Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PTRACE_H
3#define _LINUX_PTRACE_H
4
5#include <linux/compiler.h> /* For unlikely. */
6#include <linux/sched.h> /* For struct task_struct. */
7#include <linux/sched/signal.h> /* For send_sig(), same_thread_group(), etc. */
8#include <linux/err.h> /* for IS_ERR_VALUE */
9#include <linux/bug.h> /* For BUG_ON. */
10#include <linux/pid_namespace.h> /* For task_active_pid_ns. */
11#include <uapi/linux/ptrace.h>
12#include <linux/seccomp.h>
13
14/* Add sp to seccomp_data, as seccomp is user API, we don't want to modify it */
15struct syscall_info {
16 __u64 sp;
17 struct seccomp_data data;
18};
19
20extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
21 void *buf, int len, unsigned int gup_flags);
22
23/*
24 * Ptrace flags
25 *
26 * The owner ship rules for task->ptrace which holds the ptrace
27 * flags is simple. When a task is running it owns it's task->ptrace
28 * flags. When the a task is stopped the ptracer owns task->ptrace.
29 */
30
31#define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
32#define PT_PTRACED 0x00000001
33#define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
34
35#define PT_OPT_FLAG_SHIFT 3
36/* PT_TRACE_* event enable flags */
37#define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event)))
38#define PT_TRACESYSGOOD PT_EVENT_FLAG(0)
39#define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK)
40#define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
41#define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
42#define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
43#define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
44#define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
45#define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
46
47#define PT_EXITKILL (PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
48#define PT_SUSPEND_SECCOMP (PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
49
50/* single stepping state bits (used on ARM and PA-RISC) */
51#define PT_SINGLESTEP_BIT 31
52#define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
53#define PT_BLOCKSTEP_BIT 30
54#define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
55
56extern long arch_ptrace(struct task_struct *child, long request,
57 unsigned long addr, unsigned long data);
58extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
59extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
60extern void ptrace_disable(struct task_struct *);
61extern int ptrace_request(struct task_struct *child, long request,
62 unsigned long addr, unsigned long data);
63extern void ptrace_notify(int exit_code);
64extern void __ptrace_link(struct task_struct *child,
65 struct task_struct *new_parent,
66 const struct cred *ptracer_cred);
67extern void __ptrace_unlink(struct task_struct *child);
68extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
69#define PTRACE_MODE_READ 0x01
70#define PTRACE_MODE_ATTACH 0x02
71#define PTRACE_MODE_NOAUDIT 0x04
72#define PTRACE_MODE_FSCREDS 0x08
73#define PTRACE_MODE_REALCREDS 0x10
74
75/* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
76#define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
77#define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
78#define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
79#define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
80
81/**
82 * ptrace_may_access - check whether the caller is permitted to access
83 * a target task.
84 * @task: target task
85 * @mode: selects type of access and caller credentials
86 *
87 * Returns true on success, false on denial.
88 *
89 * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
90 * be set in @mode to specify whether the access was requested through
91 * a filesystem syscall (should use effective capabilities and fsuid
92 * of the caller) or through an explicit syscall such as
93 * process_vm_writev or ptrace (and should use the real credentials).
94 */
95extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
96
97static inline int ptrace_reparented(struct task_struct *child)
98{
99 return !same_thread_group(child->real_parent, child->parent);
100}
101
102static inline void ptrace_unlink(struct task_struct *child)
103{
104 if (unlikely(child->ptrace))
105 __ptrace_unlink(child);
106}
107
108int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
109 unsigned long data);
110int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
111 unsigned long data);
112
113/**
114 * ptrace_parent - return the task that is tracing the given task
115 * @task: task to consider
116 *
117 * Returns %NULL if no one is tracing @task, or the &struct task_struct
118 * pointer to its tracer.
119 *
120 * Must called under rcu_read_lock(). The pointer returned might be kept
121 * live only by RCU. During exec, this may be called with task_lock() held
122 * on @task, still held from when check_unsafe_exec() was called.
