Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * demand-loading started 01.12.91 - seems it is high on the list of
  10 * things wanted, and it should be easy to implement. - Linus
  11 */
  12
  13/*
  14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  15 * pages started 02.12.91, seems to work. - Linus.
  16 *
  17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  18 * would have taken more than the 6M I have free, but it worked well as
  19 * far as I could see.
  20 *
  21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  22 */
  23
  24/*
  25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  26 * thought has to go into this. Oh, well..
  27 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  28 *		Found it. Everything seems to work now.
  29 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  30 */
  31
  32/*
  33 * 05.04.94  -  Multi-page memory management added for v1.1.
  34 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  35 *
  36 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  37 *		(Gerhard.Wichert@pdb.siemens.de)
  38 *
  39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  40 */
  41
  42#include <linux/kernel_stat.h>
  43#include <linux/mm.h>
  44#include <linux/sched/mm.h>
  45#include <linux/sched/coredump.h>
  46#include <linux/sched/numa_balancing.h>
  47#include <linux/sched/task.h>
  48#include <linux/hugetlb.h>
  49#include <linux/mman.h>
  50#include <linux/swap.h>
  51#include <linux/highmem.h>
  52#include <linux/pagemap.h>
  53#include <linux/memremap.h>
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/export.h>
  57#include <linux/delayacct.h>
  58#include <linux/init.h>
  59#include <linux/pfn_t.h>
  60#include <linux/writeback.h>
  61#include <linux/memcontrol.h>
  62#include <linux/mmu_notifier.h>
 
  63#include <linux/swapops.h>
  64#include <linux/elf.h>
  65#include <linux/gfp.h>
  66#include <linux/migrate.h>
  67#include <linux/string.h>
  68#include <linux/debugfs.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/dax.h>
  71#include <linux/oom.h>
  72#include <linux/numa.h>
  73#include <linux/perf_event.h>
  74#include <linux/ptrace.h>
  75#include <linux/vmalloc.h>
  76
  77#include <trace/events/kmem.h>
  78
  79#include <asm/io.h>
  80#include <asm/mmu_context.h>
  81#include <asm/pgalloc.h>
  82#include <linux/uaccess.h>
  83#include <asm/tlb.h>
  84#include <asm/tlbflush.h>
 
  85
  86#include "pgalloc-track.h"
  87#include "internal.h"
  88
  89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  91#endif
  92
  93#ifndef CONFIG_NUMA
  94unsigned long max_mapnr;
  95EXPORT_SYMBOL(max_mapnr);
  96
  97struct page *mem_map;
 
 
  98EXPORT_SYMBOL(mem_map);
  99#endif
 100
 
 101/*
 102 * A number of key systems in x86 including ioremap() rely on the assumption
 103 * that high_memory defines the upper bound on direct map memory, then end
 104 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 106 * and ZONE_HIGHMEM.
 107 */
 108void *high_memory;
 
 
 109EXPORT_SYMBOL(high_memory);
 110
 111/*
 112 * Randomize the address space (stacks, mmaps, brk, etc.).
 113 *
 114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 115 *   as ancient (libc5 based) binaries can segfault. )
 116 */
 117int randomize_va_space __read_mostly =
 118#ifdef CONFIG_COMPAT_BRK
 119					1;
 120#else
 121					2;
 122#endif
 123
 124#ifndef arch_faults_on_old_pte
 125static inline bool arch_faults_on_old_pte(void)
 126{
 127	/*
 128	 * Those arches which don't have hw access flag feature need to
 129	 * implement their own helper. By default, "true" means pagefault
 130	 * will be hit on old pte.
 131	 */
 132	return true;
 133}
 134#endif
 135
 136#ifndef arch_wants_old_prefaulted_pte
 137static inline bool arch_wants_old_prefaulted_pte(void)
 138{
 139	/*
 140	 * Transitioning a PTE from 'old' to 'young' can be expensive on
 141	 * some architectures, even if it's performed in hardware. By
 142	 * default, "false" means prefaulted entries will be 'young'.
 143	 */
 144	return false;
 145}
 146#endif
 147
 148static int __init disable_randmaps(char *s)
 149{
 150	randomize_va_space = 0;
 151	return 1;
 152}
 153__setup("norandmaps", disable_randmaps);
 154
 155unsigned long zero_pfn __read_mostly;
 156EXPORT_SYMBOL(zero_pfn);
 157
 158unsigned long highest_memmap_pfn __read_mostly;
 159
 160/*
 161 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 162 */
 163static int __init init_zero_pfn(void)
 164{
 165	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 166	return 0;
 167}
 168early_initcall(init_zero_pfn);
 169
 170void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
 171{
 172	trace_rss_stat(mm, member, count);
 173}
 174
 175#if defined(SPLIT_RSS_COUNTING)
 176
 177void sync_mm_rss(struct mm_struct *mm)
 178{
 179	int i;
 180
 181	for (i = 0; i < NR_MM_COUNTERS; i++) {
 182		if (current->rss_stat.count[i]) {
 183			add_mm_counter(mm, i, current->rss_stat.count[i]);
 184			current->rss_stat.count[i] = 0;
 185		}
 186	}
 187	current->rss_stat.events = 0;
 188}
 189
 190static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 191{
 192	struct task_struct *task = current;
 193
 194	if (likely(task->mm == mm))
 195		task->rss_stat.count[member] += val;
 196	else
 197		add_mm_counter(mm, member, val);
 198}
 199#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 200#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 201
 202/* sync counter once per 64 page faults */
 203#define TASK_RSS_EVENTS_THRESH	(64)
 204static void check_sync_rss_stat(struct task_struct *task)
 205{
 206	if (unlikely(task != current))
 207		return;
 208	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 209		sync_mm_rss(task->mm);
 210}
 211#else /* SPLIT_RSS_COUNTING */
 212
 213#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 214#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 215
 216static void check_sync_rss_stat(struct task_struct *task)
 217{
 218}
 219
 220#endif /* SPLIT_RSS_COUNTING */
 221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222/*
 223 * Note: this doesn't free the actual pages themselves. That
 224 * has been handled earlier when unmapping all the memory regions.
 225 */
 226static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 227			   unsigned long addr)
 228{
 229	pgtable_t token = pmd_pgtable(*pmd);
 230	pmd_clear(pmd);
 231	pte_free_tlb(tlb, token, addr);
 232	mm_dec_nr_ptes(tlb->mm);
 233}
 234
 235static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 236				unsigned long addr, unsigned long end,
 237				unsigned long floor, unsigned long ceiling)
 238{
 239	pmd_t *pmd;
 240	unsigned long next;
 241	unsigned long start;
 242
 243	start = addr;
 244	pmd = pmd_offset(pud, addr);
 245	do {
 246		next = pmd_addr_end(addr, end);
 247		if (pmd_none_or_clear_bad(pmd))
 248			continue;
 249		free_pte_range(tlb, pmd, addr);
 250	} while (pmd++, addr = next, addr != end);
 251
 252	start &= PUD_MASK;
 253	if (start < floor)
 254		return;
 255	if (ceiling) {
 256		ceiling &= PUD_MASK;
 257		if (!ceiling)
 258			return;
 259	}
 260	if (end - 1 > ceiling - 1)
 261		return;
 262
 263	pmd = pmd_offset(pud, start);
 264	pud_clear(pud);
 265	pmd_free_tlb(tlb, pmd, start);
 266	mm_dec_nr_pmds(tlb->mm);
 267}
 268
 269static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 270				unsigned long addr, unsigned long end,
 271				unsigned long floor, unsigned long ceiling)
 272{
 273	pud_t *pud;
 274	unsigned long next;
 275	unsigned long start;
 276
 277	start = addr;
 278	pud = pud_offset(p4d, addr);
 279	do {
 280		next = pud_addr_end(addr, end);
 281		if (pud_none_or_clear_bad(pud))
 282			continue;
 283		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 284	} while (pud++, addr = next, addr != end);
 285
 286	start &= P4D_MASK;
 287	if (start < floor)
 288		return;
 289	if (ceiling) {
 290		ceiling &= P4D_MASK;
 291		if (!ceiling)
 292			return;
 293	}
 294	if (end - 1 > ceiling - 1)
 295		return;
 296
 297	pud = pud_offset(p4d, start);
 298	p4d_clear(p4d);
 299	pud_free_tlb(tlb, pud, start);
 300	mm_dec_nr_puds(tlb->mm);
 301}
 302
 303static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 304				unsigned long addr, unsigned long end,
 305				unsigned long floor, unsigned long ceiling)
 306{
 307	p4d_t *p4d;
 308	unsigned long next;
 309	unsigned long start;
 310
 311	start = addr;
 312	p4d = p4d_offset(pgd, addr);
 313	do {
 314		next = p4d_addr_end(addr, end);
 315		if (p4d_none_or_clear_bad(p4d))
 316			continue;
 317		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 318	} while (p4d++, addr = next, addr != end);
 319
 320	start &= PGDIR_MASK;
 321	if (start < floor)
 322		return;
 323	if (ceiling) {
 324		ceiling &= PGDIR_MASK;
 325		if (!ceiling)
 326			return;
 327	}
 328	if (end - 1 > ceiling - 1)
 329		return;
 330
 331	p4d = p4d_offset(pgd, start);
 332	pgd_clear(pgd);
 333	p4d_free_tlb(tlb, p4d, start);
 334}
 335
 336/*
 337 * This function frees user-level page tables of a process.
 
 
 338 */
 339void free_pgd_range(struct mmu_gather *tlb,
 340			unsigned long addr, unsigned long end,
 341			unsigned long floor, unsigned long ceiling)
 342{
 343	pgd_t *pgd;
 344	unsigned long next;
 345
 346	/*
 347	 * The next few lines have given us lots of grief...
 348	 *
 349	 * Why are we testing PMD* at this top level?  Because often
 350	 * there will be no work to do at all, and we'd prefer not to
 351	 * go all the way down to the bottom just to discover that.
 352	 *
 353	 * Why all these "- 1"s?  Because 0 represents both the bottom
 354	 * of the address space and the top of it (using -1 for the
 355	 * top wouldn't help much: the masks would do the wrong thing).
 356	 * The rule is that addr 0 and floor 0 refer to the bottom of
 357	 * the address space, but end 0 and ceiling 0 refer to the top
 358	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 359	 * that end 0 case should be mythical).
 360	 *
 361	 * Wherever addr is brought up or ceiling brought down, we must
 362	 * be careful to reject "the opposite 0" before it confuses the
 363	 * subsequent tests.  But what about where end is brought down
 364	 * by PMD_SIZE below? no, end can't go down to 0 there.
 365	 *
 366	 * Whereas we round start (addr) and ceiling down, by different
 367	 * masks at different levels, in order to test whether a table
 368	 * now has no other vmas using it, so can be freed, we don't
 369	 * bother to round floor or end up - the tests don't need that.
 370	 */
 371
 372	addr &= PMD_MASK;
 373	if (addr < floor) {
 374		addr += PMD_SIZE;
 375		if (!addr)
 376			return;
 377	}
 378	if (ceiling) {
 379		ceiling &= PMD_MASK;
 380		if (!ceiling)
 381			return;
 382	}
 383	if (end - 1 > ceiling - 1)
 384		end -= PMD_SIZE;
 385	if (addr > end - 1)
 386		return;
 387	/*
 388	 * We add page table cache pages with PAGE_SIZE,
 389	 * (see pte_free_tlb()), flush the tlb if we need
 390	 */
 391	tlb_change_page_size(tlb, PAGE_SIZE);
 392	pgd = pgd_offset(tlb->mm, addr);
 393	do {
 394		next = pgd_addr_end(addr, end);
 395		if (pgd_none_or_clear_bad(pgd))
 396			continue;
 397		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 398	} while (pgd++, addr = next, addr != end);
 399}
 400
 401void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 402		unsigned long floor, unsigned long ceiling)
 403{
 404	while (vma) {
 405		struct vm_area_struct *next = vma->vm_next;
 406		unsigned long addr = vma->vm_start;
 407
 408		/*
 409		 * Hide vma from rmap and truncate_pagecache before freeing
 410		 * pgtables
 411		 */
 412		unlink_anon_vmas(vma);
 413		unlink_file_vma(vma);
 414
 415		if (is_vm_hugetlb_page(vma)) {
 416			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 417				floor, next ? next->vm_start : ceiling);
 418		} else {
 419			/*
 420			 * Optimization: gather nearby vmas into one call down
 421			 */
 422			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 423			       && !is_vm_hugetlb_page(next)) {
 424				vma = next;
 425				next = vma->vm_next;
 426				unlink_anon_vmas(vma);
 427				unlink_file_vma(vma);
 428			}
 429			free_pgd_range(tlb, addr, vma->vm_end,
 430				floor, next ? next->vm_start : ceiling);
 431		}
 432		vma = next;
 433	}
 434}
 435
 436int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 
 437{
 438	spinlock_t *ptl;
 439	pgtable_t new = pte_alloc_one(mm);
 440	if (!new)
 441		return -ENOMEM;
 442
 443	/*
 444	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 445	 * visible before the pte is made visible to other CPUs by being
 446	 * put into page tables.
 447	 *
 448	 * The other side of the story is the pointer chasing in the page
 449	 * table walking code (when walking the page table without locking;
 450	 * ie. most of the time). Fortunately, these data accesses consist
 451	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 452	 * being the notable exception) will already guarantee loads are
 453	 * seen in-order. See the alpha page table accessors for the
 454	 * smp_rmb() barriers in page table walking code.
 455	 */
 456	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 457
 458	ptl = pmd_lock(mm, pmd);
 
 459	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 460		mm_inc_nr_ptes(mm);
 461		pmd_populate(mm, pmd, new);
 462		new = NULL;
 463	}
 464	spin_unlock(ptl);
 
 465	if (new)
 466		pte_free(mm, new);
 
 
 467	return 0;
 468}
 469
 470int __pte_alloc_kernel(pmd_t *pmd)
 471{
 472	pte_t *new = pte_alloc_one_kernel(&init_mm);
 473	if (!new)
 474		return -ENOMEM;
 475
 476	smp_wmb(); /* See comment in __pte_alloc */
 477
 478	spin_lock(&init_mm.page_table_lock);
 479	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 480		pmd_populate_kernel(&init_mm, pmd, new);
 481		new = NULL;
 482	}
 
 483	spin_unlock(&init_mm.page_table_lock);
 484	if (new)
 485		pte_free_kernel(&init_mm, new);
 486	return 0;
 487}
 488
 489static inline void init_rss_vec(int *rss)
 490{
 491	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 492}
 493
 494static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 495{
 496	int i;
 497
 498	if (current->mm == mm)
 499		sync_mm_rss(mm);
 500	for (i = 0; i < NR_MM_COUNTERS; i++)
 501		if (rss[i])
 502			add_mm_counter(mm, i, rss[i]);
 503}
 504
 505/*
 506 * This function is called to print an error when a bad pte
 507 * is found. For example, we might have a PFN-mapped pte in
 508 * a region that doesn't allow it.
 509 *
 510 * The calling function must still handle the error.
 511 */
 512static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 513			  pte_t pte, struct page *page)
 514{
 515	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 516	p4d_t *p4d = p4d_offset(pgd, addr);
 517	pud_t *pud = pud_offset(p4d, addr);
 518	pmd_t *pmd = pmd_offset(pud, addr);
 519	struct address_space *mapping;
 520	pgoff_t index;
 521	static unsigned long resume;
 522	static unsigned long nr_shown;
 523	static unsigned long nr_unshown;
 524
 525	/*
 526	 * Allow a burst of 60 reports, then keep quiet for that minute;
 527	 * or allow a steady drip of one report per second.
 528	 */
 529	if (nr_shown == 60) {
 530		if (time_before(jiffies, resume)) {
 531			nr_unshown++;
 532			return;
 533		}
 534		if (nr_unshown) {
 535			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 536				 nr_unshown);
 
 537			nr_unshown = 0;
 538		}
 539		nr_shown = 0;
 540	}
 541	if (nr_shown++ == 0)
 542		resume = jiffies + 60 * HZ;
 543
 544	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 545	index = linear_page_index(vma, addr);
 546
 547	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 548		 current->comm,
 549		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 
 550	if (page)
 551		dump_page(page, "bad pte");
 552	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
 553		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 554	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
 555		 vma->vm_file,
 556		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 557		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 558		 mapping ? mapping->a_ops->readpage : NULL);
 
 
 
 
 
 559	dump_stack();
 560	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 
 
 
 
 
 
 
 
 
 
 
 561}
 
 
 
 
 
 
 
 
 562
 563/*
 564 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 565 *
 566 * "Special" mappings do not wish to be associated with a "struct page" (either
 567 * it doesn't exist, or it exists but they don't want to touch it). In this
 568 * case, NULL is returned here. "Normal" mappings do have a struct page.
 569 *
 570 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 571 * pte bit, in which case this function is trivial. Secondly, an architecture
 572 * may not have a spare pte bit, which requires a more complicated scheme,
 573 * described below.
 574 *
 575 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 576 * special mapping (even if there are underlying and valid "struct pages").
 577 * COWed pages of a VM_PFNMAP are always normal.
 578 *
 579 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 580 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 581 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 582 * mapping will always honor the rule
 583 *
 584 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 585 *
 586 * And for normal mappings this is false.
 587 *
 588 * This restricts such mappings to be a linear translation from virtual address
 589 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 590 * as the vma is not a COW mapping; in that case, we know that all ptes are
 591 * special (because none can have been COWed).
 592 *
 593 *
 594 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 595 *
 596 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 597 * page" backing, however the difference is that _all_ pages with a struct
 598 * page (that is, those where pfn_valid is true) are refcounted and considered
 599 * normal pages by the VM. The disadvantage is that pages are refcounted
 600 * (which can be slower and simply not an option for some PFNMAP users). The
 601 * advantage is that we don't have to follow the strict linearity rule of
 602 * PFNMAP mappings in order to support COWable mappings.
 603 *
 604 */
 
 
 
 
 
 605struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 606			    pte_t pte)
 607{
 608	unsigned long pfn = pte_pfn(pte);
 609
 610	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 611		if (likely(!pte_special(pte)))
 612			goto check_pfn;
 613		if (vma->vm_ops && vma->vm_ops->find_special_page)
 614			return vma->vm_ops->find_special_page(vma, addr);
 615		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 616			return NULL;
 617		if (is_zero_pfn(pfn))
 618			return NULL;
 619		if (pte_devmap(pte))
 620			return NULL;
 621
 622		print_bad_pte(vma, addr, pte, NULL);
 623		return NULL;
 624	}
 625
 626	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 627
 628	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 629		if (vma->vm_flags & VM_MIXEDMAP) {
 630			if (!pfn_valid(pfn))
 631				return NULL;
 632			goto out;
 633		} else {
 634			unsigned long off;
 635			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 636			if (pfn == vma->vm_pgoff + off)
 637				return NULL;
 638			if (!is_cow_mapping(vma->vm_flags))
 639				return NULL;
 640		}
 641	}
 642
 643	if (is_zero_pfn(pfn))
 644		return NULL;
 645
 646check_pfn:
 647	if (unlikely(pfn > highest_memmap_pfn)) {
 648		print_bad_pte(vma, addr, pte, NULL);
 649		return NULL;
 650	}
 651
 652	/*
 653	 * NOTE! We still have PageReserved() pages in the page tables.
 654	 * eg. VDSO mappings can cause them to exist.
 655	 */
 656out:
 657	return pfn_to_page(pfn);
 658}
 659
 660#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 661struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 662				pmd_t pmd)
 663{
 664	unsigned long pfn = pmd_pfn(pmd);
 665
 666	/*
 667	 * There is no pmd_special() but there may be special pmds, e.g.
 668	 * in a direct-access (dax) mapping, so let's just replicate the
 669	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 670	 */
 671	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 672		if (vma->vm_flags & VM_MIXEDMAP) {
 673			if (!pfn_valid(pfn))
 674				return NULL;
 675			goto out;
 676		} else {
 677			unsigned long off;
 678			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 679			if (pfn == vma->vm_pgoff + off)
 680				return NULL;
 681			if (!is_cow_mapping(vma->vm_flags))
 682				return NULL;
 683		}
 684	}
 685
 686	if (pmd_devmap(pmd))
 687		return NULL;
 688	if (is_huge_zero_pmd(pmd))
 689		return NULL;
 690	if (unlikely(pfn > highest_memmap_pfn))
 691		return NULL;
 692
 693	/*
 694	 * NOTE! We still have PageReserved() pages in the page tables.
 695	 * eg. VDSO mappings can cause them to exist.
 696	 */
 697out:
 698	return pfn_to_page(pfn);
 699}
 700#endif
 701
 702static void restore_exclusive_pte(struct vm_area_struct *vma,
 703				  struct page *page, unsigned long address,
 704				  pte_t *ptep)
 705{
 706	pte_t pte;
 707	swp_entry_t entry;
 708
 709	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
 710	if (pte_swp_soft_dirty(*ptep))
 711		pte = pte_mksoft_dirty(pte);
 712
 713	entry = pte_to_swp_entry(*ptep);
 714	if (pte_swp_uffd_wp(*ptep))
 715		pte = pte_mkuffd_wp(pte);
 716	else if (is_writable_device_exclusive_entry(entry))
 717		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
 718
 719	set_pte_at(vma->vm_mm, address, ptep, pte);
 720
 721	/*
 722	 * No need to take a page reference as one was already
 723	 * created when the swap entry was made.
 724	 */
 725	if (PageAnon(page))
 726		page_add_anon_rmap(page, vma, address, false);
 727	else
 728		/*
 729		 * Currently device exclusive access only supports anonymous
 730		 * memory so the entry shouldn't point to a filebacked page.
 731		 */
 732		WARN_ON_ONCE(!PageAnon(page));
 733
 734	if (vma->vm_flags & VM_LOCKED)
 735		mlock_vma_page(page);
 736
 737	/*
 738	 * No need to invalidate - it was non-present before. However
 739	 * secondary CPUs may have mappings that need invalidating.
 740	 */
 741	update_mmu_cache(vma, address, ptep);
 742}
 743
 744/*
 745 * Tries to restore an exclusive pte if the page lock can be acquired without
 746 * sleeping.
 747 */
 748static int
 749try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
 750			unsigned long addr)
 751{
 752	swp_entry_t entry = pte_to_swp_entry(*src_pte);
 753	struct page *page = pfn_swap_entry_to_page(entry);
 754
 755	if (trylock_page(page)) {
 756		restore_exclusive_pte(vma, page, addr, src_pte);
 757		unlock_page(page);
 758		return 0;
 759	}
 760
 761	return -EBUSY;
 762}
 763
 764/*
 765 * copy one vm_area from one task to the other. Assumes the page tables
 766 * already present in the new task to be cleared in the whole range
 767 * covered by this vma.
 768 */
 769
 770static unsigned long
 771copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 772		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
 773		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
 774{
 775	unsigned long vm_flags = dst_vma->vm_flags;
 776	pte_t pte = *src_pte;
 777	struct page *page;
 778	swp_entry_t entry = pte_to_swp_entry(pte);
 779
 780	if (likely(!non_swap_entry(entry))) {
 781		if (swap_duplicate(entry) < 0)
 782			return -EIO;
 783
 784		/* make sure dst_mm is on swapoff's mmlist. */
 785		if (unlikely(list_empty(&dst_mm->mmlist))) {
 786			spin_lock(&mmlist_lock);
 787			if (list_empty(&dst_mm->mmlist))
 788				list_add(&dst_mm->mmlist,
 789						&src_mm->mmlist);
 790			spin_unlock(&mmlist_lock);
 791		}
 792		rss[MM_SWAPENTS]++;
 793	} else if (is_migration_entry(entry)) {
 794		page = pfn_swap_entry_to_page(entry);
 795
 796		rss[mm_counter(page)]++;
 797
 798		if (is_writable_migration_entry(entry) &&
 799				is_cow_mapping(vm_flags)) {
 800			/*
 801			 * COW mappings require pages in both
 802			 * parent and child to be set to read.
 803			 */
 804			entry = make_readable_migration_entry(
 805							swp_offset(entry));
 806			pte = swp_entry_to_pte(entry);
 807			if (pte_swp_soft_dirty(*src_pte))
 808				pte = pte_swp_mksoft_dirty(pte);
 809			if (pte_swp_uffd_wp(*src_pte))
 810				pte = pte_swp_mkuffd_wp(pte);
 811			set_pte_at(src_mm, addr, src_pte, pte);
 812		}
 813	} else if (is_device_private_entry(entry)) {
 814		page = pfn_swap_entry_to_page(entry);
 815
 816		/*
 817		 * Update rss count even for unaddressable pages, as
 818		 * they should treated just like normal pages in this
 819		 * respect.
 820		 *
 821		 * We will likely want to have some new rss counters
 822		 * for unaddressable pages, at some point. But for now
 823		 * keep things as they are.
 824		 */
 825		get_page(page);
 826		rss[mm_counter(page)]++;
 827		page_dup_rmap(page, false);
 828
 829		/*
 830		 * We do not preserve soft-dirty information, because so
 831		 * far, checkpoint/restore is the only feature that
 832		 * requires that. And checkpoint/restore does not work
 833		 * when a device driver is involved (you cannot easily
 834		 * save and restore device driver state).
 835		 */
 836		if (is_writable_device_private_entry(entry) &&
 837		    is_cow_mapping(vm_flags)) {
 838			entry = make_readable_device_private_entry(
 839							swp_offset(entry));
 840			pte = swp_entry_to_pte(entry);
 841			if (pte_swp_uffd_wp(*src_pte))
 842				pte = pte_swp_mkuffd_wp(pte);
 843			set_pte_at(src_mm, addr, src_pte, pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844		}
 845	} else if (is_device_exclusive_entry(entry)) {
 846		/*
 847		 * Make device exclusive entries present by restoring the
 848		 * original entry then copying as for a present pte. Device
 849		 * exclusive entries currently only support private writable
 850		 * (ie. COW) mappings.
 851		 */
 852		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
 853		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
 854			return -EBUSY;
 855		return -ENOENT;
 856	}
 857	if (!userfaultfd_wp(dst_vma))
 858		pte = pte_swp_clear_uffd_wp(pte);
 859	set_pte_at(dst_mm, addr, dst_pte, pte);
 860	return 0;
 861}
 862
 863/*
 864 * Copy a present and normal page if necessary.
 865 *
 866 * NOTE! The usual case is that this doesn't need to do
 867 * anything, and can just return a positive value. That
 868 * will let the caller know that it can just increase
 869 * the page refcount and re-use the pte the traditional
 870 * way.
 871 *
 872 * But _if_ we need to copy it because it needs to be
 873 * pinned in the parent (and the child should get its own
 874 * copy rather than just a reference to the same page),
 875 * we'll do that here and return zero to let the caller
 876 * know we're done.
 877 *
 878 * And if we need a pre-allocated page but don't yet have
 879 * one, return a negative error to let the preallocation
 880 * code know so that it can do so outside the page table
 881 * lock.
 882 */
 883static inline int
 884copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
 885		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
 886		  struct page **prealloc, pte_t pte, struct page *page)
 887{
 888	struct page *new_page;
 889
 890	/*
 891	 * What we want to do is to check whether this page may
 892	 * have been pinned by the parent process.  If so,
 893	 * instead of wrprotect the pte on both sides, we copy
 894	 * the page immediately so that we'll always guarantee
 895	 * the pinned page won't be randomly replaced in the
 896	 * future.
 897	 *
 898	 * The page pinning checks are just "has this mm ever
 899	 * seen pinning", along with the (inexact) check of
 900	 * the page count. That might give false positives for
 901	 * for pinning, but it will work correctly.
 902	 */
 903	if (likely(!page_needs_cow_for_dma(src_vma, page)))
 904		return 1;
 905
 906	new_page = *prealloc;
 907	if (!new_page)
 908		return -EAGAIN;
 909
 910	/*
 911	 * We have a prealloc page, all good!  Take it
 912	 * over and copy the page & arm it.
 913	 */
 914	*prealloc = NULL;
 915	copy_user_highpage(new_page, page, addr, src_vma);
 916	__SetPageUptodate(new_page);
 917	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
 918	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
 919	rss[mm_counter(new_page)]++;
 920
 921	/* All done, just insert the new page copy in the child */
 922	pte = mk_pte(new_page, dst_vma->vm_page_prot);
 923	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
 924	if (userfaultfd_pte_wp(dst_vma, *src_pte))
 925		/* Uffd-wp needs to be delivered to dest pte as well */
 926		pte = pte_wrprotect(pte_mkuffd_wp(pte));
 927	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
 928	return 0;
 929}
 930
 931/*
 932 * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
 933 * is required to copy this pte.
 934 */
 935static inline int
 936copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
 937		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
 938		 struct page **prealloc)
 939{
 940	struct mm_struct *src_mm = src_vma->vm_mm;
 941	unsigned long vm_flags = src_vma->vm_flags;
 942	pte_t pte = *src_pte;
 943	struct page *page;
 944
 945	page = vm_normal_page(src_vma, addr, pte);
 946	if (page) {
 947		int retval;
 948
 949		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
 950					   addr, rss, prealloc, pte, page);
 951		if (retval <= 0)
 952			return retval;
 953
 954		get_page(page);
 955		page_dup_rmap(page, false);
 956		rss[mm_counter(page)]++;
 957	}
 958
 959	/*
 960	 * If it's a COW mapping, write protect it both
 961	 * in the parent and the child
 962	 */
 963	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
 964		ptep_set_wrprotect(src_mm, addr, src_pte);
 965		pte = pte_wrprotect(pte);
 966	}
 967
 968	/*
 969	 * If it's a shared mapping, mark it clean in
 970	 * the child
 971	 */
 972	if (vm_flags & VM_SHARED)
 973		pte = pte_mkclean(pte);
 974	pte = pte_mkold(pte);
 975
 976	if (!userfaultfd_wp(dst_vma))
 977		pte = pte_clear_uffd_wp(pte);
 978
 979	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
 980	return 0;
 981}
 982
 983static inline struct page *
 984page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
 985		   unsigned long addr)
 986{
 987	struct page *new_page;
 988
 989	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
 990	if (!new_page)
 991		return NULL;
 992
 993	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
 994		put_page(new_page);
 995		return NULL;
 996	}
 997	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
 998
 999	return new_page;
 
 
1000}
1001
1002static int
1003copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005	       unsigned long end)
1006{
1007	struct mm_struct *dst_mm = dst_vma->vm_mm;
1008	struct mm_struct *src_mm = src_vma->vm_mm;
1009	pte_t *orig_src_pte, *orig_dst_pte;
1010	pte_t *src_pte, *dst_pte;
1011	spinlock_t *src_ptl, *dst_ptl;
1012	int progress, ret = 0;
1013	int rss[NR_MM_COUNTERS];
1014	swp_entry_t entry = (swp_entry_t){0};
1015	struct page *prealloc = NULL;
1016
1017again:
1018	progress = 0;
1019	init_rss_vec(rss);
1020
1021	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1022	if (!dst_pte) {
1023		ret = -ENOMEM;
1024		goto out;
1025	}
1026	src_pte = pte_offset_map(src_pmd, addr);
1027	src_ptl = pte_lockptr(src_mm, src_pmd);
1028	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1029	orig_src_pte = src_pte;
1030	orig_dst_pte = dst_pte;
1031	arch_enter_lazy_mmu_mode();
1032
1033	do {
1034		/*
1035		 * We are holding two locks at this point - either of them
1036		 * could generate latencies in another task on another CPU.
1037		 */
1038		if (progress >= 32) {
1039			progress = 0;
1040			if (need_resched() ||
1041			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1042				break;
1043		}
1044		if (pte_none(*src_pte)) {
1045			progress++;
1046			continue;
1047		}
1048		if (unlikely(!pte_present(*src_pte))) {
1049			ret = copy_nonpresent_pte(dst_mm, src_mm,
1050						  dst_pte, src_pte,
1051						  dst_vma, src_vma,
1052						  addr, rss);
1053			if (ret == -EIO) {
1054				entry = pte_to_swp_entry(*src_pte);
1055				break;
1056			} else if (ret == -EBUSY) {
1057				break;
1058			} else if (!ret) {
1059				progress += 8;
1060				continue;
1061			}
1062
1063			/*
1064			 * Device exclusive entry restored, continue by copying
1065			 * the now present pte.
1066			 */
1067			WARN_ON_ONCE(ret != -ENOENT);
1068		}
1069		/* copy_present_pte() will clear `*prealloc' if consumed */
1070		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1071				       addr, rss, &prealloc);
1072		/*
1073		 * If we need a pre-allocated page for this pte, drop the
1074		 * locks, allocate, and try again.
1075		 */
1076		if (unlikely(ret == -EAGAIN))
1077			break;
1078		if (unlikely(prealloc)) {
1079			/*
1080			 * pre-alloc page cannot be reused by next time so as
1081			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1082			 * will allocate page according to address).  This
1083			 * could only happen if one pinned pte changed.
1084			 */
1085			put_page(prealloc);
1086			prealloc = NULL;
1087		}
1088		progress += 8;
1089	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1090
1091	arch_leave_lazy_mmu_mode();
1092	spin_unlock(src_ptl);
1093	pte_unmap(orig_src_pte);
1094	add_mm_rss_vec(dst_mm, rss);
1095	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1096	cond_resched();
1097
1098	if (ret == -EIO) {
1099		VM_WARN_ON_ONCE(!entry.val);
1100		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1101			ret = -ENOMEM;
1102			goto out;
1103		}
1104		entry.val = 0;
1105	} else if (ret == -EBUSY) {
1106		goto out;
1107	} else if (ret ==  -EAGAIN) {
1108		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1109		if (!prealloc)
1110			return -ENOMEM;
1111	} else if (ret) {
1112		VM_WARN_ON_ONCE(1);
1113	}
1114
1115	/* We've captured and resolved the error. Reset, try again. */
1116	ret = 0;
1117
1118	if (addr != end)
1119		goto again;
1120out:
1121	if (unlikely(prealloc))
1122		put_page(prealloc);
1123	return ret;
1124}
1125
1126static inline int
1127copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1128	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1129	       unsigned long end)
1130{
1131	struct mm_struct *dst_mm = dst_vma->vm_mm;
1132	struct mm_struct *src_mm = src_vma->vm_mm;
1133	pmd_t *src_pmd, *dst_pmd;
1134	unsigned long next;
1135
1136	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1137	if (!dst_pmd)
1138		return -ENOMEM;
1139	src_pmd = pmd_offset(src_pud, addr);
1140	do {
1141		next = pmd_addr_end(addr, end);
1142		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1143			|| pmd_devmap(*src_pmd)) {
1144			int err;
1145			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1146			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1147					    addr, dst_vma, src_vma);
1148			if (err == -ENOMEM)
1149				return -ENOMEM;
1150			if (!err)
1151				continue;
1152			/* fall through */
1153		}
1154		if (pmd_none_or_clear_bad(src_pmd))
1155			continue;
1156		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1157				   addr, next))
1158			return -ENOMEM;
1159	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1160	return 0;
1161}
1162
1163static inline int
1164copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1165	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1166	       unsigned long end)
1167{
1168	struct mm_struct *dst_mm = dst_vma->vm_mm;
1169	struct mm_struct *src_mm = src_vma->vm_mm;
1170	pud_t *src_pud, *dst_pud;
1171	unsigned long next;
1172
1173	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1174	if (!dst_pud)
1175		return -ENOMEM;
1176	src_pud = pud_offset(src_p4d, addr);
1177	do {
1178		next = pud_addr_end(addr, end);
1179		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1180			int err;
1181
1182			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1183			err = copy_huge_pud(dst_mm, src_mm,
1184					    dst_pud, src_pud, addr, src_vma);
1185			if (err == -ENOMEM)
1186				return -ENOMEM;
1187			if (!err)
1188				continue;
1189			/* fall through */
1190		}
1191		if (pud_none_or_clear_bad(src_pud))
1192			continue;
1193		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1194				   addr, next))
1195			return -ENOMEM;
1196	} while (dst_pud++, src_pud++, addr = next, addr != end);
1197	return 0;
1198}
1199
1200static inline int
1201copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1202	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1203	       unsigned long end)
1204{
1205	struct mm_struct *dst_mm = dst_vma->vm_mm;
1206	p4d_t *src_p4d, *dst_p4d;
1207	unsigned long next;
1208
1209	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1210	if (!dst_p4d)
1211		return -ENOMEM;
1212	src_p4d = p4d_offset(src_pgd, addr);
1213	do {
1214		next = p4d_addr_end(addr, end);
1215		if (p4d_none_or_clear_bad(src_p4d))
1216			continue;
1217		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1218				   addr, next))
1219			return -ENOMEM;
1220	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1221	return 0;
1222}
1223
1224int
1225copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1226{
1227	pgd_t *src_pgd, *dst_pgd;
1228	unsigned long next;
1229	unsigned long addr = src_vma->vm_start;
1230	unsigned long end = src_vma->vm_end;
1231	struct mm_struct *dst_mm = dst_vma->vm_mm;
1232	struct mm_struct *src_mm = src_vma->vm_mm;
1233	struct mmu_notifier_range range;
1234	bool is_cow;
1235	int ret;
1236
1237	/*
1238	 * Don't copy ptes where a page fault will fill them correctly.
1239	 * Fork becomes much lighter when there are big shared or private
1240	 * readonly mappings. The tradeoff is that copy_page_range is more
1241	 * efficient than faulting.
1242	 */
1243	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1244	    !src_vma->anon_vma)
1245		return 0;
 
