Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/vmacache.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
  41#include <linux/rbtree_augmented.h>
  42#include <linux/notifier.h>
  43#include <linux/memory.h>
  44#include <linux/printk.h>
  45#include <linux/userfaultfd_k.h>
  46#include <linux/moduleparam.h>
  47#include <linux/pkeys.h>
  48#include <linux/oom.h>
  49#include <linux/sched/mm.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/cacheflush.h>
  53#include <asm/tlb.h>
  54#include <asm/mmu_context.h>
  55
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/mmap.h>
  58
  59#include "internal.h"
  60
  61#ifndef arch_mmap_check
  62#define arch_mmap_check(addr, len, flags)	(0)
  63#endif
  64
  65#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  66const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  67const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  68int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  69#endif
  70#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  71const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  72const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  73int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  74#endif
  75
  76static bool ignore_rlimit_data;
  77core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  78
  79static void unmap_region(struct mm_struct *mm,
  80		struct vm_area_struct *vma, struct vm_area_struct *prev,
  81		unsigned long start, unsigned long end);
  82
 
 
 
 
 
 
  83/* description of effects of mapping type and prot in current implementation.
  84 * this is due to the limited x86 page protection hardware.  The expected
  85 * behavior is in parens:
  86 *
  87 * map_type	prot
  88 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  89 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  90 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  91 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  92 *
  93 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  94 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  95 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  96 *
  97 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  98 * MAP_PRIVATE (with Enhanced PAN supported):
  99 *								r: (no) no
 100 *								w: (no) no
 101 *								x: (yes) yes
 102 */
 103pgprot_t protection_map[16] __ro_after_init = {
 104	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
 105	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 106};
 107
 108#ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
 109static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
 110{
 111	return prot;
 112}
 113#endif
 114
 115pgprot_t vm_get_page_prot(unsigned long vm_flags)
 116{
 117	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
 118				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 119			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 120
 121	return arch_filter_pgprot(ret);
 122}
 123EXPORT_SYMBOL(vm_get_page_prot);
 124
 125static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 126{
 127	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 128}
 
 
 
 
 129
 130/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 131void vma_set_page_prot(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132{
 133	unsigned long vm_flags = vma->vm_flags;
 134	pgprot_t vm_page_prot;
 
 
 
 
 
 
 
 
 
 
 
 135
 136	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 137	if (vma_wants_writenotify(vma, vm_page_prot)) {
 138		vm_flags &= ~VM_SHARED;
 139		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 140	}
 141	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
 142	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 143}
 144
 145/*
 146 * Requires inode->i_mapping->i_mmap_rwsem
 147 */
 148static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 149		struct file *file, struct address_space *mapping)
 150{
 151	if (vma->vm_flags & VM_DENYWRITE)
 152		allow_write_access(file);
 153	if (vma->vm_flags & VM_SHARED)
 154		mapping_unmap_writable(mapping);
 155
 156	flush_dcache_mmap_lock(mapping);
 157	vma_interval_tree_remove(vma, &mapping->i_mmap);
 
 
 
 158	flush_dcache_mmap_unlock(mapping);
 159}
 160
 161/*
 162 * Unlink a file-based vm structure from its interval tree, to hide
 163 * vma from rmap and vmtruncate before freeing its page tables.
 164 */
 165void unlink_file_vma(struct vm_area_struct *vma)
 166{
 167	struct file *file = vma->vm_file;
 168
 169	if (file) {
 170		struct address_space *mapping = file->f_mapping;
 171		i_mmap_lock_write(mapping);
 172		__remove_shared_vm_struct(vma, file, mapping);
 173		i_mmap_unlock_write(mapping);
 174	}
 175}
 176
 177/*
 178 * Close a vm structure and free it, returning the next.
 179 */
 180static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 181{
 182	struct vm_area_struct *next = vma->vm_next;
 183
 184	might_sleep();
 185	if (vma->vm_ops && vma->vm_ops->close)
 186		vma->vm_ops->close(vma);
 187	if (vma->vm_file)
 188		fput(vma->vm_file);
 
 
 
 189	mpol_put(vma_policy(vma));
 190	vm_area_free(vma);
 191	return next;
 192}
 193
 194static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
 195		struct list_head *uf);
 196SYSCALL_DEFINE1(brk, unsigned long, brk)
 197{
 198	unsigned long newbrk, oldbrk, origbrk;
 
 199	struct mm_struct *mm = current->mm;
 200	struct vm_area_struct *next;
 201	unsigned long min_brk;
 202	bool populate;
 203	bool downgraded = false;
 204	LIST_HEAD(uf);
 205
 206	if (mmap_write_lock_killable(mm))
 207		return -EINTR;
 208
 209	origbrk = mm->brk;
 210
 211#ifdef CONFIG_COMPAT_BRK
 212	/*
 213	 * CONFIG_COMPAT_BRK can still be overridden by setting
 214	 * randomize_va_space to 2, which will still cause mm->start_brk
 215	 * to be arbitrarily shifted
 216	 */
 217	if (current->brk_randomized)
 218		min_brk = mm->start_brk;
 219	else
 220		min_brk = mm->end_data;
 221#else
 222	min_brk = mm->start_brk;
 223#endif
 224	if (brk < min_brk)
 225		goto out;
 226
 227	/*
 228	 * Check against rlimit here. If this check is done later after the test
 229	 * of oldbrk with newbrk then it can escape the test and let the data
 230	 * segment grow beyond its set limit the in case where the limit is
 231	 * not page aligned -Ram Gupta
 232	 */
 233	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 234			      mm->end_data, mm->start_data))
 
 235		goto out;
 236
 237	newbrk = PAGE_ALIGN(brk);
 238	oldbrk = PAGE_ALIGN(mm->brk);
 239	if (oldbrk == newbrk) {
 240		mm->brk = brk;
 241		goto success;
 242	}
 243
 244	/*
 245	 * Always allow shrinking brk.
 246	 * __do_munmap() may downgrade mmap_lock to read.
 247	 */
 248	if (brk <= mm->brk) {
 249		int ret;
 250
 251		/*
 252		 * mm->brk must to be protected by write mmap_lock so update it
 253		 * before downgrading mmap_lock. When __do_munmap() fails,
 254		 * mm->brk will be restored from origbrk.
 255		 */
 256		mm->brk = brk;
 257		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
 258		if (ret < 0) {
 259			mm->brk = origbrk;
 260			goto out;
 261		} else if (ret == 1) {
 262			downgraded = true;
 263		}
 264		goto success;
 265	}
 266
 267	/* Check against existing mmap mappings. */
 268	next = find_vma(mm, oldbrk);
 269	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 270		goto out;
 271
 272	/* Ok, looks good - let it rip. */
 273	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
 274		goto out;
 
 275	mm->brk = brk;
 276
 277success:
 278	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 279	if (downgraded)
 280		mmap_read_unlock(mm);
 281	else
 282		mmap_write_unlock(mm);
 283	userfaultfd_unmap_complete(mm, &uf);
 284	if (populate)
 285		mm_populate(oldbrk, newbrk - oldbrk);
 286	return brk;
 287
 288out:
 289	mmap_write_unlock(mm);
 290	return origbrk;
 291}
 292
 293static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
 294{
 295	unsigned long gap, prev_end;
 296
 297	/*
 298	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
 299	 * allow two stack_guard_gaps between them here, and when choosing
 300	 * an unmapped area; whereas when expanding we only require one.
 301	 * That's a little inconsistent, but keeps the code here simpler.
 302	 */
 303	gap = vm_start_gap(vma);
 304	if (vma->vm_prev) {
 305		prev_end = vm_end_gap(vma->vm_prev);
 306		if (gap > prev_end)
 307			gap -= prev_end;
 308		else
 309			gap = 0;
 310	}
 311	return gap;
 312}
 313
 314#ifdef CONFIG_DEBUG_VM_RB
 315static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
 316{
 317	unsigned long max = vma_compute_gap(vma), subtree_gap;
 318	if (vma->vm_rb.rb_left) {
 319		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 320				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 321		if (subtree_gap > max)
 322			max = subtree_gap;
 323	}
 324	if (vma->vm_rb.rb_right) {
 325		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 326				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 327		if (subtree_gap > max)
 328			max = subtree_gap;
 329	}
 330	return max;
 331}
 332
 333static int browse_rb(struct mm_struct *mm)
 
 334{
 335	struct rb_root *root = &mm->mm_rb;
 336	int i = 0, j, bug = 0;
 337	struct rb_node *nd, *pn = NULL;
 338	unsigned long prev = 0, pend = 0;
 339
 340	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 341		struct vm_area_struct *vma;
 342		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 343		if (vma->vm_start < prev) {
 344			pr_emerg("vm_start %lx < prev %lx\n",
 345				  vma->vm_start, prev);
 346			bug = 1;
 347		}
 348		if (vma->vm_start < pend) {
 349			pr_emerg("vm_start %lx < pend %lx\n",
 350				  vma->vm_start, pend);
 351			bug = 1;
 352		}
 353		if (vma->vm_start > vma->vm_end) {
 354			pr_emerg("vm_start %lx > vm_end %lx\n",
 355				  vma->vm_start, vma->vm_end);
 356			bug = 1;
 357		}
 358		spin_lock(&mm->page_table_lock);
 359		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 360			pr_emerg("free gap %lx, correct %lx\n",
 361			       vma->rb_subtree_gap,
 362			       vma_compute_subtree_gap(vma));
 363			bug = 1;
 364		}
 365		spin_unlock(&mm->page_table_lock);
 366		i++;
 367		pn = nd;
 368		prev = vma->vm_start;
 369		pend = vma->vm_end;
 370	}
 371	j = 0;
 372	for (nd = pn; nd; nd = rb_prev(nd))
 373		j++;
 374	if (i != j) {
 375		pr_emerg("backwards %d, forwards %d\n", j, i);
 376		bug = 1;
 377	}
 378	return bug ? -1 : i;
 379}
 380
 381static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 382{
 383	struct rb_node *nd;
 384
 385	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 386		struct vm_area_struct *vma;
 387		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 388		VM_BUG_ON_VMA(vma != ignore &&
 389			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 390			vma);
 391	}
 
 
 
 392}
 393
 394static void validate_mm(struct mm_struct *mm)
 395{
 396	int bug = 0;
 397	int i = 0;
 398	unsigned long highest_address = 0;
 399	struct vm_area_struct *vma = mm->mmap;
 400
 401	while (vma) {
 402		struct anon_vma *anon_vma = vma->anon_vma;
 403		struct anon_vma_chain *avc;
 404
 405		if (anon_vma) {
 406			anon_vma_lock_read(anon_vma);
 407			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 408				anon_vma_interval_tree_verify(avc);
 409			anon_vma_unlock_read(anon_vma);
 410		}
 411
 412		highest_address = vm_end_gap(vma);
 413		vma = vma->vm_next;
 414		i++;
 415	}
 416	if (i != mm->map_count) {
 417		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 418		bug = 1;
 419	}
 420	if (highest_address != mm->highest_vm_end) {
 421		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 422			  mm->highest_vm_end, highest_address);
 423		bug = 1;
 424	}
 425	i = browse_rb(mm);
 426	if (i != mm->map_count) {
 427		if (i != -1)
 428			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 429		bug = 1;
 430	}
 431	VM_BUG_ON_MM(bug, mm);
 432}
 433#else
 434#define validate_mm_rb(root, ignore) do { } while (0)
 435#define validate_mm(mm) do { } while (0)
 436#endif
 437
 438RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
 439			 struct vm_area_struct, vm_rb,
 440			 unsigned long, rb_subtree_gap, vma_compute_gap)
 441
 442/*
 443 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 444 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 445 * in the rbtree.
 446 */
 447static void vma_gap_update(struct vm_area_struct *vma)
 448{
 449	/*
 450	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
 451	 * a callback function that does exactly what we want.
 452	 */
 453	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 454}
 455
 456static inline void vma_rb_insert(struct vm_area_struct *vma,
 457				 struct rb_root *root)
 458{
 459	/* All rb_subtree_gap values must be consistent prior to insertion */
 460	validate_mm_rb(root, NULL);
 461
 462	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 463}
 464
 465static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 466{
 467	/*
 468	 * Note rb_erase_augmented is a fairly large inline function,
 469	 * so make sure we instantiate it only once with our desired
 470	 * augmented rbtree callbacks.
 471	 */
 472	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 473}
 474
 475static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 476						struct rb_root *root,
 477						struct vm_area_struct *ignore)
 478{
 479	/*
 480	 * All rb_subtree_gap values must be consistent prior to erase,
 481	 * with the possible exception of
 482	 *
 483	 * a. the "next" vma being erased if next->vm_start was reduced in
 484	 *    __vma_adjust() -> __vma_unlink()
 485	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
 486	 *    vma_rb_erase()
 487	 */
 488	validate_mm_rb(root, ignore);
 489
 490	__vma_rb_erase(vma, root);
 491}
 492
 493static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 494					 struct rb_root *root)
 495{
 496	vma_rb_erase_ignore(vma, root, vma);
 497}
 498
 499/*
 500 * vma has some anon_vma assigned, and is already inserted on that
 501 * anon_vma's interval trees.
 502 *
 503 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 504 * vma must be removed from the anon_vma's interval trees using
 505 * anon_vma_interval_tree_pre_update_vma().
 506 *
 507 * After the update, the vma will be reinserted using
 508 * anon_vma_interval_tree_post_update_vma().
 509 *
 510 * The entire update must be protected by exclusive mmap_lock and by
 511 * the root anon_vma's mutex.
 512 */
 513static inline void
 514anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 515{
 516	struct anon_vma_chain *avc;
 517
 518	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 519		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 520}
 521
 522static inline void
 523anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 524{
 525	struct anon_vma_chain *avc;
 526
 527	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 528		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 529}
 530
 531static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 532		unsigned long end, struct vm_area_struct **pprev,
 533		struct rb_node ***rb_link, struct rb_node **rb_parent)
 534{
 535	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 536
 537	__rb_link = &mm->mm_rb.rb_node;
 538	rb_prev = __rb_parent = NULL;
 
 539
 540	while (*__rb_link) {
 541		struct vm_area_struct *vma_tmp;
 542
 543		__rb_parent = *__rb_link;
 544		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 545
 546		if (vma_tmp->vm_end > addr) {
 547			/* Fail if an existing vma overlaps the area */
 548			if (vma_tmp->vm_start < end)
 549				return -ENOMEM;
 550			__rb_link = &__rb_parent->rb_left;
 551		} else {
 552			rb_prev = __rb_parent;
 553			__rb_link = &__rb_parent->rb_right;
 554		}
 555	}
 556
 557	*pprev = NULL;
 558	if (rb_prev)
 559		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 560	*rb_link = __rb_link;
 561	*rb_parent = __rb_parent;
 562	return 0;
 563}
 564
 565/*
 566 * vma_next() - Get the next VMA.
 567 * @mm: The mm_struct.
 568 * @vma: The current vma.
 569 *
 570 * If @vma is NULL, return the first vma in the mm.
 571 *
 572 * Returns: The next VMA after @vma.
 573 */
 574static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
 575					 struct vm_area_struct *vma)
 576{
 577	if (!vma)
 578		return mm->mmap;
 579
 580	return vma->vm_next;
 581}
 582
 583/*
 584 * munmap_vma_range() - munmap VMAs that overlap a range.
 585 * @mm: The mm struct
 586 * @start: The start of the range.
 587 * @len: The length of the range.
 588 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
 589 * @rb_link: the rb_node
 590 * @rb_parent: the parent rb_node
 591 *
 592 * Find all the vm_area_struct that overlap from @start to
 593 * @end and munmap them.  Set @pprev to the previous vm_area_struct.
 594 *
 595 * Returns: -ENOMEM on munmap failure or 0 on success.
 596 */
 597static inline int
 598munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
 599		 struct vm_area_struct **pprev, struct rb_node ***link,
 600		 struct rb_node **parent, struct list_head *uf)
 601{
 602
 603	while (find_vma_links(mm, start, start + len, pprev, link, parent))
 604		if (do_munmap(mm, start, len, uf))
 605			return -ENOMEM;
 606
 607	return 0;
 608}
 609static unsigned long count_vma_pages_range(struct mm_struct *mm,
 610		unsigned long addr, unsigned long end)
 611{
 612	unsigned long nr_pages = 0;
 613	struct vm_area_struct *vma;
 614
 615	/* Find first overlapping mapping */
 616	vma = find_vma_intersection(mm, addr, end);
 617	if (!vma)
 618		return 0;
 619
 620	nr_pages = (min(end, vma->vm_end) -
 621		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 622
 623	/* Iterate over the rest of the overlaps */
 624	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 625		unsigned long overlap_len;
 626
 627		if (vma->vm_start > end)
 628			break;
 629
 630		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 631		nr_pages += overlap_len >> PAGE_SHIFT;
 632	}
 633
 634	return nr_pages;
 635}
 636
 637void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 638		struct rb_node **rb_link, struct rb_node *rb_parent)
 639{
 640	/* Update tracking information for the gap following the new vma. */
 641	if (vma->vm_next)
 642		vma_gap_update(vma->vm_next);
 643	else
 644		mm->highest_vm_end = vm_end_gap(vma);
 645
 646	/*
 647	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 648	 * correct insertion point for that vma. As a result, we could not
 649	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 650	 * So, we first insert the vma with a zero rb_subtree_gap value
 651	 * (to be consistent with what we did on the way down), and then
 652	 * immediately update the gap to the correct value. Finally we
 653	 * rebalance the rbtree after all augmented values have been set.
 654	 */
 655	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 656	vma->rb_subtree_gap = 0;
 657	vma_gap_update(vma);
 658	vma_rb_insert(vma, &mm->mm_rb);
 659}
 660
 661static void __vma_link_file(struct vm_area_struct *vma)
 662{
 663	struct file *file;
 664
 665	file = vma->vm_file;
 666	if (file) {
 667		struct address_space *mapping = file->f_mapping;
 668
 669		if (vma->vm_flags & VM_DENYWRITE)
 670			put_write_access(file_inode(file));
 671		if (vma->vm_flags & VM_SHARED)
 672			mapping_allow_writable(mapping);
 673
 674		flush_dcache_mmap_lock(mapping);
 675		vma_interval_tree_insert(vma, &mapping->i_mmap);
 
 
 
 676		flush_dcache_mmap_unlock(mapping);
 677	}
 678}
 679
 680static void
 681__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 682	struct vm_area_struct *prev, struct rb_node **rb_link,
 683	struct rb_node *rb_parent)
 684{
 685	__vma_link_list(mm, vma, prev);
 686	__vma_link_rb(mm, vma, rb_link, rb_parent);
 687}
 688
 689static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 690			struct vm_area_struct *prev, struct rb_node **rb_link,
 691			struct rb_node *rb_parent)
 692{
 693	struct address_space *mapping = NULL;
 694
 695	if (vma->vm_file) {
 696		mapping = vma->vm_file->f_mapping;
 697		i_mmap_lock_write(mapping);
 698	}
 
 699
 700	__vma_link(mm, vma, prev, rb_link, rb_parent);
 701	__vma_link_file(vma);
 702
 703	if (mapping)
 704		i_mmap_unlock_write(mapping);
 705
 706	mm->map_count++;
 707	validate_mm(mm);
 708}
 709
 710/*
 711 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 712 * mm's list and rbtree.  It has already been inserted into the interval tree.
 713 */
 714static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 715{
 716	struct vm_area_struct *prev;
 717	struct rb_node **rb_link, *rb_parent;
 718
 719	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 720			   &prev, &rb_link, &rb_parent))
 721		BUG();
 722	__vma_link(mm, vma, prev, rb_link, rb_parent);
 723	mm->map_count++;
 724}
 725
 726static __always_inline void __vma_unlink(struct mm_struct *mm,
 727						struct vm_area_struct *vma,
 728						struct vm_area_struct *ignore)
 729{
 730	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 731	__vma_unlink_list(mm, vma);
 732	/* Kill the cache */
 733	vmacache_invalidate(mm);
 
 
 
 
 734}
 735
 736/*
 737 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 738 * is already present in an i_mmap tree without adjusting the tree.
 739 * The following helper function should be used when such adjustments
 740 * are necessary.  The "insert" vma (if any) is to be inserted
 741 * before we drop the necessary locks.
 742 */
 743int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 744	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 745	struct vm_area_struct *expand)
 746{
 747	struct mm_struct *mm = vma->vm_mm;
 748	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 
 749	struct address_space *mapping = NULL;
 750	struct rb_root_cached *root = NULL;
 751	struct anon_vma *anon_vma = NULL;
 752	struct file *file = vma->vm_file;
 753	bool start_changed = false, end_changed = false;
 754	long adjust_next = 0;
 755	int remove_next = 0;
 756
 757	if (next && !insert) {
 758		struct vm_area_struct *exporter = NULL, *importer = NULL;
 759
 760		if (end >= next->vm_end) {
 761			/*
 762			 * vma expands, overlapping all the next, and
 763			 * perhaps the one after too (mprotect case 6).
 764			 * The only other cases that gets here are
 765			 * case 1, case 7 and case 8.
 766			 */
 767			if (next == expand) {
 768				/*
 769				 * The only case where we don't expand "vma"
 770				 * and we expand "next" instead is case 8.
 771				 */
 772				VM_WARN_ON(end != next->vm_end);
 773				/*
 774				 * remove_next == 3 means we're
 775				 * removing "vma" and that to do so we
 776				 * swapped "vma" and "next".
 777				 */
 778				remove_next = 3;
 779				VM_WARN_ON(file != next->vm_file);
 780				swap(vma, next);
 781			} else {
 782				VM_WARN_ON(expand != vma);
 783				/*
 784				 * case 1, 6, 7, remove_next == 2 is case 6,
 785				 * remove_next == 1 is case 1 or 7.
 786				 */
 787				remove_next = 1 + (end > next->vm_end);
 788				VM_WARN_ON(remove_next == 2 &&
 789					   end != next->vm_next->vm_end);
 790				/* trim end to next, for case 6 first pass */
 791				end = next->vm_end;
 792			}
 793
 794			exporter = next;
 795			importer = vma;
 796
 797			/*
 798			 * If next doesn't have anon_vma, import from vma after
 799			 * next, if the vma overlaps with it.
 800			 */
 801			if (remove_next == 2 && !next->anon_vma)
 802				exporter = next->vm_next;
 803
 804		} else if (end > next->vm_start) {
 805			/*
 806			 * vma expands, overlapping part of the next:
 807			 * mprotect case 5 shifting the boundary up.
 808			 */
 809			adjust_next = (end - next->vm_start);
 810			exporter = next;
 811			importer = vma;
 812			VM_WARN_ON(expand != importer);
 813		} else if (end < vma->vm_end) {
 814			/*
 815			 * vma shrinks, and !insert tells it's not
 816			 * split_vma inserting another: so it must be
 817			 * mprotect case 4 shifting the boundary down.
 818			 */
 819			adjust_next = -(vma->vm_end - end);
 820			exporter = vma;
 821			importer = next;
 822			VM_WARN_ON(expand != importer);
 823		}
 824
 825		/*
 826		 * Easily overlooked: when mprotect shifts the boundary,
 827		 * make sure the expanding vma has anon_vma set if the
 828		 * shrinking vma had, to cover any anon pages imported.
 829		 */
 830		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 831			int error;
 832
 833			importer->anon_vma = exporter->anon_vma;
 834			error = anon_vma_clone(importer, exporter);
 835			if (error)
 836				return error;
 837		}
 838	}
 839again:
 840	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 841
 842	if (file) {
 843		mapping = file->f_mapping;
 844		root = &mapping->i_mmap;
 845		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 
 846
 847		if (adjust_next)
 848			uprobe_munmap(next, next->vm_start, next->vm_end);
 
 
 849
 850		i_mmap_lock_write(mapping);
 851		if (insert) {
 852			/*
 853			 * Put into interval tree now, so instantiated pages
 854			 * are visible to arm/parisc __flush_dcache_page
 855			 * throughout; but we cannot insert into address
 856			 * space until vma start or end is updated.
 857			 */
 858			__vma_link_file(insert);
 859		}
 860	}
 861
 862	anon_vma = vma->anon_vma;
 863	if (!anon_vma && adjust_next)
 864		anon_vma = next->anon_vma;
 865	if (anon_vma) {
 866		VM_WARN_ON(adjust_next && next->anon_vma &&
 867			   anon_vma != next->anon_vma);
 868		anon_vma_lock_write(anon_vma);
 869		anon_vma_interval_tree_pre_update_vma(vma);
 870		if (adjust_next)
 871			anon_vma_interval_tree_pre_update_vma(next);
 