123 */
124static inline struct task_struct *ptrace_parent(struct task_struct *task)
125{
126 if (unlikely(task->ptrace))
127 return rcu_dereference(task->parent);
128 return NULL;
129}
130
131/**
132 * ptrace_event_enabled - test whether a ptrace event is enabled
133 * @task: ptracee of interest
134 * @event: %PTRACE_EVENT_* to test
135 *
136 * Test whether @event is enabled for ptracee @task.
137 *
138 * Returns %true if @event is enabled, %false otherwise.
139 */
140static inline bool ptrace_event_enabled(struct task_struct *task, int event)
141{
142 return task->ptrace & PT_EVENT_FLAG(event);
143}
144
145/**
146 * ptrace_event - possibly stop for a ptrace event notification
147 * @event: %PTRACE_EVENT_* value to report
148 * @message: value for %PTRACE_GETEVENTMSG to return
149 *
150 * Check whether @event is enabled and, if so, report @event and @message
151 * to the ptrace parent.
152 *
153 * Called without locks.
154 */
155static inline void ptrace_event(int event, unsigned long message)
156{
157 if (unlikely(ptrace_event_enabled(current, event))) {
158 current->ptrace_message = message;
159 ptrace_notify((event << 8) | SIGTRAP);
160 } else if (event == PTRACE_EVENT_EXEC) {
161 /* legacy EXEC report via SIGTRAP */
162 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
163 send_sig(SIGTRAP, current, 0);
164 }
165}
166
167/**
168 * ptrace_event_pid - possibly stop for a ptrace event notification
169 * @event: %PTRACE_EVENT_* value to report
170 * @pid: process identifier for %PTRACE_GETEVENTMSG to return
171 *
172 * Check whether @event is enabled and, if so, report @event and @pid
173 * to the ptrace parent. @pid is reported as the pid_t seen from the
174 * ptrace parent's pid namespace.
175 *
176 * Called without locks.
177 */
178static inline void ptrace_event_pid(int event, struct pid *pid)
179{
180 /*
181 * FIXME: There's a potential race if a ptracer in a different pid
182 * namespace than parent attaches between computing message below and
183 * when we acquire tasklist_lock in ptrace_stop(). If this happens,
184 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
185 */
186 unsigned long message = 0;
187 struct pid_namespace *ns;
188
189 rcu_read_lock();
190 ns = task_active_pid_ns(rcu_dereference(current->parent));
191 if (ns)
192 message = pid_nr_ns(pid, ns);
193 rcu_read_unlock();
194
195 ptrace_event(event, message);
196}
197
198/**
199 * ptrace_init_task - initialize ptrace state for a new child
200 * @child: new child task
201 * @ptrace: true if child should be ptrace'd by parent's tracer
202 *
203 * This is called immediately after adding @child to its parent's children
204 * list. @ptrace is false in the normal case, and true to ptrace @child.
205 *
206 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
207 */
208static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
209{
210 INIT_LIST_HEAD(&child->ptrace_entry);
211 INIT_LIST_HEAD(&child->ptraced);
212 child->jobctl = 0;
213 child->ptrace = 0;
214 child->parent = child->real_parent;
215
216 if (unlikely(ptrace) && current->ptrace) {
217 child->ptrace = current->ptrace;
218 __ptrace_link(child, current->parent, current->ptracer_cred);
219
220 if (child->ptrace & PT_SEIZED)
221 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
222 else
223 sigaddset(&child->pending.signal, SIGSTOP);
224 }
225 else
226 child->ptracer_cred = NULL;
227}
228
229/**
230 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
231 * @task: task in %EXIT_DEAD state
232 *
233 * Called with write_lock(&tasklist_lock) held.
