Linux Audio

Check our new training course

Loading...
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * demand-loading started 01.12.91 - seems it is high on the list of
  10 * things wanted, and it should be easy to implement. - Linus
  11 */
  12
  13/*
  14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  15 * pages started 02.12.91, seems to work. - Linus.
  16 *
  17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  18 * would have taken more than the 6M I have free, but it worked well as
  19 * far as I could see.
  20 *
  21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  22 */
  23
  24/*
  25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  26 * thought has to go into this. Oh, well..
  27 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  28 *		Found it. Everything seems to work now.
  29 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  30 */
  31
  32/*
  33 * 05.04.94  -  Multi-page memory management added for v1.1.
  34 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  35 *
  36 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  37 *		(Gerhard.Wichert@pdb.siemens.de)
  38 *
  39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  40 */
  41
  42#include <linux/kernel_stat.h>
  43#include <linux/mm.h>
  44#include <linux/sched/mm.h>
  45#include <linux/sched/coredump.h>
  46#include <linux/sched/numa_balancing.h>
  47#include <linux/sched/task.h>
  48#include <linux/hugetlb.h>
  49#include <linux/mman.h>
  50#include <linux/swap.h>
  51#include <linux/highmem.h>
  52#include <linux/pagemap.h>
  53#include <linux/memremap.h>
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/export.h>
  57#include <linux/delayacct.h>
  58#include <linux/init.h>
  59#include <linux/pfn_t.h>
  60#include <linux/writeback.h>
  61#include <linux/memcontrol.h>
  62#include <linux/mmu_notifier.h>
 
  63#include <linux/swapops.h>
  64#include <linux/elf.h>
  65#include <linux/gfp.h>
  66#include <linux/migrate.h>
  67#include <linux/string.h>
 
  68#include <linux/debugfs.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/dax.h>
  71#include <linux/oom.h>
  72#include <linux/numa.h>
  73#include <linux/perf_event.h>
  74#include <linux/ptrace.h>
  75#include <linux/vmalloc.h>
  76
  77#include <trace/events/kmem.h>
  78
  79#include <asm/io.h>
  80#include <asm/mmu_context.h>
  81#include <asm/pgalloc.h>
  82#include <linux/uaccess.h>
  83#include <asm/tlb.h>
  84#include <asm/tlbflush.h>
 
  85
  86#include "pgalloc-track.h"
  87#include "internal.h"
  88
  89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  91#endif
  92
  93#ifndef CONFIG_NUMA
 
  94unsigned long max_mapnr;
  95EXPORT_SYMBOL(max_mapnr);
  96
  97struct page *mem_map;
 
 
  98EXPORT_SYMBOL(mem_map);
  99#endif
 100
 101/*
 102 * A number of key systems in x86 including ioremap() rely on the assumption
 103 * that high_memory defines the upper bound on direct map memory, then end
 104 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 106 * and ZONE_HIGHMEM.
 107 */
 108void *high_memory;
 
 109EXPORT_SYMBOL(high_memory);
 110
 111/*
 112 * Randomize the address space (stacks, mmaps, brk, etc.).
 113 *
 114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 115 *   as ancient (libc5 based) binaries can segfault. )
 116 */
 117int randomize_va_space __read_mostly =
 118#ifdef CONFIG_COMPAT_BRK
 119					1;
 120#else
 121					2;
 122#endif
 123
 124#ifndef arch_faults_on_old_pte
 125static inline bool arch_faults_on_old_pte(void)
 126{
 127	/*
 128	 * Those arches which don't have hw access flag feature need to
 129	 * implement their own helper. By default, "true" means pagefault
 130	 * will be hit on old pte.
 131	 */
 132	return true;
 133}
 134#endif
 135
 136#ifndef arch_wants_old_prefaulted_pte
 137static inline bool arch_wants_old_prefaulted_pte(void)
 138{
 139	/*
 140	 * Transitioning a PTE from 'old' to 'young' can be expensive on
 141	 * some architectures, even if it's performed in hardware. By
 142	 * default, "false" means prefaulted entries will be 'young'.
 143	 */
 144	return false;
 145}
 146#endif
 147
 148static int __init disable_randmaps(char *s)
 149{
 150	randomize_va_space = 0;
 151	return 1;
 152}
 153__setup("norandmaps", disable_randmaps);
 154
 155unsigned long zero_pfn __read_mostly;
 156EXPORT_SYMBOL(zero_pfn);
 157
 158unsigned long highest_memmap_pfn __read_mostly;
 159
 
 
 160/*
 161 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 162 */
 163static int __init init_zero_pfn(void)
 164{
 165	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 166	return 0;
 167}
 168early_initcall(init_zero_pfn);
 169
 170void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
 171{
 172	trace_rss_stat(mm, member, count);
 173}
 174
 175#if defined(SPLIT_RSS_COUNTING)
 176
 177void sync_mm_rss(struct mm_struct *mm)
 178{
 179	int i;
 180
 181	for (i = 0; i < NR_MM_COUNTERS; i++) {
 182		if (current->rss_stat.count[i]) {
 183			add_mm_counter(mm, i, current->rss_stat.count[i]);
 184			current->rss_stat.count[i] = 0;
 185		}
 186	}
 187	current->rss_stat.events = 0;
 188}
 189
 190static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 191{
 192	struct task_struct *task = current;
 193
 194	if (likely(task->mm == mm))
 195		task->rss_stat.count[member] += val;
 196	else
 197		add_mm_counter(mm, member, val);
 198}
 199#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 200#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 201
 202/* sync counter once per 64 page faults */
 203#define TASK_RSS_EVENTS_THRESH	(64)
 204static void check_sync_rss_stat(struct task_struct *task)
 205{
 206	if (unlikely(task != current))
 207		return;
 208	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 209		sync_mm_rss(task->mm);
 210}
 211#else /* SPLIT_RSS_COUNTING */
 212
 213#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 214#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 215
 216static void check_sync_rss_stat(struct task_struct *task)
 217{
 218}
 219
 220#endif /* SPLIT_RSS_COUNTING */
 221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222/*
 223 * Note: this doesn't free the actual pages themselves. That
 224 * has been handled earlier when unmapping all the memory regions.
 225 */
 226static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 227			   unsigned long addr)
 228{
 229	pgtable_t token = pmd_pgtable(*pmd);
 230	pmd_clear(pmd);
 231	pte_free_tlb(tlb, token, addr);
 232	mm_dec_nr_ptes(tlb->mm);
 233}
 234
 235static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 236				unsigned long addr, unsigned long end,
 237				unsigned long floor, unsigned long ceiling)
 238{
 239	pmd_t *pmd;
 240	unsigned long next;
 241	unsigned long start;
 242
 243	start = addr;
 244	pmd = pmd_offset(pud, addr);
 245	do {
 246		next = pmd_addr_end(addr, end);
 247		if (pmd_none_or_clear_bad(pmd))
 248			continue;
 249		free_pte_range(tlb, pmd, addr);
 250	} while (pmd++, addr = next, addr != end);
 251
 252	start &= PUD_MASK;
 253	if (start < floor)
 254		return;
 255	if (ceiling) {
 256		ceiling &= PUD_MASK;
 257		if (!ceiling)
 258			return;
 259	}
 260	if (end - 1 > ceiling - 1)
 261		return;
 262
 263	pmd = pmd_offset(pud, start);
 264	pud_clear(pud);
 265	pmd_free_tlb(tlb, pmd, start);
 266	mm_dec_nr_pmds(tlb->mm);
 267}
 268
 269static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 270				unsigned long addr, unsigned long end,
 271				unsigned long floor, unsigned long ceiling)
 272{
 273	pud_t *pud;
 274	unsigned long next;
 275	unsigned long start;
 276
 277	start = addr;
 278	pud = pud_offset(p4d, addr);
 279	do {
 280		next = pud_addr_end(addr, end);
 281		if (pud_none_or_clear_bad(pud))
 282			continue;
 283		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 284	} while (pud++, addr = next, addr != end);
 285
 286	start &= P4D_MASK;
 287	if (start < floor)
 288		return;
 289	if (ceiling) {
 290		ceiling &= P4D_MASK;
 291		if (!ceiling)
 292			return;
 293	}
 294	if (end - 1 > ceiling - 1)
 295		return;
 296
 297	pud = pud_offset(p4d, start);
 298	p4d_clear(p4d);
 299	pud_free_tlb(tlb, pud, start);
 300	mm_dec_nr_puds(tlb->mm);
 301}
 302
 303static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 304				unsigned long addr, unsigned long end,
 305				unsigned long floor, unsigned long ceiling)
 306{
 307	p4d_t *p4d;
 308	unsigned long next;
 309	unsigned long start;
 310
 311	start = addr;
 312	p4d = p4d_offset(pgd, addr);
 313	do {
 314		next = p4d_addr_end(addr, end);
 315		if (p4d_none_or_clear_bad(p4d))
 316			continue;
 317		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 318	} while (p4d++, addr = next, addr != end);
 319
 320	start &= PGDIR_MASK;
 321	if (start < floor)
 322		return;
 323	if (ceiling) {
 324		ceiling &= PGDIR_MASK;
 325		if (!ceiling)
 326			return;
 327	}
 328	if (end - 1 > ceiling - 1)
 329		return;
 330
 331	p4d = p4d_offset(pgd, start);
 332	pgd_clear(pgd);
 333	p4d_free_tlb(tlb, p4d, start);
 334}
 335
 336/*
 337 * This function frees user-level page tables of a process.
 338 */
 339void free_pgd_range(struct mmu_gather *tlb,
 340			unsigned long addr, unsigned long end,
 341			unsigned long floor, unsigned long ceiling)
 342{
 343	pgd_t *pgd;
 344	unsigned long next;
 345
 346	/*
 347	 * The next few lines have given us lots of grief...
 348	 *
 349	 * Why are we testing PMD* at this top level?  Because often
 350	 * there will be no work to do at all, and we'd prefer not to
 351	 * go all the way down to the bottom just to discover that.
 352	 *
 353	 * Why all these "- 1"s?  Because 0 represents both the bottom
 354	 * of the address space and the top of it (using -1 for the
 355	 * top wouldn't help much: the masks would do the wrong thing).
 356	 * The rule is that addr 0 and floor 0 refer to the bottom of
 357	 * the address space, but end 0 and ceiling 0 refer to the top
 358	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 359	 * that end 0 case should be mythical).
 360	 *
 361	 * Wherever addr is brought up or ceiling brought down, we must
 362	 * be careful to reject "the opposite 0" before it confuses the
 363	 * subsequent tests.  But what about where end is brought down
 364	 * by PMD_SIZE below? no, end can't go down to 0 there.
 365	 *
 366	 * Whereas we round start (addr) and ceiling down, by different
 367	 * masks at different levels, in order to test whether a table
 368	 * now has no other vmas using it, so can be freed, we don't
 369	 * bother to round floor or end up - the tests don't need that.
 370	 */
 371
 372	addr &= PMD_MASK;
 373	if (addr < floor) {
 374		addr += PMD_SIZE;
 375		if (!addr)
 376			return;
 377	}
 378	if (ceiling) {
 379		ceiling &= PMD_MASK;
 380		if (!ceiling)
 381			return;
 382	}
 383	if (end - 1 > ceiling - 1)
 384		end -= PMD_SIZE;
 385	if (addr > end - 1)
 386		return;
 387	/*
 388	 * We add page table cache pages with PAGE_SIZE,
 389	 * (see pte_free_tlb()), flush the tlb if we need
 390	 */
 391	tlb_change_page_size(tlb, PAGE_SIZE);
 392	pgd = pgd_offset(tlb->mm, addr);
 393	do {
 394		next = pgd_addr_end(addr, end);
 395		if (pgd_none_or_clear_bad(pgd))
 396			continue;
 397		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 398	} while (pgd++, addr = next, addr != end);
 399}
 400
 401void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 402		unsigned long floor, unsigned long ceiling)
 403{
 404	while (vma) {
 405		struct vm_area_struct *next = vma->vm_next;
 406		unsigned long addr = vma->vm_start;
 407
 408		/*
 409		 * Hide vma from rmap and truncate_pagecache before freeing
 410		 * pgtables
 411		 */
 412		unlink_anon_vmas(vma);
 413		unlink_file_vma(vma);
 414
 415		if (is_vm_hugetlb_page(vma)) {
 416			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 417				floor, next ? next->vm_start : ceiling);
 418		} else {
 419			/*
 420			 * Optimization: gather nearby vmas into one call down
 421			 */
 422			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 423			       && !is_vm_hugetlb_page(next)) {
 424				vma = next;
 425				next = vma->vm_next;
 426				unlink_anon_vmas(vma);
 427				unlink_file_vma(vma);
 428			}
 429			free_pgd_range(tlb, addr, vma->vm_end,
 430				floor, next ? next->vm_start : ceiling);
 431		}
 432		vma = next;
 433	}
 434}
 435
 436int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 437{
 438	spinlock_t *ptl;
 439	pgtable_t new = pte_alloc_one(mm);
 440	if (!new)
 441		return -ENOMEM;
 442
 443	/*
 444	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 445	 * visible before the pte is made visible to other CPUs by being
 446	 * put into page tables.
 447	 *
 448	 * The other side of the story is the pointer chasing in the page
 449	 * table walking code (when walking the page table without locking;
 450	 * ie. most of the time). Fortunately, these data accesses consist
 451	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 452	 * being the notable exception) will already guarantee loads are
 453	 * seen in-order. See the alpha page table accessors for the
 454	 * smp_rmb() barriers in page table walking code.
 455	 */
 456	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 457
 458	ptl = pmd_lock(mm, pmd);
 459	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 460		mm_inc_nr_ptes(mm);
 461		pmd_populate(mm, pmd, new);
 462		new = NULL;
 463	}
 464	spin_unlock(ptl);
 465	if (new)
 466		pte_free(mm, new);
 467	return 0;
 468}
 469
 470int __pte_alloc_kernel(pmd_t *pmd)
 471{
 472	pte_t *new = pte_alloc_one_kernel(&init_mm);
 473	if (!new)
 474		return -ENOMEM;
 475
 476	smp_wmb(); /* See comment in __pte_alloc */
 477
 478	spin_lock(&init_mm.page_table_lock);
 479	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 480		pmd_populate_kernel(&init_mm, pmd, new);
 481		new = NULL;
 482	}
 483	spin_unlock(&init_mm.page_table_lock);
 484	if (new)
 485		pte_free_kernel(&init_mm, new);
 486	return 0;
 487}
 488
 489static inline void init_rss_vec(int *rss)
 490{
 491	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 492}
 493
 494static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 495{
 496	int i;
 497
 498	if (current->mm == mm)
 499		sync_mm_rss(mm);
 500	for (i = 0; i < NR_MM_COUNTERS; i++)
 501		if (rss[i])
 502			add_mm_counter(mm, i, rss[i]);
 503}
 504
 505/*
 506 * This function is called to print an error when a bad pte
 507 * is found. For example, we might have a PFN-mapped pte in
 508 * a region that doesn't allow it.
 509 *
 510 * The calling function must still handle the error.
 511 */
 512static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 513			  pte_t pte, struct page *page)
 514{
 515	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 516	p4d_t *p4d = p4d_offset(pgd, addr);
 517	pud_t *pud = pud_offset(p4d, addr);
 518	pmd_t *pmd = pmd_offset(pud, addr);
 519	struct address_space *mapping;
 520	pgoff_t index;
 521	static unsigned long resume;
 522	static unsigned long nr_shown;
 523	static unsigned long nr_unshown;
 524
 525	/*
 526	 * Allow a burst of 60 reports, then keep quiet for that minute;
 527	 * or allow a steady drip of one report per second.
 528	 */
 529	if (nr_shown == 60) {
 530		if (time_before(jiffies, resume)) {
 531			nr_unshown++;
 532			return;
 533		}
 534		if (nr_unshown) {
 535			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 536				 nr_unshown);
 537			nr_unshown = 0;
 538		}
 539		nr_shown = 0;
 540	}
 541	if (nr_shown++ == 0)
 542		resume = jiffies + 60 * HZ;
 543
 544	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 545	index = linear_page_index(vma, addr);
 546
 547	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 548		 current->comm,
 549		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 550	if (page)
 551		dump_page(page, "bad pte");
 552	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
 553		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 554	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
 
 
 
 555		 vma->vm_file,
 556		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 557		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 558		 mapping ? mapping->a_ops->readpage : NULL);
 559	dump_stack();
 560	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 561}
 562
 563/*
 564 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 565 *
 566 * "Special" mappings do not wish to be associated with a "struct page" (either
 567 * it doesn't exist, or it exists but they don't want to touch it). In this
 568 * case, NULL is returned here. "Normal" mappings do have a struct page.
 569 *
 570 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 571 * pte bit, in which case this function is trivial. Secondly, an architecture
 572 * may not have a spare pte bit, which requires a more complicated scheme,
 573 * described below.
 574 *
 575 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 576 * special mapping (even if there are underlying and valid "struct pages").
 577 * COWed pages of a VM_PFNMAP are always normal.
 578 *
 579 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 580 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 581 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 582 * mapping will always honor the rule
 583 *
 584 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 585 *
 586 * And for normal mappings this is false.
 587 *
 588 * This restricts such mappings to be a linear translation from virtual address
 589 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 590 * as the vma is not a COW mapping; in that case, we know that all ptes are
 591 * special (because none can have been COWed).
 592 *
 593 *
 594 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 595 *
 596 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 597 * page" backing, however the difference is that _all_ pages with a struct
 598 * page (that is, those where pfn_valid is true) are refcounted and considered
 599 * normal pages by the VM. The disadvantage is that pages are refcounted
 600 * (which can be slower and simply not an option for some PFNMAP users). The
 601 * advantage is that we don't have to follow the strict linearity rule of
 602 * PFNMAP mappings in order to support COWable mappings.
 603 *
 604 */
 
 
 
 
 
 605struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 606			    pte_t pte)
 607{
 608	unsigned long pfn = pte_pfn(pte);
 609
 610	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 611		if (likely(!pte_special(pte)))
 612			goto check_pfn;
 613		if (vma->vm_ops && vma->vm_ops->find_special_page)
 614			return vma->vm_ops->find_special_page(vma, addr);
 615		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 616			return NULL;
 617		if (is_zero_pfn(pfn))
 618			return NULL;
 619		if (pte_devmap(pte))
 620			return NULL;
 621
 622		print_bad_pte(vma, addr, pte, NULL);
 623		return NULL;
 624	}
 625
 626	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 627
 628	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 629		if (vma->vm_flags & VM_MIXEDMAP) {
 630			if (!pfn_valid(pfn))
 631				return NULL;
 632			goto out;
 633		} else {
 634			unsigned long off;
 635			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 636			if (pfn == vma->vm_pgoff + off)
 637				return NULL;
 638			if (!is_cow_mapping(vma->vm_flags))
 639				return NULL;
 640		}
 641	}
 642
 643	if (is_zero_pfn(pfn))
 644		return NULL;
 645
 646check_pfn:
 647	if (unlikely(pfn > highest_memmap_pfn)) {
 648		print_bad_pte(vma, addr, pte, NULL);
 649		return NULL;
 650	}
 651
 652	/*
 653	 * NOTE! We still have PageReserved() pages in the page tables.
 654	 * eg. VDSO mappings can cause them to exist.
 655	 */
 656out:
 657	return pfn_to_page(pfn);
 658}
 659
 660#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 661struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 662				pmd_t pmd)
 663{
 664	unsigned long pfn = pmd_pfn(pmd);
 665
 666	/*
 667	 * There is no pmd_special() but there may be special pmds, e.g.
 668	 * in a direct-access (dax) mapping, so let's just replicate the
 669	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 670	 */
 671	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 672		if (vma->vm_flags & VM_MIXEDMAP) {
 673			if (!pfn_valid(pfn))
 674				return NULL;
 675			goto out;
 676		} else {
 677			unsigned long off;
 678			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 679			if (pfn == vma->vm_pgoff + off)
 680				return NULL;
 681			if (!is_cow_mapping(vma->vm_flags))
 682				return NULL;
 683		}
 684	}
 685
 686	if (pmd_devmap(pmd))
 687		return NULL;
 688	if (is_huge_zero_pmd(pmd))
 689		return NULL;
 690	if (unlikely(pfn > highest_memmap_pfn))
 691		return NULL;
 692
 693	/*
 694	 * NOTE! We still have PageReserved() pages in the page tables.
 695	 * eg. VDSO mappings can cause them to exist.
 696	 */
 697out:
 698	return pfn_to_page(pfn);
 699}
 700#endif
 701
 702static void restore_exclusive_pte(struct vm_area_struct *vma,
 703				  struct page *page, unsigned long address,
 704				  pte_t *ptep)
 705{
 706	pte_t pte;
 707	swp_entry_t entry;
 708
 709	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
 710	if (pte_swp_soft_dirty(*ptep))
 711		pte = pte_mksoft_dirty(pte);
 712
 713	entry = pte_to_swp_entry(*ptep);
 714	if (pte_swp_uffd_wp(*ptep))
 715		pte = pte_mkuffd_wp(pte);
 716	else if (is_writable_device_exclusive_entry(entry))
 717		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
 718
 719	set_pte_at(vma->vm_mm, address, ptep, pte);
 720
 721	/*
 722	 * No need to take a page reference as one was already
 723	 * created when the swap entry was made.
 724	 */
 725	if (PageAnon(page))
 726		page_add_anon_rmap(page, vma, address, false);
 727	else
 728		/*
 729		 * Currently device exclusive access only supports anonymous
 730		 * memory so the entry shouldn't point to a filebacked page.
 731		 */
 732		WARN_ON_ONCE(!PageAnon(page));
 733
 734	if (vma->vm_flags & VM_LOCKED)
 735		mlock_vma_page(page);
 736
 737	/*
 738	 * No need to invalidate - it was non-present before. However
 739	 * secondary CPUs may have mappings that need invalidating.
 740	 */
 741	update_mmu_cache(vma, address, ptep);
 742}
 743
 744/*
 745 * Tries to restore an exclusive pte if the page lock can be acquired without
 746 * sleeping.
 747 */
 748static int
 749try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
 750			unsigned long addr)
 751{
 752	swp_entry_t entry = pte_to_swp_entry(*src_pte);
 753	struct page *page = pfn_swap_entry_to_page(entry);
 754
 755	if (trylock_page(page)) {
 756		restore_exclusive_pte(vma, page, addr, src_pte);
 757		unlock_page(page);
 758		return 0;
 759	}
 760
 761	return -EBUSY;
 762}
 763
 764/*
 765 * copy one vm_area from one task to the other. Assumes the page tables
 766 * already present in the new task to be cleared in the whole range
 767 * covered by this vma.
 768 */
 769
 770static unsigned long
 771copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 772		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
 773		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
 774{
 775	unsigned long vm_flags = dst_vma->vm_flags;
 776	pte_t pte = *src_pte;
 777	struct page *page;
 778	swp_entry_t entry = pte_to_swp_entry(pte);
 779
 780	if (likely(!non_swap_entry(entry))) {
 781		if (swap_duplicate(entry) < 0)
 782			return -EIO;
 783
 784		/* make sure dst_mm is on swapoff's mmlist. */
 785		if (unlikely(list_empty(&dst_mm->mmlist))) {
 786			spin_lock(&mmlist_lock);
 787			if (list_empty(&dst_mm->mmlist))
 788				list_add(&dst_mm->mmlist,
 789						&src_mm->mmlist);
 790			spin_unlock(&mmlist_lock);
 791		}
 792		rss[MM_SWAPENTS]++;
 793	} else if (is_migration_entry(entry)) {
 794		page = pfn_swap_entry_to_page(entry);
 795
 796		rss[mm_counter(page)]++;
 797
 798		if (is_writable_migration_entry(entry) &&
 799				is_cow_mapping(vm_flags)) {
 800			/*
 801			 * COW mappings require pages in both
 802			 * parent and child to be set to read.
 803			 */
 804			entry = make_readable_migration_entry(
 805							swp_offset(entry));
 806			pte = swp_entry_to_pte(entry);
 807			if (pte_swp_soft_dirty(*src_pte))
 808				pte = pte_swp_mksoft_dirty(pte);
 809			if (pte_swp_uffd_wp(*src_pte))
 810				pte = pte_swp_mkuffd_wp(pte);
 811			set_pte_at(src_mm, addr, src_pte, pte);
 812		}
 813	} else if (is_device_private_entry(entry)) {
 814		page = pfn_swap_entry_to_page(entry);
 815
 816		/*
 817		 * Update rss count even for unaddressable pages, as
 818		 * they should treated just like normal pages in this
 819		 * respect.
 820		 *
 821		 * We will likely want to have some new rss counters
 822		 * for unaddressable pages, at some point. But for now
 823		 * keep things as they are.
 824		 */
 825		get_page(page);
 826		rss[mm_counter(page)]++;
 827		page_dup_rmap(page, false);
 828
 829		/*
 830		 * We do not preserve soft-dirty information, because so
 831		 * far, checkpoint/restore is the only feature that
 832		 * requires that. And checkpoint/restore does not work
 833		 * when a device driver is involved (you cannot easily
 834		 * save and restore device driver state).
 835		 */
 836		if (is_writable_device_private_entry(entry) &&
 837		    is_cow_mapping(vm_flags)) {
 838			entry = make_readable_device_private_entry(
 839							swp_offset(entry));
 840			pte = swp_entry_to_pte(entry);
 841			if (pte_swp_uffd_wp(*src_pte))
 842				pte = pte_swp_mkuffd_wp(pte);
 843			set_pte_at(src_mm, addr, src_pte, pte);
 844		}
 845	} else if (is_device_exclusive_entry(entry)) {
 846		/*
 847		 * Make device exclusive entries present by restoring the
 848		 * original entry then copying as for a present pte. Device
 849		 * exclusive entries currently only support private writable
 850		 * (ie. COW) mappings.
 851		 */
 852		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
 853		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
 854			return -EBUSY;
 855		return -ENOENT;
 856	}
 857	if (!userfaultfd_wp(dst_vma))
 858		pte = pte_swp_clear_uffd_wp(pte);
 859	set_pte_at(dst_mm, addr, dst_pte, pte);
 860	return 0;
 861}
 862
 863/*
 864 * Copy a present and normal page if necessary.
 865 *
 866 * NOTE! The usual case is that this doesn't need to do
 867 * anything, and can just return a positive value. That
 868 * will let the caller know that it can just increase
 869 * the page refcount and re-use the pte the traditional
 870 * way.
 871 *
 872 * But _if_ we need to copy it because it needs to be
 873 * pinned in the parent (and the child should get its own
 874 * copy rather than just a reference to the same page),
 875 * we'll do that here and return zero to let the caller
 876 * know we're done.
 877 *
 878 * And if we need a pre-allocated page but don't yet have
 879 * one, return a negative error to let the preallocation
 880 * code know so that it can do so outside the page table
 881 * lock.
 882 */
 883static inline int
 884copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
 885		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
 886		  struct page **prealloc, pte_t pte, struct page *page)
 887{
 888	struct page *new_page;
 889
 890	/*
 891	 * What we want to do is to check whether this page may
 892	 * have been pinned by the parent process.  If so,
 893	 * instead of wrprotect the pte on both sides, we copy
 894	 * the page immediately so that we'll always guarantee
 895	 * the pinned page won't be randomly replaced in the
 896	 * future.
 897	 *
 898	 * The page pinning checks are just "has this mm ever
 899	 * seen pinning", along with the (inexact) check of
 900	 * the page count. That might give false positives for
 901	 * for pinning, but it will work correctly.
 902	 */
 903	if (likely(!page_needs_cow_for_dma(src_vma, page)))
 904		return 1;
 905
 906	new_page = *prealloc;
 907	if (!new_page)
 908		return -EAGAIN;
 909
 910	/*
 911	 * We have a prealloc page, all good!  Take it
 912	 * over and copy the page & arm it.
 913	 */
 914	*prealloc = NULL;
 915	copy_user_highpage(new_page, page, addr, src_vma);
 916	__SetPageUptodate(new_page);
 917	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
 918	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
 919	rss[mm_counter(new_page)]++;
 920
 921	/* All done, just insert the new page copy in the child */
 922	pte = mk_pte(new_page, dst_vma->vm_page_prot);
 923	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
 924	if (userfaultfd_pte_wp(dst_vma, *src_pte))
 925		/* Uffd-wp needs to be delivered to dest pte as well */
 926		pte = pte_wrprotect(pte_mkuffd_wp(pte));
 927	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
 928	return 0;
 929}
 930
 931/*
 932 * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
 933 * is required to copy this pte.
 934 */
 935static inline int
 936copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
 937		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
 938		 struct page **prealloc)
 939{
 940	struct mm_struct *src_mm = src_vma->vm_mm;
 941	unsigned long vm_flags = src_vma->vm_flags;
 942	pte_t pte = *src_pte;
 943	struct page *page;
 944
 945	page = vm_normal_page(src_vma, addr, pte);
 946	if (page) {
 947		int retval;
 948
 949		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
 950					   addr, rss, prealloc, pte, page);
 951		if (retval <= 0)
 952			return retval;
 953
 954		get_page(page);
 955		page_dup_rmap(page, false);
 956		rss[mm_counter(page)]++;
 957	}
 958
 959	/*
 960	 * If it's a COW mapping, write protect it both
 961	 * in the parent and the child
 962	 */
 963	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
 964		ptep_set_wrprotect(src_mm, addr, src_pte);
 965		pte = pte_wrprotect(pte);
 966	}
 967
 968	/*
 969	 * If it's a shared mapping, mark it clean in
 970	 * the child
 971	 */
 972	if (vm_flags & VM_SHARED)
 973		pte = pte_mkclean(pte);
 974	pte = pte_mkold(pte);
 975
 976	if (!userfaultfd_wp(dst_vma))
 977		pte = pte_clear_uffd_wp(pte);
 978
 979	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
 980	return 0;
 981}
 982
 983static inline struct page *
 984page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
 985		   unsigned long addr)
 986{
 987	struct page *new_page;
 988
 989	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
 990	if (!new_page)
 991		return NULL;
 992
 993	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
 994		put_page(new_page);
 995		return NULL;
 996	}
 997	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
 998
 999	return new_page;
 
 
1000}
1001
1002static int
1003copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1004	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1005	       unsigned long end)
1006{
1007	struct mm_struct *dst_mm = dst_vma->vm_mm;
1008	struct mm_struct *src_mm = src_vma->vm_mm;
1009	pte_t *orig_src_pte, *orig_dst_pte;
1010	pte_t *src_pte, *dst_pte;
1011	spinlock_t *src_ptl, *dst_ptl;
1012	int progress, ret = 0;
1013	int rss[NR_MM_COUNTERS];
1014	swp_entry_t entry = (swp_entry_t){0};
1015	struct page *prealloc = NULL;
1016
1017again:
1018	progress = 0;
1019	init_rss_vec(rss);
1020
1021	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1022	if (!dst_pte) {
1023		ret = -ENOMEM;
1024		goto out;
1025	}
1026	src_pte = pte_offset_map(src_pmd, addr);
1027	src_ptl = pte_lockptr(src_mm, src_pmd);
1028	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1029	orig_src_pte = src_pte;
1030	orig_dst_pte = dst_pte;
1031	arch_enter_lazy_mmu_mode();
1032
1033	do {
1034		/*
1035		 * We are holding two locks at this point - either of them
1036		 * could generate latencies in another task on another CPU.
1037		 */
1038		if (progress >= 32) {
1039			progress = 0;
1040			if (need_resched() ||
1041			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1042				break;
1043		}
1044		if (pte_none(*src_pte)) {
1045			progress++;
1046			continue;
1047		}
1048		if (unlikely(!pte_present(*src_pte))) {
1049			ret = copy_nonpresent_pte(dst_mm, src_mm,
1050						  dst_pte, src_pte,
1051						  dst_vma, src_vma,
1052						  addr, rss);
1053			if (ret == -EIO) {
1054				entry = pte_to_swp_entry(*src_pte);
1055				break;
1056			} else if (ret == -EBUSY) {
1057				break;
1058			} else if (!ret) {
1059				progress += 8;
1060				continue;
1061			}
1062
1063			/*
1064			 * Device exclusive entry restored, continue by copying
1065			 * the now present pte.
1066			 */
1067			WARN_ON_ONCE(ret != -ENOENT);
1068		}
1069		/* copy_present_pte() will clear `*prealloc' if consumed */
1070		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1071				       addr, rss, &prealloc);
1072		/*
1073		 * If we need a pre-allocated page for this pte, drop the
1074		 * locks, allocate, and try again.
1075		 */
1076		if (unlikely(ret == -EAGAIN))
1077			break;
1078		if (unlikely(prealloc)) {
1079			/*
1080			 * pre-alloc page cannot be reused by next time so as
1081			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1082			 * will allocate page according to address).  This
1083			 * could only happen if one pinned pte changed.
1084			 */
1085			put_page(prealloc);
1086			prealloc = NULL;
1087		}
1088		progress += 8;
1089	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1090
1091	arch_leave_lazy_mmu_mode();
1092	spin_unlock(src_ptl);
1093	pte_unmap(orig_src_pte);
1094	add_mm_rss_vec(dst_mm, rss);
1095	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1096	cond_resched();
1097
1098	if (ret == -EIO) {
1099		VM_WARN_ON_ONCE(!entry.val);
1100		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1101			ret = -ENOMEM;
1102			goto out;
1103		}
1104		entry.val = 0;
1105	} else if (ret == -EBUSY) {
1106		goto out;
1107	} else if (ret ==  -EAGAIN) {
1108		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1109		if (!prealloc)
1110			return -ENOMEM;
1111	} else if (ret) {
1112		VM_WARN_ON_ONCE(1);
1113	}
1114
1115	/* We've captured and resolved the error. Reset, try again. */
1116	ret = 0;
1117
1118	if (addr != end)
1119		goto again;
1120out:
1121	if (unlikely(prealloc))
1122		put_page(prealloc);
1123	return ret;
1124}
1125
1126static inline int
1127copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1128	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1129	       unsigned long end)
1130{
1131	struct mm_struct *dst_mm = dst_vma->vm_mm;
1132	struct mm_struct *src_mm = src_vma->vm_mm;
1133	pmd_t *src_pmd, *dst_pmd;
1134	unsigned long next;
1135
1136	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1137	if (!dst_pmd)
1138		return -ENOMEM;
1139	src_pmd = pmd_offset(src_pud, addr);
1140	do {
1141		next = pmd_addr_end(addr, end);
1142		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1143			|| pmd_devmap(*src_pmd)) {
1144			int err;
1145			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1146			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1147					    addr, dst_vma, src_vma);
1148			if (err == -ENOMEM)
1149				return -ENOMEM;
1150			if (!err)
1151				continue;
1152			/* fall through */
1153		}
1154		if (pmd_none_or_clear_bad(src_pmd))
1155			continue;
1156		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1157				   addr, next))
1158			return -ENOMEM;
1159	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1160	return 0;
1161}
1162
1163static inline int
1164copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1165	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1166	       unsigned long end)
1167{
1168	struct mm_struct *dst_mm = dst_vma->vm_mm;
1169	struct mm_struct *src_mm = src_vma->vm_mm;
1170	pud_t *src_pud, *dst_pud;
1171	unsigned long next;
1172
1173	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1174	if (!dst_pud)
1175		return -ENOMEM;
1176	src_pud = pud_offset(src_p4d, addr);
1177	do {
1178		next = pud_addr_end(addr, end);
1179		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1180			int err;
1181
1182			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1183			err = copy_huge_pud(dst_mm, src_mm,
1184					    dst_pud, src_pud, addr, src_vma);
1185			if (err == -ENOMEM)
1186				return -ENOMEM;
1187			if (!err)
1188				continue;
1189			/* fall through */
1190		}
1191		if (pud_none_or_clear_bad(src_pud))
1192			continue;
1193		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1194				   addr, next))
1195			return -ENOMEM;
1196	} while (dst_pud++, src_pud++, addr = next, addr != end);
1197	return 0;
1198}
1199
1200static inline int
1201copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1202	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1203	       unsigned long end)
1204{
1205	struct mm_struct *dst_mm = dst_vma->vm_mm;
1206	p4d_t *src_p4d, *dst_p4d;
1207	unsigned long next;
1208
1209	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1210	if (!dst_p4d)
1211		return -ENOMEM;
1212	src_p4d = p4d_offset(src_pgd, addr);
1213	do {
1214		next = p4d_addr_end(addr, end);
1215		if (p4d_none_or_clear_bad(src_p4d))
1216			continue;
1217		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1218				   addr, next))
1219			return -ENOMEM;
1220	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1221	return 0;
1222}
1223
1224int
1225copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1226{
1227	pgd_t *src_pgd, *dst_pgd;
1228	unsigned long next;
1229	unsigned long addr = src_vma->vm_start;
1230	unsigned long end = src_vma->vm_end;
1231	struct mm_struct *dst_mm = dst_vma->vm_mm;
1232	struct mm_struct *src_mm = src_vma->vm_mm;
1233	struct mmu_notifier_range range;
1234	bool is_cow;
1235	int ret;
1236
1237	/*
1238	 * Don't copy ptes where a page fault will fill them correctly.
1239	 * Fork becomes much lighter when there are big shared or private
1240	 * readonly mappings. The tradeoff is that copy_page_range is more
1241	 * efficient than faulting.
1242	 */
1243	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1244	    !src_vma->anon_vma)
1245		return 0;
1246
1247	if (is_vm_hugetlb_page(src_vma))
1248		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1249
1250	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1251		/*
1252		 * We do not free on error cases below as remove_vma
1253		 * gets called on error from higher level routine
1254		 */
1255		ret = track_pfn_copy(src_vma);
1256		if (ret)
1257			return ret;
1258	}
1259
1260	/*
1261	 * We need to invalidate the secondary MMU mappings only when
1262	 * there could be a permission downgrade on the ptes of the
1263	 * parent mm. And a permission downgrade will only happen if
1264	 * is_cow_mapping() returns true.
1265	 */
1266	is_cow = is_cow_mapping(src_vma->vm_flags);
1267
1268	if (is_cow) {
1269		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1270					0, src_vma, src_mm, addr, end);
1271		mmu_notifier_invalidate_range_start(&range);
1272		/*
1273		 * Disabling preemption is not needed for the write side, as
1274		 * the read side doesn't spin, but goes to the mmap_lock.
1275		 *
1276		 * Use the raw variant of the seqcount_t write API to avoid
1277		 * lockdep complaining about preemptibility.
1278		 */
1279		mmap_assert_write_locked(src_mm);
1280		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1281	}
1282
1283	ret = 0;
1284	dst_pgd = pgd_offset(dst_mm, addr);
1285	src_pgd = pgd_offset(src_mm, addr);
1286	do {
1287		next = pgd_addr_end(addr, end);
1288		if (pgd_none_or_clear_bad(src_pgd))
1289			continue;
1290		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1291					    addr, next))) {
1292			ret = -ENOMEM;
1293			break;
1294		}
1295	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1296
1297	if (is_cow) {
1298		raw_write_seqcount_end(&src_mm->write_protect_seq);
1299		mmu_notifier_invalidate_range_end(&range);
1300	}
1301	return ret;
1302}
1303
1304static unsigned long zap_pte_range(struct mmu_gather *tlb,
1305				struct vm_area_struct *vma, pmd_t *pmd,
1306				unsigned long addr, unsigned long end,
1307				struct zap_details *details)
1308{
1309	struct mm_struct *mm = tlb->mm;
1310	int force_flush = 0;
1311	int rss[NR_MM_COUNTERS];
1312	spinlock_t *ptl;
1313	pte_t *start_pte;
1314	pte_t *pte;
1315	swp_entry_t entry;
1316
1317	tlb_change_page_size(tlb, PAGE_SIZE);
1318again:
1319	init_rss_vec(rss);
1320	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1321	pte = start_pte;
1322	flush_tlb_batched_pending(mm);
1323	arch_enter_lazy_mmu_mode();
1324	do {
1325		pte_t ptent = *pte;
1326		if (pte_none(ptent))
1327			continue;
1328
1329		if (need_resched())
1330			break;
1331
1332		if (pte_present(ptent)) {
1333			struct page *page;
1334
1335			page = vm_normal_page(vma, addr, ptent);
1336			if (unlikely(details) && page) {
1337				/*
1338				 * unmap_shared_mapping_pages() wants to
1339				 * invalidate cache without truncating:
1340				 * unmap shared but keep private pages.
1341				 */
1342				if (details->check_mapping &&
1343				    details->check_mapping != page_rmapping(page))
1344					continue;
1345			}
1346			ptent = ptep_get_and_clear_full(mm, addr, pte,
1347							tlb->fullmm);
1348			tlb_remove_tlb_entry(tlb, pte, addr);
1349			if (unlikely(!page))
1350				continue;
1351
1352			if (!PageAnon(page)) {
1353				if (pte_dirty(ptent)) {
 