1246
1247	if (is_vm_hugetlb_page(src_vma))
1248		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1249
1250	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1251		/*
1252		 * We do not free on error cases below as remove_vma
1253		 * gets called on error from higher level routine
1254		 */
1255		ret = track_pfn_copy(src_vma);
1256		if (ret)
1257			return ret;
1258	}
1259
1260	/*
1261	 * We need to invalidate the secondary MMU mappings only when
1262	 * there could be a permission downgrade on the ptes of the
1263	 * parent mm. And a permission downgrade will only happen if
1264	 * is_cow_mapping() returns true.
1265	 */
1266	is_cow = is_cow_mapping(src_vma->vm_flags);
1267
1268	if (is_cow) {
1269		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1270					0, src_vma, src_mm, addr, end);
1271		mmu_notifier_invalidate_range_start(&range);
1272		/*
1273		 * Disabling preemption is not needed for the write side, as
1274		 * the read side doesn't spin, but goes to the mmap_lock.
1275		 *
1276		 * Use the raw variant of the seqcount_t write API to avoid
1277		 * lockdep complaining about preemptibility.
1278		 */
1279		mmap_assert_write_locked(src_mm);
1280		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1281	}
1282
1283	ret = 0;
1284	dst_pgd = pgd_offset(dst_mm, addr);
1285	src_pgd = pgd_offset(src_mm, addr);
1286	do {
1287		next = pgd_addr_end(addr, end);
1288		if (pgd_none_or_clear_bad(src_pgd))
1289			continue;
1290		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1291					    addr, next))) {
1292			ret = -ENOMEM;
1293			break;
1294		}
1295	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1296
1297	if (is_cow) {
1298		raw_write_seqcount_end(&src_mm->write_protect_seq);
1299		mmu_notifier_invalidate_range_end(&range);
1300	}
1301	return ret;
1302}
1303
1304static unsigned long zap_pte_range(struct mmu_gather *tlb,
1305				struct vm_area_struct *vma, pmd_t *pmd,
1306				unsigned long addr, unsigned long end,
1307				struct zap_details *details)
1308{
1309	struct mm_struct *mm = tlb->mm;
1310	int force_flush = 0;
1311	int rss[NR_MM_COUNTERS];
1312	spinlock_t *ptl;
1313	pte_t *start_pte;
1314	pte_t *pte;
1315	swp_entry_t entry;
1316
1317	tlb_change_page_size(tlb, PAGE_SIZE);
1318again:
1319	init_rss_vec(rss);
1320	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1321	pte = start_pte;
1322	flush_tlb_batched_pending(mm);
1323	arch_enter_lazy_mmu_mode();
1324	do {
1325		pte_t ptent = *pte;
1326		if (pte_none(ptent))
1327			continue;
1328
1329		if (need_resched())
1330			break;
1331
1332		if (pte_present(ptent)) {
1333			struct page *page;
1334
1335			page = vm_normal_page(vma, addr, ptent);
1336			if (unlikely(details) && page) {
1337				/*
1338				 * unmap_shared_mapping_pages() wants to
1339				 * invalidate cache without truncating:
1340				 * unmap shared but keep private pages.
1341				 */
1342				if (details->check_mapping &&
1343				    details->check_mapping != page_rmapping(page))
 
 
 
 
 
 
 
 
1344					continue;
1345			}
1346			ptent = ptep_get_and_clear_full(mm, addr, pte,
1347							tlb->fullmm);
1348			tlb_remove_tlb_entry(tlb, pte, addr);
1349			if (unlikely(!page))
1350				continue;
1351
1352			if (!PageAnon(page)) {
1353				if (pte_dirty(ptent)) {
1354					force_flush = 1;
 
 
 
 
 
1355					set_page_dirty(page);
1356				}
1357				if (pte_young(ptent) &&
1358				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1359					mark_page_accessed(page);
 
1360			}
1361			rss[mm_counter(page)]--;
1362			page_remove_rmap(page, false);
1363			if (unlikely(page_mapcount(page) < 0))
1364				print_bad_pte(vma, addr, ptent, page);
1365			if (unlikely(__tlb_remove_page(tlb, page))) {
1366				force_flush = 1;
1367				addr += PAGE_SIZE;
1368				break;
1369			}
1370			continue;
1371		}
1372
1373		entry = pte_to_swp_entry(ptent);
1374		if (is_device_private_entry(entry) ||
1375		    is_device_exclusive_entry(entry)) {
1376			struct page *page = pfn_swap_entry_to_page(entry);
1377
1378			if (unlikely(details && details->check_mapping)) {
1379				/*
1380				 * unmap_shared_mapping_pages() wants to
1381				 * invalidate cache without truncating:
1382				 * unmap shared but keep private pages.
1383				 */
1384				if (details->check_mapping !=
1385				    page_rmapping(page))
1386					continue;
1387			}
1388
1389			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1390			rss[mm_counter(page)]--;
1391
1392			if (is_device_private_entry(entry))
1393				page_remove_rmap(page, false);
1394
1395			put_page(page);
1396			continue;
1397		}
1398
1399		/* If details->check_mapping, we leave swap entries. */
1400		if (unlikely(details))
1401			continue;
 
 
 
 
 
1402
1403		if (!non_swap_entry(entry))
1404			rss[MM_SWAPENTS]--;
1405		else if (is_migration_entry(entry)) {
1406			struct page *page;
1407
1408			page = pfn_swap_entry_to_page(entry);
1409			rss[mm_counter(page)]--;
 
 
 
 
 
 
 
1410		}
1411		if (unlikely(!free_swap_and_cache(entry)))
1412			print_bad_pte(vma, addr, ptent, NULL);
1413		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1414	} while (pte++, addr += PAGE_SIZE, addr != end);
1415
1416	add_mm_rss_vec(mm, rss);
1417	arch_leave_lazy_mmu_mode();
1418
1419	/* Do the actual TLB flush before dropping ptl */
1420	if (force_flush)
1421		tlb_flush_mmu_tlbonly(tlb);
1422	pte_unmap_unlock(start_pte, ptl);
1423
1424	/*
1425	 * If we forced a TLB flush (either due to running out of
1426	 * batch buffers or because we needed to flush dirty TLB
1427	 * entries before releasing the ptl), free the batched
1428	 * memory too. Restart if we didn't do everything.
1429	 */
1430	if (force_flush) {
1431		force_flush = 0;
1432		tlb_flush_mmu(tlb);
1433	}
1434
1435	if (addr != end) {
1436		cond_resched();
1437		goto again;
1438	}
1439
1440	return addr;
1441}
1442
1443static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1444				struct vm_area_struct *vma, pud_t *pud,
1445				unsigned long addr, unsigned long end,
1446				struct zap_details *details)
1447{
1448	pmd_t *pmd;
1449	unsigned long next;
1450
1451	pmd = pmd_offset(pud, addr);
1452	do {
1453		next = pmd_addr_end(addr, end);
1454		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1455			if (next - addr != HPAGE_PMD_SIZE)
1456				__split_huge_pmd(vma, pmd, addr, false, NULL);
1457			else if (zap_huge_pmd(tlb, vma, pmd, addr))
 
 
 
 
 
 
 
 
 
1458				goto next;
1459			/* fall through */
1460		} else if (details && details->single_page &&
1461			   PageTransCompound(details->single_page) &&
1462			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1463			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1464			/*
1465			 * Take and drop THP pmd lock so that we cannot return
1466			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1467			 * but not yet decremented compound_mapcount().
1468			 */
1469			spin_unlock(ptl);
1470		}
1471
1472		/*
1473		 * Here there can be other concurrent MADV_DONTNEED or
1474		 * trans huge page faults running, and if the pmd is
1475		 * none or trans huge it can change under us. This is
1476		 * because MADV_DONTNEED holds the mmap_lock in read
1477		 * mode.
1478		 */
1479		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1480			goto next;
1481		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1482next:
1483		cond_resched();
1484	} while (pmd++, addr = next, addr != end);
1485
1486	return addr;
1487}
1488
1489static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1490				struct vm_area_struct *vma, p4d_t *p4d,
1491				unsigned long addr, unsigned long end,
1492				struct zap_details *details)
1493{
1494	pud_t *pud;
1495	unsigned long next;
1496
1497	pud = pud_offset(p4d, addr);
1498	do {
1499		next = pud_addr_end(addr, end);
1500		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1501			if (next - addr != HPAGE_PUD_SIZE) {
1502				mmap_assert_locked(tlb->mm);
1503				split_huge_pud(vma, pud, addr);
1504			} else if (zap_huge_pud(tlb, vma, pud, addr))
1505				goto next;
1506			/* fall through */
1507		}
1508		if (pud_none_or_clear_bad(pud))
1509			continue;
1510		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1511next:
1512		cond_resched();
1513	} while (pud++, addr = next, addr != end);
1514
1515	return addr;
1516}
1517
1518static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1519				struct vm_area_struct *vma, pgd_t *pgd,
1520				unsigned long addr, unsigned long end,
1521				struct zap_details *details)
1522{
1523	p4d_t *p4d;
1524	unsigned long next;
1525
1526	p4d = p4d_offset(pgd, addr);
1527	do {
1528		next = p4d_addr_end(addr, end);
1529		if (p4d_none_or_clear_bad(p4d))
1530			continue;
1531		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1532	} while (p4d++, addr = next, addr != end);
1533
1534	return addr;
1535}
1536
1537void unmap_page_range(struct mmu_gather *tlb,
1538			     struct vm_area_struct *vma,
1539			     unsigned long addr, unsigned long end,
1540			     struct zap_details *details)
1541{
1542	pgd_t *pgd;
1543	unsigned long next;
1544
 
 
 
1545	BUG_ON(addr >= end);
 
1546	tlb_start_vma(tlb, vma);
1547	pgd = pgd_offset(vma->vm_mm, addr);
1548	do {
1549		next = pgd_addr_end(addr, end);
1550		if (pgd_none_or_clear_bad(pgd))
1551			continue;
1552		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1553	} while (pgd++, addr = next, addr != end);
1554	tlb_end_vma(tlb, vma);
 
1555}
1556
1557
1558static void unmap_single_vma(struct mmu_gather *tlb,
1559		struct vm_area_struct *vma, unsigned long start_addr,
1560		unsigned long end_addr,
1561		struct zap_details *details)
1562{
1563	unsigned long start = max(vma->vm_start, start_addr);
1564	unsigned long end;
1565
1566	if (start >= vma->vm_end)
1567		return;
1568	end = min(vma->vm_end, end_addr);
1569	if (end <= vma->vm_start)
1570		return;
1571
1572	if (vma->vm_file)
1573		uprobe_munmap(vma, start, end);
1574
1575	if (unlikely(vma->vm_flags & VM_PFNMAP))
1576		untrack_pfn(vma, 0, 0);
1577
1578	if (start != end) {
1579		if (unlikely(is_vm_hugetlb_page(vma))) {
1580			/*
1581			 * It is undesirable to test vma->vm_file as it
1582			 * should be non-null for valid hugetlb area.
1583			 * However, vm_file will be NULL in the error
1584			 * cleanup path of mmap_region. When
1585			 * hugetlbfs ->mmap method fails,
1586			 * mmap_region() nullifies vma->vm_file
1587			 * before calling this function to clean up.
1588			 * Since no pte has actually been setup, it is
1589			 * safe to do nothing in this case.
1590			 */
1591			if (vma->vm_file) {
1592				i_mmap_lock_write(vma->vm_file->f_mapping);
1593				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1594				i_mmap_unlock_write(vma->vm_file->f_mapping);
1595			}
1596		} else
1597			unmap_page_range(tlb, vma, start, end, details);
1598	}
1599}
1600
1601/**
1602 * unmap_vmas - unmap a range of memory covered by a list of vma's
1603 * @tlb: address of the caller's struct mmu_gather
1604 * @vma: the starting vma
1605 * @start_addr: virtual address at which to start unmapping
1606 * @end_addr: virtual address at which to end unmapping
1607 *
1608 * Unmap all pages in the vma list.
1609 *
1610 * Only addresses between `start' and `end' will be unmapped.
1611 *
1612 * The VMA list must be sorted in ascending virtual address order.
1613 *
1614 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1615 * range after unmap_vmas() returns.  So the only responsibility here is to
1616 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1617 * drops the lock and schedules.
1618 */
1619void unmap_vmas(struct mmu_gather *tlb,
1620		struct vm_area_struct *vma, unsigned long start_addr,
1621		unsigned long end_addr)
1622{
1623	struct mmu_notifier_range range;
1624
1625	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1626				start_addr, end_addr);
1627	mmu_notifier_invalidate_range_start(&range);
1628	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1629		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1630	mmu_notifier_invalidate_range_end(&range);
1631}
1632
1633/**
1634 * zap_page_range - remove user pages in a given range
1635 * @vma: vm_area_struct holding the applicable pages
1636 * @start: starting address of pages to zap
1637 * @size: number of bytes to zap
 
1638 *
1639 * Caller must protect the VMA list
1640 */
1641void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1642		unsigned long size)
1643{
1644	struct mmu_notifier_range range;
1645	struct mmu_gather tlb;
 
1646
1647	lru_add_drain();
1648	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1649				start, start + size);
1650	tlb_gather_mmu(&tlb, vma->vm_mm);
1651	update_hiwater_rss(vma->vm_mm);
1652	mmu_notifier_invalidate_range_start(&range);
1653	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1654		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1655	mmu_notifier_invalidate_range_end(&range);
1656	tlb_finish_mmu(&tlb);
1657}
1658
1659/**
1660 * zap_page_range_single - remove user pages in a given range
1661 * @vma: vm_area_struct holding the applicable pages
1662 * @address: starting address of pages to zap
1663 * @size: number of bytes to zap
1664 * @details: details of shared cache invalidation
1665 *
1666 * The range must fit into one VMA.
1667 */
1668static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1669		unsigned long size, struct zap_details *details)
1670{
1671	struct mmu_notifier_range range;
1672	struct mmu_gather tlb;
 
1673
1674	lru_add_drain();
1675	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1676				address, address + size);
1677	tlb_gather_mmu(&tlb, vma->vm_mm);
1678	update_hiwater_rss(vma->vm_mm);
1679	mmu_notifier_invalidate_range_start(&range);
1680	unmap_single_vma(&tlb, vma, address, range.end, details);
1681	mmu_notifier_invalidate_range_end(&range);
1682	tlb_finish_mmu(&tlb);
1683}
1684
1685/**
1686 * zap_vma_ptes - remove ptes mapping the vma
1687 * @vma: vm_area_struct holding ptes to be zapped
1688 * @address: starting address of pages to zap
1689 * @size: number of bytes to zap
1690 *
1691 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1692 *
1693 * The entire address range must be fully contained within the vma.
1694 *
 
1695 */
1696void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1697		unsigned long size)
1698{
1699	if (address < vma->vm_start || address + size > vma->vm_end ||
1700	    		!(vma->vm_flags & VM_PFNMAP))
1701		return;
1702
1703	zap_page_range_single(vma, address, size, NULL);
 
1704}
1705EXPORT_SYMBOL_GPL(zap_vma_ptes);
1706
1707static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
1708{
1709	pgd_t *pgd;
1710	p4d_t *p4d;
1711	pud_t *pud;
1712	pmd_t *pmd;
 
 
 
 
1713
1714	pgd = pgd_offset(mm, addr);
1715	p4d = p4d_alloc(mm, pgd, addr);
1716	if (!p4d)
1717		return NULL;
1718	pud = pud_alloc(mm, p4d, addr);
1719	if (!pud)
1720		return NULL;
1721	pmd = pmd_alloc(mm, pud, addr);
1722	if (!pmd)
1723		return NULL;
1724
1725	VM_BUG_ON(pmd_trans_huge(*pmd));
1726	return pmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1727}
1728
1729pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1730			spinlock_t **ptl)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731{
1732	pmd_t *pmd = walk_to_pmd(mm, addr);
1733
1734	if (!pmd)
1735		return NULL;
1736	return pte_alloc_map_lock(mm, pmd, addr, ptl);
 
 
 
 
 
 
1737}
 
1738
1739static int validate_page_before_insert(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1740{
1741	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1742		return -EINVAL;
1743	flush_dcache_page(page);
1744	return 0;
 
 
 
 
 
1745}
 
1746
1747static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1748			unsigned long addr, struct page *page, pgprot_t prot)
1749{
1750	if (!pte_none(*pte))
1751		return -EBUSY;
1752	/* Ok, finally just insert the thing.. */
1753	get_page(page);
1754	inc_mm_counter_fast(mm, mm_counter_file(page));
1755	page_add_file_rmap(page, false);
1756	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1757	return 0;
 
 
1758}
1759
1760/*
1761 * This is the old fallback for page remapping.
1762 *
1763 * For historical reasons, it only allows reserved pages. Only
1764 * old drivers should use this, and they needed to mark their
1765 * pages reserved for the old functions anyway.
1766 */
1767static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1768			struct page *page, pgprot_t prot)
1769{
1770	struct mm_struct *mm = vma->vm_mm;
1771	int retval;
1772	pte_t *pte;
1773	spinlock_t *ptl;
1774
1775	retval = validate_page_before_insert(page);
1776	if (retval)
1777		goto out;
1778	retval = -ENOMEM;
 
1779	pte = get_locked_pte(mm, addr, &ptl);
1780	if (!pte)
1781		goto out;
1782	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1783	pte_unmap_unlock(pte, ptl);
1784out:
1785	return retval;
1786}
1787
1788#ifdef pte_index
1789static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1790			unsigned long addr, struct page *page, pgprot_t prot)
1791{
1792	int err;
1793
1794	if (!page_count(page))
1795		return -EINVAL;
1796	err = validate_page_before_insert(page);
1797	if (err)
1798		return err;
1799	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1800}
1801
1802/* insert_pages() amortizes the cost of spinlock operations
1803 * when inserting pages in a loop. Arch *must* define pte_index.
1804 */
1805static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1806			struct page **pages, unsigned long *num, pgprot_t prot)
1807{
1808	pmd_t *pmd = NULL;
1809	pte_t *start_pte, *pte;
1810	spinlock_t *pte_lock;
1811	struct mm_struct *const mm = vma->vm_mm;
1812	unsigned long curr_page_idx = 0;
1813	unsigned long remaining_pages_total = *num;
1814	unsigned long pages_to_write_in_pmd;
1815	int ret;
1816more:
1817	ret = -EFAULT;
1818	pmd = walk_to_pmd(mm, addr);
1819	if (!pmd)
1820		goto out;
1821
1822	pages_to_write_in_pmd = min_t(unsigned long,
1823		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1824
1825	/* Allocate the PTE if necessary; takes PMD lock once only. */
1826	ret = -ENOMEM;
1827	if (pte_alloc(mm, pmd))
1828		goto out;
 
1829
1830	while (pages_to_write_in_pmd) {
1831		int pte_idx = 0;
1832		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1833
1834		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1835		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1836			int err = insert_page_in_batch_locked(mm, pte,
1837				addr, pages[curr_page_idx], prot);
1838			if (unlikely(err)) {
1839				pte_unmap_unlock(start_pte, pte_lock);
1840				ret = err;
1841				remaining_pages_total -= pte_idx;
1842				goto out;
1843			}
1844			addr += PAGE_SIZE;
1845			++curr_page_idx;
1846		}
1847		pte_unmap_unlock(start_pte, pte_lock);
1848		pages_to_write_in_pmd -= batch_size;
1849		remaining_pages_total -= batch_size;
1850	}
1851	if (remaining_pages_total)
1852		goto more;
1853	ret = 0;
1854out:
1855	*num = remaining_pages_total;
1856	return ret;
1857}
1858#endif  /* ifdef pte_index */
1859
1860/**
1861 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1862 * @vma: user vma to map to
1863 * @addr: target start user address of these pages
1864 * @pages: source kernel pages
1865 * @num: in: number of pages to map. out: number of pages that were *not*
1866 * mapped. (0 means all pages were successfully mapped).
1867 *
1868 * Preferred over vm_insert_page() when inserting multiple pages.
1869 *
1870 * In case of error, we may have mapped a subset of the provided
1871 * pages. It is the caller's responsibility to account for this case.
1872 *
1873 * The same restrictions apply as in vm_insert_page().
1874 */
1875int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1876			struct page **pages, unsigned long *num)
1877{
1878#ifdef pte_index
1879	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1880
1881	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1882		return -EFAULT;
1883	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1884		BUG_ON(mmap_read_trylock(vma->vm_mm));
1885		BUG_ON(vma->vm_flags & VM_PFNMAP);
1886		vma->vm_flags |= VM_MIXEDMAP;
1887	}
1888	/* Defer page refcount checking till we're about to map that page. */
1889	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1890#else
1891	unsigned long idx = 0, pgcount = *num;
1892	int err = -EINVAL;
1893
1894	for (; idx < pgcount; ++idx) {
1895		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1896		if (err)
1897			break;
1898	}
1899	*num = pgcount - idx;
1900	return err;
1901#endif  /* ifdef pte_index */
1902}
1903EXPORT_SYMBOL(vm_insert_pages);
1904
1905/**
1906 * vm_insert_page - insert single page into user vma
1907 * @vma: user vma to map to
1908 * @addr: target user address of this page
1909 * @page: source kernel page
1910 *
1911 * This allows drivers to insert individual pages they've allocated
1912 * into a user vma.
1913 *
1914 * The page has to be a nice clean _individual_ kernel allocation.
1915 * If you allocate a compound page, you need to have marked it as
1916 * such (__GFP_COMP), or manually just split the page up yourself
1917 * (see split_page()).
1918 *
1919 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1920 * took an arbitrary page protection parameter. This doesn't allow
1921 * that. Your vma protection will have to be set up correctly, which
1922 * means that if you want a shared writable mapping, you'd better
1923 * ask for a shared writable mapping!
1924 *
1925 * The page does not need to be reserved.
1926 *
1927 * Usually this function is called from f_op->mmap() handler
1928 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1929 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1930 * function from other places, for example from page-fault handler.
1931 *
1932 * Return: %0 on success, negative error code otherwise.
1933 */
1934int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1935			struct page *page)
1936{
1937	if (addr < vma->vm_start || addr >= vma->vm_end)
1938		return -EFAULT;
1939	if (!page_count(page))
1940		return -EINVAL;
1941	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1942		BUG_ON(mmap_read_trylock(vma->vm_mm));
1943		BUG_ON(vma->vm_flags & VM_PFNMAP);
1944		vma->vm_flags |= VM_MIXEDMAP;
1945	}
1946	return insert_page(vma, addr, page, vma->vm_page_prot);
1947}
1948EXPORT_SYMBOL(vm_insert_page);
1949
1950/*
1951 * __vm_map_pages - maps range of kernel pages into user vma
1952 * @vma: user vma to map to
1953 * @pages: pointer to array of source kernel pages
1954 * @num: number of pages in page array
1955 * @offset: user's requested vm_pgoff
1956 *
1957 * This allows drivers to map range of kernel pages into a user vma.
1958 *
1959 * Return: 0 on success and error code otherwise.
1960 */
1961static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1962				unsigned long num, unsigned long offset)
1963{
1964	unsigned long count = vma_pages(vma);
1965	unsigned long uaddr = vma->vm_start;
1966	int ret, i;
1967
1968	/* Fail if the user requested offset is beyond the end of the object */
1969	if (offset >= num)
1970		return -ENXIO;
1971
1972	/* Fail if the user requested size exceeds available object size */
1973	if (count > num - offset)
1974		return -ENXIO;
1975
1976	for (i = 0; i < count; i++) {
1977		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1978		if (ret < 0)
1979			return ret;
1980		uaddr += PAGE_SIZE;
1981	}
1982
1983	return 0;
1984}
1985
1986/**
1987 * vm_map_pages - maps range of kernel pages starts with non zero offset
1988 * @vma: user vma to map to
1989 * @pages: pointer to array of source kernel pages
1990 * @num: number of pages in page array
1991 *
1992 * Maps an object consisting of @num pages, catering for the user's
1993 * requested vm_pgoff
1994 *
1995 * If we fail to insert any page into the vma, the function will return
1996 * immediately leaving any previously inserted pages present.  Callers
1997 * from the mmap handler may immediately return the error as their caller
1998 * will destroy the vma, removing any successfully inserted pages. Other
1999 * callers should make their own arrangements for calling unmap_region().
2000 *
2001 * Context: Process context. Called by mmap handlers.
2002 * Return: 0 on success and error code otherwise.
2003 */
2004int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2005				unsigned long num)
2006{
2007	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2008}
2009EXPORT_SYMBOL(vm_map_pages);
2010
2011/**
2012 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2013 * @vma: user vma to map to
2014 * @pages: pointer to array of source kernel pages
2015 * @num: number of pages in page array
2016 *
2017 * Similar to vm_map_pages(), except that it explicitly sets the offset
2018 * to 0. This function is intended for the drivers that did not consider
2019 * vm_pgoff.
2020 *
2021 * Context: Process context. Called by mmap handlers.
2022 * Return: 0 on success and error code otherwise.
2023 */
2024int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2025				unsigned long num)
2026{
2027	return __vm_map_pages(vma, pages, num, 0);
2028}
2029EXPORT_SYMBOL(vm_map_pages_zero);
2030
2031static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2032			pfn_t pfn, pgprot_t prot, bool mkwrite)
2033{
2034	struct mm_struct *mm = vma->vm_mm;
 
2035	pte_t *pte, entry;
2036	spinlock_t *ptl;
2037
 
2038	pte = get_locked_pte(mm, addr, &ptl);
2039	if (!pte)
2040		return VM_FAULT_OOM;
2041	if (!pte_none(*pte)) {
2042		if (mkwrite) {
2043			/*
2044			 * For read faults on private mappings the PFN passed
2045			 * in may not match the PFN we have mapped if the
2046			 * mapped PFN is a writeable COW page.  In the mkwrite
2047			 * case we are creating a writable PTE for a shared
2048			 * mapping and we expect the PFNs to match. If they
2049			 * don't match, we are likely racing with block
2050			 * allocation and mapping invalidation so just skip the
2051			 * update.
2052			 */
2053			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2054				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2055				goto out_unlock;
2056			}
2057			entry = pte_mkyoung(*pte);
2058			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2059			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2060				update_mmu_cache(vma, addr, pte);
2061		}
2062		goto out_unlock;
2063	}
2064
2065	/* Ok, finally just insert the thing.. */
2066	if (pfn_t_devmap(pfn))
2067		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2068	else
2069		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2070
2071	if (mkwrite) {
2072		entry = pte_mkyoung(entry);
2073		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2074	}
2075
2076	set_pte_at(mm, addr, pte, entry);
2077	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2078
 
2079out_unlock:
2080	pte_unmap_unlock(pte, ptl);
2081	return VM_FAULT_NOPAGE;
 
2082}
2083
2084/**
2085 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2086 * @vma: user vma to map to
2087 * @addr: target user address of this page
2088 * @pfn: source kernel pfn
2089 * @pgprot: pgprot flags for the inserted page
2090 *
2091 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2092 * to override pgprot on a per-page basis.
2093 *
2094 * This only makes sense for IO mappings, and it makes no sense for
2095 * COW mappings.  In general, using multiple vmas is preferable;
2096 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2097 * impractical.
2098 *
2099 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2100 * a value of @pgprot different from that of @vma->vm_page_prot.
2101 *
2102 * Context: Process context.  May allocate using %GFP_KERNEL.
2103 * Return: vm_fault_t value.
2104 */
2105vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2106			unsigned long pfn, pgprot_t pgprot)
2107{
 
 
2108	/*
2109	 * Technically, architectures with pte_special can avoid all these
2110	 * restrictions (same for remap_pfn_range).  However we would like
2111	 * consistency in testing and feature parity among all, so we should
2112	 * try to keep these invariants in place for everybody.
2113	 */
2114	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2115	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2116						(VM_PFNMAP|VM_MIXEDMAP));
2117	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2118	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2119
2120	if (addr < vma->vm_start || addr >= vma->vm_end)
2121		return VM_FAULT_SIGBUS;
 
 
2122
2123	if (!pfn_modify_allowed(pfn, pgprot))
2124		return VM_FAULT_SIGBUS;
2125
2126	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
 
2127
2128	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2129			false);
2130}
2131EXPORT_SYMBOL(vmf_insert_pfn_prot);
2132
2133/**
2134 * vmf_insert_pfn - insert single pfn into user vma
2135 * @vma: user vma to map to
2136 * @addr: target user address of this page
2137 * @pfn: source kernel pfn
2138 *
2139 * Similar to vm_insert_page, this allows drivers to insert individual pages
2140 * they've allocated into a user vma. Same comments apply.
2141 *
2142 * This function should only be called from a vm_ops->fault handler, and
2143 * in that case the handler should return the result of this function.
2144 *
2145 * vma cannot be a COW mapping.
2146 *
2147 * As this is called only for pages that do not currently exist, we
2148 * do not need to flush old virtual caches or the TLB.
2149 *
2150 * Context: Process context.  May allocate using %GFP_KERNEL.
2151 * Return: vm_fault_t value.
2152 */
2153vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2154			unsigned long pfn)
2155{
2156	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2157}
2158EXPORT_SYMBOL(vmf_insert_pfn);
2159
2160static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2161{
2162	/* these checks mirror the abort conditions in vm_normal_page */
2163	if (vma->vm_flags & VM_MIXEDMAP)
2164		return true;
2165	if (pfn_t_devmap(pfn))
2166		return true;
2167	if (pfn_t_special(pfn))
2168		return true;
2169	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2170		return true;
2171	return false;
2172}
2173
2174static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2175		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2176		bool mkwrite)
2177{
2178	int err;
2179
2180	BUG_ON(!vm_mixed_ok(vma, pfn));
2181
2182	if (addr < vma->vm_start || addr >= vma->vm_end)
2183		return VM_FAULT_SIGBUS;
2184
2185	track_pfn_insert(vma, &pgprot, pfn);
2186
2187	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2188		return VM_FAULT_SIGBUS;
2189
2190	/*
2191	 * If we don't have pte special, then we have to use the pfn_valid()
2192	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2193	 * refcount the page if pfn_valid is true (hence insert_page rather
2194	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2195	 * without pte special, it would there be refcounted as a normal page.
2196	 */
2197	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2198	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2199		struct page *page;
2200
2201		/*
2202		 * At this point we are committed to insert_page()
2203		 * regardless of whether the caller specified flags that
2204		 * result in pfn_t_has_page() == false.
2205		 */
2206		page = pfn_to_page(pfn_t_to_pfn(pfn));
2207		err = insert_page(vma, addr, page, pgprot);
2208	} else {
2209		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2210	}
2211
2212	if (err == -ENOMEM)
2213		return VM_FAULT_OOM;
2214	if (err < 0 && err != -EBUSY)
2215		return VM_FAULT_SIGBUS;
2216
2217	return VM_FAULT_NOPAGE;
2218}
2219
2220/**
2221 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2222 * @vma: user vma to map to
2223 * @addr: target user address of this page
2224 * @pfn: source kernel pfn
2225 * @pgprot: pgprot flags for the inserted page
2226 *
2227 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2228 * to override pgprot on a per-page basis.
2229 *
2230 * Typically this function should be used by drivers to set caching- and
2231 * encryption bits different than those of @vma->vm_page_prot, because
2232 * the caching- or encryption mode may not be known at mmap() time.
2233 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2234 * to set caching and encryption bits for those vmas (except for COW pages).
2235 * This is ensured by core vm only modifying these page table entries using
2236 * functions that don't touch caching- or encryption bits, using pte_modify()
2237 * if needed. (See for example mprotect()).
2238 * Also when new page-table entries are created, this is only done using the
2239 * fault() callback, and never using the value of vma->vm_page_prot,
2240 * except for page-table entries that point to anonymous pages as the result
2241 * of COW.
2242 *
2243 * Context: Process context.  May allocate using %GFP_KERNEL.
2244 * Return: vm_fault_t value.
2245 */
2246vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2247				 pfn_t pfn, pgprot_t pgprot)
2248{
2249	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2250}
2251EXPORT_SYMBOL(vmf_insert_mixed_prot);
2252
2253vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2254		pfn_t pfn)
2255{
2256	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2257}
2258EXPORT_SYMBOL(vmf_insert_mixed);
2259
2260/*
2261 *  If the insertion of PTE failed because someone else already added a
2262 *  different entry in the mean time, we treat that as success as we assume
2263 *  the same entry was actually inserted.
2264 */
2265vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2266		unsigned long addr, pfn_t pfn)
2267{
2268	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2269}
2270EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2271
2272/*
2273 * maps a range of physical memory into the requested pages. the old
2274 * mappings are removed. any references to nonexistent pages results
2275 * in null mappings (currently treated as "copy-on-access")
2276 */
2277static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2278			unsigned long addr, unsigned long end,
2279			unsigned long pfn, pgprot_t prot)
2280{
2281	pte_t *pte, *mapped_pte;
2282	spinlock_t *ptl;
2283	int err = 0;
2284
2285	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2286	if (!pte)
2287		return -ENOMEM;
2288	arch_enter_lazy_mmu_mode();
2289	do {
2290		BUG_ON(!pte_none(*pte));
2291		if (!pfn_modify_allowed(pfn, prot)) {
2292			err = -EACCES;
2293			break;
2294		}
2295		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2296		pfn++;
2297	} while (pte++, addr += PAGE_SIZE, addr != end);
2298	arch_leave_lazy_mmu_mode();
2299	pte_unmap_unlock(mapped_pte, ptl);
2300	return err;
2301}
2302
2303static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2304			unsigned long addr, unsigned long end,
2305			unsigned long pfn, pgprot_t prot)
2306{
2307	pmd_t *pmd;
2308	unsigned long next;
2309	int err;
2310
2311	pfn -= addr >> PAGE_SHIFT;
2312	pmd = pmd_alloc(mm, pud, addr);
2313	if (!pmd)
2314		return -ENOMEM;
2315	VM_BUG_ON(pmd_trans_huge(*pmd));
2316	do {
2317		next = pmd_addr_end(addr, end);
2318		err = remap_pte_range(mm, pmd, addr, next,
2319				pfn + (addr >> PAGE_SHIFT), prot);
2320		if (err)
2321			return err;
2322	} while (pmd++, addr = next, addr != end);
2323	return 0;
2324}
2325
2326static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2327			unsigned long addr, unsigned long end,
2328			unsigned long pfn, pgprot_t prot)
2329{
2330	pud_t *pud;
2331	unsigned long next;
2332	int err;
2333
2334	pfn -= addr >> PAGE_SHIFT;
2335	pud = pud_alloc(mm, p4d, addr);
2336	if (!pud)
2337		return -ENOMEM;
2338	do {
2339		next = pud_addr_end(addr, end);
2340		err = remap_pmd_range(mm, pud, addr, next,
2341				pfn + (addr >> PAGE_SHIFT), prot);
2342		if (err)
2343			return err;
2344	} while (pud++, addr = next, addr != end);
2345	return 0;
2346}
2347
2348static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2349			unsigned long addr, unsigned long end,
2350			unsigned long pfn, pgprot_t prot)
2351{
2352	p4d_t *p4d;
2353	unsigned long next;
2354	int err;
2355
2356	pfn -= addr >> PAGE_SHIFT;
2357	p4d = p4d_alloc(mm, pgd, addr);
2358	if (!p4d)
2359		return -ENOMEM;
2360	do {
2361		next = p4d_addr_end(addr, end);
2362		err = remap_pud_range(mm, p4d, addr, next,
2363				pfn + (addr >> PAGE_SHIFT), prot);
2364		if (err)
2365			return err;
2366	} while (p4d++, addr = next, addr != end);
2367	return 0;
2368}
2369
2370/*
2371 * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2372 * must have pre-validated the caching bits of the pgprot_t.
2373 */
2374int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2375		unsigned long pfn, unsigned long size, pgprot_t prot)
2376{
2377	pgd_t *pgd;
2378	unsigned long next;
2379	unsigned long end = addr + PAGE_ALIGN(size);
2380	struct mm_struct *mm = vma->vm_mm;
2381	int err;
2382
2383	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2384		return -EINVAL;
2385
2386	/*
2387	 * Physically remapped pages are special. Tell the
2388	 * rest of the world about it:
2389	 *   VM_IO tells people not to look at these pages
2390	 *	(accesses can have side effects).
 