234 */
235static inline void ptrace_release_task(struct task_struct *task)
236{
237 BUG_ON(!list_empty(&task->ptraced));
238 ptrace_unlink(task);
239 BUG_ON(!list_empty(&task->ptrace_entry));
240}
241
242#ifndef force_successful_syscall_return
243/*
244 * System call handlers that, upon successful completion, need to return a
245 * negative value should call force_successful_syscall_return() right before
246 * returning. On architectures where the syscall convention provides for a
247 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
248 * others), this macro can be used to ensure that the error flag will not get
249 * set. On architectures which do not support a separate error flag, the macro
250 * is a no-op and the spurious error condition needs to be filtered out by some
251 * other means (e.g., in user-level, by passing an extra argument to the
252 * syscall handler, or something along those lines).
253 */
254#define force_successful_syscall_return() do { } while (0)
255#endif
256
257#ifndef is_syscall_success
258/*
259 * On most systems we can tell if a syscall is a success based on if the retval
260 * is an error value. On some systems like ia64 and powerpc they have different
261 * indicators of success/failure and must define their own.
262 */
263#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
264#endif
265
266/*
267 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
268 *
269 * These do-nothing inlines are used when the arch does not
270 * implement single-step. The kerneldoc comments are here
271 * to document the interface for all arch definitions.
272 */
273
274#ifndef arch_has_single_step
275/**
276 * arch_has_single_step - does this CPU support user-mode single-step?
277 *
278 * If this is defined, then there must be function declarations or
279 * inlines for user_enable_single_step() and user_disable_single_step().
280 * arch_has_single_step() should evaluate to nonzero iff the machine
281 * supports instruction single-step for user mode.
282 * It can be a constant or it can test a CPU feature bit.
283 */
284#define arch_has_single_step() (0)
285
286/**
287 * user_enable_single_step - single-step in user-mode task
288 * @task: either current or a task stopped in %TASK_TRACED
289 *
290 * This can only be called when arch_has_single_step() has returned nonzero.
291 * Set @task so that when it returns to user mode, it will trap after the
292 * next single instruction executes. If arch_has_block_step() is defined,
293 * this must clear the effects of user_enable_block_step() too.
294 */
295static inline void user_enable_single_step(struct task_struct *task)
296{
297 BUG(); /* This can never be called. */
298}
299
300/**
301 * user_disable_single_step - cancel user-mode single-step
302 * @task: either current or a task stopped in %TASK_TRACED
303 *
304 * Clear @task of the effects of user_enable_single_step() and
305 * user_enable_block_step(). This can be called whether or not either
306 * of those was ever called on @task, and even if arch_has_single_step()
307 * returned zero.
308 */
309static inline void user_disable_single_step(struct task_struct *task)
310{
311}
312#else
313extern void user_enable_single_step(struct task_struct *);
314extern void user_disable_single_step(struct task_struct *);
315#endif /* arch_has_single_step */
316
317#ifndef arch_has_block_step
318/**
319 * arch_has_block_step - does this CPU support user-mode block-step?
320 *
321 * If this is defined, then there must be a function declaration or inline
322 * for user_enable_block_step(), and arch_has_single_step() must be defined
323 * too. arch_has_block_step() should evaluate to nonzero iff the machine
324 * supports step-until-branch for user mode. It can be a constant or it
325 * can test a CPU feature bit.
326 */
327#define arch_has_block_step() (0)
328
329/**
330 * user_enable_block_step - step until branch in user-mode task
331 * @task: either current or a task stopped in %TASK_TRACED
332 *
333 * This can only be called when arch_has_block_step() has returned nonzero,
334 * and will never be called when single-instruction stepping is being used.
335 * Set @task so that when it returns to user mode, it will trap after the
336 * next branch or trap taken.
