Linux Audio

Check our new training course

Loading...
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_PTRACE_H
  3#define _LINUX_PTRACE_H
 
 
  4
  5#include <linux/compiler.h>		/* For unlikely.  */
  6#include <linux/sched.h>		/* For struct task_struct.  */
  7#include <linux/sched/signal.h>		/* For send_sig(), same_thread_group(), etc. */
  8#include <linux/err.h>			/* for IS_ERR_VALUE */
  9#include <linux/bug.h>			/* For BUG_ON.  */
 10#include <linux/pid_namespace.h>	/* For task_active_pid_ns.  */
 11#include <uapi/linux/ptrace.h>
 12#include <linux/seccomp.h>
 13
 14/* Add sp to seccomp_data, as seccomp is user API, we don't want to modify it */
 15struct syscall_info {
 16	__u64			sp;
 17	struct seccomp_data	data;
 18};
 
 
 
 
 
 
 
 
 
 19
 20extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
 21			    void *buf, int len, unsigned int gup_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22
 
 23/*
 24 * Ptrace flags
 25 *
 26 * The owner ship rules for task->ptrace which holds the ptrace
 27 * flags is simple.  When a task is running it owns it's task->ptrace
 28 * flags.  When the a task is stopped the ptracer owns task->ptrace.
 29 */
 30
 31#define PT_SEIZED	0x00010000	/* SEIZE used, enable new behavior */
 32#define PT_PTRACED	0x00000001
 33#define PT_DTRACE	0x00000002	/* delayed trace (used on m68k, i386) */
 
 34
 35#define PT_OPT_FLAG_SHIFT	3
 36/* PT_TRACE_* event enable flags */
 37#define PT_EVENT_FLAG(event)	(1 << (PT_OPT_FLAG_SHIFT + (event)))
 38#define PT_TRACESYSGOOD		PT_EVENT_FLAG(0)
 39#define PT_TRACE_FORK		PT_EVENT_FLAG(PTRACE_EVENT_FORK)
 40#define PT_TRACE_VFORK		PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
 41#define PT_TRACE_CLONE		PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
 42#define PT_TRACE_EXEC		PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
 43#define PT_TRACE_VFORK_DONE	PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
 44#define PT_TRACE_EXIT		PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
 45#define PT_TRACE_SECCOMP	PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
 46
 47#define PT_EXITKILL		(PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
 48#define PT_SUSPEND_SECCOMP	(PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
 49
 50/* single stepping state bits (used on ARM and PA-RISC) */
 51#define PT_SINGLESTEP_BIT	31
 52#define PT_SINGLESTEP		(1<<PT_SINGLESTEP_BIT)
 53#define PT_BLOCKSTEP_BIT	30
 54#define PT_BLOCKSTEP		(1<<PT_BLOCKSTEP_BIT)
 55
 
 
 
 
 
 
 56extern long arch_ptrace(struct task_struct *child, long request,
 57			unsigned long addr, unsigned long data);
 58extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
 59extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
 60extern void ptrace_disable(struct task_struct *);
 
