry *new_dentry)
2968{
2969	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2970}
2971
2972static int selinux_inode_readlink(struct dentry *dentry)
2973{
2974	const struct cred *cred = current_cred();
2975
2976	return dentry_has_perm(cred, dentry, FILE__READ);
2977}
2978
2979static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2980				     bool rcu)
2981{
2982	const struct cred *cred = current_cred();
2983	struct common_audit_data ad;
2984	struct inode_security_struct *isec;
2985	u32 sid;
2986
2987	validate_creds(cred);
2988
2989	ad.type = LSM_AUDIT_DATA_DENTRY;
2990	ad.u.dentry = dentry;
2991	sid = cred_sid(cred);
2992	isec = inode_security_rcu(inode, rcu);
2993	if (IS_ERR(isec))
2994		return PTR_ERR(isec);
2995
2996	return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2997				  rcu ? MAY_NOT_BLOCK : 0);
2998}
2999
3000static noinline int audit_inode_permission(struct inode *inode,
3001					   u32 perms, u32 audited, u32 denied,
3002					   int result,
3003					   unsigned flags)
3004{
3005	struct common_audit_data ad;
3006	struct inode_security_struct *isec = inode->i_security;
3007	int rc;
3008
3009	ad.type = LSM_AUDIT_DATA_INODE;
3010	ad.u.inode = inode;
3011
3012	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3013			    audited, denied, result, &ad, flags);
3014	if (rc)
3015		return rc;
3016	return 0;
3017}
3018
3019static int selinux_inode_permission(struct inode *inode, int mask)
3020{
3021	const struct cred *cred = current_cred();
3022	u32 perms;
3023	bool from_access;
3024	unsigned flags = mask & MAY_NOT_BLOCK;
3025	struct inode_security_struct *isec;
3026	u32 sid;
3027	struct av_decision avd;
3028	int rc, rc2;
3029	u32 audited, denied;
3030
3031	from_access = mask & MAY_ACCESS;
3032	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3033
3034	/* No permission to check.  Existence test. */
3035	if (!mask)
3036		return 0;
3037
3038	validate_creds(cred);
3039
3040	if (unlikely(IS_PRIVATE(inode)))
3041		return 0;
3042
3043	perms = file_mask_to_av(inode->i_mode, mask);
3044
3045	sid = cred_sid(cred);
3046	isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3047	if (IS_ERR(isec))
3048		return PTR_ERR(isec);
3049
3050	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
 
 
3051	audited = avc_audit_required(perms, &avd, rc,
3052				     from_access ? FILE__AUDIT_ACCESS : 0,
3053				     &denied);
3054	if (likely(!audited))
3055		return rc;
3056
3057	rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3058	if (rc2)
3059		return rc2;
3060	return rc;
3061}
3062
3063static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3064{
3065	const struct cred *cred = current_cred();
 
3066	unsigned int ia_valid = iattr->ia_valid;
3067	__u32 av = FILE__WRITE;
3068
3069	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3070	if (ia_valid & ATTR_FORCE) {
3071		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3072			      ATTR_FORCE);
3073		if (!ia_valid)
3074			return 0;
3075	}
3076
3077	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3078			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3079		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3080
3081	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3082			&& !(ia_valid & ATTR_FILE))
 
 
3083		av |= FILE__OPEN;
3084
3085	return dentry_has_perm(cred, dentry, av);
3086}
3087
3088static int selinux_inode_getattr(const struct path *path)
3089{
3090	return path_has_perm(current_cred(), path, FILE__GETATTR);
3091}
3092
3093static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3094{
3095	const struct cred *cred = current_cred();
 
3096
3097	if (!strncmp(name, XATTR_SECURITY_PREFIX,
3098		     sizeof XATTR_SECURITY_PREFIX - 1)) {
3099		if (!strcmp(name, XATTR_NAME_CAPS)) {
3100			if (!capable(CAP_SETFCAP))
3101				return -EPERM;
3102		} else if (!capable(CAP_SYS_ADMIN)) {
3103			/* A different attribute in the security namespace.
3104			   Restrict to administrator. */
3105			return -EPERM;
3106		}
3107	}
3108
3109	/* Not an attribute we recognize, so just check the
3110	   ordinary setattr permission. */
3111	return dentry_has_perm(cred, dentry, FILE__SETATTR);
3112}
3113
3114static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
 
3115				  const void *value, size_t size, int flags)
3116{
3117	struct inode *inode = d_backing_inode(dentry);
3118	struct inode_security_struct *isec;
3119	struct superblock_security_struct *sbsec;
3120	struct common_audit_data ad;
3121	u32 newsid, sid = current_sid();
3122	int rc = 0;
3123
3124	if (strcmp(name, XATTR_NAME_SELINUX))
3125		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
3126
3127	sbsec = inode->i_sb->s_security;
 
 
 
3128	if (!(sbsec->flags & SBLABEL_MNT))
3129		return -EOPNOTSUPP;
3130
3131	if (!inode_owner_or_capable(inode))
3132		return -EPERM;
3133
3134	ad.type = LSM_AUDIT_DATA_DENTRY;
3135	ad.u.dentry = dentry;
3136
3137	isec = backing_inode_security(dentry);
3138	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
3139			  FILE__RELABELFROM, &ad);
3140	if (rc)
3141		return rc;
3142
3143	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
3144	if (rc == -EINVAL) {
3145		if (!capable(CAP_MAC_ADMIN)) {
3146			struct audit_buffer *ab;
3147			size_t audit_size;
3148			const char *str;
3149
3150			/* We strip a nul only if it is at the end, otherwise the
3151			 * context contains a nul and we should audit that */
3152			if (value) {
3153				str = value;
 
3154				if (str[size - 1] == '\0')
3155					audit_size = size - 1;
3156				else
3157					audit_size = size;
3158			} else {
3159				str = "";
3160				audit_size = 0;
3161			}
3162			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
3163			audit_log_format(ab, "op=setxattr invalid_context=");
3164			audit_log_n_untrustedstring(ab, value, audit_size);
3165			audit_log_end(ab);
3166
3167			return rc;
3168		}
3169		rc = security_context_to_sid_force(value, size, &newsid);
 
3170	}
3171	if (rc)
3172		return rc;
3173
3174	rc = avc_has_perm(sid, newsid, isec->sclass,
 
3175			  FILE__RELABELTO, &ad);
3176	if (rc)
3177		return rc;
3178
3179	rc = security_validate_transition(isec->sid, newsid, sid,
3180					  isec->sclass);
3181	if (rc)
3182		return rc;
3183
3184	return avc_has_perm(newsid,
 
3185			    sbsec->sid,
3186			    SECCLASS_FILESYSTEM,
3187			    FILESYSTEM__ASSOCIATE,
3188			    &ad);
3189}
3190
3191static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3192					const void *value, size_t size,
3193					int flags)
3194{
3195	struct inode *inode = d_backing_inode(dentry);
3196	struct inode_security_struct *isec;
3197	u32 newsid;
3198	int rc;
3199
3200	if (strcmp(name, XATTR_NAME_SELINUX)) {
3201		/* Not an attribute we recognize, so nothing to do. */
3202		return;
3203	}
3204
3205	rc = security_context_to_sid_force(value, size, &newsid);
 
 
 
 
 
 
 
 
 
 
3206	if (rc) {
3207		printk(KERN_ERR "SELinux:  unable to map context to SID"
3208		       "for (%s, %lu), rc=%d\n",
3209		       inode->i_sb->s_id, inode->i_ino, -rc);
3210		return;
3211	}
3212
3213	isec = backing_inode_security(dentry);
3214	spin_lock(&isec->lock);
3215	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3216	isec->sid = newsid;
3217	isec->initialized = LABEL_INITIALIZED;
3218	spin_unlock(&isec->lock);
3219
3220	return;
3221}
3222
3223static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3224{
3225	const struct cred *cred = current_cred();
3226
3227	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3228}
3229
3230static int selinux_inode_listxattr(struct dentry *dentry)
3231{
3232	const struct cred *cred = current_cred();
3233
3234	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3235}
3236
3237static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
 
3238{
3239	if (strcmp(name, XATTR_NAME_SELINUX))
3240		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
3241
3242	/* No one is allowed to remove a SELinux security label.
3243	   You can change the label, but all data must be labeled. */
3244	return -EACCES;
3245}
3246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3247/*
3248 * Copy the inode security context value to the user.
3249 *
3250 * Permission check is handled by selinux_inode_getxattr hook.
3251 */
3252static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
 
 
3253{
3254	u32 size;
3255	int error;
3256	char *context = NULL;
3257	struct inode_security_struct *isec;
3258
3259	if (strcmp(name, XATTR_SELINUX_SUFFIX))
 
 
 
 
 
3260		return -EOPNOTSUPP;
3261
3262	/*
3263	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3264	 * value even if it is not defined by current policy; otherwise,
3265	 * use the in-core value under current policy.
3266	 * Use the non-auditing forms of the permission checks since
3267	 * getxattr may be called by unprivileged processes commonly
3268	 * and lack of permission just means that we fall back to the
3269	 * in-core context value, not a denial.
3270	 */
3271	error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3272			    SECURITY_CAP_NOAUDIT);
3273	if (!error)
3274		error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3275					    SECURITY_CAP_NOAUDIT, true);
3276	isec = inode_security(inode);
3277	if (!error)
3278		error = security_sid_to_context_force(isec->sid, &context,
 
3279						      &size);
3280	else
3281		error = security_sid_to_context(isec->sid, &context, &size);
 
3282	if (error)
3283		return error;
3284	error = size;
3285	if (alloc) {
3286		*buffer = context;
3287		goto out_nofree;
3288	}
3289	kfree(context);
3290out_nofree:
3291	return error;
3292}
3293
3294static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3295				     const void *value, size_t size, int flags)
3296{
3297	struct inode_security_struct *isec = inode_security_novalidate(inode);
 
3298	u32 newsid;
3299	int rc;
3300
3301	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3302		return -EOPNOTSUPP;
3303
 
 
 
 
3304	if (!value || !size)
3305		return -EACCES;
3306
3307	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
3308	if (rc)
3309		return rc;
3310
3311	spin_lock(&isec->lock);
3312	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3313	isec->sid = newsid;
3314	isec->initialized = LABEL_INITIALIZED;
3315	spin_unlock(&isec->lock);
3316	return 0;
3317}
3318
3319static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3320{
3321	const int len = sizeof(XATTR_NAME_SELINUX);
 
 
 
 
3322	if (buffer && len <= buffer_size)
3323		memcpy(buffer, XATTR_NAME_SELINUX, len);
3324	return len;
3325}
3326
3327static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3328{
3329	struct inode_security_struct *isec = inode_security_novalidate(inode);
3330	*secid = isec->sid;
3331}
3332
3333static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3334{
3335	u32 sid;
3336	struct task_security_struct *tsec;
3337	struct cred *new_creds = *new;
3338
3339	if (new_creds == NULL) {
3340		new_creds = prepare_creds();
3341		if (!new_creds)
3342			return -ENOMEM;
3343	}
3344
3345	tsec = new_creds->security;
3346	/* Get label from overlay inode and set it in create_sid */
3347	selinux_inode_getsecid(d_inode(src), &sid);
3348	tsec->create_sid = sid;
3349	*new = new_creds;
3350	return 0;
3351}
3352
3353static int selinux_inode_copy_up_xattr(const char *name)
3354{
3355	/* The copy_up hook above sets the initial context on an inode, but we
3356	 * don't then want to overwrite it by blindly copying all the lower
3357	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3358	 */
3359	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3360		return 1; /* Discard */
3361	/*
3362	 * Any other attribute apart from SELINUX is not claimed, supported
3363	 * by selinux.
3364	 */
3365	return -EOPNOTSUPP;
3366}
3367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368/* file security operations */
3369
3370static int selinux_revalidate_file_permission(struct file *file, int mask)
3371{
3372	const struct cred *cred = current_cred();
3373	struct inode *inode = file_inode(file);
3374
3375	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3376	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3377		mask |= MAY_APPEND;
3378
3379	return file_has_perm(cred, file,
3380			     file_mask_to_av(inode->i_mode, mask));
3381}
3382
3383static int selinux_file_permission(struct file *file, int mask)
3384{
3385	struct inode *inode = file_inode(file);
3386	struct file_security_struct *fsec = file->f_security;
3387	struct inode_security_struct *isec;
3388	u32 sid = current_sid();
3389
3390	if (!mask)
3391		/* No permission to check.  Existence test. */
3392		return 0;
3393
3394	isec = inode_security(inode);
3395	if (sid == fsec->sid && fsec->isid == isec->sid &&
3396	    fsec->pseqno == avc_policy_seqno())
3397		/* No change since file_open check. */
3398		return 0;
3399
3400	return selinux_revalidate_file_permission(file, mask);
3401}
3402
3403static int selinux_file_alloc_security(struct file *file)
3404{
3405	return file_alloc_security(file);
3406}
 