 
 
 
 
2391	 *   VM_PFNMAP tells the core MM that the base pages are just
2392	 *	raw PFN mappings, and do not have a "struct page" associated
2393	 *	with them.
2394	 *   VM_DONTEXPAND
2395	 *      Disable vma merging and expanding with mremap().
2396	 *   VM_DONTDUMP
2397	 *      Omit vma from core dump, even when VM_IO turned off.
2398	 *
2399	 * There's a horrible special case to handle copy-on-write
2400	 * behaviour that some programs depend on. We mark the "original"
2401	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2402	 * See vm_normal_page() for details.
2403	 */
2404	if (is_cow_mapping(vma->vm_flags)) {
2405		if (addr != vma->vm_start || end != vma->vm_end)
2406			return -EINVAL;
2407		vma->vm_pgoff = pfn;
2408	}
 
 
2409
2410	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
 
 
 
 
 
 
 
 
 
 
 
2411
2412	BUG_ON(addr >= end);
2413	pfn -= addr >> PAGE_SHIFT;
2414	pgd = pgd_offset(mm, addr);
2415	flush_cache_range(vma, addr, end);
2416	do {
2417		next = pgd_addr_end(addr, end);
2418		err = remap_p4d_range(mm, pgd, addr, next,
2419				pfn + (addr >> PAGE_SHIFT), prot);
2420		if (err)
2421			return err;
2422	} while (pgd++, addr = next, addr != end);
2423
2424	return 0;
2425}
2426
2427/**
2428 * remap_pfn_range - remap kernel memory to userspace
2429 * @vma: user vma to map to
2430 * @addr: target page aligned user address to start at
2431 * @pfn: page frame number of kernel physical memory address
2432 * @size: size of mapping area
2433 * @prot: page protection flags for this mapping
2434 *
2435 * Note: this is only safe if the mm semaphore is held when called.
2436 *
2437 * Return: %0 on success, negative error code otherwise.
2438 */
2439int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2440		    unsigned long pfn, unsigned long size, pgprot_t prot)
2441{
2442	int err;
2443
2444	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2445	if (err)
2446		return -EINVAL;
2447
2448	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2449	if (err)
2450		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2451	return err;
2452}
2453EXPORT_SYMBOL(remap_pfn_range);
2454
2455/**
2456 * vm_iomap_memory - remap memory to userspace
2457 * @vma: user vma to map to
2458 * @start: start of the physical memory to be mapped
2459 * @len: size of area
2460 *
2461 * This is a simplified io_remap_pfn_range() for common driver use. The
2462 * driver just needs to give us the physical memory range to be mapped,
2463 * we'll figure out the rest from the vma information.
2464 *
2465 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2466 * whatever write-combining details or similar.
2467 *
2468 * Return: %0 on success, negative error code otherwise.
2469 */
2470int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2471{
2472	unsigned long vm_len, pfn, pages;
2473
2474	/* Check that the physical memory area passed in looks valid */
2475	if (start + len < start)
2476		return -EINVAL;
2477	/*
2478	 * You *really* shouldn't map things that aren't page-aligned,
2479	 * but we've historically allowed it because IO memory might
2480	 * just have smaller alignment.
2481	 */
2482	len += start & ~PAGE_MASK;
2483	pfn = start >> PAGE_SHIFT;
2484	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2485	if (pfn + pages < pfn)
2486		return -EINVAL;
2487
2488	/* We start the mapping 'vm_pgoff' pages into the area */
2489	if (vma->vm_pgoff > pages)
2490		return -EINVAL;
2491	pfn += vma->vm_pgoff;
2492	pages -= vma->vm_pgoff;
2493
2494	/* Can we fit all of the mapping? */
2495	vm_len = vma->vm_end - vma->vm_start;
2496	if (vm_len >> PAGE_SHIFT > pages)
2497		return -EINVAL;
2498
2499	/* Ok, let it rip */
2500	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2501}
2502EXPORT_SYMBOL(vm_iomap_memory);
2503
2504static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2505				     unsigned long addr, unsigned long end,
2506				     pte_fn_t fn, void *data, bool create,
2507				     pgtbl_mod_mask *mask)
2508{
2509	pte_t *pte, *mapped_pte;
2510	int err = 0;
2511	spinlock_t *ptl;
 
2512
2513	if (create) {
2514		mapped_pte = pte = (mm == &init_mm) ?
2515			pte_alloc_kernel_track(pmd, addr, mask) :
2516			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2517		if (!pte)
2518			return -ENOMEM;
2519	} else {
2520		mapped_pte = pte = (mm == &init_mm) ?
2521			pte_offset_kernel(pmd, addr) :
2522			pte_offset_map_lock(mm, pmd, addr, &ptl);
2523	}
2524
2525	BUG_ON(pmd_huge(*pmd));
2526
2527	arch_enter_lazy_mmu_mode();
2528
2529	if (fn) {
2530		do {
2531			if (create || !pte_none(*pte)) {
2532				err = fn(pte++, addr, data);
2533				if (err)
2534					break;
2535			}
2536		} while (addr += PAGE_SIZE, addr != end);
2537	}
2538	*mask |= PGTBL_PTE_MODIFIED;
2539
2540	arch_leave_lazy_mmu_mode();
2541
2542	if (mm != &init_mm)
2543		pte_unmap_unlock(mapped_pte, ptl);
2544	return err;
2545}
2546
2547static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2548				     unsigned long addr, unsigned long end,
2549				     pte_fn_t fn, void *data, bool create,
2550				     pgtbl_mod_mask *mask)
2551{
2552	pmd_t *pmd;
2553	unsigned long next;
2554	int err = 0;
2555
2556	BUG_ON(pud_huge(*pud));
2557
2558	if (create) {
2559		pmd = pmd_alloc_track(mm, pud, addr, mask);
2560		if (!pmd)
2561			return -ENOMEM;
2562	} else {
2563		pmd = pmd_offset(pud, addr);
2564	}
2565	do {
2566		next = pmd_addr_end(addr, end);
2567		if (pmd_none(*pmd) && !create)
2568			continue;
2569		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2570			return -EINVAL;
2571		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2572			if (!create)
2573				continue;
2574			pmd_clear_bad(pmd);
2575		}
2576		err = apply_to_pte_range(mm, pmd, addr, next,
2577					 fn, data, create, mask);
2578		if (err)
2579			break;
2580	} while (pmd++, addr = next, addr != end);
2581
2582	return err;
2583}
2584
2585static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2586				     unsigned long addr, unsigned long end,
2587				     pte_fn_t fn, void *data, bool create,
2588				     pgtbl_mod_mask *mask)
2589{
2590	pud_t *pud;
2591	unsigned long next;
2592	int err = 0;
2593
2594	if (create) {
2595		pud = pud_alloc_track(mm, p4d, addr, mask);
2596		if (!pud)
2597			return -ENOMEM;
2598	} else {
2599		pud = pud_offset(p4d, addr);
2600	}
2601	do {
2602		next = pud_addr_end(addr, end);
2603		if (pud_none(*pud) && !create)
2604			continue;
2605		if (WARN_ON_ONCE(pud_leaf(*pud)))
2606			return -EINVAL;
2607		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2608			if (!create)
2609				continue;
2610			pud_clear_bad(pud);
2611		}
2612		err = apply_to_pmd_range(mm, pud, addr, next,
2613					 fn, data, create, mask);
2614		if (err)
2615			break;
2616	} while (pud++, addr = next, addr != end);
2617
2618	return err;
2619}
2620
2621static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2622				     unsigned long addr, unsigned long end,
2623				     pte_fn_t fn, void *data, bool create,
2624				     pgtbl_mod_mask *mask)
2625{
2626	p4d_t *p4d;
2627	unsigned long next;
2628	int err = 0;
2629
2630	if (create) {
2631		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2632		if (!p4d)
2633			return -ENOMEM;
2634	} else {
2635		p4d = p4d_offset(pgd, addr);
2636	}
2637	do {
2638		next = p4d_addr_end(addr, end);
2639		if (p4d_none(*p4d) && !create)
2640			continue;
2641		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2642			return -EINVAL;
2643		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2644			if (!create)
2645				continue;
2646			p4d_clear_bad(p4d);
2647		}
2648		err = apply_to_pud_range(mm, p4d, addr, next,
2649					 fn, data, create, mask);
2650		if (err)
2651			break;
2652	} while (p4d++, addr = next, addr != end);
2653
2654	return err;
2655}
2656
2657static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2658				 unsigned long size, pte_fn_t fn,
2659				 void *data, bool create)
 
 
 
2660{
2661	pgd_t *pgd;
2662	unsigned long start = addr, next;
2663	unsigned long end = addr + size;
2664	pgtbl_mod_mask mask = 0;
2665	int err = 0;
2666
2667	if (WARN_ON(addr >= end))
2668		return -EINVAL;
2669
 
2670	pgd = pgd_offset(mm, addr);
2671	do {
2672		next = pgd_addr_end(addr, end);
2673		if (pgd_none(*pgd) && !create)
2674			continue;
2675		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2676			return -EINVAL;
2677		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2678			if (!create)
2679				continue;
2680			pgd_clear_bad(pgd);
2681		}
2682		err = apply_to_p4d_range(mm, pgd, addr, next,
2683					 fn, data, create, &mask);
2684		if (err)
2685			break;
2686	} while (pgd++, addr = next, addr != end);
2687
2688	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2689		arch_sync_kernel_mappings(start, start + size);
2690
2691	return err;
2692}
2693
2694/*
2695 * Scan a region of virtual memory, filling in page tables as necessary
2696 * and calling a provided function on each leaf page table.
2697 */
2698int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2699			unsigned long size, pte_fn_t fn, void *data)
2700{
2701	return __apply_to_page_range(mm, addr, size, fn, data, true);
2702}
2703EXPORT_SYMBOL_GPL(apply_to_page_range);
2704
2705/*
2706 * Scan a region of virtual memory, calling a provided function on
2707 * each leaf page table where it exists.
2708 *
2709 * Unlike apply_to_page_range, this does _not_ fill in page tables
2710 * where they are absent.
2711 */
2712int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2713				 unsigned long size, pte_fn_t fn, void *data)
2714{
2715	return __apply_to_page_range(mm, addr, size, fn, data, false);
2716}
2717EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2718
2719/*
2720 * handle_pte_fault chooses page fault handler according to an entry which was
2721 * read non-atomically.  Before making any commitment, on those architectures
2722 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2723 * parts, do_swap_page must check under lock before unmapping the pte and
2724 * proceeding (but do_wp_page is only called after already making such a check;
2725 * and do_anonymous_page can safely check later on).
2726 */
2727static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2728				pte_t *page_table, pte_t orig_pte)
2729{
2730	int same = 1;
2731#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2732	if (sizeof(pte_t) > sizeof(unsigned long)) {
2733		spinlock_t *ptl = pte_lockptr(mm, pmd);
2734		spin_lock(ptl);
2735		same = pte_same(*page_table, orig_pte);
2736		spin_unlock(ptl);
2737	}
2738#endif
2739	pte_unmap(page_table);
2740	return same;
2741}
2742
2743static inline bool cow_user_page(struct page *dst, struct page *src,
2744				 struct vm_fault *vmf)
2745{
2746	bool ret;
2747	void *kaddr;
2748	void __user *uaddr;
2749	bool locked = false;
2750	struct vm_area_struct *vma = vmf->vma;
2751	struct mm_struct *mm = vma->vm_mm;
2752	unsigned long addr = vmf->address;
2753
2754	if (likely(src)) {
2755		copy_user_highpage(dst, src, addr, vma);
2756		return true;
2757	}
2758
2759	/*
2760	 * If the source page was a PFN mapping, we don't have
2761	 * a "struct page" for it. We do a best-effort copy by
2762	 * just copying from the original user address. If that
2763	 * fails, we just zero-fill it. Live with it.
2764	 */
2765	kaddr = kmap_atomic(dst);
2766	uaddr = (void __user *)(addr & PAGE_MASK);
2767
2768	/*
2769	 * On architectures with software "accessed" bits, we would
2770	 * take a double page fault, so mark it accessed here.
2771	 */
2772	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2773		pte_t entry;
2774
2775		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2776		locked = true;
2777		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2778			/*
2779			 * Other thread has already handled the fault
2780			 * and update local tlb only
2781			 */
2782			update_mmu_tlb(vma, addr, vmf->pte);
2783			ret = false;
2784			goto pte_unlock;
2785		}
2786
2787		entry = pte_mkyoung(vmf->orig_pte);
2788		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2789			update_mmu_cache(vma, addr, vmf->pte);
2790	}
2791
2792	/*
2793	 * This really shouldn't fail, because the page is there
2794	 * in the page tables. But it might just be unreadable,
2795	 * in which case we just give up and fill the result with
2796	 * zeroes.
2797	 */
2798	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2799		if (locked)
2800			goto warn;
2801
2802		/* Re-validate under PTL if the page is still mapped */
2803		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2804		locked = true;
2805		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2806			/* The PTE changed under us, update local tlb */
2807			update_mmu_tlb(vma, addr, vmf->pte);
2808			ret = false;
2809			goto pte_unlock;
2810		}
2811
2812		/*
2813		 * The same page can be mapped back since last copy attempt.
2814		 * Try to copy again under PTL.
 
 
2815		 */
2816		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2817			/*
2818			 * Give a warn in case there can be some obscure
2819			 * use-case
2820			 */
2821warn:
2822			WARN_ON_ONCE(1);
2823			clear_page(kaddr);
2824		}
2825	}
2826
2827	ret = true;
2828
2829pte_unlock:
2830	if (locked)
2831		pte_unmap_unlock(vmf->pte, vmf->ptl);
2832	kunmap_atomic(kaddr);
2833	flush_dcache_page(dst);
2834
2835	return ret;
2836}
2837
2838static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2839{
2840	struct file *vm_file = vma->vm_file;
 
 
 
 
2841
2842	if (vm_file)
2843		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
 
 
 
 
 
 
 
 
 
 
 
 
2844
2845	/*
2846	 * Special mappings (e.g. VDSO) do not have any file so fake
2847	 * a default GFP_KERNEL for them.
2848	 */
2849	return GFP_KERNEL;
2850}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2851
2852/*
2853 * Notify the address space that the page is about to become writable so that
2854 * it can prohibit this or wait for the page to get into an appropriate state.
2855 *
2856 * We do this without the lock held, so that it can sleep if it needs to.
2857 */
2858static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2859{
2860	vm_fault_t ret;
2861	struct page *page = vmf->page;
2862	unsigned int old_flags = vmf->flags;
2863
2864	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2865
2866	if (vmf->vma->vm_file &&
2867	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2868		return VM_FAULT_SIGBUS;
 
 
 
 
 
 
 
 
 
2869
2870	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2871	/* Restore original flags so that caller is not surprised */
2872	vmf->flags = old_flags;
2873	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2874		return ret;
2875	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2876		lock_page(page);
2877		if (!page->mapping) {
2878			unlock_page(page);
2879			return 0; /* retry */
2880		}
2881		ret |= VM_FAULT_LOCKED;
2882	} else
2883		VM_BUG_ON_PAGE(!PageLocked(page), page);
2884	return ret;
2885}
2886
2887/*
2888 * Handle dirtying of a page in shared file mapping on a write fault.
2889 *
2890 * The function expects the page to be locked and unlocks it.
2891 */
2892static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2893{
2894	struct vm_area_struct *vma = vmf->vma;
2895	struct address_space *mapping;
2896	struct page *page = vmf->page;
2897	bool dirtied;
2898	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2899
2900	dirtied = set_page_dirty(page);
2901	VM_BUG_ON_PAGE(PageAnon(page), page);
2902	/*
2903	 * Take a local copy of the address_space - page.mapping may be zeroed
2904	 * by truncate after unlock_page().   The address_space itself remains
2905	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2906	 * release semantics to prevent the compiler from undoing this copying.
2907	 */
2908	mapping = page_rmapping(page);
2909	unlock_page(page);
2910
2911	if (!page_mkwrite)
2912		file_update_time(vma->vm_file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2913
2914	/*
2915	 * Throttle page dirtying rate down to writeback speed.
2916	 *
2917	 * mapping may be NULL here because some device drivers do not
2918	 * set page.mapping but still dirty their pages
2919	 *
2920	 * Drop the mmap_lock before waiting on IO, if we can. The file
2921	 * is pinning the mapping, as per above.
2922	 */
2923	if ((dirtied || page_mkwrite) && mapping) {
2924		struct file *fpin;
2925
2926		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2927		balance_dirty_pages_ratelimited(mapping);
2928		if (fpin) {
2929			fput(fpin);
2930			return VM_FAULT_RETRY;
2931		}
2932	}
2933
2934	return 0;
2935}
2936
2937/*
2938 * Handle write page faults for pages that can be reused in the current vma
2939 *
2940 * This can happen either due to the mapping being with the VM_SHARED flag,
2941 * or due to us being the last reference standing to the page. In either
2942 * case, all we need to do here is to mark the page as writable and update
2943 * any related book-keeping.
2944 */
2945static inline void wp_page_reuse(struct vm_fault *vmf)
2946	__releases(vmf->ptl)
2947{
2948	struct vm_area_struct *vma = vmf->vma;
2949	struct page *page = vmf->page;
2950	pte_t entry;
2951	/*
2952	 * Clear the pages cpupid information as the existing
2953	 * information potentially belongs to a now completely
2954	 * unrelated process.
2955	 */
2956	if (page)
2957		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2958
2959	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2960	entry = pte_mkyoung(vmf->orig_pte);
2961	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2962	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2963		update_mmu_cache(vma, vmf->address, vmf->pte);
2964	pte_unmap_unlock(vmf->pte, vmf->ptl);
2965	count_vm_event(PGREUSE);
2966}
2967
2968/*
2969 * Handle the case of a page which we actually need to copy to a new page.
2970 *
2971 * Called with mmap_lock locked and the old page referenced, but
2972 * without the ptl held.
2973 *
2974 * High level logic flow:
2975 *
2976 * - Allocate a page, copy the content of the old page to the new one.
2977 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2978 * - Take the PTL. If the pte changed, bail out and release the allocated page
2979 * - If the pte is still the way we remember it, update the page table and all
2980 *   relevant references. This includes dropping the reference the page-table
2981 *   held to the old page, as well as updating the rmap.
2982 * - In any case, unlock the PTL and drop the reference we took to the old page.
2983 */
2984static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2985{
2986	struct vm_area_struct *vma = vmf->vma;
2987	struct mm_struct *mm = vma->vm_mm;
2988	struct page *old_page = vmf->page;
2989	struct page *new_page = NULL;
2990	pte_t entry;
2991	int page_copied = 0;
2992	struct mmu_notifier_range range;
2993
2994	if (unlikely(anon_vma_prepare(vma)))
2995		goto oom;
2996
2997	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2998		new_page = alloc_zeroed_user_highpage_movable(vma,
2999							      vmf->address);
3000		if (!new_page)
3001			goto oom;
3002	} else {
3003		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3004				vmf->address);
3005		if (!new_page)
3006			goto oom;
3007
3008		if (!cow_user_page(new_page, old_page, vmf)) {
3009			/*
3010			 * COW failed, if the fault was solved by other,
3011			 * it's fine. If not, userspace would re-fault on
3012			 * the same address and we will handle the fault
3013			 * from the second attempt.
3014			 */
3015			put_page(new_page);
3016			if (old_page)
3017				put_page(old_page);
3018			return 0;
3019		}
3020	}
3021
3022	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
3023		goto oom_free_new;
3024	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3025
3026	__SetPageUptodate(new_page);
3027
3028	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3029				vmf->address & PAGE_MASK,
3030				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3031	mmu_notifier_invalidate_range_start(&range);
3032
3033	/*
3034	 * Re-check the pte - we dropped the lock
3035	 */
3036	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3037	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3038		if (old_page) {
3039			if (!PageAnon(old_page)) {
3040				dec_mm_counter_fast(mm,
3041						mm_counter_file(old_page));
3042				inc_mm_counter_fast(mm, MM_ANONPAGES);
3043			}
3044		} else {
3045			inc_mm_counter_fast(mm, MM_ANONPAGES);
3046		}
3047		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3048		entry = mk_pte(new_page, vma->vm_page_prot);
3049		entry = pte_sw_mkyoung(entry);
3050		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3051
3052		/*
3053		 * Clear the pte entry and flush it first, before updating the
3054		 * pte with the new entry, to keep TLBs on different CPUs in
3055		 * sync. This code used to set the new PTE then flush TLBs, but
3056		 * that left a window where the new PTE could be loaded into
3057		 * some TLBs while the old PTE remains in others.
3058		 */
3059		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3060		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3061		lru_cache_add_inactive_or_unevictable(new_page, vma);
3062		/*
3063		 * We call the notify macro here because, when using secondary
3064		 * mmu page tables (such as kvm shadow page tables), we want the
3065		 * new page to be mapped directly into the secondary page table.
3066		 */
3067		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3068		update_mmu_cache(vma, vmf->address, vmf->pte);
3069		if (old_page) {
3070			/*
3071			 * Only after switching the pte to the new page may
3072			 * we remove the mapcount here. Otherwise another
3073			 * process may come and find the rmap count decremented
3074			 * before the pte is switched to the new page, and
3075			 * "reuse" the old page writing into it while our pte
3076			 * here still points into it and can be read by other
3077			 * threads.
3078			 *
3079			 * The critical issue is to order this
3080			 * page_remove_rmap with the ptp_clear_flush above.
3081			 * Those stores are ordered by (if nothing else,)
3082			 * the barrier present in the atomic_add_negative
3083			 * in page_remove_rmap.
3084			 *
3085			 * Then the TLB flush in ptep_clear_flush ensures that
3086			 * no process can access the old page before the
3087			 * decremented mapcount is visible. And the old page
3088			 * cannot be reused until after the decremented
3089			 * mapcount is visible. So transitively, TLBs to
3090			 * old page will be flushed before it can be reused.
3091			 */
3092			page_remove_rmap(old_page, false);
3093		}
3094
3095		/* Free the old page.. */
3096		new_page = old_page;
3097		page_copied = 1;
3098	} else {
3099		update_mmu_tlb(vma, vmf->address, vmf->pte);
3100	}
3101
3102	if (new_page)
3103		put_page(new_page);
3104
3105	pte_unmap_unlock(vmf->pte, vmf->ptl);
3106	/*
3107	 * No need to double call mmu_notifier->invalidate_range() callback as
3108	 * the above ptep_clear_flush_notify() did already call it.
3109	 */
3110	mmu_notifier_invalidate_range_only_end(&range);
3111	if (old_page) {
3112		/*
3113		 * Don't let another task, with possibly unlocked vma,
3114		 * keep the mlocked page.
3115		 */
3116		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3117			lock_page(old_page);	/* LRU manipulation */
3118			if (PageMlocked(old_page))
3119				munlock_vma_page(old_page);
3120			unlock_page(old_page);
3121		}
3122		if (page_copied)
3123			free_swap_cache(old_page);
3124		put_page(old_page);
3125	}
3126	return page_copied ? VM_FAULT_WRITE : 0;
3127oom_free_new:
3128	put_page(new_page);
3129oom:
3130	if (old_page)
3131		put_page(old_page);
3132	return VM_FAULT_OOM;
3133}
3134
3135/**
3136 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3137 *			  writeable once the page is prepared
3138 *
3139 * @vmf: structure describing the fault
3140 *
3141 * This function handles all that is needed to finish a write page fault in a
3142 * shared mapping due to PTE being read-only once the mapped page is prepared.
3143 * It handles locking of PTE and modifying it.
3144 *
3145 * The function expects the page to be locked or other protection against
3146 * concurrent faults / writeback (such as DAX radix tree locks).
3147 *
3148 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3149 * we acquired PTE lock.
3150 */
3151vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3152{
3153	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3154	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3155				       &vmf->ptl);
3156	/*
3157	 * We might have raced with another page fault while we released the
3158	 * pte_offset_map_lock.
3159	 */
3160	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3161		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3162		pte_unmap_unlock(vmf->pte, vmf->ptl);
3163		return VM_FAULT_NOPAGE;
3164	}
3165	wp_page_reuse(vmf);
3166	return 0;
3167}
3168
3169/*
3170 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3171 * mapping
3172 */
3173static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3174{
3175	struct vm_area_struct *vma = vmf->vma;
3176
3177	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3178		vm_fault_t ret;
3179
3180		pte_unmap_unlock(vmf->pte, vmf->ptl);
3181		vmf->flags |= FAULT_FLAG_MKWRITE;
3182		ret = vma->vm_ops->pfn_mkwrite(vmf);
3183		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3184			return ret;
3185		return finish_mkwrite_fault(vmf);
3186	}
3187	wp_page_reuse(vmf);
3188	return VM_FAULT_WRITE;
3189}
3190
3191static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3192	__releases(vmf->ptl)
3193{
3194	struct vm_area_struct *vma = vmf->vma;
3195	vm_fault_t ret = VM_FAULT_WRITE;
3196
3197	get_page(vmf->page);
3198
3199	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3200		vm_fault_t tmp;
3201
3202		pte_unmap_unlock(vmf->pte, vmf->ptl);
3203		tmp = do_page_mkwrite(vmf);
3204		if (unlikely(!tmp || (tmp &
3205				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3206			put_page(vmf->page);
3207			return tmp;
3208		}
3209		tmp = finish_mkwrite_fault(vmf);
3210		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3211			unlock_page(vmf->page);
3212			put_page(vmf->page);
3213			return tmp;
3214		}
3215	} else {
3216		wp_page_reuse(vmf);
3217		lock_page(vmf->page);
3218	}
3219	ret |= fault_dirty_shared_page(vmf);
3220	put_page(vmf->page);
3221
 
 
3222	return ret;
3223}
3224
3225/*
3226 * This routine handles present pages, when users try to write
3227 * to a shared page. It is done by copying the page to a new address
3228 * and decrementing the shared-page counter for the old page.
3229 *
3230 * Note that this routine assumes that the protection checks have been
3231 * done by the caller (the low-level page fault routine in most cases).
3232 * Thus we can safely just mark it writable once we've done any necessary
3233 * COW.
3234 *
3235 * We also mark the page dirty at this point even though the page will
3236 * change only once the write actually happens. This avoids a few races,
3237 * and potentially makes it more efficient.
3238 *
3239 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3240 * but allow concurrent faults), with pte both mapped and locked.
3241 * We return with mmap_lock still held, but pte unmapped and unlocked.
3242 */
3243static vm_fault_t do_wp_page(struct vm_fault *vmf)
3244	__releases(vmf->ptl)
3245{
3246	struct vm_area_struct *vma = vmf->vma;
3247
3248	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3249		pte_unmap_unlock(vmf->pte, vmf->ptl);
3250		return handle_userfault(vmf, VM_UFFD_WP);
3251	}
3252
3253	/*
3254	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3255	 * is flushed in this case before copying.
3256	 */
3257	if (unlikely(userfaultfd_wp(vmf->vma) &&
3258		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3259		flush_tlb_page(vmf->vma, vmf->address);
3260
3261	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3262	if (!vmf->page) {
3263		/*
3264		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3265		 * VM_PFNMAP VMA.
3266		 *
3267		 * We should not cow pages in a shared writeable mapping.
3268		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3269		 */
3270		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3271				     (VM_WRITE|VM_SHARED))
3272			return wp_pfn_shared(vmf);
3273
3274		pte_unmap_unlock(vmf->pte, vmf->ptl);
3275		return wp_page_copy(vmf);
3276	}
3277
3278	/*
3279	 * Take out anonymous pages first, anonymous shared vmas are
3280	 * not dirty accountable.
3281	 */
3282	if (PageAnon(vmf->page)) {
3283		struct page *page = vmf->page;
3284
3285		/* PageKsm() doesn't necessarily raise the page refcount */
3286		if (PageKsm(page) || page_count(page) != 1)
3287			goto copy;
3288		if (!trylock_page(page))
3289			goto copy;
3290		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3291			unlock_page(page);
3292			goto copy;
3293		}
3294		/*
3295		 * Ok, we've got the only map reference, and the only
3296		 * page count reference, and the page is locked,
3297		 * it's dark out, and we're wearing sunglasses. Hit it.
3298		 */
3299		unlock_page(page);
3300		wp_page_reuse(vmf);
3301		return VM_FAULT_WRITE;
3302	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3303					(VM_WRITE|VM_SHARED))) {
3304		return wp_page_shared(vmf);
3305	}
3306copy:
3307	/*
3308	 * Ok, we need to copy. Oh, well..
3309	 */
3310	get_page(vmf->page);
3311
3312	pte_unmap_unlock(vmf->pte, vmf->ptl);
3313	return wp_page_copy(vmf);
3314}
3315
3316static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3317		unsigned long start_addr, unsigned long end_addr,
3318		struct zap_details *details)
3319{
3320	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3321}
3322
3323static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3324					    struct zap_details *details)
3325{
3326	struct vm_area_struct *vma;
 
3327	pgoff_t vba, vea, zba, zea;
3328
3329	vma_interval_tree_foreach(vma, root,
3330			details->first_index, details->last_index) {
3331
3332		vba = vma->vm_pgoff;
3333		vea = vba + vma_pages(vma) - 1;
 
3334		zba = details->first_index;
3335		if (zba < vba)
3336			zba = vba;
3337		zea = details->last_index;
3338		if (zea > vea)
3339			zea = vea;
3340
3341		unmap_mapping_range_vma(vma,
3342			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3343			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3344				details);
3345	}
3346}
3347
3348/**
3349 * unmap_mapping_page() - Unmap single page from processes.
3350 * @page: The locked page to be unmapped.
3351 *
3352 * Unmap this page from any userspace process which still has it mmaped.
3353 * Typically, for efficiency, the range of nearby pages has already been
3354 * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3355 * truncation or invalidation holds the lock on a page, it may find that
3356 * the page has been remapped again: and then uses unmap_mapping_page()
3357 * to unmap it finally.
3358 */
3359void unmap_mapping_page(struct page *page)
3360{
3361	struct address_space *mapping = page->mapping;
3362	struct zap_details details = { };
3363
3364	VM_BUG_ON(!PageLocked(page));
3365	VM_BUG_ON(PageTail(page));
3366
3367	details.check_mapping = mapping;
3368	details.first_index = page->index;
3369	details.last_index = page->index + thp_nr_pages(page) - 1;
3370	details.single_page = page;
3371
3372	i_mmap_lock_write(mapping);
3373	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3374		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3375	i_mmap_unlock_write(mapping);
3376}
3377
3378/**
3379 * unmap_mapping_pages() - Unmap pages from processes.
3380 * @mapping: The address space containing pages to be unmapped.
3381 * @start: Index of first page to be unmapped.
3382 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3383 * @even_cows: Whether to unmap even private COWed pages.
3384 *
3385 * Unmap the pages in this address space from any userspace process which
3386 * has them mmaped.  Generally, you want to remove COWed pages as well when
3387 * a file is being truncated, but not when invalidating pages from the page
3388 * cache.
3389 */
3390void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3391		pgoff_t nr, bool even_cows)
3392{
3393	struct zap_details details = { };
3394
3395	details.check_mapping = even_cows ? NULL : mapping;
3396	details.first_index = start;
3397	details.last_index = start + nr - 1;
3398	if (details.last_index < details.first_index)
3399		details.last_index = ULONG_MAX;
3400
3401	i_mmap_lock_write(mapping);
3402	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3403		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3404	i_mmap_unlock_write(mapping);
 
 
 
 
 
 
3405}
3406
3407/**
3408 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3409 * address_space corresponding to the specified byte range in the underlying
3410 * file.
3411 *
3412 * @mapping: the address space containing mmaps to be unmapped.
3413 * @holebegin: byte in first page to unmap, relative to the start of
3414 * the underlying file.  This will be rounded down to a PAGE_SIZE
3415 * boundary.  Note that this is different from truncate_pagecache(), which
3416 * must keep the partial page.  In contrast, we must get rid of
3417 * partial pages.
3418 * @holelen: size of prospective hole in bytes.  This will be rounded
3419 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3420 * end of the file.
3421 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3422 * but 0 when invalidating pagecache, don't throw away private data.
3423 */
3424void unmap_mapping_range(struct address_space *mapping,
3425		loff_t const holebegin, loff_t const holelen, int even_cows)
3426{
 
3427	pgoff_t hba = holebegin >> PAGE_SHIFT;
3428	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3429
3430	/* Check for overflow. */
3431	if (sizeof(holelen) > sizeof(hlen)) {
3432		long long holeend =
3433			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3434		if (holeend & ~(long long)ULONG_MAX)
3435			hlen = ULONG_MAX - hba + 1;
3436	}
3437
3438	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3439}
3440EXPORT_SYMBOL(unmap_mapping_range);
3441
3442/*
3443 * Restore a potential device exclusive pte to a working pte entry
3444 */
3445static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3446{
3447	struct page *page = vmf->page;
3448	struct vm_area_struct *vma = vmf->vma;
3449	struct mmu_notifier_range range;
3450
3451	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3452		return VM_FAULT_RETRY;
3453	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3454				vma->vm_mm, vmf->address & PAGE_MASK,
3455				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3456	mmu_notifier_invalidate_range_start(&range);
3457
3458	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3459				&vmf->ptl);
3460	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3461		restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3462
3463	pte_unmap_unlock(vmf->pte, vmf->ptl);
3464	unlock_page(page);
3465
3466	mmu_notifier_invalidate_range_end(&range);
3467	return 0;
 
 
 
 
3468}
 
3469
3470/*
3471 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3472 * but allow concurrent faults), and pte mapped but not yet locked.
3473 * We return with pte unmapped and unlocked.
3474 *
3475 * We return with the mmap_lock locked or unlocked in the same cases
3476 * as does filemap_fault().
3477 */
3478vm_fault_t do_swap_page(struct vm_fault *vmf)
 
 
3479{
3480	struct vm_area_struct *vma = vmf->vma;
3481	struct page *page = NULL, *swapcache;
3482	struct swap_info_struct *si = NULL;
3483	swp_entry_t entry;
3484	pte_t pte;
3485	int locked;
 
3486	int exclusive = 0;
3487	vm_fault_t ret = 0;
3488	void *shadow = NULL;
3489
3490	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3491		goto out;
3492
3493	entry = pte_to_swp_entry(vmf->orig_pte);
3494	if (unlikely(non_swap_entry(entry))) {
3495		if (is_migration_entry(entry)) {
3496			migration_entry_wait(vma->vm_mm, vmf->pmd,
3497					     vmf->address);
3498		} else if (is_device_exclusive_entry(entry)) {
3499			vmf->page = pfn_swap_entry_to_page(entry);
3500			ret = remove_device_exclusive_entry(vmf);
3501		} else if (is_device_private_entry(entry)) {
3502			vmf->page = pfn_swap_entry_to_page(entry);
3503			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3504		} else if (is_hwpoison_entry(entry)) {
3505			ret = VM_FAULT_HWPOISON;
3506		} else {
3507			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3508			ret = VM_FAULT_SIGBUS;
3509		}
3510		goto out;
3511	}
3512
3513	/* Prevent swapoff from happening to us. */
3514	si = get_swap_device(entry);
3515	if (unlikely(!si))
3516		goto out;
3517
3518	delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3519	page = lookup_swap_cache(entry, vma, vmf->address);
3520	swapcache = page;
3521
3522	if (!page) {
3523		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3524		    __swap_count(entry) == 1) {
3525			/* skip swapcache */
3526			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3527							vmf->address);
3528			if (page) {
3529				__SetPageLocked(page);
3530				__SetPageSwapBacked(page);
3531
3532				if (mem_cgroup_swapin_charge_page(page,
3533					vma->vm_mm, GFP_KERNEL, entry)) {
3534					ret = VM_FAULT_OOM;
3535					goto out_page;
3536				}
3537				mem_cgroup_swapin_uncharge_swap(entry);
3538
3539				shadow = get_shadow_from_swap_cache(entry);
3540				if (shadow)
3541					workingset_refault(page, shadow);
3542
3543				lru_cache_add(page);
3544
3545				/* To provide entry to swap_readpage() */
3546				set_page_private(page, entry.val);
3547				swap_readpage(page, true);
3548				set_page_private(page, 0);
3549			}
3550		} else {
3551			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3552						vmf);
3553			swapcache = page;
3554		}
3555
3556		if (!page) {
3557			/*
3558			 * Back out if somebody else faulted in this pte
3559			 * while we released the pte lock.
3560			 */
3561			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3562					vmf->address, &vmf->ptl);
3563			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3564				ret = VM_FAULT_OOM;
3565			delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3566			goto unlock;
3567		}
3568
3569		/* Had to read the page from swap area: Major fault */
3570		ret = VM_FAULT_MAJOR;
3571		count_vm_event(PGMAJFAULT);
3572		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3573	} else if (PageHWPoison(page)) {
3574		/*
3575		 * hwpoisoned dirty swapcache pages are kept for killing
3576		 * owner processes (which may be unknown at hwpoison time)
3577		 */
3578		ret = VM_FAULT_HWPOISON;
3579		delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3580		goto out_release;
3581	}
3582
3583	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3584
3585	delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3586	if (!locked) {
3587		ret |= VM_FAULT_RETRY;
3588		goto out_release;
3589	}
3590
3591	/*
3592	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3593	 * release the swapcache from under us.  The page pin, and pte_same
3594	 * test below, are not enough to exclude that.  Even if it is still
3595	 * swapcache, we need to check that the page's swap has not changed.
3596	 */
3597	if (unlikely((!PageSwapCache(page) ||
3598			page_private(page) != entry.val)) && swapcache)
3599		goto out_page;
3600
3601	page = ksm_might_need_to_copy(page, vma, vmf->address);
3602	if (unlikely(!page)) {
 
 
 
 
 
 
 
 
 
 
 
3603		ret = VM_FAULT_OOM;
3604		page = swapcache;
3605		goto out_page;
3606	}
3607
3608	cgroup_throttle_swaprate(page, GFP_KERNEL);
3609
3610	/*
3611	 * Back out if somebody else already faulted in this pte.
3612	 */
3613	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3614			&vmf->ptl);
3615	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3616		goto out_nomap;
3617
3618	if (unlikely(!PageUptodate(page))) {
3619		ret = VM_FAULT_SIGBUS;
3620		goto out_nomap;
3621	}
3622
3623	/*
3624	 * The page isn't present yet, go ahead with the fault.
3625	 *
3626	 * Be careful about the sequence of operations here.
3627	 * To get its accounting right, reuse_swap_page() must be called
3628	 * while the page is counted on swap but not yet in mapcount i.e.
3629	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3630	 * must be called after the swap_free(), or it will never succeed.
 