 
 
 
 
 
1354					force_flush = 1;
1355					set_page_dirty(page);
1356				}
1357				if (pte_young(ptent) &&
1358				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1359					mark_page_accessed(page);
1360			}
1361			rss[mm_counter(page)]--;
1362			page_remove_rmap(page, false);
1363			if (unlikely(page_mapcount(page) < 0))
1364				print_bad_pte(vma, addr, ptent, page);
1365			if (unlikely(__tlb_remove_page(tlb, page))) {
1366				force_flush = 1;
1367				addr += PAGE_SIZE;
1368				break;
1369			}
1370			continue;
1371		}
1372
1373		entry = pte_to_swp_entry(ptent);
1374		if (is_device_private_entry(entry) ||
1375		    is_device_exclusive_entry(entry)) {
1376			struct page *page = pfn_swap_entry_to_page(entry);
1377
1378			if (unlikely(details && details->check_mapping)) {
1379				/*
1380				 * unmap_shared_mapping_pages() wants to
1381				 * invalidate cache without truncating:
1382				 * unmap shared but keep private pages.
1383				 */
1384				if (details->check_mapping !=
1385				    page_rmapping(page))
1386					continue;
1387			}
1388
1389			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1390			rss[mm_counter(page)]--;
1391
1392			if (is_device_private_entry(entry))
1393				page_remove_rmap(page, false);
1394
1395			put_page(page);
1396			continue;
1397		}
1398
1399		/* If details->check_mapping, we leave swap entries. */
1400		if (unlikely(details))
1401			continue;
1402
 
1403		if (!non_swap_entry(entry))
1404			rss[MM_SWAPENTS]--;
1405		else if (is_migration_entry(entry)) {
1406			struct page *page;
1407
1408			page = pfn_swap_entry_to_page(entry);
1409			rss[mm_counter(page)]--;
1410		}
1411		if (unlikely(!free_swap_and_cache(entry)))
1412			print_bad_pte(vma, addr, ptent, NULL);
1413		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1414	} while (pte++, addr += PAGE_SIZE, addr != end);
1415
1416	add_mm_rss_vec(mm, rss);
1417	arch_leave_lazy_mmu_mode();
1418
1419	/* Do the actual TLB flush before dropping ptl */
1420	if (force_flush)
1421		tlb_flush_mmu_tlbonly(tlb);
1422	pte_unmap_unlock(start_pte, ptl);
1423
1424	/*
1425	 * If we forced a TLB flush (either due to running out of
1426	 * batch buffers or because we needed to flush dirty TLB
1427	 * entries before releasing the ptl), free the batched
1428	 * memory too. Restart if we didn't do everything.
1429	 */
1430	if (force_flush) {
1431		force_flush = 0;
1432		tlb_flush_mmu(tlb);
1433	}
1434
1435	if (addr != end) {
1436		cond_resched();
1437		goto again;
1438	}
1439
1440	return addr;
1441}
1442
1443static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1444				struct vm_area_struct *vma, pud_t *pud,
1445				unsigned long addr, unsigned long end,
1446				struct zap_details *details)
1447{
1448	pmd_t *pmd;
1449	unsigned long next;
1450
1451	pmd = pmd_offset(pud, addr);
1452	do {
1453		next = pmd_addr_end(addr, end);
1454		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1455			if (next - addr != HPAGE_PMD_SIZE)
 
 
1456				__split_huge_pmd(vma, pmd, addr, false, NULL);
1457			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1458				goto next;
1459			/* fall through */
1460		} else if (details && details->single_page &&
1461			   PageTransCompound(details->single_page) &&
1462			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1463			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1464			/*
1465			 * Take and drop THP pmd lock so that we cannot return
1466			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1467			 * but not yet decremented compound_mapcount().
1468			 */
1469			spin_unlock(ptl);
1470		}
1471
1472		/*
1473		 * Here there can be other concurrent MADV_DONTNEED or
1474		 * trans huge page faults running, and if the pmd is
1475		 * none or trans huge it can change under us. This is
1476		 * because MADV_DONTNEED holds the mmap_lock in read
1477		 * mode.
1478		 */
1479		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1480			goto next;
1481		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1482next:
1483		cond_resched();
1484	} while (pmd++, addr = next, addr != end);
1485
1486	return addr;
1487}
1488
1489static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1490				struct vm_area_struct *vma, p4d_t *p4d,
1491				unsigned long addr, unsigned long end,
1492				struct zap_details *details)
1493{
1494	pud_t *pud;
1495	unsigned long next;
1496
1497	pud = pud_offset(p4d, addr);
1498	do {
1499		next = pud_addr_end(addr, end);
1500		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1501			if (next - addr != HPAGE_PUD_SIZE) {
1502				mmap_assert_locked(tlb->mm);
1503				split_huge_pud(vma, pud, addr);
1504			} else if (zap_huge_pud(tlb, vma, pud, addr))
1505				goto next;
1506			/* fall through */
1507		}
1508		if (pud_none_or_clear_bad(pud))
1509			continue;
1510		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1511next:
1512		cond_resched();
1513	} while (pud++, addr = next, addr != end);
1514
1515	return addr;
1516}
1517
1518static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1519				struct vm_area_struct *vma, pgd_t *pgd,
1520				unsigned long addr, unsigned long end,
1521				struct zap_details *details)
1522{
1523	p4d_t *p4d;
1524	unsigned long next;
1525
1526	p4d = p4d_offset(pgd, addr);
1527	do {
1528		next = p4d_addr_end(addr, end);
1529		if (p4d_none_or_clear_bad(p4d))
1530			continue;
1531		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1532	} while (p4d++, addr = next, addr != end);
1533
1534	return addr;
1535}
1536
1537void unmap_page_range(struct mmu_gather *tlb,
1538			     struct vm_area_struct *vma,
1539			     unsigned long addr, unsigned long end,
1540			     struct zap_details *details)
1541{
1542	pgd_t *pgd;
1543	unsigned long next;
1544
1545	BUG_ON(addr >= end);
1546	tlb_start_vma(tlb, vma);
1547	pgd = pgd_offset(vma->vm_mm, addr);
1548	do {
1549		next = pgd_addr_end(addr, end);
1550		if (pgd_none_or_clear_bad(pgd))
1551			continue;
1552		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1553	} while (pgd++, addr = next, addr != end);
1554	tlb_end_vma(tlb, vma);
1555}
1556
1557
1558static void unmap_single_vma(struct mmu_gather *tlb,
1559		struct vm_area_struct *vma, unsigned long start_addr,
1560		unsigned long end_addr,
1561		struct zap_details *details)
1562{
1563	unsigned long start = max(vma->vm_start, start_addr);
1564	unsigned long end;
1565
1566	if (start >= vma->vm_end)
1567		return;
1568	end = min(vma->vm_end, end_addr);
1569	if (end <= vma->vm_start)
1570		return;
1571
1572	if (vma->vm_file)
1573		uprobe_munmap(vma, start, end);
1574
1575	if (unlikely(vma->vm_flags & VM_PFNMAP))
1576		untrack_pfn(vma, 0, 0);
1577
1578	if (start != end) {
1579		if (unlikely(is_vm_hugetlb_page(vma))) {
1580			/*
1581			 * It is undesirable to test vma->vm_file as it
1582			 * should be non-null for valid hugetlb area.
1583			 * However, vm_file will be NULL in the error
1584			 * cleanup path of mmap_region. When
1585			 * hugetlbfs ->mmap method fails,
1586			 * mmap_region() nullifies vma->vm_file
1587			 * before calling this function to clean up.
1588			 * Since no pte has actually been setup, it is
1589			 * safe to do nothing in this case.
1590			 */
1591			if (vma->vm_file) {
1592				i_mmap_lock_write(vma->vm_file->f_mapping);
1593				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1594				i_mmap_unlock_write(vma->vm_file->f_mapping);
1595			}
1596		} else
1597			unmap_page_range(tlb, vma, start, end, details);
1598	}
1599}
1600
1601/**
1602 * unmap_vmas - unmap a range of memory covered by a list of vma's
1603 * @tlb: address of the caller's struct mmu_gather
1604 * @vma: the starting vma
1605 * @start_addr: virtual address at which to start unmapping
1606 * @end_addr: virtual address at which to end unmapping
1607 *
1608 * Unmap all pages in the vma list.
1609 *
1610 * Only addresses between `start' and `end' will be unmapped.
1611 *
1612 * The VMA list must be sorted in ascending virtual address order.
1613 *
1614 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1615 * range after unmap_vmas() returns.  So the only responsibility here is to
1616 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1617 * drops the lock and schedules.
1618 */
1619void unmap_vmas(struct mmu_gather *tlb,
1620		struct vm_area_struct *vma, unsigned long start_addr,
1621		unsigned long end_addr)
1622{
1623	struct mmu_notifier_range range;
1624
1625	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1626				start_addr, end_addr);
1627	mmu_notifier_invalidate_range_start(&range);
1628	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1629		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1630	mmu_notifier_invalidate_range_end(&range);
1631}
1632
1633/**
1634 * zap_page_range - remove user pages in a given range
1635 * @vma: vm_area_struct holding the applicable pages
1636 * @start: starting address of pages to zap
1637 * @size: number of bytes to zap
 
1638 *
1639 * Caller must protect the VMA list
1640 */
1641void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1642		unsigned long size)
1643{
1644	struct mmu_notifier_range range;
1645	struct mmu_gather tlb;
 
1646
1647	lru_add_drain();
1648	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1649				start, start + size);
1650	tlb_gather_mmu(&tlb, vma->vm_mm);
1651	update_hiwater_rss(vma->vm_mm);
1652	mmu_notifier_invalidate_range_start(&range);
1653	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1654		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1655	mmu_notifier_invalidate_range_end(&range);
1656	tlb_finish_mmu(&tlb);
1657}
1658
1659/**
1660 * zap_page_range_single - remove user pages in a given range
1661 * @vma: vm_area_struct holding the applicable pages
1662 * @address: starting address of pages to zap
1663 * @size: number of bytes to zap
1664 * @details: details of shared cache invalidation
1665 *
1666 * The range must fit into one VMA.
1667 */
1668static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1669		unsigned long size, struct zap_details *details)
1670{
1671	struct mmu_notifier_range range;
1672	struct mmu_gather tlb;
 
1673
1674	lru_add_drain();
1675	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1676				address, address + size);
1677	tlb_gather_mmu(&tlb, vma->vm_mm);
1678	update_hiwater_rss(vma->vm_mm);
1679	mmu_notifier_invalidate_range_start(&range);
1680	unmap_single_vma(&tlb, vma, address, range.end, details);
1681	mmu_notifier_invalidate_range_end(&range);
1682	tlb_finish_mmu(&tlb);
1683}
1684
1685/**
1686 * zap_vma_ptes - remove ptes mapping the vma
1687 * @vma: vm_area_struct holding ptes to be zapped
1688 * @address: starting address of pages to zap
1689 * @size: number of bytes to zap
1690 *
1691 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1692 *
1693 * The entire address range must be fully contained within the vma.
1694 *
 
1695 */
1696void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1697		unsigned long size)
1698{
1699	if (address < vma->vm_start || address + size > vma->vm_end ||
1700	    		!(vma->vm_flags & VM_PFNMAP))
1701		return;
1702
1703	zap_page_range_single(vma, address, size, NULL);
 
1704}
1705EXPORT_SYMBOL_GPL(zap_vma_ptes);
1706
1707static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1708{
1709	pgd_t *pgd;
1710	p4d_t *p4d;
1711	pud_t *pud;
1712	pmd_t *pmd;
1713
1714	pgd = pgd_offset(mm, addr);
1715	p4d = p4d_alloc(mm, pgd, addr);
1716	if (!p4d)
1717		return NULL;
1718	pud = pud_alloc(mm, p4d, addr);
1719	if (!pud)
1720		return NULL;
1721	pmd = pmd_alloc(mm, pud, addr);
1722	if (!pmd)
1723		return NULL;
1724
1725	VM_BUG_ON(pmd_trans_huge(*pmd));
1726	return pmd;
1727}
1728
1729pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1730			spinlock_t **ptl)
1731{
1732	pmd_t *pmd = walk_to_pmd(mm, addr);
1733
1734	if (!pmd)
1735		return NULL;
1736	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1737}
1738
1739static int validate_page_before_insert(struct page *page)
1740{
1741	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1742		return -EINVAL;
1743	flush_dcache_page(page);
1744	return 0;
1745}
1746
1747static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1748			unsigned long addr, struct page *page, pgprot_t prot)
1749{
1750	if (!pte_none(*pte))
1751		return -EBUSY;
1752	/* Ok, finally just insert the thing.. */
1753	get_page(page);
1754	inc_mm_counter_fast(mm, mm_counter_file(page));
1755	page_add_file_rmap(page, false);
1756	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1757	return 0;
1758}
1759
1760/*
1761 * This is the old fallback for page remapping.
1762 *
1763 * For historical reasons, it only allows reserved pages. Only
1764 * old drivers should use this, and they needed to mark their
1765 * pages reserved for the old functions anyway.
1766 */
1767static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1768			struct page *page, pgprot_t prot)
1769{
1770	struct mm_struct *mm = vma->vm_mm;
1771	int retval;
1772	pte_t *pte;
1773	spinlock_t *ptl;
1774
1775	retval = validate_page_before_insert(page);
1776	if (retval)
1777		goto out;
1778	retval = -ENOMEM;
 
1779	pte = get_locked_pte(mm, addr, &ptl);
1780	if (!pte)
1781		goto out;
1782	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1783	pte_unmap_unlock(pte, ptl);
1784out:
1785	return retval;
1786}
1787
1788#ifdef pte_index
1789static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1790			unsigned long addr, struct page *page, pgprot_t prot)
1791{
1792	int err;
1793
1794	if (!page_count(page))
1795		return -EINVAL;
1796	err = validate_page_before_insert(page);
1797	if (err)
1798		return err;
1799	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1800}
1801
1802/* insert_pages() amortizes the cost of spinlock operations
1803 * when inserting pages in a loop. Arch *must* define pte_index.
1804 */
1805static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1806			struct page **pages, unsigned long *num, pgprot_t prot)
1807{
1808	pmd_t *pmd = NULL;
1809	pte_t *start_pte, *pte;
1810	spinlock_t *pte_lock;
1811	struct mm_struct *const mm = vma->vm_mm;
1812	unsigned long curr_page_idx = 0;
1813	unsigned long remaining_pages_total = *num;
1814	unsigned long pages_to_write_in_pmd;
1815	int ret;
1816more:
1817	ret = -EFAULT;
1818	pmd = walk_to_pmd(mm, addr);
1819	if (!pmd)
1820		goto out;
1821
1822	pages_to_write_in_pmd = min_t(unsigned long,
1823		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1824
1825	/* Allocate the PTE if necessary; takes PMD lock once only. */
1826	ret = -ENOMEM;
1827	if (pte_alloc(mm, pmd))
1828		goto out;
 
1829
1830	while (pages_to_write_in_pmd) {
1831		int pte_idx = 0;
1832		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1833
1834		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1835		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1836			int err = insert_page_in_batch_locked(mm, pte,
1837				addr, pages[curr_page_idx], prot);
1838			if (unlikely(err)) {
1839				pte_unmap_unlock(start_pte, pte_lock);
1840				ret = err;
1841				remaining_pages_total -= pte_idx;
1842				goto out;
1843			}
1844			addr += PAGE_SIZE;
1845			++curr_page_idx;
1846		}
1847		pte_unmap_unlock(start_pte, pte_lock);
1848		pages_to_write_in_pmd -= batch_size;
1849		remaining_pages_total -= batch_size;
1850	}
1851	if (remaining_pages_total)
1852		goto more;
1853	ret = 0;
1854out:
1855	*num = remaining_pages_total;
1856	return ret;
1857}
1858#endif  /* ifdef pte_index */
1859
1860/**
1861 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1862 * @vma: user vma to map to
1863 * @addr: target start user address of these pages
1864 * @pages: source kernel pages
1865 * @num: in: number of pages to map. out: number of pages that were *not*
1866 * mapped. (0 means all pages were successfully mapped).
1867 *
1868 * Preferred over vm_insert_page() when inserting multiple pages.
1869 *
1870 * In case of error, we may have mapped a subset of the provided
1871 * pages. It is the caller's responsibility to account for this case.
1872 *
1873 * The same restrictions apply as in vm_insert_page().
1874 */
1875int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1876			struct page **pages, unsigned long *num)
1877{
1878#ifdef pte_index
1879	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1880
1881	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1882		return -EFAULT;
1883	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1884		BUG_ON(mmap_read_trylock(vma->vm_mm));
1885		BUG_ON(vma->vm_flags & VM_PFNMAP);
1886		vma->vm_flags |= VM_MIXEDMAP;
1887	}
1888	/* Defer page refcount checking till we're about to map that page. */
1889	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1890#else
1891	unsigned long idx = 0, pgcount = *num;
1892	int err = -EINVAL;
1893
1894	for (; idx < pgcount; ++idx) {
1895		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1896		if (err)
1897			break;
1898	}
1899	*num = pgcount - idx;
1900	return err;
1901#endif  /* ifdef pte_index */
1902}
1903EXPORT_SYMBOL(vm_insert_pages);
1904
1905/**
1906 * vm_insert_page - insert single page into user vma
1907 * @vma: user vma to map to
1908 * @addr: target user address of this page
1909 * @page: source kernel page
1910 *
1911 * This allows drivers to insert individual pages they've allocated
1912 * into a user vma.
1913 *
1914 * The page has to be a nice clean _individual_ kernel allocation.
1915 * If you allocate a compound page, you need to have marked it as
1916 * such (__GFP_COMP), or manually just split the page up yourself
1917 * (see split_page()).
1918 *
1919 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1920 * took an arbitrary page protection parameter. This doesn't allow
1921 * that. Your vma protection will have to be set up correctly, which
1922 * means that if you want a shared writable mapping, you'd better
1923 * ask for a shared writable mapping!
1924 *
1925 * The page does not need to be reserved.
1926 *
1927 * Usually this function is called from f_op->mmap() handler
1928 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1929 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1930 * function from other places, for example from page-fault handler.
1931 *
1932 * Return: %0 on success, negative error code otherwise.
1933 */
1934int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1935			struct page *page)
1936{
1937	if (addr < vma->vm_start || addr >= vma->vm_end)
1938		return -EFAULT;
1939	if (!page_count(page))
1940		return -EINVAL;
1941	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1942		BUG_ON(mmap_read_trylock(vma->vm_mm));
1943		BUG_ON(vma->vm_flags & VM_PFNMAP);
1944		vma->vm_flags |= VM_MIXEDMAP;
1945	}
1946	return insert_page(vma, addr, page, vma->vm_page_prot);
1947}
1948EXPORT_SYMBOL(vm_insert_page);
1949
1950/*
1951 * __vm_map_pages - maps range of kernel pages into user vma
1952 * @vma: user vma to map to
1953 * @pages: pointer to array of source kernel pages
1954 * @num: number of pages in page array
1955 * @offset: user's requested vm_pgoff
1956 *
1957 * This allows drivers to map range of kernel pages into a user vma.
1958 *
1959 * Return: 0 on success and error code otherwise.
1960 */
1961static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1962				unsigned long num, unsigned long offset)
1963{
1964	unsigned long count = vma_pages(vma);
1965	unsigned long uaddr = vma->vm_start;
1966	int ret, i;
1967
1968	/* Fail if the user requested offset is beyond the end of the object */
1969	if (offset >= num)
1970		return -ENXIO;
1971
1972	/* Fail if the user requested size exceeds available object size */
1973	if (count > num - offset)
1974		return -ENXIO;
1975
1976	for (i = 0; i < count; i++) {
1977		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1978		if (ret < 0)
1979			return ret;
1980		uaddr += PAGE_SIZE;
1981	}
1982
1983	return 0;
1984}
1985
1986/**
1987 * vm_map_pages - maps range of kernel pages starts with non zero offset
1988 * @vma: user vma to map to
1989 * @pages: pointer to array of source kernel pages
1990 * @num: number of pages in page array
1991 *
1992 * Maps an object consisting of @num pages, catering for the user's
1993 * requested vm_pgoff
1994 *
1995 * If we fail to insert any page into the vma, the function will return
1996 * immediately leaving any previously inserted pages present.  Callers
1997 * from the mmap handler may immediately return the error as their caller
1998 * will destroy the vma, removing any successfully inserted pages. Other
1999 * callers should make their own arrangements for calling unmap_region().
2000 *
2001 * Context: Process context. Called by mmap handlers.
2002 * Return: 0 on success and error code otherwise.
2003 */
2004int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2005				unsigned long num)
2006{
2007	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2008}
2009EXPORT_SYMBOL(vm_map_pages);
2010
2011/**
2012 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2013 * @vma: user vma to map to
2014 * @pages: pointer to array of source kernel pages
2015 * @num: number of pages in page array
2016 *
2017 * Similar to vm_map_pages(), except that it explicitly sets the offset
2018 * to 0. This function is intended for the drivers that did not consider
2019 * vm_pgoff.
2020 *
2021 * Context: Process context. Called by mmap handlers.
2022 * Return: 0 on success and error code otherwise.
2023 */
2024int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2025				unsigned long num)
2026{
2027	return __vm_map_pages(vma, pages, num, 0);
2028}
2029EXPORT_SYMBOL(vm_map_pages_zero);
2030
2031static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2032			pfn_t pfn, pgprot_t prot, bool mkwrite)
2033{
2034	struct mm_struct *mm = vma->vm_mm;
 
2035	pte_t *pte, entry;
2036	spinlock_t *ptl;
2037
 
2038	pte = get_locked_pte(mm, addr, &ptl);
2039	if (!pte)
2040		return VM_FAULT_OOM;
2041	if (!pte_none(*pte)) {
2042		if (mkwrite) {
2043			/*
2044			 * For read faults on private mappings the PFN passed
2045			 * in may not match the PFN we have mapped if the
2046			 * mapped PFN is a writeable COW page.  In the mkwrite
2047			 * case we are creating a writable PTE for a shared
2048			 * mapping and we expect the PFNs to match. If they
2049			 * don't match, we are likely racing with block
2050			 * allocation and mapping invalidation so just skip the
2051			 * update.
2052			 */
2053			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2054				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2055				goto out_unlock;
2056			}
2057			entry = pte_mkyoung(*pte);
2058			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2059			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2060				update_mmu_cache(vma, addr, pte);
2061		}
2062		goto out_unlock;
2063	}
2064
2065	/* Ok, finally just insert the thing.. */
2066	if (pfn_t_devmap(pfn))
2067		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2068	else
2069		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2070
2071	if (mkwrite) {
2072		entry = pte_mkyoung(entry);
2073		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2074	}
2075
2076	set_pte_at(mm, addr, pte, entry);
2077	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2078
 
2079out_unlock:
2080	pte_unmap_unlock(pte, ptl);
2081	return VM_FAULT_NOPAGE;
 
2082}
2083
2084/**
2085 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086 * @vma: user vma to map to
2087 * @addr: target user address of this page
2088 * @pfn: source kernel pfn
2089 * @pgprot: pgprot flags for the inserted page
2090 *
2091 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2092 * to override pgprot on a per-page basis.
2093 *
2094 * This only makes sense for IO mappings, and it makes no sense for
2095 * COW mappings.  In general, using multiple vmas is preferable;
2096 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2097 * impractical.
2098 *
2099 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2100 * a value of @pgprot different from that of @vma->vm_page_prot.
2101 *
2102 * Context: Process context.  May allocate using %GFP_KERNEL.
2103 * Return: vm_fault_t value.
2104 */
2105vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2106			unsigned long pfn, pgprot_t pgprot)
2107{
 
2108	/*
2109	 * Technically, architectures with pte_special can avoid all these
2110	 * restrictions (same for remap_pfn_range).  However we would like
2111	 * consistency in testing and feature parity among all, so we should
2112	 * try to keep these invariants in place for everybody.
2113	 */
2114	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2115	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2116						(VM_PFNMAP|VM_MIXEDMAP));
2117	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2118	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2119
2120	if (addr < vma->vm_start || addr >= vma->vm_end)
2121		return VM_FAULT_SIGBUS;
2122
2123	if (!pfn_modify_allowed(pfn, pgprot))
2124		return VM_FAULT_SIGBUS;
2125
2126	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2127
2128	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2129			false);
2130}
2131EXPORT_SYMBOL(vmf_insert_pfn_prot);
2132
2133/**
2134 * vmf_insert_pfn - insert single pfn into user vma
2135 * @vma: user vma to map to
2136 * @addr: target user address of this page
2137 * @pfn: source kernel pfn
2138 *
2139 * Similar to vm_insert_page, this allows drivers to insert individual pages
2140 * they've allocated into a user vma. Same comments apply.
2141 *
2142 * This function should only be called from a vm_ops->fault handler, and
2143 * in that case the handler should return the result of this function.
2144 *
2145 * vma cannot be a COW mapping.
2146 *
2147 * As this is called only for pages that do not currently exist, we
2148 * do not need to flush old virtual caches or the TLB.
2149 *
2150 * Context: Process context.  May allocate using %GFP_KERNEL.
2151 * Return: vm_fault_t value.
2152 */
2153vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2154			unsigned long pfn)
2155{
2156	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2157}
2158EXPORT_SYMBOL(vmf_insert_pfn);
2159
2160static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2161{
2162	/* these checks mirror the abort conditions in vm_normal_page */
2163	if (vma->vm_flags & VM_MIXEDMAP)
2164		return true;
2165	if (pfn_t_devmap(pfn))
2166		return true;
2167	if (pfn_t_special(pfn))
2168		return true;
2169	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2170		return true;
2171	return false;
2172}
 
2173
2174static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2175		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2176		bool mkwrite)
2177{
2178	int err;
2179
2180	BUG_ON(!vm_mixed_ok(vma, pfn));
2181
2182	if (addr < vma->vm_start || addr >= vma->vm_end)
2183		return VM_FAULT_SIGBUS;
2184
2185	track_pfn_insert(vma, &pgprot, pfn);
2186
2187	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2188		return VM_FAULT_SIGBUS;
2189
2190	/*
2191	 * If we don't have pte special, then we have to use the pfn_valid()
2192	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2193	 * refcount the page if pfn_valid is true (hence insert_page rather
2194	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2195	 * without pte special, it would there be refcounted as a normal page.
2196	 */
2197	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2198	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2199		struct page *page;
2200
2201		/*
2202		 * At this point we are committed to insert_page()
2203		 * regardless of whether the caller specified flags that
2204		 * result in pfn_t_has_page() == false.
2205		 */
2206		page = pfn_to_page(pfn_t_to_pfn(pfn));
2207		err = insert_page(vma, addr, page, pgprot);
2208	} else {
2209		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2210	}
2211
2212	if (err == -ENOMEM)
2213		return VM_FAULT_OOM;
2214	if (err < 0 && err != -EBUSY)
2215		return VM_FAULT_SIGBUS;
2216
2217	return VM_FAULT_NOPAGE;
2218}
2219
2220/**
2221 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2222 * @vma: user vma to map to
2223 * @addr: target user address of this page
2224 * @pfn: source kernel pfn
2225 * @pgprot: pgprot flags for the inserted page
2226 *
2227 * This is exactly like vmf_insert_mixed(), except that it allows drivers
2228 * to override pgprot on a per-page basis.
2229 *
2230 * Typically this function should be used by drivers to set caching- and
2231 * encryption bits different than those of @vma->vm_page_prot, because
2232 * the caching- or encryption mode may not be known at mmap() time.
2233 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2234 * to set caching and encryption bits for those vmas (except for COW pages).
2235 * This is ensured by core vm only modifying these page table entries using
2236 * functions that don't touch caching- or encryption bits, using pte_modify()
2237 * if needed. (See for example mprotect()).
2238 * Also when new page-table entries are created, this is only done using the
2239 * fault() callback, and never using the value of vma->vm_page_prot,
2240 * except for page-table entries that point to anonymous pages as the result
2241 * of COW.
2242 *
2243 * Context: Process context.  May allocate using %GFP_KERNEL.
2244 * Return: vm_fault_t value.
2245 */
2246vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2247				 pfn_t pfn, pgprot_t pgprot)
2248{
2249	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2250}
2251EXPORT_SYMBOL(vmf_insert_mixed_prot);
2252
2253vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2254		pfn_t pfn)
2255{
2256	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2257}
2258EXPORT_SYMBOL(vmf_insert_mixed);
2259
2260/*
2261 *  If the insertion of PTE failed because someone else already added a
2262 *  different entry in the mean time, we treat that as success as we assume
2263 *  the same entry was actually inserted.
2264 */
2265vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2266		unsigned long addr, pfn_t pfn)
2267{
2268	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2269}
2270EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2271
2272/*
2273 * maps a range of physical memory into the requested pages. the old
2274 * mappings are removed. any references to nonexistent pages results
2275 * in null mappings (currently treated as "copy-on-access")
2276 */
2277static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2278			unsigned long addr, unsigned long end,
2279			unsigned long pfn, pgprot_t prot)
2280{
2281	pte_t *pte, *mapped_pte;
2282	spinlock_t *ptl;
2283	int err = 0;
2284
2285	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2286	if (!pte)
2287		return -ENOMEM;
2288	arch_enter_lazy_mmu_mode();
2289	do {
2290		BUG_ON(!pte_none(*pte));
2291		if (!pfn_modify_allowed(pfn, prot)) {
2292			err = -EACCES;
2293			break;
2294		}
2295		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2296		pfn++;
2297	} while (pte++, addr += PAGE_SIZE, addr != end);
2298	arch_leave_lazy_mmu_mode();
2299	pte_unmap_unlock(mapped_pte, ptl);
2300	return err;
2301}
2302
2303static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2304			unsigned long addr, unsigned long end,
2305			unsigned long pfn, pgprot_t prot)
2306{
2307	pmd_t *pmd;
2308	unsigned long next;
2309	int err;
2310
2311	pfn -= addr >> PAGE_SHIFT;
2312	pmd = pmd_alloc(mm, pud, addr);
2313	if (!pmd)
2314		return -ENOMEM;
2315	VM_BUG_ON(pmd_trans_huge(*pmd));
2316	do {
2317		next = pmd_addr_end(addr, end);
2318		err = remap_pte_range(mm, pmd, addr, next,
2319				pfn + (addr >> PAGE_SHIFT), prot);
2320		if (err)
2321			return err;
2322	} while (pmd++, addr = next, addr != end);
2323	return 0;
2324}
2325
2326static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2327			unsigned long addr, unsigned long end,
2328			unsigned long pfn, pgprot_t prot)
2329{
2330	pud_t *pud;
2331	unsigned long next;
2332	int err;
2333
2334	pfn -= addr >> PAGE_SHIFT;
2335	pud = pud_alloc(mm, p4d, addr);
2336	if (!pud)
2337		return -ENOMEM;
2338	do {
2339		next = pud_addr_end(addr, end);
2340		err = remap_pmd_range(mm, pud, addr, next,
2341				pfn + (addr >> PAGE_SHIFT), prot);
2342		if (err)
2343			return err;
2344	} while (pud++, addr = next, addr != end);
2345	return 0;
2346}
2347
2348static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2349			unsigned long addr, unsigned long end,
2350			unsigned long pfn, pgprot_t prot)
2351{
2352	p4d_t *p4d;
2353	unsigned long next;
2354	int err;
2355
2356	pfn -= addr >> PAGE_SHIFT;
2357	p4d = p4d_alloc(mm, pgd, addr);
2358	if (!p4d)
2359		return -ENOMEM;
2360	do {
2361		next = p4d_addr_end(addr, end);
2362		err = remap_pud_range(mm, p4d, addr, next,
2363				pfn + (addr >> PAGE_SHIFT), prot);
2364		if (err)
2365			return err;
2366	} while (p4d++, addr = next, addr != end);
2367	return 0;
2368}
2369
2370/*
2371 * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2372 * must have pre-validated the caching bits of the pgprot_t.
2373 */
2374int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2375		unsigned long pfn, unsigned long size, pgprot_t prot)
2376{
2377	pgd_t *pgd;
2378	unsigned long next;
2379	unsigned long end = addr + PAGE_ALIGN(size);
2380	struct mm_struct *mm = vma->vm_mm;
 
2381	int err;
2382
2383	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2384		return -EINVAL;
2385
2386	/*
2387	 * Physically remapped pages are special. Tell the
2388	 * rest of the world about it:
2389	 *   VM_IO tells people not to look at these pages
2390	 *	(accesses can have side effects).
2391	 *   VM_PFNMAP tells the core MM that the base pages are just
2392	 *	raw PFN mappings, and do not have a "struct page" associated
2393	 *	with them.
2394	 *   VM_DONTEXPAND
2395	 *      Disable vma merging and expanding with mremap().
2396	 *   VM_DONTDUMP
2397	 *      Omit vma from core dump, even when VM_IO turned off.
2398	 *
2399	 * There's a horrible special case to handle copy-on-write
2400	 * behaviour that some programs depend on. We mark the "original"
2401	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2402	 * See vm_normal_page() for details.
2403	 */
2404	if (is_cow_mapping(vma->vm_flags)) {
2405		if (addr != vma->vm_start || end != vma->vm_end)
2406			return -EINVAL;
2407		vma->vm_pgoff = pfn;
2408	}
2409
 
 
 