337 */
338static inline void user_enable_block_step(struct task_struct *task)
339{
340 BUG(); /* This can never be called. */
341}
342#else
343extern void user_enable_block_step(struct task_struct *);
344#endif /* arch_has_block_step */
345
346#ifdef ARCH_HAS_USER_SINGLE_STEP_REPORT
347extern void user_single_step_report(struct pt_regs *regs);
348#else
349static inline void user_single_step_report(struct pt_regs *regs)
350{
351 kernel_siginfo_t info;
352 clear_siginfo(&info);
353 info.si_signo = SIGTRAP;
354 info.si_errno = 0;
355 info.si_code = SI_USER;
356 info.si_pid = 0;
357 info.si_uid = 0;
358 force_sig_info(&info);
359}
360#endif
361
362#ifndef arch_ptrace_stop_needed
363/**
364 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
365 * @code: current->exit_code value ptrace will stop with
366 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
367 *
368 * This is called with the siglock held, to decide whether or not it's
369 * necessary to release the siglock and call arch_ptrace_stop() with the
370 * same @code and @info arguments. It can be defined to a constant if
371 * arch_ptrace_stop() is never required, or always is. On machines where
372 * this makes sense, it should be defined to a quick test to optimize out
373 * calling arch_ptrace_stop() when it would be superfluous. For example,
374 * if the thread has not been back to user mode since the last stop, the
375 * thread state might indicate that nothing needs to be done.
376 *
377 * This is guaranteed to be invoked once before a task stops for ptrace and
378 * may include arch-specific operations necessary prior to a ptrace stop.
379 */
380#define arch_ptrace_stop_needed(code, info) (0)
381#endif
382
383#ifndef arch_ptrace_stop
384/**
385 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
386 * @code: current->exit_code value ptrace will stop with
387 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
388 *
389 * This is called with no locks held when arch_ptrace_stop_needed() has
390 * just returned nonzero. It is allowed to block, e.g. for user memory
391 * access. The arch can have machine-specific work to be done before
392 * ptrace stops. On ia64, register backing store gets written back to user
393 * memory here. Since this can be costly (requires dropping the siglock),
394 * we only do it when the arch requires it for this particular stop, as
395 * indicated by arch_ptrace_stop_needed().
396 */
397#define arch_ptrace_stop(code, info) do { } while (0)
398#endif
399
400#ifndef current_pt_regs
401#define current_pt_regs() task_pt_regs(current)
402#endif
403
404/*
405 * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
406 * on *all* architectures; the only reason to have a per-arch definition
407 * is optimisation.
408 */
409#ifndef signal_pt_regs
410#define signal_pt_regs() task_pt_regs(current)
411#endif
412
413#ifndef current_user_stack_pointer
414#define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
415#endif
416
417extern int task_current_syscall(struct task_struct *target, struct syscall_info *info);
418
419extern void sigaction_compat_abi(struct k_sigaction *act, struct k_sigaction *oact);
420#endif
1#ifndef _LINUX_PTRACE_H
2#define _LINUX_PTRACE_H
3/* ptrace.h */
4/* structs and defines to help the user use the ptrace system call. */
5
6/* has the defines to get at the registers. */
7
8#define PTRACE_TRACEME 0
9#define PTRACE_PEEKTEXT 1
10#define PTRACE_PEEKDATA 2
11#define PTRACE_PEEKUSR 3
12#define PTRACE_POKETEXT 4
13#define PTRACE_POKEDATA 5
14#define PTRACE_POKEUSR 6
15#define PTRACE_CONT 7
16#define PTRACE_KILL 8
17#define PTRACE_SINGLESTEP 9
18
19#define PTRACE_ATTACH 16
20#define PTRACE_DETACH 17
21
22#define PTRACE_SYSCALL 24
23
24/* 0x4200-0x4300 are reserved for architecture-independent additions. */
25#define PTRACE_SETOPTIONS 0x4200
26#define PTRACE_GETEVENTMSG 0x4201
27#define PTRACE_GETSIGINFO 0x4202
28#define PTRACE_SETSIGINFO 0x4203
29
30/*
31 * Generic ptrace interface that exports the architecture specific regsets
32 * using the corresponding NT_* types (which are also used in the core dump).