 61extern int ptrace_request(struct task_struct *child, long request,
 62			  unsigned long addr, unsigned long data);
 63extern void ptrace_notify(int exit_code);
 64extern void __ptrace_link(struct task_struct *child,
 65			  struct task_struct *new_parent,
 66			  const struct cred *ptracer_cred);
 67extern void __ptrace_unlink(struct task_struct *child);
 68extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
 69#define PTRACE_MODE_READ	0x01
 70#define PTRACE_MODE_ATTACH	0x02
 71#define PTRACE_MODE_NOAUDIT	0x04
 72#define PTRACE_MODE_FSCREDS	0x08
 73#define PTRACE_MODE_REALCREDS	0x10
 74
 75/* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
 76#define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
 77#define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
 78#define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
 79#define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
 80
 81/**
 82 * ptrace_may_access - check whether the caller is permitted to access
 83 * a target task.
 84 * @task: target task
 85 * @mode: selects type of access and caller credentials
 86 *
 87 * Returns true on success, false on denial.
 88 *
 89 * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
 90 * be set in @mode to specify whether the access was requested through
 91 * a filesystem syscall (should use effective capabilities and fsuid
 92 * of the caller) or through an explicit syscall such as
 93 * process_vm_writev or ptrace (and should use the real credentials).
 94 */
 95extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
 96
 97static inline int ptrace_reparented(struct task_struct *child)
 98{
 99	return !same_thread_group(child->real_parent, child->parent);
100}
101
102static inline void ptrace_unlink(struct task_struct *child)
103{
104	if (unlikely(child->ptrace))
105		__ptrace_unlink(child);
106}
107
108int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
109			    unsigned long data);
110int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
111			    unsigned long data);
112
113/**
114 * ptrace_parent - return the task that is tracing the given task
115 * @task: task to consider
116 *
117 * Returns %NULL if no one is tracing @task, or the &struct task_struct
118 * pointer to its tracer.
119 *
120 * Must called under rcu_read_lock().  The pointer returned might be kept
121 * live only by RCU.  During exec, this may be called with task_lock() held
122 * on @task, still held from when check_unsafe_exec() was called.
123 */
124static inline struct task_struct *ptrace_parent(struct task_struct *task)
125{
126	if (unlikely(task->ptrace))
127		return rcu_dereference(task->parent);
128	return NULL;
129}
130
131/**
132 * ptrace_event_enabled - test whether a ptrace event is enabled
133 * @task: ptracee of interest
134 * @event: %PTRACE_EVENT_* to test
135 *
136 * Test whether @event is enabled for ptracee @task.
137 *
138 * Returns %true if @event is enabled, %false otherwise.
139 */
140static inline bool ptrace_event_enabled(struct task_struct *task, int event)
141{
142	return task->ptrace & PT_EVENT_FLAG(event);
143}
144
145/**
146 * ptrace_event - possibly stop for a ptrace event notification
147 * @event:	%PTRACE_EVENT_* value to report
148 * @message:	value for %PTRACE_GETEVENTMSG to return
149 *
150 * Check whether @event is enabled and, if so, report @event and @message
151 * to the ptrace parent.
152 *
153 * Called without locks.
154 */
155static inline void ptrace_event(int event, unsigned long message)
156{
157	if (unlikely(ptrace_event_enabled(current, event))) {
158		current->ptrace_message = message;
159		ptrace_notify((event << 8) | SIGTRAP);
160	} else if (event == PTRACE_EVENT_EXEC) {
161		/* legacy EXEC report via SIGTRAP */
162		if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
163			send_sig(SIGTRAP, current, 0);
164	}
165}
166
167/**
168 * ptrace_event_pid - possibly stop for a ptrace event notification
169 * @event:	%PTRACE_EVENT_* value to report
170 * @pid:	process identifier for %PTRACE_GETEVENTMSG to return
171 *
172 * Check whether @event is enabled and, if so, report @event and @pid
173 * to the ptrace parent.  @pid is reported as the pid_t seen from the
174 * ptrace parent's pid namespace.
175 *
176 * Called without locks.
177 */
178static inline void ptrace_event_pid(int event, struct pid *pid)
179{
180	/*
181	 * FIXME: There's a potential race if a ptracer in a different pid
182	 * namespace than parent attaches between computing message below and
183	 * when we acquire tasklist_lock in ptrace_stop().  If this happens,
184	 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
185	 */
186	unsigned long message = 0;
187	struct pid_namespace *ns;
188
189	rcu_read_lock();
190	ns = task_active_pid_ns(rcu_dereference(current->parent));
191	if (ns)
192		message = pid_nr_ns(pid, ns);
193	rcu_read_unlock();
194
195	ptrace_event(event, message);
196}
197
198/**
199 * ptrace_init_task - initialize ptrace state for a new child
200 * @child:		new child task
201 * @ptrace:		true if child should be ptrace'd by parent's tracer
202 *
203 * This is called immediately after adding @child to its parent's children
204 * list.  @ptrace is false in the normal case, and true to ptrace @child.
205 *
206 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
207 */
208static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
209{
210	INIT_LIST_HEAD(&child->ptrace_entry);
211	INIT_LIST_HEAD(&child->ptraced);
 