 
2410	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2411
2412	BUG_ON(addr >= end);
2413	pfn -= addr >> PAGE_SHIFT;
2414	pgd = pgd_offset(mm, addr);
2415	flush_cache_range(vma, addr, end);
2416	do {
2417		next = pgd_addr_end(addr, end);
2418		err = remap_p4d_range(mm, pgd, addr, next,
2419				pfn + (addr >> PAGE_SHIFT), prot);
2420		if (err)
2421			return err;
2422	} while (pgd++, addr = next, addr != end);
2423
2424	return 0;
2425}
2426
2427/**
2428 * remap_pfn_range - remap kernel memory to userspace
2429 * @vma: user vma to map to
2430 * @addr: target page aligned user address to start at
2431 * @pfn: page frame number of kernel physical memory address
2432 * @size: size of mapping area
2433 * @prot: page protection flags for this mapping
2434 *
2435 * Note: this is only safe if the mm semaphore is held when called.
2436 *
2437 * Return: %0 on success, negative error code otherwise.
2438 */
2439int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2440		    unsigned long pfn, unsigned long size, pgprot_t prot)
2441{
2442	int err;
2443
2444	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2445	if (err)
2446		return -EINVAL;
2447
2448	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2449	if (err)
2450		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2451	return err;
2452}
2453EXPORT_SYMBOL(remap_pfn_range);
2454
2455/**
2456 * vm_iomap_memory - remap memory to userspace
2457 * @vma: user vma to map to
2458 * @start: start of the physical memory to be mapped
2459 * @len: size of area
2460 *
2461 * This is a simplified io_remap_pfn_range() for common driver use. The
2462 * driver just needs to give us the physical memory range to be mapped,
2463 * we'll figure out the rest from the vma information.
2464 *
2465 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2466 * whatever write-combining details or similar.
2467 *
2468 * Return: %0 on success, negative error code otherwise.
2469 */
2470int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2471{
2472	unsigned long vm_len, pfn, pages;
2473
2474	/* Check that the physical memory area passed in looks valid */
2475	if (start + len < start)
2476		return -EINVAL;
2477	/*
2478	 * You *really* shouldn't map things that aren't page-aligned,
2479	 * but we've historically allowed it because IO memory might
2480	 * just have smaller alignment.
2481	 */
2482	len += start & ~PAGE_MASK;
2483	pfn = start >> PAGE_SHIFT;
2484	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2485	if (pfn + pages < pfn)
2486		return -EINVAL;
2487
2488	/* We start the mapping 'vm_pgoff' pages into the area */
2489	if (vma->vm_pgoff > pages)
2490		return -EINVAL;
2491	pfn += vma->vm_pgoff;
2492	pages -= vma->vm_pgoff;
2493
2494	/* Can we fit all of the mapping? */
2495	vm_len = vma->vm_end - vma->vm_start;
2496	if (vm_len >> PAGE_SHIFT > pages)
2497		return -EINVAL;
2498
2499	/* Ok, let it rip */
2500	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2501}
2502EXPORT_SYMBOL(vm_iomap_memory);
2503
2504static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2505				     unsigned long addr, unsigned long end,
2506				     pte_fn_t fn, void *data, bool create,
2507				     pgtbl_mod_mask *mask)
2508{
2509	pte_t *pte, *mapped_pte;
2510	int err = 0;
2511	spinlock_t *ptl;
 
2512
2513	if (create) {
2514		mapped_pte = pte = (mm == &init_mm) ?
2515			pte_alloc_kernel_track(pmd, addr, mask) :
2516			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2517		if (!pte)
2518			return -ENOMEM;
2519	} else {
2520		mapped_pte = pte = (mm == &init_mm) ?
2521			pte_offset_kernel(pmd, addr) :
2522			pte_offset_map_lock(mm, pmd, addr, &ptl);
2523	}
2524
2525	BUG_ON(pmd_huge(*pmd));
2526
2527	arch_enter_lazy_mmu_mode();
2528
2529	if (fn) {
2530		do {
2531			if (create || !pte_none(*pte)) {
2532				err = fn(pte++, addr, data);
2533				if (err)
2534					break;
2535			}
2536		} while (addr += PAGE_SIZE, addr != end);
2537	}
2538	*mask |= PGTBL_PTE_MODIFIED;
2539
2540	arch_leave_lazy_mmu_mode();
2541
2542	if (mm != &init_mm)
2543		pte_unmap_unlock(mapped_pte, ptl);
2544	return err;
2545}
2546
2547static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2548				     unsigned long addr, unsigned long end,
2549				     pte_fn_t fn, void *data, bool create,
2550				     pgtbl_mod_mask *mask)
2551{
2552	pmd_t *pmd;
2553	unsigned long next;
2554	int err = 0;
2555
2556	BUG_ON(pud_huge(*pud));
2557
2558	if (create) {
2559		pmd = pmd_alloc_track(mm, pud, addr, mask);
2560		if (!pmd)
2561			return -ENOMEM;
2562	} else {
2563		pmd = pmd_offset(pud, addr);
2564	}
2565	do {
2566		next = pmd_addr_end(addr, end);
2567		if (pmd_none(*pmd) && !create)
2568			continue;
2569		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2570			return -EINVAL;
2571		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2572			if (!create)
2573				continue;
2574			pmd_clear_bad(pmd);
2575		}
2576		err = apply_to_pte_range(mm, pmd, addr, next,
2577					 fn, data, create, mask);
2578		if (err)
2579			break;
2580	} while (pmd++, addr = next, addr != end);
2581
2582	return err;
2583}
2584
2585static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2586				     unsigned long addr, unsigned long end,
2587				     pte_fn_t fn, void *data, bool create,
2588				     pgtbl_mod_mask *mask)
2589{
2590	pud_t *pud;
2591	unsigned long next;
2592	int err = 0;
2593
2594	if (create) {
2595		pud = pud_alloc_track(mm, p4d, addr, mask);
2596		if (!pud)
2597			return -ENOMEM;
2598	} else {
2599		pud = pud_offset(p4d, addr);
2600	}
2601	do {
2602		next = pud_addr_end(addr, end);
2603		if (pud_none(*pud) && !create)
2604			continue;
2605		if (WARN_ON_ONCE(pud_leaf(*pud)))
2606			return -EINVAL;
2607		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2608			if (!create)
2609				continue;
2610			pud_clear_bad(pud);
2611		}
2612		err = apply_to_pmd_range(mm, pud, addr, next,
2613					 fn, data, create, mask);
2614		if (err)
2615			break;
2616	} while (pud++, addr = next, addr != end);
2617
2618	return err;
2619}
2620
2621static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2622				     unsigned long addr, unsigned long end,
2623				     pte_fn_t fn, void *data, bool create,
2624				     pgtbl_mod_mask *mask)
2625{
2626	p4d_t *p4d;
2627	unsigned long next;
2628	int err = 0;
2629
2630	if (create) {
2631		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2632		if (!p4d)
2633			return -ENOMEM;
2634	} else {
2635		p4d = p4d_offset(pgd, addr);
2636	}
2637	do {
2638		next = p4d_addr_end(addr, end);
2639		if (p4d_none(*p4d) && !create)
2640			continue;
2641		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2642			return -EINVAL;
2643		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2644			if (!create)
2645				continue;
2646			p4d_clear_bad(p4d);
2647		}
2648		err = apply_to_pud_range(mm, p4d, addr, next,
2649					 fn, data, create, mask);
2650		if (err)
2651			break;
2652	} while (p4d++, addr = next, addr != end);
2653
2654	return err;
2655}
2656
2657static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2658				 unsigned long size, pte_fn_t fn,
2659				 void *data, bool create)
2660{
2661	pgd_t *pgd;
2662	unsigned long start = addr, next;
2663	unsigned long end = addr + size;
2664	pgtbl_mod_mask mask = 0;
2665	int err = 0;
2666
2667	if (WARN_ON(addr >= end))
2668		return -EINVAL;
2669
2670	pgd = pgd_offset(mm, addr);
2671	do {
2672		next = pgd_addr_end(addr, end);
2673		if (pgd_none(*pgd) && !create)
2674			continue;
2675		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2676			return -EINVAL;
2677		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2678			if (!create)
2679				continue;
2680			pgd_clear_bad(pgd);
2681		}
2682		err = apply_to_p4d_range(mm, pgd, addr, next,
2683					 fn, data, create, &mask);
2684		if (err)
2685			break;
2686	} while (pgd++, addr = next, addr != end);
2687
2688	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2689		arch_sync_kernel_mappings(start, start + size);
2690
2691	return err;
2692}
2693
2694/*
2695 * Scan a region of virtual memory, filling in page tables as necessary
2696 * and calling a provided function on each leaf page table.
2697 */
2698int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2699			unsigned long size, pte_fn_t fn, void *data)
2700{
2701	return __apply_to_page_range(mm, addr, size, fn, data, true);
2702}
2703EXPORT_SYMBOL_GPL(apply_to_page_range);
2704
2705/*
2706 * Scan a region of virtual memory, calling a provided function on
2707 * each leaf page table where it exists.
2708 *
2709 * Unlike apply_to_page_range, this does _not_ fill in page tables
2710 * where they are absent.
2711 */
2712int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2713				 unsigned long size, pte_fn_t fn, void *data)
2714{
2715	return __apply_to_page_range(mm, addr, size, fn, data, false);
2716}
2717EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2718
2719/*
2720 * handle_pte_fault chooses page fault handler according to an entry which was
2721 * read non-atomically.  Before making any commitment, on those architectures
2722 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2723 * parts, do_swap_page must check under lock before unmapping the pte and
2724 * proceeding (but do_wp_page is only called after already making such a check;
2725 * and do_anonymous_page can safely check later on).
2726 */
2727static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2728				pte_t *page_table, pte_t orig_pte)
2729{
2730	int same = 1;
2731#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2732	if (sizeof(pte_t) > sizeof(unsigned long)) {
2733		spinlock_t *ptl = pte_lockptr(mm, pmd);
2734		spin_lock(ptl);
2735		same = pte_same(*page_table, orig_pte);
2736		spin_unlock(ptl);
2737	}
2738#endif
2739	pte_unmap(page_table);
2740	return same;
2741}
2742
2743static inline bool cow_user_page(struct page *dst, struct page *src,
2744				 struct vm_fault *vmf)
2745{
2746	bool ret;
2747	void *kaddr;
2748	void __user *uaddr;
2749	bool locked = false;
2750	struct vm_area_struct *vma = vmf->vma;
2751	struct mm_struct *mm = vma->vm_mm;
2752	unsigned long addr = vmf->address;
2753
2754	if (likely(src)) {
2755		copy_user_highpage(dst, src, addr, vma);
2756		return true;
2757	}
2758
2759	/*
2760	 * If the source page was a PFN mapping, we don't have
2761	 * a "struct page" for it. We do a best-effort copy by
2762	 * just copying from the original user address. If that
2763	 * fails, we just zero-fill it. Live with it.
2764	 */
2765	kaddr = kmap_atomic(dst);
2766	uaddr = (void __user *)(addr & PAGE_MASK);
2767
2768	/*
2769	 * On architectures with software "accessed" bits, we would
2770	 * take a double page fault, so mark it accessed here.
2771	 */
2772	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2773		pte_t entry;
2774
2775		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2776		locked = true;
2777		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2778			/*
2779			 * Other thread has already handled the fault
2780			 * and update local tlb only
2781			 */
2782			update_mmu_tlb(vma, addr, vmf->pte);
2783			ret = false;
2784			goto pte_unlock;
2785		}
2786
2787		entry = pte_mkyoung(vmf->orig_pte);
2788		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2789			update_mmu_cache(vma, addr, vmf->pte);
2790	}
2791
2792	/*
2793	 * This really shouldn't fail, because the page is there
2794	 * in the page tables. But it might just be unreadable,
2795	 * in which case we just give up and fill the result with
2796	 * zeroes.
2797	 */
2798	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2799		if (locked)
2800			goto warn;
2801
2802		/* Re-validate under PTL if the page is still mapped */
2803		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2804		locked = true;
2805		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2806			/* The PTE changed under us, update local tlb */
2807			update_mmu_tlb(vma, addr, vmf->pte);
2808			ret = false;
2809			goto pte_unlock;
2810		}
2811
2812		/*
2813		 * The same page can be mapped back since last copy attempt.
2814		 * Try to copy again under PTL.
 
 
2815		 */
2816		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2817			/*
2818			 * Give a warn in case there can be some obscure
2819			 * use-case
2820			 */
2821warn:
2822			WARN_ON_ONCE(1);
2823			clear_page(kaddr);
2824		}
2825	}
2826
2827	ret = true;
2828
2829pte_unlock:
2830	if (locked)
2831		pte_unmap_unlock(vmf->pte, vmf->ptl);
2832	kunmap_atomic(kaddr);
2833	flush_dcache_page(dst);
2834
2835	return ret;
2836}
2837
2838static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2839{
2840	struct file *vm_file = vma->vm_file;
2841
2842	if (vm_file)
2843		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2844
2845	/*
2846	 * Special mappings (e.g. VDSO) do not have any file so fake
2847	 * a default GFP_KERNEL for them.
2848	 */
2849	return GFP_KERNEL;
2850}
2851
2852/*
2853 * Notify the address space that the page is about to become writable so that
2854 * it can prohibit this or wait for the page to get into an appropriate state.
2855 *
2856 * We do this without the lock held, so that it can sleep if it needs to.
2857 */
2858static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2859{
2860	vm_fault_t ret;
2861	struct page *page = vmf->page;
2862	unsigned int old_flags = vmf->flags;
2863
2864	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2865
2866	if (vmf->vma->vm_file &&
2867	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2868		return VM_FAULT_SIGBUS;
2869
2870	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2871	/* Restore original flags so that caller is not surprised */
2872	vmf->flags = old_flags;
2873	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2874		return ret;
2875	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2876		lock_page(page);
2877		if (!page->mapping) {
2878			unlock_page(page);
2879			return 0; /* retry */
2880		}
2881		ret |= VM_FAULT_LOCKED;
2882	} else
2883		VM_BUG_ON_PAGE(!PageLocked(page), page);
2884	return ret;
2885}
2886
2887/*
2888 * Handle dirtying of a page in shared file mapping on a write fault.
2889 *
2890 * The function expects the page to be locked and unlocks it.
2891 */
2892static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
 
2893{
2894	struct vm_area_struct *vma = vmf->vma;
2895	struct address_space *mapping;
2896	struct page *page = vmf->page;
2897	bool dirtied;
2898	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2899
2900	dirtied = set_page_dirty(page);
2901	VM_BUG_ON_PAGE(PageAnon(page), page);
2902	/*
2903	 * Take a local copy of the address_space - page.mapping may be zeroed
2904	 * by truncate after unlock_page().   The address_space itself remains
2905	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2906	 * release semantics to prevent the compiler from undoing this copying.
2907	 */
2908	mapping = page_rmapping(page);
2909	unlock_page(page);
2910
2911	if (!page_mkwrite)
2912		file_update_time(vma->vm_file);
2913
2914	/*
2915	 * Throttle page dirtying rate down to writeback speed.
2916	 *
2917	 * mapping may be NULL here because some device drivers do not
2918	 * set page.mapping but still dirty their pages
2919	 *
2920	 * Drop the mmap_lock before waiting on IO, if we can. The file
2921	 * is pinning the mapping, as per above.
2922	 */
2923	if ((dirtied || page_mkwrite) && mapping) {
2924		struct file *fpin;
2925
2926		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
 
2927		balance_dirty_pages_ratelimited(mapping);
2928		if (fpin) {
2929			fput(fpin);
2930			return VM_FAULT_RETRY;
2931		}
2932	}
2933
2934	return 0;
 
2935}
2936
2937/*
2938 * Handle write page faults for pages that can be reused in the current vma
2939 *
2940 * This can happen either due to the mapping being with the VM_SHARED flag,
2941 * or due to us being the last reference standing to the page. In either
2942 * case, all we need to do here is to mark the page as writable and update
2943 * any related book-keeping.
2944 */
2945static inline void wp_page_reuse(struct vm_fault *vmf)
2946	__releases(vmf->ptl)
2947{
2948	struct vm_area_struct *vma = vmf->vma;
2949	struct page *page = vmf->page;
2950	pte_t entry;
2951	/*
2952	 * Clear the pages cpupid information as the existing
2953	 * information potentially belongs to a now completely
2954	 * unrelated process.
2955	 */
2956	if (page)
2957		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2958
2959	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2960	entry = pte_mkyoung(vmf->orig_pte);
2961	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2962	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2963		update_mmu_cache(vma, vmf->address, vmf->pte);
2964	pte_unmap_unlock(vmf->pte, vmf->ptl);
2965	count_vm_event(PGREUSE);
2966}
2967
2968/*
2969 * Handle the case of a page which we actually need to copy to a new page.
2970 *
2971 * Called with mmap_lock locked and the old page referenced, but
2972 * without the ptl held.
2973 *
2974 * High level logic flow:
2975 *
2976 * - Allocate a page, copy the content of the old page to the new one.
2977 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2978 * - Take the PTL. If the pte changed, bail out and release the allocated page
2979 * - If the pte is still the way we remember it, update the page table and all
2980 *   relevant references. This includes dropping the reference the page-table
2981 *   held to the old page, as well as updating the rmap.
2982 * - In any case, unlock the PTL and drop the reference we took to the old page.
2983 */
2984static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2985{
2986	struct vm_area_struct *vma = vmf->vma;
2987	struct mm_struct *mm = vma->vm_mm;
2988	struct page *old_page = vmf->page;
2989	struct page *new_page = NULL;
2990	pte_t entry;
2991	int page_copied = 0;
2992	struct mmu_notifier_range range;
 
 
2993
2994	if (unlikely(anon_vma_prepare(vma)))
2995		goto oom;
2996
2997	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2998		new_page = alloc_zeroed_user_highpage_movable(vma,
2999							      vmf->address);
3000		if (!new_page)
3001			goto oom;
3002	} else {
3003		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3004				vmf->address);
3005		if (!new_page)
3006			goto oom;
3007
3008		if (!cow_user_page(new_page, old_page, vmf)) {
3009			/*
3010			 * COW failed, if the fault was solved by other,
3011			 * it's fine. If not, userspace would re-fault on
3012			 * the same address and we will handle the fault
3013			 * from the second attempt.
3014			 */
3015			put_page(new_page);
3016			if (old_page)
3017				put_page(old_page);
3018			return 0;
3019		}
3020	}
3021
3022	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
3023		goto oom_free_new;
3024	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3025
3026	__SetPageUptodate(new_page);
3027
3028	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3029				vmf->address & PAGE_MASK,
3030				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3031	mmu_notifier_invalidate_range_start(&range);
3032
3033	/*
3034	 * Re-check the pte - we dropped the lock
3035	 */
3036	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3037	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3038		if (old_page) {
3039			if (!PageAnon(old_page)) {
3040				dec_mm_counter_fast(mm,
3041						mm_counter_file(old_page));
3042				inc_mm_counter_fast(mm, MM_ANONPAGES);
3043			}
3044		} else {
3045			inc_mm_counter_fast(mm, MM_ANONPAGES);
3046		}
3047		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3048		entry = mk_pte(new_page, vma->vm_page_prot);
3049		entry = pte_sw_mkyoung(entry);
3050		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3051
3052		/*
3053		 * Clear the pte entry and flush it first, before updating the
3054		 * pte with the new entry, to keep TLBs on different CPUs in
3055		 * sync. This code used to set the new PTE then flush TLBs, but
3056		 * that left a window where the new PTE could be loaded into
3057		 * some TLBs while the old PTE remains in others.
3058		 */
3059		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3060		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
3061		lru_cache_add_inactive_or_unevictable(new_page, vma);
 
3062		/*
3063		 * We call the notify macro here because, when using secondary
3064		 * mmu page tables (such as kvm shadow page tables), we want the
3065		 * new page to be mapped directly into the secondary page table.
3066		 */
3067		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3068		update_mmu_cache(vma, vmf->address, vmf->pte);
3069		if (old_page) {
3070			/*
3071			 * Only after switching the pte to the new page may
3072			 * we remove the mapcount here. Otherwise another
3073			 * process may come and find the rmap count decremented
3074			 * before the pte is switched to the new page, and
3075			 * "reuse" the old page writing into it while our pte
3076			 * here still points into it and can be read by other
3077			 * threads.
3078			 *
3079			 * The critical issue is to order this
3080			 * page_remove_rmap with the ptp_clear_flush above.
3081			 * Those stores are ordered by (if nothing else,)
3082			 * the barrier present in the atomic_add_negative
3083			 * in page_remove_rmap.
3084			 *
3085			 * Then the TLB flush in ptep_clear_flush ensures that
3086			 * no process can access the old page before the
3087			 * decremented mapcount is visible. And the old page
3088			 * cannot be reused until after the decremented
3089			 * mapcount is visible. So transitively, TLBs to
3090			 * old page will be flushed before it can be reused.
3091			 */
3092			page_remove_rmap(old_page, false);
3093		}
3094
3095		/* Free the old page.. */
3096		new_page = old_page;
3097		page_copied = 1;
3098	} else {
3099		update_mmu_tlb(vma, vmf->address, vmf->pte);
3100	}
3101
3102	if (new_page)
3103		put_page(new_page);
3104
3105	pte_unmap_unlock(vmf->pte, vmf->ptl);
3106	/*
3107	 * No need to double call mmu_notifier->invalidate_range() callback as
3108	 * the above ptep_clear_flush_notify() did already call it.
3109	 */
3110	mmu_notifier_invalidate_range_only_end(&range);
3111	if (old_page) {
3112		/*
3113		 * Don't let another task, with possibly unlocked vma,
3114		 * keep the mlocked page.
3115		 */
3116		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3117			lock_page(old_page);	/* LRU manipulation */
3118			if (PageMlocked(old_page))
3119				munlock_vma_page(old_page);
3120			unlock_page(old_page);
3121		}
3122		if (page_copied)
3123			free_swap_cache(old_page);
3124		put_page(old_page);
3125	}
3126	return page_copied ? VM_FAULT_WRITE : 0;
3127oom_free_new:
3128	put_page(new_page);
3129oom:
3130	if (old_page)
3131		put_page(old_page);
3132	return VM_FAULT_OOM;
3133}
3134
3135/**
3136 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3137 *			  writeable once the page is prepared
3138 *
3139 * @vmf: structure describing the fault
3140 *
3141 * This function handles all that is needed to finish a write page fault in a
3142 * shared mapping due to PTE being read-only once the mapped page is prepared.
3143 * It handles locking of PTE and modifying it.
 
 
3144 *
3145 * The function expects the page to be locked or other protection against
3146 * concurrent faults / writeback (such as DAX radix tree locks).
3147 *
3148 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3149 * we acquired PTE lock.
3150 */
3151vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3152{
3153	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3154	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3155				       &vmf->ptl);
3156	/*
3157	 * We might have raced with another page fault while we released the
3158	 * pte_offset_map_lock.
3159	 */
3160	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3161		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3162		pte_unmap_unlock(vmf->pte, vmf->ptl);
3163		return VM_FAULT_NOPAGE;
3164	}
3165	wp_page_reuse(vmf);
3166	return 0;
3167}
3168
3169/*
3170 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3171 * mapping
3172 */
3173static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3174{
3175	struct vm_area_struct *vma = vmf->vma;
3176
3177	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3178		vm_fault_t ret;
3179
3180		pte_unmap_unlock(vmf->pte, vmf->ptl);
3181		vmf->flags |= FAULT_FLAG_MKWRITE;
3182		ret = vma->vm_ops->pfn_mkwrite(vmf);
3183		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3184			return ret;
3185		return finish_mkwrite_fault(vmf);
3186	}
3187	wp_page_reuse(vmf);
3188	return VM_FAULT_WRITE;
3189}
3190
3191static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3192	__releases(vmf->ptl)
3193{
3194	struct vm_area_struct *vma = vmf->vma;
3195	vm_fault_t ret = VM_FAULT_WRITE;
3196
3197	get_page(vmf->page);
3198
3199	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3200		vm_fault_t tmp;
3201
3202		pte_unmap_unlock(vmf->pte, vmf->ptl);
3203		tmp = do_page_mkwrite(vmf);
3204		if (unlikely(!tmp || (tmp &
3205				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3206			put_page(vmf->page);
3207			return tmp;
3208		}
3209		tmp = finish_mkwrite_fault(vmf);
3210		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3211			unlock_page(vmf->page);
3212			put_page(vmf->page);
3213			return tmp;
3214		}
3215	} else {
3216		wp_page_reuse(vmf);
3217		lock_page(vmf->page);
3218	}
3219	ret |= fault_dirty_shared_page(vmf);
3220	put_page(vmf->page);
3221
3222	return ret;
3223}
3224
3225/*
3226 * This routine handles present pages, when users try to write
3227 * to a shared page. It is done by copying the page to a new address
3228 * and decrementing the shared-page counter for the old page.
3229 *
3230 * Note that this routine assumes that the protection checks have been
3231 * done by the caller (the low-level page fault routine in most cases).
3232 * Thus we can safely just mark it writable once we've done any necessary
3233 * COW.
3234 *
3235 * We also mark the page dirty at this point even though the page will
3236 * change only once the write actually happens. This avoids a few races,
3237 * and potentially makes it more efficient.
3238 *
3239 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3240 * but allow concurrent faults), with pte both mapped and locked.
3241 * We return with mmap_lock still held, but pte unmapped and unlocked.
3242 */
3243static vm_fault_t do_wp_page(struct vm_fault *vmf)
3244	__releases(vmf->ptl)
3245{
3246	struct vm_area_struct *vma = vmf->vma;
3247
3248	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3249		pte_unmap_unlock(vmf->pte, vmf->ptl);
3250		return handle_userfault(vmf, VM_UFFD_WP);
3251	}
3252
3253	/*
3254	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3255	 * is flushed in this case before copying.
3256	 */
3257	if (unlikely(userfaultfd_wp(vmf->vma) &&
3258		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3259		flush_tlb_page(vmf->vma, vmf->address);
3260
3261	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3262	if (!vmf->page) {
3263		/*
3264		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3265		 * VM_PFNMAP VMA.
3266		 *
3267		 * We should not cow pages in a shared writeable mapping.
3268		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3269		 */
3270		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3271				     (VM_WRITE|VM_SHARED))
3272			return wp_pfn_shared(vmf);
3273
3274		pte_unmap_unlock(vmf->pte, vmf->ptl);
3275		return wp_page_copy(vmf);
3276	}
3277
3278	/*
3279	 * Take out anonymous pages first, anonymous shared vmas are
3280	 * not dirty accountable.
3281	 */
3282	if (PageAnon(vmf->page)) {
3283		struct page *page = vmf->page;
3284
3285		/* PageKsm() doesn't necessarily raise the page refcount */
3286		if (PageKsm(page) || page_count(page) != 1)
3287			goto copy;
3288		if (!trylock_page(page))
3289			goto copy;
3290		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3291			unlock_page(page);
3292			goto copy;
 
 
 
 
3293		}
3294		/*
3295		 * Ok, we've got the only map reference, and the only
3296		 * page count reference, and the page is locked,
3297		 * it's dark out, and we're wearing sunglasses. Hit it.
3298		 */
3299		unlock_page(page);
3300		wp_page_reuse(vmf);
3301		return VM_FAULT_WRITE;
 
 
 
 
 
 
 
 
3302	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3303					(VM_WRITE|VM_SHARED))) {
3304		return wp_page_shared(vmf);
3305	}
3306copy:
3307	/*
3308	 * Ok, we need to copy. Oh, well..
3309	 */
3310	get_page(vmf->page);
3311
3312	pte_unmap_unlock(vmf->pte, vmf->ptl);
3313	return wp_page_copy(vmf);
3314}
3315
3316static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3317		unsigned long start_addr, unsigned long end_addr,
3318		struct zap_details *details)
3319{
3320	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3321}
3322
3323static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3324					    struct zap_details *details)
3325{
3326	struct vm_area_struct *vma;
3327	pgoff_t vba, vea, zba, zea;
3328
3329	vma_interval_tree_foreach(vma, root,
3330			details->first_index, details->last_index) {
3331
3332		vba = vma->vm_pgoff;
3333		vea = vba + vma_pages(vma) - 1;
3334		zba = details->first_index;
3335		if (zba < vba)
3336			zba = vba;
3337		zea = details->last_index;
3338		if (zea > vea)
3339			zea = vea;
3340
3341		unmap_mapping_range_vma(vma,
3342			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3343			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3344				details);
3345	}
3346}
3347
3348/**
3349 * unmap_mapping_page() - Unmap single page from processes.
3350 * @page: The locked page to be unmapped.
3351 *
3352 * Unmap this page from any userspace process which still has it mmaped.
3353 * Typically, for efficiency, the range of nearby pages has already been
3354 * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3355 * truncation or invalidation holds the lock on a page, it may find that
3356 * the page has been remapped again: and then uses unmap_mapping_page()
3357 * to unmap it finally.
3358 */
3359void unmap_mapping_page(struct page *page)
3360{
3361	struct address_space *mapping = page->mapping;
3362	struct zap_details details = { };
3363
3364	VM_BUG_ON(!PageLocked(page));
3365	VM_BUG_ON(PageTail(page));
3366
3367	details.check_mapping = mapping;
3368	details.first_index = page->index;
3369	details.last_index = page->index + thp_nr_pages(page) - 1;
3370	details.single_page = page;
3371
3372	i_mmap_lock_write(mapping);
3373	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3374		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3375	i_mmap_unlock_write(mapping);
3376}
3377
3378/**
3379 * unmap_mapping_pages() - Unmap pages from processes.
3380 * @mapping: The address space containing pages to be unmapped.
3381 * @start: Index of first page to be unmapped.
3382 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3383 * @even_cows: Whether to unmap even private COWed pages.
3384 *
3385 * Unmap the pages in this address space from any userspace process which
3386 * has them mmaped.  Generally, you want to remove COWed pages as well when
3387 * a file is being truncated, but not when invalidating pages from the page
3388 * cache.
3389 */
3390void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3391		pgoff_t nr, bool even_cows)
3392{
3393	struct zap_details details = { };
3394
3395	details.check_mapping = even_cows ? NULL : mapping;
3396	details.first_index = start;
3397	details.last_index = start + nr - 1;
3398	if (details.last_index < details.first_index)
3399		details.last_index = ULONG_MAX;
3400
3401	i_mmap_lock_write(mapping);
3402	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3403		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3404	i_mmap_unlock_write(mapping);
3405}
3406
3407/**
3408 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3409 * address_space corresponding to the specified byte range in the underlying
3410 * file.
3411 *
3412 * @mapping: the address space containing mmaps to be unmapped.
3413 * @holebegin: byte in first page to unmap, relative to the start of
3414 * the underlying file.  This will be rounded down to a PAGE_SIZE
3415 * boundary.  Note that this is different from truncate_pagecache(), which
3416 * must keep the partial page.  In contrast, we must get rid of
3417 * partial pages.
3418 * @holelen: size of prospective hole in bytes.  This will be rounded
3419 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3420 * end of the file.
3421 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3422 * but 0 when invalidating pagecache, don't throw away private data.
3423 */
3424void unmap_mapping_range(struct address_space *mapping,
3425		loff_t const holebegin, loff_t const holelen, int even_cows)
3426{
 
3427	pgoff_t hba = holebegin >> PAGE_SHIFT;
3428	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3429
3430	/* Check for overflow. */
3431	if (sizeof(holelen) > sizeof(hlen)) {
3432		long long holeend =
3433			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3434		if (holeend & ~(long long)ULONG_MAX)
3435			hlen = ULONG_MAX - hba + 1;
3436	}
3437
3438	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3439}
3440EXPORT_SYMBOL(unmap_mapping_range);
3441
3442/*
3443 * Restore a potential device exclusive pte to a working pte entry
3444 */
3445static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3446{
3447	struct page *page = vmf->page;
3448	struct vm_area_struct *vma = vmf->vma;
3449	struct mmu_notifier_range range;
3450
3451	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3452		return VM_FAULT_RETRY;
3453	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3454				vma->vm_mm, vmf->address & PAGE_MASK,
3455				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3456	mmu_notifier_invalidate_range_start(&range);
3457
3458	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3459				&vmf->ptl);
3460	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3461		restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3462
3463	pte_unmap_unlock(vmf->pte, vmf->ptl);
3464	unlock_page(page);
3465
3466	mmu_notifier_invalidate_range_end(&range);
3467	return 0;
 
 
3468}
 
3469
3470/*
3471 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3472 * but allow concurrent faults), and pte mapped but not yet locked.
3473 * We return with pte unmapped and unlocked.
3474 *
3475 * We return with the mmap_lock locked or unlocked in the same cases
3476 * as does filemap_fault().
3477 */
3478vm_fault_t do_swap_page(struct vm_fault *vmf)
3479{
3480	struct vm_area_struct *vma = vmf->vma;
3481	struct page *page = NULL, *swapcache;
3482	struct swap_info_struct *si = NULL;
3483	swp_entry_t entry;
3484	pte_t pte;
3485	int locked;
3486	int exclusive = 0;
3487	vm_fault_t ret = 0;
3488	void *shadow = NULL;
3489
3490	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3491		goto out;
3492
3493	entry = pte_to_swp_entry(vmf->orig_pte);
3494	if (unlikely(non_swap_entry(entry))) {
3495		if (is_migration_entry(entry)) {
3496			migration_entry_wait(vma->vm_mm, vmf->pmd,
3497					     vmf->address);
3498		} else if (is_device_exclusive_entry(entry)) {
3499			vmf->page = pfn_swap_entry_to_page(entry);
3500			ret = remove_device_exclusive_entry(vmf);
3501		} else if (is_device_private_entry(entry)) {
3502			vmf->page = pfn_swap_entry_to_page(entry);
3503			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3504		} else if (is_hwpoison_entry(entry)) {
3505			ret = VM_FAULT_HWPOISON;
3506		} else {
3507			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3508			ret = VM_FAULT_SIGBUS;
3509		}
3510		goto out;
3511	}
3512
3513	/* Prevent swapoff from happening to us. */
3514	si = get_swap_device(entry);
3515	if (unlikely(!si))
3516		goto out;
3517
3518	delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
3519	page = lookup_swap_cache(entry, vma, vmf->address);
3520	swapcache = page;
3521
3522	if (!page) {
3523		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3524		    __swap_count(entry) == 1) {
3525			/* skip swapcache */
3526			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3527							vmf->address);
3528			if (page) {
3529				__SetPageLocked(page);
3530				__SetPageSwapBacked(page);
3531
3532				if (mem_cgroup_swapin_charge_page(page,
3533					vma->vm_mm, GFP_KERNEL, entry)) {
3534					ret = VM_FAULT_OOM;
3535					goto out_page;
3536				}
3537				mem_cgroup_swapin_uncharge_swap(entry);
3538
3539				shadow = get_shadow_from_swap_cache(entry);
3540				if (shadow)
3541					workingset_refault(page, shadow);
3542
3543				lru_cache_add(page);
3544
3545				/* To provide entry to swap_readpage() */
3546				set_page_private(page, entry.val);
3547				swap_readpage(page, true);
3548				set_page_private(page, 0);
3549			}
3550		} else {
3551			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3552						vmf);
3553			swapcache = page;
3554		}
3555
3556		if (!page) {
3557			/*
3558			 * Back out if somebody else faulted in this pte
3559			 * while we released the pte lock.
3560			 */
3561			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3562					vmf->address, &vmf->ptl);
3563			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3564				ret = VM_FAULT_OOM;
3565			delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3566			goto unlock;
3567		}
3568
3569		/* Had to read the page from swap area: Major fault */
3570		ret = VM_FAULT_MAJOR;
3571		count_vm_event(PGMAJFAULT);
3572		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3573	} else if (PageHWPoison(page)) {
3574		/*
3575		 * hwpoisoned dirty swapcache pages are kept for killing
3576		 * owner processes (which may be unknown at hwpoison time)
3577		 */
3578		ret = VM_FAULT_HWPOISON;
3579		delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
 
3580		goto out_release;
3581	}
3582
 
3583	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3584
3585	delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
3586	if (!locked) {
3587		ret |= VM_FAULT_RETRY;
3588		goto out_release;
3589	}
3590
3591	/*
3592	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3593	 * release the swapcache from under us.  The page pin, and pte_same
3594	 * test below, are not enough to exclude that.  Even if it is still
3595	 * swapcache, we need to check that the page's swap has not changed.
3596	 */
3597	if (unlikely((!PageSwapCache(page) ||
3598			page_private(page) != entry.val)) && swapcache)
3599		goto out_page;
3600
3601	page = ksm_might_need_to_copy(page, vma, vmf->address);
3602	if (unlikely(!page)) {
3603		ret = VM_FAULT_OOM;
3604		page = swapcache;
3605		goto out_page;
3606	}
3607
3608	cgroup_throttle_swaprate(page, GFP_KERNEL);
 
 
 