 872	}
 873
 874	if (file) {
 875		flush_dcache_mmap_lock(mapping);
 876		vma_interval_tree_remove(vma, root);
 877		if (adjust_next)
 878			vma_interval_tree_remove(next, root);
 879	}
 880
 881	if (start != vma->vm_start) {
 882		vma->vm_start = start;
 883		start_changed = true;
 884	}
 885	if (end != vma->vm_end) {
 886		vma->vm_end = end;
 887		end_changed = true;
 888	}
 889	vma->vm_pgoff = pgoff;
 890	if (adjust_next) {
 891		next->vm_start += adjust_next;
 892		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
 893	}
 894
 895	if (file) {
 896		if (adjust_next)
 897			vma_interval_tree_insert(next, root);
 898		vma_interval_tree_insert(vma, root);
 899		flush_dcache_mmap_unlock(mapping);
 900	}
 901
 902	if (remove_next) {
 903		/*
 904		 * vma_merge has merged next into vma, and needs
 905		 * us to remove next before dropping the locks.
 906		 */
 907		if (remove_next != 3)
 908			__vma_unlink(mm, next, next);
 909		else
 910			/*
 911			 * vma is not before next if they've been
 912			 * swapped.
 913			 *
 914			 * pre-swap() next->vm_start was reduced so
 915			 * tell validate_mm_rb to ignore pre-swap()
 916			 * "next" (which is stored in post-swap()
 917			 * "vma").
 918			 */
 919			__vma_unlink(mm, next, vma);
 920		if (file)
 921			__remove_shared_vm_struct(next, file, mapping);
 922	} else if (insert) {
 923		/*
 924		 * split_vma has split insert from vma, and needs
 925		 * us to insert it before dropping the locks
 926		 * (it may either follow vma or precede it).
 927		 */
 928		__insert_vm_struct(mm, insert);
 929	} else {
 930		if (start_changed)
 931			vma_gap_update(vma);
 932		if (end_changed) {
 933			if (!next)
 934				mm->highest_vm_end = vm_end_gap(vma);
 935			else if (!adjust_next)
 936				vma_gap_update(next);
 937		}
 938	}
 939
 940	if (anon_vma) {
 941		anon_vma_interval_tree_post_update_vma(vma);
 942		if (adjust_next)
 943			anon_vma_interval_tree_post_update_vma(next);
 944		anon_vma_unlock_write(anon_vma);
 945	}
 946
 947	if (file) {
 948		i_mmap_unlock_write(mapping);
 949		uprobe_mmap(vma);
 950
 951		if (adjust_next)
 952			uprobe_mmap(next);
 953	}
 954
 955	if (remove_next) {
 956		if (file) {
 957			uprobe_munmap(next, next->vm_start, next->vm_end);
 958			fput(file);
 
 
 959		}
 960		if (next->anon_vma)
 961			anon_vma_merge(vma, next);
 962		mm->map_count--;
 963		mpol_put(vma_policy(next));
 964		vm_area_free(next);
 965		/*
 966		 * In mprotect's case 6 (see comments on vma_merge),
 967		 * we must remove another next too. It would clutter
 968		 * up the code too much to do both in one go.
 969		 */
 970		if (remove_next != 3) {
 971			/*
 972			 * If "next" was removed and vma->vm_end was
 973			 * expanded (up) over it, in turn
 974			 * "next->vm_prev->vm_end" changed and the
 975			 * "vma->vm_next" gap must be updated.
 976			 */
 977			next = vma->vm_next;
 978		} else {
 979			/*
 980			 * For the scope of the comment "next" and
 981			 * "vma" considered pre-swap(): if "vma" was
 982			 * removed, next->vm_start was expanded (down)
 983			 * over it and the "next" gap must be updated.
 984			 * Because of the swap() the post-swap() "vma"
 985			 * actually points to pre-swap() "next"
 986			 * (post-swap() "next" as opposed is now a
 987			 * dangling pointer).
 988			 */
 989			next = vma;
 990		}
 991		if (remove_next == 2) {
 992			remove_next = 1;
 993			end = next->vm_end;
 994			goto again;
 995		}
 996		else if (next)
 997			vma_gap_update(next);
 998		else {
 999			/*
1000			 * If remove_next == 2 we obviously can't
1001			 * reach this path.
1002			 *
1003			 * If remove_next == 3 we can't reach this
1004			 * path because pre-swap() next is always not
1005			 * NULL. pre-swap() "next" is not being
1006			 * removed and its next->vm_end is not altered
1007			 * (and furthermore "end" already matches
1008			 * next->vm_end in remove_next == 3).
1009			 *
1010			 * We reach this only in the remove_next == 1
1011			 * case if the "next" vma that was removed was
1012			 * the highest vma of the mm. However in such
1013			 * case next->vm_end == "end" and the extended
1014			 * "vma" has vma->vm_end == next->vm_end so
1015			 * mm->highest_vm_end doesn't need any update
1016			 * in remove_next == 1 case.
1017			 */
1018			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019		}
1020	}
1021	if (insert && file)
1022		uprobe_mmap(insert);
1023
1024	validate_mm(mm);
1025
1026	return 0;
1027}
1028
1029/*
1030 * If the vma has a ->close operation then the driver probably needs to release
1031 * per-vma resources, so we don't attempt to merge those.
1032 */
1033static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034				struct file *file, unsigned long vm_flags,
1035				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036{
1037	/*
1038	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1039	 * match the flags but dirty bit -- the caller should mark
1040	 * merged VMA as dirty. If dirty bit won't be excluded from
1041	 * comparison, we increase pressure on the memory system forcing
1042	 * the kernel to generate new VMAs when old one could be
1043	 * extended instead.
1044	 */
1045	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1046		return 0;
1047	if (vma->vm_file != file)
1048		return 0;
1049	if (vma->vm_ops && vma->vm_ops->close)
1050		return 0;
1051	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1052		return 0;
1053	return 1;
1054}
1055
1056static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1057					struct anon_vma *anon_vma2,
1058					struct vm_area_struct *vma)
1059{
1060	/*
1061	 * The list_is_singular() test is to avoid merging VMA cloned from
1062	 * parents. This can improve scalability caused by anon_vma lock.
1063	 */
1064	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1065		list_is_singular(&vma->anon_vma_chain)))
1066		return 1;
1067	return anon_vma1 == anon_vma2;
1068}
1069
1070/*
1071 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1072 * in front of (at a lower virtual address and file offset than) the vma.
1073 *
1074 * We cannot merge two vmas if they have differently assigned (non-NULL)
1075 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1076 *
1077 * We don't check here for the merged mmap wrapping around the end of pagecache
1078 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1079 * wrap, nor mmaps which cover the final page at index -1UL.
1080 */
1081static int
1082can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1083		     struct anon_vma *anon_vma, struct file *file,
1084		     pgoff_t vm_pgoff,
1085		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1086{
1087	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1088	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1089		if (vma->vm_pgoff == vm_pgoff)
1090			return 1;
1091	}
1092	return 0;
1093}
1094
1095/*
1096 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1097 * beyond (at a higher virtual address and file offset than) the vma.
1098 *
1099 * We cannot merge two vmas if they have differently assigned (non-NULL)
1100 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1101 */
1102static int
1103can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1104		    struct anon_vma *anon_vma, struct file *file,
1105		    pgoff_t vm_pgoff,
1106		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1107{
1108	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1109	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1110		pgoff_t vm_pglen;
1111		vm_pglen = vma_pages(vma);
1112		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1113			return 1;
1114	}
1115	return 0;
1116}
1117
1118/*
1119 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1120 * whether that can be merged with its predecessor or its successor.
1121 * Or both (it neatly fills a hole).
1122 *
1123 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1124 * certain not to be mapped by the time vma_merge is called; but when
1125 * called for mprotect, it is certain to be already mapped (either at
1126 * an offset within prev, or at the start of next), and the flags of
1127 * this area are about to be changed to vm_flags - and the no-change
1128 * case has already been eliminated.
1129 *
1130 * The following mprotect cases have to be considered, where AAAA is
1131 * the area passed down from mprotect_fixup, never extending beyond one
1132 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1133 *
1134 *     AAAA             AAAA                   AAAA
1135 *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1136 *    cannot merge    might become       might become
1137 *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1138 *    mmap, brk or    case 4 below       case 5 below
1139 *    mremap move:
1140 *                        AAAA               AAAA
1141 *                    PPPP    NNNN       PPPPNNNNXXXX
1142 *                    might become       might become
1143 *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1144 *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1145 *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1146 *
1147 * It is important for case 8 that the vma NNNN overlapping the
1148 * region AAAA is never going to extended over XXXX. Instead XXXX must
1149 * be extended in region AAAA and NNNN must be removed. This way in
1150 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1151 * rmap_locks, the properties of the merged vma will be already
1152 * correct for the whole merged range. Some of those properties like
1153 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1154 * be correct for the whole merged range immediately after the
1155 * rmap_locks are released. Otherwise if XXXX would be removed and
1156 * NNNN would be extended over the XXXX range, remove_migration_ptes
1157 * or other rmap walkers (if working on addresses beyond the "end"
1158 * parameter) may establish ptes with the wrong permissions of NNNN
1159 * instead of the right permissions of XXXX.
1160 */
1161struct vm_area_struct *vma_merge(struct mm_struct *mm,
1162			struct vm_area_struct *prev, unsigned long addr,
1163			unsigned long end, unsigned long vm_flags,
1164			struct anon_vma *anon_vma, struct file *file,
1165			pgoff_t pgoff, struct mempolicy *policy,
1166			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1167{
1168	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1169	struct vm_area_struct *area, *next;
1170	int err;
1171
1172	/*
1173	 * We later require that vma->vm_flags == vm_flags,
1174	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1175	 */
1176	if (vm_flags & VM_SPECIAL)
1177		return NULL;
1178
1179	next = vma_next(mm, prev);
 
 
 
1180	area = next;
1181	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1182		next = next->vm_next;
1183
1184	/* verify some invariant that must be enforced by the caller */
1185	VM_WARN_ON(prev && addr <= prev->vm_start);
1186	VM_WARN_ON(area && end > area->vm_end);
1187	VM_WARN_ON(addr >= end);
1188
1189	/*
1190	 * Can it merge with the predecessor?
1191	 */
1192	if (prev && prev->vm_end == addr &&
1193			mpol_equal(vma_policy(prev), policy) &&
1194			can_vma_merge_after(prev, vm_flags,
1195					    anon_vma, file, pgoff,
1196					    vm_userfaultfd_ctx)) {
1197		/*
1198		 * OK, it can.  Can we now merge in the successor as well?
1199		 */
1200		if (next && end == next->vm_start &&
1201				mpol_equal(policy, vma_policy(next)) &&
1202				can_vma_merge_before(next, vm_flags,
1203						     anon_vma, file,
1204						     pgoff+pglen,
1205						     vm_userfaultfd_ctx) &&
1206				is_mergeable_anon_vma(prev->anon_vma,
1207						      next->anon_vma, NULL)) {
1208							/* cases 1, 6 */
1209			err = __vma_adjust(prev, prev->vm_start,
1210					 next->vm_end, prev->vm_pgoff, NULL,
1211					 prev);
1212		} else					/* cases 2, 5, 7 */
1213			err = __vma_adjust(prev, prev->vm_start,
1214					 end, prev->vm_pgoff, NULL, prev);
1215		if (err)
1216			return NULL;
1217		khugepaged_enter_vma_merge(prev, vm_flags);
1218		return prev;
1219	}
1220
1221	/*
1222	 * Can this new request be merged in front of next?
1223	 */
1224	if (next && end == next->vm_start &&
1225			mpol_equal(policy, vma_policy(next)) &&
1226			can_vma_merge_before(next, vm_flags,
1227					     anon_vma, file, pgoff+pglen,
1228					     vm_userfaultfd_ctx)) {
1229		if (prev && addr < prev->vm_end)	/* case 4 */
1230			err = __vma_adjust(prev, prev->vm_start,
1231					 addr, prev->vm_pgoff, NULL, next);
1232		else {					/* cases 3, 8 */
1233			err = __vma_adjust(area, addr, next->vm_end,
1234					 next->vm_pgoff - pglen, NULL, next);
1235			/*
1236			 * In case 3 area is already equal to next and
1237			 * this is a noop, but in case 8 "area" has
1238			 * been removed and next was expanded over it.
1239			 */
1240			area = next;
1241		}
1242		if (err)
1243			return NULL;
1244		khugepaged_enter_vma_merge(area, vm_flags);
1245		return area;
1246	}
1247
1248	return NULL;
1249}
1250
1251/*
1252 * Rough compatibility check to quickly see if it's even worth looking
1253 * at sharing an anon_vma.
1254 *
1255 * They need to have the same vm_file, and the flags can only differ
1256 * in things that mprotect may change.
1257 *
1258 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1259 * we can merge the two vma's. For example, we refuse to merge a vma if
1260 * there is a vm_ops->close() function, because that indicates that the
1261 * driver is doing some kind of reference counting. But that doesn't
1262 * really matter for the anon_vma sharing case.
1263 */
1264static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1265{
1266	return a->vm_end == b->vm_start &&
1267		mpol_equal(vma_policy(a), vma_policy(b)) &&
1268		a->vm_file == b->vm_file &&
1269		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1270		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1271}
1272
1273/*
1274 * Do some basic sanity checking to see if we can re-use the anon_vma
1275 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1276 * the same as 'old', the other will be the new one that is trying
1277 * to share the anon_vma.
1278 *
1279 * NOTE! This runs with mm_sem held for reading, so it is possible that
1280 * the anon_vma of 'old' is concurrently in the process of being set up
1281 * by another page fault trying to merge _that_. But that's ok: if it
1282 * is being set up, that automatically means that it will be a singleton
1283 * acceptable for merging, so we can do all of this optimistically. But
1284 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1285 *
1286 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1287 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1288 * is to return an anon_vma that is "complex" due to having gone through
1289 * a fork).
1290 *
1291 * We also make sure that the two vma's are compatible (adjacent,
1292 * and with the same memory policies). That's all stable, even with just
1293 * a read lock on the mm_sem.
1294 */
1295static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1296{
1297	if (anon_vma_compatible(a, b)) {
1298		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1299
1300		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1301			return anon_vma;
1302	}
1303	return NULL;
1304}
1305
1306/*
1307 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1308 * neighbouring vmas for a suitable anon_vma, before it goes off
1309 * to allocate a new anon_vma.  It checks because a repetitive
1310 * sequence of mprotects and faults may otherwise lead to distinct
1311 * anon_vmas being allocated, preventing vma merge in subsequent
1312 * mprotect.
1313 */
1314struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1315{
1316	struct anon_vma *anon_vma = NULL;
1317
1318	/* Try next first. */
1319	if (vma->vm_next) {
1320		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1321		if (anon_vma)
1322			return anon_vma;
1323	}
1324
1325	/* Try prev next. */
1326	if (vma->vm_prev)
1327		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1329	/*
1330	 * We might reach here with anon_vma == NULL if we can't find
1331	 * any reusable anon_vma.
1332	 * There's no absolute need to look only at touching neighbours:
1333	 * we could search further afield for "compatible" anon_vmas.
1334	 * But it would probably just be a waste of time searching,
1335	 * or lead to too many vmas hanging off the same anon_vma.
1336	 * We're trying to allow mprotect remerging later on,
1337	 * not trying to minimize memory used for anon_vmas.
1338	 */
1339	return anon_vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1340}
 
1341
1342/*
1343 * If a hint addr is less than mmap_min_addr change hint to be as
1344 * low as possible but still greater than mmap_min_addr
1345 */
1346static inline unsigned long round_hint_to_min(unsigned long hint)
1347{
1348	hint &= PAGE_MASK;
1349	if (((void *)hint != NULL) &&
1350	    (hint < mmap_min_addr))
1351		return PAGE_ALIGN(mmap_min_addr);
1352	return hint;
1353}
1354
1355int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1356		       unsigned long len)
1357{
1358	unsigned long locked, lock_limit;
1359
1360	/*  mlock MCL_FUTURE? */
1361	if (flags & VM_LOCKED) {
1362		locked = len >> PAGE_SHIFT;
1363		locked += mm->locked_vm;
1364		lock_limit = rlimit(RLIMIT_MEMLOCK);
1365		lock_limit >>= PAGE_SHIFT;
1366		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1367			return -EAGAIN;
1368	}
1369	return 0;
1370}
1371
1372static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1373{
1374	if (S_ISREG(inode->i_mode))
1375		return MAX_LFS_FILESIZE;
1376
1377	if (S_ISBLK(inode->i_mode))
1378		return MAX_LFS_FILESIZE;
1379
1380	if (S_ISSOCK(inode->i_mode))
1381		return MAX_LFS_FILESIZE;
1382
1383	/* Special "we do even unsigned file positions" case */
1384	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1385		return 0;
1386
1387	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1388	return ULONG_MAX;
1389}
1390
1391static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1392				unsigned long pgoff, unsigned long len)
1393{
1394	u64 maxsize = file_mmap_size_max(file, inode);
1395
1396	if (maxsize && len > maxsize)
1397		return false;
1398	maxsize -= len;
1399	if (pgoff > maxsize >> PAGE_SHIFT)
1400		return false;
1401	return true;
1402}
1403
1404/*
1405 * The caller must write-lock current->mm->mmap_lock.
1406 */
1407unsigned long do_mmap(struct file *file, unsigned long addr,
 
1408			unsigned long len, unsigned long prot,
1409			unsigned long flags, unsigned long pgoff,
1410			unsigned long *populate, struct list_head *uf)
1411{
1412	struct mm_struct *mm = current->mm;
 
1413	vm_flags_t vm_flags;
1414	int pkey = 0;
1415
1416	*populate = 0;
1417
1418	if (!len)
1419		return -EINVAL;
1420
1421	/*
1422	 * Does the application expect PROT_READ to imply PROT_EXEC?
1423	 *
1424	 * (the exception is when the underlying filesystem is noexec
1425	 *  mounted, in which case we dont add PROT_EXEC.)
1426	 */
1427	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1428		if (!(file && path_noexec(&file->f_path)))
1429			prot |= PROT_EXEC;
1430
1431	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1432	if (flags & MAP_FIXED_NOREPLACE)
1433		flags |= MAP_FIXED;
1434
1435	if (!(flags & MAP_FIXED))
1436		addr = round_hint_to_min(addr);
1437
1438	/* Careful about overflows.. */
1439	len = PAGE_ALIGN(len);
1440	if (!len)
1441		return -ENOMEM;
1442
1443	/* offset overflow? */
1444	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1445		return -EOVERFLOW;
1446
1447	/* Too many mappings? */
1448	if (mm->map_count > sysctl_max_map_count)
1449		return -ENOMEM;
1450
1451	/* Obtain the address to map to. we verify (or select) it and ensure
1452	 * that it represents a valid section of the address space.
1453	 */
1454	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1455	if (IS_ERR_VALUE(addr))
1456		return addr;
1457
1458	if (flags & MAP_FIXED_NOREPLACE) {
1459		if (find_vma_intersection(mm, addr, addr + len))
1460			return -EEXIST;
1461	}
1462
1463	if (prot == PROT_EXEC) {
1464		pkey = execute_only_pkey(mm);
1465		if (pkey < 0)
1466			pkey = 0;
1467	}
1468
1469	/* Do simple checking here so the lower-level routines won't have
1470	 * to. we assume access permissions have been handled by the open
1471	 * of the memory object, so we don't do any here.
1472	 */
1473	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1474			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1475
1476	if (flags & MAP_LOCKED)
1477		if (!can_do_mlock())
1478			return -EPERM;
1479
1480	if (mlock_future_check(mm, vm_flags, len))
1481		return -EAGAIN;
1482
1483	if (file) {
1484		struct inode *inode = file_inode(file);
1485		unsigned long flags_mask;
1486
1487		if (!file_mmap_ok(file, inode, pgoff, len))
1488			return -EOVERFLOW;
 
1489
1490		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1491
 
1492		switch (flags & MAP_TYPE) {
1493		case MAP_SHARED:
1494			/*
1495			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1496			 * flags. E.g. MAP_SYNC is dangerous to use with
1497			 * MAP_SHARED as you don't know which consistency model
1498			 * you will get. We silently ignore unsupported flags
1499			 * with MAP_SHARED to preserve backward compatibility.
1500			 */
1501			flags &= LEGACY_MAP_MASK;
1502			fallthrough;
1503		case MAP_SHARED_VALIDATE:
1504			if (flags & ~flags_mask)
1505				return -EOPNOTSUPP;
1506			if (prot & PROT_WRITE) {
1507				if (!(file->f_mode & FMODE_WRITE))
1508					return -EACCES;
1509				if (IS_SWAPFILE(file->f_mapping->host))
1510					return -ETXTBSY;
1511			}
1512
1513			/*
1514			 * Make sure we don't allow writing to an append-only
1515			 * file..
1516			 */
1517			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1518				return -EACCES;
1519
1520			/*
1521			 * Make sure there are no mandatory locks on the file.
1522			 */
1523			if (locks_verify_locked(file))
1524				return -EAGAIN;
1525
1526			vm_flags |= VM_SHARED | VM_MAYSHARE;
1527			if (!(file->f_mode & FMODE_WRITE))
1528				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1529			fallthrough;
 
1530		case MAP_PRIVATE:
1531			if (!(file->f_mode & FMODE_READ))
1532				return -EACCES;
1533			if (path_noexec(&file->f_path)) {
1534				if (vm_flags & VM_EXEC)
1535					return -EPERM;
1536				vm_flags &= ~VM_MAYEXEC;
1537			}
1538
1539			if (!file->f_op->mmap)
1540				return -ENODEV;
1541			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1542				return -EINVAL;
1543			break;
1544
1545		default:
1546			return -EINVAL;
1547		}
1548	} else {
1549		switch (flags & MAP_TYPE) {
1550		case MAP_SHARED:
1551			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1552				return -EINVAL;
1553			/*
1554			 * Ignore pgoff.
1555			 */
1556			pgoff = 0;
1557			vm_flags |= VM_SHARED | VM_MAYSHARE;
1558			break;
1559		case MAP_PRIVATE:
1560			/*
1561			 * Set pgoff according to addr for anon_vma.
1562			 */
1563			pgoff = addr >> PAGE_SHIFT;
1564			break;
1565		default:
1566			return -EINVAL;
1567		}
1568	}
1569
1570	/*
1571	 * Set 'VM_NORESERVE' if we should not account for the
1572	 * memory use of this mapping.
1573	 */
1574	if (flags & MAP_NORESERVE) {
1575		/* We honor MAP_NORESERVE if allowed to overcommit */
1576		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1577			vm_flags |= VM_NORESERVE;
1578
1579		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1580		if (file && is_file_hugepages(file))
1581			vm_flags |= VM_NORESERVE;
1582	}
1583
1584	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1585	if (!IS_ERR_VALUE(addr) &&
1586	    ((vm_flags & VM_LOCKED) ||
1587	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1588		*populate = len;
1589	return addr;
1590}
1591
1592unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1593			      unsigned long prot, unsigned long flags,
1594			      unsigned long fd, unsigned long pgoff)
1595{
1596	struct file *file = NULL;
1597	unsigned long retval;
1598
1599	if (!(flags & MAP_ANONYMOUS)) {
1600		audit_mmap_fd(fd, flags);
 
 
1601		file = fget(fd);
1602		if (!file)
1603			return -EBADF;
1604		if (is_file_hugepages(file)) {
1605			len = ALIGN(len, huge_page_size(hstate_file(file)));
1606		} else if (unlikely(flags & MAP_HUGETLB)) {
1607			retval = -EINVAL;
1608			goto out_fput;
1609		}
1610	} else if (flags & MAP_HUGETLB) {
1611		struct ucounts *ucounts = NULL;
1612		struct hstate *hs;
1613
1614		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1615		if (!hs)
1616			return -EINVAL;
1617
1618		len = ALIGN(len, huge_page_size(hs));
1619		/*
1620		 * VM_NORESERVE is used because the reservations will be
1621		 * taken when vm_ops->mmap() is called
1622		 * A dummy user value is used because we are not locking
1623		 * memory so no accounting is necessary
1624		 */
1625		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1626				VM_NORESERVE,
1627				&ucounts, HUGETLB_ANONHUGE_INODE,
1628				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1629		if (IS_ERR(file))
1630			return PTR_ERR(file);
1631	}
1632
1633	flags &= ~MAP_DENYWRITE;
1634
1635	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1636out_fput:
1637	if (file)
1638		fput(file);
 
1639	return retval;
1640}
1641
1642SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1643		unsigned long, prot, unsigned long, flags,
1644		unsigned long, fd, unsigned long, pgoff)
1645{
1646	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1647}
1648
1649#ifdef __ARCH_WANT_SYS_OLD_MMAP
1650struct mmap_arg_struct {
1651	unsigned long addr;
1652	unsigned long len;
1653	unsigned long prot;
1654	unsigned long flags;
1655	unsigned long fd;
1656	unsigned long offset;
1657};
1658
1659SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1660{
1661	struct mmap_arg_struct a;
1662
1663	if (copy_from_user(&a, arg, sizeof(a)))
1664		return -EFAULT;
1665	if (offset_in_page(a.offset))
1666		return -EINVAL;
1667
1668	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1669			       a.offset >> PAGE_SHIFT);
1670}
1671#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1672
1673/*
1674 * Some shared mappings will want the pages marked read-only
1675 * to track write events. If so, we'll downgrade vm_page_prot
1676 * to the private version (using protection_map[] without the
1677 * VM_SHARED bit).
1678 */
1679int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1680{
1681	vm_flags_t vm_flags = vma->vm_flags;
1682	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1683
1684	/* If it was private or non-writable, the write bit is already clear */
1685	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1686		return 0;
1687
1688	/* The backer wishes to know when pages are first written to? */
1689	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1690		return 1;
1691
1692	/* The open routine did something to the protections that pgprot_modify
1693	 * won't preserve? */
1694	if (pgprot_val(vm_page_prot) !=
1695	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1696		return 0;
1697
1698	/* Do we need to track softdirty? */
1699	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1700		return 1;
1701
1702	/* Specialty mapping? */
1703	if (vm_flags & VM_PFNMAP)
1704		return 0;
1705
1706	/* Can the mapping track the dirty pages? */
1707	return vma->vm_file && vma->vm_file->f_mapping &&
1708		mapping_can_writeback(vma->vm_file->f_mapping);
1709}
1710
1711/*
1712 * We account for memory if it's a private writeable mapping,
1713 * not hugepages and VM_NORESERVE wasn't set.
1714 */
1715static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1716{
1717	/*
1718	 * hugetlb has its own accounting separate from the core VM
1719	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1720	 */
1721	if (file && is_file_hugepages(file))
1722		return 0;
1723
1724	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1725}
1726
1727unsigned long mmap_region(struct file *file, unsigned long addr,
1728		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1729		struct list_head *uf)
1730{
1731	struct mm_struct *mm = current->mm;
1732	struct vm_area_struct *vma, *prev, *merge;
 