33 * Please note that the NT_PRSTATUS note type in a core dump contains a full
34 * 'struct elf_prstatus'. But the user_regset for NT_PRSTATUS contains just the
35 * elf_gregset_t that is the pr_reg field of 'struct elf_prstatus'. For all the
36 * other user_regset flavors, the user_regset layout and the ELF core dump note
37 * payload are exactly the same layout.
38 *
39 * This interface usage is as follows:
40 * struct iovec iov = { buf, len};
41 *
42 * ret = ptrace(PTRACE_GETREGSET/PTRACE_SETREGSET, pid, NT_XXX_TYPE, &iov);
43 *
44 * On the successful completion, iov.len will be updated by the kernel,
45 * specifying how much the kernel has written/read to/from the user's iov.buf.
46 */
47#define PTRACE_GETREGSET 0x4204
48#define PTRACE_SETREGSET 0x4205
49
50#define PTRACE_SEIZE 0x4206
51#define PTRACE_INTERRUPT 0x4207
52#define PTRACE_LISTEN 0x4208
53
54/* Wait extended result codes for the above trace options. */
55#define PTRACE_EVENT_FORK 1
56#define PTRACE_EVENT_VFORK 2
57#define PTRACE_EVENT_CLONE 3
58#define PTRACE_EVENT_EXEC 4
59#define PTRACE_EVENT_VFORK_DONE 5
60#define PTRACE_EVENT_EXIT 6
61#define PTRACE_EVENT_SECCOMP 7
62/* Extended result codes which enabled by means other than options. */
63#define PTRACE_EVENT_STOP 128
64
65/* Options set using PTRACE_SETOPTIONS or using PTRACE_SEIZE @data param */
66#define PTRACE_O_TRACESYSGOOD 1
67#define PTRACE_O_TRACEFORK (1 << PTRACE_EVENT_FORK)
68#define PTRACE_O_TRACEVFORK (1 << PTRACE_EVENT_VFORK)
69#define PTRACE_O_TRACECLONE (1 << PTRACE_EVENT_CLONE)
70#define PTRACE_O_TRACEEXEC (1 << PTRACE_EVENT_EXEC)
71#define PTRACE_O_TRACEVFORKDONE (1 << PTRACE_EVENT_VFORK_DONE)
72#define PTRACE_O_TRACEEXIT (1 << PTRACE_EVENT_EXIT)
73#define PTRACE_O_TRACESECCOMP (1 << PTRACE_EVENT_SECCOMP)
74
75#define PTRACE_O_MASK 0x000000ff
76
77#include <asm/ptrace.h>
78
79#ifdef __KERNEL__
80/*
81 * Ptrace flags
82 *
83 * The owner ship rules for task->ptrace which holds the ptrace
84 * flags is simple. When a task is running it owns it's task->ptrace
85 * flags. When the a task is stopped the ptracer owns task->ptrace.