 
 
212	child->jobctl = 0;
213	child->ptrace = 0;
214	child->parent = child->real_parent;
215
216	if (unlikely(ptrace) && current->ptrace) {
217		child->ptrace = current->ptrace;
218		__ptrace_link(child, current->parent, current->ptracer_cred);
219
220		if (child->ptrace & PT_SEIZED)
221			task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
222		else
223			sigaddset(&child->pending.signal, SIGSTOP);
 
 
224	}
225	else
226		child->ptracer_cred = NULL;
227}
228
229/**
230 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
231 * @task:	task in %EXIT_DEAD state
232 *
233 * Called with write_lock(&tasklist_lock) held.
234 */
235static inline void ptrace_release_task(struct task_struct *task)
236{
237	BUG_ON(!list_empty(&task->ptraced));
238	ptrace_unlink(task);
239	BUG_ON(!list_empty(&task->ptrace_entry));
240}
241
242#ifndef force_successful_syscall_return
243/*
244 * System call handlers that, upon successful completion, need to return a
245 * negative value should call force_successful_syscall_return() right before
246 * returning.  On architectures where the syscall convention provides for a
247 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
248 * others), this macro can be used to ensure that the error flag will not get
249 * set.  On architectures which do not support a separate error flag, the macro
250 * is a no-op and the spurious error condition needs to be filtered out by some
251 * other means (e.g., in user-level, by passing an extra argument to the
252 * syscall handler, or something along those lines).
253 */
254#define force_successful_syscall_return() do { } while (0)
255#endif
256
257#ifndef is_syscall_success
258/*
259 * On most systems we can tell if a syscall is a success based on if the retval
260 * is an error value.  On some systems like ia64 and powerpc they have different
261 * indicators of success/failure and must define their own.
262 */
263#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
264#endif
265
266/*
267 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
268 *
269 * These do-nothing inlines are used when the arch does not
270 * implement single-step.  The kerneldoc comments are here
271 * to document the interface for all arch definitions.
272 */
273
274#ifndef arch_has_single_step
275/**
276 * arch_has_single_step - does this CPU support user-mode single-step?
277 *
278 * If this is defined, then there must be function declarations or
279 * inlines for user_enable_single_step() and user_disable_single_step().
280 * arch_has_single_step() should evaluate to nonzero iff the machine
281 * supports instruction single-step for user mode.
282 * It can be a constant or it can test a CPU feature bit.
283 */
284#define arch_has_single_step()		(0)
285
286/**
287 * user_enable_single_step - single-step in user-mode task
288 * @task: either current or a task stopped in %TASK_TRACED
289 *
290 * This can only be called when arch_has_single_step() has returned nonzero.
291 * Set @task so that when it returns to user mode, it will trap after the
292 * next single instruction executes.  If arch_has_block_step() is defined,
293 * this must clear the effects of user_enable_block_step() too.
294 */
295static inline void user_enable_single_step(struct task_struct *task)
296{
297	BUG();			/* This can never be called.  */
298}
299
300/**
301 * user_disable_single_step - cancel user-mode single-step
302 * @task: either current or a task stopped in %TASK_TRACED
303 *
304 * Clear @task of the effects of user_enable_single_step() and
305 * user_enable_block_step().  This can be called whether or not either
306 * of those was ever called on @task, and even if arch_has_single_step()
307 * returned zero.
308 */
309static inline void user_disable_single_step(struct task_struct *task)
310{
311}
312#else
313extern void user_enable_single_step(struct task_struct *);
314extern void user_disable_single_step(struct task_struct *);
315#endif	/* arch_has_single_step */
316
317#ifndef arch_has_block_step
318/**
319 * arch_has_block_step - does this CPU support user-mode block-step?
320 *
321 * If this is defined, then there must be a function declaration or inline
322 * for user_enable_block_step(), and arch_has_single_step() must be defined
323 * too.  arch_has_block_step() should evaluate to nonzero iff the machine
324 * supports step-until-branch for user mode.  It can be a constant or it
325 * can test a CPU feature bit.
326 */
327#define arch_has_block_step()		(0)
328
329/**
330 * user_enable_block_step - step until branch in user-mode task
331 * @task: either current or a task stopped in %TASK_TRACED
332 *
333 * This can only be called when arch_has_block_step() has returned nonzero,
334 * and will never be called when single-instruction stepping is being used.
335 * Set @task so that when it returns to user mode, it will trap after the
336 * next branch or trap taken.
337 */
338static inline void user_enable_block_step(struct task_struct *task)
339{
340	BUG();			/* This can never be called.  */
341}
342#else
343extern void user_enable_block_step(struct task_struct *);
344#endif	/* arch_has_block_step */
345
346#ifdef ARCH_HAS_USER_SINGLE_STEP_REPORT
347extern void user_single_step_report(struct pt_regs *regs);
 