 
 
 
3631	 */
3632
3633	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3634	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3635	pte = mk_pte(page, vma->vm_page_prot);
3636	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3637		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3638		vmf->flags &= ~FAULT_FLAG_WRITE;
3639		ret |= VM_FAULT_WRITE;
3640		exclusive = RMAP_EXCLUSIVE;
3641	}
3642	flush_icache_page(vma, page);
3643	if (pte_swp_soft_dirty(vmf->orig_pte))
3644		pte = pte_mksoft_dirty(pte);
3645	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3646		pte = pte_mkuffd_wp(pte);
3647		pte = pte_wrprotect(pte);
3648	}
3649	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3650	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3651	vmf->orig_pte = pte;
3652
3653	/* ksm created a completely new copy */
3654	if (unlikely(page != swapcache && swapcache)) {
3655		page_add_new_anon_rmap(page, vma, vmf->address, false);
3656		lru_cache_add_inactive_or_unevictable(page, vma);
3657	} else {
3658		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3659	}
3660
3661	swap_free(entry);
3662	if (mem_cgroup_swap_full(page) ||
3663	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3664		try_to_free_swap(page);
3665	unlock_page(page);
3666	if (page != swapcache && swapcache) {
3667		/*
3668		 * Hold the lock to avoid the swap entry to be reused
3669		 * until we take the PT lock for the pte_same() check
3670		 * (to avoid false positives from pte_same). For
3671		 * further safety release the lock after the swap_free
3672		 * so that the swap count won't change under a
3673		 * parallel locked swapcache.
3674		 */
3675		unlock_page(swapcache);
3676		put_page(swapcache);
3677	}
3678
3679	if (vmf->flags & FAULT_FLAG_WRITE) {
3680		ret |= do_wp_page(vmf);
3681		if (ret & VM_FAULT_ERROR)
3682			ret &= VM_FAULT_ERROR;
3683		goto out;
3684	}
3685
3686	/* No need to invalidate - it was non-present before */
3687	update_mmu_cache(vma, vmf->address, vmf->pte);
3688unlock:
3689	pte_unmap_unlock(vmf->pte, vmf->ptl);
3690out:
3691	if (si)
3692		put_swap_device(si);
3693	return ret;
3694out_nomap:
3695	pte_unmap_unlock(vmf->pte, vmf->ptl);
 
3696out_page:
3697	unlock_page(page);
3698out_release:
3699	put_page(page);
3700	if (page != swapcache && swapcache) {
3701		unlock_page(swapcache);
3702		put_page(swapcache);
3703	}
3704	if (si)
3705		put_swap_device(si);
3706	return ret;
3707}
3708
3709/*
3710 * We enter with non-exclusive mmap_lock (to exclude vma changes,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3711 * but allow concurrent faults), and pte mapped but not yet locked.
3712 * We return with mmap_lock still held, but pte unmapped and unlocked.
3713 */
3714static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
 
 
3715{
3716	struct vm_area_struct *vma = vmf->vma;
3717	struct page *page;
3718	vm_fault_t ret = 0;
3719	pte_t entry;
3720
3721	/* File mapping without ->vm_ops ? */
3722	if (vma->vm_flags & VM_SHARED)
3723		return VM_FAULT_SIGBUS;
3724
3725	/*
3726	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3727	 * pte_offset_map() on pmds where a huge pmd might be created
3728	 * from a different thread.
3729	 *
3730	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3731	 * parallel threads are excluded by other means.
3732	 *
3733	 * Here we only have mmap_read_lock(mm).
3734	 */
3735	if (pte_alloc(vma->vm_mm, vmf->pmd))
3736		return VM_FAULT_OOM;
3737
3738	/* See comment in handle_pte_fault() */
3739	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3740		return 0;
3741
3742	/* Use the zero-page for reads */
3743	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3744			!mm_forbids_zeropage(vma->vm_mm)) {
3745		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3746						vma->vm_page_prot));
3747		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3748				vmf->address, &vmf->ptl);
3749		if (!pte_none(*vmf->pte)) {
3750			update_mmu_tlb(vma, vmf->address, vmf->pte);
3751			goto unlock;
3752		}
3753		ret = check_stable_address_space(vma->vm_mm);
3754		if (ret)
3755			goto unlock;
3756		/* Deliver the page fault to userland, check inside PT lock */
3757		if (userfaultfd_missing(vma)) {
3758			pte_unmap_unlock(vmf->pte, vmf->ptl);
3759			return handle_userfault(vmf, VM_UFFD_MISSING);
3760		}
3761		goto setpte;
3762	}
3763
3764	/* Allocate our own private page. */
3765	if (unlikely(anon_vma_prepare(vma)))
3766		goto oom;
3767	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3768	if (!page)
3769		goto oom;
 
3770
3771	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3772		goto oom_free_page;
3773	cgroup_throttle_swaprate(page, GFP_KERNEL);
3774
3775	/*
3776	 * The memory barrier inside __SetPageUptodate makes sure that
3777	 * preceding stores to the page contents become visible before
3778	 * the set_pte_at() write.
3779	 */
3780	__SetPageUptodate(page);
3781
3782	entry = mk_pte(page, vma->vm_page_prot);
3783	entry = pte_sw_mkyoung(entry);
3784	if (vma->vm_flags & VM_WRITE)
3785		entry = pte_mkwrite(pte_mkdirty(entry));
3786
3787	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3788			&vmf->ptl);
3789	if (!pte_none(*vmf->pte)) {
3790		update_mmu_cache(vma, vmf->address, vmf->pte);
3791		goto release;
3792	}
3793
3794	ret = check_stable_address_space(vma->vm_mm);
3795	if (ret)
3796		goto release;
3797
3798	/* Deliver the page fault to userland, check inside PT lock */
3799	if (userfaultfd_missing(vma)) {
3800		pte_unmap_unlock(vmf->pte, vmf->ptl);
3801		put_page(page);
3802		return handle_userfault(vmf, VM_UFFD_MISSING);
3803	}
3804
3805	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3806	page_add_new_anon_rmap(page, vma, vmf->address, false);
3807	lru_cache_add_inactive_or_unevictable(page, vma);
3808setpte:
3809	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3810
3811	/* No need to invalidate - it was non-present before */
3812	update_mmu_cache(vma, vmf->address, vmf->pte);
3813unlock:
3814	pte_unmap_unlock(vmf->pte, vmf->ptl);
3815	return ret;
3816release:
3817	put_page(page);
 
3818	goto unlock;
3819oom_free_page:
3820	put_page(page);
3821oom:
3822	return VM_FAULT_OOM;
3823}
3824
3825/*
3826 * The mmap_lock must have been held on entry, and may have been
3827 * released depending on flags and vma->vm_ops->fault() return value.
3828 * See filemap_fault() and __lock_page_retry().
3829 */
3830static vm_fault_t __do_fault(struct vm_fault *vmf)
3831{
3832	struct vm_area_struct *vma = vmf->vma;
3833	vm_fault_t ret;
3834
3835	/*
3836	 * Preallocate pte before we take page_lock because this might lead to
3837	 * deadlocks for memcg reclaim which waits for pages under writeback:
3838	 *				lock_page(A)
3839	 *				SetPageWriteback(A)
3840	 *				unlock_page(A)
3841	 * lock_page(B)
3842	 *				lock_page(B)
3843	 * pte_alloc_one
3844	 *   shrink_page_list
3845	 *     wait_on_page_writeback(A)
3846	 *				SetPageWriteback(B)
3847	 *				unlock_page(B)
3848	 *				# flush A, B to clear the writeback
3849	 */
3850	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3851		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3852		if (!vmf->prealloc_pte)
3853			return VM_FAULT_OOM;
3854		smp_wmb(); /* See comment in __pte_alloc() */
3855	}
3856
3857	ret = vma->vm_ops->fault(vmf);
3858	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3859			    VM_FAULT_DONE_COW)))
3860		return ret;
3861
3862	if (unlikely(PageHWPoison(vmf->page))) {
3863		if (ret & VM_FAULT_LOCKED)
3864			unlock_page(vmf->page);
3865		put_page(vmf->page);
3866		vmf->page = NULL;
3867		return VM_FAULT_HWPOISON;
3868	}
3869
3870	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3871		lock_page(vmf->page);
3872	else
3873		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3874
3875	return ret;
3876}
3877
3878#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3879static void deposit_prealloc_pte(struct vm_fault *vmf)
3880{
3881	struct vm_area_struct *vma = vmf->vma;
 
 
 
 
 
 
 
 
 
3882
3883	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3884	/*
3885	 * We are going to consume the prealloc table,
3886	 * count that as nr_ptes.
3887	 */
3888	mm_inc_nr_ptes(vma->vm_mm);
3889	vmf->prealloc_pte = NULL;
3890}
3891
3892vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3893{
3894	struct vm_area_struct *vma = vmf->vma;
3895	bool write = vmf->flags & FAULT_FLAG_WRITE;
3896	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3897	pmd_t entry;
3898	int i;
3899	vm_fault_t ret = VM_FAULT_FALLBACK;
3900
3901	if (!transhuge_vma_suitable(vma, haddr))
3902		return ret;
3903
3904	page = compound_head(page);
3905	if (compound_order(page) != HPAGE_PMD_ORDER)
3906		return ret;
3907
3908	/*
3909	 * Archs like ppc64 need additional space to store information
3910	 * related to pte entry. Use the preallocated table for that.
3911	 */
3912	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3913		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3914		if (!vmf->prealloc_pte)
3915			return VM_FAULT_OOM;
3916		smp_wmb(); /* See comment in __pte_alloc() */
3917	}
 
3918
3919	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3920	if (unlikely(!pmd_none(*vmf->pmd)))
3921		goto out;
 
3922
3923	for (i = 0; i < HPAGE_PMD_NR; i++)
3924		flush_icache_page(vma, page + i);
 
 
3925
3926	entry = mk_huge_pmd(page, vma->vm_page_prot);
3927	if (write)
3928		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 
 
 
3929
3930	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3931	page_add_file_rmap(page, true);
3932	/*
3933	 * deposit and withdraw with pmd lock held
 
3934	 */
3935	if (arch_needs_pgtable_deposit())
3936		deposit_prealloc_pte(vmf);
3937
3938	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3939
3940	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3941
3942	/* fault is handled */
3943	ret = 0;
3944	count_vm_event(THP_FILE_MAPPED);
3945out:
3946	spin_unlock(vmf->ptl);
3947	return ret;
3948}
3949#else
3950vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3951{
3952	return VM_FAULT_FALLBACK;
3953}
3954#endif
3955
3956void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3957{
3958	struct vm_area_struct *vma = vmf->vma;
3959	bool write = vmf->flags & FAULT_FLAG_WRITE;
3960	bool prefault = vmf->address != addr;
3961	pte_t entry;
3962
3963	flush_icache_page(vma, page);
3964	entry = mk_pte(page, vma->vm_page_prot);
3965
3966	if (prefault && arch_wants_old_prefaulted_pte())
3967		entry = pte_mkold(entry);
3968	else
3969		entry = pte_sw_mkyoung(entry);
3970
3971	if (write)
3972		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3973	/* copy-on-write page */
3974	if (write && !(vma->vm_flags & VM_SHARED)) {
3975		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3976		page_add_new_anon_rmap(page, vma, addr, false);
3977		lru_cache_add_inactive_or_unevictable(page, vma);
3978	} else {
3979		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3980		page_add_file_rmap(page, false);
3981	}
3982	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3983}
3984
3985/**
3986 * finish_fault - finish page fault once we have prepared the page to fault
3987 *
3988 * @vmf: structure describing the fault
3989 *
3990 * This function handles all that is needed to finish a page fault once the
3991 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3992 * given page, adds reverse page mapping, handles memcg charges and LRU
3993 * addition.
3994 *
3995 * The function expects the page to be locked and on success it consumes a
3996 * reference of a page being mapped (for the PTE which maps it).
3997 *
3998 * Return: %0 on success, %VM_FAULT_ code in case of error.
3999 */
4000vm_fault_t finish_fault(struct vm_fault *vmf)
4001{
4002	struct vm_area_struct *vma = vmf->vma;
4003	struct page *page;
4004	vm_fault_t ret;
4005
4006	/* Did we COW the page? */
4007	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4008		page = vmf->cow_page;
4009	else
4010		page = vmf->page;
4011
4012	/*
4013	 * check even for read faults because we might have lost our CoWed
4014	 * page
4015	 */
4016	if (!(vma->vm_flags & VM_SHARED)) {
4017		ret = check_stable_address_space(vma->vm_mm);
4018		if (ret)
4019			return ret;
4020	}
4021
4022	if (pmd_none(*vmf->pmd)) {
4023		if (PageTransCompound(page)) {
4024			ret = do_set_pmd(vmf, page);
4025			if (ret != VM_FAULT_FALLBACK)
4026				return ret;
4027		}
 
 
 
4028
4029		if (vmf->prealloc_pte) {
4030			vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4031			if (likely(pmd_none(*vmf->pmd))) {
4032				mm_inc_nr_ptes(vma->vm_mm);
4033				pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4034				vmf->prealloc_pte = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
4035			}
4036			spin_unlock(vmf->ptl);
4037		} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
4038			return VM_FAULT_OOM;
4039		}
4040	}
4041
4042	/* See comment in handle_pte_fault() */
4043	if (pmd_devmap_trans_unstable(vmf->pmd))
4044		return 0;
4045
4046	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4047				      vmf->address, &vmf->ptl);
4048	ret = 0;
4049	/* Re-check under ptl */
4050	if (likely(pte_none(*vmf->pte)))
4051		do_set_pte(vmf, page, vmf->address);
4052	else
4053		ret = VM_FAULT_NOPAGE;
4054
4055	update_mmu_tlb(vma, vmf->address, vmf->pte);
4056	pte_unmap_unlock(vmf->pte, vmf->ptl);
4057	return ret;
4058}
4059
4060static unsigned long fault_around_bytes __read_mostly =
4061	rounddown_pow_of_two(65536);
4062
4063#ifdef CONFIG_DEBUG_FS
4064static int fault_around_bytes_get(void *data, u64 *val)
4065{
4066	*val = fault_around_bytes;
4067	return 0;
4068}
4069
4070/*
4071 * fault_around_bytes must be rounded down to the nearest page order as it's
4072 * what do_fault_around() expects to see.
4073 */
4074static int fault_around_bytes_set(void *data, u64 val)
4075{
4076	if (val / PAGE_SIZE > PTRS_PER_PTE)
4077		return -EINVAL;
4078	if (val > PAGE_SIZE)
4079		fault_around_bytes = rounddown_pow_of_two(val);
4080	else
4081		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4082	return 0;
4083}
4084DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4085		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4086
4087static int __init fault_around_debugfs(void)
4088{
4089	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4090				   &fault_around_bytes_fops);
4091	return 0;
4092}
4093late_initcall(fault_around_debugfs);
4094#endif
4095
4096/*
4097 * do_fault_around() tries to map few pages around the fault address. The hope
4098 * is that the pages will be needed soon and this will lower the number of
4099 * faults to handle.
4100 *
4101 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4102 * not ready to be mapped: not up-to-date, locked, etc.
4103 *
4104 * This function is called with the page table lock taken. In the split ptlock
4105 * case the page table lock only protects only those entries which belong to
4106 * the page table corresponding to the fault address.
4107 *
4108 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4109 * only once.
4110 *
4111 * fault_around_bytes defines how many bytes we'll try to map.
4112 * do_fault_around() expects it to be set to a power of two less than or equal
4113 * to PTRS_PER_PTE.
4114 *
4115 * The virtual address of the area that we map is naturally aligned to
4116 * fault_around_bytes rounded down to the machine page size
4117 * (and therefore to page order).  This way it's easier to guarantee
4118 * that we don't cross page table boundaries.
4119 */
4120static vm_fault_t do_fault_around(struct vm_fault *vmf)
4121{
4122	unsigned long address = vmf->address, nr_pages, mask;
4123	pgoff_t start_pgoff = vmf->pgoff;
4124	pgoff_t end_pgoff;
4125	int off;
4126
4127	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4128	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4129
4130	address = max(address & mask, vmf->vma->vm_start);
4131	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4132	start_pgoff -= off;
4133
4134	/*
4135	 *  end_pgoff is either the end of the page table, the end of
4136	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4137	 */
4138	end_pgoff = start_pgoff -
4139		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4140		PTRS_PER_PTE - 1;
4141	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4142			start_pgoff + nr_pages - 1);
4143
4144	if (pmd_none(*vmf->pmd)) {
4145		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4146		if (!vmf->prealloc_pte)
4147			return VM_FAULT_OOM;
4148		smp_wmb(); /* See comment in __pte_alloc() */
4149	}
4150
4151	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4152}
4153
4154static vm_fault_t do_read_fault(struct vm_fault *vmf)
4155{
4156	struct vm_area_struct *vma = vmf->vma;
4157	vm_fault_t ret = 0;
4158
4159	/*
4160	 * Let's call ->map_pages() first and use ->fault() as fallback
4161	 * if page by the offset is not ready to be mapped (cold cache or
4162	 * something).
4163	 */
4164	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4165		if (likely(!userfaultfd_minor(vmf->vma))) {
4166			ret = do_fault_around(vmf);
4167			if (ret)
4168				return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4169		}
4170	}
4171
4172	ret = __do_fault(vmf);
4173	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4174		return ret;
4175
4176	ret |= finish_fault(vmf);
4177	unlock_page(vmf->page);
4178	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4179		put_page(vmf->page);
4180	return ret;
4181}
4182
4183static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4184{
4185	struct vm_area_struct *vma = vmf->vma;
4186	vm_fault_t ret;
4187
4188	if (unlikely(anon_vma_prepare(vma)))
4189		return VM_FAULT_OOM;
4190
4191	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4192	if (!vmf->cow_page)
4193		return VM_FAULT_OOM;
4194
4195	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4196		put_page(vmf->cow_page);
4197		return VM_FAULT_OOM;
4198	}
4199	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4200
4201	ret = __do_fault(vmf);
4202	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4203		goto uncharge_out;
4204	if (ret & VM_FAULT_DONE_COW)
4205		return ret;
4206
4207	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4208	__SetPageUptodate(vmf->cow_page);
4209
4210	ret |= finish_fault(vmf);
4211	unlock_page(vmf->page);
4212	put_page(vmf->page);
4213	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4214		goto uncharge_out;
4215	return ret;
4216uncharge_out:
4217	put_page(vmf->cow_page);
4218	return ret;
4219}
4220
4221static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4222{
4223	struct vm_area_struct *vma = vmf->vma;
4224	vm_fault_t ret, tmp;
4225
4226	ret = __do_fault(vmf);
4227	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4228		return ret;
4229
4230	/*
4231	 * Check if the backing address space wants to know that the page is
4232	 * about to become writable
4233	 */
4234	if (vma->vm_ops->page_mkwrite) {
4235		unlock_page(vmf->page);
4236		tmp = do_page_mkwrite(vmf);
4237		if (unlikely(!tmp ||
4238				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4239			put_page(vmf->page);
4240			return tmp;
4241		}
4242	}
4243
4244	ret |= finish_fault(vmf);
4245	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4246					VM_FAULT_RETRY))) {
4247		unlock_page(vmf->page);
4248		put_page(vmf->page);
4249		return ret;
 
4250	}
4251
4252	ret |= fault_dirty_shared_page(vmf);
4253	return ret;
4254}
4255
4256/*
4257 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4258 * but allow concurrent faults).
4259 * The mmap_lock may have been released depending on flags and our
4260 * return value.  See filemap_fault() and __lock_page_or_retry().
4261 * If mmap_lock is released, vma may become invalid (for example
4262 * by other thread calling munmap()).
4263 */
4264static vm_fault_t do_fault(struct vm_fault *vmf)
4265{
4266	struct vm_area_struct *vma = vmf->vma;
4267	struct mm_struct *vm_mm = vma->vm_mm;
4268	vm_fault_t ret;
4269
4270	/*
4271	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4272	 */
4273	if (!vma->vm_ops->fault) {
4274		/*
4275		 * If we find a migration pmd entry or a none pmd entry, which
4276		 * should never happen, return SIGBUS
4277		 */
4278		if (unlikely(!pmd_present(*vmf->pmd)))
4279			ret = VM_FAULT_SIGBUS;
4280		else {
4281			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4282						       vmf->pmd,
4283						       vmf->address,
4284						       &vmf->ptl);
4285			/*
4286			 * Make sure this is not a temporary clearing of pte
4287			 * by holding ptl and checking again. A R/M/W update
4288			 * of pte involves: take ptl, clearing the pte so that
4289			 * we don't have concurrent modification by hardware
4290			 * followed by an update.
4291			 */
4292			if (unlikely(pte_none(*vmf->pte)))
4293				ret = VM_FAULT_SIGBUS;
4294			else
4295				ret = VM_FAULT_NOPAGE;
4296
4297			pte_unmap_unlock(vmf->pte, vmf->ptl);
4298		}
4299	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4300		ret = do_read_fault(vmf);
4301	else if (!(vma->vm_flags & VM_SHARED))
4302		ret = do_cow_fault(vmf);
4303	else
4304		ret = do_shared_fault(vmf);
4305
4306	/* preallocated pagetable is unused: free it */
4307	if (vmf->prealloc_pte) {
4308		pte_free(vm_mm, vmf->prealloc_pte);
4309		vmf->prealloc_pte = NULL;
4310	}
4311	return ret;
4312}
4313
4314int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4315		      unsigned long addr, int page_nid, int *flags)
 
4316{
4317	get_page(page);
 
4318
4319	count_vm_numa_event(NUMA_HINT_FAULTS);
4320	if (page_nid == numa_node_id()) {
4321		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4322		*flags |= TNF_FAULT_LOCAL;
4323	}
4324
4325	return mpol_misplaced(page, vma, addr);
4326}
4327
4328static vm_fault_t do_numa_page(struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
 
4329{
4330	struct vm_area_struct *vma = vmf->vma;
4331	struct page *page = NULL;
4332	int page_nid = NUMA_NO_NODE;
4333	int last_cpupid;
4334	int target_nid;
4335	pte_t pte, old_pte;
4336	bool was_writable = pte_savedwrite(vmf->orig_pte);
4337	int flags = 0;
4338
4339	/*
4340	 * The "pte" at this point cannot be used safely without
4341	 * validation through pte_unmap_same(). It's of NUMA type but
4342	 * the pfn may be screwed if the read is non atomic.
4343	 */
4344	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4345	spin_lock(vmf->ptl);
4346	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4347		pte_unmap_unlock(vmf->pte, vmf->ptl);
4348		goto out;
4349	}
4350
4351	/* Get the normal PTE  */
4352	old_pte = ptep_get(vmf->pte);
4353	pte = pte_modify(old_pte, vma->vm_page_prot);
4354
4355	page = vm_normal_page(vma, vmf->address, pte);
4356	if (!page)
4357		goto out_map;
4358
4359	/* TODO: handle PTE-mapped THP */
4360	if (PageCompound(page))
4361		goto out_map;
4362
4363	/*
4364	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4365	 * much anyway since they can be in shared cache state. This misses
4366	 * the case where a mapping is writable but the process never writes
4367	 * to it but pte_write gets cleared during protection updates and
4368	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4369	 * background writeback, dirty balancing and application behaviour.
4370	 */
4371	if (!was_writable)
4372		flags |= TNF_NO_GROUP;
4373
4374	/*
4375	 * Flag if the page is shared between multiple address spaces. This
4376	 * is later used when determining whether to group tasks together
4377	 */
4378	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4379		flags |= TNF_SHARED;
4380
4381	last_cpupid = page_cpupid_last(page);
4382	page_nid = page_to_nid(page);
4383	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4384			&flags);
4385	if (target_nid == NUMA_NO_NODE) {
4386		put_page(page);
4387		goto out_map;
4388	}
4389	pte_unmap_unlock(vmf->pte, vmf->ptl);
4390
4391	/* Migrate to the requested node */
4392	if (migrate_misplaced_page(page, vma, target_nid)) {
4393		page_nid = target_nid;
4394		flags |= TNF_MIGRATED;
4395	} else {
4396		flags |= TNF_MIGRATE_FAIL;
4397		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4398		spin_lock(vmf->ptl);
4399		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4400			pte_unmap_unlock(vmf->pte, vmf->ptl);
4401			goto out;
4402		}
4403		goto out_map;
4404	}
4405
4406out:
4407	if (page_nid != NUMA_NO_NODE)
4408		task_numa_fault(last_cpupid, page_nid, 1, flags);
4409	return 0;
4410out_map:
4411	/*
4412	 * Make it present again, depending on how arch implements
4413	 * non-accessible ptes, some can allow access by kernel mode.
4414	 */
4415	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4416	pte = pte_modify(old_pte, vma->vm_page_prot);
4417	pte = pte_mkyoung(pte);
4418	if (was_writable)
4419		pte = pte_mkwrite(pte);
4420	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4421	update_mmu_cache(vma, vmf->address, vmf->pte);
4422	pte_unmap_unlock(vmf->pte, vmf->ptl);
4423	goto out;
4424}
4425
4426static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4427{
4428	if (vma_is_anonymous(vmf->vma))
4429		return do_huge_pmd_anonymous_page(vmf);
4430	if (vmf->vma->vm_ops->huge_fault)
4431		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4432	return VM_FAULT_FALLBACK;
4433}
4434
4435/* `inline' is required to avoid gcc 4.1.2 build error */
4436static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4437{
4438	if (vma_is_anonymous(vmf->vma)) {
4439		if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4440			return handle_userfault(vmf, VM_UFFD_WP);
4441		return do_huge_pmd_wp_page(vmf);
4442	}
4443	if (vmf->vma->vm_ops->huge_fault) {
4444		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4445
4446		if (!(ret & VM_FAULT_FALLBACK))
4447			return ret;
 
 
 
 
4448	}
4449
4450	/* COW or write-notify handled on pte level: split pmd. */
4451	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4452
4453	return VM_FAULT_FALLBACK;
4454}
4455
4456static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4457{
4458#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4459	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4460	/* No support for anonymous transparent PUD pages yet */
4461	if (vma_is_anonymous(vmf->vma))
4462		goto split;
4463	if (vmf->vma->vm_ops->huge_fault) {
4464		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4465
4466		if (!(ret & VM_FAULT_FALLBACK))
4467			return ret;
4468	}
4469split:
4470	/* COW or write-notify not handled on PUD level: split pud.*/
4471	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4472#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4473	return VM_FAULT_FALLBACK;
4474}
4475
4476static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4477{
4478#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4479	/* No support for anonymous transparent PUD pages yet */
4480	if (vma_is_anonymous(vmf->vma))
4481		return VM_FAULT_FALLBACK;
4482	if (vmf->vma->vm_ops->huge_fault)
4483		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4484#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4485	return VM_FAULT_FALLBACK;
4486}
4487
4488/*
4489 * These routines also need to handle stuff like marking pages dirty
4490 * and/or accessed for architectures that don't do it in hardware (most
4491 * RISC architectures).  The early dirtying is also good on the i386.
4492 *
4493 * There is also a hook called "update_mmu_cache()" that architectures
4494 * with external mmu caches can use to update those (ie the Sparc or
4495 * PowerPC hashed page tables that act as extended TLBs).
4496 *
4497 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4498 * concurrent faults).
4499 *
4500 * The mmap_lock may have been released depending on flags and our return value.
4501 * See filemap_fault() and __lock_page_or_retry().
4502 */
4503static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
 
 
4504{
4505	pte_t entry;
 
4506
4507	if (unlikely(pmd_none(*vmf->pmd))) {
4508		/*
4509		 * Leave __pte_alloc() until later: because vm_ops->fault may
4510		 * want to allocate huge page, and if we expose page table
4511		 * for an instant, it will be difficult to retract from
4512		 * concurrent faults and from rmap lookups.
4513		 */
4514		vmf->pte = NULL;
4515	} else {
4516		/*
4517		 * If a huge pmd materialized under us just retry later.  Use
4518		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4519		 * of pmd_trans_huge() to ensure the pmd didn't become
4520		 * pmd_trans_huge under us and then back to pmd_none, as a
4521		 * result of MADV_DONTNEED running immediately after a huge pmd
4522		 * fault in a different thread of this mm, in turn leading to a
4523		 * misleading pmd_trans_huge() retval. All we have to ensure is
4524		 * that it is a regular pmd that we can walk with
4525		 * pte_offset_map() and we can do that through an atomic read
4526		 * in C, which is what pmd_trans_unstable() provides.
4527		 */
4528		if (pmd_devmap_trans_unstable(vmf->pmd))
4529			return 0;
4530		/*
4531		 * A regular pmd is established and it can't morph into a huge
4532		 * pmd from under us anymore at this point because we hold the
4533		 * mmap_lock read mode and khugepaged takes it in write mode.
4534		 * So now it's safe to run pte_offset_map().
4535		 */
4536		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4537		vmf->orig_pte = *vmf->pte;
4538
4539		/*
4540		 * some architectures can have larger ptes than wordsize,
4541		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4542		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4543		 * accesses.  The code below just needs a consistent view
4544		 * for the ifs and we later double check anyway with the
4545		 * ptl lock held. So here a barrier will do.
4546		 */
4547		barrier();
4548		if (pte_none(vmf->orig_pte)) {
4549			pte_unmap(vmf->pte);
4550			vmf->pte = NULL;
4551		}
 
 
 
 
 
4552	}
4553
4554	if (!vmf->pte) {
4555		if (vma_is_anonymous(vmf->vma))
4556			return do_anonymous_page(vmf);
4557		else
4558			return do_fault(vmf);
4559	}
4560
4561	if (!pte_present(vmf->orig_pte))
4562		return do_swap_page(vmf);
4563
4564	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4565		return do_numa_page(vmf);
4566
4567	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4568	spin_lock(vmf->ptl);
4569	entry = vmf->orig_pte;
4570	if (unlikely(!pte_same(*vmf->pte, entry))) {
4571		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4572		goto unlock;
4573	}
4574	if (vmf->flags & FAULT_FLAG_WRITE) {
4575		if (!pte_write(entry))
4576			return do_wp_page(vmf);
 
4577		entry = pte_mkdirty(entry);
4578	}
4579	entry = pte_mkyoung(entry);
4580	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4581				vmf->flags & FAULT_FLAG_WRITE)) {
4582		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4583	} else {
4584		/* Skip spurious TLB flush for retried page fault */
4585		if (vmf->flags & FAULT_FLAG_TRIED)
4586			goto unlock;
4587		/*
4588		 * This is needed only for protection faults but the arch code
4589		 * is not yet telling us if this is a protection fault or not.
4590		 * This still avoids useless tlb flushes for .text page faults
4591		 * with threads.
4592		 */
4593		if (vmf->flags & FAULT_FLAG_WRITE)
4594			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4595	}
4596unlock:
4597	pte_unmap_unlock(vmf->pte, vmf->ptl);
4598	return 0;
4599}
4600
4601/*
4602 * By the time we get here, we already hold the mm semaphore
4603 *
4604 * The mmap_lock may have been released depending on flags and our
4605 * return value.  See filemap_fault() and __lock_page_or_retry().
4606 */
4607static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4608		unsigned long address, unsigned int flags)
4609{
4610	struct vm_fault vmf = {
4611		.vma = vma,
4612		.address = address & PAGE_MASK,
4613		.flags = flags,
4614		.pgoff = linear_page_index(vma, address),
4615		.gfp_mask = __get_fault_gfp_mask(vma),
4616	};
4617	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4618	struct mm_struct *mm = vma->vm_mm;
4619	pgd_t *pgd;
4620	p4d_t *p4d;
4621	vm_fault_t ret;
4622
4623	pgd = pgd_offset(mm, address);
4624	p4d = p4d_alloc(mm, pgd, address);
4625	if (!p4d)
4626		return VM_FAULT_OOM;
4627
4628	vmf.pud = pud_alloc(mm, p4d, address);
4629	if (!vmf.pud)
4630		return VM_FAULT_OOM;
4631retry_pud:
4632	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4633		ret = create_huge_pud(&vmf);
4634		if (!(ret & VM_FAULT_FALLBACK))
4635			return ret;
4636	} else {
4637		pud_t orig_pud = *vmf.pud;
4638
4639		barrier();
4640		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4641
4642			/* NUMA case for anonymous PUDs would go here */
 
4643
4644			if (dirty && !pud_write(orig_pud)) {
4645				ret = wp_huge_pud(&vmf, orig_pud);
4646				if (!(ret & VM_FAULT_FALLBACK))
4647					return ret;
4648			} else {
4649				huge_pud_set_accessed(&vmf, orig_pud);
4650				return 0;
4651			}
4652		}
4653	}
4654
4655	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4656	if (!vmf.pmd)
 
 
4657		return VM_FAULT_OOM;
4658
4659	/* Huge pud page fault raced with pmd_alloc? */
4660	if (pud_trans_unstable(vmf.pud))
4661		goto retry_pud;
4662
4663	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4664		ret = create_huge_pmd(&vmf);
4665		if (!(ret & VM_FAULT_FALLBACK))
4666			return ret;
4667	} else {
4668		vmf.orig_pmd = *vmf.pmd;
 
4669
4670		barrier();
4671		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4672			VM_BUG_ON(thp_migration_supported() &&
4673					  !is_pmd_migration_entry(vmf.orig_pmd));
4674			if (is_pmd_migration_entry(vmf.orig_pmd))
4675				pmd_migration_entry_wait(mm, vmf.pmd);
4676			return 0;
4677		}
4678		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4679			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4680				return do_huge_pmd_numa_page(&vmf);
4681
4682			if (dirty && !pmd_write(vmf.orig_pmd)) {
4683				ret = wp_huge_pmd(&vmf);
4684				if (!(ret & VM_FAULT_FALLBACK))
4685					return ret;
4686			} else {
4687				huge_pmd_set_accessed(&vmf);
4688				return 0;
4689			}
 
4690		}
4691	}
4692
4693	return handle_pte_fault(&vmf);
4694}
4695
4696/**
4697 * mm_account_fault - Do page fault accounting
4698 *
4699 * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4700 *        of perf event counters, but we'll still do the per-task accounting to
4701 *        the task who triggered this page fault.
4702 * @address: the faulted address.
4703 * @flags: the fault flags.
4704 * @ret: the fault retcode.
4705 *
4706 * This will take care of most of the page fault accounting.  Meanwhile, it
4707 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4708 * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4709 * still be in per-arch page fault handlers at the entry of page fault.
4710 */
4711static inline void mm_account_fault(struct pt_regs *regs,
4712				    unsigned long address, unsigned int flags,
4713				    vm_fault_t ret)
4714{
4715	bool major;
4716
4717	/*
4718	 * We don't do accounting for some specific faults:
4719	 *
4720	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4721	 *   includes arch_vma_access_permitted() failing before reaching here.
4722	 *   So this is not a "this many hardware page faults" counter.  We
4723	 *   should use the hw profiling for that.
4724	 *
4725	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4726	 *   once they're completed.
4727	 */
4728	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4729		return;
4730
4731	/*
4732	 * We define the fault as a major fault when the final successful fault
4733	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4734	 * handle it immediately previously).
4735	 */
4736	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4737
4738	if (major)
4739		current->maj_flt++;
4740	else
4741		current->min_flt++;
4742
4743	/*
4744	 * If the fault is done for GUP, regs will be NULL.  We only do the
4745	 * accounting for the per thread fault counters who triggered the
4746	 * fault, and we skip the perf event updates.
4747	 */
4748	if (!regs)
4749		return;
4750
4751	if (major)
4752		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4753	else
4754		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4755}
4756
4757/*
4758 * By the time we get here, we already hold the mm semaphore
4759 *
4760 * The mmap_lock may have been released depending on flags and our
4761 * return value.  See filemap_fault() and __lock_page_or_retry().
4762 */
4763vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4764			   unsigned int flags, struct pt_regs *regs)
4765{
4766	vm_fault_t ret;
4767
4768	__set_current_state(TASK_RUNNING);
4769
4770	count_vm_event(PGFAULT);
4771	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4772
4773	/* do counter updates before entering really critical section. */
4774	check_sync_rss_stat(current);
4775
4776	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4777					    flags & FAULT_FLAG_INSTRUCTION,
4778					    flags & FAULT_FLAG_REMOTE))
4779		return VM_FAULT_SIGSEGV;
4780
4781	/*
4782	 * Enable the memcg OOM handling for faults triggered in user
4783	 * space.  Kernel faults are handled more gracefully.
 