86 */
87
88#define PT_SEIZED 0x00010000 /* SEIZE used, enable new behavior */
89#define PT_PTRACED 0x00000001
90#define PT_DTRACE 0x00000002 /* delayed trace (used on m68k, i386) */
91#define PT_PTRACE_CAP 0x00000004 /* ptracer can follow suid-exec */
92
93#define PT_OPT_FLAG_SHIFT 3
94/* PT_TRACE_* event enable flags */
95#define PT_EVENT_FLAG(event) (1 << (PT_OPT_FLAG_SHIFT + (event)))
96#define PT_TRACESYSGOOD PT_EVENT_FLAG(0)
97#define PT_TRACE_FORK PT_EVENT_FLAG(PTRACE_EVENT_FORK)
98#define PT_TRACE_VFORK PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
99#define PT_TRACE_CLONE PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
100#define PT_TRACE_EXEC PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
101#define PT_TRACE_VFORK_DONE PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
102#define PT_TRACE_EXIT PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
103#define PT_TRACE_SECCOMP PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
104
105/* single stepping state bits (used on ARM and PA-RISC) */
106#define PT_SINGLESTEP_BIT 31
107#define PT_SINGLESTEP (1<<PT_SINGLESTEP_BIT)
108#define PT_BLOCKSTEP_BIT 30
109#define PT_BLOCKSTEP (1<<PT_BLOCKSTEP_BIT)
110
111#include <linux/compiler.h> /* For unlikely. */
112#include <linux/sched.h> /* For struct task_struct. */
113#include <linux/err.h> /* for IS_ERR_VALUE */
114#include <linux/bug.h> /* For BUG_ON. */
115
116
117extern long arch_ptrace(struct task_struct *child, long request,
118 unsigned long addr, unsigned long data);
119extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
120extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
121extern void ptrace_disable(struct task_struct *);
122extern int ptrace_check_attach(struct task_struct *task, bool ignore_state);
123extern int ptrace_request(struct task_struct *child, long request,
124 unsigned long addr, unsigned long data);
125extern void ptrace_notify(int exit_code);
126extern void __ptrace_link(struct task_struct *child,
127 struct task_struct *new_parent);
128extern void __ptrace_unlink(struct task_struct *child);
129extern void exit_ptrace(struct task_struct *tracer);
130#define PTRACE_MODE_READ 0x01
131#define PTRACE_MODE_ATTACH 0x02
132#define PTRACE_MODE_NOAUDIT 0x04
133/* Returns 0 on success, -errno on denial. */
134extern int __ptrace_may_access(struct task_struct *task, unsigned int mode);
135/* Returns true on success, false on denial. */
136extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
137
138static inline int ptrace_reparented(struct task_struct *child)
139{
140 return !same_thread_group(child->real_parent, child->parent);
141}
142
143static inline void ptrace_unlink(struct task_struct *child)
144{
145 if (unlikely(child->ptrace))
146 __ptrace_unlink(child);
147}
148
149int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
150 unsigned long data);
151int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
152 unsigned long data);
153
154/**
155 * ptrace_parent - return the task that is tracing the given task
156 * @task: task to consider
157 *
158 * Returns %NULL if no one is tracing @task, or the &struct task_struct
159 * pointer to its tracer.
160 *
161 * Must called under rcu_read_lock(). The pointer returned might be kept
162 * live only by RCU. During exec, this may be called with task_lock() held
163 * on @task, still held from when check_unsafe_exec() was called.
164 */
165static inline struct task_struct *ptrace_parent(struct task_struct *task)
166{
167 if (unlikely(task->ptrace))
168 return rcu_dereference(task->parent);
169 return NULL;
170}
171
172/**
173 * ptrace_event_enabled - test whether a ptrace event is enabled
174 * @task: ptracee of interest
175 * @event: %PTRACE_EVENT_* to test
176 *
177 * Test whether @event is enabled for ptracee @task.
178 *
179 * Returns %true if @event is enabled, %false otherwise.
180 */
181static inline bool ptrace_event_enabled(struct task_struct *task, int event)
182{
183 return task->ptrace & PT_EVENT_FLAG(event);
184}
185
186/**
187 * ptrace_event - possibly stop for a ptrace event notification
188 * @event: %PTRACE_EVENT_* value to report
189 * @message: value for %PTRACE_GETEVENTMSG to return
190 *
191 * Check whether @event is enabled and, if so, report @event and @message
192 * to the ptrace parent.
193 *
194 * Called without locks.
195 */
196static inline void ptrace_event(int event, unsigned long message)
197{
198 if (unlikely(ptrace_event_enabled(current, event))) {
199 current->ptrace_message = message;
200 ptrace_notify((event << 8) | SIGTRAP);
201 } else if (event == PTRACE_EVENT_EXEC) {
202 /* legacy EXEC report via SIGTRAP */
203 if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
204 send_sig(SIGTRAP, current, 0);
205 }
206}
207
208/**
209 * ptrace_init_task - initialize ptrace state for a new child
210 * @child: new child task
211 * @ptrace: true if child should be ptrace'd by parent's tracer
212 *
213 * This is called immediately after adding @child to its parent's children
214 * list. @ptrace is false in the normal case, and true to ptrace @child.