1733	int error;
1734	struct rb_node **rb_link, *rb_parent;
1735	unsigned long charged = 0;
 
 
 
 
 
 
 
 
 
 
 
1736
1737	/* Check against address space limit. */
1738	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1739		unsigned long nr_pages;
1740
1741		/*
1742		 * MAP_FIXED may remove pages of mappings that intersects with
1743		 * requested mapping. Account for the pages it would unmap.
1744		 */
1745		nr_pages = count_vma_pages_range(mm, addr, addr + len);
 
 
 
1746
1747		if (!may_expand_vm(mm, vm_flags,
1748					(len >> PAGE_SHIFT) - nr_pages))
1749			return -ENOMEM;
1750	}
1751
1752	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1753	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1754		return -ENOMEM;
1755	/*
1756	 * Private writable mapping: check memory availability
1757	 */
1758	if (accountable_mapping(file, vm_flags)) {
1759		charged = len >> PAGE_SHIFT;
1760		if (security_vm_enough_memory_mm(mm, charged))
1761			return -ENOMEM;
1762		vm_flags |= VM_ACCOUNT;
1763	}
1764
1765	/*
1766	 * Can we just expand an old mapping?
1767	 */
1768	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1769			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1770	if (vma)
1771		goto out;
1772
1773	/*
1774	 * Determine the object being mapped and call the appropriate
1775	 * specific mapper. the address has already been validated, but
1776	 * not unmapped, but the maps are removed from the list.
1777	 */
1778	vma = vm_area_alloc(mm);
1779	if (!vma) {
1780		error = -ENOMEM;
1781		goto unacct_error;
1782	}
1783
 
1784	vma->vm_start = addr;
1785	vma->vm_end = addr + len;
1786	vma->vm_flags = vm_flags;
1787	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1788	vma->vm_pgoff = pgoff;
 
 
 
1789
1790	if (file) {
 
 
1791		if (vm_flags & VM_DENYWRITE) {
1792			error = deny_write_access(file);
1793			if (error)
1794				goto free_vma;
 
1795		}
1796		if (vm_flags & VM_SHARED) {
1797			error = mapping_map_writable(file->f_mapping);
1798			if (error)
1799				goto allow_write_and_free_vma;
1800		}
1801
1802		/* ->mmap() can change vma->vm_file, but must guarantee that
1803		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1804		 * and map writably if VM_SHARED is set. This usually means the
1805		 * new file must not have been exposed to user-space, yet.
1806		 */
1807		vma->vm_file = get_file(file);
1808		error = call_mmap(file, vma);
1809		if (error)
1810			goto unmap_and_free_vma;
 
 
1811
1812		/* Can addr have changed??
1813		 *
1814		 * Answer: Yes, several device drivers can do it in their
1815		 *         f_op->mmap method. -DaveM
1816		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1817		 *      be updated for vma_link()
1818		 */
1819		WARN_ON_ONCE(addr != vma->vm_start);
1820
1821		addr = vma->vm_start;
1822
1823		/* If vm_flags changed after call_mmap(), we should try merge vma again
1824		 * as we may succeed this time.
1825		 */
1826		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1827			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1828				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1829			if (merge) {
1830				/* ->mmap() can change vma->vm_file and fput the original file. So
1831				 * fput the vma->vm_file here or we would add an extra fput for file
1832				 * and cause general protection fault ultimately.
1833				 */
1834				fput(vma->vm_file);
1835				vm_area_free(vma);
1836				vma = merge;
1837				/* Update vm_flags to pick up the change. */
1838				vm_flags = vma->vm_flags;
1839				goto unmap_writable;
1840			}
1841		}
1842
1843		vm_flags = vma->vm_flags;
1844	} else if (vm_flags & VM_SHARED) {
 
 
1845		error = shmem_zero_setup(vma);
1846		if (error)
1847			goto free_vma;
1848	} else {
1849		vma_set_anonymous(vma);
1850	}
1851
1852	/* Allow architectures to sanity-check the vm_flags */
1853	if (!arch_validate_flags(vma->vm_flags)) {
1854		error = -EINVAL;
1855		if (file)
1856			goto unmap_and_free_vma;
1857		else
1858			goto free_vma;
 
 
 
 
 
 
1859	}
1860
1861	vma_link(mm, vma, prev, rb_link, rb_parent);
1862	/* Once vma denies write, undo our temporary denial count */
1863	if (file) {
1864unmap_writable:
1865		if (vm_flags & VM_SHARED)
1866			mapping_unmap_writable(file->f_mapping);
1867		if (vm_flags & VM_DENYWRITE)
1868			allow_write_access(file);
1869	}
1870	file = vma->vm_file;
 
 
 
 
1871out:
1872	perf_event_mmap(vma);
1873
1874	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
 
1875	if (vm_flags & VM_LOCKED) {
1876		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1877					is_vm_hugetlb_page(vma) ||
1878					vma == get_gate_vma(current->mm))
1879			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1880		else
1881			mm->locked_vm += (len >> PAGE_SHIFT);
1882	}
 
1883
1884	if (file)
1885		uprobe_mmap(vma);
1886
1887	/*
1888	 * New (or expanded) vma always get soft dirty status.
1889	 * Otherwise user-space soft-dirty page tracker won't
1890	 * be able to distinguish situation when vma area unmapped,
1891	 * then new mapped in-place (which must be aimed as
1892	 * a completely new data area).
1893	 */
1894	vma->vm_flags |= VM_SOFTDIRTY;
1895
1896	vma_set_page_prot(vma);
1897
1898	return addr;
1899
1900unmap_and_free_vma:
1901	fput(vma->vm_file);
 
1902	vma->vm_file = NULL;
 
1903
1904	/* Undo any partial mapping done by a device driver. */
1905	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1906	charged = 0;
1907	if (vm_flags & VM_SHARED)
1908		mapping_unmap_writable(file->f_mapping);
1909allow_write_and_free_vma:
1910	if (vm_flags & VM_DENYWRITE)
1911		allow_write_access(file);
1912free_vma:
1913	vm_area_free(vma);
1914unacct_error:
1915	if (charged)
1916		vm_unacct_memory(charged);
1917	return error;
1918}
1919
1920static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1921{
1922	/*
1923	 * We implement the search by looking for an rbtree node that
1924	 * immediately follows a suitable gap. That is,
1925	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1926	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1927	 * - gap_end - gap_start >= length
1928	 */
1929
1930	struct mm_struct *mm = current->mm;
1931	struct vm_area_struct *vma;
1932	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1933
1934	/* Adjust search length to account for worst case alignment overhead */
1935	length = info->length + info->align_mask;
1936	if (length < info->length)
1937		return -ENOMEM;
1938
1939	/* Adjust search limits by the desired length */
1940	if (info->high_limit < length)
1941		return -ENOMEM;
1942	high_limit = info->high_limit - length;
1943
1944	if (info->low_limit > high_limit)
1945		return -ENOMEM;
1946	low_limit = info->low_limit + length;
1947
1948	/* Check if rbtree root looks promising */
1949	if (RB_EMPTY_ROOT(&mm->mm_rb))
1950		goto check_highest;
1951	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1952	if (vma->rb_subtree_gap < length)
1953		goto check_highest;
1954
1955	while (true) {
1956		/* Visit left subtree if it looks promising */
1957		gap_end = vm_start_gap(vma);
1958		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1959			struct vm_area_struct *left =
1960				rb_entry(vma->vm_rb.rb_left,
1961					 struct vm_area_struct, vm_rb);
1962			if (left->rb_subtree_gap >= length) {
1963				vma = left;
1964				continue;
1965			}
1966		}
1967
1968		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1969check_current:
1970		/* Check if current node has a suitable gap */
1971		if (gap_start > high_limit)
1972			return -ENOMEM;
1973		if (gap_end >= low_limit &&
1974		    gap_end > gap_start && gap_end - gap_start >= length)
1975			goto found;
1976
1977		/* Visit right subtree if it looks promising */
1978		if (vma->vm_rb.rb_right) {
1979			struct vm_area_struct *right =
1980				rb_entry(vma->vm_rb.rb_right,
1981					 struct vm_area_struct, vm_rb);
1982			if (right->rb_subtree_gap >= length) {
1983				vma = right;
1984				continue;
1985			}
1986		}
1987
1988		/* Go back up the rbtree to find next candidate node */
1989		while (true) {
1990			struct rb_node *prev = &vma->vm_rb;
1991			if (!rb_parent(prev))
1992				goto check_highest;
1993			vma = rb_entry(rb_parent(prev),
1994				       struct vm_area_struct, vm_rb);
1995			if (prev == vma->vm_rb.rb_left) {
1996				gap_start = vm_end_gap(vma->vm_prev);
1997				gap_end = vm_start_gap(vma);
1998				goto check_current;
1999			}
2000		}
2001	}
2002
2003check_highest:
2004	/* Check highest gap, which does not precede any rbtree node */
2005	gap_start = mm->highest_vm_end;
2006	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2007	if (gap_start > high_limit)
2008		return -ENOMEM;
2009
2010found:
2011	/* We found a suitable gap. Clip it with the original low_limit. */
2012	if (gap_start < info->low_limit)
2013		gap_start = info->low_limit;
2014
2015	/* Adjust gap address to the desired alignment */
2016	gap_start += (info->align_offset - gap_start) & info->align_mask;
2017
2018	VM_BUG_ON(gap_start + info->length > info->high_limit);
2019	VM_BUG_ON(gap_start + info->length > gap_end);
2020	return gap_start;
2021}
2022
2023static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2024{
2025	struct mm_struct *mm = current->mm;
2026	struct vm_area_struct *vma;
2027	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2028
2029	/* Adjust search length to account for worst case alignment overhead */
2030	length = info->length + info->align_mask;
2031	if (length < info->length)
2032		return -ENOMEM;
2033
2034	/*
2035	 * Adjust search limits by the desired length.
2036	 * See implementation comment at top of unmapped_area().
2037	 */
2038	gap_end = info->high_limit;
2039	if (gap_end < length)
2040		return -ENOMEM;
2041	high_limit = gap_end - length;
2042
2043	if (info->low_limit > high_limit)
2044		return -ENOMEM;
2045	low_limit = info->low_limit + length;
2046
2047	/* Check highest gap, which does not precede any rbtree node */
2048	gap_start = mm->highest_vm_end;
2049	if (gap_start <= high_limit)
2050		goto found_highest;
2051
2052	/* Check if rbtree root looks promising */
2053	if (RB_EMPTY_ROOT(&mm->mm_rb))
2054		return -ENOMEM;
2055	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2056	if (vma->rb_subtree_gap < length)
2057		return -ENOMEM;
2058
2059	while (true) {
2060		/* Visit right subtree if it looks promising */
2061		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2062		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2063			struct vm_area_struct *right =
2064				rb_entry(vma->vm_rb.rb_right,
2065					 struct vm_area_struct, vm_rb);
2066			if (right->rb_subtree_gap >= length) {
2067				vma = right;
2068				continue;
2069			}
2070		}
2071
2072check_current:
2073		/* Check if current node has a suitable gap */
2074		gap_end = vm_start_gap(vma);
2075		if (gap_end < low_limit)
2076			return -ENOMEM;
2077		if (gap_start <= high_limit &&
2078		    gap_end > gap_start && gap_end - gap_start >= length)
2079			goto found;
2080
2081		/* Visit left subtree if it looks promising */
2082		if (vma->vm_rb.rb_left) {
2083			struct vm_area_struct *left =
2084				rb_entry(vma->vm_rb.rb_left,
2085					 struct vm_area_struct, vm_rb);
2086			if (left->rb_subtree_gap >= length) {
2087				vma = left;
2088				continue;
2089			}
2090		}
2091
2092		/* Go back up the rbtree to find next candidate node */
2093		while (true) {
2094			struct rb_node *prev = &vma->vm_rb;
2095			if (!rb_parent(prev))
2096				return -ENOMEM;
2097			vma = rb_entry(rb_parent(prev),
2098				       struct vm_area_struct, vm_rb);
2099			if (prev == vma->vm_rb.rb_right) {
2100				gap_start = vma->vm_prev ?
2101					vm_end_gap(vma->vm_prev) : 0;
2102				goto check_current;
2103			}
2104		}
2105	}
2106
2107found:
2108	/* We found a suitable gap. Clip it with the original high_limit. */
2109	if (gap_end > info->high_limit)
2110		gap_end = info->high_limit;
2111
2112found_highest:
2113	/* Compute highest gap address at the desired alignment */
2114	gap_end -= info->length;
2115	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2116
2117	VM_BUG_ON(gap_end < info->low_limit);
2118	VM_BUG_ON(gap_end < gap_start);
2119	return gap_end;
2120}
2121
2122/*
2123 * Search for an unmapped address range.
2124 *
2125 * We are looking for a range that:
2126 * - does not intersect with any VMA;
2127 * - is contained within the [low_limit, high_limit) interval;
2128 * - is at least the desired size.
2129 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2130 */
2131unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2132{
2133	unsigned long addr;
2134
2135	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2136		addr = unmapped_area_topdown(info);
2137	else
2138		addr = unmapped_area(info);
2139
2140	trace_vm_unmapped_area(addr, info);
2141	return addr;
2142}
2143
2144#ifndef arch_get_mmap_end
2145#define arch_get_mmap_end(addr)	(TASK_SIZE)
2146#endif
2147
2148#ifndef arch_get_mmap_base
2149#define arch_get_mmap_base(addr, base) (base)
2150#endif
2151
2152/* Get an address range which is currently unmapped.
2153 * For shmat() with addr=0.
2154 *
2155 * Ugly calling convention alert:
2156 * Return value with the low bits set means error value,
2157 * ie
2158 *	if (ret & ~PAGE_MASK)
2159 *		error = ret;
2160 *
2161 * This function "knows" that -ENOMEM has the bits set.
2162 */
2163#ifndef HAVE_ARCH_UNMAPPED_AREA
2164unsigned long
2165arch_get_unmapped_area(struct file *filp, unsigned long addr,
2166		unsigned long len, unsigned long pgoff, unsigned long flags)
2167{
2168	struct mm_struct *mm = current->mm;
2169	struct vm_area_struct *vma, *prev;
2170	struct vm_unmapped_area_info info;
2171	const unsigned long mmap_end = arch_get_mmap_end(addr);
2172
2173	if (len > mmap_end - mmap_min_addr)
2174		return -ENOMEM;
2175
2176	if (flags & MAP_FIXED)
2177		return addr;
2178
2179	if (addr) {
2180		addr = PAGE_ALIGN(addr);
2181		vma = find_vma_prev(mm, addr, &prev);
2182		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2183		    (!vma || addr + len <= vm_start_gap(vma)) &&
2184		    (!prev || addr >= vm_end_gap(prev)))
2185			return addr;
2186	}
 
 
 
 
 
 
2187
2188	info.flags = 0;
2189	info.length = len;
2190	info.low_limit = mm->mmap_base;
2191	info.high_limit = mmap_end;
2192	info.align_mask = 0;
2193	info.align_offset = 0;
2194	return vm_unmapped_area(&info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195}
2196#endif
2197
2198/*
2199 * This mmap-allocator allocates new areas top-down from below the
2200 * stack's low limit (the base):
2201 */
2202#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2203unsigned long
2204arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2205			  unsigned long len, unsigned long pgoff,
2206			  unsigned long flags)
2207{
2208	struct vm_area_struct *vma, *prev;
2209	struct mm_struct *mm = current->mm;
2210	struct vm_unmapped_area_info info;
2211	const unsigned long mmap_end = arch_get_mmap_end(addr);
2212
2213	/* requested length too big for entire address space */
2214	if (len > mmap_end - mmap_min_addr)
2215		return -ENOMEM;
2216
2217	if (flags & MAP_FIXED)
2218		return addr;
2219
2220	/* requesting a specific address */
2221	if (addr) {
2222		addr = PAGE_ALIGN(addr);
2223		vma = find_vma_prev(mm, addr, &prev);
2224		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2225				(!vma || addr + len <= vm_start_gap(vma)) &&
2226				(!prev || addr >= vm_end_gap(prev)))
2227			return addr;
2228	}
2229
2230	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2231	info.length = len;
2232	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2233	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2234	info.align_mask = 0;
2235	info.align_offset = 0;
2236	addr = vm_unmapped_area(&info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2237
2238	/*
2239	 * A failed mmap() very likely causes application failure,
2240	 * so fall back to the bottom-up function here. This scenario
2241	 * can happen with large stack limits and large mmap()
2242	 * allocations.
2243	 */
2244	if (offset_in_page(addr)) {
2245		VM_BUG_ON(addr != -ENOMEM);
2246		info.flags = 0;
2247		info.low_limit = TASK_UNMAPPED_BASE;
2248		info.high_limit = mmap_end;
2249		addr = vm_unmapped_area(&info);
2250	}
 
2251
2252	return addr;
2253}
2254#endif
2255
 
 
 
 
 
 
 
 
 
 
 
 
 
2256unsigned long
2257get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2258		unsigned long pgoff, unsigned long flags)
2259{
2260	unsigned long (*get_area)(struct file *, unsigned long,
2261				  unsigned long, unsigned long, unsigned long);
2262
2263	unsigned long error = arch_mmap_check(addr, len, flags);
2264	if (error)
2265		return error;
2266
2267	/* Careful about overflows.. */
2268	if (len > TASK_SIZE)
2269		return -ENOMEM;
2270
2271	get_area = current->mm->get_unmapped_area;
2272	if (file) {
2273		if (file->f_op->get_unmapped_area)
2274			get_area = file->f_op->get_unmapped_area;
2275	} else if (flags & MAP_SHARED) {
2276		/*
2277		 * mmap_region() will call shmem_zero_setup() to create a file,
2278		 * so use shmem's get_unmapped_area in case it can be huge.
2279		 * do_mmap() will clear pgoff, so match alignment.
2280		 */
2281		pgoff = 0;
2282		get_area = shmem_get_unmapped_area;
2283	}
2284
2285	addr = get_area(file, addr, len, pgoff, flags);
2286	if (IS_ERR_VALUE(addr))
2287		return addr;
2288
2289	if (addr > TASK_SIZE - len)
2290		return -ENOMEM;
2291	if (offset_in_page(addr))
2292		return -EINVAL;
2293
 
2294	error = security_mmap_addr(addr);
2295	return error ? error : addr;
2296}
2297
2298EXPORT_SYMBOL(get_unmapped_area);
2299
2300/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2301struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2302{
2303	struct rb_node *rb_node;
2304	struct vm_area_struct *vma;
2305
2306	/* Check the cache first. */
2307	vma = vmacache_find(mm, addr);
2308	if (likely(vma))
2309		return vma;
2310
2311	rb_node = mm->mm_rb.rb_node;
2312
2313	while (rb_node) {
2314		struct vm_area_struct *tmp;
2315
2316		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2317
2318		if (tmp->vm_end > addr) {
2319			vma = tmp;
2320			if (tmp->vm_start <= addr)
2321				break;
2322			rb_node = rb_node->rb_left;
2323		} else
2324			rb_node = rb_node->rb_right;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325	}
2326
2327	if (vma)
2328		vmacache_update(addr, vma);
2329	return vma;
2330}
2331
2332EXPORT_SYMBOL(find_vma);
2333
2334/*
2335 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2336 */
2337struct vm_area_struct *
2338find_vma_prev(struct mm_struct *mm, unsigned long addr,
2339			struct vm_area_struct **pprev)
2340{
2341	struct vm_area_struct *vma;
2342
2343	vma = find_vma(mm, addr);
2344	if (vma) {
2345		*pprev = vma->vm_prev;
2346	} else {
2347		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2348
2349		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
 
 
 
2350	}
2351	return vma;
2352}
2353
2354/*
2355 * Verify that the stack growth is acceptable and
2356 * update accounting. This is shared with both the
2357 * grow-up and grow-down cases.
2358 */
2359static int acct_stack_growth(struct vm_area_struct *vma,
2360			     unsigned long size, unsigned long grow)
2361{
2362	struct mm_struct *mm = vma->vm_mm;
 
2363	unsigned long new_start;
2364
2365	/* address space limit tests */
2366	if (!may_expand_vm(mm, vma->vm_flags, grow))
2367		return -ENOMEM;
2368
2369	/* Stack limit test */
2370	if (size > rlimit(RLIMIT_STACK))
2371		return -ENOMEM;
2372
2373	/* mlock limit tests */
2374	if (vma->vm_flags & VM_LOCKED) {
2375		unsigned long locked;
2376		unsigned long limit;
2377		locked = mm->locked_vm + grow;
2378		limit = rlimit(RLIMIT_MEMLOCK);
2379		limit >>= PAGE_SHIFT;
2380		if (locked > limit && !capable(CAP_IPC_LOCK))
2381			return -ENOMEM;
2382	}
2383
2384	/* Check to ensure the stack will not grow into a hugetlb-only region */
2385	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2386			vma->vm_end - size;
2387	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2388		return -EFAULT;
2389
2390	/*
2391	 * Overcommit..  This must be the final test, as it will
2392	 * update security statistics.
2393	 */
2394	if (security_vm_enough_memory_mm(mm, grow))
2395		return -ENOMEM;
2396
 
 
 
 
 
2397	return 0;
2398}
2399
2400#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2401/*
2402 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2403 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2404 */
2405int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2406{
2407	struct mm_struct *mm = vma->vm_mm;
2408	struct vm_area_struct *next;
2409	unsigned long gap_addr;
2410	int error = 0;
2411
2412	if (!(vma->vm_flags & VM_GROWSUP))
2413		return -EFAULT;
2414
2415	/* Guard against exceeding limits of the address space. */
2416	address &= PAGE_MASK;
2417	if (address >= (TASK_SIZE & PAGE_MASK))
2418		return -ENOMEM;
2419	address += PAGE_SIZE;
2420
2421	/* Enforce stack_guard_gap */
2422	gap_addr = address + stack_guard_gap;
2423
2424	/* Guard against overflow */
2425	if (gap_addr < address || gap_addr > TASK_SIZE)
2426		gap_addr = TASK_SIZE;
2427
2428	next = vma->vm_next;
2429	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2430		if (!(next->vm_flags & VM_GROWSUP))
2431			return -ENOMEM;
2432		/* Check that both stack segments have the same anon_vma? */
2433	}
2434
2435	/* We must make sure the anon_vma is allocated. */
2436	if (unlikely(anon_vma_prepare(vma)))
2437		return -ENOMEM;
 
2438
2439	/*
2440	 * vma->vm_start/vm_end cannot change under us because the caller
2441	 * is required to hold the mmap_lock in read mode.  We need the
2442	 * anon_vma lock to serialize against concurrent expand_stacks.
 