 
4784	 */
4785	if (flags & FAULT_FLAG_USER)
4786		mem_cgroup_enter_user_fault();
4787
4788	if (unlikely(is_vm_hugetlb_page(vma)))
4789		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4790	else
4791		ret = __handle_mm_fault(vma, address, flags);
4792
4793	if (flags & FAULT_FLAG_USER) {
4794		mem_cgroup_exit_user_fault();
4795		/*
4796		 * The task may have entered a memcg OOM situation but
4797		 * if the allocation error was handled gracefully (no
4798		 * VM_FAULT_OOM), there is no need to kill anything.
4799		 * Just clean up the OOM state peacefully.
4800		 */
4801		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4802			mem_cgroup_oom_synchronize(false);
4803	}
4804
4805	mm_account_fault(regs, address, flags, ret);
4806
4807	return ret;
4808}
4809EXPORT_SYMBOL_GPL(handle_mm_fault);
4810
4811#ifndef __PAGETABLE_P4D_FOLDED
4812/*
4813 * Allocate p4d page table.
4814 * We've already handled the fast-path in-line.
4815 */
4816int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4817{
4818	p4d_t *new = p4d_alloc_one(mm, address);
4819	if (!new)
4820		return -ENOMEM;
4821
4822	smp_wmb(); /* See comment in __pte_alloc */
4823
4824	spin_lock(&mm->page_table_lock);
4825	if (pgd_present(*pgd))		/* Another has populated it */
4826		p4d_free(mm, new);
4827	else
4828		pgd_populate(mm, pgd, new);
4829	spin_unlock(&mm->page_table_lock);
4830	return 0;
4831}
4832#endif /* __PAGETABLE_P4D_FOLDED */
4833
4834#ifndef __PAGETABLE_PUD_FOLDED
4835/*
4836 * Allocate page upper directory.
4837 * We've already handled the fast-path in-line.
4838 */
4839int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4840{
4841	pud_t *new = pud_alloc_one(mm, address);
4842	if (!new)
4843		return -ENOMEM;
4844
4845	smp_wmb(); /* See comment in __pte_alloc */
4846
4847	spin_lock(&mm->page_table_lock);
4848	if (!p4d_present(*p4d)) {
4849		mm_inc_nr_puds(mm);
4850		p4d_populate(mm, p4d, new);
4851	} else	/* Another has populated it */
4852		pud_free(mm, new);
 
 
4853	spin_unlock(&mm->page_table_lock);
4854	return 0;
4855}
4856#endif /* __PAGETABLE_PUD_FOLDED */
4857
4858#ifndef __PAGETABLE_PMD_FOLDED
4859/*
4860 * Allocate page middle directory.
4861 * We've already handled the fast-path in-line.
4862 */
4863int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4864{
4865	spinlock_t *ptl;
4866	pmd_t *new = pmd_alloc_one(mm, address);
4867	if (!new)
4868		return -ENOMEM;
4869
4870	smp_wmb(); /* See comment in __pte_alloc */
4871
4872	ptl = pud_lock(mm, pud);
4873	if (!pud_present(*pud)) {
4874		mm_inc_nr_pmds(mm);
 
 
4875		pud_populate(mm, pud, new);
4876	} else	/* Another has populated it */
 
4877		pmd_free(mm, new);
4878	spin_unlock(ptl);
 
 
 
4879	return 0;
4880}
4881#endif /* __PAGETABLE_PMD_FOLDED */
4882
4883int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4884			  struct mmu_notifier_range *range, pte_t **ptepp,
4885			  pmd_t **pmdpp, spinlock_t **ptlp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4886{
4887	pgd_t *pgd;
4888	p4d_t *p4d;
4889	pud_t *pud;
4890	pmd_t *pmd;
4891	pte_t *ptep;
4892
4893	pgd = pgd_offset(mm, address);
4894	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4895		goto out;
4896
4897	p4d = p4d_offset(pgd, address);
4898	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4899		goto out;
4900
4901	pud = pud_offset(p4d, address);
4902	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4903		goto out;
4904
4905	pmd = pmd_offset(pud, address);
4906	VM_BUG_ON(pmd_trans_huge(*pmd));
4907
4908	if (pmd_huge(*pmd)) {
4909		if (!pmdpp)
4910			goto out;
4911
4912		if (range) {
4913			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4914						NULL, mm, address & PMD_MASK,
4915						(address & PMD_MASK) + PMD_SIZE);
4916			mmu_notifier_invalidate_range_start(range);
4917		}
4918		*ptlp = pmd_lock(mm, pmd);
4919		if (pmd_huge(*pmd)) {
4920			*pmdpp = pmd;
4921			return 0;
4922		}
4923		spin_unlock(*ptlp);
4924		if (range)
4925			mmu_notifier_invalidate_range_end(range);
4926	}
4927
4928	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4929		goto out;
4930
4931	if (range) {
4932		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4933					address & PAGE_MASK,
4934					(address & PAGE_MASK) + PAGE_SIZE);
4935		mmu_notifier_invalidate_range_start(range);
4936	}
4937	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
 
 
4938	if (!pte_present(*ptep))
4939		goto unlock;
4940	*ptepp = ptep;
4941	return 0;
4942unlock:
4943	pte_unmap_unlock(ptep, *ptlp);
4944	if (range)
4945		mmu_notifier_invalidate_range_end(range);
4946out:
4947	return -EINVAL;
4948}
4949
4950/**
4951 * follow_pte - look up PTE at a user virtual address
4952 * @mm: the mm_struct of the target address space
4953 * @address: user virtual address
4954 * @ptepp: location to store found PTE
4955 * @ptlp: location to store the lock for the PTE
4956 *
4957 * On a successful return, the pointer to the PTE is stored in @ptepp;
4958 * the corresponding lock is taken and its location is stored in @ptlp.
4959 * The contents of the PTE are only stable until @ptlp is released;
4960 * any further use, if any, must be protected against invalidation
4961 * with MMU notifiers.
4962 *
4963 * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4964 * should be taken for read.
4965 *
4966 * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4967 * it is not a good general-purpose API.
4968 *
4969 * Return: zero on success, -ve otherwise.
4970 */
4971int follow_pte(struct mm_struct *mm, unsigned long address,
4972	       pte_t **ptepp, spinlock_t **ptlp)
4973{
4974	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
 
 
 
 
 
4975}
4976EXPORT_SYMBOL_GPL(follow_pte);
4977
4978/**
4979 * follow_pfn - look up PFN at a user virtual address
4980 * @vma: memory mapping
4981 * @address: user virtual address
4982 * @pfn: location to store found PFN
4983 *
4984 * Only IO mappings and raw PFN mappings are allowed.
4985 *
4986 * This function does not allow the caller to read the permissions
4987 * of the PTE.  Do not use it.
4988 *
4989 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4990 */
4991int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4992	unsigned long *pfn)
4993{
4994	int ret = -EINVAL;
4995	spinlock_t *ptl;
4996	pte_t *ptep;
4997
4998	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4999		return ret;
5000
5001	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5002	if (ret)
5003		return ret;
5004	*pfn = pte_pfn(*ptep);
5005	pte_unmap_unlock(ptep, ptl);
5006	return 0;
5007}
5008EXPORT_SYMBOL(follow_pfn);
5009
5010#ifdef CONFIG_HAVE_IOREMAP_PROT
5011int follow_phys(struct vm_area_struct *vma,
5012		unsigned long address, unsigned int flags,
5013		unsigned long *prot, resource_size_t *phys)
5014{
5015	int ret = -EINVAL;
5016	pte_t *ptep, pte;
5017	spinlock_t *ptl;
5018
5019	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5020		goto out;
5021
5022	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5023		goto out;
5024	pte = *ptep;
5025
5026	if ((flags & FOLL_WRITE) && !pte_write(pte))
5027		goto unlock;
5028
5029	*prot = pgprot_val(pte_pgprot(pte));
5030	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5031
5032	ret = 0;
5033unlock:
5034	pte_unmap_unlock(ptep, ptl);
5035out:
5036	return ret;
5037}
5038
5039/**
5040 * generic_access_phys - generic implementation for iomem mmap access
5041 * @vma: the vma to access
5042 * @addr: userspace address, not relative offset within @vma
5043 * @buf: buffer to read/write
5044 * @len: length of transfer
5045 * @write: set to FOLL_WRITE when writing, otherwise reading
5046 *
5047 * This is a generic implementation for &vm_operations_struct.access for an
5048 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5049 * not page based.
5050 */
5051int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5052			void *buf, int len, int write)
5053{
5054	resource_size_t phys_addr;
5055	unsigned long prot = 0;
5056	void __iomem *maddr;
5057	pte_t *ptep, pte;
5058	spinlock_t *ptl;
5059	int offset = offset_in_page(addr);
5060	int ret = -EINVAL;
5061
5062	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5063		return -EINVAL;
5064
5065retry:
5066	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5067		return -EINVAL;
5068	pte = *ptep;
5069	pte_unmap_unlock(ptep, ptl);
5070
5071	prot = pgprot_val(pte_pgprot(pte));
5072	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5073
5074	if ((write & FOLL_WRITE) && !pte_write(pte))
5075		return -EINVAL;
5076
5077	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5078	if (!maddr)
5079		return -ENOMEM;
5080
5081	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5082		goto out_unmap;
5083
5084	if (!pte_same(pte, *ptep)) {
5085		pte_unmap_unlock(ptep, ptl);
5086		iounmap(maddr);
5087
5088		goto retry;
5089	}
5090
5091	if (write)
5092		memcpy_toio(maddr + offset, buf, len);
5093	else
5094		memcpy_fromio(buf, maddr + offset, len);
5095	ret = len;
5096	pte_unmap_unlock(ptep, ptl);
5097out_unmap:
5098	iounmap(maddr);
5099
5100	return ret;
5101}
5102EXPORT_SYMBOL_GPL(generic_access_phys);
5103#endif
5104
5105/*
5106 * Access another process' address space as given in mm.
 
5107 */
5108int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5109		       int len, unsigned int gup_flags)
5110{
5111	struct vm_area_struct *vma;
5112	void *old_buf = buf;
5113	int write = gup_flags & FOLL_WRITE;
5114
5115	if (mmap_read_lock_killable(mm))
5116		return 0;
5117
 
5118	/* ignore errors, just check how much was successfully transferred */
5119	while (len) {
5120		int bytes, ret, offset;
5121		void *maddr;
5122		struct page *page = NULL;
5123
5124		ret = get_user_pages_remote(mm, addr, 1,
5125				gup_flags, &page, &vma, NULL);
5126		if (ret <= 0) {
5127#ifndef CONFIG_HAVE_IOREMAP_PROT
5128			break;
5129#else
5130			/*
5131			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5132			 * we can access using slightly different code.
5133			 */
5134			vma = vma_lookup(mm, addr);
5135			if (!vma)
 
5136				break;
5137			if (vma->vm_ops && vma->vm_ops->access)
5138				ret = vma->vm_ops->access(vma, addr, buf,
5139							  len, write);
5140			if (ret <= 0)
 
5141				break;
5142			bytes = ret;
5143#endif
5144		} else {
5145			bytes = len;
5146			offset = addr & (PAGE_SIZE-1);
5147			if (bytes > PAGE_SIZE-offset)
5148				bytes = PAGE_SIZE-offset;
5149
5150			maddr = kmap(page);
5151			if (write) {
5152				copy_to_user_page(vma, page, addr,
5153						  maddr + offset, buf, bytes);
5154				set_page_dirty_lock(page);
5155			} else {
5156				copy_from_user_page(vma, page, addr,
5157						    buf, maddr + offset, bytes);
5158			}
5159			kunmap(page);
5160			put_page(page);
5161		}
5162		len -= bytes;
5163		buf += bytes;
5164		addr += bytes;
5165	}
5166	mmap_read_unlock(mm);
5167
5168	return buf - old_buf;
5169}
5170
5171/**
5172 * access_remote_vm - access another process' address space
5173 * @mm:		the mm_struct of the target address space
5174 * @addr:	start address to access
5175 * @buf:	source or destination buffer
5176 * @len:	number of bytes to transfer
5177 * @gup_flags:	flags modifying lookup behaviour
5178 *
5179 * The caller must hold a reference on @mm.
5180 *
5181 * Return: number of bytes copied from source to destination.
5182 */
5183int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5184		void *buf, int len, unsigned int gup_flags)
5185{
5186	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5187}
5188
5189/*
5190 * Access another process' address space.
5191 * Source/target buffer must be kernel space,
5192 * Do not walk the page table directly, use get_user_pages
5193 */
5194int access_process_vm(struct task_struct *tsk, unsigned long addr,
5195		void *buf, int len, unsigned int gup_flags)
5196{
5197	struct mm_struct *mm;
5198	int ret;
5199
5200	mm = get_task_mm(tsk);
5201	if (!mm)
5202		return 0;
5203
5204	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5205
5206	mmput(mm);
5207
5208	return ret;
5209}
5210EXPORT_SYMBOL_GPL(access_process_vm);
5211
5212/*
5213 * Print the name of a VMA.
5214 */
5215void print_vma_addr(char *prefix, unsigned long ip)
5216{
5217	struct mm_struct *mm = current->mm;
5218	struct vm_area_struct *vma;
5219
5220	/*
5221	 * we might be running from an atomic context so we cannot sleep
 
5222	 */
5223	if (!mmap_read_trylock(mm))
5224		return;
5225
 
5226	vma = find_vma(mm, ip);
5227	if (vma && vma->vm_file) {
5228		struct file *f = vma->vm_file;
5229		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5230		if (buf) {
5231			char *p;
5232
5233			p = file_path(f, buf, PAGE_SIZE);
5234			if (IS_ERR(p))
5235				p = "?";
5236			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
 
 
 
5237					vma->vm_start,
5238					vma->vm_end - vma->vm_start);
5239			free_page((unsigned long)buf);
5240		}
5241	}
5242	mmap_read_unlock(mm);
5243}
5244
5245#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5246void __might_fault(const char *file, int line)
5247{
5248	/*
5249	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5250	 * holding the mmap_lock, this is safe because kernel memory doesn't
5251	 * get paged out, therefore we'll never actually fault, and the
5252	 * below annotations will generate false positives.
5253	 */
5254	if (uaccess_kernel())
5255		return;
5256	if (pagefault_disabled())
5257		return;
5258	__might_sleep(file, line, 0);
5259#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5260	if (current->mm)
5261		might_lock_read(&current->mm->mmap_lock);
5262#endif
5263}
5264EXPORT_SYMBOL(__might_fault);
5265#endif
5266
5267#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5268/*
5269 * Process all subpages of the specified huge page with the specified
5270 * operation.  The target subpage will be processed last to keep its
5271 * cache lines hot.
5272 */
5273static inline void process_huge_page(
5274	unsigned long addr_hint, unsigned int pages_per_huge_page,
5275	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5276	void *arg)
5277{
5278	int i, n, base, l;
5279	unsigned long addr = addr_hint &
5280		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5281
5282	/* Process target subpage last to keep its cache lines hot */
5283	might_sleep();
5284	n = (addr_hint - addr) / PAGE_SIZE;
5285	if (2 * n <= pages_per_huge_page) {
5286		/* If target subpage in first half of huge page */
5287		base = 0;
5288		l = n;
5289		/* Process subpages at the end of huge page */
5290		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5291			cond_resched();
5292			process_subpage(addr + i * PAGE_SIZE, i, arg);
5293		}
5294	} else {
5295		/* If target subpage in second half of huge page */
5296		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5297		l = pages_per_huge_page - n;
5298		/* Process subpages at the begin of huge page */
5299		for (i = 0; i < base; i++) {
5300			cond_resched();
5301			process_subpage(addr + i * PAGE_SIZE, i, arg);
5302		}
5303	}
5304	/*
5305	 * Process remaining subpages in left-right-left-right pattern
5306	 * towards the target subpage
 
5307	 */
5308	for (i = 0; i < l; i++) {
5309		int left_idx = base + i;
5310		int right_idx = base + 2 * l - 1 - i;
5311
5312		cond_resched();
5313		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5314		cond_resched();
5315		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5316	}
5317}
 
 
5318
 
5319static void clear_gigantic_page(struct page *page,
5320				unsigned long addr,
5321				unsigned int pages_per_huge_page)
5322{
5323	int i;
5324	struct page *p = page;
5325
5326	might_sleep();
5327	for (i = 0; i < pages_per_huge_page;
5328	     i++, p = mem_map_next(p, page, i)) {
5329		cond_resched();
5330		clear_user_highpage(p, addr + i * PAGE_SIZE);
5331	}
5332}
5333
5334static void clear_subpage(unsigned long addr, int idx, void *arg)
5335{
5336	struct page *page = arg;
5337
5338	clear_user_highpage(page + idx, addr);
5339}
5340
5341void clear_huge_page(struct page *page,
5342		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5343{
5344	unsigned long addr = addr_hint &
5345		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5346
5347	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5348		clear_gigantic_page(page, addr, pages_per_huge_page);
5349		return;
5350	}
5351
5352	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
 
 
 
 
5353}
5354
5355static void copy_user_gigantic_page(struct page *dst, struct page *src,
5356				    unsigned long addr,
5357				    struct vm_area_struct *vma,
5358				    unsigned int pages_per_huge_page)
5359{
5360	int i;
5361	struct page *dst_base = dst;
5362	struct page *src_base = src;
5363
5364	for (i = 0; i < pages_per_huge_page; ) {
5365		cond_resched();
5366		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5367
5368		i++;
5369		dst = mem_map_next(dst, dst_base, i);
5370		src = mem_map_next(src, src_base, i);
5371	}
5372}
5373
5374struct copy_subpage_arg {
5375	struct page *dst;
5376	struct page *src;
5377	struct vm_area_struct *vma;
5378};
5379
5380static void copy_subpage(unsigned long addr, int idx, void *arg)
5381{
5382	struct copy_subpage_arg *copy_arg = arg;
5383
5384	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5385			   addr, copy_arg->vma);
5386}
5387
5388void copy_user_huge_page(struct page *dst, struct page *src,
5389			 unsigned long addr_hint, struct vm_area_struct *vma,
5390			 unsigned int pages_per_huge_page)
5391{
5392	unsigned long addr = addr_hint &
5393		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5394	struct copy_subpage_arg arg = {
5395		.dst = dst,
5396		.src = src,
5397		.vma = vma,
5398	};
5399
5400	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5401		copy_user_gigantic_page(dst, src, addr, vma,
5402					pages_per_huge_page);
5403		return;
5404	}
5405
5406	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5407}
5408
5409long copy_huge_page_from_user(struct page *dst_page,
5410				const void __user *usr_src,
5411				unsigned int pages_per_huge_page,
5412				bool allow_pagefault)
5413{
5414	void *src = (void *)usr_src;
5415	void *page_kaddr;
5416	unsigned long i, rc = 0;
5417	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5418	struct page *subpage = dst_page;
5419
5420	for (i = 0; i < pages_per_huge_page;
5421	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5422		if (allow_pagefault)
5423			page_kaddr = kmap(subpage);
5424		else
5425			page_kaddr = kmap_atomic(subpage);
5426		rc = copy_from_user(page_kaddr,
5427				(const void __user *)(src + i * PAGE_SIZE),
5428				PAGE_SIZE);
5429		if (allow_pagefault)
5430			kunmap(subpage);
5431		else
5432			kunmap_atomic(page_kaddr);
5433
5434		ret_val -= (PAGE_SIZE - rc);
5435		if (rc)
5436			break;
5437
5438		cond_resched();
 
5439	}
5440	return ret_val;
5441}
5442#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5443
5444#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5445
5446static struct kmem_cache *page_ptl_cachep;
5447
5448void __init ptlock_cache_init(void)
5449{
5450	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5451			SLAB_PANIC, NULL);
5452}
5453
5454bool ptlock_alloc(struct page *page)
5455{
5456	spinlock_t *ptl;
5457
5458	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5459	if (!ptl)
5460		return false;
5461	page->ptl = ptl;
5462	return true;
5463}
5464
5465void ptlock_free(struct page *page)
5466{
5467	kmem_cache_free(page_ptl_cachep, page->ptl);
5468}
5469#endif
v3.5.6
 
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
 
 
 
 
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
 
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
 
  53#include <linux/writeback.h>
  54#include <linux/memcontrol.h>
  55#include <linux/mmu_notifier.h>
  56#include <linux/kallsyms.h>
  57#include <linux/swapops.h>
  58#include <linux/elf.h>
  59#include <linux/gfp.h>
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61#include <asm/io.h>
 
  62#include <asm/pgalloc.h>
  63#include <asm/uaccess.h>
  64#include <asm/tlb.h>
  65#include <asm/tlbflush.h>
  66#include <asm/pgtable.h>
  67
 
  68#include "internal.h"
  69
  70#ifndef CONFIG_NEED_MULTIPLE_NODES
  71/* use the per-pgdat data instead for discontigmem - mbligh */
 
 
 
  72unsigned long max_mapnr;
 
 
  73struct page *mem_map;
  74
  75EXPORT_SYMBOL(max_mapnr);
  76EXPORT_SYMBOL(mem_map);
  77#endif
  78
  79unsigned long num_physpages;
  80/*
  81 * A number of key systems in x86 including ioremap() rely on the assumption
  82 * that high_memory defines the upper bound on direct map memory, then end
  83 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  85 * and ZONE_HIGHMEM.
  86 */
  87void * high_memory;
  88
  89EXPORT_SYMBOL(num_physpages);
  90EXPORT_SYMBOL(high_memory);
  91
  92/*
  93 * Randomize the address space (stacks, mmaps, brk, etc.).
  94 *
  95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  96 *   as ancient (libc5 based) binaries can segfault. )
  97 */
  98int randomize_va_space __read_mostly =
  99#ifdef CONFIG_COMPAT_BRK
 100					1;
 101#else
 102					2;
 103#endif
 104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105static int __init disable_randmaps(char *s)
 106{
 107	randomize_va_space = 0;
 108	return 1;
 109}
 110__setup("norandmaps", disable_randmaps);
 111
 112unsigned long zero_pfn __read_mostly;
 
 
 113unsigned long highest_memmap_pfn __read_mostly;
 114
 115/*
 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 117 */
 118static int __init init_zero_pfn(void)
 119{
 120	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 121	return 0;
 122}
 123core_initcall(init_zero_pfn);
 124
 
 
 
 
 125
 126#if defined(SPLIT_RSS_COUNTING)
 127
 128void sync_mm_rss(struct mm_struct *mm)
 129{
 130	int i;
 131
 132	for (i = 0; i < NR_MM_COUNTERS; i++) {
 133		if (current->rss_stat.count[i]) {
 134			add_mm_counter(mm, i, current->rss_stat.count[i]);
 135			current->rss_stat.count[i] = 0;
 136		}
 137	}
 138	current->rss_stat.events = 0;
 139}
 140
 141static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 142{
 143	struct task_struct *task = current;
 144
 145	if (likely(task->mm == mm))
 146		task->rss_stat.count[member] += val;
 147	else
 148		add_mm_counter(mm, member, val);
 149}
 150#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 151#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 152
 153/* sync counter once per 64 page faults */
 154#define TASK_RSS_EVENTS_THRESH	(64)
 155static void check_sync_rss_stat(struct task_struct *task)
 156{
 157	if (unlikely(task != current))
 158		return;
 159	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 160		sync_mm_rss(task->mm);
 161}
 162#else /* SPLIT_RSS_COUNTING */
 163
 164#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 165#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 166
 167static void check_sync_rss_stat(struct task_struct *task)
 168{
 169}
 170
 171#endif /* SPLIT_RSS_COUNTING */
 172
 173#ifdef HAVE_GENERIC_MMU_GATHER
 174
 175static int tlb_next_batch(struct mmu_gather *tlb)
 176{
 177	struct mmu_gather_batch *batch;
 178
 179	batch = tlb->active;
 180	if (batch->next) {
 181		tlb->active = batch->next;
 182		return 1;
 183	}
 184
 185	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 186	if (!batch)
 187		return 0;
 188
 189	batch->next = NULL;
 190	batch->nr   = 0;
 191	batch->max  = MAX_GATHER_BATCH;
 192
 193	tlb->active->next = batch;
 194	tlb->active = batch;
 195
 196	return 1;
 197}
 198
 199/* tlb_gather_mmu
 200 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 201 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 202 *	users and we're going to destroy the full address space (exit/execve).
 203 */
 204void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
 205{
 206	tlb->mm = mm;
 207
 208	tlb->fullmm     = fullmm;
 209	tlb->need_flush = 0;
 210	tlb->fast_mode  = (num_possible_cpus() == 1);
 211	tlb->local.next = NULL;
 212	tlb->local.nr   = 0;
 213	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 214	tlb->active     = &tlb->local;
 215
 216#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 217	tlb->batch = NULL;
 218#endif
 219}
 220
 221void tlb_flush_mmu(struct mmu_gather *tlb)
 222{
 223	struct mmu_gather_batch *batch;
 224
 225	if (!tlb->need_flush)
 226		return;
 227	tlb->need_flush = 0;
 228	tlb_flush(tlb);
 229#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 230	tlb_table_flush(tlb);
 231#endif
 232
 233	if (tlb_fast_mode(tlb))
 234		return;
 235
 236	for (batch = &tlb->local; batch; batch = batch->next) {
 237		free_pages_and_swap_cache(batch->pages, batch->nr);
 238		batch->nr = 0;
 239	}
 240	tlb->active = &tlb->local;
 241}
 242
 243/* tlb_finish_mmu
 244 *	Called at the end of the shootdown operation to free up any resources
 245 *	that were required.
 246 */
 247void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 248{
 249	struct mmu_gather_batch *batch, *next;
 250
 251	tlb_flush_mmu(tlb);
 252
 253	/* keep the page table cache within bounds */
 254	check_pgt_cache();
 255
 256	for (batch = tlb->local.next; batch; batch = next) {
 257		next = batch->next;
 258		free_pages((unsigned long)batch, 0);
 259	}
 260	tlb->local.next = NULL;
 261}
 262
 263/* __tlb_remove_page
 264 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 265 *	handling the additional races in SMP caused by other CPUs caching valid
 266 *	mappings in their TLBs. Returns the number of free page slots left.
 267 *	When out of page slots we must call tlb_flush_mmu().
 268 */
 269int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
 270{
 271	struct mmu_gather_batch *batch;
 272
 273	VM_BUG_ON(!tlb->need_flush);
 274
 275	if (tlb_fast_mode(tlb)) {
 276		free_page_and_swap_cache(page);
 277		return 1; /* avoid calling tlb_flush_mmu() */
 278	}
 279
 280	batch = tlb->active;
 281	batch->pages[batch->nr++] = page;
 282	if (batch->nr == batch->max) {
 283		if (!tlb_next_batch(tlb))
 284			return 0;
 285		batch = tlb->active;
 286	}
 287	VM_BUG_ON(batch->nr > batch->max);
 288
 289	return batch->max - batch->nr;
 290}
 291
 292#endif /* HAVE_GENERIC_MMU_GATHER */
 293
 294#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 295
 296/*
 297 * See the comment near struct mmu_table_batch.
 298 */
 299
 300static void tlb_remove_table_smp_sync(void *arg)
 301{
 302	/* Simply deliver the interrupt */
 303}
 304
 305static void tlb_remove_table_one(void *table)
 306{
 307	/*
 308	 * This isn't an RCU grace period and hence the page-tables cannot be
 309	 * assumed to be actually RCU-freed.
 310	 *
 311	 * It is however sufficient for software page-table walkers that rely on
 312	 * IRQ disabling. See the comment near struct mmu_table_batch.
 313	 */
 314	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 315	__tlb_remove_table(table);
 316}
 317
 318static void tlb_remove_table_rcu(struct rcu_head *head)
 319{
 320	struct mmu_table_batch *batch;
 321	int i;
 322
 323	batch = container_of(head, struct mmu_table_batch, rcu);
 324
 325	for (i = 0; i < batch->nr; i++)
 326		__tlb_remove_table(batch->tables[i]);
 327
 328	free_page((unsigned long)batch);
 329}
 330
 331void tlb_table_flush(struct mmu_gather *tlb)
 332{
 333	struct mmu_table_batch **batch = &tlb->batch;
 334
 335	if (*batch) {
 336		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 337		*batch = NULL;
 338	}
 339}
 340
 341void tlb_remove_table(struct mmu_gather *tlb, void *table)
 342{
 343	struct mmu_table_batch **batch = &tlb->batch;
 344
 345	tlb->need_flush = 1;
 346
 347	/*
 348	 * When there's less then two users of this mm there cannot be a
 349	 * concurrent page-table walk.
 350	 */
 351	if (atomic_read(&tlb->mm->mm_users) < 2) {
 352		__tlb_remove_table(table);
 353		return;
 354	}
 355
 356	if (*batch == NULL) {
 357		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 358		if (*batch == NULL) {
 359			tlb_remove_table_one(table);
 360			return;
 361		}
 362		(*batch)->nr = 0;
 363	}
 364	(*batch)->tables[(*batch)->nr++] = table;
 365	if ((*batch)->nr == MAX_TABLE_BATCH)
 366		tlb_table_flush(tlb);
 367}
 368
 369#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 370
 371/*
 372 * If a p?d_bad entry is found while walking page tables, report
 373 * the error, before resetting entry to p?d_none.  Usually (but
 374 * very seldom) called out from the p?d_none_or_clear_bad macros.
 375 */
 376
 377void pgd_clear_bad(pgd_t *pgd)
 378{
 379	pgd_ERROR(*pgd);
 380	pgd_clear(pgd);
 381}
 382
 383void pud_clear_bad(pud_t *pud)
 384{
 385	pud_ERROR(*pud);
 386	pud_clear(pud);
 387}
 388
 389void pmd_clear_bad(pmd_t *pmd)
 390{
 391	pmd_ERROR(*pmd);
 392	pmd_clear(pmd);
 393}
 394
 395/*
 396 * Note: this doesn't free the actual pages themselves. That
 397 * has been handled earlier when unmapping all the memory regions.
 398 */
 399static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 400			   unsigned long addr)
 401{
 402	pgtable_t token = pmd_pgtable(*pmd);
 403	pmd_clear(pmd);
 404	pte_free_tlb(tlb, token, addr);
 405	tlb->mm->nr_ptes--;
 406}
 407
 408static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 409				unsigned long addr, unsigned long end,
 410				unsigned long floor, unsigned long ceiling)
 411{
 412	pmd_t *pmd;
 413	unsigned long next;
 414	unsigned long start;
 415
 416	start = addr;
 417	pmd = pmd_offset(pud, addr);
 418	do {
 419		next = pmd_addr_end(addr, end);
 420		if (pmd_none_or_clear_bad(pmd))
 421			continue;
 422		free_pte_range(tlb, pmd, addr);
 423	} while (pmd++, addr = next, addr != end);
 424
 425	start &= PUD_MASK;
 426	if (start < floor)
 427		return;
 428	if (ceiling) {
 429		ceiling &= PUD_MASK;
 430		if (!ceiling)
 431			return;
 432	}
 433	if (end - 1 > ceiling - 1)
 434		return;
 435
 436	pmd = pmd_offset(pud, start);
 437	pud_clear(pud);
 438	pmd_free_tlb(tlb, pmd, start);
 
 439}
 440
 441static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 442				unsigned long addr, unsigned long end,
 443				unsigned long floor, unsigned long ceiling)
 444{
 445	pud_t *pud;
 446	unsigned long next;
 447	unsigned long start;
 448
 449	start = addr;
 450	pud = pud_offset(pgd, addr);
 451	do {
 452		next = pud_addr_end(addr, end);
 453		if (pud_none_or_clear_bad(pud))
 454			continue;
 455		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 456	} while (pud++, addr = next, addr != end);
 457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458	start &= PGDIR_MASK;
 459	if (start < floor)
 460		return;
 461	if (ceiling) {
 462		ceiling &= PGDIR_MASK;
 463		if (!ceiling)
 464			return;
 465	}
 466	if (end - 1 > ceiling - 1)
 467		return;
 468
 469	pud = pud_offset(pgd, start);
 470	pgd_clear(pgd);
 471	pud_free_tlb(tlb, pud, start);
 472}
 473
 474/*
 475 * This function frees user-level page tables of a process.
 476 *
 477 * Must be called with pagetable lock held.
 478 */
 479void free_pgd_range(struct mmu_gather *tlb,
 480			unsigned long addr, unsigned long end,
 481			unsigned long floor, unsigned long ceiling)
 482{
 483	pgd_t *pgd;
 484	unsigned long next;
 485
 486	/*
 487	 * The next few lines have given us lots of grief...
 488	 *
 489	 * Why are we testing PMD* at this top level?  Because often
 490	 * there will be no work to do at all, and we'd prefer not to
 491	 * go all the way down to the bottom just to discover that.
 492	 *
 493	 * Why all these "- 1"s?  Because 0 represents both the bottom
 494	 * of the address space and the top of it (using -1 for the
 495	 * top wouldn't help much: the masks would do the wrong thing).
 496	 * The rule is that addr 0 and floor 0 refer to the bottom of
 497	 * the address space, but end 0 and ceiling 0 refer to the top
 498	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 499	 * that end 0 case should be mythical).
 500	 *
 501	 * Wherever addr is brought up or ceiling brought down, we must
 502	 * be careful to reject "the opposite 0" before it confuses the
 503	 * subsequent tests.  But what about where end is brought down
 504	 * by PMD_SIZE below? no, end can't go down to 0 there.
 505	 *
 506	 * Whereas we round start (addr) and ceiling down, by different
 507	 * masks at different levels, in order to test whether a table
 508	 * now has no other vmas using it, so can be freed, we don't
 509	 * bother to round floor or end up - the tests don't need that.
 510	 */
 511
 512	addr &= PMD_MASK;
 513	if (addr < floor) {
 514		addr += PMD_SIZE;
 515		if (!addr)
 516			return;
 517	}
 518	if (ceiling) {
 519		ceiling &= PMD_MASK;
 520		if (!ceiling)
 521			return;
 522	}
 523	if (end - 1 > ceiling - 1)
 524		end -= PMD_SIZE;
 525	if (addr > end - 1)
 526		return;
 527
 
 
 
 
 528	pgd = pgd_offset(tlb->mm, addr);
 529	do {
 530		next = pgd_addr_end(addr, end);
 531		if (pgd_none_or_clear_bad(pgd))
 532			continue;
 533		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 534	} while (pgd++, addr = next, addr != end);
 535}
 536
 537void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 538		unsigned long floor, unsigned long ceiling)
 539{
 540	while (vma) {
 541		struct vm_area_struct *next = vma->vm_next;
 542		unsigned long addr = vma->vm_start;
 543
 544		/*
 545		 * Hide vma from rmap and truncate_pagecache before freeing
 546		 * pgtables
 547		 */
 548		unlink_anon_vmas(vma);
 549		unlink_file_vma(vma);
 550
 551		if (is_vm_hugetlb_page(vma)) {
 552			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 553				floor, next? next->vm_start: ceiling);
 554		} else {
 555			/*
 556			 * Optimization: gather nearby vmas into one call down
 557			 */
 558			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 559			       && !is_vm_hugetlb_page(next)) {
 560				vma = next;
 561				next = vma->vm_next;
 562				unlink_anon_vmas(vma);
 563				unlink_file_vma(vma);
 564			}
 565			free_pgd_range(tlb, addr, vma->vm_end,
 566				floor, next? next->vm_start: ceiling);
 567		}
 568		vma = next;
 569	}
 570}
 571
 572int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
 573		pmd_t *pmd, unsigned long address)
 574{
 575	pgtable_t new = pte_alloc_one(mm, address);
 576	int wait_split_huge_page;
 577	if (!new)
 578		return -ENOMEM;
 579
 580	/*
 581	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 582	 * visible before the pte is made visible to other CPUs by being
 583	 * put into page tables.
 584	 *
 585	 * The other side of the story is the pointer chasing in the page
 586	 * table walking code (when walking the page table without locking;
 587	 * ie. most of the time). Fortunately, these data accesses consist
 588	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 589	 * being the notable exception) will already guarantee loads are
 590	 * seen in-order. See the alpha page table accessors for the
 591	 * smp_read_barrier_depends() barriers in page table walking code.
 592	 */
 593	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 594
 595	spin_lock(&mm->page_table_lock);
 596	wait_split_huge_page = 0;
 597	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 598		mm->nr_ptes++;
 599		pmd_populate(mm, pmd, new);
 600		new = NULL;
 601	} else if (unlikely(pmd_trans_splitting(*pmd)))
 602		wait_split_huge_page = 1;
 603	spin_unlock(&mm->page_table_lock);
 604	if (new)
 605		pte_free(mm, new);
 606	if (wait_split_huge_page)
 607		wait_split_huge_page(vma->anon_vma, pmd);
 608	return 0;
 609}
 610
 611int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 612{
 613	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 614	if (!new)
 615		return -ENOMEM;
 616
 617	smp_wmb(); /* See comment in __pte_alloc */
 618
 619	spin_lock(&init_mm.page_table_lock);
 620	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 621		pmd_populate_kernel(&init_mm, pmd, new);
 622		new = NULL;
 623	} else
 624		VM_BUG_ON(pmd_trans_splitting(*pmd));
 625	spin_unlock(&init_mm.page_table_lock);
 626	if (new)
 627		pte_free_kernel(&init_mm, new);
 628	return 0;
 629}
 630
 631static inline void init_rss_vec(int *rss)
 632{
 633	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 634}
 635
 636static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 637{
 638	int i;
 639
 640	if (current->mm == mm)
 641		sync_mm_rss(mm);
 642	for (i = 0; i < NR_MM_COUNTERS; i++)
 643		if (rss[i])
 644			add_mm_counter(mm, i, rss[i]);
 645}
 646
 647/*
 648 * This function is called to print an error when a bad pte
 649 * is found. For example, we might have a PFN-mapped pte in
 650 * a region that doesn't allow it.
 651 *
 652 * The calling function must still handle the error.
 653 */
 654static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 655			  pte_t pte, struct page *page)
 656{
 657	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 658	pud_t *pud = pud_offset(pgd, addr);
 