215 *
216 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
217 */
218static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
219{
220 INIT_LIST_HEAD(&child->ptrace_entry);
221 INIT_LIST_HEAD(&child->ptraced);
222#ifdef CONFIG_HAVE_HW_BREAKPOINT
223 atomic_set(&child->ptrace_bp_refcnt, 1);
224#endif
225 child->jobctl = 0;
226 child->ptrace = 0;
227 child->parent = child->real_parent;
228
229 if (unlikely(ptrace) && current->ptrace) {
230 child->ptrace = current->ptrace;
231 __ptrace_link(child, current->parent);
232
233 if (child->ptrace & PT_SEIZED)
234 task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
235 else
236 sigaddset(&child->pending.signal, SIGSTOP);
237
238 set_tsk_thread_flag(child, TIF_SIGPENDING);
239 }
240}
241
242/**
243 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
244 * @task: task in %EXIT_DEAD state
245 *
246 * Called with write_lock(&tasklist_lock) held.
247 */
248static inline void ptrace_release_task(struct task_struct *task)
249{
250 BUG_ON(!list_empty(&task->ptraced));
251 ptrace_unlink(task);
252 BUG_ON(!list_empty(&task->ptrace_entry));
253}
254
255#ifndef force_successful_syscall_return
256/*
257 * System call handlers that, upon successful completion, need to return a
258 * negative value should call force_successful_syscall_return() right before
259 * returning. On architectures where the syscall convention provides for a
260 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
261 * others), this macro can be used to ensure that the error flag will not get
262 * set. On architectures which do not support a separate error flag, the macro
263 * is a no-op and the spurious error condition needs to be filtered out by some
264 * other means (e.g., in user-level, by passing an extra argument to the
265 * syscall handler, or something along those lines).
266 */
267#define force_successful_syscall_return() do { } while (0)
268#endif
269
270#ifndef is_syscall_success
271/*
272 * On most systems we can tell if a syscall is a success based on if the retval
273 * is an error value. On some systems like ia64 and powerpc they have different
274 * indicators of success/failure and must define their own.
275 */
276#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
277#endif
278
279/*
280 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
281 *
282 * These do-nothing inlines are used when the arch does not
283 * implement single-step. The kerneldoc comments are here
284 * to document the interface for all arch definitions.
285 */
286
287#ifndef arch_has_single_step
288/**
289 * arch_has_single_step - does this CPU support user-mode single-step?
290 *
291 * If this is defined, then there must be function declarations or
292 * inlines for user_enable_single_step() and user_disable_single_step().
293 * arch_has_single_step() should evaluate to nonzero iff the machine
294 * supports instruction single-step for user mode.
295 * It can be a constant or it can test a CPU feature bit.
296 */
297#define arch_has_single_step() (0)
298
299/**
300 * user_enable_single_step - single-step in user-mode task
301 * @task: either current or a task stopped in %TASK_TRACED
302 *
303 * This can only be called when arch_has_single_step() has returned nonzero.
304 * Set @task so that when it returns to user mode, it will trap after the
305 * next single instruction executes. If arch_has_block_step() is defined,
306 * this must clear the effects of user_enable_block_step() too.
307 */
308static inline void user_enable_single_step(struct task_struct *task)
309{
310 BUG(); /* This can never be called. */
311}
312
313/**
314 * user_disable_single_step - cancel user-mode single-step
315 * @task: either current or a task stopped in %TASK_TRACED
316 *
317 * Clear @task of the effects of user_enable_single_step() and
318 * user_enable_block_step(). This can be called whether or not either
319 * of those was ever called on @task, and even if arch_has_single_step()
320 * returned zero.