2443	 */
2444	anon_vma_lock_write(vma->anon_vma);
 
 
 
 
 
 
2445
2446	/* Somebody else might have raced and expanded it already */
2447	if (address > vma->vm_end) {
2448		unsigned long size, grow;
2449
2450		size = address - vma->vm_start;
2451		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2452
2453		error = -ENOMEM;
2454		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2455			error = acct_stack_growth(vma, size, grow);
2456			if (!error) {
2457				/*
2458				 * vma_gap_update() doesn't support concurrent
2459				 * updates, but we only hold a shared mmap_lock
2460				 * lock here, so we need to protect against
2461				 * concurrent vma expansions.
2462				 * anon_vma_lock_write() doesn't help here, as
2463				 * we don't guarantee that all growable vmas
2464				 * in a mm share the same root anon vma.
2465				 * So, we reuse mm->page_table_lock to guard
2466				 * against concurrent vma expansions.
2467				 */
2468				spin_lock(&mm->page_table_lock);
2469				if (vma->vm_flags & VM_LOCKED)
2470					mm->locked_vm += grow;
2471				vm_stat_account(mm, vma->vm_flags, grow);
2472				anon_vma_interval_tree_pre_update_vma(vma);
2473				vma->vm_end = address;
2474				anon_vma_interval_tree_post_update_vma(vma);
2475				if (vma->vm_next)
2476					vma_gap_update(vma->vm_next);
2477				else
2478					mm->highest_vm_end = vm_end_gap(vma);
2479				spin_unlock(&mm->page_table_lock);
2480
2481				perf_event_mmap(vma);
2482			}
2483		}
2484	}
2485	anon_vma_unlock_write(vma->anon_vma);
2486	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2487	validate_mm(mm);
2488	return error;
2489}
2490#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2491
2492/*
2493 * vma is the first one with address < vma->vm_start.  Have to extend vma.
2494 */
2495int expand_downwards(struct vm_area_struct *vma,
2496				   unsigned long address)
2497{
2498	struct mm_struct *mm = vma->vm_mm;
2499	struct vm_area_struct *prev;
2500	int error = 0;
2501
2502	address &= PAGE_MASK;
2503	if (address < mmap_min_addr)
2504		return -EPERM;
2505
2506	/* Enforce stack_guard_gap */
2507	prev = vma->vm_prev;
2508	/* Check that both stack segments have the same anon_vma? */
2509	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2510			vma_is_accessible(prev)) {
2511		if (address - prev->vm_end < stack_guard_gap)
2512			return -ENOMEM;
2513	}
2514
2515	/* We must make sure the anon_vma is allocated. */
 
 
 
2516	if (unlikely(anon_vma_prepare(vma)))
2517		return -ENOMEM;
2518
 
 
 
 
 
 
 
2519	/*
2520	 * vma->vm_start/vm_end cannot change under us because the caller
2521	 * is required to hold the mmap_lock in read mode.  We need the
2522	 * anon_vma lock to serialize against concurrent expand_stacks.
2523	 */
2524	anon_vma_lock_write(vma->anon_vma);
2525
2526	/* Somebody else might have raced and expanded it already */
2527	if (address < vma->vm_start) {
2528		unsigned long size, grow;
2529
2530		size = vma->vm_end - address;
2531		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2532
2533		error = -ENOMEM;
2534		if (grow <= vma->vm_pgoff) {
2535			error = acct_stack_growth(vma, size, grow);
2536			if (!error) {
2537				/*
2538				 * vma_gap_update() doesn't support concurrent
2539				 * updates, but we only hold a shared mmap_lock
2540				 * lock here, so we need to protect against
2541				 * concurrent vma expansions.
2542				 * anon_vma_lock_write() doesn't help here, as
2543				 * we don't guarantee that all growable vmas
2544				 * in a mm share the same root anon vma.
2545				 * So, we reuse mm->page_table_lock to guard
2546				 * against concurrent vma expansions.
2547				 */
2548				spin_lock(&mm->page_table_lock);
2549				if (vma->vm_flags & VM_LOCKED)
2550					mm->locked_vm += grow;
2551				vm_stat_account(mm, vma->vm_flags, grow);
2552				anon_vma_interval_tree_pre_update_vma(vma);
2553				vma->vm_start = address;
2554				vma->vm_pgoff -= grow;
2555				anon_vma_interval_tree_post_update_vma(vma);
2556				vma_gap_update(vma);
2557				spin_unlock(&mm->page_table_lock);
2558
2559				perf_event_mmap(vma);
2560			}
2561		}
2562	}
2563	anon_vma_unlock_write(vma->anon_vma);
2564	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2565	validate_mm(mm);
2566	return error;
2567}
2568
2569/* enforced gap between the expanding stack and other mappings. */
2570unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2571
2572static int __init cmdline_parse_stack_guard_gap(char *p)
2573{
2574	unsigned long val;
2575	char *endptr;
2576
2577	val = simple_strtoul(p, &endptr, 10);
2578	if (!*endptr)
2579		stack_guard_gap = val << PAGE_SHIFT;
2580
2581	return 0;
2582}
2583__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2584
2585#ifdef CONFIG_STACK_GROWSUP
2586int expand_stack(struct vm_area_struct *vma, unsigned long address)
2587{
2588	return expand_upwards(vma, address);
2589}
2590
2591struct vm_area_struct *
2592find_extend_vma(struct mm_struct *mm, unsigned long addr)
2593{
2594	struct vm_area_struct *vma, *prev;
2595
2596	addr &= PAGE_MASK;
2597	vma = find_vma_prev(mm, addr, &prev);
2598	if (vma && (vma->vm_start <= addr))
2599		return vma;
2600	/* don't alter vm_end if the coredump is running */
2601	if (!prev || expand_stack(prev, addr))
2602		return NULL;
2603	if (prev->vm_flags & VM_LOCKED)
2604		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
 
2605	return prev;
2606}
2607#else
2608int expand_stack(struct vm_area_struct *vma, unsigned long address)
2609{
2610	return expand_downwards(vma, address);
2611}
2612
2613struct vm_area_struct *
2614find_extend_vma(struct mm_struct *mm, unsigned long addr)
2615{
2616	struct vm_area_struct *vma;
2617	unsigned long start;
2618
2619	addr &= PAGE_MASK;
2620	vma = find_vma(mm, addr);
2621	if (!vma)
2622		return NULL;
2623	if (vma->vm_start <= addr)
2624		return vma;
2625	if (!(vma->vm_flags & VM_GROWSDOWN))
2626		return NULL;
2627	start = vma->vm_start;
2628	if (expand_stack(vma, addr))
2629		return NULL;
2630	if (vma->vm_flags & VM_LOCKED)
2631		populate_vma_page_range(vma, addr, start, NULL);
 
2632	return vma;
2633}
2634#endif
2635
2636EXPORT_SYMBOL_GPL(find_extend_vma);
2637
2638/*
2639 * Ok - we have the memory areas we should free on the vma list,
2640 * so release them, and do the vma updates.
2641 *
2642 * Called with the mm semaphore held.
2643 */
2644static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2645{
2646	unsigned long nr_accounted = 0;
2647
2648	/* Update high watermark before we lower total_vm */
2649	update_hiwater_vm(mm);
2650	do {
2651		long nrpages = vma_pages(vma);
2652
2653		if (vma->vm_flags & VM_ACCOUNT)
2654			nr_accounted += nrpages;
2655		vm_stat_account(mm, vma->vm_flags, -nrpages);
 
2656		vma = remove_vma(vma);
2657	} while (vma);
2658	vm_unacct_memory(nr_accounted);
2659	validate_mm(mm);
2660}
2661
2662/*
2663 * Get rid of page table information in the indicated region.
2664 *
2665 * Called with the mm semaphore held.
2666 */
2667static void unmap_region(struct mm_struct *mm,
2668		struct vm_area_struct *vma, struct vm_area_struct *prev,
2669		unsigned long start, unsigned long end)
2670{
2671	struct vm_area_struct *next = vma_next(mm, prev);
2672	struct mmu_gather tlb;
2673
2674	lru_add_drain();
2675	tlb_gather_mmu(&tlb, mm);
2676	update_hiwater_rss(mm);
2677	unmap_vmas(&tlb, vma, start, end);
2678	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2679				 next ? next->vm_start : USER_PGTABLES_CEILING);
2680	tlb_finish_mmu(&tlb);
2681}
2682
2683/*
2684 * Create a list of vma's touched by the unmap, removing them from the mm's
2685 * vma list as we go..
2686 */
2687static bool
2688detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2689	struct vm_area_struct *prev, unsigned long end)
2690{
2691	struct vm_area_struct **insertion_point;
2692	struct vm_area_struct *tail_vma = NULL;
 
2693
2694	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2695	vma->vm_prev = NULL;
2696	do {
2697		vma_rb_erase(vma, &mm->mm_rb);
2698		mm->map_count--;
2699		tail_vma = vma;
2700		vma = vma->vm_next;
2701	} while (vma && vma->vm_start < end);
2702	*insertion_point = vma;
2703	if (vma) {
2704		vma->vm_prev = prev;
2705		vma_gap_update(vma);
2706	} else
2707		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2708	tail_vma->vm_next = NULL;
2709
2710	/* Kill the cache */
2711	vmacache_invalidate(mm);
2712
2713	/*
2714	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2715	 * VM_GROWSUP VMA. Such VMAs can change their size under
2716	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2717	 */
2718	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2719		return false;
2720	if (prev && (prev->vm_flags & VM_GROWSUP))
2721		return false;
2722	return true;
2723}
2724
2725/*
2726 * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2727 * has already been checked or doesn't make sense to fail.
2728 */
2729int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2730		unsigned long addr, int new_below)
2731{
 
2732	struct vm_area_struct *new;
2733	int err;
2734
2735	if (vma->vm_ops && vma->vm_ops->may_split) {
2736		err = vma->vm_ops->may_split(vma, addr);
2737		if (err)
2738			return err;
2739	}
2740
2741	new = vm_area_dup(vma);
2742	if (!new)
2743		return -ENOMEM;
 
 
 
 
 
2744
2745	if (new_below)
2746		new->vm_end = addr;
2747	else {
2748		new->vm_start = addr;
2749		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2750	}
2751
2752	err = vma_dup_policy(vma, new);
2753	if (err)
 
2754		goto out_free_vma;
 
 
2755
2756	err = anon_vma_clone(new, vma);
2757	if (err)
2758		goto out_free_mpol;
2759
2760	if (new->vm_file)
2761		get_file(new->vm_file);
 
 
 
2762
2763	if (new->vm_ops && new->vm_ops->open)
2764		new->vm_ops->open(new);
2765
2766	if (new_below)
2767		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2768			((addr - new->vm_start) >> PAGE_SHIFT), new);
2769	else
2770		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2771
2772	/* Success. */
2773	if (!err)
2774		return 0;
2775
2776	/* Clean everything up if vma_adjust failed. */
2777	if (new->vm_ops && new->vm_ops->close)
2778		new->vm_ops->close(new);
2779	if (new->vm_file)
 
 
2780		fput(new->vm_file);
 
2781	unlink_anon_vmas(new);
2782 out_free_mpol:
2783	mpol_put(vma_policy(new));
2784 out_free_vma:
2785	vm_area_free(new);
 
2786	return err;
2787}
2788
2789/*
2790 * Split a vma into two pieces at address 'addr', a new vma is allocated
2791 * either for the first part or the tail.
2792 */
2793int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2794	      unsigned long addr, int new_below)
2795{
2796	if (mm->map_count >= sysctl_max_map_count)
2797		return -ENOMEM;
2798
2799	return __split_vma(mm, vma, addr, new_below);
2800}
2801
2802static inline void
2803unlock_range(struct vm_area_struct *start, unsigned long limit)
2804{
2805	struct mm_struct *mm = start->vm_mm;
2806	struct vm_area_struct *tmp = start;
2807
2808	while (tmp && tmp->vm_start < limit) {
2809		if (tmp->vm_flags & VM_LOCKED) {
2810			mm->locked_vm -= vma_pages(tmp);
2811			munlock_vma_pages_all(tmp);
2812		}
2813
2814		tmp = tmp->vm_next;
2815	}
2816}
2817
2818/* Munmap is split into 2 main parts -- this part which finds
2819 * what needs doing, and the areas themselves, which do the
2820 * work.  This now handles partial unmappings.
2821 * Jeremy Fitzhardinge <jeremy@goop.org>
2822 */
2823int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2824		struct list_head *uf, bool downgrade)
2825{
2826	unsigned long end;
2827	struct vm_area_struct *vma, *prev, *last;
2828
2829	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2830		return -EINVAL;
2831
2832	len = PAGE_ALIGN(len);
2833	end = start + len;
2834	if (len == 0)
2835		return -EINVAL;
2836
2837	/*
2838	 * arch_unmap() might do unmaps itself.  It must be called
2839	 * and finish any rbtree manipulation before this code
2840	 * runs and also starts to manipulate the rbtree.
2841	 */
2842	arch_unmap(mm, start, end);
2843
2844	/* Find the first overlapping VMA where start < vma->vm_end */
2845	vma = find_vma_intersection(mm, start, end);
2846	if (!vma)
2847		return 0;
2848	prev = vma->vm_prev;
 
 
 
 
 
 
2849
2850	/*
2851	 * If we need to split any vma, do it now to save pain later.
2852	 *
2853	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2854	 * unmapped vm_area_struct will remain in use: so lower split_vma
2855	 * places tmp vma above, and higher split_vma places tmp vma below.
2856	 */
2857	if (start > vma->vm_start) {
2858		int error;
2859
2860		/*
2861		 * Make sure that map_count on return from munmap() will
2862		 * not exceed its limit; but let map_count go just above
2863		 * its limit temporarily, to help free resources as expected.
2864		 */
2865		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2866			return -ENOMEM;
2867
2868		error = __split_vma(mm, vma, start, 0);
2869		if (error)
2870			return error;
2871		prev = vma;
2872	}
2873
2874	/* Does it split the last one? */
2875	last = find_vma(mm, end);
2876	if (last && end > last->vm_start) {
2877		int error = __split_vma(mm, last, end, 1);
2878		if (error)
2879			return error;
2880	}
2881	vma = vma_next(mm, prev);
2882
2883	if (unlikely(uf)) {
2884		/*
2885		 * If userfaultfd_unmap_prep returns an error the vmas
2886		 * will remain split, but userland will get a
2887		 * highly unexpected error anyway. This is no
2888		 * different than the case where the first of the two
2889		 * __split_vma fails, but we don't undo the first
2890		 * split, despite we could. This is unlikely enough
2891		 * failure that it's not worth optimizing it for.
2892		 */
2893		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2894		if (error)
2895			return error;
2896	}
2897
2898	/*
2899	 * unlock any mlock()ed ranges before detaching vmas
2900	 */
2901	if (mm->locked_vm)
2902		unlock_range(vma, end);
2903
2904	/* Detach vmas from rbtree */
2905	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2906		downgrade = false;
2907
2908	if (downgrade)
2909		mmap_write_downgrade(mm);
 
2910
 
 
 
 
2911	unmap_region(mm, vma, prev, start, end);
2912
2913	/* Fix up all other VM information */
2914	remove_vma_list(mm, vma);
2915
2916	return downgrade ? 1 : 0;
2917}
2918
2919int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2920	      struct list_head *uf)
2921{
2922	return __do_munmap(mm, start, len, uf, false);
2923}
2924
2925static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2926{
2927	int ret;
2928	struct mm_struct *mm = current->mm;
2929	LIST_HEAD(uf);
2930
2931	if (mmap_write_lock_killable(mm))
2932		return -EINTR;
2933
2934	ret = __do_munmap(mm, start, len, &uf, downgrade);
2935	/*
2936	 * Returning 1 indicates mmap_lock is downgraded.
2937	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2938	 * it to 0 before return.
2939	 */
2940	if (ret == 1) {
2941		mmap_read_unlock(mm);
2942		ret = 0;
2943	} else
2944		mmap_write_unlock(mm);
2945
2946	userfaultfd_unmap_complete(mm, &uf);
2947	return ret;
2948}
2949
2950int vm_munmap(unsigned long start, size_t len)
2951{
2952	return __vm_munmap(start, len, false);
2953}
2954EXPORT_SYMBOL(vm_munmap);
2955
2956SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2957{
2958	addr = untagged_addr(addr);
2959	profile_munmap(addr);
2960	return __vm_munmap(addr, len, true);
2961}
2962
2963
2964/*
2965 * Emulation of deprecated remap_file_pages() syscall.
2966 */
2967SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2968		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2969{
2970
2971	struct mm_struct *mm = current->mm;
2972	struct vm_area_struct *vma;
2973	unsigned long populate = 0;
2974	unsigned long ret = -EINVAL;
2975	struct file *file;
2976
2977	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2978		     current->comm, current->pid);
2979
2980	if (prot)
2981		return ret;
2982	start = start & PAGE_MASK;
2983	size = size & PAGE_MASK;
2984
2985	if (start + size <= start)
2986		return ret;
2987
2988	/* Does pgoff wrap? */
2989	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2990		return ret;
2991
2992	if (mmap_write_lock_killable(mm))
2993		return -EINTR;
2994
2995	vma = find_vma(mm, start);
2996
2997	if (!vma || !(vma->vm_flags & VM_SHARED))
2998		goto out;
2999
3000	if (start < vma->vm_start)
3001		goto out;
3002
3003	if (start + size > vma->vm_end) {
3004		struct vm_area_struct *next;
3005
3006		for (next = vma->vm_next; next; next = next->vm_next) {
3007			/* hole between vmas ? */
3008			if (next->vm_start != next->vm_prev->vm_end)
3009				goto out;
3010
3011			if (next->vm_file != vma->vm_file)
3012				goto out;
3013
3014			if (next->vm_flags != vma->vm_flags)
3015				goto out;
3016
3017			if (start + size <= next->vm_end)
3018				break;
3019		}
3020
3021		if (!next)
3022			goto out;
3023	}
3024
3025	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3026	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3027	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3028
3029	flags &= MAP_NONBLOCK;
3030	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3031	if (vma->vm_flags & VM_LOCKED)
3032		flags |= MAP_LOCKED;
3033
3034	file = get_file(vma->vm_file);
3035	ret = do_mmap(vma->vm_file, start, size,
3036			prot, flags, pgoff, &populate, NULL);
3037	fput(file);
3038out:
3039	mmap_write_unlock(mm);
3040	if (populate)
3041		mm_populate(ret, populate);
3042	if (!IS_ERR_VALUE(ret))
3043		ret = 0;
3044	return ret;
3045}
3046
3047/*
3048 *  this is really a simplified "do_mmap".  it only handles
3049 *  anonymous maps.  eventually we may be able to do some
3050 *  brk-specific accounting here.
3051 */
3052static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3053{
3054	struct mm_struct *mm = current->mm;
3055	struct vm_area_struct *vma, *prev;
3056	struct rb_node **rb_link, *rb_parent;
 
3057	pgoff_t pgoff = addr >> PAGE_SHIFT;
3058	int error;
3059	unsigned long mapped_addr;
3060
3061	/* Until we need other flags, refuse anything except VM_EXEC. */
3062	if ((flags & (~VM_EXEC)) != 0)
3063		return -EINVAL;
3064	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3065
3066	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3067	if (IS_ERR_VALUE(mapped_addr))
3068		return mapped_addr;
3069
3070	error = mlock_future_check(mm, mm->def_flags, len);
3071	if (error)
3072		return error;
3073
3074	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3075	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3076		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3077
3078	/* Check against address space limits *after* clearing old maps... */
3079	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3080		return -ENOMEM;
3081
3082	if (mm->map_count > sysctl_max_map_count)
3083		return -ENOMEM;
3084
3085	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3086		return -ENOMEM;
3087
3088	/* Can we just expand an old private anonymous mapping? */
3089	vma = vma_merge(mm, prev, addr, addr + len, flags,
3090			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3091	if (vma)
3092		goto out;
3093
3094	/*
3095	 * create a vma struct for an anonymous mapping
3096	 */
3097	vma = vm_area_alloc(mm);
3098	if (!vma) {
3099		vm_unacct_memory(len >> PAGE_SHIFT);
3100		return -ENOMEM;
3101	}
3102
3103	vma_set_anonymous(vma);
 
3104	vma->vm_start = addr;
3105	vma->vm_end = addr + len;
3106	vma->vm_pgoff = pgoff;
3107	vma->vm_flags = flags;
3108	vma->vm_page_prot = vm_get_page_prot(flags);
3109	vma_link(mm, vma, prev, rb_link, rb_parent);
3110out:
3111	perf_event_mmap(vma);
3112	mm->total_vm += len >> PAGE_SHIFT;
3113	mm->data_vm += len >> PAGE_SHIFT;
3114	if (flags & VM_LOCKED)
3115		mm->locked_vm += (len >> PAGE_SHIFT);
3116	vma->vm_flags |= VM_SOFTDIRTY;
3117	return 0;
3118}
3119
3120int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3121{
3122	struct mm_struct *mm = current->mm;
3123	unsigned long len;
3124	int ret;
3125	bool populate;
3126	LIST_HEAD(uf);
3127
3128	len = PAGE_ALIGN(request);
3129	if (len < request)
3130		return -ENOMEM;
3131	if (!len)
3132		return 0;
3133
3134	if (mmap_write_lock_killable(mm))
3135		return -EINTR;
3136
3137	ret = do_brk_flags(addr, len, flags, &uf);
3138	populate = ((mm->def_flags & VM_LOCKED) != 0);
3139	mmap_write_unlock(mm);
3140	userfaultfd_unmap_complete(mm, &uf);
3141	if (populate && !ret)
3142		mm_populate(addr, len);
3143	return ret;
3144}
3145EXPORT_SYMBOL(vm_brk_flags);
3146
3147int vm_brk(unsigned long addr, unsigned long len)
3148{
3149	return vm_brk_flags(addr, len, 0);
3150}
3151EXPORT_SYMBOL(vm_brk);
3152
3153/* Release all mmaps. */
3154void exit_mmap(struct mm_struct *mm)
3155{
3156	struct mmu_gather tlb;
3157	struct vm_area_struct *vma;
3158	unsigned long nr_accounted = 0;
3159
3160	/* mm's last user has gone, and its about to be pulled down */
3161	mmu_notifier_release(mm);
3162
3163	if (unlikely(mm_is_oom_victim(mm))) {
3164		/*
3165		 * Manually reap the mm to free as much memory as possible.
3166		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3167		 * this mm from further consideration.  Taking mm->mmap_lock for
3168		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3169		 * reaper will not run on this mm again after mmap_lock is
3170		 * dropped.
3171		 *
3172		 * Nothing can be holding mm->mmap_lock here and the above call
3173		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3174		 * __oom_reap_task_mm() will not block.
3175		 *
3176		 * This needs to be done before calling munlock_vma_pages_all(),
3177		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3178		 * reliably test it.
3179		 */
3180		(void)__oom_reap_task_mm(mm);
3181
3182		set_bit(MMF_OOM_SKIP, &mm->flags);
3183		mmap_write_lock(mm);
3184		mmap_write_unlock(mm);
3185	}
3186
3187	if (mm->locked_vm)
3188		unlock_range(mm->mmap, ULONG_MAX);
3189
3190	arch_exit_mmap(mm);
3191
3192	vma = mm->mmap;
3193	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3194		return;
3195
3196	lru_add_drain();
3197	flush_cache_mm(mm);
3198	tlb_gather_mmu_fullmm(&tlb, mm);
3199	/* update_hiwater_rss(mm) here? but nobody should be looking */
3200	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3201	unmap_vmas(&tlb, vma, 0, -1);
3202	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3203	tlb_finish_mmu(&tlb);
 
3204
3205	/*
3206	 * Walk the list again, actually closing and freeing it,
3207	 * with preemption enabled, without holding any MM locks.
3208	 */
3209	while (vma) {
3210		if (vma->vm_flags & VM_ACCOUNT)
3211			nr_accounted += vma_pages(vma);
3212		vma = remove_vma(vma);
3213		cond_resched();
3214	}
3215	vm_unacct_memory(nr_accounted);
 
 
3216}
3217
3218/* Insert vm structure into process list sorted by address
3219 * and into the inode's i_mmap tree.  If vm_file is non-NULL
3220 * then i_mmap_rwsem is taken here.
3221 */
3222int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3223{
3224	struct vm_area_struct *prev;
3225	struct rb_node **rb_link, *rb_parent;
3226
3227	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3228			   &prev, &rb_link, &rb_parent))
3229		return -ENOMEM;
3230	if ((vma->vm_flags & VM_ACCOUNT) &&
3231	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3232		return -ENOMEM;
3233
3234	/*
3235	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3236	 * until its first write fault, when page's anon_vma and index
3237	 * are set.  But now set the vm_pgoff it will almost certainly
3238	 * end up with (unless mremap moves it elsewhere before that
3239	 * first wfault), so /proc/pid/maps tells a consistent story.
3240	 *
3241	 * By setting it to reflect the virtual start address of the
3242	 * vma, merges and splits can happen in a seamless way, just
3243	 * using the existing file pgoff checks and manipulations.
3244	 * Similarly in do_mmap and in do_brk_flags.
3245	 */
3246	if (vma_is_anonymous(vma)) {
3247		BUG_ON(vma->anon_vma);
3248		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3249	}
 
 
 
 
 
 
 
 
 
3250
3251	vma_link(mm, vma, prev, rb_link, rb_parent);
3252	return 0;
3253}
3254
3255/*
3256 * Copy the vma structure to a new location in the same mm,
3257 * prior to moving page table entries, to effect an mremap move.
3258 */
3259struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3260	unsigned long addr, unsigned long len, pgoff_t pgoff,
3261	bool *need_rmap_locks)
3262{
3263	struct vm_area_struct *vma = *vmap;
3264	unsigned long vma_start = vma->vm_start;
3265	struct mm_struct *mm = vma->vm_mm;
3266	struct vm_area_struct *new_vma, *prev;
3267	struct rb_node **rb_link, *rb_parent;
 