 
3609
3610	/*
3611	 * Back out if somebody else already faulted in this pte.
3612	 */
3613	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3614			&vmf->ptl);
3615	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3616		goto out_nomap;
3617
3618	if (unlikely(!PageUptodate(page))) {
3619		ret = VM_FAULT_SIGBUS;
3620		goto out_nomap;
3621	}
3622
3623	/*
3624	 * The page isn't present yet, go ahead with the fault.
3625	 *
3626	 * Be careful about the sequence of operations here.
3627	 * To get its accounting right, reuse_swap_page() must be called
3628	 * while the page is counted on swap but not yet in mapcount i.e.
3629	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3630	 * must be called after the swap_free(), or it will never succeed.
3631	 */
3632
3633	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3634	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3635	pte = mk_pte(page, vma->vm_page_prot);
3636	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3637		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3638		vmf->flags &= ~FAULT_FLAG_WRITE;
3639		ret |= VM_FAULT_WRITE;
3640		exclusive = RMAP_EXCLUSIVE;
3641	}
3642	flush_icache_page(vma, page);
3643	if (pte_swp_soft_dirty(vmf->orig_pte))
3644		pte = pte_mksoft_dirty(pte);
3645	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3646		pte = pte_mkuffd_wp(pte);
3647		pte = pte_wrprotect(pte);
3648	}
3649	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3650	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3651	vmf->orig_pte = pte;
3652
3653	/* ksm created a completely new copy */
3654	if (unlikely(page != swapcache && swapcache)) {
3655		page_add_new_anon_rmap(page, vma, vmf->address, false);
3656		lru_cache_add_inactive_or_unevictable(page, vma);
3657	} else {
3658		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
 
 
 
 
 
 
3659	}
3660
3661	swap_free(entry);
3662	if (mem_cgroup_swap_full(page) ||
3663	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3664		try_to_free_swap(page);
3665	unlock_page(page);
3666	if (page != swapcache && swapcache) {
3667		/*
3668		 * Hold the lock to avoid the swap entry to be reused
3669		 * until we take the PT lock for the pte_same() check
3670		 * (to avoid false positives from pte_same). For
3671		 * further safety release the lock after the swap_free
3672		 * so that the swap count won't change under a
3673		 * parallel locked swapcache.
3674		 */
3675		unlock_page(swapcache);
3676		put_page(swapcache);
3677	}
3678
3679	if (vmf->flags & FAULT_FLAG_WRITE) {
3680		ret |= do_wp_page(vmf);
3681		if (ret & VM_FAULT_ERROR)
3682			ret &= VM_FAULT_ERROR;
3683		goto out;
3684	}
3685
3686	/* No need to invalidate - it was non-present before */
3687	update_mmu_cache(vma, vmf->address, vmf->pte);
3688unlock:
3689	pte_unmap_unlock(vmf->pte, vmf->ptl);
3690out:
3691	if (si)
3692		put_swap_device(si);
3693	return ret;
3694out_nomap:
 
3695	pte_unmap_unlock(vmf->pte, vmf->ptl);
3696out_page:
3697	unlock_page(page);
3698out_release:
3699	put_page(page);
3700	if (page != swapcache && swapcache) {
3701		unlock_page(swapcache);
3702		put_page(swapcache);
3703	}
3704	if (si)
3705		put_swap_device(si);
3706	return ret;
3707}
3708
3709/*
3710 * We enter with non-exclusive mmap_lock (to exclude vma changes,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3711 * but allow concurrent faults), and pte mapped but not yet locked.
3712 * We return with mmap_lock still held, but pte unmapped and unlocked.
3713 */
3714static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3715{
3716	struct vm_area_struct *vma = vmf->vma;
 
3717	struct page *page;
3718	vm_fault_t ret = 0;
3719	pte_t entry;
3720
3721	/* File mapping without ->vm_ops ? */
3722	if (vma->vm_flags & VM_SHARED)
3723		return VM_FAULT_SIGBUS;
3724
 
 
 
 
3725	/*
3726	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3727	 * pte_offset_map() on pmds where a huge pmd might be created
3728	 * from a different thread.
3729	 *
3730	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3731	 * parallel threads are excluded by other means.
3732	 *
3733	 * Here we only have mmap_read_lock(mm).
3734	 */
3735	if (pte_alloc(vma->vm_mm, vmf->pmd))
3736		return VM_FAULT_OOM;
3737
3738	/* See comment in handle_pte_fault() */
3739	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3740		return 0;
3741
3742	/* Use the zero-page for reads */
3743	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3744			!mm_forbids_zeropage(vma->vm_mm)) {
3745		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3746						vma->vm_page_prot));
3747		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3748				vmf->address, &vmf->ptl);
3749		if (!pte_none(*vmf->pte)) {
3750			update_mmu_tlb(vma, vmf->address, vmf->pte);
3751			goto unlock;
3752		}
3753		ret = check_stable_address_space(vma->vm_mm);
3754		if (ret)
3755			goto unlock;
3756		/* Deliver the page fault to userland, check inside PT lock */
3757		if (userfaultfd_missing(vma)) {
3758			pte_unmap_unlock(vmf->pte, vmf->ptl);
3759			return handle_userfault(vmf, VM_UFFD_MISSING);
3760		}
3761		goto setpte;
3762	}
3763
3764	/* Allocate our own private page. */
3765	if (unlikely(anon_vma_prepare(vma)))
3766		goto oom;
3767	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3768	if (!page)
3769		goto oom;
3770
3771	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3772		goto oom_free_page;
3773	cgroup_throttle_swaprate(page, GFP_KERNEL);
3774
3775	/*
3776	 * The memory barrier inside __SetPageUptodate makes sure that
3777	 * preceding stores to the page contents become visible before
3778	 * the set_pte_at() write.
3779	 */
3780	__SetPageUptodate(page);
3781
3782	entry = mk_pte(page, vma->vm_page_prot);
3783	entry = pte_sw_mkyoung(entry);
3784	if (vma->vm_flags & VM_WRITE)
3785		entry = pte_mkwrite(pte_mkdirty(entry));
3786
3787	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3788			&vmf->ptl);
3789	if (!pte_none(*vmf->pte)) {
3790		update_mmu_cache(vma, vmf->address, vmf->pte);
3791		goto release;
3792	}
3793
3794	ret = check_stable_address_space(vma->vm_mm);
3795	if (ret)
3796		goto release;
3797
3798	/* Deliver the page fault to userland, check inside PT lock */
3799	if (userfaultfd_missing(vma)) {
3800		pte_unmap_unlock(vmf->pte, vmf->ptl);
 
3801		put_page(page);
3802		return handle_userfault(vmf, VM_UFFD_MISSING);
3803	}
3804
3805	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3806	page_add_new_anon_rmap(page, vma, vmf->address, false);
3807	lru_cache_add_inactive_or_unevictable(page, vma);
 
3808setpte:
3809	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3810
3811	/* No need to invalidate - it was non-present before */
3812	update_mmu_cache(vma, vmf->address, vmf->pte);
3813unlock:
3814	pte_unmap_unlock(vmf->pte, vmf->ptl);
3815	return ret;
3816release:
 
3817	put_page(page);
3818	goto unlock;
3819oom_free_page:
3820	put_page(page);
3821oom:
3822	return VM_FAULT_OOM;
3823}
3824
3825/*
3826 * The mmap_lock must have been held on entry, and may have been
3827 * released depending on flags and vma->vm_ops->fault() return value.
3828 * See filemap_fault() and __lock_page_retry().
3829 */
3830static vm_fault_t __do_fault(struct vm_fault *vmf)
3831{
3832	struct vm_area_struct *vma = vmf->vma;
3833	vm_fault_t ret;
3834
3835	/*
3836	 * Preallocate pte before we take page_lock because this might lead to
3837	 * deadlocks for memcg reclaim which waits for pages under writeback:
3838	 *				lock_page(A)
3839	 *				SetPageWriteback(A)
3840	 *				unlock_page(A)
3841	 * lock_page(B)
3842	 *				lock_page(B)
3843	 * pte_alloc_one
3844	 *   shrink_page_list
3845	 *     wait_on_page_writeback(A)
3846	 *				SetPageWriteback(B)
3847	 *				unlock_page(B)
3848	 *				# flush A, B to clear the writeback
3849	 */
3850	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3851		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3852		if (!vmf->prealloc_pte)
3853			return VM_FAULT_OOM;
3854		smp_wmb(); /* See comment in __pte_alloc() */
3855	}
3856
3857	ret = vma->vm_ops->fault(vmf);
3858	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3859			    VM_FAULT_DONE_COW)))
3860		return ret;
3861
3862	if (unlikely(PageHWPoison(vmf->page))) {
3863		if (ret & VM_FAULT_LOCKED)
3864			unlock_page(vmf->page);
3865		put_page(vmf->page);
3866		vmf->page = NULL;
3867		return VM_FAULT_HWPOISON;
3868	}
3869
3870	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3871		lock_page(vmf->page);
3872	else
3873		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3874
3875	return ret;
3876}
3877
3878#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3879static void deposit_prealloc_pte(struct vm_fault *vmf)
3880{
3881	struct vm_area_struct *vma = vmf->vma;
3882
3883	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3884	/*
3885	 * We are going to consume the prealloc table,
3886	 * count that as nr_ptes.
3887	 */
3888	mm_inc_nr_ptes(vma->vm_mm);
3889	vmf->prealloc_pte = NULL;
3890}
3891
3892vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3893{
3894	struct vm_area_struct *vma = vmf->vma;
3895	bool write = vmf->flags & FAULT_FLAG_WRITE;
3896	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3897	pmd_t entry;
3898	int i;
3899	vm_fault_t ret = VM_FAULT_FALLBACK;
3900
3901	if (!transhuge_vma_suitable(vma, haddr))
3902		return ret;
3903
 
3904	page = compound_head(page);
3905	if (compound_order(page) != HPAGE_PMD_ORDER)
3906		return ret;
3907
3908	/*
3909	 * Archs like ppc64 need additional space to store information
3910	 * related to pte entry. Use the preallocated table for that.
3911	 */
3912	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3913		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3914		if (!vmf->prealloc_pte)
3915			return VM_FAULT_OOM;
3916		smp_wmb(); /* See comment in __pte_alloc() */
3917	}
3918
3919	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3920	if (unlikely(!pmd_none(*vmf->pmd)))
3921		goto out;
3922
3923	for (i = 0; i < HPAGE_PMD_NR; i++)
3924		flush_icache_page(vma, page + i);
3925
3926	entry = mk_huge_pmd(page, vma->vm_page_prot);
3927	if (write)
3928		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3929
3930	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3931	page_add_file_rmap(page, true);
3932	/*
3933	 * deposit and withdraw with pmd lock held
3934	 */
3935	if (arch_needs_pgtable_deposit())
3936		deposit_prealloc_pte(vmf);
3937
3938	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3939
3940	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3941
3942	/* fault is handled */
3943	ret = 0;
3944	count_vm_event(THP_FILE_MAPPED);
3945out:
3946	spin_unlock(vmf->ptl);
3947	return ret;
3948}
3949#else
3950vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3951{
3952	return VM_FAULT_FALLBACK;
 
3953}
3954#endif
3955
3956void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3957{
3958	struct vm_area_struct *vma = vmf->vma;
3959	bool write = vmf->flags & FAULT_FLAG_WRITE;
3960	bool prefault = vmf->address != addr;
3961	pte_t entry;
 
3962
3963	flush_icache_page(vma, page);
3964	entry = mk_pte(page, vma->vm_page_prot);
 
 
3965
3966	if (prefault && arch_wants_old_prefaulted_pte())
3967		entry = pte_mkold(entry);
3968	else
3969		entry = pte_sw_mkyoung(entry);
 
 
 
 
 
 
3970
 
 
 
 
 
 
3971	if (write)
3972		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3973	/* copy-on-write page */
3974	if (write && !(vma->vm_flags & VM_SHARED)) {
3975		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3976		page_add_new_anon_rmap(page, vma, addr, false);
3977		lru_cache_add_inactive_or_unevictable(page, vma);
 
3978	} else {
3979		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3980		page_add_file_rmap(page, false);
3981	}
3982	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
 
 
 
 
 
3983}
3984
 
3985/**
3986 * finish_fault - finish page fault once we have prepared the page to fault
3987 *
3988 * @vmf: structure describing the fault
3989 *
3990 * This function handles all that is needed to finish a page fault once the
3991 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3992 * given page, adds reverse page mapping, handles memcg charges and LRU
3993 * addition.
 
3994 *
3995 * The function expects the page to be locked and on success it consumes a
3996 * reference of a page being mapped (for the PTE which maps it).
3997 *
3998 * Return: %0 on success, %VM_FAULT_ code in case of error.
3999 */
4000vm_fault_t finish_fault(struct vm_fault *vmf)
4001{
4002	struct vm_area_struct *vma = vmf->vma;
4003	struct page *page;
4004	vm_fault_t ret;
4005
4006	/* Did we COW the page? */
4007	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
 
4008		page = vmf->cow_page;
4009	else
4010		page = vmf->page;
4011
4012	/*
4013	 * check even for read faults because we might have lost our CoWed
4014	 * page
4015	 */
4016	if (!(vma->vm_flags & VM_SHARED)) {
4017		ret = check_stable_address_space(vma->vm_mm);
4018		if (ret)
4019			return ret;
4020	}
4021
4022	if (pmd_none(*vmf->pmd)) {
4023		if (PageTransCompound(page)) {
4024			ret = do_set_pmd(vmf, page);
4025			if (ret != VM_FAULT_FALLBACK)
4026				return ret;
4027		}
4028
4029		if (vmf->prealloc_pte) {
4030			vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4031			if (likely(pmd_none(*vmf->pmd))) {
4032				mm_inc_nr_ptes(vma->vm_mm);
4033				pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4034				vmf->prealloc_pte = NULL;
4035			}
4036			spin_unlock(vmf->ptl);
4037		} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
4038			return VM_FAULT_OOM;
4039		}
4040	}
4041
4042	/* See comment in handle_pte_fault() */
4043	if (pmd_devmap_trans_unstable(vmf->pmd))
4044		return 0;
4045
4046	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4047				      vmf->address, &vmf->ptl);
4048	ret = 0;
4049	/* Re-check under ptl */
4050	if (likely(pte_none(*vmf->pte)))
4051		do_set_pte(vmf, page, vmf->address);
4052	else
4053		ret = VM_FAULT_NOPAGE;
4054
4055	update_mmu_tlb(vma, vmf->address, vmf->pte);
4056	pte_unmap_unlock(vmf->pte, vmf->ptl);
4057	return ret;
4058}
4059
4060static unsigned long fault_around_bytes __read_mostly =
4061	rounddown_pow_of_two(65536);
4062
4063#ifdef CONFIG_DEBUG_FS
4064static int fault_around_bytes_get(void *data, u64 *val)
4065{
4066	*val = fault_around_bytes;
4067	return 0;
4068}
4069
4070/*
4071 * fault_around_bytes must be rounded down to the nearest page order as it's
4072 * what do_fault_around() expects to see.
 
4073 */
4074static int fault_around_bytes_set(void *data, u64 val)
4075{
4076	if (val / PAGE_SIZE > PTRS_PER_PTE)
4077		return -EINVAL;
4078	if (val > PAGE_SIZE)
4079		fault_around_bytes = rounddown_pow_of_two(val);
4080	else
4081		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4082	return 0;
4083}
4084DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4085		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4086
4087static int __init fault_around_debugfs(void)
4088{
4089	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4090				   &fault_around_bytes_fops);
 
 
 
 
4091	return 0;
4092}
4093late_initcall(fault_around_debugfs);
4094#endif
4095
4096/*
4097 * do_fault_around() tries to map few pages around the fault address. The hope
4098 * is that the pages will be needed soon and this will lower the number of
4099 * faults to handle.
4100 *
4101 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4102 * not ready to be mapped: not up-to-date, locked, etc.
4103 *
4104 * This function is called with the page table lock taken. In the split ptlock
4105 * case the page table lock only protects only those entries which belong to
4106 * the page table corresponding to the fault address.
4107 *
4108 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4109 * only once.
4110 *
4111 * fault_around_bytes defines how many bytes we'll try to map.
4112 * do_fault_around() expects it to be set to a power of two less than or equal
4113 * to PTRS_PER_PTE.
4114 *
4115 * The virtual address of the area that we map is naturally aligned to
4116 * fault_around_bytes rounded down to the machine page size
4117 * (and therefore to page order).  This way it's easier to guarantee
4118 * that we don't cross page table boundaries.
4119 */
4120static vm_fault_t do_fault_around(struct vm_fault *vmf)
4121{
4122	unsigned long address = vmf->address, nr_pages, mask;
4123	pgoff_t start_pgoff = vmf->pgoff;
4124	pgoff_t end_pgoff;
4125	int off;
4126
4127	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4128	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4129
4130	address = max(address & mask, vmf->vma->vm_start);
4131	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4132	start_pgoff -= off;
4133
4134	/*
4135	 *  end_pgoff is either the end of the page table, the end of
4136	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4137	 */
4138	end_pgoff = start_pgoff -
4139		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4140		PTRS_PER_PTE - 1;
4141	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4142			start_pgoff + nr_pages - 1);
4143
4144	if (pmd_none(*vmf->pmd)) {
4145		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
 
4146		if (!vmf->prealloc_pte)
4147			return VM_FAULT_OOM;
4148		smp_wmb(); /* See comment in __pte_alloc() */
4149	}
4150
4151	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4152}
4153
4154static vm_fault_t do_read_fault(struct vm_fault *vmf)
4155{
4156	struct vm_area_struct *vma = vmf->vma;
4157	vm_fault_t ret = 0;
4158
4159	/*
4160	 * Let's call ->map_pages() first and use ->fault() as fallback
4161	 * if page by the offset is not ready to be mapped (cold cache or
4162	 * something).
4163	 */
4164	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4165		if (likely(!userfaultfd_minor(vmf->vma))) {
4166			ret = do_fault_around(vmf);
4167			if (ret)
4168				return ret;
4169		}
4170	}
4171
4172	ret = __do_fault(vmf);
4173	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4174		return ret;
4175
4176	ret |= finish_fault(vmf);
4177	unlock_page(vmf->page);
4178	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4179		put_page(vmf->page);
4180	return ret;
4181}
4182
4183static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4184{
4185	struct vm_area_struct *vma = vmf->vma;
4186	vm_fault_t ret;
4187
4188	if (unlikely(anon_vma_prepare(vma)))
4189		return VM_FAULT_OOM;
4190
4191	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4192	if (!vmf->cow_page)
4193		return VM_FAULT_OOM;
4194
4195	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
 
4196		put_page(vmf->cow_page);
4197		return VM_FAULT_OOM;
4198	}
4199	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4200
4201	ret = __do_fault(vmf);
4202	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4203		goto uncharge_out;
4204	if (ret & VM_FAULT_DONE_COW)
4205		return ret;
4206
4207	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4208	__SetPageUptodate(vmf->cow_page);
4209
4210	ret |= finish_fault(vmf);
4211	unlock_page(vmf->page);
4212	put_page(vmf->page);
4213	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4214		goto uncharge_out;
4215	return ret;
4216uncharge_out:
 
4217	put_page(vmf->cow_page);
4218	return ret;
4219}
4220
4221static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4222{
4223	struct vm_area_struct *vma = vmf->vma;
4224	vm_fault_t ret, tmp;
4225
4226	ret = __do_fault(vmf);
4227	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4228		return ret;
4229
4230	/*
4231	 * Check if the backing address space wants to know that the page is
4232	 * about to become writable
4233	 */
4234	if (vma->vm_ops->page_mkwrite) {
4235		unlock_page(vmf->page);
4236		tmp = do_page_mkwrite(vmf);
4237		if (unlikely(!tmp ||
4238				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4239			put_page(vmf->page);
4240			return tmp;
4241		}
4242	}
4243
4244	ret |= finish_fault(vmf);
4245	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4246					VM_FAULT_RETRY))) {
4247		unlock_page(vmf->page);
4248		put_page(vmf->page);
4249		return ret;
4250	}
4251
4252	ret |= fault_dirty_shared_page(vmf);
4253	return ret;
4254}
4255
4256/*
4257 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4258 * but allow concurrent faults).
4259 * The mmap_lock may have been released depending on flags and our
4260 * return value.  See filemap_fault() and __lock_page_or_retry().
4261 * If mmap_lock is released, vma may become invalid (for example
4262 * by other thread calling munmap()).
4263 */
4264static vm_fault_t do_fault(struct vm_fault *vmf)
4265{
4266	struct vm_area_struct *vma = vmf->vma;
4267	struct mm_struct *vm_mm = vma->vm_mm;
4268	vm_fault_t ret;
4269
4270	/*
4271	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4272	 */
4273	if (!vma->vm_ops->fault) {
4274		/*
4275		 * If we find a migration pmd entry or a none pmd entry, which
4276		 * should never happen, return SIGBUS
4277		 */
4278		if (unlikely(!pmd_present(*vmf->pmd)))
4279			ret = VM_FAULT_SIGBUS;
4280		else {
4281			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4282						       vmf->pmd,
4283						       vmf->address,
4284						       &vmf->ptl);
4285			/*
4286			 * Make sure this is not a temporary clearing of pte
4287			 * by holding ptl and checking again. A R/M/W update
4288			 * of pte involves: take ptl, clearing the pte so that
4289			 * we don't have concurrent modification by hardware
4290			 * followed by an update.
4291			 */
4292			if (unlikely(pte_none(*vmf->pte)))
4293				ret = VM_FAULT_SIGBUS;
4294			else
4295				ret = VM_FAULT_NOPAGE;
4296
4297			pte_unmap_unlock(vmf->pte, vmf->ptl);
4298		}
4299	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
 
4300		ret = do_read_fault(vmf);
4301	else if (!(vma->vm_flags & VM_SHARED))
4302		ret = do_cow_fault(vmf);
4303	else
4304		ret = do_shared_fault(vmf);
4305
4306	/* preallocated pagetable is unused: free it */
4307	if (vmf->prealloc_pte) {
4308		pte_free(vm_mm, vmf->prealloc_pte);
4309		vmf->prealloc_pte = NULL;
4310	}
4311	return ret;
4312}
4313
4314int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4315		      unsigned long addr, int page_nid, int *flags)
 
4316{
4317	get_page(page);
4318
4319	count_vm_numa_event(NUMA_HINT_FAULTS);
4320	if (page_nid == numa_node_id()) {
4321		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4322		*flags |= TNF_FAULT_LOCAL;
4323	}
4324
4325	return mpol_misplaced(page, vma, addr);
4326}
4327
4328static vm_fault_t do_numa_page(struct vm_fault *vmf)
4329{
4330	struct vm_area_struct *vma = vmf->vma;
4331	struct page *page = NULL;
4332	int page_nid = NUMA_NO_NODE;
4333	int last_cpupid;
4334	int target_nid;
4335	pte_t pte, old_pte;
4336	bool was_writable = pte_savedwrite(vmf->orig_pte);
 
4337	int flags = 0;
4338
4339	/*
4340	 * The "pte" at this point cannot be used safely without
4341	 * validation through pte_unmap_same(). It's of NUMA type but
4342	 * the pfn may be screwed if the read is non atomic.
4343	 */
 
 
 
 
4344	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4345	spin_lock(vmf->ptl);
4346	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4347		pte_unmap_unlock(vmf->pte, vmf->ptl);
4348		goto out;
4349	}
4350
4351	/* Get the normal PTE  */
4352	old_pte = ptep_get(vmf->pte);
4353	pte = pte_modify(old_pte, vma->vm_page_prot);
 
 
 
 
4354
4355	page = vm_normal_page(vma, vmf->address, pte);
4356	if (!page)
4357		goto out_map;
 
 
4358
4359	/* TODO: handle PTE-mapped THP */
4360	if (PageCompound(page))
4361		goto out_map;
 
 
4362
4363	/*
4364	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4365	 * much anyway since they can be in shared cache state. This misses
4366	 * the case where a mapping is writable but the process never writes
4367	 * to it but pte_write gets cleared during protection updates and
4368	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4369	 * background writeback, dirty balancing and application behaviour.
4370	 */
4371	if (!was_writable)
4372		flags |= TNF_NO_GROUP;
4373
4374	/*
4375	 * Flag if the page is shared between multiple address spaces. This
4376	 * is later used when determining whether to group tasks together
4377	 */
4378	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4379		flags |= TNF_SHARED;
4380
4381	last_cpupid = page_cpupid_last(page);
4382	page_nid = page_to_nid(page);
4383	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4384			&flags);
4385	if (target_nid == NUMA_NO_NODE) {
 
4386		put_page(page);
4387		goto out_map;
4388	}
4389	pte_unmap_unlock(vmf->pte, vmf->ptl);
4390
4391	/* Migrate to the requested node */
4392	if (migrate_misplaced_page(page, vma, target_nid)) {
 
4393		page_nid = target_nid;
4394		flags |= TNF_MIGRATED;
4395	} else {
4396		flags |= TNF_MIGRATE_FAIL;
4397		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4398		spin_lock(vmf->ptl);
4399		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4400			pte_unmap_unlock(vmf->pte, vmf->ptl);
4401			goto out;
4402		}
4403		goto out_map;
4404	}
4405
4406out:
4407	if (page_nid != NUMA_NO_NODE)
4408		task_numa_fault(last_cpupid, page_nid, 1, flags);
4409	return 0;
4410out_map:
4411	/*
4412	 * Make it present again, depending on how arch implements
4413	 * non-accessible ptes, some can allow access by kernel mode.
4414	 */
4415	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4416	pte = pte_modify(old_pte, vma->vm_page_prot);
4417	pte = pte_mkyoung(pte);
4418	if (was_writable)
4419		pte = pte_mkwrite(pte);
4420	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4421	update_mmu_cache(vma, vmf->address, vmf->pte);
4422	pte_unmap_unlock(vmf->pte, vmf->ptl);
4423	goto out;
4424}
4425
4426static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4427{
4428	if (vma_is_anonymous(vmf->vma))
 
4429		return do_huge_pmd_anonymous_page(vmf);
4430	if (vmf->vma->vm_ops->huge_fault)
4431		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
 
4432	return VM_FAULT_FALLBACK;
4433}
4434
4435/* `inline' is required to avoid gcc 4.1.2 build error */
4436static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4437{
4438	if (vma_is_anonymous(vmf->vma)) {
4439		if (userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4440			return handle_userfault(vmf, VM_UFFD_WP);
4441		return do_huge_pmd_wp_page(vmf);
4442	}
4443	if (vmf->vma->vm_ops->huge_fault) {
4444		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4445
4446		if (!(ret & VM_FAULT_FALLBACK))
4447			return ret;
4448	}
4449
4450	/* COW or write-notify handled on pte level: split pmd. */
 
4451	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4452
4453	return VM_FAULT_FALLBACK;
4454}
4455
4456static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4457{
4458#if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4459	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4460	/* No support for anonymous transparent PUD pages yet */
4461	if (vma_is_anonymous(vmf->vma))
4462		goto split;
4463	if (vmf->vma->vm_ops->huge_fault) {
4464		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4465
4466		if (!(ret & VM_FAULT_FALLBACK))
4467			return ret;
4468	}
4469split:
4470	/* COW or write-notify not handled on PUD level: split pud.*/
4471	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4472#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4473	return VM_FAULT_FALLBACK;
4474}
4475
4476static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4477{
4478#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4479	/* No support for anonymous transparent PUD pages yet */
4480	if (vma_is_anonymous(vmf->vma))
4481		return VM_FAULT_FALLBACK;
4482	if (vmf->vma->vm_ops->huge_fault)
4483		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4484#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4485	return VM_FAULT_FALLBACK;
4486}
4487
4488/*
4489 * These routines also need to handle stuff like marking pages dirty
4490 * and/or accessed for architectures that don't do it in hardware (most
4491 * RISC architectures).  The early dirtying is also good on the i386.
4492 *
4493 * There is also a hook called "update_mmu_cache()" that architectures
4494 * with external mmu caches can use to update those (ie the Sparc or
4495 * PowerPC hashed page tables that act as extended TLBs).
4496 *
4497 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4498 * concurrent faults).
4499 *
4500 * The mmap_lock may have been released depending on flags and our return value.
4501 * See filemap_fault() and __lock_page_or_retry().
4502 */
4503static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4504{
4505	pte_t entry;
4506
4507	if (unlikely(pmd_none(*vmf->pmd))) {
4508		/*
4509		 * Leave __pte_alloc() until later: because vm_ops->fault may
4510		 * want to allocate huge page, and if we expose page table
4511		 * for an instant, it will be difficult to retract from
4512		 * concurrent faults and from rmap lookups.
4513		 */
4514		vmf->pte = NULL;
4515	} else {
4516		/*
4517		 * If a huge pmd materialized under us just retry later.  Use
4518		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4519		 * of pmd_trans_huge() to ensure the pmd didn't become
4520		 * pmd_trans_huge under us and then back to pmd_none, as a
4521		 * result of MADV_DONTNEED running immediately after a huge pmd
4522		 * fault in a different thread of this mm, in turn leading to a
4523		 * misleading pmd_trans_huge() retval. All we have to ensure is
4524		 * that it is a regular pmd that we can walk with
4525		 * pte_offset_map() and we can do that through an atomic read
4526		 * in C, which is what pmd_trans_unstable() provides.
4527		 */
4528		if (pmd_devmap_trans_unstable(vmf->pmd))
4529			return 0;
4530		/*
4531		 * A regular pmd is established and it can't morph into a huge
4532		 * pmd from under us anymore at this point because we hold the
4533		 * mmap_lock read mode and khugepaged takes it in write mode.
4534		 * So now it's safe to run pte_offset_map().
4535		 */
4536		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4537		vmf->orig_pte = *vmf->pte;
4538
4539		/*
4540		 * some architectures can have larger ptes than wordsize,
4541		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4542		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4543		 * accesses.  The code below just needs a consistent view
4544		 * for the ifs and we later double check anyway with the
4545		 * ptl lock held. So here a barrier will do.
4546		 */
4547		barrier();
4548		if (pte_none(vmf->orig_pte)) {
4549			pte_unmap(vmf->pte);
4550			vmf->pte = NULL;
4551		}
4552	}
4553
4554	if (!vmf->pte) {
4555		if (vma_is_anonymous(vmf->vma))
4556			return do_anonymous_page(vmf);
4557		else
4558			return do_fault(vmf);
4559	}
4560
4561	if (!pte_present(vmf->orig_pte))
4562		return do_swap_page(vmf);
4563
4564	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4565		return do_numa_page(vmf);
4566
4567	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4568	spin_lock(vmf->ptl);
4569	entry = vmf->orig_pte;
4570	if (unlikely(!pte_same(*vmf->pte, entry))) {
4571		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4572		goto unlock;
4573	}
4574	if (vmf->flags & FAULT_FLAG_WRITE) {
4575		if (!pte_write(entry))
4576			return do_wp_page(vmf);
4577		entry = pte_mkdirty(entry);
4578	}
4579	entry = pte_mkyoung(entry);
4580	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4581				vmf->flags & FAULT_FLAG_WRITE)) {
4582		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4583	} else {
4584		/* Skip spurious TLB flush for retried page fault */
4585		if (vmf->flags & FAULT_FLAG_TRIED)
4586			goto unlock;
4587		/*
4588		 * This is needed only for protection faults but the arch code
4589		 * is not yet telling us if this is a protection fault or not.
4590		 * This still avoids useless tlb flushes for .text page faults
4591		 * with threads.
4592		 */
4593		if (vmf->flags & FAULT_FLAG_WRITE)
4594			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4595	}
4596unlock:
4597	pte_unmap_unlock(vmf->pte, vmf->ptl);
4598	return 0;
4599}
4600
4601/*
4602 * By the time we get here, we already hold the mm semaphore
4603 *
4604 * The mmap_lock may have been released depending on flags and our
4605 * return value.  See filemap_fault() and __lock_page_or_retry().
4606 */
4607static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4608		unsigned long address, unsigned int flags)
4609{
4610	struct vm_fault vmf = {
4611		.vma = vma,
4612		.address = address & PAGE_MASK,
4613		.flags = flags,
4614		.pgoff = linear_page_index(vma, address),
4615		.gfp_mask = __get_fault_gfp_mask(vma),
4616	};
4617	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4618	struct mm_struct *mm = vma->vm_mm;
4619	pgd_t *pgd;
4620	p4d_t *p4d;
4621	vm_fault_t ret;
4622
4623	pgd = pgd_offset(mm, address);
4624	p4d = p4d_alloc(mm, pgd, address);
4625	if (!p4d)
4626		return VM_FAULT_OOM;
4627
4628	vmf.pud = pud_alloc(mm, p4d, address);
4629	if (!vmf.pud)
4630		return VM_FAULT_OOM;
4631retry_pud:
4632	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4633		ret = create_huge_pud(&vmf);
4634		if (!(ret & VM_FAULT_FALLBACK))
4635			return ret;
4636	} else {
4637		pud_t orig_pud = *vmf.pud;
4638
4639		barrier();
4640		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4641
4642			/* NUMA case for anonymous PUDs would go here */
4643
4644			if (dirty && !pud_write(orig_pud)) {
4645				ret = wp_huge_pud(&vmf, orig_pud);
4646				if (!(ret & VM_FAULT_FALLBACK))
4647					return ret;
4648			} else {
4649				huge_pud_set_accessed(&vmf, orig_pud);
4650				return 0;
4651			}
4652		}
4653	}
4654
4655	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4656	if (!vmf.pmd)
4657		return VM_FAULT_OOM;
4658
4659	/* Huge pud page fault raced with pmd_alloc? */
4660	if (pud_trans_unstable(vmf.pud))
4661		goto retry_pud;
4662
4663	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4664		ret = create_huge_pmd(&vmf);
4665		if (!(ret & VM_FAULT_FALLBACK))
4666			return ret;
4667	} else {
4668		vmf.orig_pmd = *vmf.pmd;
 
4669
4670		barrier();
4671		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4672			VM_BUG_ON(thp_migration_supported() &&
4673					  !is_pmd_migration_entry(vmf.orig_pmd));
4674			if (is_pmd_migration_entry(vmf.orig_pmd))
4675				pmd_migration_entry_wait(mm, vmf.pmd);
4676			return 0;
4677		}
4678		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4679			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4680				return do_huge_pmd_numa_page(&vmf);
4681
4682			if (dirty && !pmd_write(vmf.orig_pmd)) {
4683				ret = wp_huge_pmd(&vmf);
4684				if (!(ret & VM_FAULT_FALLBACK))
4685					return ret;
4686			} else {
4687				huge_pmd_set_accessed(&vmf);
4688				return 0;
4689			}
4690		}
4691	}
4692
4693	return handle_pte_fault(&vmf);
4694}
4695
4696/**
4697 * mm_account_fault - Do page fault accounting
4698 *
4699 * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4700 *        of perf event counters, but we'll still do the per-task accounting to
4701 *        the task who triggered this page fault.
4702 * @address: the faulted address.
4703 * @flags: the fault flags.
4704 * @ret: the fault retcode.
4705 *
4706 * This will take care of most of the page fault accounting.  Meanwhile, it
4707 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4708 * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4709 * still be in per-arch page fault handlers at the entry of page fault.
4710 */
4711static inline void mm_account_fault(struct pt_regs *regs,
4712				    unsigned long address, unsigned int flags,
4713				    vm_fault_t ret)
4714{
4715	bool major;
4716
4717	/*
4718	 * We don't do accounting for some specific faults:
4719	 *
4720	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4721	 *   includes arch_vma_access_permitted() failing before reaching here.
4722	 *   So this is not a "this many hardware page faults" counter.  We
4723	 *   should use the hw profiling for that.
4724	 *
4725	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4726	 *   once they're completed.
4727	 */
4728	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4729		return;
4730
4731	/*
4732	 * We define the fault as a major fault when the final successful fault
4733	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4734	 * handle it immediately previously).
4735	 */
4736	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4737
4738	if (major)
4739		current->maj_flt++;
4740	else
4741		current->min_flt++;
4742
4743	/*
4744	 * If the fault is done for GUP, regs will be NULL.  We only do the
4745	 * accounting for the per thread fault counters who triggered the
4746	 * fault, and we skip the perf event updates.
4747	 */
4748	if (!regs)
4749		return;
4750
4751	if (major)
4752		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4753	else
4754		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4755}
4756
4757/*
4758 * By the time we get here, we already hold the mm semaphore
4759 *
4760 * The mmap_lock may have been released depending on flags and our
4761 * return value.  See filemap_fault() and __lock_page_or_retry().
4762 */
4763vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4764			   unsigned int flags, struct pt_regs *regs)
4765{
4766	vm_fault_t ret;
4767
4768	__set_current_state(TASK_RUNNING);
4769
4770	count_vm_event(PGFAULT);
4771	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4772
4773	/* do counter updates before entering really critical section. */
4774	check_sync_rss_stat(current);
4775
4776	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4777					    flags & FAULT_FLAG_INSTRUCTION,
4778					    flags & FAULT_FLAG_REMOTE))
4779		return VM_FAULT_SIGSEGV;
4780
4781	/*
4782	 * Enable the memcg OOM handling for faults triggered in user
4783	 * space.  Kernel faults are handled more gracefully.
4784	 */
4785	if (flags & FAULT_FLAG_USER)
4786		mem_cgroup_enter_user_fault();
 
 
 
 
 
4787
4788	if (unlikely(is_vm_hugetlb_page(vma)))
4789		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4790	else
4791		ret = __handle_mm_fault(vma, address, flags);
4792
4793	if (flags & FAULT_FLAG_USER) {
4794		mem_cgroup_exit_user_fault();
4795		/*
4796		 * The task may have entered a memcg OOM situation but
4797		 * if the allocation error was handled gracefully (no
4798		 * VM_FAULT_OOM), there is no need to kill anything.
4799		 * Just clean up the OOM state peacefully.
4800		 */
4801		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4802			mem_cgroup_oom_synchronize(false);
4803	}
4804
4805	mm_account_fault(regs, address, flags, ret);
 