 
 
3407
3408static void selinux_file_free_security(struct file *file)
3409{
3410	file_free_security(file);
3411}
3412
3413/*
3414 * Check whether a task has the ioctl permission and cmd
3415 * operation to an inode.
3416 */
3417static int ioctl_has_perm(const struct cred *cred, struct file *file,
3418		u32 requested, u16 cmd)
3419{
3420	struct common_audit_data ad;
3421	struct file_security_struct *fsec = file->f_security;
3422	struct inode *inode = file_inode(file);
3423	struct inode_security_struct *isec;
3424	struct lsm_ioctlop_audit ioctl;
3425	u32 ssid = cred_sid(cred);
3426	int rc;
3427	u8 driver = cmd >> 8;
3428	u8 xperm = cmd & 0xff;
3429
3430	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3431	ad.u.op = &ioctl;
3432	ad.u.op->cmd = cmd;
3433	ad.u.op->path = file->f_path;
3434
3435	if (ssid != fsec->sid) {
3436		rc = avc_has_perm(ssid, fsec->sid,
 
3437				SECCLASS_FD,
3438				FD__USE,
3439				&ad);
3440		if (rc)
3441			goto out;
3442	}
3443
3444	if (unlikely(IS_PRIVATE(inode)))
3445		return 0;
3446
3447	isec = inode_security(inode);
3448	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3449			requested, driver, xperm, &ad);
 
3450out:
3451	return rc;
3452}
3453
3454static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3455			      unsigned long arg)
3456{
3457	const struct cred *cred = current_cred();
3458	int error = 0;
3459
3460	switch (cmd) {
3461	case FIONREAD:
3462	/* fall through */
3463	case FIBMAP:
3464	/* fall through */
3465	case FIGETBSZ:
3466	/* fall through */
3467	case FS_IOC_GETFLAGS:
3468	/* fall through */
3469	case FS_IOC_GETVERSION:
3470		error = file_has_perm(cred, file, FILE__GETATTR);
3471		break;
3472
3473	case FS_IOC_SETFLAGS:
3474	/* fall through */
3475	case FS_IOC_SETVERSION:
3476		error = file_has_perm(cred, file, FILE__SETATTR);
3477		break;
3478
3479	/* sys_ioctl() checks */
3480	case FIONBIO:
3481	/* fall through */
3482	case FIOASYNC:
3483		error = file_has_perm(cred, file, 0);
3484		break;
3485
3486	case KDSKBENT:
3487	case KDSKBSENT:
3488		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3489					    SECURITY_CAP_AUDIT, true);
3490		break;
3491
3492	/* default case assumes that the command will go
3493	 * to the file's ioctl() function.
3494	 */
3495	default:
3496		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3497	}
3498	return error;
3499}
3500
3501static int default_noexec;
3502
3503static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3504{
3505	const struct cred *cred = current_cred();
 
3506	int rc = 0;
3507
3508	if (default_noexec &&
3509	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3510				   (!shared && (prot & PROT_WRITE)))) {
3511		/*
3512		 * We are making executable an anonymous mapping or a
3513		 * private file mapping that will also be writable.
3514		 * This has an additional check.
3515		 */
3516		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3517		if (rc)
3518			goto error;
3519	}
3520
3521	if (file) {
3522		/* read access is always possible with a mapping */
3523		u32 av = FILE__READ;
3524
3525		/* write access only matters if the mapping is shared */
3526		if (shared && (prot & PROT_WRITE))
3527			av |= FILE__WRITE;
3528
3529		if (prot & PROT_EXEC)
3530			av |= FILE__EXECUTE;
3531
3532		return file_has_perm(cred, file, av);
3533	}
3534
3535error:
3536	return rc;
3537}
3538
3539static int selinux_mmap_addr(unsigned long addr)
3540{
3541	int rc = 0;
3542
3543	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3544		u32 sid = current_sid();
3545		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3546				  MEMPROTECT__MMAP_ZERO, NULL);
3547	}
3548
3549	return rc;
3550}
3551
3552static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3553			     unsigned long prot, unsigned long flags)
3554{
3555	if (selinux_checkreqprot)
 
 
 
 
 
 
 
 
 
 
 
 
3556		prot = reqprot;
3557
3558	return file_map_prot_check(file, prot,
3559				   (flags & MAP_TYPE) == MAP_SHARED);
3560}
3561
3562static int selinux_file_mprotect(struct vm_area_struct *vma,
3563				 unsigned long reqprot,
3564				 unsigned long prot)
3565{
3566	const struct cred *cred = current_cred();
 
3567
3568	if (selinux_checkreqprot)
3569		prot = reqprot;
3570
3571	if (default_noexec &&
3572	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3573		int rc = 0;
3574		if (vma->vm_start >= vma->vm_mm->start_brk &&
3575		    vma->vm_end <= vma->vm_mm->brk) {
3576			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3577		} else if (!vma->vm_file &&
3578			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3579			     vma->vm_end >= vma->vm_mm->start_stack) ||
3580			    vma_is_stack_for_current(vma))) {
3581			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
3582		} else if (vma->vm_file && vma->anon_vma) {
3583			/*
3584			 * We are making executable a file mapping that has
3585			 * had some COW done. Since pages might have been
3586			 * written, check ability to execute the possibly
3587			 * modified content.  This typically should only
3588			 * occur for text relocations.
3589			 */
3590			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3591		}
3592		if (rc)
3593			return rc;
3594	}
3595
3596	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3597}
3598
3599static int selinux_file_lock(struct file *file, unsigned int cmd)
3600{
3601	const struct cred *cred = current_cred();
3602
3603	return file_has_perm(cred, file, FILE__LOCK);
3604}
3605
3606static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3607			      unsigned long arg)
3608{
3609	const struct cred *cred = current_cred();
3610	int err = 0;
3611
3612	switch (cmd) {
3613	case F_SETFL:
3614		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3615			err = file_has_perm(cred, file, FILE__WRITE);
3616			break;
3617		}
3618		/* fall through */
3619	case F_SETOWN:
3620	case F_SETSIG:
3621	case F_GETFL:
3622	case F_GETOWN:
3623	case F_GETSIG:
3624	case F_GETOWNER_UIDS:
3625		/* Just check FD__USE permission */
3626		err = file_has_perm(cred, file, 0);
3627		break;
3628	case F_GETLK:
3629	case F_SETLK:
3630	case F_SETLKW:
3631	case F_OFD_GETLK:
3632	case F_OFD_SETLK:
3633	case F_OFD_SETLKW:
3634#if BITS_PER_LONG == 32
3635	case F_GETLK64:
3636	case F_SETLK64:
3637	case F_SETLKW64:
3638#endif
3639		err = file_has_perm(cred, file, FILE__LOCK);
3640		break;
3641	}
3642
3643	return err;
3644}
3645
3646static void selinux_file_set_fowner(struct file *file)
3647{
3648	struct file_security_struct *fsec;
3649
3650	fsec = file->f_security;
3651	fsec->fown_sid = current_sid();
3652}
3653
3654static int selinux_file_send_sigiotask(struct task_struct *tsk,
3655				       struct fown_struct *fown, int signum)
3656{
3657	struct file *file;
3658	u32 sid = task_sid(tsk);
3659	u32 perm;
3660	struct file_security_struct *fsec;
3661
3662	/* struct fown_struct is never outside the context of a struct file */
3663	file = container_of(fown, struct file, f_owner);
3664
3665	fsec = file->f_security;
3666
3667	if (!signum)
3668		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3669	else
3670		perm = signal_to_av(signum);
3671
3672	return avc_has_perm(fsec->fown_sid, sid,
 
3673			    SECCLASS_PROCESS, perm, NULL);
3674}
3675
3676static int selinux_file_receive(struct file *file)
3677{
3678	const struct cred *cred = current_cred();
3679
3680	return file_has_perm(cred, file, file_to_av(file));
3681}
3682
3683static int selinux_file_open(struct file *file, const struct cred *cred)
3684{
3685	struct file_security_struct *fsec;
3686	struct inode_security_struct *isec;
3687
3688	fsec = file->f_security;
3689	isec = inode_security(file_inode(file));
3690	/*
3691	 * Save inode label and policy sequence number
3692	 * at open-time so that selinux_file_permission
3693	 * can determine whether revalidation is necessary.
3694	 * Task label is already saved in the file security
3695	 * struct as its SID.
3696	 */
3697	fsec->isid = isec->sid;
3698	fsec->pseqno = avc_policy_seqno();
3699	/*
3700	 * Since the inode label or policy seqno may have changed
3701	 * between the selinux_inode_permission check and the saving
3702	 * of state above, recheck that access is still permitted.
3703	 * Otherwise, access might never be revalidated against the
3704	 * new inode label or new policy.
3705	 * This check is not redundant - do not remove.
3706	 */
3707	return file_path_has_perm(cred, file, open_file_to_av(file));
3708}
3709
3710/* task security operations */
3711
3712static int selinux_task_create(unsigned long clone_flags)
 
3713{
3714	return current_has_perm(current, PROCESS__FORK);
3715}
3716
3717/*
3718 * allocate the SELinux part of blank credentials
3719 */
3720static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3721{
3722	struct task_security_struct *tsec;
3723
3724	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3725	if (!tsec)
3726		return -ENOMEM;
3727
3728	cred->security = tsec;
3729	return 0;
3730}
3731
3732/*
3733 * detach and free the LSM part of a set of credentials
3734 */
3735static void selinux_cred_free(struct cred *cred)
3736{
3737	struct task_security_struct *tsec = cred->security;
3738
3739	/*
3740	 * cred->security == NULL if security_cred_alloc_blank() or
3741	 * security_prepare_creds() returned an error.
3742	 */
3743	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3744	cred->security = (void *) 0x7UL;
3745	kfree(tsec);
3746}
3747
3748/*
3749 * prepare a new set of credentials for modification
3750 */
3751static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3752				gfp_t gfp)
3753{
3754	const struct task_security_struct *old_tsec;
3755	struct task_security_struct *tsec;
3756
3757	old_tsec = old->security;
3758
3759	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3760	if (!tsec)
3761		return -ENOMEM;
3762
3763	new->security = tsec;
3764	return 0;
3765}
3766
3767/*
3768 * transfer the SELinux data to a blank set of creds
3769 */
3770static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3771{
3772	const struct task_security_struct *old_tsec = old->security;
3773	struct task_security_struct *tsec = new->security;
3774
3775	*tsec = *old_tsec;
3776}
3777
 
 
 
 
 
3778/*
3779 * set the security data for a kernel service
3780 * - all the creation contexts are set to unlabelled
3781 */
3782static int selinux_kernel_act_as(struct cred *new, u32 secid)
3783{
3784	struct task_security_struct *tsec = new->security;
3785	u32 sid = current_sid();
3786	int ret;
3787
3788	ret = avc_has_perm(sid, secid,
 
3789			   SECCLASS_KERNEL_SERVICE,
3790			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3791			   NULL);
3792	if (ret == 0) {
3793		tsec->sid = secid;
3794		tsec->create_sid = 0;
3795		tsec->keycreate_sid = 0;
3796		tsec->sockcreate_sid = 0;
3797	}
3798	return ret;
3799}
3800
3801/*
3802 * set the file creation context in a security record to the same as the
3803 * objective context of the specified inode
3804 */
3805static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3806{
3807	struct inode_security_struct *isec = inode_security(inode);
3808	struct task_security_struct *tsec = new->security;
3809	u32 sid = current_sid();
3810	int ret;
3811
3812	ret = avc_has_perm(sid, isec->sid,
 