3268	bool faulted_in_anon_vma = true;
3269
3270	/*
3271	 * If anonymous vma has not yet been faulted, update new pgoff
3272	 * to match new location, to increase its chance of merging.
3273	 */
3274	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3275		pgoff = addr >> PAGE_SHIFT;
3276		faulted_in_anon_vma = false;
3277	}
3278
3279	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3280		return NULL;	/* should never get here */
3281	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3282			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3283			    vma->vm_userfaultfd_ctx);
3284	if (new_vma) {
3285		/*
3286		 * Source vma may have been merged into new_vma
3287		 */
3288		if (unlikely(vma_start >= new_vma->vm_start &&
3289			     vma_start < new_vma->vm_end)) {
3290			/*
3291			 * The only way we can get a vma_merge with
3292			 * self during an mremap is if the vma hasn't
3293			 * been faulted in yet and we were allowed to
3294			 * reset the dst vma->vm_pgoff to the
3295			 * destination address of the mremap to allow
3296			 * the merge to happen. mremap must change the
3297			 * vm_pgoff linearity between src and dst vmas
3298			 * (in turn preventing a vma_merge) to be
3299			 * safe. It is only safe to keep the vm_pgoff
3300			 * linear if there are no pages mapped yet.
3301			 */
3302			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3303			*vmap = vma = new_vma;
3304		}
3305		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3306	} else {
3307		new_vma = vm_area_dup(vma);
3308		if (!new_vma)
3309			goto out;
3310		new_vma->vm_start = addr;
3311		new_vma->vm_end = addr + len;
3312		new_vma->vm_pgoff = pgoff;
3313		if (vma_dup_policy(vma, new_vma))
3314			goto out_free_vma;
3315		if (anon_vma_clone(new_vma, vma))
3316			goto out_free_mempol;
3317		if (new_vma->vm_file)
3318			get_file(new_vma->vm_file);
3319		if (new_vma->vm_ops && new_vma->vm_ops->open)
3320			new_vma->vm_ops->open(new_vma);
3321		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3322		*need_rmap_locks = false;
 
 
 
 
 
 
 
 
 
 
3323	}
3324	return new_vma;
3325
3326out_free_mempol:
3327	mpol_put(vma_policy(new_vma));
3328out_free_vma:
3329	vm_area_free(new_vma);
3330out:
3331	return NULL;
3332}
3333
3334/*
3335 * Return true if the calling process may expand its vm space by the passed
3336 * number of pages
3337 */
3338bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3339{
3340	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3341		return false;
3342
3343	if (is_data_mapping(flags) &&
3344	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3345		/* Workaround for Valgrind */
3346		if (rlimit(RLIMIT_DATA) == 0 &&
3347		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3348			return true;
3349
3350		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3351			     current->comm, current->pid,
3352			     (mm->data_vm + npages) << PAGE_SHIFT,
3353			     rlimit(RLIMIT_DATA),
3354			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3355
3356		if (!ignore_rlimit_data)
3357			return false;
3358	}
3359
3360	return true;
3361}
3362
3363void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3364{
3365	mm->total_vm += npages;
3366
3367	if (is_exec_mapping(flags))
3368		mm->exec_vm += npages;
3369	else if (is_stack_mapping(flags))
3370		mm->stack_vm += npages;
3371	else if (is_data_mapping(flags))
3372		mm->data_vm += npages;
3373}
3374
3375static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3376
3377/*
3378 * Having a close hook prevents vma merging regardless of flags.
3379 */
3380static void special_mapping_close(struct vm_area_struct *vma)
3381{
3382}
3383
3384static const char *special_mapping_name(struct vm_area_struct *vma)
3385{
3386	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3387}
3388
3389static int special_mapping_mremap(struct vm_area_struct *new_vma)
3390{
3391	struct vm_special_mapping *sm = new_vma->vm_private_data;
3392
3393	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3394		return -EFAULT;
3395
3396	if (sm->mremap)
3397		return sm->mremap(sm, new_vma);
3398
3399	return 0;
3400}
3401
3402static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3403{
3404	/*
3405	 * Forbid splitting special mappings - kernel has expectations over
3406	 * the number of pages in mapping. Together with VM_DONTEXPAND
3407	 * the size of vma should stay the same over the special mapping's
3408	 * lifetime.
3409	 */
3410	return -EINVAL;
3411}
3412
3413static const struct vm_operations_struct special_mapping_vmops = {
3414	.close = special_mapping_close,
3415	.fault = special_mapping_fault,
3416	.mremap = special_mapping_mremap,
3417	.name = special_mapping_name,
3418	/* vDSO code relies that VVAR can't be accessed remotely */
3419	.access = NULL,
3420	.may_split = special_mapping_split,
3421};
3422
3423static const struct vm_operations_struct legacy_special_mapping_vmops = {
3424	.close = special_mapping_close,
3425	.fault = special_mapping_fault,
3426};
3427
3428static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3429{
3430	struct vm_area_struct *vma = vmf->vma;
3431	pgoff_t pgoff;
3432	struct page **pages;
3433
3434	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3435		pages = vma->vm_private_data;
3436	} else {
3437		struct vm_special_mapping *sm = vma->vm_private_data;
3438
3439		if (sm->fault)
3440			return sm->fault(sm, vmf->vma, vmf);
3441
3442		pages = sm->pages;
3443	}
3444
3445	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3446		pgoff--;
3447
3448	if (*pages) {
3449		struct page *page = *pages;
3450		get_page(page);
3451		vmf->page = page;
3452		return 0;
3453	}
3454
3455	return VM_FAULT_SIGBUS;
3456}
3457
3458static struct vm_area_struct *__install_special_mapping(
3459	struct mm_struct *mm,
3460	unsigned long addr, unsigned long len,
3461	unsigned long vm_flags, void *priv,
3462	const struct vm_operations_struct *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3463{
3464	int ret;
3465	struct vm_area_struct *vma;
3466
3467	vma = vm_area_alloc(mm);
3468	if (unlikely(vma == NULL))
3469		return ERR_PTR(-ENOMEM);
3470
 
 
3471	vma->vm_start = addr;
3472	vma->vm_end = addr + len;
3473
3474	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3475	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3476
3477	vma->vm_ops = ops;
3478	vma->vm_private_data = priv;
3479
3480	ret = insert_vm_struct(mm, vma);
3481	if (ret)
3482		goto out;
3483
3484	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3485
3486	perf_event_mmap(vma);
3487
3488	return vma;
3489
3490out:
3491	vm_area_free(vma);
3492	return ERR_PTR(ret);
3493}
3494
3495bool vma_is_special_mapping(const struct vm_area_struct *vma,
3496	const struct vm_special_mapping *sm)
3497{
3498	return vma->vm_private_data == sm &&
3499		(vma->vm_ops == &special_mapping_vmops ||
3500		 vma->vm_ops == &legacy_special_mapping_vmops);
3501}
3502
3503/*
3504 * Called with mm->mmap_lock held for writing.
3505 * Insert a new vma covering the given region, with the given flags.
3506 * Its pages are supplied by the given array of struct page *.
3507 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3508 * The region past the last page supplied will always produce SIGBUS.
3509 * The array pointer and the pages it points to are assumed to stay alive
3510 * for as long as this mapping might exist.
3511 */
3512struct vm_area_struct *_install_special_mapping(
3513	struct mm_struct *mm,
3514	unsigned long addr, unsigned long len,
3515	unsigned long vm_flags, const struct vm_special_mapping *spec)
3516{
3517	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3518					&special_mapping_vmops);
3519}
3520
3521int install_special_mapping(struct mm_struct *mm,
3522			    unsigned long addr, unsigned long len,
3523			    unsigned long vm_flags, struct page **pages)
3524{
3525	struct vm_area_struct *vma = __install_special_mapping(
3526		mm, addr, len, vm_flags, (void *)pages,
3527		&legacy_special_mapping_vmops);
3528
3529	return PTR_ERR_OR_ZERO(vma);
3530}
3531
3532static DEFINE_MUTEX(mm_all_locks_mutex);
3533
3534static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3535{
3536	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3537		/*
3538		 * The LSB of head.next can't change from under us
3539		 * because we hold the mm_all_locks_mutex.
3540		 */
3541		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3542		/*
3543		 * We can safely modify head.next after taking the
3544		 * anon_vma->root->rwsem. If some other vma in this mm shares
3545		 * the same anon_vma we won't take it again.
3546		 *
3547		 * No need of atomic instructions here, head.next
3548		 * can't change from under us thanks to the
3549		 * anon_vma->root->rwsem.
3550		 */
3551		if (__test_and_set_bit(0, (unsigned long *)
3552				       &anon_vma->root->rb_root.rb_root.rb_node))
3553			BUG();
3554	}
3555}
3556
3557static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3558{
3559	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3560		/*
3561		 * AS_MM_ALL_LOCKS can't change from under us because
3562		 * we hold the mm_all_locks_mutex.
3563		 *
3564		 * Operations on ->flags have to be atomic because
3565		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3566		 * mm_all_locks_mutex, there may be other cpus
3567		 * changing other bitflags in parallel to us.
3568		 */
3569		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3570			BUG();
3571		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3572	}
3573}
3574
3575/*
3576 * This operation locks against the VM for all pte/vma/mm related
3577 * operations that could ever happen on a certain mm. This includes
3578 * vmtruncate, try_to_unmap, and all page faults.
3579 *
3580 * The caller must take the mmap_lock in write mode before calling
3581 * mm_take_all_locks(). The caller isn't allowed to release the
3582 * mmap_lock until mm_drop_all_locks() returns.
3583 *
3584 * mmap_lock in write mode is required in order to block all operations
3585 * that could modify pagetables and free pages without need of
3586 * altering the vma layout. It's also needed in write mode to avoid new
 
3587 * anon_vmas to be associated with existing vmas.
3588 *
3589 * A single task can't take more than one mm_take_all_locks() in a row
3590 * or it would deadlock.
3591 *
3592 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3593 * mapping->flags avoid to take the same lock twice, if more than one
3594 * vma in this mm is backed by the same anon_vma or address_space.
3595 *
3596 * We take locks in following order, accordingly to comment at beginning
3597 * of mm/rmap.c:
3598 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3599 *     hugetlb mapping);
3600 *   - all i_mmap_rwsem locks;
3601 *   - all anon_vma->rwseml
3602 *
3603 * We can take all locks within these types randomly because the VM code
3604 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3605 * mm_all_locks_mutex.
3606 *
3607 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3608 * that may have to take thousand of locks.
3609 *
3610 * mm_take_all_locks() can fail if it's interrupted by signals.
3611 */
3612int mm_take_all_locks(struct mm_struct *mm)
3613{
3614	struct vm_area_struct *vma;
3615	struct anon_vma_chain *avc;
3616
3617	BUG_ON(mmap_read_trylock(mm));
3618
3619	mutex_lock(&mm_all_locks_mutex);
3620
3621	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3622		if (signal_pending(current))
3623			goto out_unlock;
3624		if (vma->vm_file && vma->vm_file->f_mapping &&
3625				is_vm_hugetlb_page(vma))
3626			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3627	}
3628
3629	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3630		if (signal_pending(current))
3631			goto out_unlock;
3632		if (vma->vm_file && vma->vm_file->f_mapping &&
3633				!is_vm_hugetlb_page(vma))
3634			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3635	}
3636
3637	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3638		if (signal_pending(current))
3639			goto out_unlock;
3640		if (vma->anon_vma)
3641			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3642				vm_lock_anon_vma(mm, avc->anon_vma);
3643	}
3644
3645	return 0;
3646
3647out_unlock:
3648	mm_drop_all_locks(mm);
3649	return -EINTR;
3650}
3651
3652static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3653{
3654	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3655		/*
3656		 * The LSB of head.next can't change to 0 from under
3657		 * us because we hold the mm_all_locks_mutex.
3658		 *
3659		 * We must however clear the bitflag before unlocking
3660		 * the vma so the users using the anon_vma->rb_root will
3661		 * never see our bitflag.
3662		 *
3663		 * No need of atomic instructions here, head.next
3664		 * can't change from under us until we release the
3665		 * anon_vma->root->rwsem.
3666		 */
3667		if (!__test_and_clear_bit(0, (unsigned long *)
3668					  &anon_vma->root->rb_root.rb_root.rb_node))
3669			BUG();
3670		anon_vma_unlock_write(anon_vma);
3671	}
3672}
3673
3674static void vm_unlock_mapping(struct address_space *mapping)
3675{
3676	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3677		/*
3678		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3679		 * because we hold the mm_all_locks_mutex.
3680		 */
3681		i_mmap_unlock_write(mapping);
3682		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3683					&mapping->flags))
3684			BUG();
3685	}
3686}
3687
3688/*
3689 * The mmap_lock cannot be released by the caller until
3690 * mm_drop_all_locks() returns.
3691 */
3692void mm_drop_all_locks(struct mm_struct *mm)
3693{
3694	struct vm_area_struct *vma;
3695	struct anon_vma_chain *avc;
3696
3697	BUG_ON(mmap_read_trylock(mm));
3698	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3699
3700	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3701		if (vma->anon_vma)
3702			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3703				vm_unlock_anon_vma(avc->anon_vma);
3704		if (vma->vm_file && vma->vm_file->f_mapping)
3705			vm_unlock_mapping(vma->vm_file->f_mapping);
3706	}
3707
3708	mutex_unlock(&mm_all_locks_mutex);
3709}
3710
3711/*
3712 * initialise the percpu counter for VM
3713 */
3714void __init mmap_init(void)
3715{
3716	int ret;
3717
3718	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3719	VM_BUG_ON(ret);
3720}
3721
3722/*
3723 * Initialise sysctl_user_reserve_kbytes.
3724 *
3725 * This is intended to prevent a user from starting a single memory hogging
3726 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3727 * mode.
3728 *
3729 * The default value is min(3% of free memory, 128MB)
3730 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3731 */
3732static int init_user_reserve(void)
3733{
3734	unsigned long free_kbytes;
3735
3736	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3737
3738	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3739	return 0;
3740}
3741subsys_initcall(init_user_reserve);
3742
3743/*
3744 * Initialise sysctl_admin_reserve_kbytes.
3745 *
3746 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3747 * to log in and kill a memory hogging process.
3748 *
3749 * Systems with more than 256MB will reserve 8MB, enough to recover
3750 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3751 * only reserve 3% of free pages by default.
3752 */
3753static int init_admin_reserve(void)
3754{
3755	unsigned long free_kbytes;
3756
3757	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3758
3759	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3760	return 0;
3761}
3762subsys_initcall(init_admin_reserve);
3763
3764/*
3765 * Reinititalise user and admin reserves if memory is added or removed.
3766 *
3767 * The default user reserve max is 128MB, and the default max for the
3768 * admin reserve is 8MB. These are usually, but not always, enough to
3769 * enable recovery from a memory hogging process using login/sshd, a shell,
3770 * and tools like top. It may make sense to increase or even disable the
3771 * reserve depending on the existence of swap or variations in the recovery
3772 * tools. So, the admin may have changed them.
3773 *
3774 * If memory is added and the reserves have been eliminated or increased above
3775 * the default max, then we'll trust the admin.
3776 *
3777 * If memory is removed and there isn't enough free memory, then we
3778 * need to reset the reserves.
3779 *
3780 * Otherwise keep the reserve set by the admin.
3781 */
3782static int reserve_mem_notifier(struct notifier_block *nb,
3783			     unsigned long action, void *data)
3784{
3785	unsigned long tmp, free_kbytes;
3786
3787	switch (action) {
3788	case MEM_ONLINE:
3789		/* Default max is 128MB. Leave alone if modified by operator. */
3790		tmp = sysctl_user_reserve_kbytes;
3791		if (0 < tmp && tmp < (1UL << 17))
3792			init_user_reserve();
3793
3794		/* Default max is 8MB.  Leave alone if modified by operator. */
3795		tmp = sysctl_admin_reserve_kbytes;
3796		if (0 < tmp && tmp < (1UL << 13))
3797			init_admin_reserve();
3798
3799		break;
3800	case MEM_OFFLINE:
3801		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3802
3803		if (sysctl_user_reserve_kbytes > free_kbytes) {
3804			init_user_reserve();
3805			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3806				sysctl_user_reserve_kbytes);
3807		}
3808
3809		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3810			init_admin_reserve();
3811			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3812				sysctl_admin_reserve_kbytes);
3813		}
3814		break;
3815	default:
3816		break;
3817	}
3818	return NOTIFY_OK;
3819}
3820
3821static struct notifier_block reserve_mem_nb = {
3822	.notifier_call = reserve_mem_notifier,
3823};
3824
3825static int __meminit init_reserve_notifier(void)
3826{
3827	if (register_hotmemory_notifier(&reserve_mem_nb))
3828		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3829
3830	return 0;
3831}
3832subsys_initcall(init_reserve_notifier);
v3.5.6
 
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
 
 
 
   9#include <linux/slab.h>
  10#include <linux/backing-dev.h>
  11#include <linux/mm.h>
 
  12#include <linux/shm.h>
  13#include <linux/mman.h>
  14#include <linux/pagemap.h>
  15#include <linux/swap.h>
  16#include <linux/syscalls.h>
  17#include <linux/capability.h>
  18#include <linux/init.h>
  19#include <linux/file.h>
  20#include <linux/fs.h>
  21#include <linux/personality.h>
  22#include <linux/security.h>
  23#include <linux/hugetlb.h>
 
  24#include <linux/profile.h>
  25#include <linux/export.h>
  26#include <linux/mount.h>
  27#include <linux/mempolicy.h>
  28#include <linux/rmap.h>
  29#include <linux/mmu_notifier.h>
 
  30#include <linux/perf_event.h>
  31#include <linux/audit.h>
  32#include <linux/khugepaged.h>
  33#include <linux/uprobes.h>
 
 
 
 
 
 
 
 
 
  34
  35#include <asm/uaccess.h>
  36#include <asm/cacheflush.h>
  37#include <asm/tlb.h>
  38#include <asm/mmu_context.h>
  39
 
 
 
  40#include "internal.h"
  41
  42#ifndef arch_mmap_check
  43#define arch_mmap_check(addr, len, flags)	(0)
  44#endif
  45
  46#ifndef arch_rebalance_pgtables
  47#define arch_rebalance_pgtables(addr, len)		(addr)
 
 
  48#endif
 
 
 
 
 
 
 
 
  49
  50static void unmap_region(struct mm_struct *mm,
  51		struct vm_area_struct *vma, struct vm_area_struct *prev,
  52		unsigned long start, unsigned long end);
  53
  54/*
  55 * WARNING: the debugging will use recursive algorithms so never enable this
  56 * unless you know what you are doing.
  57 */
  58#undef DEBUG_MM_RB
  59
  60/* description of effects of mapping type and prot in current implementation.
  61 * this is due to the limited x86 page protection hardware.  The expected
  62 * behavior is in parens:
  63 *
  64 * map_type	prot
  65 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  66 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  67 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  68 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  69 *		
  70 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  71 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  72 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  73 *
 
 
 
 
 
  74 */
  75pgprot_t protection_map[16] = {
  76	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  77	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  78};
  79
 
 
 
 
 
 
 
  80pgprot_t vm_get_page_prot(unsigned long vm_flags)
  81{
  82	return __pgprot(pgprot_val(protection_map[vm_flags &
  83				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  84			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 
 
  85}
  86EXPORT_SYMBOL(vm_get_page_prot);
  87
  88int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
  89int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
  90int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  91/*
  92 * Make sure vm_committed_as in one cacheline and not cacheline shared with
  93 * other variables. It can be updated by several CPUs frequently.
  94 */
  95struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  96
  97/*
  98 * Check that a process has enough memory to allocate a new virtual
  99 * mapping. 0 means there is enough memory for the allocation to
 100 * succeed and -ENOMEM implies there is not.
 101 *
 102 * We currently support three overcommit policies, which are set via the
 103 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 104 *
 105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 106 * Additional code 2002 Jul 20 by Robert Love.
 107 *
 108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 109 *
 110 * Note this is a helper function intended to be used by LSMs which
 111 * wish to use this logic.
 112 */
 113int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 114{
 115	unsigned long free, allowed;
 116
 117	vm_acct_memory(pages);
 118
 119	/*
 120	 * Sometimes we want to use more memory than we have
 121	 */
 122	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 123		return 0;
 124
 125	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 126		free = global_page_state(NR_FREE_PAGES);
 127		free += global_page_state(NR_FILE_PAGES);
 128
 129		/*
 130		 * shmem pages shouldn't be counted as free in this
 131		 * case, they can't be purged, only swapped out, and
 132		 * that won't affect the overall amount of available
 133		 * memory in the system.
 134		 */
 135		free -= global_page_state(NR_SHMEM);
 136
 137		free += nr_swap_pages;
 138
 139		/*
 140		 * Any slabs which are created with the
 141		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 142		 * which are reclaimable, under pressure.  The dentry
 143		 * cache and most inode caches should fall into this
 144		 */
 145		free += global_page_state(NR_SLAB_RECLAIMABLE);
 146
 147		/*
 148		 * Leave reserved pages. The pages are not for anonymous pages.
 149		 */
 150		if (free <= totalreserve_pages)
 151			goto error;
 152		else
 153			free -= totalreserve_pages;
 154
 155		/*
 156		 * Leave the last 3% for root
 157		 */
 158		if (!cap_sys_admin)
 159			free -= free / 32;
 160
 161		if (free > pages)
 162			return 0;
 163
 164		goto error;
 165	}
 166
 167	allowed = (totalram_pages - hugetlb_total_pages())
 168	       	* sysctl_overcommit_ratio / 100;
 169	/*
 170	 * Leave the last 3% for root
 171	 */
 172	if (!cap_sys_admin)
 173		allowed -= allowed / 32;
 174	allowed += total_swap_pages;
 175
 176	/* Don't let a single process grow too big:
 177	   leave 3% of the size of this process for other processes */
 178	if (mm)
 179		allowed -= mm->total_vm / 32;
 180
 181	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 182		return 0;
 183error:
 184	vm_unacct_memory(pages);
 185
 186	return -ENOMEM;
 187}
 188
 189/*
 190 * Requires inode->i_mapping->i_mmap_mutex
 191 */
 192static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 193		struct file *file, struct address_space *mapping)
 194{
 195	if (vma->vm_flags & VM_DENYWRITE)
 196		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
 197	if (vma->vm_flags & VM_SHARED)
 198		mapping->i_mmap_writable--;
 199
 200	flush_dcache_mmap_lock(mapping);
 201	if (unlikely(vma->vm_flags & VM_NONLINEAR))
 202		list_del_init(&vma->shared.vm_set.list);
 203	else
 204		vma_prio_tree_remove(vma, &mapping->i_mmap);
 205	flush_dcache_mmap_unlock(mapping);
 206}
 207
 208/*
 209 * Unlink a file-based vm structure from its prio_tree, to hide
 210 * vma from rmap and vmtruncate before freeing its page tables.
 211 */
 212void unlink_file_vma(struct vm_area_struct *vma)
 213{
 214	struct file *file = vma->vm_file;
 215
 216	if (file) {
 217		struct address_space *mapping = file->f_mapping;
 218		mutex_lock(&mapping->i_mmap_mutex);
 219		__remove_shared_vm_struct(vma, file, mapping);
 220		mutex_unlock(&mapping->i_mmap_mutex);
 221	}
 222}
 223
 224/*
 225 * Close a vm structure and free it, returning the next.
 226 */
 227static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 228{
 229	struct vm_area_struct *next = vma->vm_next;
 230
 231	might_sleep();
 232	if (vma->vm_ops && vma->vm_ops->close)
 233		vma->vm_ops->close(vma);
 234	if (vma->vm_file) {
 235		fput(vma->vm_file);
 236		if (vma->vm_flags & VM_EXECUTABLE)
 237			removed_exe_file_vma(vma->vm_mm);
 238	}
 239	mpol_put(vma_policy(vma));
 240	kmem_cache_free(vm_area_cachep, vma);
 241	return next;
 242}
 243
 244static unsigned long do_brk(unsigned long addr, unsigned long len);
 245
 246SYSCALL_DEFINE1(brk, unsigned long, brk)
 247{
 248	unsigned long rlim, retval;
 249	unsigned long newbrk, oldbrk;
 250	struct mm_struct *mm = current->mm;
 
 251	unsigned long min_brk;
 
 
 
 
 
 
 252
 253	down_write(&mm->mmap_sem);
 254
 255#ifdef CONFIG_COMPAT_BRK
 256	/*
 257	 * CONFIG_COMPAT_BRK can still be overridden by setting
 258	 * randomize_va_space to 2, which will still cause mm->start_brk
 259	 * to be arbitrarily shifted
 260	 */
 261	if (current->brk_randomized)
 262		min_brk = mm->start_brk;
 263	else
 264		min_brk = mm->end_data;
 265#else
 266	min_brk = mm->start_brk;
 267#endif
 268	if (brk < min_brk)
 269		goto out;
 270
 271	/*
 272	 * Check against rlimit here. If this check is done later after the test
 273	 * of oldbrk with newbrk then it can escape the test and let the data
 274	 * segment grow beyond its set limit the in case where the limit is
 275	 * not page aligned -Ram Gupta
 276	 */
 277	rlim = rlimit(RLIMIT_DATA);
 278	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
 279			(mm->end_data - mm->start_data) > rlim)
 280		goto out;
 281
 282	newbrk = PAGE_ALIGN(brk);
 283	oldbrk = PAGE_ALIGN(mm->brk);
 284	if (oldbrk == newbrk)
 285		goto set_brk;
 
 
 286
 287	/* Always allow shrinking brk. */
 
 
 
 288	if (brk <= mm->brk) {
 289		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 290			goto set_brk;
 291		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 292	}
 293
 294	/* Check against existing mmap mappings. */
 295	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 
 296		goto out;
 297
 298	/* Ok, looks good - let it rip. */
 299	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 300		goto out;
 301set_brk:
 302	mm->brk = brk;
 
 
 
 
 
 
 
 
 
 
 
 
 303out:
 304	retval = mm->brk;
 305	up_write(&mm->mmap_sem);
 306	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307}
 308
 309#ifdef DEBUG_MM_RB
 310static int browse_rb(struct rb_root *root)
 311{
 312	int i = 0, j;
 