348#else
349static inline void user_single_step_report(struct pt_regs *regs)
 
350{
351	kernel_siginfo_t info;
352	clear_siginfo(&info);
353	info.si_signo = SIGTRAP;
354	info.si_errno = 0;
355	info.si_code = SI_USER;
356	info.si_pid = 0;
357	info.si_uid = 0;
358	force_sig_info(&info);
359}
360#endif
361
362#ifndef arch_ptrace_stop_needed
363/**
364 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
365 * @code:	current->exit_code value ptrace will stop with
366 * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
367 *
368 * This is called with the siglock held, to decide whether or not it's
369 * necessary to release the siglock and call arch_ptrace_stop() with the
370 * same @code and @info arguments.  It can be defined to a constant if
371 * arch_ptrace_stop() is never required, or always is.  On machines where
372 * this makes sense, it should be defined to a quick test to optimize out
373 * calling arch_ptrace_stop() when it would be superfluous.  For example,
374 * if the thread has not been back to user mode since the last stop, the
375 * thread state might indicate that nothing needs to be done.
376 *
377 * This is guaranteed to be invoked once before a task stops for ptrace and
378 * may include arch-specific operations necessary prior to a ptrace stop.
379 */
380#define arch_ptrace_stop_needed(code, info)	(0)
381#endif
382
383#ifndef arch_ptrace_stop
384/**
385 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
386 * @code:	current->exit_code value ptrace will stop with
387 * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
388 *
389 * This is called with no locks held when arch_ptrace_stop_needed() has
390 * just returned nonzero.  It is allowed to block, e.g. for user memory
391 * access.  The arch can have machine-specific work to be done before
392 * ptrace stops.  On ia64, register backing store gets written back to user
393 * memory here.  Since this can be costly (requires dropping the siglock),
394 * we only do it when the arch requires it for this particular stop, as
395 * indicated by arch_ptrace_stop_needed().
396 */
397#define arch_ptrace_stop(code, info)		do { } while (0)
398#endif
399
400#ifndef current_pt_regs
401#define current_pt_regs() task_pt_regs(current)
402#endif
403
404/*
405 * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
406 * on *all* architectures; the only reason to have a per-arch definition
407 * is optimisation.
408 */
409#ifndef signal_pt_regs
410#define signal_pt_regs() task_pt_regs(current)
411#endif
412
413#ifndef current_user_stack_pointer
414#define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
415#endif
416
417extern int task_current_syscall(struct task_struct *target, struct syscall_info *info);
418
419extern void sigaction_compat_abi(struct k_sigaction *act, struct k_sigaction *oact);
420#endif
v3.5.6
 