 659	pmd_t *pmd = pmd_offset(pud, addr);
 660	struct address_space *mapping;
 661	pgoff_t index;
 662	static unsigned long resume;
 663	static unsigned long nr_shown;
 664	static unsigned long nr_unshown;
 665
 666	/*
 667	 * Allow a burst of 60 reports, then keep quiet for that minute;
 668	 * or allow a steady drip of one report per second.
 669	 */
 670	if (nr_shown == 60) {
 671		if (time_before(jiffies, resume)) {
 672			nr_unshown++;
 673			return;
 674		}
 675		if (nr_unshown) {
 676			printk(KERN_ALERT
 677				"BUG: Bad page map: %lu messages suppressed\n",
 678				nr_unshown);
 679			nr_unshown = 0;
 680		}
 681		nr_shown = 0;
 682	}
 683	if (nr_shown++ == 0)
 684		resume = jiffies + 60 * HZ;
 685
 686	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 687	index = linear_page_index(vma, addr);
 688
 689	printk(KERN_ALERT
 690		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 691		current->comm,
 692		(long long)pte_val(pte), (long long)pmd_val(*pmd));
 693	if (page)
 694		dump_page(page);
 695	printk(KERN_ALERT
 696		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 697		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 698	/*
 699	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 700	 */
 701	if (vma->vm_ops)
 702		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
 703				(unsigned long)vma->vm_ops->fault);
 704	if (vma->vm_file && vma->vm_file->f_op)
 705		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
 706				(unsigned long)vma->vm_file->f_op->mmap);
 707	dump_stack();
 708	add_taint(TAINT_BAD_PAGE);
 709}
 710
 711static inline int is_cow_mapping(vm_flags_t flags)
 712{
 713	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
 714}
 715
 716#ifndef is_zero_pfn
 717static inline int is_zero_pfn(unsigned long pfn)
 718{
 719	return pfn == zero_pfn;
 720}
 721#endif
 722
 723#ifndef my_zero_pfn
 724static inline unsigned long my_zero_pfn(unsigned long addr)
 725{
 726	return zero_pfn;
 727}
 728#endif
 729
 730/*
 731 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 732 *
 733 * "Special" mappings do not wish to be associated with a "struct page" (either
 734 * it doesn't exist, or it exists but they don't want to touch it). In this
 735 * case, NULL is returned here. "Normal" mappings do have a struct page.
 736 *
 737 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 738 * pte bit, in which case this function is trivial. Secondly, an architecture
 739 * may not have a spare pte bit, which requires a more complicated scheme,
 740 * described below.
 741 *
 742 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 743 * special mapping (even if there are underlying and valid "struct pages").
 744 * COWed pages of a VM_PFNMAP are always normal.
 745 *
 746 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 747 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 748 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 749 * mapping will always honor the rule
 750 *
 751 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 752 *
 753 * And for normal mappings this is false.
 754 *
 755 * This restricts such mappings to be a linear translation from virtual address
 756 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 757 * as the vma is not a COW mapping; in that case, we know that all ptes are
 758 * special (because none can have been COWed).
 759 *
 760 *
 761 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 762 *
 763 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 764 * page" backing, however the difference is that _all_ pages with a struct
 765 * page (that is, those where pfn_valid is true) are refcounted and considered
 766 * normal pages by the VM. The disadvantage is that pages are refcounted
 767 * (which can be slower and simply not an option for some PFNMAP users). The
 768 * advantage is that we don't have to follow the strict linearity rule of
 769 * PFNMAP mappings in order to support COWable mappings.
 770 *
 771 */
 772#ifdef __HAVE_ARCH_PTE_SPECIAL
 773# define HAVE_PTE_SPECIAL 1
 774#else
 775# define HAVE_PTE_SPECIAL 0
 776#endif
 777struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 778				pte_t pte)
 779{
 780	unsigned long pfn = pte_pfn(pte);
 781
 782	if (HAVE_PTE_SPECIAL) {
 783		if (likely(!pte_special(pte)))
 784			goto check_pfn;
 
 
 785		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 786			return NULL;
 787		if (!is_zero_pfn(pfn))
 788			print_bad_pte(vma, addr, pte, NULL);
 
 
 
 
 789		return NULL;
 790	}
 791
 792	/* !HAVE_PTE_SPECIAL case follows: */
 793
 794	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 795		if (vma->vm_flags & VM_MIXEDMAP) {
 796			if (!pfn_valid(pfn))
 797				return NULL;
 798			goto out;
 799		} else {
 800			unsigned long off;
 801			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 802			if (pfn == vma->vm_pgoff + off)
 803				return NULL;
 804			if (!is_cow_mapping(vma->vm_flags))
 805				return NULL;
 806		}
 807	}
 808
 809	if (is_zero_pfn(pfn))
 810		return NULL;
 
 811check_pfn:
 812	if (unlikely(pfn > highest_memmap_pfn)) {
 813		print_bad_pte(vma, addr, pte, NULL);
 814		return NULL;
 815	}
 816
 817	/*
 818	 * NOTE! We still have PageReserved() pages in the page tables.
 819	 * eg. VDSO mappings can cause them to exist.
 820	 */
 821out:
 822	return pfn_to_page(pfn);
 823}
 824
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825/*
 826 * copy one vm_area from one task to the other. Assumes the page tables
 827 * already present in the new task to be cleared in the whole range
 828 * covered by this vma.
 829 */
 830
 831static inline unsigned long
 832copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 833		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 834		unsigned long addr, int *rss)
 835{
 836	unsigned long vm_flags = vma->vm_flags;
 837	pte_t pte = *src_pte;
 838	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839
 840	/* pte contains position in swap or file, so copy. */
 841	if (unlikely(!pte_present(pte))) {
 842		if (!pte_file(pte)) {
 843			swp_entry_t entry = pte_to_swp_entry(pte);
 844
 845			if (swap_duplicate(entry) < 0)
 846				return entry.val;
 847
 848			/* make sure dst_mm is on swapoff's mmlist. */
 849			if (unlikely(list_empty(&dst_mm->mmlist))) {
 850				spin_lock(&mmlist_lock);
 851				if (list_empty(&dst_mm->mmlist))
 852					list_add(&dst_mm->mmlist,
 853						 &src_mm->mmlist);
 854				spin_unlock(&mmlist_lock);
 855			}
 856			if (likely(!non_swap_entry(entry)))
 857				rss[MM_SWAPENTS]++;
 858			else if (is_migration_entry(entry)) {
 859				page = migration_entry_to_page(entry);
 860
 861				if (PageAnon(page))
 862					rss[MM_ANONPAGES]++;
 863				else
 864					rss[MM_FILEPAGES]++;
 865
 866				if (is_write_migration_entry(entry) &&
 867				    is_cow_mapping(vm_flags)) {
 868					/*
 869					 * COW mappings require pages in both
 870					 * parent and child to be set to read.
 871					 */
 872					make_migration_entry_read(&entry);
 873					pte = swp_entry_to_pte(entry);
 874					set_pte_at(src_mm, addr, src_pte, pte);
 875				}
 876			}
 877		}
 878		goto out_set_pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879	}
 880
 881	/*
 882	 * If it's a COW mapping, write protect it both
 883	 * in the parent and the child
 884	 */
 885	if (is_cow_mapping(vm_flags)) {
 886		ptep_set_wrprotect(src_mm, addr, src_pte);
 887		pte = pte_wrprotect(pte);
 888	}
 889
 890	/*
 891	 * If it's a shared mapping, mark it clean in
 892	 * the child
 893	 */
 894	if (vm_flags & VM_SHARED)
 895		pte = pte_mkclean(pte);
 896	pte = pte_mkold(pte);
 897
 898	page = vm_normal_page(vma, addr, pte);
 899	if (page) {
 900		get_page(page);
 901		page_dup_rmap(page);
 902		if (PageAnon(page))
 903			rss[MM_ANONPAGES]++;
 904		else
 905			rss[MM_FILEPAGES]++;
 
 
 
 
 
 
 
 
 
 
 
 
 906	}
 
 907
 908out_set_pte:
 909	set_pte_at(dst_mm, addr, dst_pte, pte);
 910	return 0;
 911}
 912
 913int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 914		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 915		   unsigned long addr, unsigned long end)
 
 916{
 
 
 917	pte_t *orig_src_pte, *orig_dst_pte;
 918	pte_t *src_pte, *dst_pte;
 919	spinlock_t *src_ptl, *dst_ptl;
 920	int progress = 0;
 921	int rss[NR_MM_COUNTERS];
 922	swp_entry_t entry = (swp_entry_t){0};
 
 923
 924again:
 
 925	init_rss_vec(rss);
 926
 927	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 928	if (!dst_pte)
 929		return -ENOMEM;
 
 
 930	src_pte = pte_offset_map(src_pmd, addr);
 931	src_ptl = pte_lockptr(src_mm, src_pmd);
 932	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 933	orig_src_pte = src_pte;
 934	orig_dst_pte = dst_pte;
 935	arch_enter_lazy_mmu_mode();
 936
 937	do {
 938		/*
 939		 * We are holding two locks at this point - either of them
 940		 * could generate latencies in another task on another CPU.
 941		 */
 942		if (progress >= 32) {
 943			progress = 0;
 944			if (need_resched() ||
 945			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 946				break;
 947		}
 948		if (pte_none(*src_pte)) {
 949			progress++;
 950			continue;
 951		}
 952		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 953							vma, addr, rss);
 954		if (entry.val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955			break;
 
 
 
 
 
 
 
 
 
 
 956		progress += 8;
 957	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 958
 959	arch_leave_lazy_mmu_mode();
 960	spin_unlock(src_ptl);
 961	pte_unmap(orig_src_pte);
 962	add_mm_rss_vec(dst_mm, rss);
 963	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 964	cond_resched();
 965
 966	if (entry.val) {
 967		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 
 
 
 
 
 
 
 
 
 
 968			return -ENOMEM;
 969		progress = 0;
 
 970	}
 
 
 
 
 971	if (addr != end)
 972		goto again;
 973	return 0;
 
 
 
 974}
 975
 976static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 977		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 978		unsigned long addr, unsigned long end)
 
 979{
 
 
 980	pmd_t *src_pmd, *dst_pmd;
 981	unsigned long next;
 982
 983	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 984	if (!dst_pmd)
 985		return -ENOMEM;
 986	src_pmd = pmd_offset(src_pud, addr);
 987	do {
 988		next = pmd_addr_end(addr, end);
 989		if (pmd_trans_huge(*src_pmd)) {
 
 990			int err;
 991			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
 992			err = copy_huge_pmd(dst_mm, src_mm,
 993					    dst_pmd, src_pmd, addr, vma);
 994			if (err == -ENOMEM)
 995				return -ENOMEM;
 996			if (!err)
 997				continue;
 998			/* fall through */
 999		}
1000		if (pmd_none_or_clear_bad(src_pmd))
1001			continue;
1002		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1003						vma, addr, next))
1004			return -ENOMEM;
1005	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1006	return 0;
1007}
1008
1009static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1011		unsigned long addr, unsigned long end)
 
1012{
 
 
1013	pud_t *src_pud, *dst_pud;
1014	unsigned long next;
1015
1016	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1017	if (!dst_pud)
1018		return -ENOMEM;
1019	src_pud = pud_offset(src_pgd, addr);
1020	do {
1021		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
 
 
 
 
 
1022		if (pud_none_or_clear_bad(src_pud))
1023			continue;
1024		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1025						vma, addr, next))
1026			return -ENOMEM;
1027	} while (dst_pud++, src_pud++, addr = next, addr != end);
1028	return 0;
1029}
1030
1031int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1032		struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033{
1034	pgd_t *src_pgd, *dst_pgd;
1035	unsigned long next;
1036	unsigned long addr = vma->vm_start;
1037	unsigned long end = vma->vm_end;
 
 
 
 
1038	int ret;
1039
1040	/*
1041	 * Don't copy ptes where a page fault will fill them correctly.
1042	 * Fork becomes much lighter when there are big shared or private
1043	 * readonly mappings. The tradeoff is that copy_page_range is more
1044	 * efficient than faulting.
1045	 */
1046	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
1047		if (!vma->anon_vma)
1048			return 0;
1049	}
1050
1051	if (is_vm_hugetlb_page(vma))
1052		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1053
1054	if (unlikely(is_pfn_mapping(vma))) {
1055		/*
1056		 * We do not free on error cases below as remove_vma
1057		 * gets called on error from higher level routine
1058		 */
1059		ret = track_pfn_vma_copy(vma);
1060		if (ret)
1061			return ret;
1062	}
1063
1064	/*
1065	 * We need to invalidate the secondary MMU mappings only when
1066	 * there could be a permission downgrade on the ptes of the
1067	 * parent mm. And a permission downgrade will only happen if
1068	 * is_cow_mapping() returns true.
1069	 */
1070	if (is_cow_mapping(vma->vm_flags))
1071		mmu_notifier_invalidate_range_start(src_mm, addr, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073	ret = 0;
1074	dst_pgd = pgd_offset(dst_mm, addr);
1075	src_pgd = pgd_offset(src_mm, addr);
1076	do {
1077		next = pgd_addr_end(addr, end);
1078		if (pgd_none_or_clear_bad(src_pgd))
1079			continue;
1080		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081					    vma, addr, next))) {
1082			ret = -ENOMEM;
1083			break;
1084		}
1085	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086
1087	if (is_cow_mapping(vma->vm_flags))
1088		mmu_notifier_invalidate_range_end(src_mm,
1089						  vma->vm_start, end);
 
1090	return ret;
1091}
1092
1093static unsigned long zap_pte_range(struct mmu_gather *tlb,
1094				struct vm_area_struct *vma, pmd_t *pmd,
1095				unsigned long addr, unsigned long end,
1096				struct zap_details *details)
1097{
1098	struct mm_struct *mm = tlb->mm;
1099	int force_flush = 0;
1100	int rss[NR_MM_COUNTERS];
1101	spinlock_t *ptl;
1102	pte_t *start_pte;
1103	pte_t *pte;
 
1104
 
1105again:
1106	init_rss_vec(rss);
1107	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1108	pte = start_pte;
 
1109	arch_enter_lazy_mmu_mode();
1110	do {
1111		pte_t ptent = *pte;
1112		if (pte_none(ptent)) {
1113			continue;
1114		}
 
 
1115
1116		if (pte_present(ptent)) {
1117			struct page *page;
1118
1119			page = vm_normal_page(vma, addr, ptent);
1120			if (unlikely(details) && page) {
1121				/*
1122				 * unmap_shared_mapping_pages() wants to
1123				 * invalidate cache without truncating:
1124				 * unmap shared but keep private pages.
1125				 */
1126				if (details->check_mapping &&
1127				    details->check_mapping != page->mapping)
1128					continue;
1129				/*
1130				 * Each page->index must be checked when
1131				 * invalidating or truncating nonlinear.
1132				 */
1133				if (details->nonlinear_vma &&
1134				    (page->index < details->first_index ||
1135				     page->index > details->last_index))
1136					continue;
1137			}
1138			ptent = ptep_get_and_clear_full(mm, addr, pte,
1139							tlb->fullmm);
1140			tlb_remove_tlb_entry(tlb, pte, addr);
1141			if (unlikely(!page))
1142				continue;
1143			if (unlikely(details) && details->nonlinear_vma
1144			    && linear_page_index(details->nonlinear_vma,
1145						addr) != page->index)
1146				set_pte_at(mm, addr, pte,
1147					   pgoff_to_pte(page->index));
1148			if (PageAnon(page))
1149				rss[MM_ANONPAGES]--;
1150			else {
1151				if (pte_dirty(ptent))
1152					set_page_dirty(page);
 
1153				if (pte_young(ptent) &&
1154				    likely(!VM_SequentialReadHint(vma)))
1155					mark_page_accessed(page);
1156				rss[MM_FILEPAGES]--;
1157			}
1158			page_remove_rmap(page);
 
1159			if (unlikely(page_mapcount(page) < 0))
1160				print_bad_pte(vma, addr, ptent, page);
1161			force_flush = !__tlb_remove_page(tlb, page);
1162			if (force_flush)
 
1163				break;
 
1164			continue;
1165		}
1166		/*
1167		 * If details->check_mapping, we leave swap entries;
1168		 * if details->nonlinear_vma, we leave file entries.
1169		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170		if (unlikely(details))
1171			continue;
1172		if (pte_file(ptent)) {
1173			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174				print_bad_pte(vma, addr, ptent, NULL);
1175		} else {
1176			swp_entry_t entry = pte_to_swp_entry(ptent);
1177
1178			if (!non_swap_entry(entry))
1179				rss[MM_SWAPENTS]--;
1180			else if (is_migration_entry(entry)) {
1181				struct page *page;
1182
1183				page = migration_entry_to_page(entry);
1184
1185				if (PageAnon(page))
1186					rss[MM_ANONPAGES]--;
1187				else
1188					rss[MM_FILEPAGES]--;
1189			}
1190			if (unlikely(!free_swap_and_cache(entry)))
1191				print_bad_pte(vma, addr, ptent, NULL);
1192		}
 
 
1193		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194	} while (pte++, addr += PAGE_SIZE, addr != end);
1195
1196	add_mm_rss_vec(mm, rss);
1197	arch_leave_lazy_mmu_mode();
 
 
 
 
1198	pte_unmap_unlock(start_pte, ptl);
1199
1200	/*
1201	 * mmu_gather ran out of room to batch pages, we break out of
1202	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1203	 * and page-free while holding it.
 
1204	 */
1205	if (force_flush) {
1206		force_flush = 0;
1207		tlb_flush_mmu(tlb);
1208		if (addr != end)
1209			goto again;
 
 
 
1210	}
1211
1212	return addr;
1213}
1214
1215static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1216				struct vm_area_struct *vma, pud_t *pud,
1217				unsigned long addr, unsigned long end,
1218				struct zap_details *details)
1219{
1220	pmd_t *pmd;
1221	unsigned long next;
1222
1223	pmd = pmd_offset(pud, addr);
1224	do {
1225		next = pmd_addr_end(addr, end);
1226		if (pmd_trans_huge(*pmd)) {
1227			if (next - addr != HPAGE_PMD_SIZE) {
1228#ifdef CONFIG_DEBUG_VM
1229				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1230					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1231						__func__, addr, end,
1232						vma->vm_start,
1233						vma->vm_end);
1234					BUG();
1235				}
1236#endif
1237				split_huge_page_pmd(vma->vm_mm, pmd);
1238			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1239				goto next;
1240			/* fall through */
 
 
 
 
 
 
 
 
 
 
1241		}
 
1242		/*
1243		 * Here there can be other concurrent MADV_DONTNEED or
1244		 * trans huge page faults running, and if the pmd is
1245		 * none or trans huge it can change under us. This is
1246		 * because MADV_DONTNEED holds the mmap_sem in read
1247		 * mode.
1248		 */
1249		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1250			goto next;
1251		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1252next:
1253		cond_resched();
1254	} while (pmd++, addr = next, addr != end);
1255
1256	return addr;
1257}
1258
1259static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1260				struct vm_area_struct *vma, pgd_t *pgd,
1261				unsigned long addr, unsigned long end,
1262				struct zap_details *details)
1263{
1264	pud_t *pud;
1265	unsigned long next;
1266
1267	pud = pud_offset(pgd, addr);
1268	do {
1269		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
 
1270		if (pud_none_or_clear_bad(pud))
1271			continue;
1272		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
 
 
1273	} while (pud++, addr = next, addr != end);
1274
1275	return addr;
1276}
1277
1278static void unmap_page_range(struct mmu_gather *tlb,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279			     struct vm_area_struct *vma,
1280			     unsigned long addr, unsigned long end,
1281			     struct zap_details *details)
1282{
1283	pgd_t *pgd;
1284	unsigned long next;
1285
1286	if (details && !details->check_mapping && !details->nonlinear_vma)
1287		details = NULL;
1288
1289	BUG_ON(addr >= end);
1290	mem_cgroup_uncharge_start();
1291	tlb_start_vma(tlb, vma);
1292	pgd = pgd_offset(vma->vm_mm, addr);
1293	do {
1294		next = pgd_addr_end(addr, end);
1295		if (pgd_none_or_clear_bad(pgd))
1296			continue;
1297		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1298	} while (pgd++, addr = next, addr != end);
1299	tlb_end_vma(tlb, vma);
1300	mem_cgroup_uncharge_end();
1301}
1302
1303
1304static void unmap_single_vma(struct mmu_gather *tlb,
1305		struct vm_area_struct *vma, unsigned long start_addr,
1306		unsigned long end_addr,
1307		struct zap_details *details)
1308{
1309	unsigned long start = max(vma->vm_start, start_addr);
1310	unsigned long end;
1311
1312	if (start >= vma->vm_end)
1313		return;
1314	end = min(vma->vm_end, end_addr);
1315	if (end <= vma->vm_start)
1316		return;
1317
1318	if (vma->vm_file)
1319		uprobe_munmap(vma, start, end);
1320
1321	if (unlikely(is_pfn_mapping(vma)))
1322		untrack_pfn_vma(vma, 0, 0);
1323
1324	if (start != end) {
1325		if (unlikely(is_vm_hugetlb_page(vma))) {
1326			/*
1327			 * It is undesirable to test vma->vm_file as it
1328			 * should be non-null for valid hugetlb area.
1329			 * However, vm_file will be NULL in the error
1330			 * cleanup path of do_mmap_pgoff. When
1331			 * hugetlbfs ->mmap method fails,
1332			 * do_mmap_pgoff() nullifies vma->vm_file
1333			 * before calling this function to clean up.
1334			 * Since no pte has actually been setup, it is
1335			 * safe to do nothing in this case.
1336			 */
1337			if (vma->vm_file)
1338				unmap_hugepage_range(vma, start, end, NULL);
 
 
 
1339		} else
1340			unmap_page_range(tlb, vma, start, end, details);
1341	}
1342}
1343
1344/**
1345 * unmap_vmas - unmap a range of memory covered by a list of vma's
1346 * @tlb: address of the caller's struct mmu_gather
1347 * @vma: the starting vma
1348 * @start_addr: virtual address at which to start unmapping
1349 * @end_addr: virtual address at which to end unmapping
1350 *
1351 * Unmap all pages in the vma list.
1352 *
1353 * Only addresses between `start' and `end' will be unmapped.
1354 *
1355 * The VMA list must be sorted in ascending virtual address order.
1356 *
1357 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1358 * range after unmap_vmas() returns.  So the only responsibility here is to
1359 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1360 * drops the lock and schedules.
1361 */
1362void unmap_vmas(struct mmu_gather *tlb,
1363		struct vm_area_struct *vma, unsigned long start_addr,
1364		unsigned long end_addr)
1365{
1366	struct mm_struct *mm = vma->vm_mm;
1367
1368	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
 
 
1369	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1370		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1371	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1372}
1373
1374/**
1375 * zap_page_range - remove user pages in a given range
1376 * @vma: vm_area_struct holding the applicable pages
1377 * @start: starting address of pages to zap
1378 * @size: number of bytes to zap
1379 * @details: details of nonlinear truncation or shared cache invalidation
1380 *
1381 * Caller must protect the VMA list
1382 */
1383void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1384		unsigned long size, struct zap_details *details)
1385{
1386	struct mm_struct *mm = vma->vm_mm;
1387	struct mmu_gather tlb;
1388	unsigned long end = start + size;
1389
1390	lru_add_drain();
1391	tlb_gather_mmu(&tlb, mm, 0);
1392	update_hiwater_rss(mm);
1393	mmu_notifier_invalidate_range_start(mm, start, end);
1394	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1395		unmap_single_vma(&tlb, vma, start, end, details);
1396	mmu_notifier_invalidate_range_end(mm, start, end);
1397	tlb_finish_mmu(&tlb, start, end);
 
 
1398}
1399
1400/**
1401 * zap_page_range_single - remove user pages in a given range
1402 * @vma: vm_area_struct holding the applicable pages
1403 * @address: starting address of pages to zap
1404 * @size: number of bytes to zap
1405 * @details: details of nonlinear truncation or shared cache invalidation
1406 *
1407 * The range must fit into one VMA.
1408 */
1409static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1410		unsigned long size, struct zap_details *details)
1411{
1412	struct mm_struct *mm = vma->vm_mm;
1413	struct mmu_gather tlb;
1414	unsigned long end = address + size;
1415
1416	lru_add_drain();
1417	tlb_gather_mmu(&tlb, mm, 0);
1418	update_hiwater_rss(mm);
1419	mmu_notifier_invalidate_range_start(mm, address, end);
1420	unmap_single_vma(&tlb, vma, address, end, details);
1421	mmu_notifier_invalidate_range_end(mm, address, end);
1422	tlb_finish_mmu(&tlb, address, end);
 
 
1423}
1424
1425/**
1426 * zap_vma_ptes - remove ptes mapping the vma
1427 * @vma: vm_area_struct holding ptes to be zapped
1428 * @address: starting address of pages to zap
1429 * @size: number of bytes to zap
1430 *
1431 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1432 *
1433 * The entire address range must be fully contained within the vma.
1434 *
1435 * Returns 0 if successful.
1436 */
1437int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1438		unsigned long size)
1439{
1440	if (address < vma->vm_start || address + size > vma->vm_end ||
1441	    		!(vma->vm_flags & VM_PFNMAP))
1442		return -1;
 
1443	zap_page_range_single(vma, address, size, NULL);
1444	return 0;
1445}
1446EXPORT_SYMBOL_GPL(zap_vma_ptes);
1447
1448/**
1449 * follow_page - look up a page descriptor from a user-virtual address
1450 * @vma: vm_area_struct mapping @address
1451 * @address: virtual address to look up
1452 * @flags: flags modifying lookup behaviour
1453 *
1454 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1455 *
1456 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1457 * an error pointer if there is a mapping to something not represented
1458 * by a page descriptor (see also vm_normal_page()).
1459 */
1460struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1461			unsigned int flags)
1462{
1463	pgd_t *pgd;
 
1464	pud_t *pud;
1465	pmd_t *pmd;
1466	pte_t *ptep, pte;
1467	spinlock_t *ptl;
1468	struct page *page;
1469	struct mm_struct *mm = vma->vm_mm;
1470
1471	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472	if (!IS_ERR(page)) {
1473		BUG_ON(flags & FOLL_GET);
1474		goto out;
1475	}
 
 
 
 
 
1476
1477	page = NULL;
1478	pgd = pgd_offset(mm, address);
1479	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1480		goto no_page_table;
1481
1482	pud = pud_offset(pgd, address);
1483	if (pud_none(*pud))
1484		goto no_page_table;
1485	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1486		BUG_ON(flags & FOLL_GET);
1487		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1488		goto out;
1489	}
1490	if (unlikely(pud_bad(*pud)))
1491		goto no_page_table;
1492
1493	pmd = pmd_offset(pud, address);
1494	if (pmd_none(*pmd))
1495		goto no_page_table;
1496	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1497		BUG_ON(flags & FOLL_GET);
1498		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1499		goto out;
1500	}
1501	if (pmd_trans_huge(*pmd)) {
1502		if (flags & FOLL_SPLIT) {
1503			split_huge_page_pmd(mm, pmd);
1504			goto split_fallthrough;
1505		}
1506		spin_lock(&mm->page_table_lock);
1507		if (likely(pmd_trans_huge(*pmd))) {
1508			if (unlikely(pmd_trans_splitting(*pmd))) {
1509				spin_unlock(&mm->page_table_lock);
1510				wait_split_huge_page(vma->anon_vma, pmd);
1511			} else {
1512				page = follow_trans_huge_pmd(mm, address,
1513							     pmd, flags);
1514				spin_unlock(&mm->page_table_lock);
1515				goto out;
1516			}
1517		} else
1518			spin_unlock(&mm->page_table_lock);
1519		/* fall through */
1520	}
1521split_fallthrough:
1522	if (unlikely(pmd_bad(*pmd)))
1523		goto no_page_table;
1524
1525	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1526
1527	pte = *ptep;
1528	if (!pte_present(pte))
1529		goto no_page;
1530	if ((flags & FOLL_WRITE) && !pte_write(pte))
1531		goto unlock;
1532
1533	page = vm_normal_page(vma, address, pte);
1534	if (unlikely(!page)) {
1535		if ((flags & FOLL_DUMP) ||
1536		    !is_zero_pfn(pte_pfn(pte)))
1537			goto bad_page;
1538		page = pte_page(pte);
1539	}
1540
1541	if (flags & FOLL_GET)
1542		get_page_foll(page);
1543	if (flags & FOLL_TOUCH) {
1544		if ((flags & FOLL_WRITE) &&
1545		    !pte_dirty(pte) && !PageDirty(page))
1546			set_page_dirty(page);
1547		/*
1548		 * pte_mkyoung() would be more correct here, but atomic care
1549		 * is needed to avoid losing the dirty bit: it is easier to use
1550		 * mark_page_accessed().
1551		 */
1552		mark_page_accessed(page);
1553	}
1554	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1555		/*
1556		 * The preliminary mapping check is mainly to avoid the
1557		 * pointless overhead of lock_page on the ZERO_PAGE
1558		 * which might bounce very badly if there is contention.
1559		 *
1560		 * If the page is already locked, we don't need to
1561		 * handle it now - vmscan will handle it later if and
1562		 * when it attempts to reclaim the page.
1563		 */
1564		if (page->mapping && trylock_page(page)) {
1565			lru_add_drain();  /* push cached pages to LRU */
1566			/*
1567			 * Because we lock page here and migration is
1568			 * blocked by the pte's page reference, we need
1569			 * only check for file-cache page truncation.
1570			 */
1571			if (page->mapping)
1572				mlock_vma_page(page);
1573			unlock_page(page);
1574		}
1575	}
1576unlock:
1577	pte_unmap_unlock(ptep, ptl);
1578out:
1579	return page;
1580
1581bad_page:
1582	pte_unmap_unlock(ptep, ptl);
1583	return ERR_PTR(-EFAULT);
1584
1585no_page:
1586	pte_unmap_unlock(ptep, ptl);
1587	if (!pte_none(pte))
1588		return page;
1589
1590no_page_table:
1591	/*
1592	 * When core dumping an enormous anonymous area that nobody
1593	 * has touched so far, we don't want to allocate unnecessary pages or
1594	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1595	 * then get_dump_page() will return NULL to leave a hole in the dump.
1596	 * But we can only make this optimization where a hole would surely
1597	 * be zero-filled if handle_mm_fault() actually did handle it.
1598	 */
1599	if ((flags & FOLL_DUMP) &&
1600	    (!vma->vm_ops || !vma->vm_ops->fault))
1601		return ERR_PTR(-EFAULT);
1602	return page;
1603}
1604
1605static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1606{
1607	return stack_guard_page_start(vma, addr) ||
1608	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1609}
1610
1611/**
1612 * __get_user_pages() - pin user pages in memory
1613 * @tsk:	task_struct of target task
1614 * @mm:		mm_struct of target mm
1615 * @start:	starting user address
1616 * @nr_pages:	number of pages from start to pin
1617 * @gup_flags:	flags modifying pin behaviour
1618 * @pages:	array that receives pointers to the pages pinned.
1619 *		Should be at least nr_pages long. Or NULL, if caller
1620 *		only intends to ensure the pages are faulted in.
1621 * @vmas:	array of pointers to vmas corresponding to each page.
1622 *		Or NULL if the caller does not require them.
1623 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1624 *
1625 * Returns number of pages pinned. This may be fewer than the number
1626 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1627 * were pinned, returns -errno. Each page returned must be released
1628 * with a put_page() call when it is finished with. vmas will only
1629 * remain valid while mmap_sem is held.
1630 *
1631 * Must be called with mmap_sem held for read or write.
1632 *
1633 * __get_user_pages walks a process's page tables and takes a reference to
1634 * each struct page that each user address corresponds to at a given
1635 * instant. That is, it takes the page that would be accessed if a user
1636 * thread accesses the given user virtual address at that instant.
1637 *
1638 * This does not guarantee that the page exists in the user mappings when
1639 * __get_user_pages returns, and there may even be a completely different
1640 * page there in some cases (eg. if mmapped pagecache has been invalidated
1641 * and subsequently re faulted). However it does guarantee that the page
1642 * won't be freed completely. And mostly callers simply care that the page
1643 * contains data that was valid *at some point in time*. Typically, an IO
1644 * or similar operation cannot guarantee anything stronger anyway because
1645 * locks can't be held over the syscall boundary.
1646 *
1647 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1648 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1649 * appropriate) must be called after the page is finished with, and
1650 * before put_page is called.
1651 *
1652 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1653 * or mmap_sem contention, and if waiting is needed to pin all pages,
1654 * *@nonblocking will be set to 0.
1655 *
1656 * In most cases, get_user_pages or get_user_pages_fast should be used
1657 * instead of __get_user_pages. __get_user_pages should be used only if
1658 * you need some special @gup_flags.
1659 */
1660int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1661		     unsigned long start, int nr_pages, unsigned int gup_flags,
1662		     struct page **pages, struct vm_area_struct **vmas,
1663		     int *nonblocking)
1664{
1665	int i;
1666	unsigned long vm_flags;
1667
1668	if (nr_pages <= 0)
1669		return 0;
1670
1671	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1672
1673	/* 
1674	 * Require read or write permissions.
1675	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1676	 */
1677	vm_flags  = (gup_flags & FOLL_WRITE) ?
1678			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1679	vm_flags &= (gup_flags & FOLL_FORCE) ?
1680			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1681	i = 0;
1682
1683	do {
1684		struct vm_area_struct *vma;
1685
1686		vma = find_extend_vma(mm, start);
1687		if (!vma && in_gate_area(mm, start)) {
1688			unsigned long pg = start & PAGE_MASK;
1689			pgd_t *pgd;
1690			pud_t *pud;
1691			pmd_t *pmd;
1692			pte_t *pte;
1693
1694			/* user gate pages are read-only */
1695			if (gup_flags & FOLL_WRITE)
1696				return i ? : -EFAULT;
1697			if (pg > TASK_SIZE)
1698				pgd = pgd_offset_k(pg);
1699			else
1700				pgd = pgd_offset_gate(mm, pg);
1701			BUG_ON(pgd_none(*pgd));
1702			pud = pud_offset(pgd, pg);
1703			BUG_ON(pud_none(*pud));
1704			pmd = pmd_offset(pud, pg);
1705			if (pmd_none(*pmd))
1706				return i ? : -EFAULT;
1707			VM_BUG_ON(pmd_trans_huge(*pmd));
1708			pte = pte_offset_map(pmd, pg);
1709			if (pte_none(*pte)) {
1710				pte_unmap(pte);
1711				return i ? : -EFAULT;
1712			}
1713			vma = get_gate_vma(mm);
1714			if (pages) {
1715				struct page *page;
1716
1717				page = vm_normal_page(vma, start, *pte);
1718				if (!page) {
1719					if (!(gup_flags & FOLL_DUMP) &&
1720					     is_zero_pfn(pte_pfn(*pte)))
1721						page = pte_page(*pte);
1722					else {
1723						pte_unmap(pte);
1724						return i ? : -EFAULT;
1725					}
1726				}
1727				pages[i] = page;
1728				get_page(page);
1729			}
1730			pte_unmap(pte);
1731			goto next_page;
1732		}
1733
1734		if (!vma ||
1735		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1736		    !(vm_flags & vma->vm_flags))
1737			return i ? : -EFAULT;
1738
1739		if (is_vm_hugetlb_page(vma)) {
1740			i = follow_hugetlb_page(mm, vma, pages, vmas,
1741					&start, &nr_pages, i, gup_flags);
1742			continue;
1743		}
1744
1745		do {
1746			struct page *page;
1747			unsigned int foll_flags = gup_flags;
1748
1749			/*
1750			 * If we have a pending SIGKILL, don't keep faulting
1751			 * pages and potentially allocating memory.
1752			 */
1753			if (unlikely(fatal_signal_pending(current)))
1754				return i ? i : -ERESTARTSYS;
1755
1756			cond_resched();
1757			while (!(page = follow_page(vma, start, foll_flags))) {
1758				int ret;
1759				unsigned int fault_flags = 0;
1760
1761				/* For mlock, just skip the stack guard page. */
1762				if (foll_flags & FOLL_MLOCK) {
1763					if (stack_guard_page(vma, start))
1764						goto next_page;
1765				}
1766				if (foll_flags & FOLL_WRITE)
1767					fault_flags |= FAULT_FLAG_WRITE;
1768				if (nonblocking)
1769					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1770				if (foll_flags & FOLL_NOWAIT)
1771					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1772
1773				ret = handle_mm_fault(mm, vma, start,
1774							fault_flags);
1775
1776				if (ret & VM_FAULT_ERROR) {
1777					if (ret & VM_FAULT_OOM)
1778						return i ? i : -ENOMEM;
1779					if (ret & (VM_FAULT_HWPOISON |
1780						   VM_FAULT_HWPOISON_LARGE)) {
1781						if (i)
1782							return i;
1783						else if (gup_flags & FOLL_HWPOISON)
1784							return -EHWPOISON;
1785						else
1786							return -EFAULT;
1787					}
1788					if (ret & VM_FAULT_SIGBUS)
1789						return i ? i : -EFAULT;
1790					BUG();
1791				}
1792
1793				if (tsk) {
1794					if (ret & VM_FAULT_MAJOR)
1795						tsk->maj_flt++;
1796					else
1797						tsk->min_flt++;
1798				}
1799
1800				if (ret & VM_FAULT_RETRY) {
1801					if (nonblocking)
1802						*nonblocking = 0;
1803					return i;
1804				}
1805
1806				/*
1807				 * The VM_FAULT_WRITE bit tells us that
1808				 * do_wp_page has broken COW when necessary,
1809				 * even if maybe_mkwrite decided not to set
1810				 * pte_write. We can thus safely do subsequent
1811				 * page lookups as if they were reads. But only
1812				 * do so when looping for pte_write is futile:
1813				 * in some cases userspace may also be wanting
1814				 * to write to the gotten user page, which a
1815				 * read fault here might prevent (a readonly
1816				 * page might get reCOWed by userspace write).
1817				 */
1818				if ((ret & VM_FAULT_WRITE) &&
1819				    !(vma->vm_flags & VM_WRITE))
1820					foll_flags &= ~FOLL_WRITE;
1821
1822				cond_resched();
1823			}
1824			if (IS_ERR(page))
1825				return i ? i : PTR_ERR(page);
1826			if (pages) {
1827				pages[i] = page;
1828
1829				flush_anon_page(vma, page, start);
1830				flush_dcache_page(page);
1831			}
1832next_page:
1833			if (vmas)
1834				vmas[i] = vma;
1835			i++;
1836			start += PAGE_SIZE;
1837			nr_pages--;
1838		} while (nr_pages && start < vma->vm_end);
1839	} while (nr_pages);
1840	return i;
1841}
1842EXPORT_SYMBOL(__get_user_pages);
1843
1844/*
1845 * fixup_user_fault() - manually resolve a user page fault
1846 * @tsk:	the task_struct to use for page fault accounting, or
1847 *		NULL if faults are not to be recorded.
1848 * @mm:		mm_struct of target mm
1849 * @address:	user address
1850 * @fault_flags:flags to pass down to handle_mm_fault()
1851 *
1852 * This is meant to be called in the specific scenario where for locking reasons
1853 * we try to access user memory in atomic context (within a pagefault_disable()
1854 * section), this returns -EFAULT, and we want to resolve the user fault before
1855 * trying again.
1856 *
1857 * Typically this is meant to be used by the futex code.
1858 *
1859 * The main difference with get_user_pages() is that this function will
1860 * unconditionally call handle_mm_fault() which will in turn perform all the
1861 * necessary SW fixup of the dirty and young bits in the PTE, while
1862 * handle_mm_fault() only guarantees to update these in the struct page.
1863 *
1864 * This is important for some architectures where those bits also gate the
1865 * access permission to the page because they are maintained in software.  On
1866 * such architectures, gup() will not be enough to make a subsequent access
1867 * succeed.
1868 *
1869 * This should be called with the mm_sem held for read.
1870 */
1871int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1872		     unsigned long address, unsigned int fault_flags)
1873{
1874	struct vm_area_struct *vma;
1875	int ret;
1876
1877	vma = find_extend_vma(mm, address);
1878	if (!vma || address < vma->vm_start)
1879		return -EFAULT;
1880
1881	ret = handle_mm_fault(mm, vma, address, fault_flags);
1882	if (ret & VM_FAULT_ERROR) {
1883		if (ret & VM_FAULT_OOM)
1884			return -ENOMEM;
1885		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1886			return -EHWPOISON;
1887		if (ret & VM_FAULT_SIGBUS)
1888			return -EFAULT;
1889		BUG();
1890	}
1891	if (tsk) {
1892		if (ret & VM_FAULT_MAJOR)
1893			tsk->maj_flt++;
1894		else
1895			tsk->min_flt++;
1896	}
1897	return 0;
1898}
1899
1900/*
1901 * get_user_pages() - pin user pages in memory
1902 * @tsk:	the task_struct to use for page fault accounting, or
1903 *		NULL if faults are not to be recorded.
1904 * @mm:		mm_struct of target mm
1905 * @start:	starting user address
1906 * @nr_pages:	number of pages from start to pin
1907 * @write:	whether pages will be written to by the caller
1908 * @force:	whether to force write access even if user mapping is
1909 *		readonly. This will result in the page being COWed even
1910 *		in MAP_SHARED mappings. You do not want this.
1911 * @pages:	array that receives pointers to the pages pinned.
1912 *		Should be at least nr_pages long. Or NULL, if caller
1913 *		only intends to ensure the pages are faulted in.
1914 * @vmas:	array of pointers to vmas corresponding to each page.
1915 *		Or NULL if the caller does not require them.
1916 *
1917 * Returns number of pages pinned. This may be fewer than the number
1918 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1919 * were pinned, returns -errno. Each page returned must be released
1920 * with a put_page() call when it is finished with. vmas will only
1921 * remain valid while mmap_sem is held.
1922 *
1923 * Must be called with mmap_sem held for read or write.
1924 *
1925 * get_user_pages walks a process's page tables and takes a reference to
1926 * each struct page that each user address corresponds to at a given
1927 * instant. That is, it takes the page that would be accessed if a user
1928 * thread accesses the given user virtual address at that instant.
1929 *
1930 * This does not guarantee that the page exists in the user mappings when
1931 * get_user_pages returns, and there may even be a completely different
1932 * page there in some cases (eg. if mmapped pagecache has been invalidated
1933 * and subsequently re faulted). However it does guarantee that the page
1934 * won't be freed completely. And mostly callers simply care that the page
1935 * contains data that was valid *at some point in time*. Typically, an IO
1936 * or similar operation cannot guarantee anything stronger anyway because
1937 * locks can't be held over the syscall boundary.
1938 *
1939 * If write=0, the page must not be written to. If the page is written to,
1940 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1941 * after the page is finished with, and before put_page is called.
1942 *
1943 * get_user_pages is typically used for fewer-copy IO operations, to get a
1944 * handle on the memory by some means other than accesses via the user virtual
1945 * addresses. The pages may be submitted for DMA to devices or accessed via
1946 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1947 * use the correct cache flushing APIs.
1948 *
1949 * See also get_user_pages_fast, for performance critical applications.
1950 */
1951int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1952		unsigned long start, int nr_pages, int write, int force,
1953		struct page **pages, struct vm_area_struct **vmas)
1954{
1955	int flags = FOLL_TOUCH;
1956
1957	if (pages)
1958		flags |= FOLL_GET;
1959	if (write)
1960		flags |= FOLL_WRITE;
1961	if (force)
1962		flags |= FOLL_FORCE;
1963
1964	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1965				NULL);
1966}
1967EXPORT_SYMBOL(get_user_pages);
1968
1969/**
1970 * get_dump_page() - pin user page in memory while writing it to core dump
1971 * @addr: user address
1972 *
1973 * Returns struct page pointer of user page pinned for dump,
1974 * to be freed afterwards by page_cache_release() or put_page().
1975 *
1976 * Returns NULL on any kind of failure - a hole must then be inserted into
1977 * the corefile, to preserve alignment with its headers; and also returns
1978 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1979 * allowing a hole to be left in the corefile to save diskspace.
1980 *
1981 * Called without mmap_sem, but after all other threads have been killed.
1982 */
1983#ifdef CONFIG_ELF_CORE
1984struct page *get_dump_page(unsigned long addr)
1985{
1986	struct vm_area_struct *vma;
1987	struct page *page;
1988
1989	if (__get_user_pages(current, current->mm, addr, 1,
1990			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1991			     NULL) < 1)
1992		return NULL;
1993	flush_cache_page(vma, addr, page_to_pfn(page));
1994	return page;
1995}
1996#endif /* CONFIG_ELF_CORE */
1997
1998pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1999			spinlock_t **ptl)
2000{
2001	pgd_t * pgd = pgd_offset(mm, addr);
2002	pud_t * pud = pud_alloc(mm, pgd, addr);
2003	if (pud) {
2004		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2005		if (pmd) {
2006			VM_BUG_ON(pmd_trans_huge(*pmd));
2007			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2008		}
2009	}
2010	return NULL;
2011}
2012
2013/*
2014 * This is the old fallback for page remapping.
2015 *
2016 * For historical reasons, it only allows reserved pages. Only
2017 * old drivers should use this, and they needed to mark their
2018 * pages reserved for the old functions anyway.
2019 */
2020static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2021			struct page *page, pgprot_t prot)
2022{
2023	struct mm_struct *mm = vma->vm_mm;
2024	int retval;
2025	pte_t *pte;
2026	spinlock_t *ptl;
2027
2028	retval = -EINVAL;
2029	if (PageAnon(page))
2030		goto out;
2031	retval = -ENOMEM;
2032	flush_dcache_page(page);
2033	pte = get_locked_pte(mm, addr, &ptl);
2034	if (!pte)
2035		goto out;
2036	retval = -EBUSY;
2037	if (!pte_none(*pte))
2038		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2039
2040	/* Ok, finally just insert the thing.. */
2041	get_page(page);
2042	inc_mm_counter_fast(mm, MM_FILEPAGES);
2043	page_add_file_rmap(page);
2044	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2045
2046	retval = 0;
2047	pte_unmap_unlock(pte, ptl);
2048	return retval;
2049out_unlock:
2050	pte_unmap_unlock(pte, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2051out:
2052	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053}
 