 313	struct rb_node *nd, *pn = NULL;
 314	unsigned long prev = 0, pend = 0;
 315
 316	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 317		struct vm_area_struct *vma;
 318		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 319		if (vma->vm_start < prev)
 320			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
 321		if (vma->vm_start < pend)
 322			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
 323		if (vma->vm_start > vma->vm_end)
 324			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325		i++;
 326		pn = nd;
 327		prev = vma->vm_start;
 328		pend = vma->vm_end;
 329	}
 330	j = 0;
 331	for (nd = pn; nd; nd = rb_prev(nd)) {
 332		j++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 333	}
 334	if (i != j)
 335		printk("backwards %d, forwards %d\n", j, i), i = 0;
 336	return i;
 337}
 338
 339void validate_mm(struct mm_struct *mm)
 340{
 341	int bug = 0;
 342	int i = 0;
 343	struct vm_area_struct *tmp = mm->mmap;
 344	while (tmp) {
 345		tmp = tmp->vm_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 346		i++;
 347	}
 348	if (i != mm->map_count)
 349		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
 350	i = browse_rb(&mm->mm_rb);
 351	if (i != mm->map_count)
 352		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
 353	BUG_ON(bug);
 
 
 
 
 
 
 
 
 
 
 354}
 355#else
 
 356#define validate_mm(mm) do { } while (0)
 357#endif
 358
 359static struct vm_area_struct *
 360find_vma_prepare(struct mm_struct *mm, unsigned long addr,
 361		struct vm_area_struct **pprev, struct rb_node ***rb_link,
 362		struct rb_node ** rb_parent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363{
 364	struct vm_area_struct * vma;
 365	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366
 367	__rb_link = &mm->mm_rb.rb_node;
 368	rb_prev = __rb_parent = NULL;
 369	vma = NULL;
 370
 371	while (*__rb_link) {
 372		struct vm_area_struct *vma_tmp;
 373
 374		__rb_parent = *__rb_link;
 375		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 376
 377		if (vma_tmp->vm_end > addr) {
 378			vma = vma_tmp;
 379			if (vma_tmp->vm_start <= addr)
 380				break;
 381			__rb_link = &__rb_parent->rb_left;
 382		} else {
 383			rb_prev = __rb_parent;
 384			__rb_link = &__rb_parent->rb_right;
 385		}
 386	}
 387
 388	*pprev = NULL;
 389	if (rb_prev)
 390		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 391	*rb_link = __rb_link;
 392	*rb_parent = __rb_parent;
 393	return vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 394}
 395
 396void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 397		struct rb_node **rb_link, struct rb_node *rb_parent)
 398{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 400	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
 
 
 401}
 402
 403static void __vma_link_file(struct vm_area_struct *vma)
 404{
 405	struct file *file;
 406
 407	file = vma->vm_file;
 408	if (file) {
 409		struct address_space *mapping = file->f_mapping;
 410
 411		if (vma->vm_flags & VM_DENYWRITE)
 412			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
 413		if (vma->vm_flags & VM_SHARED)
 414			mapping->i_mmap_writable++;
 415
 416		flush_dcache_mmap_lock(mapping);
 417		if (unlikely(vma->vm_flags & VM_NONLINEAR))
 418			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
 419		else
 420			vma_prio_tree_insert(vma, &mapping->i_mmap);
 421		flush_dcache_mmap_unlock(mapping);
 422	}
 423}
 424
 425static void
 426__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 427	struct vm_area_struct *prev, struct rb_node **rb_link,
 428	struct rb_node *rb_parent)
 429{
 430	__vma_link_list(mm, vma, prev, rb_parent);
 431	__vma_link_rb(mm, vma, rb_link, rb_parent);
 432}
 433
 434static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 435			struct vm_area_struct *prev, struct rb_node **rb_link,
 436			struct rb_node *rb_parent)
 437{
 438	struct address_space *mapping = NULL;
 439
 440	if (vma->vm_file)
 441		mapping = vma->vm_file->f_mapping;
 442
 443	if (mapping)
 444		mutex_lock(&mapping->i_mmap_mutex);
 445
 446	__vma_link(mm, vma, prev, rb_link, rb_parent);
 447	__vma_link_file(vma);
 448
 449	if (mapping)
 450		mutex_unlock(&mapping->i_mmap_mutex);
 451
 452	mm->map_count++;
 453	validate_mm(mm);
 454}
 455
 456/*
 457 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 458 * mm's list and rbtree.  It has already been inserted into the prio_tree.
 459 */
 460static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 461{
 462	struct vm_area_struct *__vma, *prev;
 463	struct rb_node **rb_link, *rb_parent;
 464
 465	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
 466	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
 
 467	__vma_link(mm, vma, prev, rb_link, rb_parent);
 468	mm->map_count++;
 469}
 470
 471static inline void
 472__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 473		struct vm_area_struct *prev)
 474{
 475	struct vm_area_struct *next = vma->vm_next;
 476
 477	prev->vm_next = next;
 478	if (next)
 479		next->vm_prev = prev;
 480	rb_erase(&vma->vm_rb, &mm->mm_rb);
 481	if (mm->mmap_cache == vma)
 482		mm->mmap_cache = prev;
 483}
 484
 485/*
 486 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 487 * is already present in an i_mmap tree without adjusting the tree.
 488 * The following helper function should be used when such adjustments
 489 * are necessary.  The "insert" vma (if any) is to be inserted
 490 * before we drop the necessary locks.
 491 */
 492int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 493	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 
 494{
 495	struct mm_struct *mm = vma->vm_mm;
 496	struct vm_area_struct *next = vma->vm_next;
 497	struct vm_area_struct *importer = NULL;
 498	struct address_space *mapping = NULL;
 499	struct prio_tree_root *root = NULL;
 500	struct anon_vma *anon_vma = NULL;
 501	struct file *file = vma->vm_file;
 
 502	long adjust_next = 0;
 503	int remove_next = 0;
 504
 505	if (next && !insert) {
 506		struct vm_area_struct *exporter = NULL;
 507
 508		if (end >= next->vm_end) {
 509			/*
 510			 * vma expands, overlapping all the next, and
 511			 * perhaps the one after too (mprotect case 6).
 
 
 512			 */
 513again:			remove_next = 1 + (end > next->vm_end);
 514			end = next->vm_end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 515			exporter = next;
 516			importer = vma;
 
 
 
 
 
 
 
 
 517		} else if (end > next->vm_start) {
 518			/*
 519			 * vma expands, overlapping part of the next:
 520			 * mprotect case 5 shifting the boundary up.
 521			 */
 522			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 523			exporter = next;
 524			importer = vma;
 
 525		} else if (end < vma->vm_end) {
 526			/*
 527			 * vma shrinks, and !insert tells it's not
 528			 * split_vma inserting another: so it must be
 529			 * mprotect case 4 shifting the boundary down.
 530			 */
 531			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
 532			exporter = vma;
 533			importer = next;
 
 534		}
 535
 536		/*
 537		 * Easily overlooked: when mprotect shifts the boundary,
 538		 * make sure the expanding vma has anon_vma set if the
 539		 * shrinking vma had, to cover any anon pages imported.
 540		 */
 541		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 542			if (anon_vma_clone(importer, exporter))
 543				return -ENOMEM;
 544			importer->anon_vma = exporter->anon_vma;
 
 
 
 545		}
 546	}
 
 
 547
 548	if (file) {
 549		mapping = file->f_mapping;
 550		if (!(vma->vm_flags & VM_NONLINEAR)) {
 551			root = &mapping->i_mmap;
 552			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 553
 554			if (adjust_next)
 555				uprobe_munmap(next, next->vm_start,
 556							next->vm_end);
 557		}
 558
 559		mutex_lock(&mapping->i_mmap_mutex);
 560		if (insert) {
 561			/*
 562			 * Put into prio_tree now, so instantiated pages
 563			 * are visible to arm/parisc __flush_dcache_page
 564			 * throughout; but we cannot insert into address
 565			 * space until vma start or end is updated.
 566			 */
 567			__vma_link_file(insert);
 568		}
 569	}
 570
 571	vma_adjust_trans_huge(vma, start, end, adjust_next);
 572
 573	/*
 574	 * When changing only vma->vm_end, we don't really need anon_vma
 575	 * lock. This is a fairly rare case by itself, but the anon_vma
 576	 * lock may be shared between many sibling processes.  Skipping
 577	 * the lock for brk adjustments makes a difference sometimes.
 578	 */
 579	if (vma->anon_vma && (importer || start != vma->vm_start)) {
 580		anon_vma = vma->anon_vma;
 581		anon_vma_lock(anon_vma);
 582	}
 583
 584	if (root) {
 585		flush_dcache_mmap_lock(mapping);
 586		vma_prio_tree_remove(vma, root);
 587		if (adjust_next)
 588			vma_prio_tree_remove(next, root);
 589	}
 590
 591	vma->vm_start = start;
 592	vma->vm_end = end;
 
 
 
 
 
 
 593	vma->vm_pgoff = pgoff;
 594	if (adjust_next) {
 595		next->vm_start += adjust_next << PAGE_SHIFT;
 596		next->vm_pgoff += adjust_next;
 597	}
 598
 599	if (root) {
 600		if (adjust_next)
 601			vma_prio_tree_insert(next, root);
 602		vma_prio_tree_insert(vma, root);
 603		flush_dcache_mmap_unlock(mapping);
 604	}
 605
 606	if (remove_next) {
 607		/*
 608		 * vma_merge has merged next into vma, and needs
 609		 * us to remove next before dropping the locks.
 610		 */
 611		__vma_unlink(mm, next, vma);
 
 
 
 
 
 
 
 
 
 
 
 
 612		if (file)
 613			__remove_shared_vm_struct(next, file, mapping);
 614	} else if (insert) {
 615		/*
 616		 * split_vma has split insert from vma, and needs
 617		 * us to insert it before dropping the locks
 618		 * (it may either follow vma or precede it).
 619		 */
 620		__insert_vm_struct(mm, insert);
 
 
 
 
 
 
 
 
 
 621	}
 622
 623	if (anon_vma)
 624		anon_vma_unlock(anon_vma);
 625	if (mapping)
 626		mutex_unlock(&mapping->i_mmap_mutex);
 
 
 627
 628	if (root) {
 
 629		uprobe_mmap(vma);
 630
 631		if (adjust_next)
 632			uprobe_mmap(next);
 633	}
 634
 635	if (remove_next) {
 636		if (file) {
 637			uprobe_munmap(next, next->vm_start, next->vm_end);
 638			fput(file);
 639			if (next->vm_flags & VM_EXECUTABLE)
 640				removed_exe_file_vma(mm);
 641		}
 642		if (next->anon_vma)
 643			anon_vma_merge(vma, next);
 644		mm->map_count--;
 645		mpol_put(vma_policy(next));
 646		kmem_cache_free(vm_area_cachep, next);
 647		/*
 648		 * In mprotect's case 6 (see comments on vma_merge),
 649		 * we must remove another next too. It would clutter
 650		 * up the code too much to do both in one go.
 651		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652		if (remove_next == 2) {
 653			next = vma->vm_next;
 
 654			goto again;
 655		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 656	}
 657	if (insert && file)
 658		uprobe_mmap(insert);
 659
 660	validate_mm(mm);
 661
 662	return 0;
 663}
 664
 665/*
 666 * If the vma has a ->close operation then the driver probably needs to release
 667 * per-vma resources, so we don't attempt to merge those.
 668 */
 669static inline int is_mergeable_vma(struct vm_area_struct *vma,
 670			struct file *file, unsigned long vm_flags)
 
 671{
 672	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
 673	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
 
 
 
 
 
 
 
 674		return 0;
 675	if (vma->vm_file != file)
 676		return 0;
 677	if (vma->vm_ops && vma->vm_ops->close)
 678		return 0;
 
 
 679	return 1;
 680}
 681
 682static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 683					struct anon_vma *anon_vma2,
 684					struct vm_area_struct *vma)
 685{
 686	/*
 687	 * The list_is_singular() test is to avoid merging VMA cloned from
 688	 * parents. This can improve scalability caused by anon_vma lock.
 689	 */
 690	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 691		list_is_singular(&vma->anon_vma_chain)))
 692		return 1;
 693	return anon_vma1 == anon_vma2;
 694}
 695
 696/*
 697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 698 * in front of (at a lower virtual address and file offset than) the vma.
 699 *
 700 * We cannot merge two vmas if they have differently assigned (non-NULL)
 701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 702 *
 703 * We don't check here for the merged mmap wrapping around the end of pagecache
 704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 705 * wrap, nor mmaps which cover the final page at index -1UL.
 706 */
 707static int
 708can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 709	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 710{
 711	if (is_mergeable_vma(vma, file, vm_flags) &&
 712	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 713		if (vma->vm_pgoff == vm_pgoff)
 714			return 1;
 715	}
 716	return 0;
 717}
 718
 719/*
 720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 721 * beyond (at a higher virtual address and file offset than) the vma.
 722 *
 723 * We cannot merge two vmas if they have differently assigned (non-NULL)
 724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 725 */
 726static int
 727can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 728	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 
 
 729{
 730	if (is_mergeable_vma(vma, file, vm_flags) &&
 731	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 732		pgoff_t vm_pglen;
 733		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 734		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 735			return 1;
 736	}
 737	return 0;
 738}
 739
 740/*
 741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 742 * whether that can be merged with its predecessor or its successor.
 743 * Or both (it neatly fills a hole).
 744 *
 745 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 746 * certain not to be mapped by the time vma_merge is called; but when
 747 * called for mprotect, it is certain to be already mapped (either at
 748 * an offset within prev, or at the start of next), and the flags of
 749 * this area are about to be changed to vm_flags - and the no-change
 750 * case has already been eliminated.
 751 *
 752 * The following mprotect cases have to be considered, where AAAA is
 753 * the area passed down from mprotect_fixup, never extending beyond one
 754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 755 *
 756 *     AAAA             AAAA                AAAA          AAAA
 757 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 758 *    cannot merge    might become    might become    might become
 759 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 760 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 761 *    mremap move:                                    PPPPNNNNNNNN 8
 762 *        AAAA
 763 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 764 *    might become    case 1 below    case 2 below    case 3 below
 765 *
 766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
 767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768 */
 769struct vm_area_struct *vma_merge(struct mm_struct *mm,
 770			struct vm_area_struct *prev, unsigned long addr,
 771			unsigned long end, unsigned long vm_flags,
 772		     	struct anon_vma *anon_vma, struct file *file,
 773			pgoff_t pgoff, struct mempolicy *policy)
 
 774{
 775	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
 776	struct vm_area_struct *area, *next;
 777	int err;
 778
 779	/*
 780	 * We later require that vma->vm_flags == vm_flags,
 781	 * so this tests vma->vm_flags & VM_SPECIAL, too.
 782	 */
 783	if (vm_flags & VM_SPECIAL)
 784		return NULL;
 785
 786	if (prev)
 787		next = prev->vm_next;
 788	else
 789		next = mm->mmap;
 790	area = next;
 791	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
 792		next = next->vm_next;
 793
 
 
 
 
 
 794	/*
 795	 * Can it merge with the predecessor?
 796	 */
 797	if (prev && prev->vm_end == addr &&
 798  			mpol_equal(vma_policy(prev), policy) &&
 799			can_vma_merge_after(prev, vm_flags,
 800						anon_vma, file, pgoff)) {
 
 801		/*
 802		 * OK, it can.  Can we now merge in the successor as well?
 803		 */
 804		if (next && end == next->vm_start &&
 805				mpol_equal(policy, vma_policy(next)) &&
 806				can_vma_merge_before(next, vm_flags,
 807					anon_vma, file, pgoff+pglen) &&
 
 
 808				is_mergeable_anon_vma(prev->anon_vma,
 809						      next->anon_vma, NULL)) {
 810							/* cases 1, 6 */
 811			err = vma_adjust(prev, prev->vm_start,
 812				next->vm_end, prev->vm_pgoff, NULL);
 
 813		} else					/* cases 2, 5, 7 */
 814			err = vma_adjust(prev, prev->vm_start,
 815				end, prev->vm_pgoff, NULL);
 816		if (err)
 817			return NULL;
 818		khugepaged_enter_vma_merge(prev);
 819		return prev;
 820	}
 821
 822	/*
 823	 * Can this new request be merged in front of next?
 824	 */
 825	if (next && end == next->vm_start &&
 826 			mpol_equal(policy, vma_policy(next)) &&
 827			can_vma_merge_before(next, vm_flags,
 828					anon_vma, file, pgoff+pglen)) {
 
 829		if (prev && addr < prev->vm_end)	/* case 4 */
 830			err = vma_adjust(prev, prev->vm_start,
 831				addr, prev->vm_pgoff, NULL);
 832		else					/* cases 3, 8 */
 833			err = vma_adjust(area, addr, next->vm_end,
 834				next->vm_pgoff - pglen, NULL);
 
 
 
 
 
 
 
 835		if (err)
 836			return NULL;
 837		khugepaged_enter_vma_merge(area);
 838		return area;
 839	}
 840
 841	return NULL;
 842}
 843
 844/*
 845 * Rough compatbility check to quickly see if it's even worth looking
 846 * at sharing an anon_vma.
 847 *
 848 * They need to have the same vm_file, and the flags can only differ
 849 * in things that mprotect may change.
 850 *
 851 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
 852 * we can merge the two vma's. For example, we refuse to merge a vma if
 853 * there is a vm_ops->close() function, because that indicates that the
 854 * driver is doing some kind of reference counting. But that doesn't
 855 * really matter for the anon_vma sharing case.
 856 */
 857static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
 858{
 859	return a->vm_end == b->vm_start &&
 860		mpol_equal(vma_policy(a), vma_policy(b)) &&
 861		a->vm_file == b->vm_file &&
 862		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
 863		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
 864}
 865
 866/*
 867 * Do some basic sanity checking to see if we can re-use the anon_vma
 868 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
 869 * the same as 'old', the other will be the new one that is trying
 870 * to share the anon_vma.
 871 *
 872 * NOTE! This runs with mm_sem held for reading, so it is possible that
 873 * the anon_vma of 'old' is concurrently in the process of being set up
 874 * by another page fault trying to merge _that_. But that's ok: if it
 875 * is being set up, that automatically means that it will be a singleton
 876 * acceptable for merging, so we can do all of this optimistically. But
 877 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
 878 *
 879 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
 880 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
 881 * is to return an anon_vma that is "complex" due to having gone through
 882 * a fork).
 883 *
 884 * We also make sure that the two vma's are compatible (adjacent,
 885 * and with the same memory policies). That's all stable, even with just
 886 * a read lock on the mm_sem.
 887 */
 888static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
 889{
 890	if (anon_vma_compatible(a, b)) {
 891		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
 892
 893		if (anon_vma && list_is_singular(&old->anon_vma_chain))
 894			return anon_vma;
 895	}
 896	return NULL;
 897}
 898
 899/*
 900 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
 901 * neighbouring vmas for a suitable anon_vma, before it goes off
 902 * to allocate a new anon_vma.  It checks because a repetitive
 903 * sequence of mprotects and faults may otherwise lead to distinct
 904 * anon_vmas being allocated, preventing vma merge in subsequent
 905 * mprotect.
 906 */
 907struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
 908{
 909	struct anon_vma *anon_vma;
 910	struct vm_area_struct *near;
 
 
 
 
 
 
 
 
 
 
 911
 912	near = vma->vm_next;
 913	if (!near)
 914		goto try_prev;
 915
 916	anon_vma = reusable_anon_vma(near, vma, near);
 917	if (anon_vma)
 918		return anon_vma;
 919try_prev:
 920	near = vma->vm_prev;
 921	if (!near)
 922		goto none;
 923
 924	anon_vma = reusable_anon_vma(near, near, vma);
 925	if (anon_vma)
 926		return anon_vma;
 927none:
 928	/*
 
 
 929	 * There's no absolute need to look only at touching neighbours:
 930	 * we could search further afield for "compatible" anon_vmas.
 931	 * But it would probably just be a waste of time searching,
 932	 * or lead to too many vmas hanging off the same anon_vma.
 933	 * We're trying to allow mprotect remerging later on,
 934	 * not trying to minimize memory used for anon_vmas.
 935	 */
 936	return NULL;
 937}
 938
 939#ifdef CONFIG_PROC_FS
 940void vm_stat_account(struct mm_struct *mm, unsigned long flags,
 941						struct file *file, long pages)
 942{
 943	const unsigned long stack_flags
 944		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
 945
 946	if (file) {
 947		mm->shared_vm += pages;
 948		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
 949			mm->exec_vm += pages;
 950	} else if (flags & stack_flags)
 951		mm->stack_vm += pages;
 952	if (flags & (VM_RESERVED|VM_IO))
 953		mm->reserved_vm += pages;
 954}
 955#endif /* CONFIG_PROC_FS */
 956
 957/*
 958 * If a hint addr is less than mmap_min_addr change hint to be as
 959 * low as possible but still greater than mmap_min_addr
 960 */
 961static inline unsigned long round_hint_to_min(unsigned long hint)
 962{
 963	hint &= PAGE_MASK;
 964	if (((void *)hint != NULL) &&
 965	    (hint < mmap_min_addr))
 966		return PAGE_ALIGN(mmap_min_addr);
 967	return hint;
 968}
 969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970/*
 971 * The caller must hold down_write(&current->mm->mmap_sem).
 972 */
 973
 974unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
 975			unsigned long len, unsigned long prot,
 976			unsigned long flags, unsigned long pgoff)
 
 977{
 978	struct mm_struct * mm = current->mm;
 979	struct inode *inode;
 980	vm_flags_t vm_flags;
 
 
 
 
 
 
 981
 982	/*
 983	 * Does the application expect PROT_READ to imply PROT_EXEC?
 984	 *
 985	 * (the exception is when the underlying filesystem is noexec
 986	 *  mounted, in which case we dont add PROT_EXEC.)
 987	 */
 988	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
 989		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
 990			prot |= PROT_EXEC;
 991
 992	if (!len)
 993		return -EINVAL;
 
 994
 995	if (!(flags & MAP_FIXED))
 996		addr = round_hint_to_min(addr);
 997
 998	/* Careful about overflows.. */
 999	len = PAGE_ALIGN(len);
1000	if (!len)
1001		return -ENOMEM;
1002
1003	/* offset overflow? */
1004	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1005               return -EOVERFLOW;
1006
1007	/* Too many mappings? */
1008	if (mm->map_count > sysctl_max_map_count)
1009		return -ENOMEM;
1010
1011	/* Obtain the address to map to. we verify (or select) it and ensure
1012	 * that it represents a valid section of the address space.
1013	 */
1014	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1015	if (addr & ~PAGE_MASK)
1016		return addr;
1017
 
 
 
 
 
 
 
 
 
 
 
1018	/* Do simple checking here so the lower-level routines won't have
1019	 * to. we assume access permissions have been handled by the open
1020	 * of the memory object, so we don't do any here.
1021	 */
1022	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1023			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1024
1025	if (flags & MAP_LOCKED)
1026		if (!can_do_mlock())
1027			return -EPERM;
1028
1029	/* mlock MCL_FUTURE? */
1030	if (vm_flags & VM_LOCKED) {
1031		unsigned long locked, lock_limit;
1032		locked = len >> PAGE_SHIFT;
1033		locked += mm->locked_vm;
1034		lock_limit = rlimit(RLIMIT_MEMLOCK);
1035		lock_limit >>= PAGE_SHIFT;
1036		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1037			return -EAGAIN;
1038	}
1039
1040	inode = file ? file->f_path.dentry->d_inode : NULL;
1041
1042	if (file) {
1043		switch (flags & MAP_TYPE) {
1044		case MAP_SHARED:
1045			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1046				return -EACCES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047
1048			/*
1049			 * Make sure we don't allow writing to an append-only
1050			 * file..
1051			 */
1052			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1053				return -EACCES;
1054
1055			/*
1056			 * Make sure there are no mandatory locks on the file.
1057			 */
1058			if (locks_verify_locked(inode))
1059				return -EAGAIN;
1060
1061			vm_flags |= VM_SHARED | VM_MAYSHARE;
1062			if (!(file->f_mode & FMODE_WRITE))
1063				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1064
1065			/* fall through */
1066		case MAP_PRIVATE:
1067			if (!(file->f_mode & FMODE_READ))
1068				return -EACCES;
1069			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1070				if (vm_flags & VM_EXEC)
1071					return -EPERM;
1072				vm_flags &= ~VM_MAYEXEC;
1073			}
1074
1075			if (!file->f_op || !file->f_op->mmap)
1076				return -ENODEV;
 
 
1077			break;
1078
1079		default:
1080			return -EINVAL;
1081		}
1082	} else {
1083		switch (flags & MAP_TYPE) {
1084		case MAP_SHARED:
 
 
1085			/*
1086			 * Ignore pgoff.
1087			 */
1088			pgoff = 0;
1089			vm_flags |= VM_SHARED | VM_MAYSHARE;
1090			break;
1091		case MAP_PRIVATE:
1092			/*
1093			 * Set pgoff according to addr for anon_vma.
1094			 */
1095			pgoff = addr >> PAGE_SHIFT;
1096			break;
1097		default:
1098			return -EINVAL;
1099		}
1100	}
1101
1102	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1103}
1104
1105SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1106		unsigned long, prot, unsigned long, flags,
1107		unsigned long, fd, unsigned long, pgoff)
1108{
1109	struct file *file = NULL;
1110	unsigned long retval = -EBADF;
1111
1112	if (!(flags & MAP_ANONYMOUS)) {
1113		audit_mmap_fd(fd, flags);
1114		if (unlikely(flags & MAP_HUGETLB))
1115			return -EINVAL;
1116		file = fget(fd);
1117		if (!file)
1118			goto out;
 
 
 
 
 
 
1119	} else if (flags & MAP_HUGETLB) {
1120		struct user_struct *user = NULL;
 
 
 
 
 
 
 
1121		/*
1122		 * VM_NORESERVE is used because the reservations will be
1123		 * taken when vm_ops->mmap() is called
1124		 * A dummy user value is used because we are not locking
1125		 * memory so no accounting is necessary
1126		 */
1127		file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1128						VM_NORESERVE, &user,
1129						HUGETLB_ANONHUGE_INODE);
 
1130		if (IS_ERR(file))
1131			return PTR_ERR(file);
1132	}
1133
1134	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1135
1136	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
 
1137	if (file)
1138		fput(file);
1139out:
1140	return retval;
1141}
1142
 
 
 
 
 
 
 
1143#ifdef __ARCH_WANT_SYS_OLD_MMAP
1144struct mmap_arg_struct {
1145	unsigned long addr;
1146	unsigned long len;
1147	unsigned long prot;
1148	unsigned long flags;
1149	unsigned long fd;
1150	unsigned long offset;
1151};
1152
1153SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1154{
1155	struct mmap_arg_struct a;
1156
1157	if (copy_from_user(&a, arg, sizeof(a)))
1158		return -EFAULT;
1159	if (a.offset & ~PAGE_MASK)
1160		return -EINVAL;
1161
1162	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1163			      a.offset >> PAGE_SHIFT);
1164}
1165#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1166
1167/*
1168 * Some shared mappigns will want the pages marked read-only
1169 * to track write events. If so, we'll downgrade vm_page_prot
1170 * to the private version (using protection_map[] without the
1171 * VM_SHARED bit).
1172 */
1173int vma_wants_writenotify(struct vm_area_struct *vma)
1174{
1175	vm_flags_t vm_flags = vma->vm_flags;
 
1176
1177	/* If it was private or non-writable, the write bit is already clear */
1178	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1179		return 0;
1180
1181	/* The backer wishes to know when pages are first written to? */
1182	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1183		return 1;
1184
1185	/* The open routine did something to the protections already? */
1186	if (pgprot_val(vma->vm_page_prot) !=
1187	    pgprot_val(vm_get_page_prot(vm_flags)))
 
1188		return 0;
1189
 
 
 
 
1190	/* Specialty mapping? */
1191	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1192		return 0;
1193
1194	/* Can the mapping track the dirty pages? */
1195	return vma->vm_file && vma->vm_file->f_mapping &&
1196		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1197}
1198
1199/*
1200 * We account for memory if it's a private writeable mapping,
1201 * not hugepages and VM_NORESERVE wasn't set.
1202 */
1203static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1204{
1205	/*
1206	 * hugetlb has its own accounting separate from the core VM
1207	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1208	 */
1209	if (file && is_file_hugepages(file))
1210		return 0;
1211
1212	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1213}
1214
1215unsigned long mmap_region(struct file *file, unsigned long addr,
1216			  unsigned long len, unsigned long flags,
1217			  vm_flags_t vm_flags, unsigned long pgoff)
1218{
1219	struct mm_struct *mm = current->mm;
1220	struct vm_area_struct *vma, *prev;
1221	int correct_wcount = 0;
1222	int error;
1223	struct rb_node **rb_link, *rb_parent;
1224	unsigned long charged = 0;
1225	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1226
1227	/* Clear old maps */
1228	error = -ENOMEM;
1229munmap_back:
1230	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1231	if (vma && vma->vm_start < addr + len) {
1232		if (do_munmap(mm, addr, len))
1233			return -ENOMEM;
1234		goto munmap_back;
1235	}
1236
1237	/* Check against address space limit. */
1238	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1239		return -ENOMEM;
1240
1241	/*
1242	 * Set 'VM_NORESERVE' if we should not account for the
1243	 * memory use of this mapping.
1244	 */
1245	if ((flags & MAP_NORESERVE)) {
1246		/* We honor MAP_NORESERVE if allowed to overcommit */
1247		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1248			vm_flags |= VM_NORESERVE;
1249
1250		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1251		if (file && is_file_hugepages(file))
1252			vm_flags |= VM_NORESERVE;
1253	}
1254
 
 
 
1255	/*
1256	 * Private writable mapping: check memory availability
1257	 */
1258	if (accountable_mapping(file, vm_flags)) {
1259		charged = len >> PAGE_SHIFT;
1260		if (security_vm_enough_memory_mm(mm, charged))
1261			return -ENOMEM;
1262		vm_flags |= VM_ACCOUNT;
1263	}
1264
1265	/*
1266	 * Can we just expand an old mapping?
1267	 */
1268	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
 
1269	if (vma)
1270		goto out;
1271
1272	/*
1273	 * Determine the object being mapped and call the appropriate
1274	 * specific mapper. the address has already been validated, but
1275	 * not unmapped, but the maps are removed from the list.
1276	 */
1277	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1278	if (!vma) {
1279		error = -ENOMEM;
1280		goto unacct_error;
1281	}
1282
1283	vma->vm_mm = mm;
1284	vma->vm_start = addr;
1285	vma->vm_end = addr + len;
1286	vma->vm_flags = vm_flags;
1287	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1288	vma->vm_pgoff = pgoff;
1289	INIT_LIST_HEAD(&vma->anon_vma_chain);
1290
1291	error = -EINVAL;	/* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1292
1293	if (file) {
1294		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1295			goto free_vma;
1296		if (vm_flags & VM_DENYWRITE) {
1297			error = deny_write_access(file);
1298			if (error)
1299				goto free_vma;
1300			correct_wcount = 1;
1301		}
1302		vma->vm_file = file;
1303		get_file(file);
1304		error = file->f_op->mmap(file, vma);
 
 
 
 
 
 
 
 
 
 
1305		if (error)
1306			goto unmap_and_free_vma;
1307		if (vm_flags & VM_EXECUTABLE)
1308			added_exe_file_vma(mm);
1309
1310		/* Can addr have changed??
1311		 *
1312		 * Answer: Yes, several device drivers can do it in their
1313		 *         f_op->mmap method. -DaveM
 
 
1314		 */
 
 
1315		addr = vma->vm_start;
1316		pgoff = vma->vm_pgoff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1317		vm_flags = vma->vm_flags;
1318	} else if (vm_flags & VM_SHARED) {
1319		if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1320			goto free_vma;
1321		error = shmem_zero_setup(vma);
1322		if (error)
1323			goto free_vma;
 
 
1324	}
1325
1326	if (vma_wants_writenotify(vma)) {
1327		pgprot_t pprot = vma->vm_page_prot;
1328
1329		/* Can vma->vm_page_prot have changed??
1330		 *
1331		 * Answer: Yes, drivers may have changed it in their
1332		 *         f_op->mmap method.
1333		 *
1334		 * Ensures that vmas marked as uncached stay that way.
1335		 */
1336		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1337		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1338			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1339	}
1340
1341	vma_link(mm, vma, prev, rb_link, rb_parent);
 
 
 
 
 
 
 
 
1342	file = vma->vm_file;
1343
1344	/* Once vma denies write, undo our temporary denial count */
1345	if (correct_wcount)
1346		atomic_inc(&inode->i_writecount);
1347out:
1348	perf_event_mmap(vma);
1349
1350	mm->total_vm += len >> PAGE_SHIFT;
1351	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1352	if (vm_flags & VM_LOCKED) {
1353		if (!mlock_vma_pages_range(vma, addr, addr + len))
 
 
 
 
1354			mm->locked_vm += (len >> PAGE_SHIFT);
1355	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1356		make_pages_present(addr, addr + len);
1357
1358	if (file)
1359		uprobe_mmap(vma);
1360
 
 
 
 
 
 
 
 
 
 
 
1361	return addr;
1362
1363unmap_and_free_vma:
1364	if (correct_wcount)
1365		atomic_inc(&inode->i_writecount);
1366	vma->vm_file = NULL;
1367	fput(file);
1368
1369	/* Undo any partial mapping done by a device driver. */
1370	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1371	charged = 0;
 
 
 
 
 
1372free_vma:
1373	kmem_cache_free(vm_area_cachep, vma);
1374unacct_error:
1375	if (charged)
1376		vm_unacct_memory(charged);
1377	return error;
1378}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380/* Get an address range which is currently unmapped.
1381 * For shmat() with addr=0.
1382 *
1383 * Ugly calling convention alert:
1384 * Return value with the low bits set means error value,
1385 * ie
1386 *	if (ret & ~PAGE_MASK)
1387 *		error = ret;
1388 *
1389 * This function "knows" that -ENOMEM has the bits set.
1390 */
1391#ifndef HAVE_ARCH_UNMAPPED_AREA
1392unsigned long
1393arch_get_unmapped_area(struct file *filp, unsigned long addr,
1394		unsigned long len, unsigned long pgoff, unsigned long flags)
1395{
1396	struct mm_struct *mm = current->mm;
1397	struct vm_area_struct *vma;
1398	unsigned long start_addr;
 
1399
1400	if (len > TASK_SIZE)
1401		return -ENOMEM;
1402
1403	if (flags & MAP_FIXED)
1404		return addr;
1405
1406	if (addr) {
1407		addr = PAGE_ALIGN(addr);
1408		vma = find_vma(mm, addr);
1409		if (TASK_SIZE - len >= addr &&
1410		    (!vma || addr + len <= vma->vm_start))
 
1411			return addr;
1412	}
1413	if (len > mm->cached_hole_size) {
1414	        start_addr = addr = mm->free_area_cache;
1415	} else {
1416	        start_addr = addr = TASK_UNMAPPED_BASE;
1417	        mm->cached_hole_size = 0;
1418	}
1419
1420full_search:
1421	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1422		/* At this point:  (!vma || addr < vma->vm_end). */
1423		if (TASK_SIZE - len < addr) {
1424			/*
1425			 * Start a new search - just in case we missed
1426			 * some holes.
1427			 */
1428			if (start_addr != TASK_UNMAPPED_BASE) {
1429				addr = TASK_UNMAPPED_BASE;
1430			        start_addr = addr;
1431				mm->cached_hole_size = 0;
1432				goto full_search;
1433			}
1434			return -ENOMEM;
1435		}
1436		if (!vma || addr + len <= vma->vm_start) {
1437			/*
1438			 * Remember the place where we stopped the search:
1439			 */
1440			mm->free_area_cache = addr + len;
1441			return addr;
1442		}
1443		if (addr + mm->cached_hole_size < vma->vm_start)
1444		        mm->cached_hole_size = vma->vm_start - addr;
1445		addr = vma->vm_end;
1446	}
1447}
1448#endif	
1449
1450void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1451{
1452	/*
1453	 * Is this a new hole at the lowest possible address?
1454	 */
1455	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1456		mm->free_area_cache = addr;
1457}
 
1458
1459/*
1460 * This mmap-allocator allocates new areas top-down from below the
1461 * stack's low limit (the base):
1462 */
1463#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1464unsigned long
1465arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1466			  const unsigned long len, const unsigned long pgoff,
1467			  const unsigned long flags)
1468{
1469	struct vm_area_struct *vma;
1470	struct mm_struct *mm = current->mm;
1471	unsigned long addr = addr0, start_addr;
 
1472
1473	/* requested length too big for entire address space */
1474	if (len > TASK_SIZE)
1475		return -ENOMEM;
1476
1477	if (flags & MAP_FIXED)
1478		return addr;
1479
1480	/* requesting a specific address */
1481	if (addr) {
1482		addr = PAGE_ALIGN(addr);
1483		vma = find_vma(mm, addr);
1484		if (TASK_SIZE - len >= addr &&
1485				(!vma || addr + len <= vma->vm_start))
 
1486			return addr;
1487	}
1488
1489	/* check if free_area_cache is useful for us */
1490	if (len <= mm->cached_hole_size) {
1491 	        mm->cached_hole_size = 0;
1492 		mm->free_area_cache = mm->mmap_base;
1493 	}
1494
1495try_again:
1496	/* either no address requested or can't fit in requested address hole */
1497	start_addr = addr = mm->free_area_cache;
1498
1499	if (addr < len)
1500		goto fail;
1501
1502	addr -= len;
1503	do {
1504		/*
1505		 * Lookup failure means no vma is above this address,
1506		 * else if new region fits below vma->vm_start,
1507		 * return with success:
1508		 */
1509		vma = find_vma(mm, addr);
1510		if (!vma || addr+len <= vma->vm_start)
1511			/* remember the address as a hint for next time */
1512			return (mm->free_area_cache = addr);
1513
1514 		/* remember the largest hole we saw so far */
1515 		if (addr + mm->cached_hole_size < vma->vm_start)
1516 		        mm->cached_hole_size = vma->vm_start - addr;
1517
1518		/* try just below the current vma->vm_start */
1519		addr = vma->vm_start-len;
1520	} while (len < vma->vm_start);
1521
1522fail:
1523	/*
1524	 * if hint left us with no space for the requested
1525	 * mapping then try again:
1526	 *
1527	 * Note: this is different with the case of bottomup
1528	 * which does the fully line-search, but we use find_vma
1529	 * here that causes some holes skipped.
1530	 */
1531	if (start_addr != mm->mmap_base) {
1532		mm->free_area_cache = mm->mmap_base;
1533		mm->cached_hole_size = 0;
1534		goto try_again;
1535	}
1536
1537	/*
1538	 * A failed mmap() very likely causes application failure,
1539	 * so fall back to the bottom-up function here. This scenario
1540	 * can happen with large stack limits and large mmap()
1541	 * allocations.
1542	 */
1543	mm->cached_hole_size = ~0UL;
1544  	mm->free_area_cache = TASK_UNMAPPED_BASE;
1545	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1546	/*
1547	 * Restore the topdown base:
1548	 */
1549	mm->free_area_cache = mm->mmap_base;
1550	mm->cached_hole_size = ~0UL;
1551
1552	return addr;
1553}
1554#endif
1555
1556void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1557{
1558	/*
1559	 * Is this a new hole at the highest possible address?
1560	 */
1561	if (addr > mm->free_area_cache)
1562		mm->free_area_cache = addr;
1563
1564	/* dont allow allocations above current base */
1565	if (mm->free_area_cache > mm->mmap_base)
1566		mm->free_area_cache = mm->mmap_base;
1567}
1568
1569unsigned long
1570get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1571		unsigned long pgoff, unsigned long flags)
1572{
1573	unsigned long (*get_area)(struct file *, unsigned long,
1574				  unsigned long, unsigned long, unsigned long);
1575
1576	unsigned long error = arch_mmap_check(addr, len, flags);
1577	if (error)
1578		return error;
1579
1580	/* Careful about overflows.. */
1581	if (len > TASK_SIZE)
1582		return -ENOMEM;
1583
1584	get_area = current->mm->get_unmapped_area;
1585	if (file && file->f_op && file->f_op->get_unmapped_area)
1586		get_area = file->f_op->get_unmapped_area;
 
 
 
 
 
 
 
 
 
 
 
1587	addr = get_area(file, addr, len, pgoff, flags);
1588	if (IS_ERR_VALUE(addr))
1589		return addr;
1590
1591	if (addr > TASK_SIZE - len)
1592		return -ENOMEM;
1593	if (addr & ~PAGE_MASK)
1594		return -EINVAL;
1595
1596	addr = arch_rebalance_pgtables(addr, len);
1597	error = security_mmap_addr(addr);
1598	return error ? error : addr;
1599}
1600
1601EXPORT_SYMBOL(get_unmapped_area);
1602
1603/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1604struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1605{
1606	struct vm_area_struct *vma = NULL;
 
 
 
 
 
 
 
 
1607
1608	if (WARN_ON_ONCE(!mm))		/* Remove this in linux-3.6 */
1609		return NULL;
 
 
1610
1611	/* Check the cache first. */
1612	/* (Cache hit rate is typically around 35%.) */
1613	vma = mm->mmap_cache;
1614	if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1615		struct rb_node *rb_node;
1616
1617		rb_node = mm->mm_rb.rb_node;
1618		vma = NULL;
1619
1620		while (rb_node) {
1621			struct vm_area_struct *vma_tmp;
1622
1623			vma_tmp = rb_entry(rb_node,
1624					   struct vm_area_struct, vm_rb);
1625
1626			if (vma_tmp->vm_end > addr) {
1627				vma = vma_tmp;
1628				if (vma_tmp->vm_start <= addr)
1629					break;
1630				rb_node = rb_node->rb_left;
1631			} else
1632				rb_node = rb_node->rb_right;
1633		}
1634		if (vma)
1635			mm->mmap_cache = vma;
1636	}
 
 
 
1637	return vma;
1638}
1639
1640EXPORT_SYMBOL(find_vma);
1641
1642/*
1643 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1644 */
1645struct vm_area_struct *
1646find_vma_prev(struct mm_struct *mm, unsigned long addr,
1647			struct vm_area_struct **pprev)
1648{
1649	struct vm_area_struct *vma;
1650
1651	vma = find_vma(mm, addr);
1652	if (vma) {
1653		*pprev = vma->vm_prev;
1654	} else {
1655		struct rb_node *rb_node = mm->mm_rb.rb_node;
1656		*pprev = NULL;
1657		while (rb_node) {
1658			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1659			rb_node = rb_node->rb_right;
1660		}
1661	}
1662	return vma;
1663}
1664
1665/*
1666 * Verify that the stack growth is acceptable and
1667 * update accounting. This is shared with both the
1668 * grow-up and grow-down cases.
1669 */
1670static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
 
1671{
1672	struct mm_struct *mm = vma->vm_mm;
1673	struct rlimit *rlim = current->signal->rlim;
1674	unsigned long new_start;
1675
1676	/* address space limit tests */
1677	if (!may_expand_vm(mm, grow))
1678		return -ENOMEM;
1679
1680	/* Stack limit test */
1681	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1682		return -ENOMEM;
1683
1684	/* mlock limit tests */
1685	if (vma->vm_flags & VM_LOCKED) {
1686		unsigned long locked;
1687		unsigned long limit;
1688		locked = mm->locked_vm + grow;
1689		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1690		limit >>= PAGE_SHIFT;
1691		if (locked > limit && !capable(CAP_IPC_LOCK))
1692			return -ENOMEM;
1693	}
1694
1695	/* Check to ensure the stack will not grow into a hugetlb-only region */
1696	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1697			vma->vm_end - size;
1698	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1699		return -EFAULT;
1700
1701	/*
1702	 * Overcommit..  This must be the final test, as it will
1703	 * update security statistics.
1704	 */
1705	if (security_vm_enough_memory_mm(mm, grow))
1706		return -ENOMEM;
1707
1708	/* Ok, everything looks good - let it rip */
1709	mm->total_vm += grow;
1710	if (vma->vm_flags & VM_LOCKED)
1711		mm->locked_vm += grow;
1712	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1713	return 0;
1714}
1715
1716#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1717/*
1718 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1719 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1720 */
1721int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1722{
1723	int error;
 
 
 
1724
1725	if (!(vma->vm_flags & VM_GROWSUP))
1726		return -EFAULT;
1727
1728	/*
1729	 * We must make sure the anon_vma is allocated
1730	 * so that the anon_vma locking is not a noop.
1731	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1732	if (unlikely(anon_vma_prepare(vma)))
1733		return -ENOMEM;
1734	vma_lock_anon_vma(vma);
1735
1736	/*
1737	 * vma->vm_start/vm_end cannot change under us because the caller
1738	 * is required to hold the mmap_sem in read mode.  We need the
1739	 * anon_vma lock to serialize against concurrent expand_stacks.
1740	 * Also guard against wrapping around to address 0.
1741	 */
1742	if (address < PAGE_ALIGN(address+4))
1743		address = PAGE_ALIGN(address+4);
1744	else {
1745		vma_unlock_anon_vma(vma);
1746		return -ENOMEM;
1747	}
1748	error = 0;
1749
1750	/* Somebody else might have raced and expanded it already */
1751	if (address > vma->vm_end) {
1752		unsigned long size, grow;
1753
1754		size = address - vma->vm_start;
1755		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1756
1757		error = -ENOMEM;
1758		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1759			error = acct_stack_growth(vma, size, grow);
1760			if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761				vma->vm_end = address;
 
 
 
 
 
 
 
1762				perf_event_mmap(vma);
1763			}
1764		}
1765	}
1766	vma_unlock_anon_vma(vma);
1767	khugepaged_enter_vma_merge(vma);
 
1768	return error;
1769}
1770#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1771
1772/*
1773 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1774 */
1775int expand_downwards(struct vm_area_struct *vma,
1776				   unsigned long address)
1777{
1778	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779
1780	/*
1781	 * We must make sure the anon_vma is allocated
1782	 * so that the anon_vma locking is not a noop.
1783	 */
1784	if (unlikely(anon_vma_prepare(vma)))
1785		return -ENOMEM;
1786
1787	address &= PAGE_MASK;
1788	error = security_mmap_addr(address);
1789	if (error)
1790		return error;
1791
1792	vma_lock_anon_vma(vma);
1793
1794	/*
1795	 * vma->vm_start/vm_end cannot change under us because the caller
1796	 * is required to hold the mmap_sem in read mode.  We need the
1797	 * anon_vma lock to serialize against concurrent expand_stacks.
1798	 */
 
1799
1800	/* Somebody else might have raced and expanded it already */
1801	if (address < vma->vm_start) {
1802		unsigned long size, grow;
1803
1804		size = vma->vm_end - address;
1805		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1806
1807		error = -ENOMEM;
1808		if (grow <= vma->vm_pgoff) {
1809			error = acct_stack_growth(vma, size, grow);
1810			if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811				vma->vm_start = address;
1812				vma->vm_pgoff -= grow;
 
 
 
 
1813				perf_event_mmap(vma);
1814			}
1815		}
1816	}
1817	vma_unlock_anon_vma(vma);
1818	khugepaged_enter_vma_merge(vma);
 
1819	return error;
1820}
1821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822#ifdef CONFIG_STACK_GROWSUP
1823int expand_stack(struct vm_area_struct *vma, unsigned long address)
1824{
1825	return expand_upwards(vma, address);
1826}
1827
1828struct vm_area_struct *
1829find_extend_vma(struct mm_struct *mm, unsigned long addr)
1830{
1831	struct vm_area_struct *vma, *prev;
1832
1833	addr &= PAGE_MASK;
1834	vma = find_vma_prev(mm, addr, &prev);
1835	if (vma && (vma->vm_start <= addr))
1836		return vma;
 
1837	if (!prev || expand_stack(prev, addr))
1838		return NULL;
1839	if (prev->vm_flags & VM_LOCKED) {
1840		mlock_vma_pages_range(prev, addr, prev->vm_end);
1841	}
1842	return prev;
1843}
1844#else
1845int expand_stack(struct vm_area_struct *vma, unsigned long address)
1846{
1847	return expand_downwards(vma, address);
1848}
1849
1850struct vm_area_struct *
1851find_extend_vma(struct mm_struct * mm, unsigned long addr)
1852{
1853	struct vm_area_struct * vma;
1854	unsigned long start;
1855
1856	addr &= PAGE_MASK;
1857	vma = find_vma(mm,addr);
1858	if (!vma)
1859		return NULL;
1860	if (vma->vm_start <= addr)
1861		return vma;
1862	if (!(vma->vm_flags & VM_GROWSDOWN))
1863		return NULL;
1864	start = vma->vm_start;
1865	if (expand_stack(vma, addr))
1866		return NULL;
1867	if (vma->vm_flags & VM_LOCKED) {
1868		mlock_vma_pages_range(vma, addr, start);
1869	}
1870	return vma;
1871}
1872#endif
1873
 
 
1874/*
1875 * Ok - we have the memory areas we should free on the vma list,
1876 * so release them, and do the vma updates.
1877 *
1878 * Called with the mm semaphore held.
1879 */
1880static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1881{
1882	unsigned long nr_accounted = 0;
1883
1884	/* Update high watermark before we lower total_vm */
1885	update_hiwater_vm(mm);
1886	do {
1887		long nrpages = vma_pages(vma);
1888
1889		if (vma->vm_flags & VM_ACCOUNT)
1890			nr_accounted += nrpages;
1891		mm->total_vm -= nrpages;
1892		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1893		vma = remove_vma(vma);
1894	} while (vma);
1895	vm_unacct_memory(nr_accounted);
1896	validate_mm(mm);
1897}
1898
1899/*
1900 * Get rid of page table information in the indicated region.
1901 *
1902 * Called with the mm semaphore held.
1903 */
1904static void unmap_region(struct mm_struct *mm,
1905		struct vm_area_struct *vma, struct vm_area_struct *prev,
1906		unsigned long start, unsigned long end)
1907{
1908	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1909	struct mmu_gather tlb;
1910
1911	lru_add_drain();
1912	tlb_gather_mmu(&tlb, mm, 0);
1913	update_hiwater_rss(mm);
1914	unmap_vmas(&tlb, vma, start, end);
1915	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1916				 next ? next->vm_start : 0);
1917	tlb_finish_mmu(&tlb, start, end);
1918}
1919
1920/*
1921 * Create a list of vma's touched by the unmap, removing them from the mm's
1922 * vma list as we go..
1923 */
1924static void
1925detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1926	struct vm_area_struct *prev, unsigned long end)
1927{
1928	struct vm_area_struct **insertion_point;
1929	struct vm_area_struct *tail_vma = NULL;
1930	unsigned long addr;
1931
1932	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1933	vma->vm_prev = NULL;
1934	do {
1935		rb_erase(&vma->vm_rb, &mm->mm_rb);
1936		mm->map_count--;
1937		tail_vma = vma;
1938		vma = vma->vm_next;
1939	} while (vma && vma->vm_start < end);
1940	*insertion_point = vma;
1941	if (vma)
1942		vma->vm_prev = prev;
 