  1#ifndef _LINUX_PTRACE_H
  2#define _LINUX_PTRACE_H
  3/* ptrace.h */
  4/* structs and defines to help the user use the ptrace system call. */
  5
  6/* has the defines to get at the registers. */
  7
  8#define PTRACE_TRACEME		   0
  9#define PTRACE_PEEKTEXT		   1
 10#define PTRACE_PEEKDATA		   2
 11#define PTRACE_PEEKUSR		   3
 12#define PTRACE_POKETEXT		   4
 13#define PTRACE_POKEDATA		   5
 14#define PTRACE_POKEUSR		   6
 15#define PTRACE_CONT		   7
 16#define PTRACE_KILL		   8
 17#define PTRACE_SINGLESTEP	   9
 18
 19#define PTRACE_ATTACH		  16
 20#define PTRACE_DETACH		  17
 21
 22#define PTRACE_SYSCALL		  24
 23
 24/* 0x4200-0x4300 are reserved for architecture-independent additions.  */
 25#define PTRACE_SETOPTIONS	0x4200
 26#define PTRACE_GETEVENTMSG	0x4201
 27#define PTRACE_GETSIGINFO	0x4202
 28#define PTRACE_SETSIGINFO	0x4203
 29
 30/*
 31 * Generic ptrace interface that exports the architecture specific regsets
 32 * using the corresponding NT_* types (which are also used in the core dump).
 33 * Please note that the NT_PRSTATUS note type in a core dump contains a full
 34 * 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the
 35 * elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the
 36 * other user_regset flavors, the user_regset layout and the ELF core dump note
 37 * payload are exactly the same layout.
 38 *
 39 * This interface usage is as follows:
 40 *	struct iovec iov = { buf, len};
 41 *
 42 *	ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
 43 *
 44 * On the successful completion, iov.len will be updated by the kernel,
 45 * specifying how much the kernel has written/read to/from the user's iov.buf.
 46 */
 47#define PTRACE_GETREGSET	0x4204
 48#define PTRACE_SETREGSET	0x4205
 49
 50#define PTRACE_SEIZE		0x4206
 51#define PTRACE_INTERRUPT	0x4207
 52#define PTRACE_LISTEN		0x4208
 53
 54/* Wait extended result codes for the above trace options.  */
 55#define PTRACE_EVENT_FORK	1
 56#define PTRACE_EVENT_VFORK	2
 57#define PTRACE_EVENT_CLONE	3
 58#define PTRACE_EVENT_EXEC	4
 59#define PTRACE_EVENT_VFORK_DONE	5
 60#define PTRACE_EVENT_EXIT	6
 61#define PTRACE_EVENT_SECCOMP	7
 62/* Extended result codes which enabled by means other than options.  */
 63#define PTRACE_EVENT_STOP	128
 64
 65/* Options set using PTRACE_SETOPTIONS or using PTRACE_SEIZE @data param */
 66#define PTRACE_O_TRACESYSGOOD	1
 67#define PTRACE_O_TRACEFORK	(1 << PTRACE_EVENT_FORK)
 68#define PTRACE_O_TRACEVFORK	(1 << PTRACE_EVENT_VFORK)
 69#define PTRACE_O_TRACECLONE	(1 << PTRACE_EVENT_CLONE)
 70#define PTRACE_O_TRACEEXEC	(1 << PTRACE_EVENT_EXEC)
 71#define PTRACE_O_TRACEVFORKDONE	(1 << PTRACE_EVENT_VFORK_DONE)
 72#define PTRACE_O_TRACEEXIT	(1 << PTRACE_EVENT_EXIT)
 73#define PTRACE_O_TRACESECCOMP	(1 << PTRACE_EVENT_SECCOMP)
 74
 75#define PTRACE_O_MASK		0x000000ff
 76
 77#include <asm/ptrace.h>
 78
 79#ifdef __KERNEL__
 80/*
 81 * Ptrace flags
 82 *
 83 * The owner ship rules for task->ptrace which holds the ptrace
 84 * flags is simple.  When a task is running it owns it's task->ptrace
 85 * flags.  When the a task is stopped the ptracer owns task->ptrace.
 86 */
 87
 88#define PT_SEIZED	0x00010000	/* SEIZE used, enable new behavior */
 89#define PT_PTRACED	0x00000001
 90#define PT_DTRACE	0x00000002	/* delayed trace (used on m68k, i386) */
 91#define PT_PTRACE_CAP	0x00000004	/* ptracer can follow suid-exec */
 92
 93#define PT_OPT_FLAG_SHIFT	3
 94/* PT_TRACE_* event enable flags */
 95#define PT_EVENT_FLAG(event)	(1 << (PT_OPT_FLAG_SHIFT + (event)))
 96#define PT_TRACESYSGOOD		PT_EVENT_FLAG(0)
 97#define PT_TRACE_FORK		PT_EVENT_FLAG(PTRACE_EVENT_FORK)
 98#define PT_TRACE_VFORK		PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
 99#define PT_TRACE_CLONE		PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
100#define PT_TRACE_EXEC		PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
101#define PT_TRACE_VFORK_DONE	PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
102#define PT_TRACE_EXIT		PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
103#define PT_TRACE_SECCOMP	PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
104
 