3813			   SECCLASS_KERNEL_SERVICE,
3814			   KERNEL_SERVICE__CREATE_FILES_AS,
3815			   NULL);
3816
3817	if (ret == 0)
3818		tsec->create_sid = isec->sid;
3819	return ret;
3820}
3821
3822static int selinux_kernel_module_request(char *kmod_name)
3823{
3824	u32 sid;
3825	struct common_audit_data ad;
3826
3827	sid = task_sid(current);
3828
3829	ad.type = LSM_AUDIT_DATA_KMOD;
3830	ad.u.kmod_name = kmod_name;
3831
3832	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3833			    SYSTEM__MODULE_REQUEST, &ad);
3834}
3835
3836static int selinux_kernel_module_from_file(struct file *file)
3837{
3838	struct common_audit_data ad;
3839	struct inode_security_struct *isec;
3840	struct file_security_struct *fsec;
3841	u32 sid = current_sid();
3842	int rc;
3843
3844	/* init_module */
3845	if (file == NULL)
3846		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
 
3847					SYSTEM__MODULE_LOAD, NULL);
3848
3849	/* finit_module */
3850
3851	ad.type = LSM_AUDIT_DATA_FILE;
3852	ad.u.file = file;
3853
3854	fsec = file->f_security;
3855	if (sid != fsec->sid) {
3856		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
 
3857		if (rc)
3858			return rc;
3859	}
3860
3861	isec = inode_security(file_inode(file));
3862	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
 
3863				SYSTEM__MODULE_LOAD, &ad);
3864}
3865
3866static int selinux_kernel_read_file(struct file *file,
3867				    enum kernel_read_file_id id)
 
3868{
3869	int rc = 0;
3870
3871	switch (id) {
3872	case READING_MODULE:
3873		rc = selinux_kernel_module_from_file(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3874		break;
3875	default:
3876		break;
3877	}
3878
3879	return rc;
3880}
3881
3882static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3883{
3884	return current_has_perm(p, PROCESS__SETPGID);
 
 
3885}
3886
3887static int selinux_task_getpgid(struct task_struct *p)
3888{
3889	return current_has_perm(p, PROCESS__GETPGID);
 
 
3890}
3891
3892static int selinux_task_getsid(struct task_struct *p)
3893{
3894	return current_has_perm(p, PROCESS__GETSESSION);
 
 
 
 
 
 
 
3895}
3896
3897static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3898{
3899	*secid = task_sid(p);
3900}
3901
3902static int selinux_task_setnice(struct task_struct *p, int nice)
3903{
3904	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3905}
3906
3907static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3908{
3909	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3910}
3911
3912static int selinux_task_getioprio(struct task_struct *p)
3913{
3914	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3915}
3916
3917static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3918		struct rlimit *new_rlim)
3919{
3920	struct rlimit *old_rlim = p->signal->rlim + resource;
3921
3922	/* Control the ability to change the hard limit (whether
3923	   lowering or raising it), so that the hard limit can
3924	   later be used as a safe reset point for the soft limit
3925	   upon context transitions.  See selinux_bprm_committing_creds. */
3926	if (old_rlim->rlim_max != new_rlim->rlim_max)
3927		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3928
3929	return 0;
3930}
3931
3932static int selinux_task_setscheduler(struct task_struct *p)
3933{
3934	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3935}
3936
3937static int selinux_task_getscheduler(struct task_struct *p)
3938{
3939	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3940}
3941
3942static int selinux_task_movememory(struct task_struct *p)
3943{
3944	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3945}
3946
3947static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3948				int sig, u32 secid)
3949{
 
3950	u32 perm;
3951	int rc;
3952
3953	if (!sig)
3954		perm = PROCESS__SIGNULL; /* null signal; existence test */
3955	else
3956		perm = signal_to_av(sig);
3957	if (secid)
3958		rc = avc_has_perm(secid, task_sid(p),
3959				  SECCLASS_PROCESS, perm, NULL);
3960	else
3961		rc = current_has_perm(p, perm);
3962	return rc;
3963}
3964
3965static int selinux_task_wait(struct task_struct *p)
3966{
3967	return task_has_perm(p, current, PROCESS__SIGCHLD);
3968}
3969
3970static void selinux_task_to_inode(struct task_struct *p,
3971				  struct inode *inode)
3972{
3973	struct inode_security_struct *isec = inode->i_security;
3974	u32 sid = task_sid(p);
3975
3976	spin_lock(&isec->lock);
3977	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3978	isec->sid = sid;
3979	isec->initialized = LABEL_INITIALIZED;
3980	spin_unlock(&isec->lock);
3981}
3982
3983/* Returns error only if unable to parse addresses */
3984static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3985			struct common_audit_data *ad, u8 *proto)
3986{
3987	int offset, ihlen, ret = -EINVAL;
3988	struct iphdr _iph, *ih;
3989
3990	offset = skb_network_offset(skb);
3991	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3992	if (ih == NULL)
3993		goto out;
3994
3995	ihlen = ih->ihl * 4;
3996	if (ihlen < sizeof(_iph))
3997		goto out;
3998
3999	ad->u.net->v4info.saddr = ih->saddr;
4000	ad->u.net->v4info.daddr = ih->daddr;
4001	ret = 0;
4002
4003	if (proto)
4004		*proto = ih->protocol;
4005
4006	switch (ih->protocol) {
4007	case IPPROTO_TCP: {
4008		struct tcphdr _tcph, *th;
4009
4010		if (ntohs(ih->frag_off) & IP_OFFSET)
4011			break;
4012
4013		offset += ihlen;
4014		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4015		if (th == NULL)
4016			break;
4017
4018		ad->u.net->sport = th->source;
4019		ad->u.net->dport = th->dest;
4020		break;
4021	}
4022
4023	case IPPROTO_UDP: {
4024		struct udphdr _udph, *uh;
4025
4026		if (ntohs(ih->frag_off) & IP_OFFSET)
4027			break;
4028
4029		offset += ihlen;
4030		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4031		if (uh == NULL)
4032			break;
4033
4034		ad->u.net->sport = uh->source;
4035		ad->u.net->dport = uh->dest;
4036		break;
4037	}
4038
4039	case IPPROTO_DCCP: {
4040		struct dccp_hdr _dccph, *dh;
4041
4042		if (ntohs(ih->frag_off) & IP_OFFSET)
4043			break;
4044
4045		offset += ihlen;
4046		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4047		if (dh == NULL)
4048			break;
4049
4050		ad->u.net->sport = dh->dccph_sport;
4051		ad->u.net->dport = dh->dccph_dport;
4052		break;
4053	}
4054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4055	default:
4056		break;
4057	}
4058out:
4059	return ret;
4060}
4061
4062#if IS_ENABLED(CONFIG_IPV6)
4063
4064/* Returns error only if unable to parse addresses */
4065static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4066			struct common_audit_data *ad, u8 *proto)
4067{
4068	u8 nexthdr;
4069	int ret = -EINVAL, offset;
4070	struct ipv6hdr _ipv6h, *ip6;
4071	__be16 frag_off;
4072
4073	offset = skb_network_offset(skb);
4074	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4075	if (ip6 == NULL)
4076		goto out;
4077
4078	ad->u.net->v6info.saddr = ip6->saddr;
4079	ad->u.net->v6info.daddr = ip6->daddr;
4080	ret = 0;
4081
4082	nexthdr = ip6->nexthdr;
4083	offset += sizeof(_ipv6h);
4084	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4085	if (offset < 0)
4086		goto out;
4087
4088	if (proto)
4089		*proto = nexthdr;
4090
4091	switch (nexthdr) {
4092	case IPPROTO_TCP: {
4093		struct tcphdr _tcph, *th;
4094
4095		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4096		if (th == NULL)
4097			break;
4098
4099		ad->u.net->sport = th->source;
4100		ad->u.net->dport = th->dest;
4101		break;
4102	}
4103
4104	case IPPROTO_UDP: {
4105		struct udphdr _udph, *uh;
4106
4107		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4108		if (uh == NULL)
4109			break;
4110
4111		ad->u.net->sport = uh->source;
4112		ad->u.net->dport = uh->dest;
4113		break;
4114	}
4115
4116	case IPPROTO_DCCP: {
4117		struct dccp_hdr _dccph, *dh;
4118
4119		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4120		if (dh == NULL)
4121			break;
4122
4123		ad->u.net->sport = dh->dccph_sport;
4124		ad->u.net->dport = dh->dccph_dport;
4125		break;
4126	}
4127
 
 
 
 
 
 
 
 
 
 
 
 
 
4128	/* includes fragments */
4129	default:
4130		break;
4131	}
4132out:
4133	return ret;
4134}
4135
4136#endif /* IPV6 */
4137
4138static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4139			     char **_addrp, int src, u8 *proto)
4140{
4141	char *addrp;
4142	int ret;
4143
4144	switch (ad->u.net->family) {
4145	case PF_INET:
4146		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4147		if (ret)
4148			goto parse_error;
4149		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4150				       &ad->u.net->v4info.daddr);
4151		goto okay;
4152
4153#if IS_ENABLED(CONFIG_IPV6)
4154	case PF_INET6:
4155		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4156		if (ret)
4157			goto parse_error;
4158		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4159				       &ad->u.net->v6info.daddr);
4160		goto okay;
4161#endif	/* IPV6 */
4162	default:
4163		addrp = NULL;
4164		goto okay;
4165	}
4166
4167parse_error:
4168	printk(KERN_WARNING
4169	       "SELinux: failure in selinux_parse_skb(),"
4170	       " unable to parse packet\n");
4171	return ret;
4172
4173okay:
4174	if (_addrp)
4175		*_addrp = addrp;
4176	return 0;
4177}
4178
4179/**
4180 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4181 * @skb: the packet
4182 * @family: protocol family
4183 * @sid: the packet's peer label SID
4184 *
4185 * Description:
4186 * Check the various different forms of network peer labeling and determine
4187 * the peer label/SID for the packet; most of the magic actually occurs in
4188 * the security server function security_net_peersid_cmp().  The function
4189 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4190 * or -EACCES if @sid is invalid due to inconsistencies with the different
4191 * peer labels.
4192 *
4193 */
4194static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4195{
4196	int err;
4197	u32 xfrm_sid;
4198	u32 nlbl_sid;
4199	u32 nlbl_type;
4200
4201	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4202	if (unlikely(err))
4203		return -EACCES;
4204	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4205	if (unlikely(err))
4206		return -EACCES;
4207
4208	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
4209	if (unlikely(err)) {
4210		printk(KERN_WARNING
4211		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4212		       " unable to determine packet's peer label\n");
4213		return -EACCES;
4214	}
4215
4216	return 0;
4217}
4218
4219/**
4220 * selinux_conn_sid - Determine the child socket label for a connection
4221 * @sk_sid: the parent socket's SID
4222 * @skb_sid: the packet's SID
4223 * @conn_sid: the resulting connection SID
4224 *
4225 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4226 * combined with the MLS information from @skb_sid in order to create
4227 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4228 * of @sk_sid.  Returns zero on success, negative values on failure.
4229 *
4230 */
4231static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4232{
4233	int err = 0;
4234
4235	if (skb_sid != SECSID_NULL)
4236		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
 
4237	else
4238		*conn_sid = sk_sid;
4239
4240	return err;
4241}
4242
4243/* socket security operations */
4244
4245static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4246				 u16 secclass, u32 *socksid)
4247{
4248	if (tsec->sockcreate_sid > SECSID_NULL) {
4249		*socksid = tsec->sockcreate_sid;
4250		return 0;
4251	}
4252
4253	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4254				       socksid);
4255}
4256
4257static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4258{
4259	struct sk_security_struct *sksec = sk->sk_security;
4260	struct common_audit_data ad;
4261	struct lsm_network_audit net = {0,};
4262	u32 tsid = task_sid(task);
4263
4264	if (sksec->sid == SECINITSID_KERNEL)
4265		return 0;
4266
4267	ad.type = LSM_AUDIT_DATA_NET;
4268	ad.u.net = &net;
4269	ad.u.net->sk = sk;
4270
4271	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
4272}
4273
4274static int selinux_socket_create(int family, int type,
4275				 int protocol, int kern)
4276{
4277	const struct task_security_struct *tsec = current_security();
4278	u32 newsid;
4279	u16 secclass;
4280	int rc;
4281
4282	if (kern)
4283		return 0;
4284
4285	secclass = socket_type_to_security_class(family, type, protocol);
4286	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4287	if (rc)
4288		return rc;
4289
4290	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
4291}
4292
4293static int selinux_socket_post_create(struct socket *sock, int family,
4294				      int type, int protocol, int kern)
4295{
4296	const struct task_security_struct *tsec = current_security();
4297	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4298	struct sk_security_struct *sksec;
4299	u16 sclass = socket_type_to_security_class(family, type, protocol);
4300	u32 sid = SECINITSID_KERNEL;
4301	int err = 0;
4302
4303	if (!kern) {
4304		err = socket_sockcreate_sid(tsec, sclass, &sid);
4305		if (err)
4306			return err;
4307	}
4308
4309	isec->sclass = sclass;
4310	isec->sid = sid;
4311	isec->initialized = LABEL_INITIALIZED;
4312
4313	if (sock->sk) {
4314		sksec = sock->sk->sk_security;
4315		sksec->sclass = sclass;
4316		sksec->sid = sid;
 