2054
2055/**
2056 * vm_insert_page - insert single page into user vma
2057 * @vma: user vma to map to
2058 * @addr: target user address of this page
2059 * @page: source kernel page
2060 *
2061 * This allows drivers to insert individual pages they've allocated
2062 * into a user vma.
2063 *
2064 * The page has to be a nice clean _individual_ kernel allocation.
2065 * If you allocate a compound page, you need to have marked it as
2066 * such (__GFP_COMP), or manually just split the page up yourself
2067 * (see split_page()).
2068 *
2069 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2070 * took an arbitrary page protection parameter. This doesn't allow
2071 * that. Your vma protection will have to be set up correctly, which
2072 * means that if you want a shared writable mapping, you'd better
2073 * ask for a shared writable mapping!
2074 *
2075 * The page does not need to be reserved.
 
 
 
 
 
 
 
2076 */
2077int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2078			struct page *page)
2079{
2080	if (addr < vma->vm_start || addr >= vma->vm_end)
2081		return -EFAULT;
2082	if (!page_count(page))
2083		return -EINVAL;
2084	vma->vm_flags |= VM_INSERTPAGE;
 
 
 
 
2085	return insert_page(vma, addr, page, vma->vm_page_prot);
2086}
2087EXPORT_SYMBOL(vm_insert_page);
2088
2089static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2090			unsigned long pfn, pgprot_t prot)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2091{
2092	struct mm_struct *mm = vma->vm_mm;
2093	int retval;
2094	pte_t *pte, entry;
2095	spinlock_t *ptl;
2096
2097	retval = -ENOMEM;
2098	pte = get_locked_pte(mm, addr, &ptl);
2099	if (!pte)
2100		goto out;
2101	retval = -EBUSY;
2102	if (!pte_none(*pte))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2103		goto out_unlock;
 
2104
2105	/* Ok, finally just insert the thing.. */
2106	entry = pte_mkspecial(pfn_pte(pfn, prot));
 
 
 
 
 
 
 
 
 
2107	set_pte_at(mm, addr, pte, entry);
2108	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2109
2110	retval = 0;
2111out_unlock:
2112	pte_unmap_unlock(pte, ptl);
2113out:
2114	return retval;
2115}
2116
2117/**
2118 * vm_insert_pfn - insert single pfn into user vma
2119 * @vma: user vma to map to
2120 * @addr: target user address of this page
2121 * @pfn: source kernel pfn
 
2122 *
2123 * Similar to vm_inert_page, this allows drivers to insert individual pages
2124 * they've allocated into a user vma. Same comments apply.
2125 *
2126 * This function should only be called from a vm_ops->fault handler, and
2127 * in that case the handler should return NULL.
 
 
2128 *
2129 * vma cannot be a COW mapping.
 
2130 *
2131 * As this is called only for pages that do not currently exist, we
2132 * do not need to flush old virtual caches or the TLB.
2133 */
2134int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2135			unsigned long pfn)
2136{
2137	int ret;
2138	pgprot_t pgprot = vma->vm_page_prot;
2139	/*
2140	 * Technically, architectures with pte_special can avoid all these
2141	 * restrictions (same for remap_pfn_range).  However we would like
2142	 * consistency in testing and feature parity among all, so we should
2143	 * try to keep these invariants in place for everybody.
2144	 */
2145	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2146	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2147						(VM_PFNMAP|VM_MIXEDMAP));
2148	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2149	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2150
2151	if (addr < vma->vm_start || addr >= vma->vm_end)
2152		return -EFAULT;
2153	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
2154		return -EINVAL;
2155
2156	ret = insert_pfn(vma, addr, pfn, pgprot);
 
2157
2158	if (ret)
2159		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
2160
2161	return ret;
 
2162}
2163EXPORT_SYMBOL(vm_insert_pfn);
2164
2165int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2166			unsigned long pfn)
2167{
2168	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2169
2170	if (addr < vma->vm_start || addr >= vma->vm_end)
2171		return -EFAULT;
 
 
 
 
 
2172
2173	/*
2174	 * If we don't have pte special, then we have to use the pfn_valid()
2175	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2176	 * refcount the page if pfn_valid is true (hence insert_page rather
2177	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2178	 * without pte special, it would there be refcounted as a normal page.
2179	 */
2180	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
 
2181		struct page *page;
2182
2183		page = pfn_to_page(pfn);
2184		return insert_page(vma, addr, page, vma->vm_page_prot);
 
 
 
 
 
 
 
2185	}
2186	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
 
 
 
 
 
 
2187}
2188EXPORT_SYMBOL(vm_insert_mixed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189
2190/*
2191 * maps a range of physical memory into the requested pages. the old
2192 * mappings are removed. any references to nonexistent pages results
2193 * in null mappings (currently treated as "copy-on-access")
2194 */
2195static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2196			unsigned long addr, unsigned long end,
2197			unsigned long pfn, pgprot_t prot)
2198{
2199	pte_t *pte;
2200	spinlock_t *ptl;
 
2201
2202	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2203	if (!pte)
2204		return -ENOMEM;
2205	arch_enter_lazy_mmu_mode();
2206	do {
2207		BUG_ON(!pte_none(*pte));
 
 
 
 
2208		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2209		pfn++;
2210	} while (pte++, addr += PAGE_SIZE, addr != end);
2211	arch_leave_lazy_mmu_mode();
2212	pte_unmap_unlock(pte - 1, ptl);
2213	return 0;
2214}
2215
2216static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2217			unsigned long addr, unsigned long end,
2218			unsigned long pfn, pgprot_t prot)
2219{
2220	pmd_t *pmd;
2221	unsigned long next;
 
2222
2223	pfn -= addr >> PAGE_SHIFT;
2224	pmd = pmd_alloc(mm, pud, addr);
2225	if (!pmd)
2226		return -ENOMEM;
2227	VM_BUG_ON(pmd_trans_huge(*pmd));
2228	do {
2229		next = pmd_addr_end(addr, end);
2230		if (remap_pte_range(mm, pmd, addr, next,
2231				pfn + (addr >> PAGE_SHIFT), prot))
2232			return -ENOMEM;
 
2233	} while (pmd++, addr = next, addr != end);
2234	return 0;
2235}
2236
2237static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2238			unsigned long addr, unsigned long end,
2239			unsigned long pfn, pgprot_t prot)
2240{
2241	pud_t *pud;
2242	unsigned long next;
 
2243
2244	pfn -= addr >> PAGE_SHIFT;
2245	pud = pud_alloc(mm, pgd, addr);
2246	if (!pud)
2247		return -ENOMEM;
2248	do {
2249		next = pud_addr_end(addr, end);
2250		if (remap_pmd_range(mm, pud, addr, next,
2251				pfn + (addr >> PAGE_SHIFT), prot))
2252			return -ENOMEM;
 
2253	} while (pud++, addr = next, addr != end);
2254	return 0;
2255}
2256
2257/**
2258 * remap_pfn_range - remap kernel memory to userspace
2259 * @vma: user vma to map to
2260 * @addr: target user address to start at
2261 * @pfn: physical address of kernel memory
2262 * @size: size of map area
2263 * @prot: page protection flags for this mapping
2264 *
2265 *  Note: this is only safe if the mm semaphore is held when called.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2266 */
2267int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2268		    unsigned long pfn, unsigned long size, pgprot_t prot)
2269{
2270	pgd_t *pgd;
2271	unsigned long next;
2272	unsigned long end = addr + PAGE_ALIGN(size);
2273	struct mm_struct *mm = vma->vm_mm;
2274	int err;
2275
 
 
 
2276	/*
2277	 * Physically remapped pages are special. Tell the
2278	 * rest of the world about it:
2279	 *   VM_IO tells people not to look at these pages
2280	 *	(accesses can have side effects).
2281	 *   VM_RESERVED is specified all over the place, because
2282	 *	in 2.4 it kept swapout's vma scan off this vma; but
2283	 *	in 2.6 the LRU scan won't even find its pages, so this
2284	 *	flag means no more than count its pages in reserved_vm,
2285	 * 	and omit it from core dump, even when VM_IO turned off.
2286	 *   VM_PFNMAP tells the core MM that the base pages are just
2287	 *	raw PFN mappings, and do not have a "struct page" associated
2288	 *	with them.
 
 
 
 
2289	 *
2290	 * There's a horrible special case to handle copy-on-write
2291	 * behaviour that some programs depend on. We mark the "original"
2292	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
 
2293	 */
2294	if (addr == vma->vm_start && end == vma->vm_end) {
 
 
2295		vma->vm_pgoff = pfn;
2296		vma->vm_flags |= VM_PFN_AT_MMAP;
2297	} else if (is_cow_mapping(vma->vm_flags))
2298		return -EINVAL;
2299
2300	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2301
2302	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2303	if (err) {
2304		/*
2305		 * To indicate that track_pfn related cleanup is not
2306		 * needed from higher level routine calling unmap_vmas
2307		 */
2308		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2309		vma->vm_flags &= ~VM_PFN_AT_MMAP;
2310		return -EINVAL;
2311	}
2312
2313	BUG_ON(addr >= end);
2314	pfn -= addr >> PAGE_SHIFT;
2315	pgd = pgd_offset(mm, addr);
2316	flush_cache_range(vma, addr, end);
2317	do {
2318		next = pgd_addr_end(addr, end);
2319		err = remap_pud_range(mm, pgd, addr, next,
2320				pfn + (addr >> PAGE_SHIFT), prot);
2321		if (err)
2322			break;
2323	} while (pgd++, addr = next, addr != end);
2324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2325	if (err)
2326		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2327
 
 
 
2328	return err;
2329}
2330EXPORT_SYMBOL(remap_pfn_range);
2331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2332static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2333				     unsigned long addr, unsigned long end,
2334				     pte_fn_t fn, void *data)
 
2335{
2336	pte_t *pte;
2337	int err;
2338	pgtable_t token;
2339	spinlock_t *uninitialized_var(ptl);
2340
2341	pte = (mm == &init_mm) ?
2342		pte_alloc_kernel(pmd, addr) :
2343		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2344	if (!pte)
2345		return -ENOMEM;
 
 
 
 
 
 
2346
2347	BUG_ON(pmd_huge(*pmd));
2348
2349	arch_enter_lazy_mmu_mode();
2350
2351	token = pmd_pgtable(*pmd);
2352
2353	do {
2354		err = fn(pte++, token, addr, data);
2355		if (err)
2356			break;
2357	} while (addr += PAGE_SIZE, addr != end);
 
 
 
2358
2359	arch_leave_lazy_mmu_mode();
2360
2361	if (mm != &init_mm)
2362		pte_unmap_unlock(pte-1, ptl);
2363	return err;
2364}
2365
2366static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2367				     unsigned long addr, unsigned long end,
2368				     pte_fn_t fn, void *data)
 
2369{
2370	pmd_t *pmd;
2371	unsigned long next;
2372	int err;
2373
2374	BUG_ON(pud_huge(*pud));
2375
2376	pmd = pmd_alloc(mm, pud, addr);
2377	if (!pmd)
2378		return -ENOMEM;
 
 
 
 
2379	do {
2380		next = pmd_addr_end(addr, end);
2381		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
 
 
 
 
 
 
 
 
 
 
2382		if (err)
2383			break;
2384	} while (pmd++, addr = next, addr != end);
 
2385	return err;
2386}
2387
2388static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2389				     unsigned long addr, unsigned long end,
2390				     pte_fn_t fn, void *data)
 
2391{
2392	pud_t *pud;
2393	unsigned long next;
2394	int err;
2395
2396	pud = pud_alloc(mm, pgd, addr);
2397	if (!pud)
2398		return -ENOMEM;
 
 
 
 
2399	do {
2400		next = pud_addr_end(addr, end);
2401		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
 
 
 
 
 
 
 
 
 
 
2402		if (err)
2403			break;
2404	} while (pud++, addr = next, addr != end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2405	return err;
2406}
2407
2408/*
2409 * Scan a region of virtual memory, filling in page tables as necessary
2410 * and calling a provided function on each leaf page table.
2411 */
2412int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2413			unsigned long size, pte_fn_t fn, void *data)
2414{
2415	pgd_t *pgd;
2416	unsigned long next;
2417	unsigned long end = addr + size;
2418	int err;
 
 
 
 
2419
2420	BUG_ON(addr >= end);
2421	pgd = pgd_offset(mm, addr);
2422	do {
2423		next = pgd_addr_end(addr, end);
2424		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
 
 
 
 
 
 
 
 
 
 
2425		if (err)
2426			break;
2427	} while (pgd++, addr = next, addr != end);
2428
 
 
 
2429	return err;
2430}
 
 
 
 
 
 
 
 
 
 
2431EXPORT_SYMBOL_GPL(apply_to_page_range);
2432
2433/*
2434 * handle_pte_fault chooses page fault handler according to an entry
2435 * which was read non-atomically.  Before making any commitment, on
2436 * those architectures or configurations (e.g. i386 with PAE) which
2437 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2438 * must check under lock before unmapping the pte and proceeding
2439 * (but do_wp_page is only called after already making such a check;
 
 
 
 
 
 
 
 
 
 
 
 
 
2440 * and do_anonymous_page can safely check later on).
2441 */
2442static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2443				pte_t *page_table, pte_t orig_pte)
2444{
2445	int same = 1;
2446#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2447	if (sizeof(pte_t) > sizeof(unsigned long)) {
2448		spinlock_t *ptl = pte_lockptr(mm, pmd);
2449		spin_lock(ptl);
2450		same = pte_same(*page_table, orig_pte);
2451		spin_unlock(ptl);
2452	}
2453#endif
2454	pte_unmap(page_table);
2455	return same;
2456}
2457
2458static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
 
2459{
 
 
 
 
 
 
 
 
 
 
 
 
 
2460	/*
2461	 * If the source page was a PFN mapping, we don't have
2462	 * a "struct page" for it. We do a best-effort copy by
2463	 * just copying from the original user address. If that
2464	 * fails, we just zero-fill it. Live with it.
2465	 */
2466	if (unlikely(!src)) {
2467		void *kaddr = kmap_atomic(dst);
2468		void __user *uaddr = (void __user *)(va & PAGE_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2469
2470		/*
2471		 * This really shouldn't fail, because the page is there
2472		 * in the page tables. But it might just be unreadable,
2473		 * in which case we just give up and fill the result with
2474		 * zeroes.
2475		 */
2476		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
 
 
 
 
 
 
2477			clear_page(kaddr);
2478		kunmap_atomic(kaddr);
2479		flush_dcache_page(dst);
2480	} else
2481		copy_user_highpage(dst, src, va, vma);
 
 
 
 
 
 
 
 
2482}
2483
2484/*
2485 * This routine handles present pages, when users try to write
2486 * to a shared page. It is done by copying the page to a new address
2487 * and decrementing the shared-page counter for the old page.
2488 *
2489 * Note that this routine assumes that the protection checks have been
2490 * done by the caller (the low-level page fault routine in most cases).
2491 * Thus we can safely just mark it writable once we've done any necessary
2492 * COW.
2493 *
2494 * We also mark the page dirty at this point even though the page will
2495 * change only once the write actually happens. This avoids a few races,
2496 * and potentially makes it more efficient.
2497 *
2498 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2499 * but allow concurrent faults), with pte both mapped and locked.
2500 * We return with mmap_sem still held, but pte unmapped and unlocked.
2501 */
2502static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2503		unsigned long address, pte_t *page_table, pmd_t *pmd,
2504		spinlock_t *ptl, pte_t orig_pte)
2505	__releases(ptl)
2506{
2507	struct page *old_page, *new_page;
2508	pte_t entry;
2509	int ret = 0;
2510	int page_mkwrite = 0;
2511	struct page *dirty_page = NULL;
2512
2513	old_page = vm_normal_page(vma, address, orig_pte);
2514	if (!old_page) {
2515		/*
2516		 * VM_MIXEDMAP !pfn_valid() case
2517		 *
2518		 * We should not cow pages in a shared writeable mapping.
2519		 * Just mark the pages writable as we can't do any dirty
2520		 * accounting on raw pfn maps.
2521		 */
2522		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2523				     (VM_WRITE|VM_SHARED))
2524			goto reuse;
2525		goto gotten;
2526	}
2527
2528	/*
2529	 * Take out anonymous pages first, anonymous shared vmas are
2530	 * not dirty accountable.
2531	 */
2532	if (PageAnon(old_page) && !PageKsm(old_page)) {
2533		if (!trylock_page(old_page)) {
2534			page_cache_get(old_page);
2535			pte_unmap_unlock(page_table, ptl);
2536			lock_page(old_page);
2537			page_table = pte_offset_map_lock(mm, pmd, address,
2538							 &ptl);
2539			if (!pte_same(*page_table, orig_pte)) {
2540				unlock_page(old_page);
2541				goto unlock;
2542			}
2543			page_cache_release(old_page);
2544		}
2545		if (reuse_swap_page(old_page)) {
2546			/*
2547			 * The page is all ours.  Move it to our anon_vma so
2548			 * the rmap code will not search our parent or siblings.
2549			 * Protected against the rmap code by the page lock.
2550			 */
2551			page_move_anon_rmap(old_page, vma, address);
2552			unlock_page(old_page);
2553			goto reuse;
2554		}
2555		unlock_page(old_page);
2556	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2557					(VM_WRITE|VM_SHARED))) {
2558		/*
2559		 * Only catch write-faults on shared writable pages,
2560		 * read-only shared pages can get COWed by
2561		 * get_user_pages(.write=1, .force=1).
2562		 */
2563		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2564			struct vm_fault vmf;
2565			int tmp;
2566
2567			vmf.virtual_address = (void __user *)(address &
2568								PAGE_MASK);
2569			vmf.pgoff = old_page->index;
2570			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2571			vmf.page = old_page;
2572
2573			/*
2574			 * Notify the address space that the page is about to
2575			 * become writable so that it can prohibit this or wait
2576			 * for the page to get into an appropriate state.
2577			 *
2578			 * We do this without the lock held, so that it can
2579			 * sleep if it needs to.
2580			 */
2581			page_cache_get(old_page);
2582			pte_unmap_unlock(page_table, ptl);
 
2583
2584			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2585			if (unlikely(tmp &
2586					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2587				ret = tmp;
2588				goto unwritable_page;
2589			}
2590			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2591				lock_page(old_page);
2592				if (!old_page->mapping) {
2593					ret = 0; /* retry the fault */
2594					unlock_page(old_page);
2595					goto unwritable_page;
2596				}
2597			} else
2598				VM_BUG_ON(!PageLocked(old_page));
2599
2600			/*
2601			 * Since we dropped the lock we need to revalidate
2602			 * the PTE as someone else may have changed it.  If
2603			 * they did, we just return, as we can count on the
2604			 * MMU to tell us if they didn't also make it writable.
2605			 */
2606			page_table = pte_offset_map_lock(mm, pmd, address,
2607							 &ptl);
2608			if (!pte_same(*page_table, orig_pte)) {
2609				unlock_page(old_page);
2610				goto unlock;
2611			}
2612
2613			page_mkwrite = 1;
 
 
 
 
 
 
 
 
 
2614		}
2615		dirty_page = old_page;
2616		get_page(dirty_page);
 
 
 
2617
2618reuse:
2619		flush_cache_page(vma, address, pte_pfn(orig_pte));
2620		entry = pte_mkyoung(orig_pte);
2621		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2622		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2623			update_mmu_cache(vma, address, page_table);
2624		pte_unmap_unlock(page_table, ptl);
2625		ret |= VM_FAULT_WRITE;
 
 
 
 
2626
2627		if (!dirty_page)
2628			return ret;
 
 
 
 
 
 
 
 
2629
2630		/*
2631		 * Yes, Virginia, this is actually required to prevent a race
2632		 * with clear_page_dirty_for_io() from clearing the page dirty
2633		 * bit after it clear all dirty ptes, but before a racing
2634		 * do_wp_page installs a dirty pte.
2635		 *
2636		 * __do_fault is protected similarly.
2637		 */
2638		if (!page_mkwrite) {
2639			wait_on_page_locked(dirty_page);
2640			set_page_dirty_balance(dirty_page, page_mkwrite);
2641		}
2642		put_page(dirty_page);
2643		if (page_mkwrite) {
2644			struct address_space *mapping = dirty_page->mapping;
2645
2646			set_page_dirty(dirty_page);
2647			unlock_page(dirty_page);
2648			page_cache_release(dirty_page);
2649			if (mapping)	{
2650				/*
2651				 * Some device drivers do not set page.mapping
2652				 * but still dirty their pages
2653				 */
2654				balance_dirty_pages_ratelimited(mapping);
2655			}
2656		}
2657
2658		/* file_update_time outside page_lock */
2659		if (vma->vm_file)
2660			file_update_time(vma->vm_file);
 
 
 
 
 
 
 
 
2661
2662		return ret;
 
 
 
 
 
2663	}
2664
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2665	/*
2666	 * Ok, we need to copy. Oh, well..
 
 
2667	 */
2668	page_cache_get(old_page);
2669gotten:
2670	pte_unmap_unlock(page_table, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2671
2672	if (unlikely(anon_vma_prepare(vma)))
2673		goto oom;
2674
2675	if (is_zero_pfn(pte_pfn(orig_pte))) {
2676		new_page = alloc_zeroed_user_highpage_movable(vma, address);
 
2677		if (!new_page)
2678			goto oom;
2679	} else {
2680		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
 
2681		if (!new_page)
2682			goto oom;
2683		cow_user_page(new_page, old_page, address, vma);
 
 
 
 
 
 
 
 
 
 
 
 
2684	}
 
 
 
 
 
2685	__SetPageUptodate(new_page);
2686
2687	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2688		goto oom_free_new;
 
 
2689
2690	/*
2691	 * Re-check the pte - we dropped the lock
2692	 */
2693	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2694	if (likely(pte_same(*page_table, orig_pte))) {
2695		if (old_page) {
2696			if (!PageAnon(old_page)) {
2697				dec_mm_counter_fast(mm, MM_FILEPAGES);
 
2698				inc_mm_counter_fast(mm, MM_ANONPAGES);
2699			}
2700		} else
2701			inc_mm_counter_fast(mm, MM_ANONPAGES);
2702		flush_cache_page(vma, address, pte_pfn(orig_pte));
 
2703		entry = mk_pte(new_page, vma->vm_page_prot);
 
2704		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 
2705		/*
2706		 * Clear the pte entry and flush it first, before updating the
2707		 * pte with the new entry. This will avoid a race condition
2708		 * seen in the presence of one thread doing SMC and another
2709		 * thread doing COW.
 