 
 
105/* single stepping state bits (used on ARM and PA-RISC) */
106#define PT_SINGLESTEP_BIT	31
107#define PT_SINGLESTEP		(1<<PT_SINGLESTEP_BIT)
108#define PT_BLOCKSTEP_BIT	30
109#define PT_BLOCKSTEP		(1<<PT_BLOCKSTEP_BIT)
110
111#include <linux/compiler.h>		/* For unlikely.  */
112#include <linux/sched.h>		/* For struct task_struct.  */
113#include <linux/err.h>			/* for IS_ERR_VALUE */
114#include <linux/bug.h>			/* For BUG_ON.  */
115
116
117extern long arch_ptrace(struct task_struct *child, long request,
118			unsigned long addr, unsigned long data);
119extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
120extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
121extern void ptrace_disable(struct task_struct *);
122extern int ptrace_check_attach(struct task_struct *task, bool ignore_state);
123extern int ptrace_request(struct task_struct *child, long request,
124			  unsigned long addr, unsigned long data);
125extern void ptrace_notify(int exit_code);
126extern void __ptrace_link(struct task_struct *child,
127			  struct task_struct *new_parent);
 
128extern void __ptrace_unlink(struct task_struct *child);
129extern void exit_ptrace(struct task_struct *tracer);
130#define PTRACE_MODE_READ	0x01
131#define PTRACE_MODE_ATTACH	0x02
132#define PTRACE_MODE_NOAUDIT	0x04
133/* Returns 0 on success, -errno on denial. */
134extern int __ptrace_may_access(struct task_struct *task, unsigned int mode);
135/* Returns true on success, false on denial. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
137
138static inline int ptrace_reparented(struct task_struct *child)
139{
140	return !same_thread_group(child->real_parent, child->parent);
141}
142
143static inline void ptrace_unlink(struct task_struct *child)
144{
145	if (unlikely(child->ptrace))
146		__ptrace_unlink(child);
147}
148
149int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
150			    unsigned long data);
151int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
152			    unsigned long data);
153
154/**
155 * ptrace_parent - return the task that is tracing the given task
156 * @task: task to consider
157 *
158 * Returns %NULL if no one is tracing @task, or the &struct task_struct
159 * pointer to its tracer.
160 *
161 * Must called under rcu_read_lock().  The pointer returned might be kept
162 * live only by RCU.  During exec, this may be called with task_lock() held
163 * on @task, still held from when check_unsafe_exec() was called.
164 */
165static inline struct task_struct *ptrace_parent(struct task_struct *task)
166{
167	if (unlikely(task->ptrace))
168		return rcu_dereference(task->parent);
169	return NULL;
170}
171
172/**
173 * ptrace_event_enabled - test whether a ptrace event is enabled
174 * @task: ptracee of interest
175 * @event: %PTRACE_EVENT_* to test
176 *
177 * Test whether @event is enabled for ptracee @task.
178 *
179 * Returns %true if @event is enabled, %false otherwise.
180 */
181static inline bool ptrace_event_enabled(struct task_struct *task, int event)
182{
183	return task->ptrace & PT_EVENT_FLAG(event);
184}
185
186/**
187 * ptrace_event - possibly stop for a ptrace event notification
188 * @event:	%PTRACE_EVENT_* value to report
189 * @message:	value for %PTRACE_GETEVENTMSG to return
190 *
191 * Check whether @event is enabled and, if so, report @event and @message
192 * to the ptrace parent.
193 *
194 * Called without locks.
195 */
196static inline void ptrace_event(int event, unsigned long message)
197{
198	if (unlikely(ptrace_event_enabled(current, event))) {
199		current->ptrace_message = message;
200		ptrace_notify((event << 8) | SIGTRAP);
201	} else if (event == PTRACE_EVENT_EXEC) {
202		/* legacy EXEC report via SIGTRAP */
203		if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
204			send_sig(SIGTRAP, current, 0);
205	}
206}
207
208/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209 * ptrace_init_task - initialize ptrace state for a new child
210 * @child:		new child task
211 * @ptrace:		true if child should be ptrace'd by parent's tracer
212 *
213 * This is called immediately after adding @child to its parent's children
214 * list.  @ptrace is false in the normal case, and true to ptrace @child.
215 *
216 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
217 */
218static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
219{
220	INIT_LIST_HEAD(&child->ptrace_entry);
221	INIT_LIST_HEAD(&child->ptraced);
222#ifdef CONFIG_HAVE_HW_BREAKPOINT
223	atomic_set(&child->ptrace_bp_refcnt, 1);
224#endif
225	child->jobctl = 0;
226	child->ptrace = 0;
227	child->parent = child->real_parent;
228
229	if (unlikely(ptrace) && current->ptrace) {
230		child->ptrace = current->ptrace;
231		__ptrace_link(child, current->parent);
232
233		if (child->ptrace & PT_SEIZED)
234			task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
235		else
236			sigaddset(&child->pending.signal, SIGSTOP);
237
238		set_tsk_thread_flag(child, TIF_SIGPENDING);
239	}
 