 
 
 
4317		err = selinux_netlbl_socket_post_create(sock->sk, family);
4318	}
4319
4320	return err;
4321}
4322
 
 
 
 
 
 
 
 
 
 
 
 
4323/* Range of port numbers used to automatically bind.
4324   Need to determine whether we should perform a name_bind
4325   permission check between the socket and the port number. */
4326
4327static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4328{
4329	struct sock *sk = sock->sk;
 
4330	u16 family;
4331	int err;
4332
4333	err = sock_has_perm(current, sk, SOCKET__BIND);
4334	if (err)
4335		goto out;
4336
4337	/*
4338	 * If PF_INET or PF_INET6, check name_bind permission for the port.
4339	 * Multiple address binding for SCTP is not supported yet: we just
4340	 * check the first address now.
4341	 */
4342	family = sk->sk_family;
4343	if (family == PF_INET || family == PF_INET6) {
4344		char *addrp;
4345		struct sk_security_struct *sksec = sk->sk_security;
4346		struct common_audit_data ad;
4347		struct lsm_network_audit net = {0,};
4348		struct sockaddr_in *addr4 = NULL;
4349		struct sockaddr_in6 *addr6 = NULL;
 
4350		unsigned short snum;
4351		u32 sid, node_perm;
4352
4353		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
 
 
 
4354			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
4355			snum = ntohs(addr4->sin_port);
4356			addrp = (char *)&addr4->sin_addr.s_addr;
4357		} else {
 
 
 
4358			addr6 = (struct sockaddr_in6 *)address;
4359			snum = ntohs(addr6->sin6_port);
4360			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
4361		}
4362
 
 
 
 
 
4363		if (snum) {
4364			int low, high;
4365
4366			inet_get_local_port_range(sock_net(sk), &low, &high);
4367
4368			if (snum < max(PROT_SOCK, low) || snum > high) {
 
4369				err = sel_netport_sid(sk->sk_protocol,
4370						      snum, &sid);
4371				if (err)
4372					goto out;
4373				ad.type = LSM_AUDIT_DATA_NET;
4374				ad.u.net = &net;
4375				ad.u.net->sport = htons(snum);
4376				ad.u.net->family = family;
4377				err = avc_has_perm(sksec->sid, sid,
4378						   sksec->sclass,
4379						   SOCKET__NAME_BIND, &ad);
4380				if (err)
4381					goto out;
4382			}
4383		}
4384
4385		switch (sksec->sclass) {
4386		case SECCLASS_TCP_SOCKET:
4387			node_perm = TCP_SOCKET__NODE_BIND;
4388			break;
4389
4390		case SECCLASS_UDP_SOCKET:
4391			node_perm = UDP_SOCKET__NODE_BIND;
4392			break;
4393
4394		case SECCLASS_DCCP_SOCKET:
4395			node_perm = DCCP_SOCKET__NODE_BIND;
4396			break;
4397
 
 
 
 
4398		default:
4399			node_perm = RAWIP_SOCKET__NODE_BIND;
4400			break;
4401		}
4402
4403		err = sel_netnode_sid(addrp, family, &sid);
4404		if (err)
4405			goto out;
4406
4407		ad.type = LSM_AUDIT_DATA_NET;
4408		ad.u.net = &net;
4409		ad.u.net->sport = htons(snum);
4410		ad.u.net->family = family;
4411
4412		if (family == PF_INET)
4413			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4414		else
4415			ad.u.net->v6info.saddr = addr6->sin6_addr;
4416
4417		err = avc_has_perm(sksec->sid, sid,
 
4418				   sksec->sclass, node_perm, &ad);
4419		if (err)
4420			goto out;
4421	}
4422out:
4423	return err;
 
 
 
 
 
4424}
4425
4426static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
4427{
4428	struct sock *sk = sock->sk;
4429	struct sk_security_struct *sksec = sk->sk_security;
4430	int err;
4431
4432	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4433	if (err)
4434		return err;
 
 
 
 
 
 
 
 
4435
4436	/*
4437	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
4438	 */
4439	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4440	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
4441		struct common_audit_data ad;
4442		struct lsm_network_audit net = {0,};
4443		struct sockaddr_in *addr4 = NULL;
4444		struct sockaddr_in6 *addr6 = NULL;
4445		unsigned short snum;
4446		u32 sid, perm;
4447
4448		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
4449			addr4 = (struct sockaddr_in *)address;
4450			if (addrlen < sizeof(struct sockaddr_in))
4451				return -EINVAL;
4452			snum = ntohs(addr4->sin_port);
4453		} else {
 
4454			addr6 = (struct sockaddr_in6 *)address;
4455			if (addrlen < SIN6_LEN_RFC2133)
4456				return -EINVAL;
4457			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
4458		}
4459
4460		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4461		if (err)
4462			goto out;
4463
4464		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4465		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
4466
4467		ad.type = LSM_AUDIT_DATA_NET;
4468		ad.u.net = &net;
4469		ad.u.net->dport = htons(snum);
4470		ad.u.net->family = sk->sk_family;
4471		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4472		if (err)
4473			goto out;
4474	}
4475
4476	err = selinux_netlbl_socket_connect(sk, address);
 
 
 
 
 
 
 
 
4477
4478out:
4479	return err;
 
 
 
4480}
4481
4482static int selinux_socket_listen(struct socket *sock, int backlog)
4483{
4484	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4485}
4486
4487static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4488{
4489	int err;
4490	struct inode_security_struct *isec;
4491	struct inode_security_struct *newisec;
4492	u16 sclass;
4493	u32 sid;
4494
4495	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4496	if (err)
4497		return err;
4498
4499	isec = inode_security_novalidate(SOCK_INODE(sock));
4500	spin_lock(&isec->lock);
4501	sclass = isec->sclass;
4502	sid = isec->sid;
4503	spin_unlock(&isec->lock);
4504
4505	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4506	newisec->sclass = sclass;
4507	newisec->sid = sid;
4508	newisec->initialized = LABEL_INITIALIZED;
4509
4510	return 0;
4511}
4512
4513static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4514				  int size)
4515{
4516	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4517}
4518
4519static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4520				  int size, int flags)
4521{
4522	return sock_has_perm(current, sock->sk, SOCKET__READ);
4523}
4524
4525static int selinux_socket_getsockname(struct socket *sock)
4526{
4527	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4528}
4529
4530static int selinux_socket_getpeername(struct socket *sock)
4531{
4532	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4533}
4534
4535static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4536{
4537	int err;
4538
4539	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4540	if (err)
4541		return err;
4542
4543	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4544}
4545
4546static int selinux_socket_getsockopt(struct socket *sock, int level,
4547				     int optname)
4548{
4549	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4550}
4551
4552static int selinux_socket_shutdown(struct socket *sock, int how)
4553{
4554	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4555}
4556
4557static int selinux_socket_unix_stream_connect(struct sock *sock,
4558					      struct sock *other,
4559					      struct sock *newsk)
4560{
4561	struct sk_security_struct *sksec_sock = sock->sk_security;
4562	struct sk_security_struct *sksec_other = other->sk_security;
4563	struct sk_security_struct *sksec_new = newsk->sk_security;
4564	struct common_audit_data ad;
4565	struct lsm_network_audit net = {0,};
4566	int err;
4567
4568	ad.type = LSM_AUDIT_DATA_NET;
4569	ad.u.net = &net;
4570	ad.u.net->sk = other;
4571
4572	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4573			   sksec_other->sclass,
4574			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4575	if (err)
4576		return err;
4577
4578	/* server child socket */
4579	sksec_new->peer_sid = sksec_sock->sid;
4580	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4581				    &sksec_new->sid);
4582	if (err)
4583		return err;
4584
4585	/* connecting socket */
4586	sksec_sock->peer_sid = sksec_new->sid;
4587
4588	return 0;
4589}
4590
4591static int selinux_socket_unix_may_send(struct socket *sock,
4592					struct socket *other)
4593{
4594	struct sk_security_struct *ssec = sock->sk->sk_security;
4595	struct sk_security_struct *osec = other->sk->sk_security;
4596	struct common_audit_data ad;
4597	struct lsm_network_audit net = {0,};
4598
4599	ad.type = LSM_AUDIT_DATA_NET;
4600	ad.u.net = &net;
4601	ad.u.net->sk = other->sk;
4602
4603	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4604			    &ad);
4605}
4606
4607static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4608				    char *addrp, u16 family, u32 peer_sid,
4609				    struct common_audit_data *ad)
4610{
4611	int err;
4612	u32 if_sid;
4613	u32 node_sid;
4614
4615	err = sel_netif_sid(ns, ifindex, &if_sid);
4616	if (err)
4617		return err;
4618	err = avc_has_perm(peer_sid, if_sid,
 
4619			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4620	if (err)
4621		return err;
4622
4623	err = sel_netnode_sid(addrp, family, &node_sid);
4624	if (err)
4625		return err;
4626	return avc_has_perm(peer_sid, node_sid,
 
4627			    SECCLASS_NODE, NODE__RECVFROM, ad);
4628}
4629
4630static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4631				       u16 family)
4632{
4633	int err = 0;
4634	struct sk_security_struct *sksec = sk->sk_security;
4635	u32 sk_sid = sksec->sid;
4636	struct common_audit_data ad;
4637	struct lsm_network_audit net = {0,};
4638	char *addrp;
4639
4640	ad.type = LSM_AUDIT_DATA_NET;
4641	ad.u.net = &net;
4642	ad.u.net->netif = skb->skb_iif;
4643	ad.u.net->family = family;
4644	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4645	if (err)
4646		return err;
4647
4648	if (selinux_secmark_enabled()) {
4649		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4650				   PACKET__RECV, &ad);
4651		if (err)
4652			return err;
4653	}
4654
4655	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4656	if (err)
4657		return err;
4658	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4659
4660	return err;
4661}
4662
4663static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4664{
4665	int err;
4666	struct sk_security_struct *sksec = sk->sk_security;
4667	u16 family = sk->sk_family;
4668	u32 sk_sid = sksec->sid;
4669	struct common_audit_data ad;
4670	struct lsm_network_audit net = {0,};
4671	char *addrp;
4672	u8 secmark_active;
4673	u8 peerlbl_active;
4674
4675	if (family != PF_INET && family != PF_INET6)
4676		return 0;
4677
4678	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4679	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4680		family = PF_INET;
4681
4682	/* If any sort of compatibility mode is enabled then handoff processing
4683	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4684	 * special handling.  We do this in an attempt to keep this function
4685	 * as fast and as clean as possible. */
4686	if (!selinux_policycap_netpeer)
4687		return selinux_sock_rcv_skb_compat(sk, skb, family);
4688
4689	secmark_active = selinux_secmark_enabled();
4690	peerlbl_active = selinux_peerlbl_enabled();
4691	if (!secmark_active && !peerlbl_active)
4692		return 0;
4693
4694	ad.type = LSM_AUDIT_DATA_NET;
4695	ad.u.net = &net;
4696	ad.u.net->netif = skb->skb_iif;
4697	ad.u.net->family = family;
4698	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4699	if (err)
4700		return err;
4701
4702	if (peerlbl_active) {
4703		u32 peer_sid;
4704
4705		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4706		if (err)
4707			return err;
4708		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4709					       addrp, family, peer_sid, &ad);
4710		if (err) {
4711			selinux_netlbl_err(skb, family, err, 0);
4712			return err;
4713		}
4714		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4715				   PEER__RECV, &ad);
4716		if (err) {
4717			selinux_netlbl_err(skb, family, err, 0);
4718			return err;
4719		}
4720	}
4721
4722	if (secmark_active) {
4723		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4724				   PACKET__RECV, &ad);
4725		if (err)
4726			return err;
4727	}
4728
4729	return err;
4730}
4731
4732static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4733					    int __user *optlen, unsigned len)
4734{
4735	int err = 0;
4736	char *scontext;
4737	u32 scontext_len;
4738	struct sk_security_struct *sksec = sock->sk->sk_security;
4739	u32 peer_sid = SECSID_NULL;
4740
4741	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4742	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4743		peer_sid = sksec->peer_sid;
4744	if (peer_sid == SECSID_NULL)
4745		return -ENOPROTOOPT;
4746
4747	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4748	if (err)
4749		return err;
4750
4751	if (scontext_len > len) {
4752		err = -ERANGE;
4753		goto out_len;
4754	}
4755
4756	if (copy_to_user(optval, scontext, scontext_len))
4757		err = -EFAULT;
4758
4759out_len:
4760	if (put_user(scontext_len, optlen))
4761		err = -EFAULT;
4762	kfree(scontext);
4763	return err;
4764}
4765
4766static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4767{
4768	u32 peer_secid = SECSID_NULL;
4769	u16 family;
4770	struct inode_security_struct *isec;
4771
4772	if (skb && skb->protocol == htons(ETH_P_IP))
4773		family = PF_INET;
4774	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4775		family = PF_INET6;
4776	else if (sock)
4777		family = sock->sk->sk_family;
4778	else
4779		goto out;
4780
4781	if (sock && family == PF_UNIX) {
4782		isec = inode_security_novalidate(SOCK_INODE(sock));
4783		peer_secid = isec->sid;
4784	} else if (skb)
4785		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4786
4787out:
4788	*secid = peer_secid;
4789	if (peer_secid == SECSID_NULL)
4790		return -EINVAL;
4791	return 0;
4792}
4793
4794static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4795{
4796	struct sk_security_struct *sksec;
4797
4798	sksec = kzalloc(sizeof(*sksec), priority);
4799	if (!sksec)
4800		return -ENOMEM;
4801
4802	sksec->peer_sid = SECINITSID_UNLABELED;
4803	sksec->sid = SECINITSID_UNLABELED;
4804	sksec->sclass = SECCLASS_SOCKET;
4805	selinux_netlbl_sk_security_reset(sksec);
4806	sk->sk_security = sksec;
4807
4808	return 0;
4809}
4810
4811static void selinux_sk_free_security(struct sock *sk)
4812{
4813	struct sk_security_struct *sksec = sk->sk_security;
4814
4815	sk->sk_security = NULL;
4816	selinux_netlbl_sk_security_free(sksec);
4817	kfree(sksec);
4818}
4819
4820static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4821{
4822	struct sk_security_struct *sksec = sk->sk_security;
4823	struct sk_security_struct *newsksec = newsk->sk_security;
4824
4825	newsksec->sid = sksec->sid;
4826	newsksec->peer_sid = sksec->peer_sid;
4827	newsksec->sclass = sksec->sclass;
4828
4829	selinux_netlbl_sk_security_reset(newsksec);
4830}
4831
4832static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4833{
4834	if (!sk)
4835		*secid = SECINITSID_ANY_SOCKET;
4836	else {
4837		struct sk_security_struct *sksec = sk->sk_security;
4838
4839		*secid = sksec->sid;
4840	}
4841}
4842
4843static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4844{
4845	struct inode_security_struct *isec =
4846		inode_security_novalidate(SOCK_INODE(parent));
4847	struct sk_security_struct *sksec = sk->sk_security;
4848
4849	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4850	    sk->sk_family == PF_UNIX)
4851		isec->sid = sksec->sid;
4852	sksec->sclass = isec->sclass;
4853}
4854
4855static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4856				     struct request_sock *req)
4857{
4858	struct sk_security_struct *sksec = sk->sk_security;
4859	int err;
4860	u16 family = req->rsk_ops->family;
4861	u32 connsid;
4862	u32 peersid;
4863
4864	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4865	if (err)
4866		return err;
4867	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4868	if (err)
4869		return err;
4870	req->secid = connsid;
4871	req->peer_secid = peersid;
4872
4873	return selinux_netlbl_inet_conn_request(req, family);
4874}
4875
4876static void selinux_inet_csk_clone(struct sock *newsk,
4877				   const struct request_sock *req)
4878{
4879	struct sk_security_struct *newsksec = newsk->sk_security;
4880
4881	newsksec->sid = req->secid;
4882	newsksec->peer_sid = req->peer_secid;
4883	/* NOTE: Ideally, we should also get the isec->sid for the
4884	   new socket in sync, but we don't have the isec available yet.
4885	   So we will wait until sock_graft to do it, by which
4886	   time it will have been created and available. */
4887
4888	/* We don't need to take any sort of lock here as we are the only
4889	 * thread with access to newsksec */
4890	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4891}
4892
4893static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4894{
4895	u16 family = sk->sk_family;
4896	struct sk_security_struct *sksec = sk->sk_security;
4897
4898	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4899	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4900		family = PF_INET;
4901
4902	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4903}
4904
4905static int selinux_secmark_relabel_packet(u32 sid)
4906{
4907	const struct task_security_struct *__tsec;
4908	u32 tsid;
4909
4910	__tsec = current_security();
4911	tsid = __tsec->sid;
4912
4913	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4914}
4915
4916static void selinux_secmark_refcount_inc(void)
4917{
4918	atomic_inc(&selinux_secmark_refcount);
4919}
4920
4921static void selinux_secmark_refcount_dec(void)
4922{
4923	atomic_dec(&selinux_secmark_refcount);
4924}
4925
4926static void selinux_req_classify_flow(const struct request_sock *req,
4927				      struct flowi *fl)
4928{
4929	fl->flowi_secid = req->secid;
4930}
4931
4932static int selinux_tun_dev_alloc_security(void **security)
4933{
4934	struct tun_security_struct *tunsec;
4935
4936	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4937	if (!tunsec)
4938		return -ENOMEM;
4939	tunsec->sid = current_sid();
4940
4941	*security = tunsec;
4942	return 0;
4943}
4944
4945static void selinux_tun_dev_free_security(void *security)
4946{
4947	kfree(security);
4948}
4949
4950static int selinux_tun_dev_create(void)
4951{
4952	u32 sid = current_sid();
4953
4954	/* we aren't taking into account the "sockcreate" SID since the socket
4955	 * that is being created here is not a socket in the traditional sense,
4956	 * instead it is a private sock, accessible only to the kernel, and
4957	 * representing a wide range of network traffic spanning multiple
4958	 * connections unlike traditional sockets - check the TUN driver to
4959	 * get a better understanding of why this socket is special */
4960
4961	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4962			    NULL);
4963}
4964
4965static int selinux_tun_dev_attach_queue(void *security)
4966{
4967	struct tun_security_struct *tunsec = security;
4968
4969	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
4970			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4971}
4972
4973static int selinux_tun_dev_attach(struct sock *sk, void *security)
4974{
4975	struct tun_security_struct *tunsec = security;
4976	struct sk_security_struct *sksec = sk->sk_security;
4977
4978	/* we don't currently perform any NetLabel based labeling here and it
4979	 * isn't clear that we would want to do so anyway; while we could apply
4980	 * labeling without the support of the TUN user the resulting labeled
4981	 * traffic from the other end of the connection would almost certainly
4982	 * cause confusion to the TUN user that had no idea network labeling
4983	 * protocols were being used */
4984
4985	sksec->sid = tunsec->sid;
4986	sksec->sclass = SECCLASS_TUN_SOCKET;
4987
4988	return 0;
4989}
4990
4991static int selinux_tun_dev_open(void *security)
4992{
4993	struct tun_security_struct *tunsec = security;
4994	u32 sid = current_sid();
4995	int err;
4996
4997	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
4998			   TUN_SOCKET__RELABELFROM, NULL);
4999	if (err)
5000		return err;
5001	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
5002			   TUN_SOCKET__RELABELTO, NULL);
5003	if (err)
5004		return err;
5005	tunsec->sid = sid;
5006
5007	return 0;
5008}
5009
5010static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5011{
5012	int err = 0;
5013	u32 perm;
5014	struct nlmsghdr *nlh;
5015	struct sk_security_struct *sksec = sk->sk_security;
5016
5017	if (skb->len < NLMSG_HDRLEN) {
5018		err = -EINVAL;
5019		goto out;
5020	}
5021	nlh = nlmsg_hdr(skb);
5022
5023	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5024	if (err) {
5025		if (err == -EINVAL) {
5026			pr_warn_ratelimited("SELinux: unrecognized netlink"
5027			       " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5028			       " pig=%d comm=%s\n",
5029			       sk->sk_protocol, nlh->nlmsg_type,
5030			       secclass_map[sksec->sclass - 1].name,
5031			       task_pid_nr(current), current->comm);
5032			if (!selinux_enforcing || security_get_allow_unknown())
5033				err = 0;
5034		}
5035
5036		/* Ignore */
5037		if (err == -ENOENT)
5038			err = 0;
5039		goto out;
5040	}
5041
5042	err = sock_has_perm(current, sk, perm);
5043out:
5044	return err;
5045}
5046
5047#ifdef CONFIG_NETFILTER
5048
5049static unsigned int selinux_ip_forward(struct sk_buff *skb,
5050				       const struct net_device *indev,
5051				       u16 family)
5052{
5053	int err;
5054	char *addrp;
5055	u32 peer_sid;
5056	struct common_audit_data ad;
5057	struct lsm_network_audit net = {0,};
5058	u8 secmark_active;
5059	u8 netlbl_active;
5060	u8 peerlbl_active;
5061
5062	if (!selinux_policycap_netpeer)
5063		return NF_ACCEPT;
5064
5065	secmark_active = selinux_secmark_enabled();
5066	netlbl_active = netlbl_enabled();
5067	peerlbl_active = selinux_peerlbl_enabled();
5068	if (!secmark_active && !peerlbl_active)
5069		return NF_ACCEPT;
5070
5071	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5072		return NF_DROP;
5073
5074	ad.type = LSM_AUDIT_DATA_NET;
5075	ad.u.net = &net;
5076	ad.u.net->netif = indev->ifindex;
5077	ad.u.net->family = family;
5078	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5079		return NF_DROP;
5080
5081	if (peerlbl_active) {
5082		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5083					       addrp, family, peer_sid, &ad);
5084		if (err) {
5085			selinux_netlbl_err(skb, family, err, 1);
5086			return NF_DROP;
5087		}
5088	}
5089
5090	if (secmark_active)
5091		if (avc_has_perm(peer_sid, skb->secmark,
 
5092				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5093			return NF_DROP;
5094
5095	if (netlbl_active)
5096		/* we do this in the FORWARD path and not the POST_ROUTING
5097		 * path because we want to make sure we apply the necessary
5098		 * labeling before IPsec is applied so we can leverage AH
5099		 * protection */
5100		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5101			return NF_DROP;
5102
5103	return NF_ACCEPT;
5104}
5105
5106static unsigned int selinux_ipv4_forward(void *priv,
5107					 struct sk_buff *skb,
5108					 const struct nf_hook_state *state)
5109{
5110	return selinux_ip_forward(skb, state->in, PF_INET);
5111}
5112
5113#if IS_ENABLED(CONFIG_IPV6)
5114static unsigned int selinux_ipv6_forward(void *priv,
5115					 struct sk_buff *skb,
5116					 const struct nf_hook_state *state)
5117{
5118	return selinux_ip_forward(skb, state->in, PF_INET6);
5119}
5120#endif	/* IPV6 */
5121
5122static unsigned int selinux_ip_output(struct sk_buff *skb,
5123				      u16 family)
5124{
5125	struct sock *sk;
5126	u32 sid;
5127
5128	if (!netlbl_enabled())
5129		return NF_ACCEPT;
5130
5131	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5132	 * because we want to make sure we apply the necessary labeling
5133	 * before IPsec is applied so we can leverage AH protection */
5134	sk = skb->sk;
5135	if (sk) {
5136		struct sk_security_struct *sksec;
5137
5138		if (sk_listener(sk))
5139			/* if the socket is the listening state then this
5140			 * packet is a SYN-ACK packet which means it needs to
5141			 * be labeled based on the connection/request_sock and
5142			 * not the parent socket.  unfortunately, we can't
5143			 * lookup the request_sock yet as it isn't queued on
5144			 * the parent socket until after the SYN-ACK is sent.
5145			 * the "solution" is to simply pass the packet as-is
5146			 * as any IP option based labeling should be copied
5147			 * from the initial connection request (in the IP
5148			 * layer).  it is far from ideal, but until we get a
5149			 * security label in the packet itself this is the
5150			 * best we can do. */
5151			return NF_ACCEPT;
5152
5153		/* standard practice, label using the parent socket */
5154		sksec = sk->sk_security;
5155		sid = sksec->sid;
5156	} else
5157		sid = SECINITSID_KERNEL;
5158	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5159		return NF_DROP;
5160
5161	return NF_ACCEPT;
5162}
5163
5164static unsigned int selinux_ipv4_output(void *priv,
5165					struct sk_buff *skb,
5166					const struct nf_hook_state *state)
5167{
5168	return selinux_ip_output(skb, PF_INET);
5169}
5170
5171#if IS_ENABLED(CONFIG_IPV6)
5172static unsigned int selinux_ipv6_output(void *priv,
5173					struct sk_buff *skb,
5174					const struct nf_hook_state *state)
5175{
5176	return selinux_ip_output(skb, PF_INET6);
5177}
5178#endif	/* IPV6 */
5179
5180static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5181						int ifindex,
5182						u16 family)
5183{
5184	struct sock *sk = skb_to_full_sk(skb);
5185	struct sk_security_struct *sksec;
5186	struct common_audit_data ad;
5187	struct lsm_network_audit net = {0,};
5188	char *addrp;
5189	u8 proto;
5190
5191	if (sk == NULL)
5192		return NF_ACCEPT;
5193	sksec = sk->sk_security;
5194
5195	ad.type = LSM_AUDIT_DATA_NET;
5196	ad.u.net = &net;
5197	ad.u.net->netif = ifindex;
5198	ad.u.net->family = family;
5199	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5200		return NF_DROP;
5201
5202	if (selinux_secmark_enabled())
5203		if (avc_has_perm(sksec->sid, skb->secmark,
 
5204				 SECCLASS_PACKET, PACKET__SEND, &ad))
5205			return NF_DROP_ERR(-ECONNREFUSED);
5206
5207	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5208		return NF_DROP_ERR(-ECONNREFUSED);
5209
5210	return NF_ACCEPT;
5211}
5212
5213static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5214					 const struct net_device *outdev,
5215					 u16 family)
5216{
5217	u32 secmark_perm;
5218	u32 peer_sid;
5219	int ifindex = outdev->ifindex;
5220	struct sock *sk;
5221	struct common_audit_data ad;
5222	struct lsm_network_audit net = {0,};
5223	char *addrp;
5224	u8 secmark_active;
5225	u8 peerlbl_active;
5226
5227	/* If any sort of compatibility mode is enabled then handoff processing
5228	 * to the selinux_ip_postroute_compat() function to deal with the
5229	 * special handling.  We do this in an attempt to keep this function
5230	 * as fast and as clean as possible. */
5231	if (!selinux_policycap_netpeer)
5232		return selinux_ip_postroute_compat(skb, ifindex, family);
5233
5234	secmark_active = selinux_secmark_enabled();
5235	peerlbl_active = selinux_peerlbl_enabled();
5236	if (!secmark_active && !peerlbl_active)
5237		return NF_ACCEPT;
5238
5239	sk = skb_to_full_sk(skb);
5240
5241#ifdef CONFIG_XFRM
5242	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5243	 * packet transformation so allow the packet to pass without any checks
5244	 * since we'll have another chance to perform access control checks
5245	 * when the packet is on it's final way out.
5246	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5247	 *       is NULL, in this case go ahead and apply access control.
5248	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5249	 *       TCP listening state we cannot wait until the XFRM processing
5250	 *       is done as we will miss out on the SA label if we do;
5251	 *       unfortunately, this means more work, but it is only once per
5252	 *       connection. */
5253	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5254	    !(sk && sk_listener(sk)))
5255		return NF_ACCEPT;
5256#endif
5257
5258	if (sk == NULL) {
5259		/* Without an associated socket the packet is either coming
5260		 * from the kernel or it is being forwarded; check the packet
5261		 * to determine which and if the packet is being forwarded
5262		 * query the packet directly to determine the security label. */
5263		if (skb->skb_iif) {
5264			secmark_perm = PACKET__FORWARD_OUT;
5265			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5266				return NF_DROP;
5267		} else {
5268			secmark_perm = PACKET__SEND;
5269			peer_sid = SECINITSID_KERNEL;
5270		}
5271	} else if (sk_listener(sk)) {
5272		/* Locally generated packet but the associated socket is in the
5273		 * listening state which means this is a SYN-ACK packet.  In
5274		 * this particular case the correct security label is assigned
5275		 * to the connection/request_sock but unfortunately we can't
5276		 * query the request_sock as it isn't queued on the parent
5277		 * socket until after the SYN-ACK packet is sent; the only
5278		 * viable choice is to regenerate the label like we do in
5279		 * selinux_inet_conn_request().  See also selinux_ip_output()
5280		 * for similar problems. */
5281		u32 skb_sid;
5282		struct sk_security_struct *sksec;
5283
5284		sksec = sk->sk_security;
5285		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5286			return NF_DROP;
5287		/* At this point, if the returned skb peerlbl is SECSID_NULL
5288		 * and the packet has been through at least one XFRM
5289		 * transformation then we must be dealing with the "final"
5290		 * form of labeled IPsec packet; since we've already applied
5291		 * all of our access controls on this packet we can safely
5292		 * pass the packet. */
5293		if (skb_sid == SECSID_NULL) {
5294			switch (family) {
5295			case PF_INET:
5296				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5297					return NF_ACCEPT;
5298				break;
5299			case PF_INET6:
5300				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5301					return NF_ACCEPT;
5302				break;
5303			default:
5304				return NF_DROP_ERR(-ECONNREFUSED);
5305			}
5306		}
5307		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5308			return NF_DROP;
5309		secmark_perm = PACKET__SEND;
5310	} else {
5311		/* Locally generated packet, fetch the security label from the
5312		 * associated socket. */
5313		struct sk_security_struct *sksec = sk->sk_security;
5314		peer_sid = sksec->sid;
5315		secmark_perm = PACKET__SEND;
5316	}
5317
5318	ad.type = LSM_AUDIT_DATA_NET;
5319	ad.u.net = &net;
5320	ad.u.net->netif = ifindex;
5321	ad.u.net->family = family;
5322	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5323		return NF_DROP;
5324
5325	if (secmark_active)
5326		if (avc_has_perm(peer_sid, skb->secmark,
 
5327				 SECCLASS_PACKET, secmark_perm, &ad))
5328			return NF_DROP_ERR(-ECONNREFUSED);
5329
5330	if (peerlbl_active) {
5331		u32 if_sid;
5332		u32 node_sid;
5333
5334		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5335			return NF_DROP;
5336		if (avc_has_perm(peer_sid, if_sid,
 
5337				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5338			return NF_DROP_ERR(-ECONNREFUSED);
5339
5340		if (sel_netnode_sid(addrp, family, &node_sid))
5341			return NF_DROP;
5342		if (avc_has_perm(peer_sid, node_sid,
 
5343				 SECCLASS_NODE, NODE__SENDTO, &ad))
5344			return NF_DROP_ERR(-ECONNREFUSED);
5345	}
5346
5347	return NF_ACCEPT;
5348}
5349
5350static unsigned int selinux_ipv4_postroute(void *priv,
5351					   struct sk_buff *skb,
5352					   const struct nf_hook_state *state)
5353{
5354	return selinux_ip_postroute(skb, state->out, PF_INET);
5355}
5356
5357#if IS_ENABLED(CONFIG_IPV6)
5358static unsigned int selinux_ipv6_postroute(void *priv,
5359					   struct sk_buff *skb,
5360					   const struct nf_hook_state *state)
5361{
5362	return selinux_ip_postroute(skb, state->out, PF_INET6);
5363}
5364#endif	/* IPV6 */
5365
5366#endif	/* CONFIG_NETFILTER */
5367
5368static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5369{
5370	return selinux_nlmsg_perm(sk, skb);
5371}
 
 
 
 
 
 
5372
5373static int ipc_alloc_security(struct task_struct *task,
5374			      struct kern_ipc_perm *perm,
5375			      u16 sclass)
5376{
5377	struct ipc_security_struct *isec;
5378	u32 sid;
5379
5380	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5381	if (!isec)
5382		return -ENOMEM;
 
 
 
 
 
5383
5384	sid = task_sid(task);
5385	isec->sclass = sclass;
5386	isec->sid = sid;
5387	perm->security = isec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5388
5389	return 0;
5390}
 
 
 
 
 
5391
5392static void ipc_free_security(struct kern_ipc_perm *perm)
5393{
5394	struct ipc_security_struct *isec = perm->security;
5395	perm->security = NULL;
5396	kfree(isec);
5397}
5398
5399static int msg_msg_alloc_security(struct msg_msg *msg)
5400{
5401	struct msg_security_struct *msec;
5402
5403	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5404	if (!msec)
5405		return -ENOMEM;
5406
5407	msec->sid = SECINITSID_UNLABELED;
5408	msg->security = msec;
5409
5410	return 0;
5411}
5412
5413static void msg_msg_free_security(struct msg_msg *msg)
5414{
5415	struct msg_security_struct *msec = msg->security;
5416
5417	msg->security = NULL;
5418	kfree(msec);
5419}
5420
5421static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5422			u32 perms)
5423{
5424	struct ipc_security_struct *isec;
5425	struct common_audit_data ad;
5426	u32 sid = current_sid();
5427
5428	isec = ipc_perms->security;
5429
5430	ad.type = LSM_AUDIT_DATA_IPC;
5431	ad.u.ipc_id = ipc_perms->key;
5432
5433	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
5434}
5435
5436static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5437{
5438	return msg_msg_alloc_security(msg);
5439}
 
 
5440
5441static void selinux_msg_msg_free_security(struct msg_msg *msg)
5442{
5443	msg_msg_free_security(msg);
5444}
5445
5446/* message queue security operations */
5447static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5448{
5449	struct ipc_security_struct *isec;
5450	struct common_audit_data ad;
5451	u32 sid = current_sid();
5452	int rc;
5453
5454	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5455	if (rc)
5456		return rc;
5457
5458	isec = msq->q_perm.security;
5459
5460	ad.type = LSM_AUDIT_DATA_IPC;
5461	ad.u.ipc_id = msq->q_perm.key;
5462
5463	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5464			  MSGQ__CREATE, &ad);
5465	if (rc) {
5466		ipc_free_security(&msq->q_perm);
5467		return rc;
5468	}
5469	return 0;
5470}
5471
5472static void selinux_msg_queue_free_security(struct msg_queue *msq)
5473{
5474	ipc_free_security(&msq->q_perm);
5475}
5476
5477static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5478{
5479	struct ipc_security_struct *isec;
5480	struct common_audit_data ad;
5481	u32 sid = current_sid();
5482
5483	isec = msq->q_perm.security;
5484
5485	ad.type = LSM_AUDIT_DATA_IPC;
5486	ad.u.ipc_id = msq->q_perm.key;
5487
5488	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5489			    MSGQ__ASSOCIATE, &ad);
5490}
5491
5492static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5493{
5494	int err;
5495	int perms;
5496
5497	switch (cmd) {
5498	case IPC_INFO:
5499	case MSG_INFO:
5500		/* No specific object, just general system-wide information. */
5501		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5502	case IPC_STAT:
5503	case MSG_STAT:
 