 
 
 
 
 
 
 
 
 
 
4806
4807	return ret;
4808}
4809EXPORT_SYMBOL_GPL(handle_mm_fault);
4810
4811#ifndef __PAGETABLE_P4D_FOLDED
4812/*
4813 * Allocate p4d page table.
4814 * We've already handled the fast-path in-line.
4815 */
4816int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4817{
4818	p4d_t *new = p4d_alloc_one(mm, address);
4819	if (!new)
4820		return -ENOMEM;
4821
4822	smp_wmb(); /* See comment in __pte_alloc */
4823
4824	spin_lock(&mm->page_table_lock);
4825	if (pgd_present(*pgd))		/* Another has populated it */
4826		p4d_free(mm, new);
4827	else
4828		pgd_populate(mm, pgd, new);
4829	spin_unlock(&mm->page_table_lock);
4830	return 0;
4831}
4832#endif /* __PAGETABLE_P4D_FOLDED */
4833
4834#ifndef __PAGETABLE_PUD_FOLDED
4835/*
4836 * Allocate page upper directory.
4837 * We've already handled the fast-path in-line.
4838 */
4839int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4840{
4841	pud_t *new = pud_alloc_one(mm, address);
4842	if (!new)
4843		return -ENOMEM;
4844
4845	smp_wmb(); /* See comment in __pte_alloc */
4846
4847	spin_lock(&mm->page_table_lock);
4848	if (!p4d_present(*p4d)) {
4849		mm_inc_nr_puds(mm);
4850		p4d_populate(mm, p4d, new);
4851	} else	/* Another has populated it */
4852		pud_free(mm, new);
 
 
4853	spin_unlock(&mm->page_table_lock);
4854	return 0;
4855}
4856#endif /* __PAGETABLE_PUD_FOLDED */
4857
4858#ifndef __PAGETABLE_PMD_FOLDED
4859/*
4860 * Allocate page middle directory.
4861 * We've already handled the fast-path in-line.
4862 */
4863int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4864{
4865	spinlock_t *ptl;
4866	pmd_t *new = pmd_alloc_one(mm, address);
4867	if (!new)
4868		return -ENOMEM;
4869
4870	smp_wmb(); /* See comment in __pte_alloc */
4871
4872	ptl = pud_lock(mm, pud);
 
4873	if (!pud_present(*pud)) {
4874		mm_inc_nr_pmds(mm);
4875		pud_populate(mm, pud, new);
4876	} else	/* Another has populated it */
4877		pmd_free(mm, new);
4878	spin_unlock(ptl);
 
 
 
 
 
 
 
4879	return 0;
4880}
4881#endif /* __PAGETABLE_PMD_FOLDED */
4882
4883int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4884			  struct mmu_notifier_range *range, pte_t **ptepp,
4885			  pmd_t **pmdpp, spinlock_t **ptlp)
4886{
4887	pgd_t *pgd;
4888	p4d_t *p4d;
4889	pud_t *pud;
4890	pmd_t *pmd;
4891	pte_t *ptep;
4892
4893	pgd = pgd_offset(mm, address);
4894	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4895		goto out;
4896
4897	p4d = p4d_offset(pgd, address);
4898	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4899		goto out;
4900
4901	pud = pud_offset(p4d, address);
4902	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4903		goto out;
4904
4905	pmd = pmd_offset(pud, address);
4906	VM_BUG_ON(pmd_trans_huge(*pmd));
4907
4908	if (pmd_huge(*pmd)) {
4909		if (!pmdpp)
4910			goto out;
4911
4912		if (range) {
4913			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4914						NULL, mm, address & PMD_MASK,
4915						(address & PMD_MASK) + PMD_SIZE);
4916			mmu_notifier_invalidate_range_start(range);
4917		}
4918		*ptlp = pmd_lock(mm, pmd);
4919		if (pmd_huge(*pmd)) {
4920			*pmdpp = pmd;
4921			return 0;
4922		}
4923		spin_unlock(*ptlp);
4924		if (range)
4925			mmu_notifier_invalidate_range_end(range);
4926	}
4927
4928	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4929		goto out;
4930
4931	if (range) {
4932		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4933					address & PAGE_MASK,
4934					(address & PAGE_MASK) + PAGE_SIZE);
4935		mmu_notifier_invalidate_range_start(range);
4936	}
4937	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
 
 
4938	if (!pte_present(*ptep))
4939		goto unlock;
4940	*ptepp = ptep;
4941	return 0;
4942unlock:
4943	pte_unmap_unlock(ptep, *ptlp);
4944	if (range)
4945		mmu_notifier_invalidate_range_end(range);
4946out:
4947	return -EINVAL;
4948}
4949
4950/**
4951 * follow_pte - look up PTE at a user virtual address
4952 * @mm: the mm_struct of the target address space
4953 * @address: user virtual address
4954 * @ptepp: location to store found PTE
4955 * @ptlp: location to store the lock for the PTE
4956 *
4957 * On a successful return, the pointer to the PTE is stored in @ptepp;
4958 * the corresponding lock is taken and its location is stored in @ptlp.
4959 * The contents of the PTE are only stable until @ptlp is released;
4960 * any further use, if any, must be protected against invalidation
4961 * with MMU notifiers.
4962 *
4963 * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4964 * should be taken for read.
4965 *
4966 * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4967 * it is not a good general-purpose API.
4968 *
4969 * Return: zero on success, -ve otherwise.
4970 */
4971int follow_pte(struct mm_struct *mm, unsigned long address,
4972	       pte_t **ptepp, spinlock_t **ptlp)
4973{
4974	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4975}
4976EXPORT_SYMBOL_GPL(follow_pte);
4977
4978/**
4979 * follow_pfn - look up PFN at a user virtual address
4980 * @vma: memory mapping
4981 * @address: user virtual address
4982 * @pfn: location to store found PFN
4983 *
4984 * Only IO mappings and raw PFN mappings are allowed.
4985 *
4986 * This function does not allow the caller to read the permissions
4987 * of the PTE.  Do not use it.
4988 *
4989 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4990 */
4991int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4992	unsigned long *pfn)
4993{
4994	int ret = -EINVAL;
4995	spinlock_t *ptl;
4996	pte_t *ptep;
4997
4998	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4999		return ret;
5000
5001	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5002	if (ret)
5003		return ret;
5004	*pfn = pte_pfn(*ptep);
5005	pte_unmap_unlock(ptep, ptl);
5006	return 0;
5007}
5008EXPORT_SYMBOL(follow_pfn);
5009
5010#ifdef CONFIG_HAVE_IOREMAP_PROT
5011int follow_phys(struct vm_area_struct *vma,
5012		unsigned long address, unsigned int flags,
5013		unsigned long *prot, resource_size_t *phys)
5014{
5015	int ret = -EINVAL;
5016	pte_t *ptep, pte;
5017	spinlock_t *ptl;
5018
5019	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5020		goto out;
5021
5022	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5023		goto out;
5024	pte = *ptep;
5025
5026	if ((flags & FOLL_WRITE) && !pte_write(pte))
5027		goto unlock;
5028
5029	*prot = pgprot_val(pte_pgprot(pte));
5030	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5031
5032	ret = 0;
5033unlock:
5034	pte_unmap_unlock(ptep, ptl);
5035out:
5036	return ret;
5037}
5038
5039/**
5040 * generic_access_phys - generic implementation for iomem mmap access
5041 * @vma: the vma to access
5042 * @addr: userspace address, not relative offset within @vma
5043 * @buf: buffer to read/write
5044 * @len: length of transfer
5045 * @write: set to FOLL_WRITE when writing, otherwise reading
5046 *
5047 * This is a generic implementation for &vm_operations_struct.access for an
5048 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5049 * not page based.
5050 */
5051int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5052			void *buf, int len, int write)
5053{
5054	resource_size_t phys_addr;
5055	unsigned long prot = 0;
5056	void __iomem *maddr;
5057	pte_t *ptep, pte;
5058	spinlock_t *ptl;
5059	int offset = offset_in_page(addr);
5060	int ret = -EINVAL;
5061
5062	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5063		return -EINVAL;
5064
5065retry:
5066	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5067		return -EINVAL;
5068	pte = *ptep;
5069	pte_unmap_unlock(ptep, ptl);
5070
5071	prot = pgprot_val(pte_pgprot(pte));
5072	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5073
5074	if ((write & FOLL_WRITE) && !pte_write(pte))
5075		return -EINVAL;
5076
5077	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5078	if (!maddr)
5079		return -ENOMEM;
5080
5081	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5082		goto out_unmap;
5083
5084	if (!pte_same(pte, *ptep)) {
5085		pte_unmap_unlock(ptep, ptl);
5086		iounmap(maddr);
5087
5088		goto retry;
5089	}
5090
5091	if (write)
5092		memcpy_toio(maddr + offset, buf, len);
5093	else
5094		memcpy_fromio(buf, maddr + offset, len);
5095	ret = len;
5096	pte_unmap_unlock(ptep, ptl);
5097out_unmap:
5098	iounmap(maddr);
5099
5100	return ret;
5101}
5102EXPORT_SYMBOL_GPL(generic_access_phys);
5103#endif
5104
5105/*
5106 * Access another process' address space as given in mm.
 
5107 */
5108int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5109		       int len, unsigned int gup_flags)
5110{
5111	struct vm_area_struct *vma;
5112	void *old_buf = buf;
5113	int write = gup_flags & FOLL_WRITE;
5114
5115	if (mmap_read_lock_killable(mm))
5116		return 0;
5117
5118	/* ignore errors, just check how much was successfully transferred */
5119	while (len) {
5120		int bytes, ret, offset;
5121		void *maddr;
5122		struct page *page = NULL;
5123
5124		ret = get_user_pages_remote(mm, addr, 1,
5125				gup_flags, &page, &vma, NULL);
5126		if (ret <= 0) {
5127#ifndef CONFIG_HAVE_IOREMAP_PROT
5128			break;
5129#else
5130			/*
5131			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5132			 * we can access using slightly different code.
5133			 */
5134			vma = vma_lookup(mm, addr);
5135			if (!vma)
5136				break;
5137			if (vma->vm_ops && vma->vm_ops->access)
5138				ret = vma->vm_ops->access(vma, addr, buf,
5139							  len, write);
5140			if (ret <= 0)
5141				break;
5142			bytes = ret;
5143#endif
5144		} else {
5145			bytes = len;
5146			offset = addr & (PAGE_SIZE-1);
5147			if (bytes > PAGE_SIZE-offset)
5148				bytes = PAGE_SIZE-offset;
5149
5150			maddr = kmap(page);
5151			if (write) {
5152				copy_to_user_page(vma, page, addr,
5153						  maddr + offset, buf, bytes);
5154				set_page_dirty_lock(page);
5155			} else {
5156				copy_from_user_page(vma, page, addr,
5157						    buf, maddr + offset, bytes);
5158			}
5159			kunmap(page);
5160			put_page(page);
5161		}
5162		len -= bytes;
5163		buf += bytes;
5164		addr += bytes;
5165	}
5166	mmap_read_unlock(mm);
5167
5168	return buf - old_buf;
5169}
5170
5171/**
5172 * access_remote_vm - access another process' address space
5173 * @mm:		the mm_struct of the target address space
5174 * @addr:	start address to access
5175 * @buf:	source or destination buffer
5176 * @len:	number of bytes to transfer
5177 * @gup_flags:	flags modifying lookup behaviour
5178 *
5179 * The caller must hold a reference on @mm.
5180 *
5181 * Return: number of bytes copied from source to destination.
5182 */
5183int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5184		void *buf, int len, unsigned int gup_flags)
5185{
5186	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5187}
5188
5189/*
5190 * Access another process' address space.
5191 * Source/target buffer must be kernel space,
5192 * Do not walk the page table directly, use get_user_pages
5193 */
5194int access_process_vm(struct task_struct *tsk, unsigned long addr,
5195		void *buf, int len, unsigned int gup_flags)
5196{
5197	struct mm_struct *mm;
5198	int ret;
5199
5200	mm = get_task_mm(tsk);
5201	if (!mm)
5202		return 0;
5203
5204	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5205
5206	mmput(mm);
5207
5208	return ret;
5209}
5210EXPORT_SYMBOL_GPL(access_process_vm);
5211
5212/*
5213 * Print the name of a VMA.
5214 */
5215void print_vma_addr(char *prefix, unsigned long ip)
5216{
5217	struct mm_struct *mm = current->mm;
5218	struct vm_area_struct *vma;
5219
5220	/*
5221	 * we might be running from an atomic context so we cannot sleep
 
5222	 */
5223	if (!mmap_read_trylock(mm))
5224		return;
5225
 
5226	vma = find_vma(mm, ip);
5227	if (vma && vma->vm_file) {
5228		struct file *f = vma->vm_file;
5229		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5230		if (buf) {
5231			char *p;
5232
5233			p = file_path(f, buf, PAGE_SIZE);
5234			if (IS_ERR(p))
5235				p = "?";
5236			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5237					vma->vm_start,
5238					vma->vm_end - vma->vm_start);
5239			free_page((unsigned long)buf);
5240		}
5241	}
5242	mmap_read_unlock(mm);
5243}
5244
5245#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5246void __might_fault(const char *file, int line)
5247{
5248	/*
5249	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5250	 * holding the mmap_lock, this is safe because kernel memory doesn't
5251	 * get paged out, therefore we'll never actually fault, and the
5252	 * below annotations will generate false positives.
5253	 */
5254	if (uaccess_kernel())
5255		return;
5256	if (pagefault_disabled())
5257		return;
5258	__might_sleep(file, line, 0);
5259#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5260	if (current->mm)
5261		might_lock_read(&current->mm->mmap_lock);
5262#endif
5263}
5264EXPORT_SYMBOL(__might_fault);
5265#endif
5266
5267#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5268/*
5269 * Process all subpages of the specified huge page with the specified
5270 * operation.  The target subpage will be processed last to keep its
5271 * cache lines hot.
5272 */
5273static inline void process_huge_page(
5274	unsigned long addr_hint, unsigned int pages_per_huge_page,
5275	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5276	void *arg)
5277{
5278	int i, n, base, l;
5279	unsigned long addr = addr_hint &
5280		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5281
5282	/* Process target subpage last to keep its cache lines hot */
5283	might_sleep();
5284	n = (addr_hint - addr) / PAGE_SIZE;
5285	if (2 * n <= pages_per_huge_page) {
5286		/* If target subpage in first half of huge page */
5287		base = 0;
5288		l = n;
5289		/* Process subpages at the end of huge page */
5290		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5291			cond_resched();
5292			process_subpage(addr + i * PAGE_SIZE, i, arg);
5293		}
5294	} else {
5295		/* If target subpage in second half of huge page */
5296		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5297		l = pages_per_huge_page - n;
5298		/* Process subpages at the begin of huge page */
5299		for (i = 0; i < base; i++) {
5300			cond_resched();
5301			process_subpage(addr + i * PAGE_SIZE, i, arg);
5302		}
5303	}
5304	/*
5305	 * Process remaining subpages in left-right-left-right pattern
5306	 * towards the target subpage
5307	 */
5308	for (i = 0; i < l; i++) {
5309		int left_idx = base + i;
5310		int right_idx = base + 2 * l - 1 - i;
5311
5312		cond_resched();
5313		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5314		cond_resched();
5315		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5316	}
5317}
5318
5319static void clear_gigantic_page(struct page *page,
5320				unsigned long addr,
5321				unsigned int pages_per_huge_page)
5322{
5323	int i;
5324	struct page *p = page;
5325
5326	might_sleep();
5327	for (i = 0; i < pages_per_huge_page;
5328	     i++, p = mem_map_next(p, page, i)) {
5329		cond_resched();
5330		clear_user_highpage(p, addr + i * PAGE_SIZE);
5331	}
5332}
5333
5334static void clear_subpage(unsigned long addr, int idx, void *arg)
5335{
5336	struct page *page = arg;
5337
5338	clear_user_highpage(page + idx, addr);
5339}
5340
5341void clear_huge_page(struct page *page,
5342		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5343{
5344	unsigned long addr = addr_hint &
5345		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5346
5347	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5348		clear_gigantic_page(page, addr, pages_per_huge_page);
5349		return;
5350	}
5351
5352	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
 
 
 
 
5353}
5354
5355static void copy_user_gigantic_page(struct page *dst, struct page *src,
5356				    unsigned long addr,
5357				    struct vm_area_struct *vma,
5358				    unsigned int pages_per_huge_page)
5359{
5360	int i;
5361	struct page *dst_base = dst;
5362	struct page *src_base = src;
5363
5364	for (i = 0; i < pages_per_huge_page; ) {
5365		cond_resched();
5366		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5367
5368		i++;
5369		dst = mem_map_next(dst, dst_base, i);
5370		src = mem_map_next(src, src_base, i);
5371	}
5372}
5373
5374struct copy_subpage_arg {
5375	struct page *dst;
5376	struct page *src;
5377	struct vm_area_struct *vma;
5378};
5379
5380static void copy_subpage(unsigned long addr, int idx, void *arg)
5381{
5382	struct copy_subpage_arg *copy_arg = arg;
5383
5384	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5385			   addr, copy_arg->vma);
5386}
5387
5388void copy_user_huge_page(struct page *dst, struct page *src,
5389			 unsigned long addr_hint, struct vm_area_struct *vma,
5390			 unsigned int pages_per_huge_page)
5391{
5392	unsigned long addr = addr_hint &
5393		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5394	struct copy_subpage_arg arg = {
5395		.dst = dst,
5396		.src = src,
5397		.vma = vma,
5398	};
5399
5400	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5401		copy_user_gigantic_page(dst, src, addr, vma,
5402					pages_per_huge_page);
5403		return;
5404	}
5405
5406	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5407}
5408
5409long copy_huge_page_from_user(struct page *dst_page,
5410				const void __user *usr_src,
5411				unsigned int pages_per_huge_page,
5412				bool allow_pagefault)
5413{
5414	void *src = (void *)usr_src;
5415	void *page_kaddr;
5416	unsigned long i, rc = 0;
5417	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5418	struct page *subpage = dst_page;
5419
5420	for (i = 0; i < pages_per_huge_page;
5421	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5422		if (allow_pagefault)
5423			page_kaddr = kmap(subpage);
5424		else
5425			page_kaddr = kmap_atomic(subpage);
5426		rc = copy_from_user(page_kaddr,
5427				(const void __user *)(src + i * PAGE_SIZE),
5428				PAGE_SIZE);
5429		if (allow_pagefault)
5430			kunmap(subpage);
5431		else
5432			kunmap_atomic(page_kaddr);
5433
5434		ret_val -= (PAGE_SIZE - rc);
5435		if (rc)
5436			break;
5437
5438		cond_resched();
 
5439	}
5440	return ret_val;
5441}
5442#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5443
5444#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5445
5446static struct kmem_cache *page_ptl_cachep;
5447
5448void __init ptlock_cache_init(void)
5449{
5450	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5451			SLAB_PANIC, NULL);
5452}
5453
5454bool ptlock_alloc(struct page *page)
5455{
5456	spinlock_t *ptl;
5457
5458	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5459	if (!ptl)
5460		return false;
5461	page->ptl = ptl;
5462	return true;
5463}
5464
5465void ptlock_free(struct page *page)
5466{
5467	kmem_cache_free(page_ptl_cachep, page->ptl);
5468}
5469#endif
v4.10.11
 
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *		Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *		(Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
 
 
 
 
  43#include <linux/hugetlb.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/highmem.h>
  47#include <linux/pagemap.h>
 
  48#include <linux/ksm.h>
  49#include <linux/rmap.h>
  50#include <linux/export.h>
  51#include <linux/delayacct.h>
  52#include <linux/init.h>
  53#include <linux/pfn_t.h>
  54#include <linux/writeback.h>
  55#include <linux/memcontrol.h>
  56#include <linux/mmu_notifier.h>
  57#include <linux/kallsyms.h>
  58#include <linux/swapops.h>
  59#include <linux/elf.h>
  60#include <linux/gfp.h>
  61#include <linux/migrate.h>
  62#include <linux/string.h>
  63#include <linux/dma-debug.h>
  64#include <linux/debugfs.h>
  65#include <linux/userfaultfd_k.h>
  66#include <linux/dax.h>
 
 
 
 
 
 
 
  67
  68#include <asm/io.h>
  69#include <asm/mmu_context.h>
  70#include <asm/pgalloc.h>
  71#include <linux/uaccess.h>
  72#include <asm/tlb.h>
  73#include <asm/tlbflush.h>
  74#include <asm/pgtable.h>
  75
 
  76#include "internal.h"
  77
  78#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  79#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  80#endif
  81
  82#ifndef CONFIG_NEED_MULTIPLE_NODES
  83/* use the per-pgdat data instead for discontigmem - mbligh */
  84unsigned long max_mapnr;
 
 
  85struct page *mem_map;
  86
  87EXPORT_SYMBOL(max_mapnr);
  88EXPORT_SYMBOL(mem_map);
  89#endif
  90
  91/*
  92 * A number of key systems in x86 including ioremap() rely on the assumption
  93 * that high_memory defines the upper bound on direct map memory, then end
  94 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
  95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  96 * and ZONE_HIGHMEM.
  97 */
  98void * high_memory;
  99
 100EXPORT_SYMBOL(high_memory);
 101
 102/*
 103 * Randomize the address space (stacks, mmaps, brk, etc.).
 104 *
 105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 106 *   as ancient (libc5 based) binaries can segfault. )
 107 */
 108int randomize_va_space __read_mostly =
 109#ifdef CONFIG_COMPAT_BRK
 110					1;
 111#else
 112					2;
 113#endif
 114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115static int __init disable_randmaps(char *s)
 116{
 117	randomize_va_space = 0;
 118	return 1;
 119}
 120__setup("norandmaps", disable_randmaps);
 121
 122unsigned long zero_pfn __read_mostly;
 
 
 123unsigned long highest_memmap_pfn __read_mostly;
 124
 125EXPORT_SYMBOL(zero_pfn);
 126
 127/*
 128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 129 */
 130static int __init init_zero_pfn(void)
 131{
 132	zero_pfn = page_to_pfn(ZERO_PAGE(0));
 133	return 0;
 134}
 135core_initcall(init_zero_pfn);
 136
 
 
 
 
 137
 138#if defined(SPLIT_RSS_COUNTING)
 139
 140void sync_mm_rss(struct mm_struct *mm)
 141{
 142	int i;
 143
 144	for (i = 0; i < NR_MM_COUNTERS; i++) {
 145		if (current->rss_stat.count[i]) {
 146			add_mm_counter(mm, i, current->rss_stat.count[i]);
 147			current->rss_stat.count[i] = 0;
 148		}
 149	}
 150	current->rss_stat.events = 0;
 151}
 152
 153static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 154{
 155	struct task_struct *task = current;
 156
 157	if (likely(task->mm == mm))
 158		task->rss_stat.count[member] += val;
 159	else
 160		add_mm_counter(mm, member, val);
 161}
 162#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 163#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 164
 165/* sync counter once per 64 page faults */
 166#define TASK_RSS_EVENTS_THRESH	(64)
 167static void check_sync_rss_stat(struct task_struct *task)
 168{
 169	if (unlikely(task != current))
 170		return;
 171	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 172		sync_mm_rss(task->mm);
 173}
 174#else /* SPLIT_RSS_COUNTING */
 175
 176#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 177#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 178
 179static void check_sync_rss_stat(struct task_struct *task)
 180{
 181}
 182
 183#endif /* SPLIT_RSS_COUNTING */
 184
 185#ifdef HAVE_GENERIC_MMU_GATHER
 186
 187static bool tlb_next_batch(struct mmu_gather *tlb)
 188{
 189	struct mmu_gather_batch *batch;
 190
 191	batch = tlb->active;
 192	if (batch->next) {
 193		tlb->active = batch->next;
 194		return true;
 195	}
 196
 197	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 198		return false;
 199
 200	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 201	if (!batch)
 202		return false;
 203
 204	tlb->batch_count++;
 205	batch->next = NULL;
 206	batch->nr   = 0;
 207	batch->max  = MAX_GATHER_BATCH;
 208
 209	tlb->active->next = batch;
 210	tlb->active = batch;
 211
 212	return true;
 213}
 214
 215/* tlb_gather_mmu
 216 *	Called to initialize an (on-stack) mmu_gather structure for page-table
 217 *	tear-down from @mm. The @fullmm argument is used when @mm is without
 218 *	users and we're going to destroy the full address space (exit/execve).
 219 */
 220void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
 221{
 222	tlb->mm = mm;
 223
 224	/* Is it from 0 to ~0? */
 225	tlb->fullmm     = !(start | (end+1));
 226	tlb->need_flush_all = 0;
 227	tlb->local.next = NULL;
 228	tlb->local.nr   = 0;
 229	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 230	tlb->active     = &tlb->local;
 231	tlb->batch_count = 0;
 232
 233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 234	tlb->batch = NULL;
 235#endif
 236	tlb->page_size = 0;
 237
 238	__tlb_reset_range(tlb);
 239}
 240
 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
 242{
 243	if (!tlb->end)
 244		return;
 245
 246	tlb_flush(tlb);
 247	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
 248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 249	tlb_table_flush(tlb);
 250#endif
 251	__tlb_reset_range(tlb);
 252}
 253
 254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 255{
 256	struct mmu_gather_batch *batch;
 257
 258	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 259		free_pages_and_swap_cache(batch->pages, batch->nr);
 260		batch->nr = 0;
 261	}
 262	tlb->active = &tlb->local;
 263}
 264
 265void tlb_flush_mmu(struct mmu_gather *tlb)
 266{
 267	tlb_flush_mmu_tlbonly(tlb);
 268	tlb_flush_mmu_free(tlb);
 269}
 270
 271/* tlb_finish_mmu
 272 *	Called at the end of the shootdown operation to free up any resources
 273 *	that were required.
 274 */
 275void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
 276{
 277	struct mmu_gather_batch *batch, *next;
 278
 279	tlb_flush_mmu(tlb);
 280
 281	/* keep the page table cache within bounds */
 282	check_pgt_cache();
 283
 284	for (batch = tlb->local.next; batch; batch = next) {
 285		next = batch->next;
 286		free_pages((unsigned long)batch, 0);
 287	}
 288	tlb->local.next = NULL;
 289}
 290
 291/* __tlb_remove_page
 292 *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 293 *	handling the additional races in SMP caused by other CPUs caching valid
 294 *	mappings in their TLBs. Returns the number of free page slots left.
 295 *	When out of page slots we must call tlb_flush_mmu().
 296 *returns true if the caller should flush.
 297 */
 298bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
 299{
 300	struct mmu_gather_batch *batch;
 301
 302	VM_BUG_ON(!tlb->end);
 303	VM_WARN_ON(tlb->page_size != page_size);
 304
 305	batch = tlb->active;
 306	/*
 307	 * Add the page and check if we are full. If so
 308	 * force a flush.
 309	 */
 310	batch->pages[batch->nr++] = page;
 311	if (batch->nr == batch->max) {
 312		if (!tlb_next_batch(tlb))
 313			return true;
 314		batch = tlb->active;
 315	}
 316	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 317
 318	return false;
 319}
 320
 321#endif /* HAVE_GENERIC_MMU_GATHER */
 322
 323#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 324
 325/*
 326 * See the comment near struct mmu_table_batch.
 327 */
 328
 329static void tlb_remove_table_smp_sync(void *arg)
 330{
 331	/* Simply deliver the interrupt */
 332}
 333
 334static void tlb_remove_table_one(void *table)
 335{
 336	/*
 337	 * This isn't an RCU grace period and hence the page-tables cannot be
 338	 * assumed to be actually RCU-freed.
 339	 *
 340	 * It is however sufficient for software page-table walkers that rely on
 341	 * IRQ disabling. See the comment near struct mmu_table_batch.
 342	 */
 343	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 344	__tlb_remove_table(table);
 345}
 346
 347static void tlb_remove_table_rcu(struct rcu_head *head)
 348{
 349	struct mmu_table_batch *batch;
 350	int i;
 351
 352	batch = container_of(head, struct mmu_table_batch, rcu);
 353
 354	for (i = 0; i < batch->nr; i++)
 355		__tlb_remove_table(batch->tables[i]);
 356
 357	free_page((unsigned long)batch);
 358}
 359
 360void tlb_table_flush(struct mmu_gather *tlb)
 361{
 362	struct mmu_table_batch **batch = &tlb->batch;
 363
 364	if (*batch) {
 365		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 366		*batch = NULL;
 367	}
 368}
 369
 370void tlb_remove_table(struct mmu_gather *tlb, void *table)
 371{
 372	struct mmu_table_batch **batch = &tlb->batch;
 373
 374	/*
 375	 * When there's less then two users of this mm there cannot be a
 376	 * concurrent page-table walk.
 377	 */
 378	if (atomic_read(&tlb->mm->mm_users) < 2) {
 379		__tlb_remove_table(table);
 380		return;
 381	}
 382
 383	if (*batch == NULL) {
 384		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 385		if (*batch == NULL) {
 386			tlb_remove_table_one(table);
 387			return;
 388		}
 389		(*batch)->nr = 0;
 390	}
 391	(*batch)->tables[(*batch)->nr++] = table;
 392	if ((*batch)->nr == MAX_TABLE_BATCH)
 393		tlb_table_flush(tlb);
 394}
 395
 396#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 397
 398/*
 399 * Note: this doesn't free the actual pages themselves. That
 400 * has been handled earlier when unmapping all the memory regions.
 401 */
 402static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 403			   unsigned long addr)
 404{
 405	pgtable_t token = pmd_pgtable(*pmd);
 406	pmd_clear(pmd);
 407	pte_free_tlb(tlb, token, addr);
 408	atomic_long_dec(&tlb->mm->nr_ptes);
 409}
 410
 411static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 412				unsigned long addr, unsigned long end,
 413				unsigned long floor, unsigned long ceiling)
 414{
 415	pmd_t *pmd;
 416	unsigned long next;
 417	unsigned long start;
 418
 419	start = addr;
 420	pmd = pmd_offset(pud, addr);
 421	do {
 422		next = pmd_addr_end(addr, end);
 423		if (pmd_none_or_clear_bad(pmd))
 424			continue;
 425		free_pte_range(tlb, pmd, addr);
 426	} while (pmd++, addr = next, addr != end);
 427
 428	start &= PUD_MASK;
 429	if (start < floor)
 430		return;
 431	if (ceiling) {
 432		ceiling &= PUD_MASK;
 433		if (!ceiling)
 434			return;
 435	}
 436	if (end - 1 > ceiling - 1)
 437		return;
 438
 439	pmd = pmd_offset(pud, start);
 440	pud_clear(pud);
 441	pmd_free_tlb(tlb, pmd, start);
 442	mm_dec_nr_pmds(tlb->mm);
 443}
 444
 445static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 446				unsigned long addr, unsigned long end,
 447				unsigned long floor, unsigned long ceiling)
 448{
 449	pud_t *pud;
 450	unsigned long next;
 451	unsigned long start;
 452
 453	start = addr;
 454	pud = pud_offset(pgd, addr);
 455	do {
 456		next = pud_addr_end(addr, end);
 457		if (pud_none_or_clear_bad(pud))
 458			continue;
 459		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 460	} while (pud++, addr = next, addr != end);
 461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462	start &= PGDIR_MASK;
 463	if (start < floor)
 464		return;
 465	if (ceiling) {
 466		ceiling &= PGDIR_MASK;
 467		if (!ceiling)
 468			return;
 469	}
 470	if (end - 1 > ceiling - 1)
 471		return;
 472
 473	pud = pud_offset(pgd, start);
 474	pgd_clear(pgd);
 475	pud_free_tlb(tlb, pud, start);
 476}
 477
 478/*
 479 * This function frees user-level page tables of a process.
 480 */
 481void free_pgd_range(struct mmu_gather *tlb,
 482			unsigned long addr, unsigned long end,
 483			unsigned long floor, unsigned long ceiling)
 484{
 485	pgd_t *pgd;
 486	unsigned long next;
 487
 488	/*
 489	 * The next few lines have given us lots of grief...
 490	 *
 491	 * Why are we testing PMD* at this top level?  Because often
 492	 * there will be no work to do at all, and we'd prefer not to
 493	 * go all the way down to the bottom just to discover that.
 494	 *
 495	 * Why all these "- 1"s?  Because 0 represents both the bottom
 496	 * of the address space and the top of it (using -1 for the
 497	 * top wouldn't help much: the masks would do the wrong thing).
 498	 * The rule is that addr 0 and floor 0 refer to the bottom of
 499	 * the address space, but end 0 and ceiling 0 refer to the top
 500	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
 501	 * that end 0 case should be mythical).
 502	 *
 503	 * Wherever addr is brought up or ceiling brought down, we must
 504	 * be careful to reject "the opposite 0" before it confuses the
 505	 * subsequent tests.  But what about where end is brought down
 506	 * by PMD_SIZE below? no, end can't go down to 0 there.
 507	 *
 508	 * Whereas we round start (addr) and ceiling down, by different
 509	 * masks at different levels, in order to test whether a table
 510	 * now has no other vmas using it, so can be freed, we don't
 511	 * bother to round floor or end up - the tests don't need that.
 512	 */
 513
 514	addr &= PMD_MASK;
 515	if (addr < floor) {
 516		addr += PMD_SIZE;
 517		if (!addr)
 518			return;
 519	}
 520	if (ceiling) {
 521		ceiling &= PMD_MASK;
 522		if (!ceiling)
 523			return;
 524	}
 525	if (end - 1 > ceiling - 1)
 526		end -= PMD_SIZE;
 527	if (addr > end - 1)
 528		return;
 529	/*
 530	 * We add page table cache pages with PAGE_SIZE,
 531	 * (see pte_free_tlb()), flush the tlb if we need
 532	 */
 533	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
 534	pgd = pgd_offset(tlb->mm, addr);
 535	do {
 536		next = pgd_addr_end(addr, end);
 537		if (pgd_none_or_clear_bad(pgd))
 538			continue;
 539		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 540	} while (pgd++, addr = next, addr != end);
 541}
 542
 543void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 544		unsigned long floor, unsigned long ceiling)
 545{
 546	while (vma) {
 547		struct vm_area_struct *next = vma->vm_next;
 548		unsigned long addr = vma->vm_start;
 549
 550		/*
 551		 * Hide vma from rmap and truncate_pagecache before freeing
 552		 * pgtables
 553		 */
 554		unlink_anon_vmas(vma);
 555		unlink_file_vma(vma);
 556
 557		if (is_vm_hugetlb_page(vma)) {
 558			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 559				floor, next? next->vm_start: ceiling);
 560		} else {
 561			/*
 562			 * Optimization: gather nearby vmas into one call down
 563			 */
 564			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 565			       && !is_vm_hugetlb_page(next)) {
 566				vma = next;
 567				next = vma->vm_next;
 568				unlink_anon_vmas(vma);
 569				unlink_file_vma(vma);
 570			}
 571			free_pgd_range(tlb, addr, vma->vm_end,
 572				floor, next? next->vm_start: ceiling);
 573		}
 574		vma = next;
 575	}
 576}
 577
 578int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 579{
 580	spinlock_t *ptl;
 581	pgtable_t new = pte_alloc_one(mm, address);
 582	if (!new)
 583		return -ENOMEM;
 584
 585	/*
 586	 * Ensure all pte setup (eg. pte page lock and page clearing) are
 587	 * visible before the pte is made visible to other CPUs by being
 588	 * put into page tables.
 589	 *
 590	 * The other side of the story is the pointer chasing in the page
 591	 * table walking code (when walking the page table without locking;
 592	 * ie. most of the time). Fortunately, these data accesses consist
 593	 * of a chain of data-dependent loads, meaning most CPUs (alpha
 594	 * being the notable exception) will already guarantee loads are
 595	 * seen in-order. See the alpha page table accessors for the
 596	 * smp_read_barrier_depends() barriers in page table walking code.
 597	 */
 598	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 599
 600	ptl = pmd_lock(mm, pmd);
 601	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 602		atomic_long_inc(&mm->nr_ptes);
 603		pmd_populate(mm, pmd, new);
 604		new = NULL;
 605	}
 606	spin_unlock(ptl);
 607	if (new)
 608		pte_free(mm, new);
 609	return 0;
 610}
 611
 612int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 613{
 614	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 615	if (!new)
 616		return -ENOMEM;
 617
 618	smp_wmb(); /* See comment in __pte_alloc */
 619
 620	spin_lock(&init_mm.page_table_lock);
 621	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
 622		pmd_populate_kernel(&init_mm, pmd, new);
 623		new = NULL;
 624	}
 625	spin_unlock(&init_mm.page_table_lock);
 626	if (new)
 627		pte_free_kernel(&init_mm, new);
 628	return 0;
 629}
 630
 631static inline void init_rss_vec(int *rss)
 632{
 633	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 634}
 635
 636static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 637{
 638	int i;
 639
 640	if (current->mm == mm)
 641		sync_mm_rss(mm);
 642	for (i = 0; i < NR_MM_COUNTERS; i++)
 643		if (rss[i])
 644			add_mm_counter(mm, i, rss[i]);
 645}
 646
 647/*
 648 * This function is called to print an error when a bad pte
 649 * is found. For example, we might have a PFN-mapped pte in
 650 * a region that doesn't allow it.
 651 *
 652 * The calling function must still handle the error.
 653 */
 654static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 655			  pte_t pte, struct page *page)
 656{
 657	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 658	pud_t *pud = pud_offset(pgd, addr);
 
 659	pmd_t *pmd = pmd_offset(pud, addr);
 660	struct address_space *mapping;
 661	pgoff_t index;
 662	static unsigned long resume;
 663	static unsigned long nr_shown;
 664	static unsigned long nr_unshown;
 665
 666	/*
 667	 * Allow a burst of 60 reports, then keep quiet for that minute;
 668	 * or allow a steady drip of one report per second.
 669	 */
 670	if (nr_shown == 60) {
 671		if (time_before(jiffies, resume)) {
 672			nr_unshown++;
 673			return;
 674		}
 675		if (nr_unshown) {
 676			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 677				 nr_unshown);
 678			nr_unshown = 0;
 679		}
 680		nr_shown = 0;
 681	}
 682	if (nr_shown++ == 0)
 683		resume = jiffies + 60 * HZ;
 684
 685	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 686	index = linear_page_index(vma, addr);
 687
 688	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 689		 current->comm,
 690		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 691	if (page)
 692		dump_page(page, "bad pte");
 693	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 694		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 695	/*
 696	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
 697	 */
 698	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 699		 vma->vm_file,
 700		 vma->vm_ops ? vma->vm_ops->fault : NULL,
 701		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 702		 mapping ? mapping->a_ops->readpage : NULL);
 703	dump_stack();
 704	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 705}
 706
 707/*
 708 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 709 *
 710 * "Special" mappings do not wish to be associated with a "struct page" (either
 711 * it doesn't exist, or it exists but they don't want to touch it). In this
 712 * case, NULL is returned here. "Normal" mappings do have a struct page.
 713 *
 714 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 715 * pte bit, in which case this function is trivial. Secondly, an architecture
 716 * may not have a spare pte bit, which requires a more complicated scheme,
 717 * described below.
 718 *
 719 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 720 * special mapping (even if there are underlying and valid "struct pages").
 721 * COWed pages of a VM_PFNMAP are always normal.
 722 *
 723 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 724 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 725 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 726 * mapping will always honor the rule
 727 *
 728 *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 729 *
 730 * And for normal mappings this is false.
 731 *
 732 * This restricts such mappings to be a linear translation from virtual address
 733 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 734 * as the vma is not a COW mapping; in that case, we know that all ptes are
 735 * special (because none can have been COWed).
 736 *
 737 *
 738 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 739 *
 740 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 741 * page" backing, however the difference is that _all_ pages with a struct
 742 * page (that is, those where pfn_valid is true) are refcounted and considered
 743 * normal pages by the VM. The disadvantage is that pages are refcounted
 744 * (which can be slower and simply not an option for some PFNMAP users). The
 745 * advantage is that we don't have to follow the strict linearity rule of
 746 * PFNMAP mappings in order to support COWable mappings.
 747 *
 748 */
 749#ifdef __HAVE_ARCH_PTE_SPECIAL
 750# define HAVE_PTE_SPECIAL 1
 751#else
 752# define HAVE_PTE_SPECIAL 0
 753#endif
 754struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 755				pte_t pte)
 756{
 757	unsigned long pfn = pte_pfn(pte);
 758
 759	if (HAVE_PTE_SPECIAL) {
 760		if (likely(!pte_special(pte)))
 761			goto check_pfn;
 762		if (vma->vm_ops && vma->vm_ops->find_special_page)
 763			return vma->vm_ops->find_special_page(vma, addr);
 764		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 765			return NULL;
 766		if (!is_zero_pfn(pfn))
 767			print_bad_pte(vma, addr, pte, NULL);
 
 
 
 
 768		return NULL;
 769	}
 770
 771	/* !HAVE_PTE_SPECIAL case follows: */
 772
 773	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 774		if (vma->vm_flags & VM_MIXEDMAP) {
 775			if (!pfn_valid(pfn))
 776				return NULL;
 777			goto out;
 778		} else {
 779			unsigned long off;
 780			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 781			if (pfn == vma->vm_pgoff + off)
 782				return NULL;
 783			if (!is_cow_mapping(vma->vm_flags))
 784				return NULL;
 785		}
 786	}
 787
 788	if (is_zero_pfn(pfn))
 789		return NULL;
 
 790check_pfn:
 791	if (unlikely(pfn > highest_memmap_pfn)) {
 792		print_bad_pte(vma, addr, pte, NULL);
 793		return NULL;
 794	}
 795
 796	/*
 797	 * NOTE! We still have PageReserved() pages in the page tables.
 798	 * eg. VDSO mappings can cause them to exist.
 799	 */
 800out:
 801	return pfn_to_page(pfn);
 802}
 803
 804#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 805struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 806				pmd_t pmd)
 807{
 808	unsigned long pfn = pmd_pfn(pmd);
 809
 810	/*
 811	 * There is no pmd_special() but there may be special pmds, e.g.
 812	 * in a direct-access (dax) mapping, so let's just replicate the
 813	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
 814	 */
 815	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 816		if (vma->vm_flags & VM_MIXEDMAP) {
 817			if (!pfn_valid(pfn))
 818				return NULL;
 819			goto out;
 820		} else {
 821			unsigned long off;
 822			off = (addr - vma->vm_start) >> PAGE_SHIFT;
 823			if (pfn == vma->vm_pgoff + off)
 824				return NULL;
 825			if (!is_cow_mapping(vma->vm_flags))
 826				return NULL;
 827		}
 828	}
 829
 830	if (is_zero_pfn(pfn))
 
 
 831		return NULL;
 832	if (unlikely(pfn > highest_memmap_pfn))
 833		return NULL;
 834
 835	/*
 836	 * NOTE! We still have PageReserved() pages in the page tables.
 837	 * eg. VDSO mappings can cause them to exist.
 838	 */
 839out:
 840	return pfn_to_page(pfn);
 841}
 842#endif
 843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844/*
 845 * copy one vm_area from one task to the other. Assumes the page tables
 846 * already present in the new task to be cleared in the whole range
 847 * covered by this vma.
 848 */
 849
 850static inline unsigned long
 851copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 852		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 853		unsigned long addr, int *rss)
 854{
 855	unsigned long vm_flags = vma->vm_flags;
 856	pte_t pte = *src_pte;
 857	struct page *page;
 
 858
 859	/* pte contains position in swap or file, so copy. */
 860	if (unlikely(!pte_present(pte))) {
 861		swp_entry_t entry = pte_to_swp_entry(pte);
 862
 863		if (likely(!non_swap_entry(entry))) {
 864			if (swap_duplicate(entry) < 0)
 865				return entry.val;
 866
 867			/* make sure dst_mm is on swapoff's mmlist. */
 868			if (unlikely(list_empty(&dst_mm->mmlist))) {
 869				spin_lock(&mmlist_lock);
 870				if (list_empty(&dst_mm->mmlist))
 871					list_add(&dst_mm->mmlist,
 872							&src_mm->mmlist);
 873				spin_unlock(&mmlist_lock);
 874			}
 875			rss[MM_SWAPENTS]++;
 876		} else if (is_migration_entry(entry)) {
 877			page = migration_entry_to_page(entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878
 879			rss[mm_counter(page)]++;
 
 
 
 
 
 
 
 
 
 
 
 880
 881			if (is_write_migration_entry(entry) &&
 882					is_cow_mapping(vm_flags)) {
 883				/*
 884				 * COW mappings require pages in both
 885				 * parent and child to be set to read.
 886				 */
 887				make_migration_entry_read(&entry);
 888				pte = swp_entry_to_pte(entry);
 889				if (pte_swp_soft_dirty(*src_pte))
 890					pte = pte_swp_mksoft_dirty(pte);
 891				set_pte_at(src_mm, addr, src_pte, pte);
 892			}
 
 
 
 893		}
 894		goto out_set_pte;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895	}
 896
 897	/*
 898	 * If it's a COW mapping, write protect it both
 899	 * in the parent and the child
 900	 */
 901	if (is_cow_mapping(vm_flags)) {
 902		ptep_set_wrprotect(src_mm, addr, src_pte);
 903		pte = pte_wrprotect(pte);
 904	}
 905
 906	/*
 907	 * If it's a shared mapping, mark it clean in
 908	 * the child
 909	 */
 910	if (vm_flags & VM_SHARED)
 911		pte = pte_mkclean(pte);
 912	pte = pte_mkold(pte);
 913
 914	page = vm_normal_page(vma, addr, pte);
 915	if (page) {
 916		get_page(page);
 917		page_dup_rmap(page, false);
 918		rss[mm_counter(page)]++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919	}
 
 920
 921out_set_pte:
 922	set_pte_at(dst_mm, addr, dst_pte, pte);
 923	return 0;
 924}
 925
 926static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 927		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 928		   unsigned long addr, unsigned long end)
 
 929{
 
 
 930	pte_t *orig_src_pte, *orig_dst_pte;
 931	pte_t *src_pte, *dst_pte;
 932	spinlock_t *src_ptl, *dst_ptl;
 933	int progress = 0;
 934	int rss[NR_MM_COUNTERS];
 935	swp_entry_t entry = (swp_entry_t){0};
 
 936
 937again:
 
 938	init_rss_vec(rss);
 939
 940	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 941	if (!dst_pte)
 942		return -ENOMEM;
 
 
 943	src_pte = pte_offset_map(src_pmd, addr);
 944	src_ptl = pte_lockptr(src_mm, src_pmd);
 945	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 946	orig_src_pte = src_pte;
 947	orig_dst_pte = dst_pte;
 948	arch_enter_lazy_mmu_mode();
 949
 950	do {
 951		/*
 952		 * We are holding two locks at this point - either of them
 953		 * could generate latencies in another task on another CPU.
 954		 */
 955		if (progress >= 32) {
 956			progress = 0;
 957			if (need_resched() ||
 958			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 959				break;
 960		}
 961		if (pte_none(*src_pte)) {
 962			progress++;
 963			continue;
 964		}
 965		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 966							vma, addr, rss);
 967		if (entry.val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968			break;
 
 
 
 
 
 
 
 
 
 
 969		progress += 8;
 970	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 971
 972	arch_leave_lazy_mmu_mode();
 973	spin_unlock(src_ptl);
 974	pte_unmap(orig_src_pte);
 975	add_mm_rss_vec(dst_mm, rss);
 976	pte_unmap_unlock(orig_dst_pte, dst_ptl);
 977	cond_resched();
 978
 979	if (entry.val) {
 980		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 
 
 
 
 
 
 
 
 
 
 981			return -ENOMEM;
 982		progress = 0;
 
 983	}
 
 
 
 
 984	if (addr != end)
 985		goto again;
 986	return 0;
 
 
 
 987}
 988
 989static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 990		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 991		unsigned long addr, unsigned long end)
 
 992{
 
 
 993	pmd_t *src_pmd, *dst_pmd;
 994	unsigned long next;
 995
 996	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 997	if (!dst_pmd)
 998		return -ENOMEM;
 999	src_pmd = pmd_offset(src_pud, addr);
1000	do {
1001		next = pmd_addr_end(addr, end);
1002		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
 
1003			int err;
1004			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
1005			err = copy_huge_pmd(dst_mm, src_mm,
1006					    dst_pmd, src_pmd, addr, vma);
1007			if (err == -ENOMEM)
1008				return -ENOMEM;
1009			if (!err)
1010				continue;
1011			/* fall through */
1012		}
1013		if (pmd_none_or_clear_bad(src_pmd))
1014			continue;
1015		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1016						vma, addr, next))
1017			return -ENOMEM;
1018	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1019	return 0;
1020}
1021
1022static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1024		unsigned long addr, unsigned long end)
 
1025{
 
 
1026	pud_t *src_pud, *dst_pud;
1027	unsigned long next;
1028
1029	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1030	if (!dst_pud)
1031		return -ENOMEM;
1032	src_pud = pud_offset(src_pgd, addr);
1033	do {
1034		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
 
 
 
 
 
1035		if (pud_none_or_clear_bad(src_pud))
1036			continue;
1037		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1038						vma, addr, next))
1039			return -ENOMEM;
1040	} while (dst_pud++, src_pud++, addr = next, addr != end);
1041	return 0;
1042}
1043
1044int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1045		struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046{
1047	pgd_t *src_pgd, *dst_pgd;
1048	unsigned long next;
1049	unsigned long addr = vma->vm_start;
1050	unsigned long end = vma->vm_end;
1051	unsigned long mmun_start;	/* For mmu_notifiers */
1052	unsigned long mmun_end;		/* For mmu_notifiers */
 
1053	bool is_cow;
1054	int ret;
1055
1056	/*
1057	 * Don't copy ptes where a page fault will fill them correctly.
1058	 * Fork becomes much lighter when there are big shared or private
1059	 * readonly mappings. The tradeoff is that copy_page_range is more
1060	 * efficient than faulting.
1061	 */
1062	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1063			!vma->anon_vma)
1064		return 0;
1065
1066	if (is_vm_hugetlb_page(vma))
1067		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1068
1069	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1070		/*
1071		 * We do not free on error cases below as remove_vma
1072		 * gets called on error from higher level routine
1073		 */
1074		ret = track_pfn_copy(vma);
1075		if (ret)
1076			return ret;
1077	}
1078
1079	/*
1080	 * We need to invalidate the secondary MMU mappings only when
1081	 * there could be a permission downgrade on the ptes of the
1082	 * parent mm. And a permission downgrade will only happen if
1083	 * is_cow_mapping() returns true.
1084	 */
1085	is_cow = is_cow_mapping(vma->vm_flags);
1086	mmun_start = addr;
1087	mmun_end   = end;
1088	if (is_cow)
1089		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1090						    mmun_end);
 
 
 
 
 
 
 
 
 
 
1091
1092	ret = 0;
1093	dst_pgd = pgd_offset(dst_mm, addr);
1094	src_pgd = pgd_offset(src_mm, addr);
1095	do {
1096		next = pgd_addr_end(addr, end);
1097		if (pgd_none_or_clear_bad(src_pgd))
1098			continue;
1099		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1100					    vma, addr, next))) {
1101			ret = -ENOMEM;
1102			break;
1103		}
1104	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1105
1106	if (is_cow)
1107		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
 
 
1108	return ret;
1109}
1110
1111static unsigned long zap_pte_range(struct mmu_gather *tlb,
1112				struct vm_area_struct *vma, pmd_t *pmd,
1113				unsigned long addr, unsigned long end,
1114				struct zap_details *details)
1115{
1116	struct mm_struct *mm = tlb->mm;
1117	int force_flush = 0;
1118	int rss[NR_MM_COUNTERS];
1119	spinlock_t *ptl;
1120	pte_t *start_pte;
1121	pte_t *pte;
1122	swp_entry_t entry;
1123
1124	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1125again:
1126	init_rss_vec(rss);
1127	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1128	pte = start_pte;
 
1129	arch_enter_lazy_mmu_mode();
1130	do {
1131		pte_t ptent = *pte;
1132		if (pte_none(ptent)) {
1133			continue;
1134		}
 
 
1135
1136		if (pte_present(ptent)) {
1137			struct page *page;
1138
1139			page = vm_normal_page(vma, addr, ptent);
1140			if (unlikely(details) && page) {
1141				/*
1142				 * unmap_shared_mapping_pages() wants to
1143				 * invalidate cache without truncating:
1144				 * unmap shared but keep private pages.
1145				 */
1146				if (details->check_mapping &&
1147				    details->check_mapping != page_rmapping(page))
1148					continue;
1149			}
1150			ptent = ptep_get_and_clear_full(mm, addr, pte,
1151							tlb->fullmm);
1152			tlb_remove_tlb_entry(tlb, pte, addr);
1153			if (unlikely(!page))
1154				continue;
1155
1156			if (!PageAnon(page)) {
1157				if (pte_dirty(ptent)) {
1158					/*
1159					 * oom_reaper cannot tear down dirty
1160					 * pages
1161					 */
1162					if (unlikely(details && details->ignore_dirty))
1163						continue;
1164					force_flush = 1;
1165					set_page_dirty(page);
1166				}
1167				if (pte_young(ptent) &&
1168				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1169					mark_page_accessed(page);
1170			}
1171			rss[mm_counter(page)]--;
1172			page_remove_rmap(page, false);
1173			if (unlikely(page_mapcount(page) < 0))
1174				print_bad_pte(vma, addr, ptent, page);
1175			if (unlikely(__tlb_remove_page(tlb, page))) {
1176				force_flush = 1;
1177				addr += PAGE_SIZE;
1178				break;
1179			}
1180			continue;
1181		}
1182		/* only check swap_entries if explicitly asked for in details */
1183		if (unlikely(details && !details->check_swap_entries))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184			continue;
1185
1186		entry = pte_to_swp_entry(ptent);
1187		if (!non_swap_entry(entry))
1188			rss[MM_SWAPENTS]--;
1189		else if (is_migration_entry(entry)) {
1190			struct page *page;
1191
1192			page = migration_entry_to_page(entry);
1193			rss[mm_counter(page)]--;
1194		}
1195		if (unlikely(!free_swap_and_cache(entry)))
1196			print_bad_pte(vma, addr, ptent, NULL);
1197		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198	} while (pte++, addr += PAGE_SIZE, addr != end);
1199
1200	add_mm_rss_vec(mm, rss);
1201	arch_leave_lazy_mmu_mode();
1202
1203	/* Do the actual TLB flush before dropping ptl */
1204	if (force_flush)
1205		tlb_flush_mmu_tlbonly(tlb);
1206	pte_unmap_unlock(start_pte, ptl);
1207
1208	/*
1209	 * If we forced a TLB flush (either due to running out of
1210	 * batch buffers or because we needed to flush dirty TLB
1211	 * entries before releasing the ptl), free the batched
1212	 * memory too. Restart if we didn't do everything.
1213	 */
1214	if (force_flush) {
1215		force_flush = 0;
1216		tlb_flush_mmu_free(tlb);
1217		if (addr != end)
1218			goto again;
 
 
 
1219	}
1220
1221	return addr;
1222}
1223
1224static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225				struct vm_area_struct *vma, pud_t *pud,
1226				unsigned long addr, unsigned long end,
1227				struct zap_details *details)
1228{
1229	pmd_t *pmd;
1230	unsigned long next;
1231
1232	pmd = pmd_offset(pud, addr);
1233	do {
1234		next = pmd_addr_end(addr, end);
1235		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1236			if (next - addr != HPAGE_PMD_SIZE) {
1237				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1238				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1239				__split_huge_pmd(vma, pmd, addr, false, NULL);
1240			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1241				goto next;
1242			/* fall through */
 
 
 
 
 
 
 
 
 
 
1243		}
 
1244		/*
1245		 * Here there can be other concurrent MADV_DONTNEED or
1246		 * trans huge page faults running, and if the pmd is
1247		 * none or trans huge it can change under us. This is
1248		 * because MADV_DONTNEED holds the mmap_sem in read
1249		 * mode.
1250		 */
1251		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1252			goto next;
1253		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1254next:
1255		cond_resched();
1256	} while (pmd++, addr = next, addr != end);
1257
1258	return addr;
1259}
1260
1261static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1262				struct vm_area_struct *vma, pgd_t *pgd,
1263				unsigned long addr, unsigned long end,
1264				struct zap_details *details)
1265{
1266	pud_t *pud;
1267	unsigned long next;
1268
1269	pud = pud_offset(pgd, addr);
1270	do {
1271		next = pud_addr_end(addr, end);
 
 
 
 
 
 
 
 
1272		if (pud_none_or_clear_bad(pud))
1273			continue;
1274		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
 
 
1275	} while (pud++, addr = next, addr != end);
1276
1277	return addr;
1278}
1279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280void unmap_page_range(struct mmu_gather *tlb,
1281			     struct vm_area_struct *vma,
1282			     unsigned long addr, unsigned long end,
1283			     struct zap_details *details)
1284{
1285	pgd_t *pgd;
1286	unsigned long next;
1287
1288	BUG_ON(addr >= end);
1289	tlb_start_vma(tlb, vma);
1290	pgd = pgd_offset(vma->vm_mm, addr);
1291	do {
1292		next = pgd_addr_end(addr, end);
1293		if (pgd_none_or_clear_bad(pgd))
1294			continue;
1295		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1296	} while (pgd++, addr = next, addr != end);
1297	tlb_end_vma(tlb, vma);
1298}
1299
1300
1301static void unmap_single_vma(struct mmu_gather *tlb,
1302		struct vm_area_struct *vma, unsigned long start_addr,
1303		unsigned long end_addr,
1304		struct zap_details *details)
1305{
1306	unsigned long start = max(vma->vm_start, start_addr);
1307	unsigned long end;
1308
1309	if (start >= vma->vm_end)
1310		return;
1311	end = min(vma->vm_end, end_addr);
1312	if (end <= vma->vm_start)
1313		return;
1314
1315	if (vma->vm_file)
1316		uprobe_munmap(vma, start, end);
1317
1318	if (unlikely(vma->vm_flags & VM_PFNMAP))
1319		untrack_pfn(vma, 0, 0);
1320
1321	if (start != end) {
1322		if (unlikely(is_vm_hugetlb_page(vma))) {
1323			/*
1324			 * It is undesirable to test vma->vm_file as it
1325			 * should be non-null for valid hugetlb area.
1326			 * However, vm_file will be NULL in the error
1327			 * cleanup path of mmap_region. When
1328			 * hugetlbfs ->mmap method fails,
1329			 * mmap_region() nullifies vma->vm_file
1330			 * before calling this function to clean up.
1331			 * Since no pte has actually been setup, it is
1332			 * safe to do nothing in this case.
1333			 */
1334			if (vma->vm_file) {
1335				i_mmap_lock_write(vma->vm_file->f_mapping);
1336				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1337				i_mmap_unlock_write(vma->vm_file->f_mapping);
1338			}
1339		} else
1340			unmap_page_range(tlb, vma, start, end, details);
1341	}
1342}
1343
1344/**
1345 * unmap_vmas - unmap a range of memory covered by a list of vma's
1346 * @tlb: address of the caller's struct mmu_gather
1347 * @vma: the starting vma
1348 * @start_addr: virtual address at which to start unmapping
1349 * @end_addr: virtual address at which to end unmapping
1350 *
1351 * Unmap all pages in the vma list.
1352 *
1353 * Only addresses between `start' and `end' will be unmapped.
1354 *
1355 * The VMA list must be sorted in ascending virtual address order.
1356 *
1357 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1358 * range after unmap_vmas() returns.  So the only responsibility here is to
1359 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1360 * drops the lock and schedules.
1361 */
1362void unmap_vmas(struct mmu_gather *tlb,
1363		struct vm_area_struct *vma, unsigned long start_addr,
1364		unsigned long end_addr)
1365{
1366	struct mm_struct *mm = vma->vm_mm;
1367
1368	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
 
 
1369	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1370		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1371	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1372}
1373
1374/**
1375 * zap_page_range - remove user pages in a given range
1376 * @vma: vm_area_struct holding the applicable pages
1377 * @start: starting address of pages to zap
1378 * @size: number of bytes to zap
1379 * @details: details of shared cache invalidation
1380 *
1381 * Caller must protect the VMA list
1382 */
1383void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1384		unsigned long size, struct zap_details *details)
1385{
1386	struct mm_struct *mm = vma->vm_mm;
1387	struct mmu_gather tlb;
1388	unsigned long end = start + size;
1389
1390	lru_add_drain();
1391	tlb_gather_mmu(&tlb, mm, start, end);
1392	update_hiwater_rss(mm);
1393	mmu_notifier_invalidate_range_start(mm, start, end);
1394	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1395		unmap_single_vma(&tlb, vma, start, end, details);
1396	mmu_notifier_invalidate_range_end(mm, start, end);
1397	tlb_finish_mmu(&tlb, start, end);
 
 
1398}
1399
1400/**
1401 * zap_page_range_single - remove user pages in a given range
1402 * @vma: vm_area_struct holding the applicable pages
1403 * @address: starting address of pages to zap
1404 * @size: number of bytes to zap
1405 * @details: details of shared cache invalidation
1406 *
1407 * The range must fit into one VMA.
1408 */
1409static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1410		unsigned long size, struct zap_details *details)
1411{
1412	struct mm_struct *mm = vma->vm_mm;
1413	struct mmu_gather tlb;
1414	unsigned long end = address + size;
1415
1416	lru_add_drain();
1417	tlb_gather_mmu(&tlb, mm, address, end);
1418	update_hiwater_rss(mm);
1419	mmu_notifier_invalidate_range_start(mm, address, end);
1420	unmap_single_vma(&tlb, vma, address, end, details);
1421	mmu_notifier_invalidate_range_end(mm, address, end);
1422	tlb_finish_mmu(&tlb, address, end);
 
 
1423}
1424
1425/**
1426 * zap_vma_ptes - remove ptes mapping the vma
1427 * @vma: vm_area_struct holding ptes to be zapped
1428 * @address: starting address of pages to zap
1429 * @size: number of bytes to zap
1430 *
1431 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1432 *
1433 * The entire address range must be fully contained within the vma.
1434 *
1435 * Returns 0 if successful.
1436 */
1437int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1438		unsigned long size)
1439{
1440	if (address < vma->vm_start || address + size > vma->vm_end ||
1441	    		!(vma->vm_flags & VM_PFNMAP))
1442		return -1;
 
1443	zap_page_range_single(vma, address, size, NULL);
1444	return 0;
1445}
1446EXPORT_SYMBOL_GPL(zap_vma_ptes);
1447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1448pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1449			spinlock_t **ptl)
1450{
1451	pgd_t * pgd = pgd_offset(mm, addr);
1452	pud_t * pud = pud_alloc(mm, pgd, addr);
1453	if (pud) {
1454		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1455		if (pmd) {
1456			VM_BUG_ON(pmd_trans_huge(*pmd));
1457			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1458		}
1459	}
1460	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461}
1462
1463/*
1464 * This is the old fallback for page remapping.
1465 *
1466 * For historical reasons, it only allows reserved pages. Only
1467 * old drivers should use this, and they needed to mark their
1468 * pages reserved for the old functions anyway.
1469 */
1470static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1471			struct page *page, pgprot_t prot)
1472{
1473	struct mm_struct *mm = vma->vm_mm;
1474	int retval;
1475	pte_t *pte;
1476	spinlock_t *ptl;
1477
1478	retval = -EINVAL;
1479	if (PageAnon(page))
1480		goto out;
1481	retval = -ENOMEM;
1482	flush_dcache_page(page);
1483	pte = get_locked_pte(mm, addr, &ptl);
1484	if (!pte)
1485		goto out;
1486	retval = -EBUSY;
1487	if (!pte_none(*pte))
1488		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489
1490	/* Ok, finally just insert the thing.. */
1491	get_page(page);
1492	inc_mm_counter_fast(mm, mm_counter_file(page));
1493	page_add_file_rmap(page, false);
1494	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1495
1496	retval = 0;
1497	pte_unmap_unlock(pte, ptl);
1498	return retval;
1499out_unlock:
1500	pte_unmap_unlock(pte, ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1501out:
1502	return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1503}
 
1504
1505/**
1506 * vm_insert_page - insert single page into user vma
1507 * @vma: user vma to map to
1508 * @addr: target user address of this page
1509 * @page: source kernel page
1510 *
1511 * This allows drivers to insert individual pages they've allocated
1512 * into a user vma.
1513 *
1514 * The page has to be a nice clean _individual_ kernel allocation.
1515 * If you allocate a compound page, you need to have marked it as
1516 * such (__GFP_COMP), or manually just split the page up yourself
1517 * (see split_page()).
1518 *
1519 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1520 * took an arbitrary page protection parameter. This doesn't allow
1521 * that. Your vma protection will have to be set up correctly, which
1522 * means that if you want a shared writable mapping, you'd better
1523 * ask for a shared writable mapping!
1524 *
1525 * The page does not need to be reserved.
1526 *
1527 * Usually this function is called from f_op->mmap() handler
1528 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1529 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1530 * function from other places, for example from page-fault handler.
 
 
1531 */
1532int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1533			struct page *page)
1534{
1535	if (addr < vma->vm_start || addr >= vma->vm_end)
1536		return -EFAULT;
1537	if (!page_count(page))
1538		return -EINVAL;
1539	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1540		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1541		BUG_ON(vma->vm_flags & VM_PFNMAP);
1542		vma->vm_flags |= VM_MIXEDMAP;
1543	}
1544	return insert_page(vma, addr, page, vma->vm_page_prot);
1545}
1546EXPORT_SYMBOL(vm_insert_page);
1547
1548static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1549			pfn_t pfn, pgprot_t prot)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550{
1551	struct mm_struct *mm = vma->vm_mm;
1552	int retval;
1553	pte_t *pte, entry;
1554	spinlock_t *ptl;
1555
1556	retval = -ENOMEM;
1557	pte = get_locked_pte(mm, addr, &ptl);
1558	if (!pte)
1559		goto out;
1560	retval = -EBUSY;
1561	if (!pte_none(*pte))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1562		goto out_unlock;
 
1563
1564	/* Ok, finally just insert the thing.. */
1565	if (pfn_t_devmap(pfn))
1566		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1567	else
1568		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
 
 
 
 
 
 
1569	set_pte_at(mm, addr, pte, entry);
1570	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1571
1572	retval = 0;
1573out_unlock:
1574	pte_unmap_unlock(pte, ptl);
1575out:
1576	return retval;
1577}
1578
1579/**
1580 * vm_insert_pfn - insert single pfn into user vma
1581 * @vma: user vma to map to
1582 * @addr: target user address of this page
1583 * @pfn: source kernel pfn
1584 *
1585 * Similar to vm_insert_page, this allows drivers to insert individual pages
1586 * they've allocated into a user vma. Same comments apply.
1587 *
1588 * This function should only be called from a vm_ops->fault handler, and
1589 * in that case the handler should return NULL.
1590 *
1591 * vma cannot be a COW mapping.
1592 *
1593 * As this is called only for pages that do not currently exist, we
1594 * do not need to flush old virtual caches or the TLB.
1595 */
1596int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1597			unsigned long pfn)
1598{
1599	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1600}
1601EXPORT_SYMBOL(vm_insert_pfn);
1602
1603/**
1604 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1605 * @vma: user vma to map to
1606 * @addr: target user address of this page
1607 * @pfn: source kernel pfn
1608 * @pgprot: pgprot flags for the inserted page
1609 *
1610 * This is exactly like vm_insert_pfn, except that it allows drivers to
1611 * to override pgprot on a per-page basis.
1612 *
1613 * This only makes sense for IO mappings, and it makes no sense for
1614 * cow mappings.  In general, using multiple vmas is preferable;
1615 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1616 * impractical.
 
 
 
 
 
 
1617 */
1618int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1619			unsigned long pfn, pgprot_t pgprot)
1620{
1621	int ret;
1622	/*
1623	 * Technically, architectures with pte_special can avoid all these
1624	 * restrictions (same for remap_pfn_range).  However we would like
1625	 * consistency in testing and feature parity among all, so we should
1626	 * try to keep these invariants in place for everybody.
1627	 */
1628	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1629	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1630						(VM_PFNMAP|VM_MIXEDMAP));
1631	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1632	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1633
1634	if (addr < vma->vm_start || addr >= vma->vm_end)
1635		return -EFAULT;
 
 
 
1636
1637	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1638
1639	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
 
 
 
1640
1641	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1642}
1643EXPORT_SYMBOL(vm_insert_pfn_prot);
1644
1645int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1646			pfn_t pfn)
 
1647{
1648	pgprot_t pgprot = vma->vm_page_prot;
1649
1650	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1651
1652	if (addr < vma->vm_start || addr >= vma->vm_end)
1653		return -EFAULT;
1654
1655	track_pfn_insert(vma, &pgprot, pfn);
1656
 
 
 
1657	/*
1658	 * If we don't have pte special, then we have to use the pfn_valid()
1659	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1660	 * refcount the page if pfn_valid is true (hence insert_page rather
1661	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1662	 * without pte special, it would there be refcounted as a normal page.
1663	 */
1664	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
 
1665		struct page *page;
1666
1667		/*
1668		 * At this point we are committed to insert_page()
1669		 * regardless of whether the caller specified flags that
1670		 * result in pfn_t_has_page() == false.
1671		 */
1672		page = pfn_to_page(pfn_t_to_pfn(pfn));
1673		return insert_page(vma, addr, page, pgprot);
 
 
1674	}
1675	return insert_pfn(vma, addr, pfn, pgprot);
 
 
 
 
 
 
1676}
1677EXPORT_SYMBOL(vm_insert_mixed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1678
1679/*
1680 * maps a range of physical memory into the requested pages. the old
1681 * mappings are removed. any references to nonexistent pages results
1682 * in null mappings (currently treated as "copy-on-access")
1683 */
1684static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1685			unsigned long addr, unsigned long end,
1686			unsigned long pfn, pgprot_t prot)
1687{
1688	pte_t *pte;
1689	spinlock_t *ptl;
 
1690
1691	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1692	if (!pte)
1693		return -ENOMEM;
1694	arch_enter_lazy_mmu_mode();
1695	do {
1696		BUG_ON(!pte_none(*pte));
 
 
 
 
1697		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1698		pfn++;
1699	} while (pte++, addr += PAGE_SIZE, addr != end);
1700	arch_leave_lazy_mmu_mode();
1701	pte_unmap_unlock(pte - 1, ptl);
1702	return 0;
1703}
1704
1705static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1706			unsigned long addr, unsigned long end,
1707			unsigned long pfn, pgprot_t prot)
1708{
1709	pmd_t *pmd;
1710	unsigned long next;
 
1711
1712	pfn -= addr >> PAGE_SHIFT;
1713	pmd = pmd_alloc(mm, pud, addr);
1714	if (!pmd)
1715		return -ENOMEM;
1716	VM_BUG_ON(pmd_trans_huge(*pmd));
1717	do {
1718		next = pmd_addr_end(addr, end);
1719		if (remap_pte_range(mm, pmd, addr, next,
1720				pfn + (addr >> PAGE_SHIFT), prot))
1721			return -ENOMEM;
 
1722	} while (pmd++, addr = next, addr != end);
1723	return 0;
1724}
1725
1726static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1727			unsigned long addr, unsigned long end,
1728			unsigned long pfn, pgprot_t prot)
1729{
1730	pud_t *pud;
1731	unsigned long next;
 
1732
1733	pfn -= addr >> PAGE_SHIFT;
1734	pud = pud_alloc(mm, pgd, addr);
1735	if (!pud)
1736		return -ENOMEM;
1737	do {
1738		next = pud_addr_end(addr, end);
1739		if (remap_pmd_range(mm, pud, addr, next,
1740				pfn + (addr >> PAGE_SHIFT), prot))
1741			return -ENOMEM;
 
1742	} while (pud++, addr = next, addr != end);
1743	return 0;
1744}
1745
1746/**
1747 * remap_pfn_range - remap kernel memory to userspace
1748 * @vma: user vma to map to
1749 * @addr: target user address to start at
1750 * @pfn: physical address of kernel memory
1751 * @size: size of map area
1752 * @prot: page protection flags for this mapping
1753 *
1754 *  Note: this is only safe if the mm semaphore is held when called.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755 */
1756int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1757		    unsigned long pfn, unsigned long size, pgprot_t prot)
1758{
1759	pgd_t *pgd;
1760	unsigned long next;
1761	unsigned long end = addr + PAGE_ALIGN(size);
1762	struct mm_struct *mm = vma->vm_mm;
1763	unsigned long remap_pfn = pfn;
1764	int err;
1765
 
 
 
1766	/*
1767	 * Physically remapped pages are special. Tell the
1768	 * rest of the world about it:
1769	 *   VM_IO tells people not to look at these pages
1770	 *	(accesses can have side effects).
1771	 *   VM_PFNMAP tells the core MM that the base pages are just
1772	 *	raw PFN mappings, and do not have a "struct page" associated
1773	 *	with them.
1774	 *   VM_DONTEXPAND
1775	 *      Disable vma merging and expanding with mremap().
1776	 *   VM_DONTDUMP
1777	 *      Omit vma from core dump, even when VM_IO turned off.
1778	 *
1779	 * There's a horrible special case to handle copy-on-write
1780	 * behaviour that some programs depend on. We mark the "original"
1781	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1782	 * See vm_normal_page() for details.
1783	 */
1784	if (is_cow_mapping(vma->vm_flags)) {
1785		if (addr != vma->vm_start || end != vma->vm_end)
1786			return -EINVAL;
1787		vma->vm_pgoff = pfn;
1788	}
1789
1790	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1791	if (err)
1792		return -EINVAL;
1793
1794	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1795
1796	BUG_ON(addr >= end);
1797	pfn -= addr >> PAGE_SHIFT;
1798	pgd = pgd_offset(mm, addr);
1799	flush_cache_range(vma, addr, end);
1800	do {
1801		next = pgd_addr_end(addr, end);
1802		err = remap_pud_range(mm, pgd, addr, next,
1803				pfn + (addr >> PAGE_SHIFT), prot);
1804		if (err)
1805			break;
1806	} while (pgd++, addr = next, addr != end);
1807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808	if (err)
1809		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1810
 
 
 
1811	return err;
1812}
1813EXPORT_SYMBOL(remap_pfn_range);
1814
1815/**
1816 * vm_iomap_memory - remap memory to userspace
1817 * @vma: user vma to map to
1818 * @start: start of area
1819 * @len: size of area
1820 *
1821 * This is a simplified io_remap_pfn_range() for common driver use. The
1822 * driver just needs to give us the physical memory range to be mapped,
1823 * we'll figure out the rest from the vma information.
1824 *
1825 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1826 * whatever write-combining details or similar.
 
 
1827 */
1828int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1829{
1830	unsigned long vm_len, pfn, pages;
1831
1832	/* Check that the physical memory area passed in looks valid */
1833	if (start + len < start)
1834		return -EINVAL;
1835	/*
1836	 * You *really* shouldn't map things that aren't page-aligned,
1837	 * but we've historically allowed it because IO memory might
1838	 * just have smaller alignment.
1839	 */
1840	len += start & ~PAGE_MASK;
1841	pfn = start >> PAGE_SHIFT;
1842	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1843	if (pfn + pages < pfn)
1844		return -EINVAL;
1845
1846	/* We start the mapping 'vm_pgoff' pages into the area */
1847	if (vma->vm_pgoff > pages)
1848		return -EINVAL;
1849	pfn += vma->vm_pgoff;
1850	pages -= vma->vm_pgoff;
1851
1852	/* Can we fit all of the mapping? */
1853	vm_len = vma->vm_end - vma->vm_start;
1854	if (vm_len >> PAGE_SHIFT > pages)
1855		return -EINVAL;
1856
1857	/* Ok, let it rip */
1858	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1859}
1860EXPORT_SYMBOL(vm_iomap_memory);
1861
1862static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1863				     unsigned long addr, unsigned long end,
1864				     pte_fn_t fn, void *data)
 
1865{
1866	pte_t *pte;
1867	int err;
1868	pgtable_t token;
1869	spinlock_t *uninitialized_var(ptl);
1870
1871	pte = (mm == &init_mm) ?
1872		pte_alloc_kernel(pmd, addr) :
1873		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1874	if (!pte)
1875		return -ENOMEM;
 
 
 
 
 
 
1876
1877	BUG_ON(pmd_huge(*pmd));
1878
1879	arch_enter_lazy_mmu_mode();
1880
1881	token = pmd_pgtable(*pmd);
1882
1883	do {
1884		err = fn(pte++, token, addr, data);
1885		if (err)
1886			break;
1887	} while (addr += PAGE_SIZE, addr != end);
 
 
 
1888
1889	arch_leave_lazy_mmu_mode();
1890
1891	if (mm != &init_mm)
1892		pte_unmap_unlock(pte-1, ptl);
1893	return err;
1894}
1895
1896static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1897				     unsigned long addr, unsigned long end,
1898				     pte_fn_t fn, void *data)
 
1899{
1900	pmd_t *pmd;
1901	unsigned long next;
1902	int err;
1903
1904	BUG_ON(pud_huge(*pud));
1905
1906	pmd = pmd_alloc(mm, pud, addr);
1907	if (!pmd)
1908		return -ENOMEM;
 
 
 
 
1909	do {
1910		next = pmd_addr_end(addr, end);
1911		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
 
 
 
 
 
 
 
 
 
 
1912		if (err)
1913			break;
1914	} while (pmd++, addr = next, addr != end);
 
1915	return err;
1916}
1917
1918static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1919				     unsigned long addr, unsigned long end,
1920				     pte_fn_t fn, void *data)
 
1921{
1922	pud_t *pud;
1923	unsigned long next;
1924	int err;
1925
1926	pud = pud_alloc(mm, pgd, addr);
1927	if (!pud)
1928		return -ENOMEM;
 
 
 
 
1929	do {
1930		next = pud_addr_end(addr, end);
1931		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
 
 
 
 
 
 
 
 
 
 
1932		if (err)
1933			break;
1934	} while (pud++, addr = next, addr != end);
 
1935	return err;
1936}
1937
1938/*
1939 * Scan a region of virtual memory, filling in page tables as necessary
1940 * and calling a provided function on each leaf page table.
1941 */
1942int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1943			unsigned long size, pte_fn_t fn, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944{
1945	pgd_t *pgd;
1946	unsigned long next;
1947	unsigned long end = addr + size;
1948	int err;
 
1949
1950	if (WARN_ON(addr >= end))
1951		return -EINVAL;
1952
1953	pgd = pgd_offset(mm, addr);
1954	do {
1955		next = pgd_addr_end(addr, end);
1956		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
 
 
 
 
 
 
 
 
 
 
1957		if (err)
1958			break;
1959	} while (pgd++, addr = next, addr != end);
1960
 
 
 
1961	return err;
1962}
 
 
 
 
 
 
 
 
 
 
1963EXPORT_SYMBOL_GPL(apply_to_page_range);
1964
1965/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1966 * handle_pte_fault chooses page fault handler according to an entry which was
1967 * read non-atomically.  Before making any commitment, on those architectures
1968 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1969 * parts, do_swap_page must check under lock before unmapping the pte and
1970 * proceeding (but do_wp_page is only called after already making such a check;
1971 * and do_anonymous_page can safely check later on).
1972 */
1973static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1974				pte_t *page_table, pte_t orig_pte)
1975{
1976	int same = 1;
1977#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1978	if (sizeof(pte_t) > sizeof(unsigned long)) {
1979		spinlock_t *ptl = pte_lockptr(mm, pmd);
1980		spin_lock(ptl);
1981		same = pte_same(*page_table, orig_pte);
1982		spin_unlock(ptl);
1983	}
1984#endif
1985	pte_unmap(page_table);
1986	return same;
1987}
1988
1989static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
 
1990{
1991	debug_dma_assert_idle(src);
 
 
 
 
 
 
 
 
 
 
 
1992
1993	/*
1994	 * If the source page was a PFN mapping, we don't have
1995	 * a "struct page" for it. We do a best-effort copy by
1996	 * just copying from the original user address. If that
1997	 * fails, we just zero-fill it. Live with it.
1998	 */
1999	if (unlikely(!src)) {
2000		void *kaddr = kmap_atomic(dst);
2001		void __user *uaddr = (void __user *)(va & PAGE_MASK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2002
2003		/*
2004		 * This really shouldn't fail, because the page is there
2005		 * in the page tables. But it might just be unreadable,
2006		 * in which case we just give up and fill the result with
2007		 * zeroes.
2008		 */
2009		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
 
 
 
 
 
 
2010			clear_page(kaddr);
2011		kunmap_atomic(kaddr);
2012		flush_dcache_page(dst);
2013	} else
2014		copy_user_highpage(dst, src, va, vma);
 
 
 
 
 
 
 
 
2015}
2016
2017static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2018{
2019	struct file *vm_file = vma->vm_file;
2020
2021	if (vm_file)
2022		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2023
2024	/*
2025	 * Special mappings (e.g. VDSO) do not have any file so fake
2026	 * a default GFP_KERNEL for them.
2027	 */
2028	return GFP_KERNEL;
2029}
2030
2031/*
2032 * Notify the address space that the page is about to become writable so that
2033 * it can prohibit this or wait for the page to get into an appropriate state.
2034 *
2035 * We do this without the lock held, so that it can sleep if it needs to.
2036 */
2037static int do_page_mkwrite(struct vm_fault *vmf)
2038{
2039	int ret;
2040	struct page *page = vmf->page;
2041	unsigned int old_flags = vmf->flags;
2042
2043	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2044
2045	ret = vmf->vma->vm_ops->page_mkwrite(vmf->vma, vmf);
 
 
 
 
2046	/* Restore original flags so that caller is not surprised */
2047	vmf->flags = old_flags;
2048	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2049		return ret;
2050	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2051		lock_page(page);
2052		if (!page->mapping) {
2053			unlock_page(page);
2054			return 0; /* retry */
2055		}
2056		ret |= VM_FAULT_LOCKED;
2057	} else
2058		VM_BUG_ON_PAGE(!PageLocked(page), page);
2059	return ret;
2060}
2061
2062/*
2063 * Handle dirtying of a page in shared file mapping on a write fault.
2064 *
2065 * The function expects the page to be locked and unlocks it.
2066 */
2067static void fault_dirty_shared_page(struct vm_area_struct *vma,
2068				    struct page *page)
2069{
 
2070	struct address_space *mapping;
 
2071	bool dirtied;
2072	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2073
2074	dirtied = set_page_dirty(page);
2075	VM_BUG_ON_PAGE(PageAnon(page), page);
2076	/*
2077	 * Take a local copy of the address_space - page.mapping may be zeroed
2078	 * by truncate after unlock_page().   The address_space itself remains
2079	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2080	 * release semantics to prevent the compiler from undoing this copying.
2081	 */
2082	mapping = page_rmapping(page);
2083	unlock_page(page);
2084
 
 
 
 
 
 
 
 
 
 
 
 
2085	if ((dirtied || page_mkwrite) && mapping) {
2086		/*
2087		 * Some device drivers do not set page.mapping
2088		 * but still dirty their pages
2089		 */
2090		balance_dirty_pages_ratelimited(mapping);
 
 
 
 
2091	}
2092
2093	if (!page_mkwrite)
2094		file_update_time(vma->vm_file);
2095}
2096
2097/*
2098 * Handle write page faults for pages that can be reused in the current vma
2099 *
2100 * This can happen either due to the mapping being with the VM_SHARED flag,
2101 * or due to us being the last reference standing to the page. In either
2102 * case, all we need to do here is to mark the page as writable and update
2103 * any related book-keeping.
2104 */
2105static inline void wp_page_reuse(struct vm_fault *vmf)
2106	__releases(vmf->ptl)
2107{
2108	struct vm_area_struct *vma = vmf->vma;
2109	struct page *page = vmf->page;
2110	pte_t entry;
2111	/*
2112	 * Clear the pages cpupid information as the existing
2113	 * information potentially belongs to a now completely
2114	 * unrelated process.
2115	 */
2116	if (page)
2117		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2118
2119	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2120	entry = pte_mkyoung(vmf->orig_pte);
2121	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2122	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2123		update_mmu_cache(vma, vmf->address, vmf->pte);
2124	pte_unmap_unlock(vmf->pte, vmf->ptl);
 
2125}
2126
2127/*
2128 * Handle the case of a page which we actually need to copy to a new page.
2129 *
2130 * Called with mmap_sem locked and the old page referenced, but
2131 * without the ptl held.
2132 *
2133 * High level logic flow:
2134 *
2135 * - Allocate a page, copy the content of the old page to the new one.
2136 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2137 * - Take the PTL. If the pte changed, bail out and release the allocated page
2138 * - If the pte is still the way we remember it, update the page table and all
2139 *   relevant references. This includes dropping the reference the page-table
2140 *   held to the old page, as well as updating the rmap.
2141 * - In any case, unlock the PTL and drop the reference we took to the old page.
2142 */
2143static int wp_page_copy(struct vm_fault *vmf)
2144{
2145	struct vm_area_struct *vma = vmf->vma;
2146	struct mm_struct *mm = vma->vm_mm;
2147	struct page *old_page = vmf->page;
2148	struct page *new_page = NULL;
2149	pte_t entry;
2150	int page_copied = 0;
2151	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2152	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2153	struct mem_cgroup *memcg;
2154
2155	if (unlikely(anon_vma_prepare(vma)))
2156		goto oom;
2157
2158	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2159		new_page = alloc_zeroed_user_highpage_movable(vma,
2160							      vmf->address);
2161		if (!new_page)
2162			goto oom;
2163	} else {
2164		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2165				vmf->address);
2166		if (!new_page)
2167			goto oom;
2168		cow_user_page(new_page, old_page, vmf->address, vma);
 
 
 
 
 
 
 
 
 
 
 
 
2169	}
2170
2171	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2172		goto oom_free_new;
 
2173
2174	__SetPageUptodate(new_page);
2175
2176	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 
 
 
2177
2178	/*
2179	 * Re-check the pte - we dropped the lock
2180	 */
2181	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2182	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2183		if (old_page) {
2184			if (!PageAnon(old_page)) {
2185				dec_mm_counter_fast(mm,
2186						mm_counter_file(old_page));
2187				inc_mm_counter_fast(mm, MM_ANONPAGES);
2188			}
2189		} else {
2190			inc_mm_counter_fast(mm, MM_ANONPAGES);
2191		}
2192		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2193		entry = mk_pte(new_page, vma->vm_page_prot);
 
2194		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
 
2195		/*
2196		 * Clear the pte entry and flush it first, before updating the
2197		 * pte with the new entry. This will avoid a race condition
2198		 * seen in the presence of one thread doing SMC and another
2199		 * thread doing COW.
 
2200		 */
2201		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2202		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2203		mem_cgroup_commit_charge(new_page, memcg, false, false);
2204		lru_cache_add_active_or_unevictable(new_page, vma);
2205		/*
2206		 * We call the notify macro here because, when using secondary
2207		 * mmu page tables (such as kvm shadow page tables), we want the
2208		 * new page to be mapped directly into the secondary page table.
2209		 */
2210		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2211		update_mmu_cache(vma, vmf->address, vmf->pte);
2212		if (old_page) {
2213			/*
2214			 * Only after switching the pte to the new page may
2215			 * we remove the mapcount here. Otherwise another
2216			 * process may come and find the rmap count decremented
2217			 * before the pte is switched to the new page, and
2218			 * "reuse" the old page writing into it while our pte
2219			 * here still points into it and can be read by other
2220			 * threads.
2221			 *
2222			 * The critical issue is to order this
2223			 * page_remove_rmap with the ptp_clear_flush above.
2224			 * Those stores are ordered by (if nothing else,)
2225			 * the barrier present in the atomic_add_negative
2226			 * in page_remove_rmap.
2227			 *
2228			 * Then the TLB flush in ptep_clear_flush ensures that
2229			 * no process can access the old page before the
2230			 * decremented mapcount is visible. And the old page
2231			 * cannot be reused until after the decremented
2232			 * mapcount is visible. So transitively, TLBs to
2233			 * old page will be flushed before it can be reused.
2234			 */
2235			page_remove_rmap(old_page, false);
2236		}
2237
2238		/* Free the old page.. */
2239		new_page = old_page;
2240		page_copied = 1;
2241	} else {
2242		mem_cgroup_cancel_charge(new_page, memcg, false);
2243	}
2244
2245	if (new_page)
2246		put_page(new_page);
2247
2248	pte_unmap_unlock(vmf->pte, vmf->ptl);
2249	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 
 
 
 
2250	if (old_page) {
2251		/*
2252		 * Don't let another task, with possibly unlocked vma,
2253		 * keep the mlocked page.
2254		 */
2255		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2256			lock_page(old_page);	/* LRU manipulation */
2257			if (PageMlocked(old_page))
2258				munlock_vma_page(old_page);
2259			unlock_page(old_page);
2260		}
 
 
2261		put_page(old_page);
2262	}
2263	return page_copied ? VM_FAULT_WRITE : 0;
2264oom_free_new:
2265	put_page(new_page);
2266oom:
2267	if (old_page)
2268		put_page(old_page);
2269	return VM_FAULT_OOM;
2270}
2271
2272/**
2273 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2274 *			  writeable once the page is prepared
2275 *
2276 * @vmf: structure describing the fault
2277 *
2278 * This function handles all that is needed to finish a write page fault in a
2279 * shared mapping due to PTE being read-only once the mapped page is prepared.
2280 * It handles locking of PTE and modifying it. The function returns
2281 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2282 * lock.
2283 *
2284 * The function expects the page to be locked or other protection against
2285 * concurrent faults / writeback (such as DAX radix tree locks).
 
 
 
2286 */
2287int finish_mkwrite_fault(struct vm_fault *vmf)
2288{
2289	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2290	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2291				       &vmf->ptl);
2292	/*
2293	 * We might have raced with another page fault while we released the
2294	 * pte_offset_map_lock.
2295	 */
2296	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
 
2297		pte_unmap_unlock(vmf->pte, vmf->ptl);
2298		return VM_FAULT_NOPAGE;
2299	}
2300	wp_page_reuse(vmf);
2301	return 0;
2302}
2303
2304/*
2305 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2306 * mapping
2307 */
2308static int wp_pfn_shared(struct vm_fault *vmf)
2309{
2310	struct vm_area_struct *vma = vmf->vma;
2311
2312	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2313		int ret;
2314
2315		pte_unmap_unlock(vmf->pte, vmf->ptl);
2316		vmf->flags |= FAULT_FLAG_MKWRITE;
2317		ret = vma->vm_ops->pfn_mkwrite(vma, vmf);
2318		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2319			return ret;
2320		return finish_mkwrite_fault(vmf);
2321	}
2322	wp_page_reuse(vmf);
2323	return VM_FAULT_WRITE;
2324}
2325
2326static int wp_page_shared(struct vm_fault *vmf)
2327	__releases(vmf->ptl)
2328{
2329	struct vm_area_struct *vma = vmf->vma;
 
2330
2331	get_page(vmf->page);
2332
2333	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2334		int tmp;
2335
2336		pte_unmap_unlock(vmf->pte, vmf->ptl);
2337		tmp = do_page_mkwrite(vmf);
2338		if (unlikely(!tmp || (tmp &
2339				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2340			put_page(vmf->page);
2341			return tmp;
2342		}
2343		tmp = finish_mkwrite_fault(vmf);
2344		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2345			unlock_page(vmf->page);
2346			put_page(vmf->page);
2347			return tmp;
2348		}
2349	} else {
2350		wp_page_reuse(vmf);
2351		lock_page(vmf->page);
2352	}
2353	fault_dirty_shared_page(vma, vmf->page);
2354	put_page(vmf->page);
2355
2356	return VM_FAULT_WRITE;
2357}
2358
2359/*
2360 * This routine handles present pages, when users try to write
2361 * to a shared page. It is done by copying the page to a new address
2362 * and decrementing the shared-page counter for the old page.
2363 *
2364 * Note that this routine assumes that the protection checks have been
2365 * done by the caller (the low-level page fault routine in most cases).
2366 * Thus we can safely just mark it writable once we've done any necessary
2367 * COW.
2368 *
2369 * We also mark the page dirty at this point even though the page will
2370 * change only once the write actually happens. This avoids a few races,
2371 * and potentially makes it more efficient.
2372 *
2373 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2374 * but allow concurrent faults), with pte both mapped and locked.
2375 * We return with mmap_sem still held, but pte unmapped and unlocked.
2376 */
2377static int do_wp_page(struct vm_fault *vmf)
2378	__releases(vmf->ptl)
2379{
2380	struct vm_area_struct *vma = vmf->vma;
2381
 
 
 
 
 
 
 
 
 
 
 
 
 
2382	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2383	if (!vmf->page) {
2384		/*
2385		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2386		 * VM_PFNMAP VMA.
2387		 *
2388		 * We should not cow pages in a shared writeable mapping.
2389		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2390		 */
2391		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2392				     (VM_WRITE|VM_SHARED))
2393			return wp_pfn_shared(vmf);
2394
2395		pte_unmap_unlock(vmf->pte, vmf->ptl);
2396		return wp_page_copy(vmf);
2397	}
2398
2399	/*
2400	 * Take out anonymous pages first, anonymous shared vmas are
2401	 * not dirty accountable.
2402	 */
2403	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2404		int total_mapcount;
2405		if (!trylock_page(vmf->page)) {
2406			get_page(vmf->page);
2407			pte_unmap_unlock(vmf->pte, vmf->ptl);
2408			lock_page(vmf->page);
2409			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2410					vmf->address, &vmf->ptl);
2411			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2412				unlock_page(vmf->page);
2413				pte_unmap_unlock(vmf->pte, vmf->ptl);
2414				put_page(vmf->page);
2415				return 0;
2416			}
2417			put_page(vmf->page);
2418		}
2419		if (reuse_swap_page(vmf->page, &total_mapcount)) {
2420			if (total_mapcount == 1) {
2421				/*
2422				 * The page is all ours. Move it to
2423				 * our anon_vma so the rmap code will
2424				 * not search our parent or siblings.
2425				 * Protected against the rmap code by
2426				 * the page lock.
2427				 */
2428				page_move_anon_rmap(vmf->page, vma);
2429			}
2430			unlock_page(vmf->page);
2431			wp_page_reuse(vmf);
2432			return VM_FAULT_WRITE;
2433		}
2434		unlock_page(vmf->page);
2435	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2436					(VM_WRITE|VM_SHARED))) {
2437		return wp_page_shared(vmf);
2438	}
2439
2440	/*
2441	 * Ok, we need to copy. Oh, well..
2442	 */
2443	get_page(vmf->page);
2444
2445	pte_unmap_unlock(vmf->pte, vmf->ptl);
2446	return wp_page_copy(vmf);
2447}
2448
2449static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2450		unsigned long start_addr, unsigned long end_addr,
2451		struct zap_details *details)
2452{
2453	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2454}
2455
2456static inline void unmap_mapping_range_tree(struct rb_root *root,
2457					    struct zap_details *details)
2458{
2459	struct vm_area_struct *vma;
2460	pgoff_t vba, vea, zba, zea;
2461
2462	vma_interval_tree_foreach(vma, root,
2463			details->first_index, details->last_index) {
2464
2465		vba = vma->vm_pgoff;
2466		vea = vba + vma_pages(vma) - 1;
2467		zba = details->first_index;
2468		if (zba < vba)
2469			zba = vba;
2470		zea = details->last_index;
2471		if (zea > vea)
2472			zea = vea;
2473
2474		unmap_mapping_range_vma(vma,
2475			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2476			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2477				details);
2478	}
2479}
2480
2481/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2482 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2483 * address_space corresponding to the specified page range in the underlying
2484 * file.
2485 *
2486 * @mapping: the address space containing mmaps to be unmapped.
2487 * @holebegin: byte in first page to unmap, relative to the start of
2488 * the underlying file.  This will be rounded down to a PAGE_SIZE
2489 * boundary.  Note that this is different from truncate_pagecache(), which
2490 * must keep the partial page.  In contrast, we must get rid of
2491 * partial pages.
2492 * @holelen: size of prospective hole in bytes.  This will be rounded
2493 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2494 * end of the file.
2495 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2496 * but 0 when invalidating pagecache, don't throw away private data.
2497 */
2498void unmap_mapping_range(struct address_space *mapping,
2499		loff_t const holebegin, loff_t const holelen, int even_cows)
2500{
2501	struct zap_details details = { };
2502	pgoff_t hba = holebegin >> PAGE_SHIFT;
2503	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2504
2505	/* Check for overflow. */
2506	if (sizeof(holelen) > sizeof(hlen)) {
2507		long long holeend =
2508			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2509		if (holeend & ~(long long)ULONG_MAX)
2510			hlen = ULONG_MAX - hba + 1;
2511	}
2512
2513	details.check_mapping = even_cows? NULL: mapping;
2514	details.first_index = hba;
2515	details.last_index = hba + hlen - 1;
2516	if (details.last_index < details.first_index)
2517		details.last_index = ULONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2518
2519	i_mmap_lock_write(mapping);
2520	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2521		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2522	i_mmap_unlock_write(mapping);
2523}
2524EXPORT_SYMBOL(unmap_mapping_range);
2525
2526/*
2527 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2528 * but allow concurrent faults), and pte mapped but not yet locked.
2529 * We return with pte unmapped and unlocked.
2530 *
2531 * We return with the mmap_sem locked or unlocked in the same cases
2532 * as does filemap_fault().
2533 */
2534int do_swap_page(struct vm_fault *vmf)
2535{
2536	struct vm_area_struct *vma = vmf->vma;
2537	struct page *page, *swapcache;
2538	struct mem_cgroup *memcg;
2539	swp_entry_t entry;
2540	pte_t pte;
2541	int locked;
2542	int exclusive = 0;
2543	int ret = 0;
 
2544
2545	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2546		goto out;
2547
2548	entry = pte_to_swp_entry(vmf->orig_pte);
2549	if (unlikely(non_swap_entry(entry))) {
2550		if (is_migration_entry(entry)) {
2551			migration_entry_wait(vma->vm_mm, vmf->pmd,
2552					     vmf->address);
 
 
 
 
 
 
2553		} else if (is_hwpoison_entry(entry)) {
2554			ret = VM_FAULT_HWPOISON;
2555		} else {
2556			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2557			ret = VM_FAULT_SIGBUS;
2558		}
2559		goto out;
2560	}
2561	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2562	page = lookup_swap_cache(entry);
 
 
 
 
 
 
 
 
2563	if (!page) {
2564		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2565					vmf->address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2566		if (!page) {
2567			/*
2568			 * Back out if somebody else faulted in this pte
2569			 * while we released the pte lock.
2570			 */
2571			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2572					vmf->address, &vmf->ptl);
2573			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2574				ret = VM_FAULT_OOM;
2575			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2576			goto unlock;
2577		}
2578
2579		/* Had to read the page from swap area: Major fault */
2580		ret = VM_FAULT_MAJOR;
2581		count_vm_event(PGMAJFAULT);
2582		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2583	} else if (PageHWPoison(page)) {
2584		/*
2585		 * hwpoisoned dirty swapcache pages are kept for killing
2586		 * owner processes (which may be unknown at hwpoison time)
2587		 */
2588		ret = VM_FAULT_HWPOISON;
2589		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2590		swapcache = page;
2591		goto out_release;
2592	}
2593
2594	swapcache = page;
2595	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2596
2597	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2598	if (!locked) {
2599		ret |= VM_FAULT_RETRY;
2600		goto out_release;
2601	}
2602
2603	/*
2604	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2605	 * release the swapcache from under us.  The page pin, and pte_same
2606	 * test below, are not enough to exclude that.  Even if it is still
2607	 * swapcache, we need to check that the page's swap has not changed.
2608	 */
2609	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
 
2610		goto out_page;
2611
2612	page = ksm_might_need_to_copy(page, vma, vmf->address);
2613	if (unlikely(!page)) {
2614		ret = VM_FAULT_OOM;
2615		page = swapcache;
2616		goto out_page;
2617	}
2618
2619	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2620				&memcg, false)) {
2621		ret = VM_FAULT_OOM;
2622		goto out_page;
2623	}
2624
2625	/*
2626	 * Back out if somebody else already faulted in this pte.
2627	 */
2628	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2629			&vmf->ptl);
2630	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2631		goto out_nomap;
2632
2633	if (unlikely(!PageUptodate(page))) {
2634		ret = VM_FAULT_SIGBUS;
2635		goto out_nomap;
2636	}
2637
2638	/*
2639	 * The page isn't present yet, go ahead with the fault.
2640	 *
2641	 * Be careful about the sequence of operations here.
2642	 * To get its accounting right, reuse_swap_page() must be called
2643	 * while the page is counted on swap but not yet in mapcount i.e.
2644	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2645	 * must be called after the swap_free(), or it will never succeed.
2646	 */
2647
2648	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2649	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2650	pte = mk_pte(page, vma->vm_page_prot);
2651	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2652		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2653		vmf->flags &= ~FAULT_FLAG_WRITE;
2654		ret |= VM_FAULT_WRITE;
2655		exclusive = RMAP_EXCLUSIVE;
2656	}
2657	flush_icache_page(vma, page);
2658	if (pte_swp_soft_dirty(vmf->orig_pte))
2659		pte = pte_mksoft_dirty(pte);
 
 
 
 
2660	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
 
2661	vmf->orig_pte = pte;
2662	if (page == swapcache) {
 
 
 
 
 
2663		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2664		mem_cgroup_commit_charge(page, memcg, true, false);
2665		activate_page(page);
2666	} else { /* ksm created a completely new copy */
2667		page_add_new_anon_rmap(page, vma, vmf->address, false);
2668		mem_cgroup_commit_charge(page, memcg, false, false);
2669		lru_cache_add_active_or_unevictable(page, vma);
2670	}
2671
2672	swap_free(entry);
2673	if (mem_cgroup_swap_full(page) ||
2674	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2675		try_to_free_swap(page);
2676	unlock_page(page);
2677	if (page != swapcache) {
2678		/*
2679		 * Hold the lock to avoid the swap entry to be reused
2680		 * until we take the PT lock for the pte_same() check
2681		 * (to avoid false positives from pte_same). For
2682		 * further safety release the lock after the swap_free
2683		 * so that the swap count won't change under a
2684		 * parallel locked swapcache.
2685		 */
2686		unlock_page(swapcache);
2687		put_page(swapcache);
2688	}
2689
2690	if (vmf->flags & FAULT_FLAG_WRITE) {
2691		ret |= do_wp_page(vmf);
2692		if (ret & VM_FAULT_ERROR)
2693			ret &= VM_FAULT_ERROR;
2694		goto out;
2695	}
2696
2697	/* No need to invalidate - it was non-present before */
2698	update_mmu_cache(vma, vmf->address, vmf->pte);
2699unlock:
2700	pte_unmap_unlock(vmf->pte, vmf->ptl);
2701out:
 
 
2702	return ret;
2703out_nomap:
2704	mem_cgroup_cancel_charge(page, memcg, false);
2705	pte_unmap_unlock(vmf->pte, vmf->ptl);
2706out_page:
2707	unlock_page(page);
2708out_release:
2709	put_page(page);
2710	if (page != swapcache) {
2711		unlock_page(swapcache);
2712		put_page(swapcache);
2713	}
 
 
2714	return ret;
2715}
2716
2717/*
2718 * This is like a special single-page "expand_{down|up}wards()",
2719 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2720 * doesn't hit another vma.
2721 */
2722static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2723{
2724	address &= PAGE_MASK;
2725	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2726		struct vm_area_struct *prev = vma->vm_prev;
2727
2728		/*
2729		 * Is there a mapping abutting this one below?
2730		 *
2731		 * That's only ok if it's the same stack mapping
2732		 * that has gotten split..
2733		 */
2734		if (prev && prev->vm_end == address)
2735			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2736
2737		return expand_downwards(vma, address - PAGE_SIZE);
2738	}
2739	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2740		struct vm_area_struct *next = vma->vm_next;
2741
2742		/* As VM_GROWSDOWN but s/below/above/ */
2743		if (next && next->vm_start == address + PAGE_SIZE)
2744			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2745
2746		return expand_upwards(vma, address + PAGE_SIZE);
2747	}
2748	return 0;
2749}
2750
2751/*
2752 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2753 * but allow concurrent faults), and pte mapped but not yet locked.
2754 * We return with mmap_sem still held, but pte unmapped and unlocked.
2755 */
2756static int do_anonymous_page(struct vm_fault *vmf)
2757{
2758	struct vm_area_struct *vma = vmf->vma;
2759	struct mem_cgroup *memcg;
2760	struct page *page;
 
2761	pte_t entry;
2762
2763	/* File mapping without ->vm_ops ? */
2764	if (vma->vm_flags & VM_SHARED)
2765		return VM_FAULT_SIGBUS;
2766
2767	/* Check if we need to add a guard page to the stack */
2768	if (check_stack_guard_page(vma, vmf->address) < 0)
2769		return VM_FAULT_SIGSEGV;
2770
2771	/*
2772	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2773	 * pte_offset_map() on pmds where a huge pmd might be created
2774	 * from a different thread.
2775	 *
2776	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2777	 * parallel threads are excluded by other means.
2778	 *
2779	 * Here we only have down_read(mmap_sem).
2780	 */
2781	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2782		return VM_FAULT_OOM;
2783
2784	/* See the comment in pte_alloc_one_map() */
2785	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2786		return 0;
2787
2788	/* Use the zero-page for reads */
2789	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2790			!mm_forbids_zeropage(vma->vm_mm)) {
2791		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2792						vma->vm_page_prot));
2793		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2794				vmf->address, &vmf->ptl);
2795		if (!pte_none(*vmf->pte))
 
 
 
 
 
2796			goto unlock;
2797		/* Deliver the page fault to userland, check inside PT lock */
2798		if (userfaultfd_missing(vma)) {
2799			pte_unmap_unlock(vmf->pte, vmf->ptl);
2800			return handle_userfault(vmf, VM_UFFD_MISSING);
2801		}
2802		goto setpte;
2803	}
2804
2805	/* Allocate our own private page. */
2806	if (unlikely(anon_vma_prepare(vma)))
2807		goto oom;
2808	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2809	if (!page)
2810		goto oom;
2811
2812	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2813		goto oom_free_page;
 
2814
2815	/*
2816	 * The memory barrier inside __SetPageUptodate makes sure that
2817	 * preceeding stores to the page contents become visible before
2818	 * the set_pte_at() write.
2819	 */
2820	__SetPageUptodate(page);
2821
2822	entry = mk_pte(page, vma->vm_page_prot);
 
2823	if (vma->vm_flags & VM_WRITE)
2824		entry = pte_mkwrite(pte_mkdirty(entry));
2825
2826	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2827			&vmf->ptl);
2828	if (!pte_none(*vmf->pte))
 
 
 
 
 
 
2829		goto release;
2830
2831	/* Deliver the page fault to userland, check inside PT lock */
2832	if (userfaultfd_missing(vma)) {
2833		pte_unmap_unlock(vmf->pte, vmf->ptl);
2834		mem_cgroup_cancel_charge(page, memcg, false);
2835		put_page(page);
2836		return handle_userfault(vmf, VM_UFFD_MISSING);
2837	}
2838
2839	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2840	page_add_new_anon_rmap(page, vma, vmf->address, false);
2841	mem_cgroup_commit_charge(page, memcg, false, false);
2842	lru_cache_add_active_or_unevictable(page, vma);
2843setpte:
2844	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2845
2846	/* No need to invalidate - it was non-present before */
2847	update_mmu_cache(vma, vmf->address, vmf->pte);
2848unlock:
2849	pte_unmap_unlock(vmf->pte, vmf->ptl);
2850	return 0;
2851release:
2852	mem_cgroup_cancel_charge(page, memcg, false);
2853	put_page(page);
2854	goto unlock;
2855oom_free_page:
2856	put_page(page);
2857oom:
2858	return VM_FAULT_OOM;
2859}
2860
2861/*
2862 * The mmap_sem must have been held on entry, and may have been
2863 * released depending on flags and vma->vm_ops->fault() return value.
2864 * See filemap_fault() and __lock_page_retry().
2865 */
2866static int __do_fault(struct vm_fault *vmf)
2867{
2868	struct vm_area_struct *vma = vmf->vma;
2869	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2870
2871	ret = vma->vm_ops->fault(vma, vmf);
2872	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2873			    VM_FAULT_DONE_COW)))
2874		return ret;
2875
2876	if (unlikely(PageHWPoison(vmf->page))) {
2877		if (ret & VM_FAULT_LOCKED)
2878			unlock_page(vmf->page);
2879		put_page(vmf->page);
2880		vmf->page = NULL;
2881		return VM_FAULT_HWPOISON;
2882	}
2883
2884	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2885		lock_page(vmf->page);
2886	else
2887		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2888
2889	return ret;
2890}
2891
2892static int pte_alloc_one_map(struct vm_fault *vmf)
2893{
2894	struct vm_area_struct *vma = vmf->vma;
2895
2896	if (!pmd_none(*vmf->pmd))
2897		goto map_pte;
2898	if (vmf->prealloc_pte) {
2899		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2900		if (unlikely(!pmd_none(*vmf->pmd))) {
2901			spin_unlock(vmf->ptl);
2902			goto map_pte;
2903		}
2904
2905		atomic_long_inc(&vma->vm_mm->nr_ptes);
2906		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2907		spin_unlock(vmf->ptl);
2908		vmf->prealloc_pte = 0;
2909	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
2910		return VM_FAULT_OOM;
2911	}
2912map_pte:
2913	/*
2914	 * If a huge pmd materialized under us just retry later.  Use
2915	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2916	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2917	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2918	 * in a different thread of this mm, in turn leading to a misleading
2919	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
2920	 * regular pmd that we can walk with pte_offset_map() and we can do that
2921	 * through an atomic read in C, which is what pmd_trans_unstable()
2922	 * provides.
2923	 */
2924	if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
2925		return VM_FAULT_NOPAGE;
2926
2927	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2928			&vmf->ptl);
2929	return 0;
2930}
2931
2932#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2933
2934#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2935static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2936		unsigned long haddr)
2937{
2938	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2939			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2940		return false;
2941	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2942		return false;
2943	return true;
2944}
2945
2946static void deposit_prealloc_pte(struct vm_fault *vmf)
2947{
2948	struct vm_area_struct *vma = vmf->vma;
2949
2950	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2951	/*
2952	 * We are going to consume the prealloc table,
2953	 * count that as nr_ptes.
2954	 */
2955	atomic_long_inc(&vma->vm_mm->nr_ptes);
2956	vmf->prealloc_pte = 0;
2957}
2958
2959static int do_set_pmd(struct vm_fault *vmf, struct page *page)
2960{
2961	struct vm_area_struct *vma = vmf->vma;
2962	bool write = vmf->flags & FAULT_FLAG_WRITE;
2963	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2964	pmd_t entry;
2965	int i, ret;
 
2966
2967	if (!transhuge_vma_suitable(vma, haddr))
2968		return VM_FAULT_FALLBACK;
2969
2970	ret = VM_FAULT_FALLBACK;
2971	page = compound_head(page);
 
 
2972
2973	/*
2974	 * Archs like ppc64 need additonal space to store information
2975	 * related to pte entry. Use the preallocated table for that.
2976	 */
2977	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2978		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2979		if (!vmf->prealloc_pte)
2980			return VM_FAULT_OOM;
2981		smp_wmb(); /* See comment in __pte_alloc() */
2982	}
2983
2984	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2985	if (unlikely(!pmd_none(*vmf->pmd)))
2986		goto out;
2987
2988	for (i = 0; i < HPAGE_PMD_NR; i++)
2989		flush_icache_page(vma, page + i);
2990
2991	entry = mk_huge_pmd(page, vma->vm_page_prot);
2992	if (write)
2993		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2994
2995	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
2996	page_add_file_rmap(page, true);
2997	/*
2998	 * deposit and withdraw with pmd lock held
2999	 */
3000	if (arch_needs_pgtable_deposit())
3001		deposit_prealloc_pte(vmf);
3002
3003	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3004
3005	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3006
3007	/* fault is handled */
3008	ret = 0;
3009	count_vm_event(THP_FILE_MAPPED);
3010out:
3011	spin_unlock(vmf->ptl);
3012	return ret;
3013}
3014#else
3015static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3016{
3017	BUILD_BUG();
3018	return 0;
3019}
3020#endif
3021
3022/**
3023 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3024 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3025 *
3026 * @vmf: fault environment
3027 * @memcg: memcg to charge page (only for private mappings)
3028 * @page: page to map
3029 *
3030 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3031 * return.
3032 *
3033 * Target users are page handler itself and implementations of
3034 * vm_ops->map_pages.
3035 */
3036int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3037		struct page *page)
3038{
3039	struct vm_area_struct *vma = vmf->vma;
3040	bool write = vmf->flags & FAULT_FLAG_WRITE;
 
3041	pte_t entry;
3042	int ret;
3043
3044	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3045			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3046		/* THP on COW? */
3047		VM_BUG_ON_PAGE(memcg, page);
3048
3049		ret = do_set_pmd(vmf, page);
3050		if (ret != VM_FAULT_FALLBACK)
3051			return ret;
3052	}
3053
3054	if (!vmf->pte) {
3055		ret = pte_alloc_one_map(vmf);
3056		if (ret)
3057			return ret;
3058	}
3059
3060	/* Re-check under ptl */
3061	if (unlikely(!pte_none(*vmf->pte)))
3062		return VM_FAULT_NOPAGE;
3063
3064	flush_icache_page(vma, page);
3065	entry = mk_pte(page, vma->vm_page_prot);
3066	if (write)
3067		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3068	/* copy-on-write page */
3069	if (write && !(vma->vm_flags & VM_SHARED)) {
3070		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3071		page_add_new_anon_rmap(page, vma, vmf->address, false);
3072		mem_cgroup_commit_charge(page, memcg, false, false);
3073		lru_cache_add_active_or_unevictable(page, vma);
3074	} else {
3075		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3076		page_add_file_rmap(page, false);
3077	}
3078	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3079
3080	/* no need to invalidate: a not-present page won't be cached */
3081	update_mmu_cache(vma, vmf->address, vmf->pte);
3082
3083	return 0;
3084}
3085
3086
3087/**
3088 * finish_fault - finish page fault once we have prepared the page to fault
3089 *
3090 * @vmf: structure describing the fault
3091 *
3092 * This function handles all that is needed to finish a page fault once the
3093 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3094 * given page, adds reverse page mapping, handles memcg charges and LRU
3095 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3096 * error.
3097 *
3098 * The function expects the page to be locked and on success it consumes a
3099 * reference of a page being mapped (for the PTE which maps it).
 
 
3100 */
3101int finish_fault(struct vm_fault *vmf)
3102{
 
3103	struct page *page;
3104	int ret;
3105
3106	/* Did we COW the page? */
3107	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3108	    !(vmf->vma->vm_flags & VM_SHARED))
3109		page = vmf->cow_page;
3110	else
3111		page = vmf->page;
3112	ret = alloc_set_pte(vmf, vmf->memcg, page);
3113	if (vmf->pte)
3114		pte_unmap_unlock(vmf->pte, vmf->ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3115	return ret;
3116}
3117
3118static unsigned long fault_around_bytes __read_mostly =
3119	rounddown_pow_of_two(65536);
3120
3121#ifdef CONFIG_DEBUG_FS
3122static int fault_around_bytes_get(void *data, u64 *val)
3123{
3124	*val = fault_around_bytes;
3125	return 0;
3126}
3127
3128/*
3129 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3130 * rounded down to nearest page order. It's what do_fault_around() expects to
3131 * see.
3132 */
3133static int fault_around_bytes_set(void *data, u64 val)
3134{
3135	if (val / PAGE_SIZE > PTRS_PER_PTE)
3136		return -EINVAL;
3137	if (val > PAGE_SIZE)
3138		fault_around_bytes = rounddown_pow_of_two(val);
3139	else
3140		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3141	return 0;
3142}
3143DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3144		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3145
3146static int __init fault_around_debugfs(void)
3147{
3148	void *ret;
3149
3150	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3151			&fault_around_bytes_fops);
3152	if (!ret)
3153		pr_warn("Failed to create fault_around_bytes in debugfs");
3154	return 0;
3155}
3156late_initcall(fault_around_debugfs);
3157#endif
3158
3159/*
3160 * do_fault_around() tries to map few pages around the fault address. The hope
3161 * is that the pages will be needed soon and this will lower the number of
3162 * faults to handle.
3163 *
3164 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3165 * not ready to be mapped: not up-to-date, locked, etc.
3166 *
3167 * This function is called with the page table lock taken. In the split ptlock
3168 * case the page table lock only protects only those entries which belong to
3169 * the page table corresponding to the fault address.
3170 *
3171 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3172 * only once.
3173 *
3174 * fault_around_pages() defines how many pages we'll try to map.
3175 * do_fault_around() expects it to return a power of two less than or equal to
3176 * PTRS_PER_PTE.
3177 *
3178 * The virtual address of the area that we map is naturally aligned to the
3179 * fault_around_pages() value (and therefore to page order).  This way it's
3180 * easier to guarantee that we don't cross page table boundaries.
 
3181 */
3182static int do_fault_around(struct vm_fault *vmf)
3183{
3184	unsigned long address = vmf->address, nr_pages, mask;
3185	pgoff_t start_pgoff = vmf->pgoff;
3186	pgoff_t end_pgoff;
3187	int off, ret = 0;
3188
3189	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3190	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3191
3192	vmf->address = max(address & mask, vmf->vma->vm_start);
3193	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3194	start_pgoff -= off;
3195
3196	/*
3197	 *  end_pgoff is either end of page table or end of vma
3198	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3199	 */
3200	end_pgoff = start_pgoff -
3201		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3202		PTRS_PER_PTE - 1;
3203	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3204			start_pgoff + nr_pages - 1);
3205
3206	if (pmd_none(*vmf->pmd)) {
3207		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3208						  vmf->address);
3209		if (!vmf->prealloc_pte)
3210			goto out;
3211		smp_wmb(); /* See comment in __pte_alloc() */
3212	}
3213
3214	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3215
3216	/* Huge page is mapped? Page fault is solved */
3217	if (pmd_trans_huge(*vmf->pmd)) {
3218		ret = VM_FAULT_NOPAGE;
3219		goto out;
3220	}
3221
3222	/* ->map_pages() haven't done anything useful. Cold page cache? */
3223	if (!vmf->pte)
3224		goto out;
3225
3226	/* check if the page fault is solved */
3227	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3228	if (!pte_none(*vmf->pte))
3229		ret = VM_FAULT_NOPAGE;
3230	pte_unmap_unlock(vmf->pte, vmf->ptl);
3231out:
3232	vmf->address = address;
3233	vmf->pte = NULL;
3234	return ret;
3235}
3236
3237static int do_read_fault(struct vm_fault *vmf)
3238{
3239	struct vm_area_struct *vma = vmf->vma;
3240	int ret = 0;
3241
3242	/*
3243	 * Let's call ->map_pages() first and use ->fault() as fallback
3244	 * if page by the offset is not ready to be mapped (cold cache or
3245	 * something).
3246	 */
3247	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3248		ret = do_fault_around(vmf);
3249		if (ret)
3250			return ret;
 
 
3251	}
3252
3253	ret = __do_fault(vmf);
3254	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3255		return ret;
3256
3257	ret |= finish_fault(vmf);
3258	unlock_page(vmf->page);
3259	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3260		put_page(vmf->page);
3261	return ret;
3262}
3263
3264static int do_cow_fault(struct vm_fault *vmf)
3265{
3266	struct vm_area_struct *vma = vmf->vma;
3267	int ret;
3268
3269	if (unlikely(anon_vma_prepare(vma)))
3270		return VM_FAULT_OOM;
3271
3272	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3273	if (!vmf->cow_page)
3274		return VM_FAULT_OOM;
3275
3276	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3277				&vmf->memcg, false)) {
3278		put_page(vmf->cow_page);
3279		return VM_FAULT_OOM;
3280	}
 
3281
3282	ret = __do_fault(vmf);
3283	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3284		goto uncharge_out;
3285	if (ret & VM_FAULT_DONE_COW)
3286		return ret;
3287
3288	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3289	__SetPageUptodate(vmf->cow_page);
3290
3291	ret |= finish_fault(vmf);
3292	unlock_page(vmf->page);
3293	put_page(vmf->page);
3294	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3295		goto uncharge_out;
3296	return ret;
3297uncharge_out:
3298	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3299	put_page(vmf->cow_page);
3300	return ret;
3301}
3302
3303static int do_shared_fault(struct vm_fault *vmf)
3304{
3305	struct vm_area_struct *vma = vmf->vma;
3306	int ret, tmp;
3307
3308	ret = __do_fault(vmf);
3309	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3310		return ret;
3311
3312	/*
3313	 * Check if the backing address space wants to know that the page is
3314	 * about to become writable
3315	 */
3316	if (vma->vm_ops->page_mkwrite) {
3317		unlock_page(vmf->page);
3318		tmp = do_page_mkwrite(vmf);
3319		if (unlikely(!tmp ||
3320				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3321			put_page(vmf->page);
3322			return tmp;
3323		}
3324	}
3325
3326	ret |= finish_fault(vmf);
3327	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3328					VM_FAULT_RETRY))) {
3329		unlock_page(vmf->page);
3330		put_page(vmf->page);
3331		return ret;
3332	}
3333
3334	fault_dirty_shared_page(vma, vmf->page);
3335	return ret;
3336}
3337
3338/*
3339 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3340 * but allow concurrent faults).
3341 * The mmap_sem may have been released depending on flags and our
3342 * return value.  See filemap_fault() and __lock_page_or_retry().
 
 
3343 */
3344static int do_fault(struct vm_fault *vmf)
3345{
3346	struct vm_area_struct *vma = vmf->vma;
3347	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3348
3349	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3350	if (!vma->vm_ops->fault)
3351		ret = VM_FAULT_SIGBUS;
3352	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3353		ret = do_read_fault(vmf);
3354	else if (!(vma->vm_flags & VM_SHARED))
3355		ret = do_cow_fault(vmf);
3356	else
3357		ret = do_shared_fault(vmf);
3358
3359	/* preallocated pagetable is unused: free it */
3360	if (vmf->prealloc_pte) {
3361		pte_free(vma->vm_mm, vmf->prealloc_pte);
3362		vmf->prealloc_pte = 0;
3363	}
3364	return ret;
3365}
3366
3367static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3368				unsigned long addr, int page_nid,
3369				int *flags)
3370{
3371	get_page(page);
3372
3373	count_vm_numa_event(NUMA_HINT_FAULTS);
3374	if (page_nid == numa_node_id()) {
3375		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3376		*flags |= TNF_FAULT_LOCAL;
3377	}
3378
3379	return mpol_misplaced(page, vma, addr);
3380}
3381
3382static int do_numa_page(struct vm_fault *vmf)
3383{
3384	struct vm_area_struct *vma = vmf->vma;
3385	struct page *page = NULL;
3386	int page_nid = -1;
3387	int last_cpupid;
3388	int target_nid;
3389	bool migrated = false;
3390	pte_t pte = vmf->orig_pte;
3391	bool was_writable = pte_write(pte);
3392	int flags = 0;
3393
3394	/*
3395	* The "pte" at this point cannot be used safely without
3396	* validation through pte_unmap_same(). It's of NUMA type but
3397	* the pfn may be screwed if the read is non atomic.
3398	*
3399	* We can safely just do a "set_pte_at()", because the old
3400	* page table entry is not accessible, so there would be no
3401	* concurrent hardware modifications to the PTE.
3402	*/
3403	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3404	spin_lock(vmf->ptl);
3405	if (unlikely(!pte_same(*vmf->pte, pte))) {
3406		pte_unmap_unlock(vmf->pte, vmf->ptl);
3407		goto out;
3408	}
3409
3410	/* Make it present again */
3411	pte = pte_modify(pte, vma->vm_page_prot);
3412	pte = pte_mkyoung(pte);
3413	if (was_writable)
3414		pte = pte_mkwrite(pte);
3415	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3416	update_mmu_cache(vma, vmf->address, vmf->pte);
3417
3418	page = vm_normal_page(vma, vmf->address, pte);
3419	if (!page) {
3420		pte_unmap_unlock(vmf->pte, vmf->ptl);
3421		return 0;
3422	}
3423
3424	/* TODO: handle PTE-mapped THP */
3425	if (PageCompound(page)) {
3426		pte_unmap_unlock(vmf->pte, vmf->ptl);
3427		return 0;
3428	}
3429
3430	/*
3431	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3432	 * much anyway since they can be in shared cache state. This misses
3433	 * the case where a mapping is writable but the process never writes
3434	 * to it but pte_write gets cleared during protection updates and
3435	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3436	 * background writeback, dirty balancing and application behaviour.
3437	 */
3438	if (!pte_write(pte))
3439		flags |= TNF_NO_GROUP;
3440
3441	/*
3442	 * Flag if the page is shared between multiple address spaces. This
3443	 * is later used when determining whether to group tasks together
3444	 */
3445	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3446		flags |= TNF_SHARED;
3447
3448	last_cpupid = page_cpupid_last(page);
3449	page_nid = page_to_nid(page);
3450	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3451			&flags);
3452	pte_unmap_unlock(vmf->pte, vmf->ptl);
3453	if (target_nid == -1) {
3454		put_page(page);
3455		goto out;
3456	}
 
3457
3458	/* Migrate to the requested node */
3459	migrated = migrate_misplaced_page(page, vma, target_nid);
3460	if (migrated) {
3461		page_nid = target_nid;
3462		flags |= TNF_MIGRATED;
3463	} else
3464		flags |= TNF_MIGRATE_FAIL;
 
 
 
 
 
 
 
 
3465
3466out:
3467	if (page_nid != -1)
3468		task_numa_fault(last_cpupid, page_nid, 1, flags);
3469	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3470}
3471
3472static int create_huge_pmd(struct vm_fault *vmf)
3473{
3474	struct vm_area_struct *vma = vmf->vma;
3475	if (vma_is_anonymous(vma))
3476		return do_huge_pmd_anonymous_page(vmf);
3477	if (vma->vm_ops->pmd_fault)
3478		return vma->vm_ops->pmd_fault(vma, vmf->address, vmf->pmd,
3479				vmf->flags);
3480	return VM_FAULT_FALLBACK;
3481}
3482
3483static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
 
3484{
3485	if (vma_is_anonymous(vmf->vma))
3486		return do_huge_pmd_wp_page(vmf, orig_pmd);
3487	if (vmf->vma->vm_ops->pmd_fault)
3488		return vmf->vma->vm_ops->pmd_fault(vmf->vma, vmf->address,
3489						   vmf->pmd, vmf->flags);
 
 
 
 
 
 
3490
3491	/* COW handled on pte level: split pmd */
3492	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3493	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3494
3495	return VM_FAULT_FALLBACK;
3496}
3497
3498static inline bool vma_is_accessible(struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3499{
3500	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
 
 
 
 
 
 
 
3501}
3502
3503/*
3504 * These routines also need to handle stuff like marking pages dirty
3505 * and/or accessed for architectures that don't do it in hardware (most
3506 * RISC architectures).  The early dirtying is also good on the i386.
3507 *
3508 * There is also a hook called "update_mmu_cache()" that architectures
3509 * with external mmu caches can use to update those (ie the Sparc or
3510 * PowerPC hashed page tables that act as extended TLBs).
3511 *
3512 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3513 * concurrent faults).
3514 *
3515 * The mmap_sem may have been released depending on flags and our return value.
3516 * See filemap_fault() and __lock_page_or_retry().
3517 */
3518static int handle_pte_fault(struct vm_fault *vmf)
3519{
3520	pte_t entry;
3521
3522	if (unlikely(pmd_none(*vmf->pmd))) {
3523		/*
3524		 * Leave __pte_alloc() until later: because vm_ops->fault may
3525		 * want to allocate huge page, and if we expose page table
3526		 * for an instant, it will be difficult to retract from
3527		 * concurrent faults and from rmap lookups.
3528		 */
3529		vmf->pte = NULL;
3530	} else {
3531		/* See comment in pte_alloc_one_map() */
3532		if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
 
 
 
 
 
 
 
 
 
 
 
3533			return 0;
3534		/*
3535		 * A regular pmd is established and it can't morph into a huge
3536		 * pmd from under us anymore at this point because we hold the
3537		 * mmap_sem read mode and khugepaged takes it in write mode.
3538		 * So now it's safe to run pte_offset_map().
3539		 */
3540		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3541		vmf->orig_pte = *vmf->pte;
3542
3543		/*
3544		 * some architectures can have larger ptes than wordsize,
3545		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3546		 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3547		 * atomic accesses.  The code below just needs a consistent
3548		 * view for the ifs and we later double check anyway with the
3549		 * ptl lock held. So here a barrier will do.
3550		 */
3551		barrier();
3552		if (pte_none(vmf->orig_pte)) {
3553			pte_unmap(vmf->pte);
3554			vmf->pte = NULL;
3555		}
3556	}
3557
3558	if (!vmf->pte) {
3559		if (vma_is_anonymous(vmf->vma))
3560			return do_anonymous_page(vmf);
3561		else
3562			return do_fault(vmf);
3563	}
3564
3565	if (!pte_present(vmf->orig_pte))
3566		return do_swap_page(vmf);
3567
3568	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3569		return do_numa_page(vmf);
3570
3571	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3572	spin_lock(vmf->ptl);
3573	entry = vmf->orig_pte;
3574	if (unlikely(!pte_same(*vmf->pte, entry)))
 
3575		goto unlock;
 
3576	if (vmf->flags & FAULT_FLAG_WRITE) {
3577		if (!pte_write(entry))
3578			return do_wp_page(vmf);
3579		entry = pte_mkdirty(entry);
3580	}
3581	entry = pte_mkyoung(entry);
3582	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3583				vmf->flags & FAULT_FLAG_WRITE)) {
3584		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3585	} else {
 
 
 
3586		/*
3587		 * This is needed only for protection faults but the arch code
3588		 * is not yet telling us if this is a protection fault or not.
3589		 * This still avoids useless tlb flushes for .text page faults
3590		 * with threads.
3591		 */
3592		if (vmf->flags & FAULT_FLAG_WRITE)
3593			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3594	}
3595unlock:
3596	pte_unmap_unlock(vmf->pte, vmf->ptl);
3597	return 0;
3598}
3599
3600/*
3601 * By the time we get here, we already hold the mm semaphore
3602 *
3603 * The mmap_sem may have been released depending on flags and our
3604 * return value.  See filemap_fault() and __lock_page_or_retry().
3605 */
3606static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3607		unsigned int flags)
3608{
3609	struct vm_fault vmf = {
3610		.vma = vma,
3611		.address = address & PAGE_MASK,
3612		.flags = flags,
3613		.pgoff = linear_page_index(vma, address),
3614		.gfp_mask = __get_fault_gfp_mask(vma),
3615	};
 
3616	struct mm_struct *mm = vma->vm_mm;
3617	pgd_t *pgd;
3618	pud_t *pud;
 
3619
3620	pgd = pgd_offset(mm, address);
3621	pud = pud_alloc(mm, pgd, address);
3622	if (!pud)
 
 
 
 
3623		return VM_FAULT_OOM;
3624	vmf.pmd = pmd_alloc(mm, pud, address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3625	if (!vmf.pmd)
3626		return VM_FAULT_OOM;
3627	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3628		int ret = create_huge_pmd(&vmf);
 
 
 
 
 
3629		if (!(ret & VM_FAULT_FALLBACK))
3630			return ret;
3631	} else {
3632		pmd_t orig_pmd = *vmf.pmd;
3633		int ret;
3634
3635		barrier();
3636		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3637			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3638				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3639
3640			if ((vmf.flags & FAULT_FLAG_WRITE) &&
3641					!pmd_write(orig_pmd)) {
3642				ret = wp_huge_pmd(&vmf, orig_pmd);
 
 
 
 
 
 
3643				if (!(ret & VM_FAULT_FALLBACK))
3644					return ret;
3645			} else {
3646				huge_pmd_set_accessed(&vmf, orig_pmd);
3647				return 0;
3648			}
3649		}
3650	}
3651
3652	return handle_pte_fault(&vmf);
3653}
3654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3655/*
3656 * By the time we get here, we already hold the mm semaphore
3657 *
3658 * The mmap_sem may have been released depending on flags and our
3659 * return value.  See filemap_fault() and __lock_page_or_retry().
3660 */
3661int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3662		unsigned int flags)
3663{
3664	int ret;
3665
3666	__set_current_state(TASK_RUNNING);
3667
3668	count_vm_event(PGFAULT);
3669	mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3670
3671	/* do counter updates before entering really critical section. */
3672	check_sync_rss_stat(current);
3673
 
 
 
 
 
3674	/*
3675	 * Enable the memcg OOM handling for faults triggered in user
3676	 * space.  Kernel faults are handled more gracefully.
3677	 */
3678	if (flags & FAULT_FLAG_USER)
3679		mem_cgroup_oom_enable();
3680
3681	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3682					    flags & FAULT_FLAG_INSTRUCTION,
3683					    flags & FAULT_FLAG_REMOTE))
3684		return VM_FAULT_SIGSEGV;
3685
3686	if (unlikely(is_vm_hugetlb_page(vma)))
3687		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3688	else
3689		ret = __handle_mm_fault(vma, address, flags);
3690
3691	if (flags & FAULT_FLAG_USER) {
3692		mem_cgroup_oom_disable();
3693                /*
3694                 * The task may have entered a memcg OOM situation but
3695                 * if the allocation error was handled gracefully (no
3696                 * VM_FAULT_OOM), there is no need to kill anything.
3697                 * Just clean up the OOM state peacefully.
3698                 */
3699                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3700                        mem_cgroup_oom_synchronize(false);
3701	}
3702
3703	/*
3704	 * This mm has been already reaped by the oom reaper and so the
3705	 * refault cannot be trusted in general. Anonymous refaults would
3706	 * lose data and give a zero page instead e.g. This is especially
3707	 * problem for use_mm() because regular tasks will just die and
3708	 * the corrupted data will not be visible anywhere while kthread
3709	 * will outlive the oom victim and potentially propagate the date
3710	 * further.
3711	 */
3712	if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3713				&& test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3714		ret = VM_FAULT_SIGBUS;
3715
3716	return ret;
3717}
3718EXPORT_SYMBOL_GPL(handle_mm_fault);
3719
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3720#ifndef __PAGETABLE_PUD_FOLDED
3721/*
3722 * Allocate page upper directory.
3723 * We've already handled the fast-path in-line.
3724 */
3725int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3726{
3727	pud_t *new = pud_alloc_one(mm, address);
3728	if (!new)
3729		return -ENOMEM;
3730
3731	smp_wmb(); /* See comment in __pte_alloc */
3732
3733	spin_lock(&mm->page_table_lock);
3734	if (pgd_present(*pgd))		/* Another has populated it */
 
 
 
3735		pud_free(mm, new);
3736	else
3737		pgd_populate(mm, pgd, new);
3738	spin_unlock(&mm->page_table_lock);
3739	return 0;
3740}
3741#endif /* __PAGETABLE_PUD_FOLDED */
3742
3743#ifndef __PAGETABLE_PMD_FOLDED
3744/*
3745 * Allocate page middle directory.
3746 * We've already handled the fast-path in-line.
3747 */
3748int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3749{
 
3750	pmd_t *new = pmd_alloc_one(mm, address);
3751	if (!new)
3752		return -ENOMEM;
3753
3754	smp_wmb(); /* See comment in __pte_alloc */
3755
3756	spin_lock(&mm->page_table_lock);
3757#ifndef __ARCH_HAS_4LEVEL_HACK
3758	if (!pud_present(*pud)) {
3759		mm_inc_nr_pmds(mm);
3760		pud_populate(mm, pud, new);
3761	} else	/* Another has populated it */
3762		pmd_free(mm, new);
3763#else
3764	if (!pgd_present(*pud)) {
3765		mm_inc_nr_pmds(mm);
3766		pgd_populate(mm, pud, new);
3767	} else /* Another has populated it */
3768		pmd_free(mm, new);
3769#endif /* __ARCH_HAS_4LEVEL_HACK */
3770	spin_unlock(&mm->page_table_lock);
3771	return 0;
3772}
3773#endif /* __PAGETABLE_PMD_FOLDED */
3774
3775static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3776		pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
 
3777{
3778	pgd_t *pgd;
 
3779	pud_t *pud;
3780	pmd_t *pmd;
3781	pte_t *ptep;
3782
3783	pgd = pgd_offset(mm, address);
3784	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3785		goto out;
3786
3787	pud = pud_offset(pgd, address);
 
 
 
 
3788	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3789		goto out;
3790
3791	pmd = pmd_offset(pud, address);
3792	VM_BUG_ON(pmd_trans_huge(*pmd));
3793
3794	if (pmd_huge(*pmd)) {
3795		if (!pmdpp)
3796			goto out;
3797
 
 
 
 
 
 
3798		*ptlp = pmd_lock(mm, pmd);
3799		if (pmd_huge(*pmd)) {
3800			*pmdpp = pmd;
3801			return 0;
3802		}
3803		spin_unlock(*ptlp);
 
 
3804	}
3805
3806	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3807		goto out;
3808
 
 
 
 
 
 
3809	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3810	if (!ptep)
3811		goto out;
3812	if (!pte_present(*ptep))
3813		goto unlock;
3814	*ptepp = ptep;
3815	return 0;
3816unlock:
3817	pte_unmap_unlock(ptep, *ptlp);
 
 
3818out:
3819	return -EINVAL;
3820}
3821
3822static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3823			     pte_t **ptepp, spinlock_t **ptlp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3824{
3825	int res;
3826
3827	/* (void) is needed to make gcc happy */
3828	(void) __cond_lock(*ptlp,
3829			   !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3830					   ptlp)));
3831	return res;
3832}
3833
3834int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3835			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3836{
3837	int res;
3838
3839	/* (void) is needed to make gcc happy */
3840	(void) __cond_lock(*ptlp,
3841			   !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3842					   ptlp)));
3843	return res;
3844}
3845EXPORT_SYMBOL(follow_pte_pmd);
3846
3847/**
3848 * follow_pfn - look up PFN at a user virtual address
3849 * @vma: memory mapping
3850 * @address: user virtual address
3851 * @pfn: location to store found PFN
3852 *
3853 * Only IO mappings and raw PFN mappings are allowed.
3854 *
3855 * Returns zero and the pfn at @pfn on success, -ve otherwise.
 
 
 
3856 */
3857int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3858	unsigned long *pfn)
3859{
3860	int ret = -EINVAL;
3861	spinlock_t *ptl;
3862	pte_t *ptep;
3863
3864	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3865		return ret;
3866
3867	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3868	if (ret)
3869		return ret;
3870	*pfn = pte_pfn(*ptep);
3871	pte_unmap_unlock(ptep, ptl);
3872	return 0;
3873}
3874EXPORT_SYMBOL(follow_pfn);
3875
3876#ifdef CONFIG_HAVE_IOREMAP_PROT
3877int follow_phys(struct vm_area_struct *vma,
3878		unsigned long address, unsigned int flags,
3879		unsigned long *prot, resource_size_t *phys)
3880{
3881	int ret = -EINVAL;
3882	pte_t *ptep, pte;
3883	spinlock_t *ptl;
3884
3885	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3886		goto out;
3887
3888	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3889		goto out;
3890	pte = *ptep;
3891
3892	if ((flags & FOLL_WRITE) && !pte_write(pte))
3893		goto unlock;
3894
3895	*prot = pgprot_val(pte_pgprot(pte));
3896	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3897
3898	ret = 0;
3899unlock:
3900	pte_unmap_unlock(ptep, ptl);
3901out:
3902	return ret;
3903}
3904
 
 
 
 
 
 
 
 
 
 
 
 
3905int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3906			void *buf, int len, int write)
3907{
3908	resource_size_t phys_addr;
3909	unsigned long prot = 0;
3910	void __iomem *maddr;
3911	int offset = addr & (PAGE_SIZE-1);
 
 
 
3912
3913	if (follow_phys(vma, addr, write, &prot, &phys_addr))
 
 
 
 
 
 
 
 
 
 
 
 
3914		return -EINVAL;
3915
3916	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
3917	if (write)
3918		memcpy_toio(maddr + offset, buf, len);
3919	else
3920		memcpy_fromio(buf, maddr + offset, len);
 
 
 
3921	iounmap(maddr);
3922
3923	return len;
3924}
3925EXPORT_SYMBOL_GPL(generic_access_phys);
3926#endif
3927
3928/*
3929 * Access another process' address space as given in mm.  If non-NULL, use the
3930 * given task for page fault accounting.
3931 */
3932int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3933		unsigned long addr, void *buf, int len, unsigned int gup_flags)
3934{
3935	struct vm_area_struct *vma;
3936	void *old_buf = buf;
3937	int write = gup_flags & FOLL_WRITE;
3938
3939	down_read(&mm->mmap_sem);
 
 
3940	/* ignore errors, just check how much was successfully transferred */
3941	while (len) {
3942		int bytes, ret, offset;
3943		void *maddr;
3944		struct page *page = NULL;
3945
3946		ret = get_user_pages_remote(tsk, mm, addr, 1,
3947				gup_flags, &page, &vma, NULL);
3948		if (ret <= 0) {
3949#ifndef CONFIG_HAVE_IOREMAP_PROT
3950			break;
3951#else
3952			/*
3953			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3954			 * we can access using slightly different code.
3955			 */
3956			vma = find_vma(mm, addr);
3957			if (!vma || vma->vm_start > addr)
3958				break;
3959			if (vma->vm_ops && vma->vm_ops->access)
3960				ret = vma->vm_ops->access(vma, addr, buf,
3961							  len, write);
3962			if (ret <= 0)
3963				break;
3964			bytes = ret;
3965#endif
3966		} else {
3967			bytes = len;
3968			offset = addr & (PAGE_SIZE-1);
3969			if (bytes > PAGE_SIZE-offset)
3970				bytes = PAGE_SIZE-offset;
3971
3972			maddr = kmap(page);
3973			if (write) {
3974				copy_to_user_page(vma, page, addr,
3975						  maddr + offset, buf, bytes);
3976				set_page_dirty_lock(page);
3977			} else {
3978				copy_from_user_page(vma, page, addr,
3979						    buf, maddr + offset, bytes);
3980			}
3981			kunmap(page);
3982			put_page(page);
3983		}
3984		len -= bytes;
3985		buf += bytes;
3986		addr += bytes;
3987	}
3988	up_read(&mm->mmap_sem);
3989
3990	return buf - old_buf;
3991}
3992
3993/**
3994 * access_remote_vm - access another process' address space
3995 * @mm:		the mm_struct of the target address space
3996 * @addr:	start address to access
3997 * @buf:	source or destination buffer
3998 * @len:	number of bytes to transfer
3999 * @gup_flags:	flags modifying lookup behaviour
4000 *
4001 * The caller must hold a reference on @mm.
 
 
4002 */
4003int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4004		void *buf, int len, unsigned int gup_flags)
4005{
4006	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4007}
4008
4009/*
4010 * Access another process' address space.
4011 * Source/target buffer must be kernel space,
4012 * Do not walk the page table directly, use get_user_pages
4013 */
4014int access_process_vm(struct task_struct *tsk, unsigned long addr,
4015		void *buf, int len, unsigned int gup_flags)
4016{
4017	struct mm_struct *mm;
4018	int ret;
4019
4020	mm = get_task_mm(tsk);
4021	if (!mm)
4022		return 0;
4023
4024	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4025
4026	mmput(mm);
4027
4028	return ret;
4029}
4030EXPORT_SYMBOL_GPL(access_process_vm);
4031
4032/*
4033 * Print the name of a VMA.
4034 */
4035void print_vma_addr(char *prefix, unsigned long ip)
4036{
4037	struct mm_struct *mm = current->mm;
4038	struct vm_area_struct *vma;
4039
4040	/*
4041	 * Do not print if we are in atomic
4042	 * contexts (in exception stacks, etc.):
4043	 */
4044	if (preempt_count())
4045		return;
4046
4047	down_read(&mm->mmap_sem);
4048	vma = find_vma(mm, ip);
4049	if (vma && vma->vm_file) {
4050		struct file *f = vma->vm_file;
4051		char *buf = (char *)__get_free_page(GFP_KERNEL);
4052		if (buf) {
4053			char *p;
4054
4055			p = file_path(f, buf, PAGE_SIZE);
4056			if (IS_ERR(p))
4057				p = "?";
4058			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4059					vma->vm_start,
4060					vma->vm_end - vma->vm_start);
4061			free_page((unsigned long)buf);
4062		}
4063	}
4064	up_read(&mm->mmap_sem);
4065}
4066
4067#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4068void __might_fault(const char *file, int line)
4069{
4070	/*
4071	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4072	 * holding the mmap_sem, this is safe because kernel memory doesn't
4073	 * get paged out, therefore we'll never actually fault, and the
4074	 * below annotations will generate false positives.
4075	 */
4076	if (segment_eq(get_fs(), KERNEL_DS))
4077		return;
4078	if (pagefault_disabled())
4079		return;
4080	__might_sleep(file, line, 0);
4081#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4082	if (current->mm)
4083		might_lock_read(&current->mm->mmap_sem);
4084#endif
4085}
4086EXPORT_SYMBOL(__might_fault);
4087#endif
4088
4089#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4090static void clear_gigantic_page(struct page *page,
4091				unsigned long addr,
4092				unsigned int pages_per_huge_page)
4093{
4094	int i;
4095	struct page *p = page;
4096
4097	might_sleep();
4098	for (i = 0; i < pages_per_huge_page;
4099	     i++, p = mem_map_next(p, page, i)) {
4100		cond_resched();
4101		clear_user_highpage(p, addr + i * PAGE_SIZE);
4102	}
4103}
 
 
 
 
 
 
 
 
4104void clear_huge_page(struct page *page,
4105		     unsigned long addr, unsigned int pages_per_huge_page)
4106{
4107	int i;
 
4108
4109	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4110		clear_gigantic_page(page, addr, pages_per_huge_page);
4111		return;
4112	}
4113
4114	might_sleep();
4115	for (i = 0; i < pages_per_huge_page; i++) {
4116		cond_resched();
4117		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4118	}
4119}
4120
4121static void copy_user_gigantic_page(struct page *dst, struct page *src,
4122				    unsigned long addr,
4123				    struct vm_area_struct *vma,
4124				    unsigned int pages_per_huge_page)
4125{
4126	int i;
4127	struct page *dst_base = dst;
4128	struct page *src_base = src;
4129
4130	for (i = 0; i < pages_per_huge_page; ) {
4131		cond_resched();
4132		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4133
4134		i++;
4135		dst = mem_map_next(dst, dst_base, i);
4136		src = mem_map_next(src, src_base, i);
4137	}
4138}
4139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4140void copy_user_huge_page(struct page *dst, struct page *src,
4141			 unsigned long addr, struct vm_area_struct *vma,
4142			 unsigned int pages_per_huge_page)
4143{
4144	int i;
 
 
 
 
 
 
4145
4146	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4147		copy_user_gigantic_page(dst, src, addr, vma,
4148					pages_per_huge_page);
4149		return;
4150	}
4151
4152	might_sleep();
4153	for (i = 0; i < pages_per_huge_page; i++) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4154		cond_resched();
4155		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4156	}
 
4157}
4158#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4159
4160#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4161
4162static struct kmem_cache *page_ptl_cachep;
4163
4164void __init ptlock_cache_init(void)
4165{
4166	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4167			SLAB_PANIC, NULL);
4168}
4169
4170bool ptlock_alloc(struct page *page)
4171{
4172	spinlock_t *ptl;
4173
4174	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4175	if (!ptl)
4176		return false;
4177	page->ptl = ptl;
4178	return true;
4179}
4180
4181void ptlock_free(struct page *page)
4182{
4183	kmem_cache_free(page_ptl_cachep, page->ptl);
4184}
4185#endif