 
240}
241
242/**
243 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
244 * @task:	task in %EXIT_DEAD state
245 *
246 * Called with write_lock(&tasklist_lock) held.
247 */
248static inline void ptrace_release_task(struct task_struct *task)
249{
250	BUG_ON(!list_empty(&task->ptraced));
251	ptrace_unlink(task);
252	BUG_ON(!list_empty(&task->ptrace_entry));
253}
254
255#ifndef force_successful_syscall_return
256/*
257 * System call handlers that, upon successful completion, need to return a
258 * negative value should call force_successful_syscall_return() right before
259 * returning.  On architectures where the syscall convention provides for a
260 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
261 * others), this macro can be used to ensure that the error flag will not get
262 * set.  On architectures which do not support a separate error flag, the macro
263 * is a no-op and the spurious error condition needs to be filtered out by some
264 * other means (e.g., in user-level, by passing an extra argument to the
265 * syscall handler, or something along those lines).
266 */
267#define force_successful_syscall_return() do { } while (0)
268#endif
269
270#ifndef is_syscall_success
271/*
272 * On most systems we can tell if a syscall is a success based on if the retval
273 * is an error value.  On some systems like ia64 and powerpc they have different
274 * indicators of success/failure and must define their own.
275 */
276#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
277#endif
278
279/*
280 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
281 *
282 * These do-nothing inlines are used when the arch does not
283 * implement single-step.  The kerneldoc comments are here
284 * to document the interface for all arch definitions.
285 */
286
287#ifndef arch_has_single_step
288/**
289 * arch_has_single_step - does this CPU support user-mode single-step?
290 *
291 * If this is defined, then there must be function declarations or
292 * inlines for user_enable_single_step() and user_disable_single_step().
293 * arch_has_single_step() should evaluate to nonzero iff the machine
294 * supports instruction single-step for user mode.
295 * It can be a constant or it can test a CPU feature bit.
296 */
297#define arch_has_single_step()		(0)
298
299/**
300 * user_enable_single_step - single-step in user-mode task
301 * @task: either current or a task stopped in %TASK_TRACED
302 *
303 * This can only be called when arch_has_single_step() has returned nonzero.
304 * Set @task so that when it returns to user mode, it will trap after the
305 * next single instruction executes.  If arch_has_block_step() is defined,
306 * this must clear the effects of user_enable_block_step() too.
307 */
308static inline void user_enable_single_step(struct task_struct *task)
309{
310	BUG();			/* This can never be called.  */
311}
312
313/**
314 * user_disable_single_step - cancel user-mode single-step
315 * @task: either current or a task stopped in %TASK_TRACED
316 *
317 * Clear @task of the effects of user_enable_single_step() and
318 * user_enable_block_step().  This can be called whether or not either
319 * of those was ever called on @task, and even if arch_has_single_step()
320 * returned zero.
321 */
322static inline void user_disable_single_step(struct task_struct *task)
323{
324}
325#else
326extern void user_enable_single_step(struct task_struct *);
327extern void user_disable_single_step(struct task_struct *);
328#endif	/* arch_has_single_step */
329
330#ifndef arch_has_block_step
331/**
332 * arch_has_block_step - does this CPU support user-mode block-step?
333 *
334 * If this is defined, then there must be a function declaration or inline
335 * for user_enable_block_step(), and arch_has_single_step() must be defined
336 * too.  arch_has_block_step() should evaluate to nonzero iff the machine
337 * supports step-until-branch for user mode.  It can be a constant or it
338 * can test a CPU feature bit.
339 */
340#define arch_has_block_step()		(0)
341
342/**
343 * user_enable_block_step - step until branch in user-mode task
344 * @task: either current or a task stopped in %TASK_TRACED
345 *
346 * This can only be called when arch_has_block_step() has returned nonzero,
347 * and will never be called when single-instruction stepping is being used.
348 * Set @task so that when it returns to user mode, it will trap after the
349 * next branch or trap taken.
350 */
351static inline void user_enable_block_step(struct task_struct *task)
352{
353	BUG();			/* This can never be called.  */
354}
355#else
356extern void user_enable_block_step(struct task_struct *);
357#endif	/* arch_has_block_step */
358
359#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
360extern void user_single_step_siginfo(struct task_struct *tsk,
361				struct pt_regs *regs, siginfo_t *info);
362#else
363static inline void user_single_step_siginfo(struct task_struct *tsk,
364				struct pt_regs *regs, siginfo_t *info)
365{
366	memset(info, 0, sizeof(*info));
367	info->si_signo = SIGTRAP;
 
 
 
 
 
 
368}
369#endif
370
371#ifndef arch_ptrace_stop_needed
372/**
373 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
374 * @code:	current->exit_code value ptrace will stop with
375 * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
376 *
377 * This is called with the siglock held, to decide whether or not it's
378 * necessary to release the siglock and call arch_ptrace_stop() with the
379 * same @code and @info arguments.  It can be defined to a constant if
380 * arch_ptrace_stop() is never required, or always is.  On machines where
381 * this makes sense, it should be defined to a quick test to optimize out
382 * calling arch_ptrace_stop() when it would be superfluous.  For example,
383 * if the thread has not been back to user mode since the last stop, the
384 * thread state might indicate that nothing needs to be done.
 
 
 
385 */
386#define arch_ptrace_stop_needed(code, info)	(0)
387#endif
388
389#ifndef arch_ptrace_stop
390/**
391 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
392 * @code:	current->exit_code value ptrace will stop with
393 * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
394 *
395 * This is called with no locks held when arch_ptrace_stop_needed() has
396 * just returned nonzero.  It is allowed to block, e.g. for user memory
397 * access.  The arch can have machine-specific work to be done before
398 * ptrace stops.  On ia64, register backing store gets written back to user
399 * memory here.  Since this can be costly (requires dropping the siglock),
400 * we only do it when the arch requires it for this particular stop, as
401 * indicated by arch_ptrace_stop_needed().
402 */
403#define arch_ptrace_stop(code, info)		do { } while (0)
404#endif
405
406extern int task_current_syscall(struct task_struct *target, long *callno,
407				unsigned long args[6], unsigned int maxargs,
408				unsigned long *sp, unsigned long *pc);
409
410#ifdef CONFIG_HAVE_HW_BREAKPOINT
411extern int ptrace_get_breakpoints(struct task_struct *tsk);
412extern void ptrace_put_breakpoints(struct task_struct *tsk);
413#else
414static inline void ptrace_put_breakpoints(struct task_struct *tsk) { }
415#endif /* CONFIG_HAVE_HW_BREAKPOINT */
 
 
 
 
 
 
416
417#endif /* __KERNEL */
418
 
419#endif