 
 
1943	tail_vma->vm_next = NULL;
1944	if (mm->unmap_area == arch_unmap_area)
1945		addr = prev ? prev->vm_end : mm->mmap_base;
1946	else
1947		addr = vma ?  vma->vm_start : mm->mmap_base;
1948	mm->unmap_area(mm, addr);
1949	mm->mmap_cache = NULL;		/* Kill the cache. */
 
 
 
 
 
 
 
 
1950}
1951
1952/*
1953 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
1954 * munmap path where it doesn't make sense to fail.
1955 */
1956static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1957	      unsigned long addr, int new_below)
1958{
1959	struct mempolicy *pol;
1960	struct vm_area_struct *new;
1961	int err = -ENOMEM;
1962
1963	if (is_vm_hugetlb_page(vma) && (addr &
1964					~(huge_page_mask(hstate_vma(vma)))))
1965		return -EINVAL;
 
 
1966
1967	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1968	if (!new)
1969		goto out_err;
1970
1971	/* most fields are the same, copy all, and then fixup */
1972	*new = *vma;
1973
1974	INIT_LIST_HEAD(&new->anon_vma_chain);
1975
1976	if (new_below)
1977		new->vm_end = addr;
1978	else {
1979		new->vm_start = addr;
1980		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1981	}
1982
1983	pol = mpol_dup(vma_policy(vma));
1984	if (IS_ERR(pol)) {
1985		err = PTR_ERR(pol);
1986		goto out_free_vma;
1987	}
1988	vma_set_policy(new, pol);
1989
1990	if (anon_vma_clone(new, vma))
 
1991		goto out_free_mpol;
1992
1993	if (new->vm_file) {
1994		get_file(new->vm_file);
1995		if (vma->vm_flags & VM_EXECUTABLE)
1996			added_exe_file_vma(mm);
1997	}
1998
1999	if (new->vm_ops && new->vm_ops->open)
2000		new->vm_ops->open(new);
2001
2002	if (new_below)
2003		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2004			((addr - new->vm_start) >> PAGE_SHIFT), new);
2005	else
2006		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2007
2008	/* Success. */
2009	if (!err)
2010		return 0;
2011
2012	/* Clean everything up if vma_adjust failed. */
2013	if (new->vm_ops && new->vm_ops->close)
2014		new->vm_ops->close(new);
2015	if (new->vm_file) {
2016		if (vma->vm_flags & VM_EXECUTABLE)
2017			removed_exe_file_vma(mm);
2018		fput(new->vm_file);
2019	}
2020	unlink_anon_vmas(new);
2021 out_free_mpol:
2022	mpol_put(pol);
2023 out_free_vma:
2024	kmem_cache_free(vm_area_cachep, new);
2025 out_err:
2026	return err;
2027}
2028
2029/*
2030 * Split a vma into two pieces at address 'addr', a new vma is allocated
2031 * either for the first part or the tail.
2032 */
2033int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2034	      unsigned long addr, int new_below)
2035{
2036	if (mm->map_count >= sysctl_max_map_count)
2037		return -ENOMEM;
2038
2039	return __split_vma(mm, vma, addr, new_below);
2040}
2041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2042/* Munmap is split into 2 main parts -- this part which finds
2043 * what needs doing, and the areas themselves, which do the
2044 * work.  This now handles partial unmappings.
2045 * Jeremy Fitzhardinge <jeremy@goop.org>
2046 */
2047int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
 
2048{
2049	unsigned long end;
2050	struct vm_area_struct *vma, *prev, *last;
2051
2052	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2053		return -EINVAL;
2054
2055	if ((len = PAGE_ALIGN(len)) == 0)
 
 
2056		return -EINVAL;
2057
2058	/* Find the first overlapping VMA */
2059	vma = find_vma(mm, start);
 
 
 
 
 
 
 
2060	if (!vma)
2061		return 0;
2062	prev = vma->vm_prev;
2063	/* we have  start < vma->vm_end  */
2064
2065	/* if it doesn't overlap, we have nothing.. */
2066	end = start + len;
2067	if (vma->vm_start >= end)
2068		return 0;
2069
2070	/*
2071	 * If we need to split any vma, do it now to save pain later.
2072	 *
2073	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2074	 * unmapped vm_area_struct will remain in use: so lower split_vma
2075	 * places tmp vma above, and higher split_vma places tmp vma below.
2076	 */
2077	if (start > vma->vm_start) {
2078		int error;
2079
2080		/*
2081		 * Make sure that map_count on return from munmap() will
2082		 * not exceed its limit; but let map_count go just above
2083		 * its limit temporarily, to help free resources as expected.
2084		 */
2085		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2086			return -ENOMEM;
2087
2088		error = __split_vma(mm, vma, start, 0);
2089		if (error)
2090			return error;
2091		prev = vma;
2092	}
2093
2094	/* Does it split the last one? */
2095	last = find_vma(mm, end);
2096	if (last && end > last->vm_start) {
2097		int error = __split_vma(mm, last, end, 1);
2098		if (error)
2099			return error;
2100	}
2101	vma = prev? prev->vm_next: mm->mmap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2102
2103	/*
2104	 * unlock any mlock()ed ranges before detaching vmas
2105	 */
2106	if (mm->locked_vm) {
2107		struct vm_area_struct *tmp = vma;
2108		while (tmp && tmp->vm_start < end) {
2109			if (tmp->vm_flags & VM_LOCKED) {
2110				mm->locked_vm -= vma_pages(tmp);
2111				munlock_vma_pages_all(tmp);
2112			}
2113			tmp = tmp->vm_next;
2114		}
2115	}
2116
2117	/*
2118	 * Remove the vma's, and unmap the actual pages
2119	 */
2120	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2121	unmap_region(mm, vma, prev, start, end);
2122
2123	/* Fix up all other VM information */
2124	remove_vma_list(mm, vma);
2125
2126	return 0;
 
 
 
 
 
 
2127}
2128
2129int vm_munmap(unsigned long start, size_t len)
2130{
2131	int ret;
2132	struct mm_struct *mm = current->mm;
 
2133
2134	down_write(&mm->mmap_sem);
2135	ret = do_munmap(mm, start, len);
2136	up_write(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
2137	return ret;
2138}
 
 
 
 
 
2139EXPORT_SYMBOL(vm_munmap);
2140
2141SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2142{
 
2143	profile_munmap(addr);
2144	return vm_munmap(addr, len);
2145}
2146
2147static inline void verify_mm_writelocked(struct mm_struct *mm)
 
 
 
 
 
2148{
2149#ifdef CONFIG_DEBUG_VM
2150	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2151		WARN_ON(1);
2152		up_read(&mm->mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2153	}
2154#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155}
2156
2157/*
2158 *  this is really a simplified "do_mmap".  it only handles
2159 *  anonymous maps.  eventually we may be able to do some
2160 *  brk-specific accounting here.
2161 */
2162static unsigned long do_brk(unsigned long addr, unsigned long len)
2163{
2164	struct mm_struct * mm = current->mm;
2165	struct vm_area_struct * vma, * prev;
2166	unsigned long flags;
2167	struct rb_node ** rb_link, * rb_parent;
2168	pgoff_t pgoff = addr >> PAGE_SHIFT;
2169	int error;
 
2170
2171	len = PAGE_ALIGN(len);
2172	if (!len)
2173		return addr;
 
2174
2175	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
 
 
2176
2177	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2178	if (error & ~PAGE_MASK)
2179		return error;
2180
2181	/*
2182	 * mlock MCL_FUTURE?
2183	 */
2184	if (mm->def_flags & VM_LOCKED) {
2185		unsigned long locked, lock_limit;
2186		locked = len >> PAGE_SHIFT;
2187		locked += mm->locked_vm;
2188		lock_limit = rlimit(RLIMIT_MEMLOCK);
2189		lock_limit >>= PAGE_SHIFT;
2190		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2191			return -EAGAIN;
2192	}
2193
2194	/*
2195	 * mm->mmap_sem is required to protect against another thread
2196	 * changing the mappings in case we sleep.
2197	 */
2198	verify_mm_writelocked(mm);
2199
2200	/*
2201	 * Clear old maps.  this also does some error checking for us
2202	 */
2203 munmap_back:
2204	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2205	if (vma && vma->vm_start < addr + len) {
2206		if (do_munmap(mm, addr, len))
2207			return -ENOMEM;
2208		goto munmap_back;
2209	}
2210
2211	/* Check against address space limits *after* clearing old maps... */
2212	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2213		return -ENOMEM;
2214
2215	if (mm->map_count > sysctl_max_map_count)
2216		return -ENOMEM;
2217
2218	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2219		return -ENOMEM;
2220
2221	/* Can we just expand an old private anonymous mapping? */
2222	vma = vma_merge(mm, prev, addr, addr + len, flags,
2223					NULL, NULL, pgoff, NULL);
2224	if (vma)
2225		goto out;
2226
2227	/*
2228	 * create a vma struct for an anonymous mapping
2229	 */
2230	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2231	if (!vma) {
2232		vm_unacct_memory(len >> PAGE_SHIFT);
2233		return -ENOMEM;
2234	}
2235
2236	INIT_LIST_HEAD(&vma->anon_vma_chain);
2237	vma->vm_mm = mm;
2238	vma->vm_start = addr;
2239	vma->vm_end = addr + len;
2240	vma->vm_pgoff = pgoff;
2241	vma->vm_flags = flags;
2242	vma->vm_page_prot = vm_get_page_prot(flags);
2243	vma_link(mm, vma, prev, rb_link, rb_parent);
2244out:
2245	perf_event_mmap(vma);
2246	mm->total_vm += len >> PAGE_SHIFT;
2247	if (flags & VM_LOCKED) {
2248		if (!mlock_vma_pages_range(vma, addr, addr + len))
2249			mm->locked_vm += (len >> PAGE_SHIFT);
2250	}
2251	return addr;
2252}
2253
2254unsigned long vm_brk(unsigned long addr, unsigned long len)
2255{
2256	struct mm_struct *mm = current->mm;
2257	unsigned long ret;
 
 
 
 
 
 
 
 
 
 
 
 
2258
2259	down_write(&mm->mmap_sem);
2260	ret = do_brk(addr, len);
2261	up_write(&mm->mmap_sem);
 
 
 
2262	return ret;
2263}
 
 
 
 
 
 
2264EXPORT_SYMBOL(vm_brk);
2265
2266/* Release all mmaps. */
2267void exit_mmap(struct mm_struct *mm)
2268{
2269	struct mmu_gather tlb;
2270	struct vm_area_struct *vma;
2271	unsigned long nr_accounted = 0;
2272
2273	/* mm's last user has gone, and its about to be pulled down */
2274	mmu_notifier_release(mm);
2275
2276	if (mm->locked_vm) {
2277		vma = mm->mmap;
2278		while (vma) {
2279			if (vma->vm_flags & VM_LOCKED)
2280				munlock_vma_pages_all(vma);
2281			vma = vma->vm_next;
2282		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2283	}
2284
 
 
 
2285	arch_exit_mmap(mm);
2286
2287	vma = mm->mmap;
2288	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2289		return;
2290
2291	lru_add_drain();
2292	flush_cache_mm(mm);
2293	tlb_gather_mmu(&tlb, mm, 1);
2294	/* update_hiwater_rss(mm) here? but nobody should be looking */
2295	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2296	unmap_vmas(&tlb, vma, 0, -1);
2297
2298	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2299	tlb_finish_mmu(&tlb, 0, -1);
2300
2301	/*
2302	 * Walk the list again, actually closing and freeing it,
2303	 * with preemption enabled, without holding any MM locks.
2304	 */
2305	while (vma) {
2306		if (vma->vm_flags & VM_ACCOUNT)
2307			nr_accounted += vma_pages(vma);
2308		vma = remove_vma(vma);
 
2309	}
2310	vm_unacct_memory(nr_accounted);
2311
2312	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2313}
2314
2315/* Insert vm structure into process list sorted by address
2316 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2317 * then i_mmap_mutex is taken here.
2318 */
2319int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2320{
2321	struct vm_area_struct * __vma, * prev;
2322	struct rb_node ** rb_link, * rb_parent;
 
 
 
 
 
 
 
2323
2324	/*
2325	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2326	 * until its first write fault, when page's anon_vma and index
2327	 * are set.  But now set the vm_pgoff it will almost certainly
2328	 * end up with (unless mremap moves it elsewhere before that
2329	 * first wfault), so /proc/pid/maps tells a consistent story.
2330	 *
2331	 * By setting it to reflect the virtual start address of the
2332	 * vma, merges and splits can happen in a seamless way, just
2333	 * using the existing file pgoff checks and manipulations.
2334	 * Similarly in do_mmap_pgoff and in do_brk.
2335	 */
2336	if (!vma->vm_file) {
2337		BUG_ON(vma->anon_vma);
2338		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2339	}
2340	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2341	if (__vma && __vma->vm_start < vma->vm_end)
2342		return -ENOMEM;
2343	if ((vma->vm_flags & VM_ACCOUNT) &&
2344	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2345		return -ENOMEM;
2346
2347	if (vma->vm_file && uprobe_mmap(vma))
2348		return -EINVAL;
2349
2350	vma_link(mm, vma, prev, rb_link, rb_parent);
2351	return 0;
2352}
2353
2354/*
2355 * Copy the vma structure to a new location in the same mm,
2356 * prior to moving page table entries, to effect an mremap move.
2357 */
2358struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2359	unsigned long addr, unsigned long len, pgoff_t pgoff)
 
2360{
2361	struct vm_area_struct *vma = *vmap;
2362	unsigned long vma_start = vma->vm_start;
2363	struct mm_struct *mm = vma->vm_mm;
2364	struct vm_area_struct *new_vma, *prev;
2365	struct rb_node **rb_link, *rb_parent;
2366	struct mempolicy *pol;
2367	bool faulted_in_anon_vma = true;
2368
2369	/*
2370	 * If anonymous vma has not yet been faulted, update new pgoff
2371	 * to match new location, to increase its chance of merging.
2372	 */
2373	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2374		pgoff = addr >> PAGE_SHIFT;
2375		faulted_in_anon_vma = false;
2376	}
2377
2378	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
 
2379	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2380			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
 
2381	if (new_vma) {
2382		/*
2383		 * Source vma may have been merged into new_vma
2384		 */
2385		if (unlikely(vma_start >= new_vma->vm_start &&
2386			     vma_start < new_vma->vm_end)) {
2387			/*
2388			 * The only way we can get a vma_merge with
2389			 * self during an mremap is if the vma hasn't
2390			 * been faulted in yet and we were allowed to
2391			 * reset the dst vma->vm_pgoff to the
2392			 * destination address of the mremap to allow
2393			 * the merge to happen. mremap must change the
2394			 * vm_pgoff linearity between src and dst vmas
2395			 * (in turn preventing a vma_merge) to be
2396			 * safe. It is only safe to keep the vm_pgoff
2397			 * linear if there are no pages mapped yet.
2398			 */
2399			VM_BUG_ON(faulted_in_anon_vma);
2400			*vmap = new_vma;
2401		} else
2402			anon_vma_moveto_tail(new_vma);
2403	} else {
2404		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2405		if (new_vma) {
2406			*new_vma = *vma;
2407			pol = mpol_dup(vma_policy(vma));
2408			if (IS_ERR(pol))
2409				goto out_free_vma;
2410			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2411			if (anon_vma_clone(new_vma, vma))
2412				goto out_free_mempol;
2413			vma_set_policy(new_vma, pol);
2414			new_vma->vm_start = addr;
2415			new_vma->vm_end = addr + len;
2416			new_vma->vm_pgoff = pgoff;
2417			if (new_vma->vm_file) {
2418				get_file(new_vma->vm_file);
2419
2420				if (uprobe_mmap(new_vma))
2421					goto out_free_mempol;
2422
2423				if (vma->vm_flags & VM_EXECUTABLE)
2424					added_exe_file_vma(mm);
2425			}
2426			if (new_vma->vm_ops && new_vma->vm_ops->open)
2427				new_vma->vm_ops->open(new_vma);
2428			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2429		}
2430	}
2431	return new_vma;
2432
2433 out_free_mempol:
2434	mpol_put(pol);
2435 out_free_vma:
2436	kmem_cache_free(vm_area_cachep, new_vma);
 
2437	return NULL;
2438}
2439
2440/*
2441 * Return true if the calling process may expand its vm space by the passed
2442 * number of pages
2443 */
2444int may_expand_vm(struct mm_struct *mm, unsigned long npages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2445{
2446	unsigned long cur = mm->total_vm;	/* pages */
2447	unsigned long lim;
 
 
 
 
 
 
 
 
 
2448
2449	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
 
 
 
 
 
2450
2451	if (cur + npages > lim)
2452		return 0;
2453	return 1;
2454}
2455
 
 
 
 
 
 
 
 
 
2456
2457static int special_mapping_fault(struct vm_area_struct *vma,
2458				struct vm_fault *vmf)
 
 
2459{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460	pgoff_t pgoff;
2461	struct page **pages;
2462
2463	/*
2464	 * special mappings have no vm_file, and in that case, the mm
2465	 * uses vm_pgoff internally. So we have to subtract it from here.
2466	 * We are allowed to do this because we are the mm; do not copy
2467	 * this code into drivers!
2468	 */
2469	pgoff = vmf->pgoff - vma->vm_pgoff;
 
 
 
2470
2471	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2472		pgoff--;
2473
2474	if (*pages) {
2475		struct page *page = *pages;
2476		get_page(page);
2477		vmf->page = page;
2478		return 0;
2479	}
2480
2481	return VM_FAULT_SIGBUS;
2482}
2483
2484/*
2485 * Having a close hook prevents vma merging regardless of flags.
2486 */
2487static void special_mapping_close(struct vm_area_struct *vma)
2488{
2489}
2490
2491static const struct vm_operations_struct special_mapping_vmops = {
2492	.close = special_mapping_close,
2493	.fault = special_mapping_fault,
2494};
2495
2496/*
2497 * Called with mm->mmap_sem held for writing.
2498 * Insert a new vma covering the given region, with the given flags.
2499 * Its pages are supplied by the given array of struct page *.
2500 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2501 * The region past the last page supplied will always produce SIGBUS.
2502 * The array pointer and the pages it points to are assumed to stay alive
2503 * for as long as this mapping might exist.
2504 */
2505int install_special_mapping(struct mm_struct *mm,
2506			    unsigned long addr, unsigned long len,
2507			    unsigned long vm_flags, struct page **pages)
2508{
2509	int ret;
2510	struct vm_area_struct *vma;
2511
2512	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2513	if (unlikely(vma == NULL))
2514		return -ENOMEM;
2515
2516	INIT_LIST_HEAD(&vma->anon_vma_chain);
2517	vma->vm_mm = mm;
2518	vma->vm_start = addr;
2519	vma->vm_end = addr + len;
2520
2521	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2522	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2523
2524	vma->vm_ops = &special_mapping_vmops;
2525	vma->vm_private_data = pages;
2526
2527	ret = insert_vm_struct(mm, vma);
2528	if (ret)
2529		goto out;
2530
2531	mm->total_vm += len >> PAGE_SHIFT;
2532
2533	perf_event_mmap(vma);
2534
2535	return 0;
2536
2537out:
2538	kmem_cache_free(vm_area_cachep, vma);
2539	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2540}
2541
2542static DEFINE_MUTEX(mm_all_locks_mutex);
2543
2544static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2545{
2546	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2547		/*
2548		 * The LSB of head.next can't change from under us
2549		 * because we hold the mm_all_locks_mutex.
2550		 */
2551		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2552		/*
2553		 * We can safely modify head.next after taking the
2554		 * anon_vma->root->mutex. If some other vma in this mm shares
2555		 * the same anon_vma we won't take it again.
2556		 *
2557		 * No need of atomic instructions here, head.next
2558		 * can't change from under us thanks to the
2559		 * anon_vma->root->mutex.
2560		 */
2561		if (__test_and_set_bit(0, (unsigned long *)
2562				       &anon_vma->root->head.next))
2563			BUG();
2564	}
2565}
2566
2567static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2568{
2569	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2570		/*
2571		 * AS_MM_ALL_LOCKS can't change from under us because
2572		 * we hold the mm_all_locks_mutex.
2573		 *
2574		 * Operations on ->flags have to be atomic because
2575		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2576		 * mm_all_locks_mutex, there may be other cpus
2577		 * changing other bitflags in parallel to us.
2578		 */
2579		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2580			BUG();
2581		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2582	}
2583}
2584
2585/*
2586 * This operation locks against the VM for all pte/vma/mm related
2587 * operations that could ever happen on a certain mm. This includes
2588 * vmtruncate, try_to_unmap, and all page faults.
2589 *
2590 * The caller must take the mmap_sem in write mode before calling
2591 * mm_take_all_locks(). The caller isn't allowed to release the
2592 * mmap_sem until mm_drop_all_locks() returns.
2593 *
2594 * mmap_sem in write mode is required in order to block all operations
2595 * that could modify pagetables and free pages without need of
2596 * altering the vma layout (for example populate_range() with
2597 * nonlinear vmas). It's also needed in write mode to avoid new
2598 * anon_vmas to be associated with existing vmas.
2599 *
2600 * A single task can't take more than one mm_take_all_locks() in a row
2601 * or it would deadlock.
2602 *
2603 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2604 * mapping->flags avoid to take the same lock twice, if more than one
2605 * vma in this mm is backed by the same anon_vma or address_space.
2606 *
2607 * We can take all the locks in random order because the VM code
2608 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2609 * takes more than one of them in a row. Secondly we're protected
2610 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
 
 
 
 
 
 
2611 *
2612 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2613 * that may have to take thousand of locks.
2614 *
2615 * mm_take_all_locks() can fail if it's interrupted by signals.
2616 */
2617int mm_take_all_locks(struct mm_struct *mm)
2618{
2619	struct vm_area_struct *vma;
2620	struct anon_vma_chain *avc;
2621
2622	BUG_ON(down_read_trylock(&mm->mmap_sem));
2623
2624	mutex_lock(&mm_all_locks_mutex);
2625
2626	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2627		if (signal_pending(current))
2628			goto out_unlock;
2629		if (vma->vm_file && vma->vm_file->f_mapping)
 
 
 
 
 
 
 
 
 
2630			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2631	}
2632
2633	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2634		if (signal_pending(current))
2635			goto out_unlock;
2636		if (vma->anon_vma)
2637			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2638				vm_lock_anon_vma(mm, avc->anon_vma);
2639	}
2640
2641	return 0;
2642
2643out_unlock:
2644	mm_drop_all_locks(mm);
2645	return -EINTR;
2646}
2647
2648static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2649{
2650	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2651		/*
2652		 * The LSB of head.next can't change to 0 from under
2653		 * us because we hold the mm_all_locks_mutex.
2654		 *
2655		 * We must however clear the bitflag before unlocking
2656		 * the vma so the users using the anon_vma->head will
2657		 * never see our bitflag.
2658		 *
2659		 * No need of atomic instructions here, head.next
2660		 * can't change from under us until we release the
2661		 * anon_vma->root->mutex.
2662		 */
2663		if (!__test_and_clear_bit(0, (unsigned long *)
2664					  &anon_vma->root->head.next))
2665			BUG();
2666		anon_vma_unlock(anon_vma);
2667	}
2668}
2669
2670static void vm_unlock_mapping(struct address_space *mapping)
2671{
2672	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2673		/*
2674		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2675		 * because we hold the mm_all_locks_mutex.
2676		 */
2677		mutex_unlock(&mapping->i_mmap_mutex);
2678		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2679					&mapping->flags))
2680			BUG();
2681	}
2682}
2683
2684/*
2685 * The mmap_sem cannot be released by the caller until
2686 * mm_drop_all_locks() returns.
2687 */
2688void mm_drop_all_locks(struct mm_struct *mm)
2689{
2690	struct vm_area_struct *vma;
2691	struct anon_vma_chain *avc;
2692
2693	BUG_ON(down_read_trylock(&mm->mmap_sem));
2694	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2695
2696	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2697		if (vma->anon_vma)
2698			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2699				vm_unlock_anon_vma(avc->anon_vma);
2700		if (vma->vm_file && vma->vm_file->f_mapping)
2701			vm_unlock_mapping(vma->vm_file->f_mapping);
2702	}
2703
2704	mutex_unlock(&mm_all_locks_mutex);
2705}
2706
2707/*
2708 * initialise the VMA slab
2709 */
2710void __init mmap_init(void)
2711{
2712	int ret;
2713
2714	ret = percpu_counter_init(&vm_committed_as, 0);
2715	VM_BUG_ON(ret);
2716}