321 */
322static inline void user_disable_single_step(struct task_struct *task)
323{
324}
325#else
326extern void user_enable_single_step(struct task_struct *);
327extern void user_disable_single_step(struct task_struct *);
328#endif /* arch_has_single_step */
329
330#ifndef arch_has_block_step
331/**
332 * arch_has_block_step - does this CPU support user-mode block-step?
333 *
334 * If this is defined, then there must be a function declaration or inline
335 * for user_enable_block_step(), and arch_has_single_step() must be defined
336 * too. arch_has_block_step() should evaluate to nonzero iff the machine
337 * supports step-until-branch for user mode. It can be a constant or it
338 * can test a CPU feature bit.
339 */
340#define arch_has_block_step() (0)
341
342/**
343 * user_enable_block_step - step until branch in user-mode task
344 * @task: either current or a task stopped in %TASK_TRACED
345 *
346 * This can only be called when arch_has_block_step() has returned nonzero,
347 * and will never be called when single-instruction stepping is being used.
348 * Set @task so that when it returns to user mode, it will trap after the
349 * next branch or trap taken.
350 */
351static inline void user_enable_block_step(struct task_struct *task)
352{
353 BUG(); /* This can never be called. */
354}
355#else
356extern void user_enable_block_step(struct task_struct *);
357#endif /* arch_has_block_step */
358
359#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
360extern void user_single_step_siginfo(struct task_struct *tsk,
361 struct pt_regs *regs, siginfo_t *info);
362#else
363static inline void user_single_step_siginfo(struct task_struct *tsk,
364 struct pt_regs *regs, siginfo_t *info)
365{
366 memset(info, 0, sizeof(*info));
367 info->si_signo = SIGTRAP;
368}
369#endif
370
371#ifndef arch_ptrace_stop_needed
372/**
373 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
374 * @code: current->exit_code value ptrace will stop with
375 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
376 *
377 * This is called with the siglock held, to decide whether or not it's
378 * necessary to release the siglock and call arch_ptrace_stop() with the
379 * same @code and @info arguments. It can be defined to a constant if
380 * arch_ptrace_stop() is never required, or always is. On machines where
381 * this makes sense, it should be defined to a quick test to optimize out
382 * calling arch_ptrace_stop() when it would be superfluous. For example,
383 * if the thread has not been back to user mode since the last stop, the
384 * thread state might indicate that nothing needs to be done.
385 */
386#define arch_ptrace_stop_needed(code, info) (0)
387#endif
388
389#ifndef arch_ptrace_stop
390/**
391 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
392 * @code: current->exit_code value ptrace will stop with
393 * @info: siginfo_t pointer (or %NULL) for signal ptrace will stop with
394 *
395 * This is called with no locks held when arch_ptrace_stop_needed() has
396 * just returned nonzero. It is allowed to block, e.g. for user memory
397 * access. The arch can have machine-specific work to be done before
398 * ptrace stops. On ia64, register backing store gets written back to user
399 * memory here. Since this can be costly (requires dropping the siglock),
400 * we only do it when the arch requires it for this particular stop, as
401 * indicated by arch_ptrace_stop_needed().
402 */
403#define arch_ptrace_stop(code, info) do { } while (0)
404#endif
405
406extern int task_current_syscall(struct task_struct *target, long *callno,
407 unsigned long args[6], unsigned int maxargs,
408 unsigned long *sp, unsigned long *pc);
409
410#ifdef CONFIG_HAVE_HW_BREAKPOINT
411extern int ptrace_get_breakpoints(struct task_struct *tsk);
412extern void ptrace_put_breakpoints(struct task_struct *tsk);
413#else
414static inline void ptrace_put_breakpoints(struct task_struct *tsk) { }
415#endif /* CONFIG_HAVE_HW_BREAKPOINT */
416
417#endif /* __KERNEL */
418
419#endif