5504		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5505		break;
5506	case IPC_SET:
5507		perms = MSGQ__SETATTR;
5508		break;
5509	case IPC_RMID:
5510		perms = MSGQ__DESTROY;
5511		break;
5512	default:
5513		return 0;
5514	}
5515
5516	err = ipc_has_perm(&msq->q_perm, perms);
5517	return err;
5518}
5519
5520static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5521{
5522	struct ipc_security_struct *isec;
5523	struct msg_security_struct *msec;
5524	struct common_audit_data ad;
5525	u32 sid = current_sid();
5526	int rc;
5527
5528	isec = msq->q_perm.security;
5529	msec = msg->security;
5530
5531	/*
5532	 * First time through, need to assign label to the message
5533	 */
5534	if (msec->sid == SECINITSID_UNLABELED) {
5535		/*
5536		 * Compute new sid based on current process and
5537		 * message queue this message will be stored in
5538		 */
5539		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5540					     NULL, &msec->sid);
5541		if (rc)
5542			return rc;
5543	}
5544
5545	ad.type = LSM_AUDIT_DATA_IPC;
5546	ad.u.ipc_id = msq->q_perm.key;
5547
5548	/* Can this process write to the queue? */
5549	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5550			  MSGQ__WRITE, &ad);
5551	if (!rc)
5552		/* Can this process send the message */
5553		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
5554				  MSG__SEND, &ad);
5555	if (!rc)
5556		/* Can the message be put in the queue? */
5557		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
5558				  MSGQ__ENQUEUE, &ad);
5559
5560	return rc;
5561}
5562
5563static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5564				    struct task_struct *target,
5565				    long type, int mode)
5566{
5567	struct ipc_security_struct *isec;
5568	struct msg_security_struct *msec;
5569	struct common_audit_data ad;
5570	u32 sid = task_sid(target);
5571	int rc;
5572
5573	isec = msq->q_perm.security;
5574	msec = msg->security;
5575
5576	ad.type = LSM_AUDIT_DATA_IPC;
5577	ad.u.ipc_id = msq->q_perm.key;
5578
5579	rc = avc_has_perm(sid, isec->sid,
 
5580			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5581	if (!rc)
5582		rc = avc_has_perm(sid, msec->sid,
 
5583				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5584	return rc;
5585}
5586
5587/* Shared Memory security operations */
5588static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5589{
5590	struct ipc_security_struct *isec;
5591	struct common_audit_data ad;
5592	u32 sid = current_sid();
5593	int rc;
5594
5595	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5596	if (rc)
5597		return rc;
5598
5599	isec = shp->shm_perm.security;
5600
5601	ad.type = LSM_AUDIT_DATA_IPC;
5602	ad.u.ipc_id = shp->shm_perm.key;
5603
5604	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5605			  SHM__CREATE, &ad);
5606	if (rc) {
5607		ipc_free_security(&shp->shm_perm);
5608		return rc;
5609	}
5610	return 0;
5611}
5612
5613static void selinux_shm_free_security(struct shmid_kernel *shp)
5614{
5615	ipc_free_security(&shp->shm_perm);
5616}
5617
5618static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5619{
5620	struct ipc_security_struct *isec;
5621	struct common_audit_data ad;
5622	u32 sid = current_sid();
5623
5624	isec = shp->shm_perm.security;
5625
5626	ad.type = LSM_AUDIT_DATA_IPC;
5627	ad.u.ipc_id = shp->shm_perm.key;
5628
5629	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5630			    SHM__ASSOCIATE, &ad);
5631}
5632
5633/* Note, at this point, shp is locked down */
5634static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5635{
5636	int perms;
5637	int err;
5638
5639	switch (cmd) {
5640	case IPC_INFO:
5641	case SHM_INFO:
5642		/* No specific object, just general system-wide information. */
5643		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5644	case IPC_STAT:
5645	case SHM_STAT:
 
5646		perms = SHM__GETATTR | SHM__ASSOCIATE;
5647		break;
5648	case IPC_SET:
5649		perms = SHM__SETATTR;
5650		break;
5651	case SHM_LOCK:
5652	case SHM_UNLOCK:
5653		perms = SHM__LOCK;
5654		break;
5655	case IPC_RMID:
5656		perms = SHM__DESTROY;
5657		break;
5658	default:
5659		return 0;
5660	}
5661
5662	err = ipc_has_perm(&shp->shm_perm, perms);
5663	return err;
5664}
5665
5666static int selinux_shm_shmat(struct shmid_kernel *shp,
5667			     char __user *shmaddr, int shmflg)
5668{
5669	u32 perms;
5670
5671	if (shmflg & SHM_RDONLY)
5672		perms = SHM__READ;
5673	else
5674		perms = SHM__READ | SHM__WRITE;
5675
5676	return ipc_has_perm(&shp->shm_perm, perms);
5677}
5678
5679/* Semaphore security operations */
5680static int selinux_sem_alloc_security(struct sem_array *sma)
5681{
5682	struct ipc_security_struct *isec;
5683	struct common_audit_data ad;
5684	u32 sid = current_sid();
5685	int rc;
5686
5687	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5688	if (rc)
5689		return rc;
5690
5691	isec = sma->sem_perm.security;
5692
5693	ad.type = LSM_AUDIT_DATA_IPC;
5694	ad.u.ipc_id = sma->sem_perm.key;
5695
5696	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5697			  SEM__CREATE, &ad);
5698	if (rc) {
5699		ipc_free_security(&sma->sem_perm);
5700		return rc;
5701	}
5702	return 0;
5703}
5704
5705static void selinux_sem_free_security(struct sem_array *sma)
5706{
5707	ipc_free_security(&sma->sem_perm);
5708}
5709
5710static int selinux_sem_associate(struct sem_array *sma, int semflg)
5711{
5712	struct ipc_security_struct *isec;
5713	struct common_audit_data ad;
5714	u32 sid = current_sid();
5715
5716	isec = sma->sem_perm.security;
5717
5718	ad.type = LSM_AUDIT_DATA_IPC;
5719	ad.u.ipc_id = sma->sem_perm.key;
5720
5721	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5722			    SEM__ASSOCIATE, &ad);
5723}
5724
5725/* Note, at this point, sma is locked down */
5726static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5727{
5728	int err;
5729	u32 perms;
5730
5731	switch (cmd) {
5732	case IPC_INFO:
5733	case SEM_INFO:
5734		/* No specific object, just general system-wide information. */
5735		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5736	case GETPID:
5737	case GETNCNT:
5738	case GETZCNT:
5739		perms = SEM__GETATTR;
5740		break;
5741	case GETVAL:
5742	case GETALL:
5743		perms = SEM__READ;
5744		break;
5745	case SETVAL:
5746	case SETALL:
5747		perms = SEM__WRITE;
5748		break;
5749	case IPC_RMID:
5750		perms = SEM__DESTROY;
5751		break;
5752	case IPC_SET:
5753		perms = SEM__SETATTR;
5754		break;
5755	case IPC_STAT:
5756	case SEM_STAT:
 
5757		perms = SEM__GETATTR | SEM__ASSOCIATE;
5758		break;
5759	default:
5760		return 0;
5761	}
5762
5763	err = ipc_has_perm(&sma->sem_perm, perms);
5764	return err;
5765}
5766
5767static int selinux_sem_semop(struct sem_array *sma,
5768			     struct sembuf *sops, unsigned nsops, int alter)
5769{
5770	u32 perms;
5771
5772	if (alter)
5773		perms = SEM__READ | SEM__WRITE;
5774	else
5775		perms = SEM__READ;
5776
5777	return ipc_has_perm(&sma->sem_perm, perms);
5778}
5779
5780static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5781{
5782	u32 av = 0;
5783
5784	av = 0;
5785	if (flag & S_IRUGO)
5786		av |= IPC__UNIX_READ;
5787	if (flag & S_IWUGO)
5788		av |= IPC__UNIX_WRITE;
5789
5790	if (av == 0)
5791		return 0;
5792
5793	return ipc_has_perm(ipcp, av);
5794}
5795
5796static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5797{
5798	struct ipc_security_struct *isec = ipcp->security;
5799	*secid = isec->sid;
5800}
5801
5802static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5803{
5804	if (inode)
5805		inode_doinit_with_dentry(inode, dentry);
5806}
5807
5808static int selinux_getprocattr(struct task_struct *p,
5809			       char *name, char **value)
5810{
5811	const struct task_security_struct *__tsec;
5812	u32 sid;
5813	int error;
5814	unsigned len;
5815
 
 
 
5816	if (current != p) {
5817		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5818		if (error)
5819			return error;
5820	}
5821
5822	rcu_read_lock();
5823	__tsec = __task_cred(p)->security;
5824
5825	if (!strcmp(name, "current"))
5826		sid = __tsec->sid;
5827	else if (!strcmp(name, "prev"))
5828		sid = __tsec->osid;
5829	else if (!strcmp(name, "exec"))
5830		sid = __tsec->exec_sid;
5831	else if (!strcmp(name, "fscreate"))
5832		sid = __tsec->create_sid;
5833	else if (!strcmp(name, "keycreate"))
5834		sid = __tsec->keycreate_sid;
5835	else if (!strcmp(name, "sockcreate"))
5836		sid = __tsec->sockcreate_sid;
5837	else
5838		goto invalid;
 
 
5839	rcu_read_unlock();
5840
5841	if (!sid)
5842		return 0;
5843
5844	error = security_sid_to_context(sid, value, &len);
5845	if (error)
5846		return error;
5847	return len;
5848
5849invalid:
5850	rcu_read_unlock();
5851	return -EINVAL;
5852}
5853
5854static int selinux_setprocattr(struct task_struct *p,
5855			       char *name, void *value, size_t size)
5856{
5857	struct task_security_struct *tsec;
5858	struct cred *new;
5859	u32 sid = 0, ptsid;
5860	int error;
5861	char *str = value;
5862
5863	if (current != p) {
5864		/* SELinux only allows a process to change its own
5865		   security attributes. */
5866		return -EACCES;
5867	}
5868
5869	/*
5870	 * Basic control over ability to set these attributes at all.
5871	 * current == p, but we'll pass them separately in case the
5872	 * above restriction is ever removed.
5873	 */
5874	if (!strcmp(name, "exec"))
5875		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5876	else if (!strcmp(name, "fscreate"))
5877		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5878	else if (!strcmp(name, "keycreate"))
5879		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5880	else if (!strcmp(name, "sockcreate"))
5881		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5882	else if (!strcmp(name, "current"))
5883		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5884	else
5885		error = -EINVAL;
5886	if (error)
5887		return error;
5888
5889	/* Obtain a SID for the context, if one was specified. */
5890	if (size && str[0] && str[0] != '\n') {
5891		if (str[size-1] == '\n') {
5892			str[size-1] = 0;
5893			size--;
5894		}
5895		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
 
5896		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5897			if (!capable(CAP_MAC_ADMIN)) {
5898				struct audit_buffer *ab;
5899				size_t audit_size;
5900
5901				/* We strip a nul only if it is at the end, otherwise the
5902				 * context contains a nul and we should audit that */
5903				if (str[size - 1] == '\0')
5904					audit_size = size - 1;
5905				else
5906					audit_size = size;
5907				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
5908				audit_log_format(ab, "op=fscreate invalid_context=");
5909				audit_log_n_untrustedstring(ab, value, audit_size);
5910				audit_log_end(ab);
5911
5912				return error;
5913			}
5914			error = security_context_to_sid_force(value, size,
5915							      &sid);
 
5916		}
5917		if (error)
5918			return error;
5919	}
5920
5921	new = prepare_creds();
5922	if (!new)
5923		return -ENOMEM;
5924
5925	/* Permission checking based on the specified context is
5926	   performed during the actual operation (execve,
5927	   open/mkdir/...), when we know the full context of the
5928	   operation.  See selinux_bprm_set_creds for the execve
5929	   checks and may_create for the file creation checks. The
5930	   operation will then fail if the context is not permitted. */
5931	tsec = new->security;
5932	if (!strcmp(name, "exec")) {
5933		tsec->exec_sid = sid;
5934	} else if (!strcmp(name, "fscreate")) {
5935		tsec->create_sid = sid;
5936	} else if (!strcmp(name, "keycreate")) {
5937		error = may_create_key(sid, p);
5938		if (error)
5939			goto abort_change;
 
 
 
5940		tsec->keycreate_sid = sid;
5941	} else if (!strcmp(name, "sockcreate")) {
5942		tsec->sockcreate_sid = sid;
5943	} else if (!strcmp(name, "current")) {
5944		error = -EINVAL;
5945		if (sid == 0)
5946			goto abort_change;
5947
5948		/* Only allow single threaded processes to change context */
5949		error = -EPERM;
5950		if (!current_is_single_threaded()) {
5951			error = security_bounded_transition(tsec->sid, sid);
 
5952			if (error)
5953				goto abort_change;
5954		}
5955
5956		/* Check permissions for the transition. */
5957		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5958				     PROCESS__DYNTRANSITION, NULL);
5959		if (error)
5960			goto abort_change;
5961
5962		/* Check for ptracing, and update the task SID if ok.
5963		   Otherwise, leave SID unchanged and fail. */
5964		ptsid = ptrace_parent_sid(p);
5965		if (ptsid != 0) {
5966			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
 
5967					     PROCESS__PTRACE, NULL);
5968			if (error)
5969				goto abort_change;
5970		}
5971
5972		tsec->sid = sid;
5973	} else {
5974		error = -EINVAL;
5975		goto abort_change;
5976	}
5977
5978	commit_creds(new);
5979	return size;
5980
5981abort_change:
5982	abort_creds(new);
5983	return error;
5984}
5985
5986static int selinux_ismaclabel(const char *name)
5987{
5988	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5989}
5990
5991static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5992{
5993	return security_sid_to_context(secid, secdata, seclen);
 
5994}
5995
5996static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5997{
5998	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
 
5999}
6000
6001static void selinux_release_secctx(char *secdata, u32 seclen)
6002{
6003	kfree(secdata);
6004}
6005
6006static void selinux_inode_invalidate_secctx(struct inode *inode)
6007{
6008	struct inode_security_struct *isec = inode->i_security;
6009
6010	spin_lock(&isec->lock);
6011	isec->initialized = LABEL_INVALID;
6012	spin_unlock(&isec->lock);
6013}
6014
6015/*
6016 *	called with inode->i_mutex locked
6017 */
6018static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6019{
6020	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
6021}
6022
6023/*
6024 *	called with inode->i_mutex locked
6025 */
6026static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6027{
6028	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
 
6029}
6030
6031static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6032{
6033	int len = 0;
6034	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6035						ctx, true);
6036	if (len < 0)
6037		return len;
6038	*ctxlen = len;
6039	return 0;
6040}
6041#ifdef CONFIG_KEYS
6042
6043static int selinux_key_alloc(struct key *k, const struct cred *cred,
6044			     unsigned long flags)
6045{
6046	const struct task_security_struct *tsec;
6047	struct key_security_struct *ksec;
6048
6049	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6050	if (!ksec)
6051		return -ENOMEM;
6052
6053	tsec = cred->security;
6054	if (tsec->keycreate_sid)
6055		ksec->sid = tsec->keycreate_sid;
6056	else
6057		ksec->sid = tsec->sid;
6058
6059	k->security = ksec;
6060	return 0;
6061}
6062
6063static void selinux_key_free(struct key *k)
6064{
6065	struct key_security_struct *ksec = k->security;
6066
6067	k->security = NULL;
6068	kfree(ksec);
6069}
6070
6071static int selinux_key_permission(key_ref_t key_ref,
6072				  const struct cred *cred,
6073				  unsigned perm)
6074{
6075	struct key *key;
6076	struct key_security_struct *ksec;
6077	u32 sid;
6078
6079	/* if no specific permissions are requested, we skip the
6080	   permission check. No serious, additional covert channels
6081	   appear to be created. */
6082	if (perm == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6083		return 0;
 
 
 
 
 
6084
6085	sid = cred_sid(cred);
6086
6087	key = key_ref_to_ptr(key_ref);
6088	ksec = key->security;
6089
6090	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
6091}
6092
6093static int selinux_key_getsecurity(struct key *key, char **_buffer)
6094{
6095	struct key_security_struct *ksec = key->security;
6096	char *context = NULL;
6097	unsigned len;
6098	int rc;
6099
6100	rc = security_sid_to_context(ksec->sid, &context, &len);
 
6101	if (!rc)
6102		rc = len;
6103	*_buffer = context;
6104	return rc;
6105}
6106
 
 
 
 
 
 
 
 
 
 
6107#endif
6108
6109static struct security_hook_list selinux_hooks[] = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6110	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6111	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6112	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6113	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6114
6115	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6116	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6117	LSM_HOOK_INIT(capget, selinux_capget),
6118	LSM_HOOK_INIT(capset, selinux_capset),
6119	LSM_HOOK_INIT(capable, selinux_capable),
6120	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6121	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6122	LSM_HOOK_INIT(syslog, selinux_syslog),
6123	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6124
6125	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6126
6127	LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6128	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6129	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6130	LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
6131
6132	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6133	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6134	LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
6135	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6136	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6137	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6138	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6139	LSM_HOOK_INIT(sb_mount, selinux_mount),
6140	LSM_HOOK_INIT(sb_umount, selinux_umount),
6141	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6142	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6143	LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
 
6144
6145	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6146	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6147
6148	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6149	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6150	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
 
6151	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6152	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6153	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6154	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6155	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6156	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6157	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6158	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6159	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6160	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6161	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6162	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6163	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6164	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6165	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6166	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6167	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6168	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6169	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6170	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6171	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6172	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6173	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6174	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
 
 
 
6175
6176	LSM_HOOK_INIT(file_permission, selinux_file_permission),
6177	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6178	LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6179	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6180	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6181	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6182	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6183	LSM_HOOK_INIT(file_lock, selinux_file_lock),
6184	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6185	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6186	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6187	LSM_HOOK_INIT(file_receive, selinux_file_receive),
6188
6189	LSM_HOOK_INIT(file_open, selinux_file_open),
6190
6191	LSM_HOOK_INIT(task_create, selinux_task_create),
6192	LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6193	LSM_HOOK_INIT(cred_free, selinux_cred_free),
6194	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6195	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
 
6196	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6197	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6198	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
 
6199	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6200	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6201	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6202	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6203	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
 
6204	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6205	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6206	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
 
6207	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6208	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6209	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6210	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6211	LSM_HOOK_INIT(task_kill, selinux_task_kill),
6212	LSM_HOOK_INIT(task_wait, selinux_task_wait),
6213	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6214
6215	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6216	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6217
6218	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6219	LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6220
6221	LSM_HOOK_INIT(msg_queue_alloc_security,
6222			selinux_msg_queue_alloc_security),
6223	LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6224	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6225	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6226	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6227	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6228
6229	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6230	LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6231	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6232	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6233	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6234
6235	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6236	LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6237	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6238	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6239	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6240
6241	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6242
6243	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6244	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6245
6246	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6247	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6248	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6249	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6250	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6251	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6252	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6253	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6254
6255	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6256	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6257
6258	LSM_HOOK_INIT(socket_create, selinux_socket_create),
6259	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
 
6260	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6261	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6262	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6263	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6264	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6265	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6266	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6267	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6268	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6269	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6270	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6271	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6272	LSM_HOOK_INIT(socket_getpeersec_stream,
6273			selinux_socket_getpeersec_stream),
6274	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6275	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6276	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6277	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6278	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6279	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
 
 
 
6280	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6281	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6282	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6283	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6284	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6285	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6286	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6287	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6288	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6289	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6290	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6291	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6292	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6293
 
 
 
 
 
6294#ifdef CONFIG_SECURITY_NETWORK_XFRM
6295	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6296	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6297	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6298	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6299	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6300	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6301			selinux_xfrm_state_alloc_acquire),
6302	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6303	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6304	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6305	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6306			selinux_xfrm_state_pol_flow_match),
6307	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6308#endif
6309
6310#ifdef CONFIG_KEYS
6311	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6312	LSM_HOOK_INIT(key_free, selinux_key_free),
6313	LSM_HOOK_INIT(key_permission, selinux_key_permission),
6314	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
 
 
 
6315#endif
6316
6317#ifdef CONFIG_AUDIT
6318	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6319	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6320	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6321	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6322#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6323};
6324
6325static __init int selinux_init(void)
6326{
6327	if (!security_module_enable("selinux")) {
6328		selinux_enabled = 0;
6329		return 0;
6330	}
6331
6332	if (!selinux_enabled) {
6333		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
6334		return 0;
6335	}
6336
6337	printk(KERN_INFO "SELinux:  Initializing.\n");
 
 
 
 
 
6338
6339	/* Set the security state for the initial task. */
6340	cred_init_security();
6341
6342	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6343
6344	sel_inode_cache = kmem_cache_create("selinux_inode_security",
6345					    sizeof(struct inode_security_struct),
6346					    0, SLAB_PANIC, NULL);
6347	file_security_cache = kmem_cache_create("selinux_file_security",
6348					    sizeof(struct file_security_struct),
6349					    0, SLAB_PANIC, NULL);
6350	avc_init();
6351
6352	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
 
 
 
 
 
 
6353
6354	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6355		panic("SELinux: Unable to register AVC netcache callback\n");
6356
6357	if (selinux_enforcing)
6358		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
 
 
 
6359	else
6360		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
6361
6362	return 0;
6363}
6364
6365static void delayed_superblock_init(struct super_block *sb, void *unused)
6366{
6367	superblock_doinit(sb, NULL);
6368}
6369
6370void selinux_complete_init(void)
6371{
6372	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6373
6374	/* Set up any superblocks initialized prior to the policy load. */
6375	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6376	iterate_supers(delayed_superblock_init, NULL);
6377}
6378
6379/* SELinux requires early initialization in order to label
6380   all processes and objects when they are created. */
6381security_initcall(selinux_init);
 
 
 
 
 
 
6382
6383#if defined(CONFIG_NETFILTER)
6384
6385static struct nf_hook_ops selinux_nf_ops[] = {
6386	{
6387		.hook =		selinux_ipv4_postroute,
6388		.pf =		NFPROTO_IPV4,
6389		.hooknum =	NF_INET_POST_ROUTING,
6390		.priority =	NF_IP_PRI_SELINUX_LAST,
6391	},
6392	{
6393		.hook =		selinux_ipv4_forward,
6394		.pf =		NFPROTO_IPV4,
6395		.hooknum =	NF_INET_FORWARD,
6396		.priority =	NF_IP_PRI_SELINUX_FIRST,
6397	},
6398	{
6399		.hook =		selinux_ipv4_output,
6400		.pf =		NFPROTO_IPV4,
6401		.hooknum =	NF_INET_LOCAL_OUT,
6402		.priority =	NF_IP_PRI_SELINUX_FIRST,
6403	},
6404#if IS_ENABLED(CONFIG_IPV6)
6405	{
6406		.hook =		selinux_ipv6_postroute,
6407		.pf =		NFPROTO_IPV6,
6408		.hooknum =	NF_INET_POST_ROUTING,
6409		.priority =	NF_IP6_PRI_SELINUX_LAST,
6410	},
6411	{
6412		.hook =		selinux_ipv6_forward,
6413		.pf =		NFPROTO_IPV6,
6414		.hooknum =	NF_INET_FORWARD,
6415		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6416	},
6417	{
6418		.hook =		selinux_ipv6_output,
6419		.pf =		NFPROTO_IPV6,
6420		.hooknum =	NF_INET_LOCAL_OUT,
6421		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6422	},
6423#endif	/* IPV6 */
6424};
6425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6426static int __init selinux_nf_ip_init(void)
6427{
6428	int err;
6429
6430	if (!selinux_enabled)
6431		return 0;
6432
6433	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6434
6435	err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6436	if (err)
6437		panic("SELinux: nf_register_hooks: error %d\n", err);
6438
6439	return 0;
6440}
6441
6442__initcall(selinux_nf_ip_init);
6443
6444#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6445static void selinux_nf_ip_exit(void)
6446{
6447	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6448
6449	nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6450}
6451#endif
6452
6453#else /* CONFIG_NETFILTER */
6454
6455#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6456#define selinux_nf_ip_exit()
6457#endif
6458
6459#endif /* CONFIG_NETFILTER */
6460
6461#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6462static int selinux_disabled;
6463
6464int selinux_disable(void)
6465{
6466	if (ss_initialized) {
6467		/* Not permitted after initial policy load. */
6468		return -EINVAL;
6469	}
6470
6471	if (selinux_disabled) {
6472		/* Only do this once. */
6473		return -EINVAL;
6474	}
6475
6476	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6477
6478	selinux_disabled = 1;
6479	selinux_enabled = 0;
 
 
 
 
 
 
6480
6481	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6482
6483	/* Try to destroy the avc node cache */
6484	avc_disable();
6485
6486	/* Unregister netfilter hooks. */
6487	selinux_nf_ip_exit();
6488
6489	/* Unregister selinuxfs. */
6490	exit_sel_fs();
6491
6492	return 0;
6493}
6494#endif