2710		 */
2711		ptep_clear_flush(vma, address, page_table);
2712		page_add_new_anon_rmap(new_page, vma, address);
 
2713		/*
2714		 * We call the notify macro here because, when using secondary
2715		 * mmu page tables (such as kvm shadow page tables), we want the
2716		 * new page to be mapped directly into the secondary page table.
2717		 */
2718		set_pte_at_notify(mm, address, page_table, entry);
2719		update_mmu_cache(vma, address, page_table);
2720		if (old_page) {
2721			/*
2722			 * Only after switching the pte to the new page may
2723			 * we remove the mapcount here. Otherwise another
2724			 * process may come and find the rmap count decremented
2725			 * before the pte is switched to the new page, and
2726			 * "reuse" the old page writing into it while our pte
2727			 * here still points into it and can be read by other
2728			 * threads.
2729			 *
2730			 * The critical issue is to order this
2731			 * page_remove_rmap with the ptp_clear_flush above.
2732			 * Those stores are ordered by (if nothing else,)
2733			 * the barrier present in the atomic_add_negative
2734			 * in page_remove_rmap.
2735			 *
2736			 * Then the TLB flush in ptep_clear_flush ensures that
2737			 * no process can access the old page before the
2738			 * decremented mapcount is visible. And the old page
2739			 * cannot be reused until after the decremented
2740			 * mapcount is visible. So transitively, TLBs to
2741			 * old page will be flushed before it can be reused.
2742			 */
2743			page_remove_rmap(old_page);
2744		}
2745
2746		/* Free the old page.. */
2747		new_page = old_page;
2748		ret |= VM_FAULT_WRITE;
2749	} else
2750		mem_cgroup_uncharge_page(new_page);
 
2751
2752	if (new_page)
2753		page_cache_release(new_page);
2754unlock:
2755	pte_unmap_unlock(page_table, ptl);
 
 
 
 
 
2756	if (old_page) {
2757		/*
2758		 * Don't let another task, with possibly unlocked vma,
2759		 * keep the mlocked page.
2760		 */
2761		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2762			lock_page(old_page);	/* LRU manipulation */
2763			munlock_vma_page(old_page);
 
2764			unlock_page(old_page);
2765		}
2766		page_cache_release(old_page);
 
 
2767	}
2768	return ret;
2769oom_free_new:
2770	page_cache_release(new_page);
2771oom:
2772	if (old_page) {
2773		if (page_mkwrite) {
2774			unlock_page(old_page);
2775			page_cache_release(old_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2776		}
2777		page_cache_release(old_page);
 
 
2778	}
2779	return VM_FAULT_OOM;
 
2780
2781unwritable_page:
2782	page_cache_release(old_page);
2783	return ret;
2784}
2785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2786static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2787		unsigned long start_addr, unsigned long end_addr,
2788		struct zap_details *details)
2789{
2790	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2791}
2792
2793static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2794					    struct zap_details *details)
2795{
2796	struct vm_area_struct *vma;
2797	struct prio_tree_iter iter;
2798	pgoff_t vba, vea, zba, zea;
2799
2800	vma_prio_tree_foreach(vma, &iter, root,
2801			details->first_index, details->last_index) {
2802
2803		vba = vma->vm_pgoff;
2804		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2805		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2806		zba = details->first_index;
2807		if (zba < vba)
2808			zba = vba;
2809		zea = details->last_index;
2810		if (zea > vea)
2811			zea = vea;
2812
2813		unmap_mapping_range_vma(vma,
2814			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2815			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2816				details);
2817	}
2818}
2819
2820static inline void unmap_mapping_range_list(struct list_head *head,
2821					    struct zap_details *details)
2822{
2823	struct vm_area_struct *vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2824
2825	/*
2826	 * In nonlinear VMAs there is no correspondence between virtual address
2827	 * offset and file offset.  So we must perform an exhaustive search
2828	 * across *all* the pages in each nonlinear VMA, not just the pages
2829	 * whose virtual address lies outside the file truncation point.
2830	 */
2831	list_for_each_entry(vma, head, shared.vm_set.list) {
2832		details->nonlinear_vma = vma;
2833		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2834	}
2835}
2836
2837/**
2838 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
 
 
 
2839 * @mapping: the address space containing mmaps to be unmapped.
2840 * @holebegin: byte in first page to unmap, relative to the start of
2841 * the underlying file.  This will be rounded down to a PAGE_SIZE
2842 * boundary.  Note that this is different from truncate_pagecache(), which
2843 * must keep the partial page.  In contrast, we must get rid of
2844 * partial pages.
2845 * @holelen: size of prospective hole in bytes.  This will be rounded
2846 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2847 * end of the file.
2848 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2849 * but 0 when invalidating pagecache, don't throw away private data.
2850 */
2851void unmap_mapping_range(struct address_space *mapping,
2852		loff_t const holebegin, loff_t const holelen, int even_cows)
2853{
2854	struct zap_details details;
2855	pgoff_t hba = holebegin >> PAGE_SHIFT;
2856	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2857
2858	/* Check for overflow. */
2859	if (sizeof(holelen) > sizeof(hlen)) {
2860		long long holeend =
2861			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862		if (holeend & ~(long long)ULONG_MAX)
2863			hlen = ULONG_MAX - hba + 1;
2864	}
2865
2866	details.check_mapping = even_cows? NULL: mapping;
2867	details.nonlinear_vma = NULL;
2868	details.first_index = hba;
2869	details.last_index = hba + hlen - 1;
2870	if (details.last_index < details.first_index)
2871		details.last_index = ULONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2872
 
 
2873
2874	mutex_lock(&mapping->i_mmap_mutex);
2875	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2876		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2877	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2878		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2879	mutex_unlock(&mapping->i_mmap_mutex);
2880}
2881EXPORT_SYMBOL(unmap_mapping_range);
2882
2883/*
2884 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2885 * but allow concurrent faults), and pte mapped but not yet locked.
2886 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
 
2887 */
2888static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2889		unsigned long address, pte_t *page_table, pmd_t *pmd,
2890		unsigned int flags, pte_t orig_pte)
2891{
2892	spinlock_t *ptl;
2893	struct page *page, *swapcache = NULL;
 
2894	swp_entry_t entry;
2895	pte_t pte;
2896	int locked;
2897	struct mem_cgroup *ptr;
2898	int exclusive = 0;
2899	int ret = 0;
 
2900
2901	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2902		goto out;
2903
2904	entry = pte_to_swp_entry(orig_pte);
2905	if (unlikely(non_swap_entry(entry))) {
2906		if (is_migration_entry(entry)) {
2907			migration_entry_wait(mm, pmd, address);
 
 
 
 
 
 
 
2908		} else if (is_hwpoison_entry(entry)) {
2909			ret = VM_FAULT_HWPOISON;
2910		} else {
2911			print_bad_pte(vma, address, orig_pte, NULL);
2912			ret = VM_FAULT_SIGBUS;
2913		}
2914		goto out;
2915	}
2916	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2917	page = lookup_swap_cache(entry);
 
 
 
 
 
 
 
 
2918	if (!page) {
2919		page = swapin_readahead(entry,
2920					GFP_HIGHUSER_MOVABLE, vma, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2921		if (!page) {
2922			/*
2923			 * Back out if somebody else faulted in this pte
2924			 * while we released the pte lock.
2925			 */
2926			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2927			if (likely(pte_same(*page_table, orig_pte)))
 
2928				ret = VM_FAULT_OOM;
2929			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2930			goto unlock;
2931		}
2932
2933		/* Had to read the page from swap area: Major fault */
2934		ret = VM_FAULT_MAJOR;
2935		count_vm_event(PGMAJFAULT);
2936		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2937	} else if (PageHWPoison(page)) {
2938		/*
2939		 * hwpoisoned dirty swapcache pages are kept for killing
2940		 * owner processes (which may be unknown at hwpoison time)
2941		 */
2942		ret = VM_FAULT_HWPOISON;
2943		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2944		goto out_release;
2945	}
2946
2947	locked = lock_page_or_retry(page, mm, flags);
2948
2949	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2950	if (!locked) {
2951		ret |= VM_FAULT_RETRY;
2952		goto out_release;
2953	}
2954
2955	/*
2956	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2957	 * release the swapcache from under us.  The page pin, and pte_same
2958	 * test below, are not enough to exclude that.  Even if it is still
2959	 * swapcache, we need to check that the page's swap has not changed.
2960	 */
2961	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
 
2962		goto out_page;
2963
2964	if (ksm_might_need_to_copy(page, vma, address)) {
2965		swapcache = page;
2966		page = ksm_does_need_to_copy(page, vma, address);
2967
2968		if (unlikely(!page)) {
2969			ret = VM_FAULT_OOM;
2970			page = swapcache;
2971			swapcache = NULL;
2972			goto out_page;
2973		}
2974	}
2975
2976	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2977		ret = VM_FAULT_OOM;
 
2978		goto out_page;
2979	}
2980
 
 
2981	/*
2982	 * Back out if somebody else already faulted in this pte.
2983	 */
2984	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2985	if (unlikely(!pte_same(*page_table, orig_pte)))
 
2986		goto out_nomap;
2987
2988	if (unlikely(!PageUptodate(page))) {
2989		ret = VM_FAULT_SIGBUS;
2990		goto out_nomap;
2991	}
2992
2993	/*
2994	 * The page isn't present yet, go ahead with the fault.
2995	 *
2996	 * Be careful about the sequence of operations here.
2997	 * To get its accounting right, reuse_swap_page() must be called
2998	 * while the page is counted on swap but not yet in mapcount i.e.
2999	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3000	 * must be called after the swap_free(), or it will never succeed.
3001	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3002	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3003	 * in page->private. In this case, a record in swap_cgroup  is silently
3004	 * discarded at swap_free().
3005	 */
3006
3007	inc_mm_counter_fast(mm, MM_ANONPAGES);
3008	dec_mm_counter_fast(mm, MM_SWAPENTS);
3009	pte = mk_pte(page, vma->vm_page_prot);
3010	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3011		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3012		flags &= ~FAULT_FLAG_WRITE;
3013		ret |= VM_FAULT_WRITE;
3014		exclusive = 1;
3015	}
3016	flush_icache_page(vma, page);
3017	set_pte_at(mm, address, page_table, pte);
3018	do_page_add_anon_rmap(page, vma, address, exclusive);
3019	/* It's better to call commit-charge after rmap is established */
3020	mem_cgroup_commit_charge_swapin(page, ptr);
 
 
 
 
 
 
 
 
 
 
 
 
 
3021
3022	swap_free(entry);
3023	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
 
3024		try_to_free_swap(page);
3025	unlock_page(page);
3026	if (swapcache) {
3027		/*
3028		 * Hold the lock to avoid the swap entry to be reused
3029		 * until we take the PT lock for the pte_same() check
3030		 * (to avoid false positives from pte_same). For
3031		 * further safety release the lock after the swap_free
3032		 * so that the swap count won't change under a
3033		 * parallel locked swapcache.
3034		 */
3035		unlock_page(swapcache);
3036		page_cache_release(swapcache);
3037	}
3038
3039	if (flags & FAULT_FLAG_WRITE) {
3040		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3041		if (ret & VM_FAULT_ERROR)
3042			ret &= VM_FAULT_ERROR;
3043		goto out;
3044	}
3045
3046	/* No need to invalidate - it was non-present before */
3047	update_mmu_cache(vma, address, page_table);
3048unlock:
3049	pte_unmap_unlock(page_table, ptl);
3050out:
 
 
3051	return ret;
3052out_nomap:
3053	mem_cgroup_cancel_charge_swapin(ptr);
3054	pte_unmap_unlock(page_table, ptl);
3055out_page:
3056	unlock_page(page);
3057out_release:
3058	page_cache_release(page);
3059	if (swapcache) {
3060		unlock_page(swapcache);
3061		page_cache_release(swapcache);
3062	}
 
 
3063	return ret;
3064}
3065
3066/*
3067 * This is like a special single-page "expand_{down|up}wards()",
3068 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3069 * doesn't hit another vma.
3070 */
3071static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3072{
3073	address &= PAGE_MASK;
3074	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3075		struct vm_area_struct *prev = vma->vm_prev;
3076
3077		/*
3078		 * Is there a mapping abutting this one below?
3079		 *
3080		 * That's only ok if it's the same stack mapping
3081		 * that has gotten split..
3082		 */
3083		if (prev && prev->vm_end == address)
3084			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3085
3086		expand_downwards(vma, address - PAGE_SIZE);
3087	}
3088	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3089		struct vm_area_struct *next = vma->vm_next;
3090
3091		/* As VM_GROWSDOWN but s/below/above/ */
3092		if (next && next->vm_start == address + PAGE_SIZE)
3093			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3094
3095		expand_upwards(vma, address + PAGE_SIZE);
3096	}
3097	return 0;
3098}
3099
3100/*
3101 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3102 * but allow concurrent faults), and pte mapped but not yet locked.
3103 * We return with mmap_sem still held, but pte unmapped and unlocked.
3104 */
3105static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3106		unsigned long address, pte_t *page_table, pmd_t *pmd,
3107		unsigned int flags)
3108{
 
3109	struct page *page;
3110	spinlock_t *ptl;
3111	pte_t entry;
3112
3113	pte_unmap(page_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3114
3115	/* Check if we need to add a guard page to the stack */
3116	if (check_stack_guard_page(vma, address) < 0)
3117		return VM_FAULT_SIGBUS;
3118
3119	/* Use the zero-page for reads */
3120	if (!(flags & FAULT_FLAG_WRITE)) {
3121		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
 
3122						vma->vm_page_prot));
3123		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3124		if (!pte_none(*page_table))
 
 
 
 
 
 
3125			goto unlock;
 
 
 
 
 
3126		goto setpte;
3127	}
3128
3129	/* Allocate our own private page. */
3130	if (unlikely(anon_vma_prepare(vma)))
3131		goto oom;
3132	page = alloc_zeroed_user_highpage_movable(vma, address);
3133	if (!page)
3134		goto oom;
3135	__SetPageUptodate(page);
3136
3137	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3138		goto oom_free_page;
 
 
 
 
 
 
 
 
3139
3140	entry = mk_pte(page, vma->vm_page_prot);
 
3141	if (vma->vm_flags & VM_WRITE)
3142		entry = pte_mkwrite(pte_mkdirty(entry));
3143
3144	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3145	if (!pte_none(*page_table))
 
 
3146		goto release;
 
3147
3148	inc_mm_counter_fast(mm, MM_ANONPAGES);
3149	page_add_new_anon_rmap(page, vma, address);
 
 
 
 
 
 
 
 
 
 
 
 
3150setpte:
3151	set_pte_at(mm, address, page_table, entry);
3152
3153	/* No need to invalidate - it was non-present before */
3154	update_mmu_cache(vma, address, page_table);
3155unlock:
3156	pte_unmap_unlock(page_table, ptl);
3157	return 0;
3158release:
3159	mem_cgroup_uncharge_page(page);
3160	page_cache_release(page);
3161	goto unlock;
3162oom_free_page:
3163	page_cache_release(page);
3164oom:
3165	return VM_FAULT_OOM;
3166}
3167
3168/*
3169 * __do_fault() tries to create a new page mapping. It aggressively
3170 * tries to share with existing pages, but makes a separate copy if
3171 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3172 * the next page fault.
3173 *
3174 * As this is called only for pages that do not currently exist, we
3175 * do not need to flush old virtual caches or the TLB.
3176 *
3177 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178 * but allow concurrent faults), and pte neither mapped nor locked.
3179 * We return with mmap_sem still held, but pte unmapped and unlocked.
3180 */
3181static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3182		unsigned long address, pmd_t *pmd,
3183		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3184{
3185	pte_t *page_table;
3186	spinlock_t *ptl;
3187	struct page *page;
3188	struct page *cow_page;
3189	pte_t entry;
3190	int anon = 0;
3191	struct page *dirty_page = NULL;
3192	struct vm_fault vmf;
3193	int ret;
3194	int page_mkwrite = 0;
3195
 
3196	/*
3197	 * If we do COW later, allocate page befor taking lock_page()
3198	 * on the file cache page. This will reduce lock holding time.
3199	 */
3200	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
 
 
3201
3202		if (unlikely(anon_vma_prepare(vma)))
3203			return VM_FAULT_OOM;
 
 
 
 
 
 
 
 
 
3204
3205		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3206		if (!cow_page)
3207			return VM_FAULT_OOM;
3208
3209		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3210			page_cache_release(cow_page);
 
 
 
 
 
3211			return VM_FAULT_OOM;
3212		}
3213	} else
3214		cow_page = NULL;
3215
3216	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3217	vmf.pgoff = pgoff;
3218	vmf.flags = flags;
3219	vmf.page = NULL;
3220
3221	ret = vma->vm_ops->fault(vma, &vmf);
3222	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3223			    VM_FAULT_RETRY)))
3224		goto uncharge_out;
3225
3226	if (unlikely(PageHWPoison(vmf.page))) {
3227		if (ret & VM_FAULT_LOCKED)
3228			unlock_page(vmf.page);
3229		ret = VM_FAULT_HWPOISON;
3230		goto uncharge_out;
3231	}
3232
 
 
3233	/*
3234	 * For consistency in subsequent calls, make the faulted page always
3235	 * locked.
3236	 */
3237	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3238		lock_page(vmf.page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3239	else
3240		VM_BUG_ON(!PageLocked(vmf.page));
3241
3242	/*
3243	 * Should we do an early C-O-W break?
 
3244	 */
3245	page = vmf.page;
3246	if (flags & FAULT_FLAG_WRITE) {
3247		if (!(vma->vm_flags & VM_SHARED)) {
3248			page = cow_page;
3249			anon = 1;
3250			copy_user_highpage(page, vmf.page, address, vma);
3251			__SetPageUptodate(page);
3252		} else {
3253			/*
3254			 * If the page will be shareable, see if the backing
3255			 * address space wants to know that the page is about
3256			 * to become writable
3257			 */
3258			if (vma->vm_ops->page_mkwrite) {
3259				int tmp;
3260
3261				unlock_page(page);
3262				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3263				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3264				if (unlikely(tmp &
3265					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3266					ret = tmp;
3267					goto unwritable_page;
3268				}
3269				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3270					lock_page(page);
3271					if (!page->mapping) {
3272						ret = 0; /* retry the fault */
3273						unlock_page(page);
3274						goto unwritable_page;
3275					}
3276				} else
3277					VM_BUG_ON(!PageLocked(page));
3278				page_mkwrite = 1;
3279			}
 
 
 
3280		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3281
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3282	}
3283
3284	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
 
 
 
 
 
 
3285
3286	/*
3287	 * This silly early PAGE_DIRTY setting removes a race
3288	 * due to the bad i386 page protection. But it's valid
3289	 * for other architectures too.
3290	 *
3291	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3292	 * an exclusive copy of the page, or this is a shared mapping,
3293	 * so we can make it writable and dirty to avoid having to
3294	 * handle that later.
3295	 */
3296	/* Only go through if we didn't race with anybody else... */
3297	if (likely(pte_same(*page_table, orig_pte))) {
3298		flush_icache_page(vma, page);
3299		entry = mk_pte(page, vma->vm_page_prot);
3300		if (flags & FAULT_FLAG_WRITE)
3301			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3302		if (anon) {
3303			inc_mm_counter_fast(mm, MM_ANONPAGES);
3304			page_add_new_anon_rmap(page, vma, address);
3305		} else {
3306			inc_mm_counter_fast(mm, MM_FILEPAGES);
3307			page_add_file_rmap(page);
3308			if (flags & FAULT_FLAG_WRITE) {
3309				dirty_page = page;
3310				get_page(dirty_page);
3311			}
3312		}
3313		set_pte_at(mm, address, page_table, entry);
 
 
 
 
3314
3315		/* no need to invalidate: a not-present page won't be cached */
3316		update_mmu_cache(vma, address, page_table);
3317	} else {
3318		if (cow_page)
3319			mem_cgroup_uncharge_page(cow_page);
3320		if (anon)
3321			page_cache_release(page);
3322		else
3323			anon = 1; /* no anon but release faulted_page */
 
 
 
 
 
 
 
 
 
 
 
 
 
3324	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3325
3326	pte_unmap_unlock(page_table, ptl);
 
 
 
3327
3328	if (dirty_page) {
3329		struct address_space *mapping = page->mapping;
 
3330
3331		if (set_page_dirty(dirty_page))
3332			page_mkwrite = 1;
3333		unlock_page(dirty_page);
3334		put_page(dirty_page);
3335		if (page_mkwrite && mapping) {
3336			/*
3337			 * Some device drivers do not set page.mapping but still
3338			 * dirty their pages
3339			 */
3340			balance_dirty_pages_ratelimited(mapping);
 
3341		}
 
3342
3343		/* file_update_time outside page_lock */
3344		if (vma->vm_file)
3345			file_update_time(vma->vm_file);
3346	} else {
3347		unlock_page(vmf.page);
3348		if (anon)
3349			page_cache_release(vmf.page);
3350	}
3351
 
3352	return ret;
 
3353
3354unwritable_page:
3355	page_cache_release(page);
3356	return ret;
3357uncharge_out:
3358	/* fs's fault handler get error */
3359	if (cow_page) {
3360		mem_cgroup_uncharge_page(cow_page);
3361		page_cache_release(cow_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3362	}
3363	return ret;
3364}
3365
3366static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3367		unsigned long address, pte_t *page_table, pmd_t *pmd,
3368		unsigned int flags, pte_t orig_pte)
3369{
3370	pgoff_t pgoff = (((address & PAGE_MASK)
3371			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3372
3373	pte_unmap(page_table);
3374	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
 
 
 
 
 
3375}
3376
3377/*
3378 * Fault of a previously existing named mapping. Repopulate the pte
3379 * from the encoded file_pte if possible. This enables swappable
3380 * nonlinear vmas.
3381 *
3382 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3383 * but allow concurrent faults), and pte mapped but not yet locked.
3384 * We return with mmap_sem still held, but pte unmapped and unlocked.
3385 */
3386static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3387		unsigned long address, pte_t *page_table, pmd_t *pmd,
3388		unsigned int flags, pte_t orig_pte)
3389{
3390	pgoff_t pgoff;
 
 
 
 
 
 
 
3391
3392	flags |= FAULT_FLAG_NONLINEAR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3393
3394	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3395		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3396
3397	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3398		/*
3399		 * Page table corrupted: show pte and kill process.
3400		 */
3401		print_bad_pte(vma, address, orig_pte, NULL);
3402		return VM_FAULT_SIGBUS;
3403	}
3404
3405	pgoff = pte_to_pgoff(orig_pte);
3406	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3407}
3408
3409/*
3410 * These routines also need to handle stuff like marking pages dirty
3411 * and/or accessed for architectures that don't do it in hardware (most
3412 * RISC architectures).  The early dirtying is also good on the i386.
3413 *
3414 * There is also a hook called "update_mmu_cache()" that architectures
3415 * with external mmu caches can use to update those (ie the Sparc or
3416 * PowerPC hashed page tables that act as extended TLBs).
3417 *
3418 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3419 * but allow concurrent faults), and pte mapped but not yet locked.
3420 * We return with mmap_sem still held, but pte unmapped and unlocked.
 
 
3421 */
3422int handle_pte_fault(struct mm_struct *mm,
3423		     struct vm_area_struct *vma, unsigned long address,
3424		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3425{
3426	pte_t entry;
3427	spinlock_t *ptl;
3428
3429	entry = *pte;
3430	if (!pte_present(entry)) {
3431		if (pte_none(entry)) {
3432			if (vma->vm_ops) {
3433				if (likely(vma->vm_ops->fault))
3434					return do_linear_fault(mm, vma, address,
3435						pte, pmd, flags, entry);
3436			}
3437			return do_anonymous_page(mm, vma, address,
3438						 pte, pmd, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3439		}
3440		if (pte_file(entry))
3441			return do_nonlinear_fault(mm, vma, address,
3442					pte, pmd, flags, entry);
3443		return do_swap_page(mm, vma, address,
3444					pte, pmd, flags, entry);
3445	}
3446
3447	ptl = pte_lockptr(mm, pmd);
3448	spin_lock(ptl);
3449	if (unlikely(!pte_same(*pte, entry)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3450		goto unlock;
3451	if (flags & FAULT_FLAG_WRITE) {
 
3452		if (!pte_write(entry))
3453			return do_wp_page(mm, vma, address,
3454					pte, pmd, ptl, entry);
3455		entry = pte_mkdirty(entry);
3456	}
3457	entry = pte_mkyoung(entry);
3458	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3459		update_mmu_cache(vma, address, pte);
 
3460	} else {
 
 
 
3461		/*
3462		 * This is needed only for protection faults but the arch code
3463		 * is not yet telling us if this is a protection fault or not.
3464		 * This still avoids useless tlb flushes for .text page faults
3465		 * with threads.
3466		 */
3467		if (flags & FAULT_FLAG_WRITE)
3468			flush_tlb_fix_spurious_fault(vma, address);
3469	}
3470unlock:
3471	pte_unmap_unlock(pte, ptl);
3472	return 0;
3473}
3474
3475/*
3476 * By the time we get here, we already hold the mm semaphore
 
 
 
3477 */
3478int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3479		unsigned long address, unsigned int flags)
3480{
 
 
 
 
 
 
 
 
 
3481	pgd_t *pgd;
3482	pud_t *pud;
3483	pmd_t *pmd;
3484	pte_t *pte;
 
 
 
 
3485
3486	__set_current_state(TASK_RUNNING);
 
 
 
 
 
 
 
 
 
3487
3488	count_vm_event(PGFAULT);
3489	mem_cgroup_count_vm_event(mm, PGFAULT);
3490
3491	/* do counter updates before entering really critical section. */
3492	check_sync_rss_stat(current);
3493
3494	if (unlikely(is_vm_hugetlb_page(vma)))
3495		return hugetlb_fault(mm, vma, address, flags);
 
 
 
 
 
 
 
 
3496
3497retry:
3498	pgd = pgd_offset(mm, address);
3499	pud = pud_alloc(mm, pgd, address);
3500	if (!pud)
3501		return VM_FAULT_OOM;
3502	pmd = pmd_alloc(mm, pud, address);
3503	if (!pmd)
3504		return VM_FAULT_OOM;
3505	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3506		if (!vma->vm_ops)
3507			return do_huge_pmd_anonymous_page(mm, vma, address,
3508							  pmd, flags);
 
 
3509	} else {
3510		pmd_t orig_pmd = *pmd;
3511		int ret;
3512
3513		barrier();
3514		if (pmd_trans_huge(orig_pmd)) {
3515			if (flags & FAULT_FLAG_WRITE &&
3516			    !pmd_write(orig_pmd) &&
3517			    !pmd_trans_splitting(orig_pmd)) {
3518				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3519							  orig_pmd);
3520				/*
3521				 * If COW results in an oom, the huge pmd will
3522				 * have been split, so retry the fault on the
3523				 * pte for a smaller charge.
3524				 */
3525				if (unlikely(ret & VM_FAULT_OOM))
3526					goto retry;
3527				return ret;
 
 
 
 
3528			}
3529			return 0;
3530		}
3531	}
3532
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3533	/*
3534	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3535	 * run pte_offset_map on the pmd, if an huge pmd could
3536	 * materialize from under us from a different thread.
3537	 */
3538	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3539		return VM_FAULT_OOM;
3540	/* if an huge pmd materialized from under us just retry later */
3541	if (unlikely(pmd_trans_huge(*pmd)))
3542		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3543	/*
3544	 * A regular pmd is established and it can't morph into a huge pmd
3545	 * from under us anymore at this point because we hold the mmap_sem
3546	 * read mode and khugepaged takes it in write mode. So now it's
3547	 * safe to run pte_offset_map().
3548	 */
3549	pte = pte_offset_map(pmd, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3550
3551	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
 
 
 
 
 
 
3552}
 
3553
3554#ifndef __PAGETABLE_PUD_FOLDED
3555/*
3556 * Allocate page upper directory.
3557 * We've already handled the fast-path in-line.
3558 */
3559int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3560{
3561	pud_t *new = pud_alloc_one(mm, address);
3562	if (!new)
3563		return -ENOMEM;
3564
3565	smp_wmb(); /* See comment in __pte_alloc */
3566
3567	spin_lock(&mm->page_table_lock);
3568	if (pgd_present(*pgd))		/* Another has populated it */
 
 
 
3569		pud_free(mm, new);
3570	else
3571		pgd_populate(mm, pgd, new);
3572	spin_unlock(&mm->page_table_lock);
3573	return 0;
3574}
3575#endif /* __PAGETABLE_PUD_FOLDED */
3576
3577#ifndef __PAGETABLE_PMD_FOLDED
3578/*
3579 * Allocate page middle directory.
3580 * We've already handled the fast-path in-line.
3581 */
3582int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3583{
 
3584	pmd_t *new = pmd_alloc_one(mm, address);
3585	if (!new)
3586		return -ENOMEM;
3587
3588	smp_wmb(); /* See comment in __pte_alloc */
3589
3590	spin_lock(&mm->page_table_lock);
3591#ifndef __ARCH_HAS_4LEVEL_HACK
3592	if (pud_present(*pud))		/* Another has populated it */
3593		pmd_free(mm, new);
3594	else
3595		pud_populate(mm, pud, new);
3596#else
3597	if (pgd_present(*pud))		/* Another has populated it */
3598		pmd_free(mm, new);
3599	else
3600		pgd_populate(mm, pud, new);
3601#endif /* __ARCH_HAS_4LEVEL_HACK */
3602	spin_unlock(&mm->page_table_lock);
3603	return 0;
3604}
3605#endif /* __PAGETABLE_PMD_FOLDED */
3606
3607int make_pages_present(unsigned long addr, unsigned long end)
3608{
3609	int ret, len, write;
3610	struct vm_area_struct * vma;
3611
3612	vma = find_vma(current->mm, addr);
3613	if (!vma)
3614		return -ENOMEM;
3615	/*
3616	 * We want to touch writable mappings with a write fault in order
3617	 * to break COW, except for shared mappings because these don't COW
3618	 * and we would not want to dirty them for nothing.
3619	 */
3620	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3621	BUG_ON(addr >= end);
3622	BUG_ON(end > vma->vm_end);
3623	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3624	ret = get_user_pages(current, current->mm, addr,
3625			len, write, 0, NULL, NULL);
3626	if (ret < 0)
3627		return ret;
3628	return ret == len ? 0 : -EFAULT;
3629}
3630
3631#if !defined(__HAVE_ARCH_GATE_AREA)
3632
3633#if defined(AT_SYSINFO_EHDR)
3634static struct vm_area_struct gate_vma;
3635
3636static int __init gate_vma_init(void)
3637{
3638	gate_vma.vm_mm = NULL;
3639	gate_vma.vm_start = FIXADDR_USER_START;
3640	gate_vma.vm_end = FIXADDR_USER_END;
3641	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3642	gate_vma.vm_page_prot = __P101;
3643
3644	return 0;
3645}
3646__initcall(gate_vma_init);
3647#endif
3648
3649struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3650{
3651#ifdef AT_SYSINFO_EHDR
3652	return &gate_vma;
3653#else
3654	return NULL;
3655#endif
3656}
3657
3658int in_gate_area_no_mm(unsigned long addr)
3659{
3660#ifdef AT_SYSINFO_EHDR
3661	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3662		return 1;
3663#endif
3664	return 0;
3665}
3666
3667#endif	/* __HAVE_ARCH_GATE_AREA */
3668
3669static int __follow_pte(struct mm_struct *mm, unsigned long address,
3670		pte_t **ptepp, spinlock_t **ptlp)
3671{
3672	pgd_t *pgd;
 
3673	pud_t *pud;
3674	pmd_t *pmd;
3675	pte_t *ptep;
3676
3677	pgd = pgd_offset(mm, address);
3678	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3679		goto out;
3680
3681	pud = pud_offset(pgd, address);
 
 
 
 
3682	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3683		goto out;
3684
3685	pmd = pmd_offset(pud, address);
3686	VM_BUG_ON(pmd_trans_huge(*pmd));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3687	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3688		goto out;
3689
3690	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3691	if (pmd_huge(*pmd))
3692		goto out;
3693
 
 
3694	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3695	if (!ptep)
3696		goto out;
3697	if (!pte_present(*ptep))
3698		goto unlock;
3699	*ptepp = ptep;
3700	return 0;
3701unlock:
3702	pte_unmap_unlock(ptep, *ptlp);
 
 
3703out:
3704	return -EINVAL;
3705}
3706
3707static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3708			     pte_t **ptepp, spinlock_t **ptlp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3709{
3710	int res;
3711
3712	/* (void) is needed to make gcc happy */
3713	(void) __cond_lock(*ptlp,
3714			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3715	return res;
3716}
 
3717
3718/**
3719 * follow_pfn - look up PFN at a user virtual address
3720 * @vma: memory mapping
3721 * @address: user virtual address
3722 * @pfn: location to store found PFN
3723 *
3724 * Only IO mappings and raw PFN mappings are allowed.
3725 *
3726 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 
 
 
3727 */
3728int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3729	unsigned long *pfn)
3730{
3731	int ret = -EINVAL;
3732	spinlock_t *ptl;
3733	pte_t *ptep;
3734
3735	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3736		return ret;
3737
3738	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3739	if (ret)
3740		return ret;
3741	*pfn = pte_pfn(*ptep);
3742	pte_unmap_unlock(ptep, ptl);
3743	return 0;
3744}
3745EXPORT_SYMBOL(follow_pfn);
3746
3747#ifdef CONFIG_HAVE_IOREMAP_PROT
3748int follow_phys(struct vm_area_struct *vma,
3749		unsigned long address, unsigned int flags,
3750		unsigned long *prot, resource_size_t *phys)
3751{
3752	int ret = -EINVAL;
3753	pte_t *ptep, pte;
3754	spinlock_t *ptl;
3755
3756	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3757		goto out;
3758
3759	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3760		goto out;
3761	pte = *ptep;
3762
3763	if ((flags & FOLL_WRITE) && !pte_write(pte))
3764		goto unlock;
3765
3766	*prot = pgprot_val(pte_pgprot(pte));
3767	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3768
3769	ret = 0;
3770unlock:
3771	pte_unmap_unlock(ptep, ptl);
3772out:
3773	return ret;
3774}
3775
 
 
 
 
 
 
 
 
 
 
 
 
3776int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3777			void *buf, int len, int write)
3778{
3779	resource_size_t phys_addr;
3780	unsigned long prot = 0;
3781	void __iomem *maddr;
3782	int offset = addr & (PAGE_SIZE-1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3783
3784	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3785		return -EINVAL;
3786
3787	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
3788	if (write)
3789		memcpy_toio(maddr + offset, buf, len);
3790	else
3791		memcpy_fromio(buf, maddr + offset, len);
 
 
 
3792	iounmap(maddr);
3793
3794	return len;
3795}
 
3796#endif
3797
3798/*
3799 * Access another process' address space as given in mm.  If non-NULL, use the
3800 * given task for page fault accounting.
3801 */
3802static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3803		unsigned long addr, void *buf, int len, int write)
3804{
3805	struct vm_area_struct *vma;
3806	void *old_buf = buf;
 
 
 
 
3807
3808	down_read(&mm->mmap_sem);
3809	/* ignore errors, just check how much was successfully transferred */
3810	while (len) {
3811		int bytes, ret, offset;
3812		void *maddr;
3813		struct page *page = NULL;
3814
3815		ret = get_user_pages(tsk, mm, addr, 1,
3816				write, 1, &page, &vma);
3817		if (ret <= 0) {
 
 
 
3818			/*
3819			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3820			 * we can access using slightly different code.
3821			 */
3822#ifdef CONFIG_HAVE_IOREMAP_PROT
3823			vma = find_vma(mm, addr);
3824			if (!vma || vma->vm_start > addr)
3825				break;
3826			if (vma->vm_ops && vma->vm_ops->access)
3827				ret = vma->vm_ops->access(vma, addr, buf,
3828							  len, write);
3829			if (ret <= 0)
3830#endif
3831				break;
3832			bytes = ret;
 
3833		} else {
3834			bytes = len;
3835			offset = addr & (PAGE_SIZE-1);
3836			if (bytes > PAGE_SIZE-offset)
3837				bytes = PAGE_SIZE-offset;
3838
3839			maddr = kmap(page);
3840			if (write) {
3841				copy_to_user_page(vma, page, addr,
3842						  maddr + offset, buf, bytes);
3843				set_page_dirty_lock(page);
3844			} else {
3845				copy_from_user_page(vma, page, addr,
3846						    buf, maddr + offset, bytes);
3847			}
3848			kunmap(page);
3849			page_cache_release(page);
3850		}
3851		len -= bytes;
3852		buf += bytes;
3853		addr += bytes;
3854	}
3855	up_read(&mm->mmap_sem);
3856
3857	return buf - old_buf;
3858}
3859
3860/**
3861 * access_remote_vm - access another process' address space
3862 * @mm:		the mm_struct of the target address space
3863 * @addr:	start address to access
3864 * @buf:	source or destination buffer
3865 * @len:	number of bytes to transfer
3866 * @write:	whether the access is a write
3867 *
3868 * The caller must hold a reference on @mm.
 
 
3869 */
3870int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3871		void *buf, int len, int write)
3872{
3873	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3874}
3875
3876/*
3877 * Access another process' address space.
3878 * Source/target buffer must be kernel space,
3879 * Do not walk the page table directly, use get_user_pages
3880 */
3881int access_process_vm(struct task_struct *tsk, unsigned long addr,
3882		void *buf, int len, int write)
3883{
3884	struct mm_struct *mm;
3885	int ret;
3886
3887	mm = get_task_mm(tsk);
3888	if (!mm)
3889		return 0;
3890
3891	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
 
3892	mmput(mm);
3893
3894	return ret;
3895}
 
3896
3897/*
3898 * Print the name of a VMA.
3899 */
3900void print_vma_addr(char *prefix, unsigned long ip)
3901{
3902	struct mm_struct *mm = current->mm;
3903	struct vm_area_struct *vma;
3904
3905	/*
3906	 * Do not print if we are in atomic
3907	 * contexts (in exception stacks, etc.):
3908	 */
3909	if (preempt_count())
3910		return;
3911
3912	down_read(&mm->mmap_sem);
3913	vma = find_vma(mm, ip);
3914	if (vma && vma->vm_file) {
3915		struct file *f = vma->vm_file;
3916		char *buf = (char *)__get_free_page(GFP_KERNEL);
3917		if (buf) {
3918			char *p, *s;
3919
3920			p = d_path(&f->f_path, buf, PAGE_SIZE);
3921			if (IS_ERR(p))
3922				p = "?";
3923			s = strrchr(p, '/');
3924			if (s)
3925				p = s+1;
3926			printk("%s%s[%lx+%lx]", prefix, p,
3927					vma->vm_start,
3928					vma->vm_end - vma->vm_start);
3929			free_page((unsigned long)buf);
3930		}
3931	}
3932	up_read(&current->mm->mmap_sem);
3933}
3934
3935#ifdef CONFIG_PROVE_LOCKING
3936void might_fault(void)
3937{
3938	/*
3939	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3940	 * holding the mmap_sem, this is safe because kernel memory doesn't
3941	 * get paged out, therefore we'll never actually fault, and the
3942	 * below annotations will generate false positives.
3943	 */
3944	if (segment_eq(get_fs(), KERNEL_DS))
3945		return;
 
 
 
 
 
 
 
 
 
 
3946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3947	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3948	/*
3949	 * it would be nicer only to annotate paths which are not under
3950	 * pagefault_disable, however that requires a larger audit and
3951	 * providing helpers like get_user_atomic.
3952	 */
3953	if (!in_atomic() && current->mm)
3954		might_lock_read(&current->mm->mmap_sem);
 
 
 
 
 
 
 
3955}
3956EXPORT_SYMBOL(might_fault);
3957#endif
3958
3959#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3960static void clear_gigantic_page(struct page *page,
3961				unsigned long addr,
3962				unsigned int pages_per_huge_page)
3963{
3964	int i;
3965	struct page *p = page;
3966
3967	might_sleep();
3968	for (i = 0; i < pages_per_huge_page;
3969	     i++, p = mem_map_next(p, page, i)) {
3970		cond_resched();
3971		clear_user_highpage(p, addr + i * PAGE_SIZE);
3972	}
3973}
 
 
 
 
 
 
 
 
3974void clear_huge_page(struct page *page,
3975		     unsigned long addr, unsigned int pages_per_huge_page)
3976{
3977	int i;
 
3978
3979	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3980		clear_gigantic_page(page, addr, pages_per_huge_page);
3981		return;
3982	}
3983
3984	might_sleep();
3985	for (i = 0; i < pages_per_huge_page; i++) {
3986		cond_resched();
3987		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3988	}
3989}
3990
3991static void copy_user_gigantic_page(struct page *dst, struct page *src,
3992				    unsigned long addr,
3993				    struct vm_area_struct *vma,
3994				    unsigned int pages_per_huge_page)
3995{
3996	int i;
3997	struct page *dst_base = dst;
3998	struct page *src_base = src;
3999
4000	for (i = 0; i < pages_per_huge_page; ) {
4001		cond_resched();
4002		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4003
4004		i++;
4005		dst = mem_map_next(dst, dst_base, i);
4006		src = mem_map_next(src, src_base, i);
4007	}
4008}
4009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4010void copy_user_huge_page(struct page *dst, struct page *src,
4011			 unsigned long addr, struct vm_area_struct *vma,
4012			 unsigned int pages_per_huge_page)
4013{
4014	int i;
 
 
 
 
 
 
4015
4016	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4017		copy_user_gigantic_page(dst, src, addr, vma,
4018					pages_per_huge_page);
4019		return;
4020	}
4021
4022	might_sleep();
4023	for (i = 0; i < pages_per_huge_page; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4024		cond_resched();
4025		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4026	}
 
4027}
4028#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */