Linux Audio

Check our new training course

Loading...
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_PTRACE_H
  3#define _LINUX_PTRACE_H
  4
  5#include <linux/compiler.h>		/* For unlikely.  */
  6#include <linux/sched.h>		/* For struct task_struct.  */
  7#include <linux/sched/signal.h>		/* For send_sig(), same_thread_group(), etc. */
  8#include <linux/err.h>			/* for IS_ERR_VALUE */
  9#include <linux/bug.h>			/* For BUG_ON.  */
 10#include <linux/pid_namespace.h>	/* For task_active_pid_ns.  */
 11#include <uapi/linux/ptrace.h>
 12#include <linux/seccomp.h>
 13
 14/* Add sp to seccomp_data, as seccomp is user API, we don't want to modify it */
 15struct syscall_info {
 16	__u64			sp;
 17	struct seccomp_data	data;
 18};
 19
 20extern int ptrace_access_vm(struct task_struct *tsk, unsigned long addr,
 21			    void *buf, int len, unsigned int gup_flags);
 22
 23/*
 24 * Ptrace flags
 25 *
 26 * The owner ship rules for task->ptrace which holds the ptrace
 27 * flags is simple.  When a task is running it owns it's task->ptrace
 28 * flags.  When the a task is stopped the ptracer owns task->ptrace.
 29 */
 30
 31#define PT_SEIZED	0x00010000	/* SEIZE used, enable new behavior */
 32#define PT_PTRACED	0x00000001
 33#define PT_DTRACE	0x00000002	/* delayed trace (used on m68k, i386) */
 
 34
 35#define PT_OPT_FLAG_SHIFT	3
 36/* PT_TRACE_* event enable flags */
 37#define PT_EVENT_FLAG(event)	(1 << (PT_OPT_FLAG_SHIFT + (event)))
 38#define PT_TRACESYSGOOD		PT_EVENT_FLAG(0)
 39#define PT_TRACE_FORK		PT_EVENT_FLAG(PTRACE_EVENT_FORK)
 40#define PT_TRACE_VFORK		PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
 41#define PT_TRACE_CLONE		PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
 42#define PT_TRACE_EXEC		PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
 43#define PT_TRACE_VFORK_DONE	PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
 44#define PT_TRACE_EXIT		PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
 45#define PT_TRACE_SECCOMP	PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
 46
 47#define PT_EXITKILL		(PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
 48#define PT_SUSPEND_SECCOMP	(PTRACE_O_SUSPEND_SECCOMP << PT_OPT_FLAG_SHIFT)
 49
 50/* single stepping state bits (used on ARM and PA-RISC) */
 51#define PT_SINGLESTEP_BIT	31
 52#define PT_SINGLESTEP		(1<<PT_SINGLESTEP_BIT)
 53#define PT_BLOCKSTEP_BIT	30
 54#define PT_BLOCKSTEP		(1<<PT_BLOCKSTEP_BIT)
 55
 56extern long arch_ptrace(struct task_struct *child, long request,
 57			unsigned long addr, unsigned long data);
 58extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
 59extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
 60extern void ptrace_disable(struct task_struct *);
 61extern int ptrace_request(struct task_struct *child, long request,
 62			  unsigned long addr, unsigned long data);
 63extern void ptrace_notify(int exit_code);
 64extern void __ptrace_link(struct task_struct *child,
 65			  struct task_struct *new_parent,
 66			  const struct cred *ptracer_cred);
 67extern void __ptrace_unlink(struct task_struct *child);
 68extern void exit_ptrace(struct task_struct *tracer, struct list_head *dead);
 69#define PTRACE_MODE_READ	0x01
 70#define PTRACE_MODE_ATTACH	0x02
 71#define PTRACE_MODE_NOAUDIT	0x04
 72#define PTRACE_MODE_FSCREDS	0x08
 73#define PTRACE_MODE_REALCREDS	0x10
 74
 75/* shorthands for READ/ATTACH and FSCREDS/REALCREDS combinations */
 76#define PTRACE_MODE_READ_FSCREDS (PTRACE_MODE_READ | PTRACE_MODE_FSCREDS)
 77#define PTRACE_MODE_READ_REALCREDS (PTRACE_MODE_READ | PTRACE_MODE_REALCREDS)
 78#define PTRACE_MODE_ATTACH_FSCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS)
 79#define PTRACE_MODE_ATTACH_REALCREDS (PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS)
 80
 81/**
 82 * ptrace_may_access - check whether the caller is permitted to access
 83 * a target task.
 84 * @task: target task
 85 * @mode: selects type of access and caller credentials
 86 *
 87 * Returns true on success, false on denial.
 88 *
 89 * One of the flags PTRACE_MODE_FSCREDS and PTRACE_MODE_REALCREDS must
 90 * be set in @mode to specify whether the access was requested through
 91 * a filesystem syscall (should use effective capabilities and fsuid
 92 * of the caller) or through an explicit syscall such as
 93 * process_vm_writev or ptrace (and should use the real credentials).
 94 */
 95extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
 96
 97static inline int ptrace_reparented(struct task_struct *child)
 98{
 99	return !same_thread_group(child->real_parent, child->parent);
100}
101
102static inline void ptrace_unlink(struct task_struct *child)
103{
104	if (unlikely(child->ptrace))
105		__ptrace_unlink(child);
106}
107
108int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
109			    unsigned long data);
110int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
111			    unsigned long data);
112
113/**
114 * ptrace_parent - return the task that is tracing the given task
115 * @task: task to consider
116 *
117 * Returns %NULL if no one is tracing @task, or the &struct task_struct
118 * pointer to its tracer.
119 *
120 * Must called under rcu_read_lock().  The pointer returned might be kept
121 * live only by RCU.  During exec, this may be called with task_lock() held
122 * on @task, still held from when check_unsafe_exec() was called.
123 */
124static inline struct task_struct *ptrace_parent(struct task_struct *task)
125{
126	if (unlikely(task->ptrace))
127		return rcu_dereference(task->parent);
128	return NULL;
129}
130
131/**
132 * ptrace_event_enabled - test whether a ptrace event is enabled
133 * @task: ptracee of interest
134 * @event: %PTRACE_EVENT_* to test
135 *
136 * Test whether @event is enabled for ptracee @task.
137 *
138 * Returns %true if @event is enabled, %false otherwise.
139 */
140static inline bool ptrace_event_enabled(struct task_struct *task, int event)
141{
142	return task->ptrace & PT_EVENT_FLAG(event);
143}
144
145/**
146 * ptrace_event - possibly stop for a ptrace event notification
147 * @event:	%PTRACE_EVENT_* value to report
148 * @message:	value for %PTRACE_GETEVENTMSG to return
149 *
150 * Check whether @event is enabled and, if so, report @event and @message
151 * to the ptrace parent.
152 *
153 * Called without locks.
154 */
155static inline void ptrace_event(int event, unsigned long message)
156{
157	if (unlikely(ptrace_event_enabled(current, event))) {
158		current->ptrace_message = message;
159		ptrace_notify((event << 8) | SIGTRAP);
160	} else if (event == PTRACE_EVENT_EXEC) {
161		/* legacy EXEC report via SIGTRAP */
162		if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
163			send_sig(SIGTRAP, current, 0);
164	}
165}
166
167/**
168 * ptrace_event_pid - possibly stop for a ptrace event notification
169 * @event:	%PTRACE_EVENT_* value to report
170 * @pid:	process identifier for %PTRACE_GETEVENTMSG to return
171 *
172 * Check whether @event is enabled and, if so, report @event and @pid
173 * to the ptrace parent.  @pid is reported as the pid_t seen from the
174 * ptrace parent's pid namespace.
175 *
176 * Called without locks.
177 */
178static inline void ptrace_event_pid(int event, struct pid *pid)
179{
180	/*
181	 * FIXME: There's a potential race if a ptracer in a different pid
182	 * namespace than parent attaches between computing message below and
183	 * when we acquire tasklist_lock in ptrace_stop().  If this happens,
184	 * the ptracer will get a bogus pid from PTRACE_GETEVENTMSG.
185	 */
186	unsigned long message = 0;
187	struct pid_namespace *ns;
188
189	rcu_read_lock();
190	ns = task_active_pid_ns(rcu_dereference(current->parent));
191	if (ns)
192		message = pid_nr_ns(pid, ns);
193	rcu_read_unlock();
194
195	ptrace_event(event, message);
196}
197
198/**
199 * ptrace_init_task - initialize ptrace state for a new child
200 * @child:		new child task
201 * @ptrace:		true if child should be ptrace'd by parent's tracer
202 *
203 * This is called immediately after adding @child to its parent's children
204 * list.  @ptrace is false in the normal case, and true to ptrace @child.
205 *
206 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
207 */
208static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
209{
210	INIT_LIST_HEAD(&child->ptrace_entry);
211	INIT_LIST_HEAD(&child->ptraced);
212	child->jobctl = 0;
213	child->ptrace = 0;
214	child->parent = child->real_parent;
215
216	if (unlikely(ptrace) && current->ptrace) {
217		child->ptrace = current->ptrace;
218		__ptrace_link(child, current->parent, current->ptracer_cred);
219
220		if (child->ptrace & PT_SEIZED)
221			task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
222		else
223			sigaddset(&child->pending.signal, SIGSTOP);
 
 
224	}
225	else
226		child->ptracer_cred = NULL;
227}
228
229/**
230 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
231 * @task:	task in %EXIT_DEAD state
232 *
233 * Called with write_lock(&tasklist_lock) held.
234 */
235static inline void ptrace_release_task(struct task_struct *task)
236{
237	BUG_ON(!list_empty(&task->ptraced));
238	ptrace_unlink(task);
239	BUG_ON(!list_empty(&task->ptrace_entry));
240}
241
242#ifndef force_successful_syscall_return
243/*
244 * System call handlers that, upon successful completion, need to return a
245 * negative value should call force_successful_syscall_return() right before
246 * returning.  On architectures where the syscall convention provides for a
247 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
248 * others), this macro can be used to ensure that the error flag will not get
249 * set.  On architectures which do not support a separate error flag, the macro
250 * is a no-op and the spurious error condition needs to be filtered out by some
251 * other means (e.g., in user-level, by passing an extra argument to the
252 * syscall handler, or something along those lines).
253 */
254#define force_successful_syscall_return() do { } while (0)
255#endif
256
257#ifndef is_syscall_success
258/*
259 * On most systems we can tell if a syscall is a success based on if the retval
260 * is an error value.  On some systems like ia64 and powerpc they have different
261 * indicators of success/failure and must define their own.
262 */
263#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
264#endif
265
266/*
267 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
268 *
269 * These do-nothing inlines are used when the arch does not
270 * implement single-step.  The kerneldoc comments are here
271 * to document the interface for all arch definitions.
272 */
273
274#ifndef arch_has_single_step
275/**
276 * arch_has_single_step - does this CPU support user-mode single-step?
277 *
278 * If this is defined, then there must be function declarations or
279 * inlines for user_enable_single_step() and user_disable_single_step().
280 * arch_has_single_step() should evaluate to nonzero iff the machine
281 * supports instruction single-step for user mode.
282 * It can be a constant or it can test a CPU feature bit.
283 */
284#define arch_has_single_step()		(0)
285
286/**
287 * user_enable_single_step - single-step in user-mode task
288 * @task: either current or a task stopped in %TASK_TRACED
289 *
290 * This can only be called when arch_has_single_step() has returned nonzero.
291 * Set @task so that when it returns to user mode, it will trap after the
292 * next single instruction executes.  If arch_has_block_step() is defined,
293 * this must clear the effects of user_enable_block_step() too.
294 */
295static inline void user_enable_single_step(struct task_struct *task)
296{
297	BUG();			/* This can never be called.  */
298}
299
300/**
301 * user_disable_single_step - cancel user-mode single-step
302 * @task: either current or a task stopped in %TASK_TRACED
303 *
304 * Clear @task of the effects of user_enable_single_step() and
305 * user_enable_block_step().  This can be called whether or not either
306 * of those was ever called on @task, and even if arch_has_single_step()
307 * returned zero.
308 */
309static inline void user_disable_single_step(struct task_struct *task)
310{
311}
312#else
313extern void user_enable_single_step(struct task_struct *);
314extern void user_disable_single_step(struct task_struct *);
315#endif	/* arch_has_single_step */
316
317#ifndef arch_has_block_step
318/**
319 * arch_has_block_step - does this CPU support user-mode block-step?
320 *
321 * If this is defined, then there must be a function declaration or inline
322 * for user_enable_block_step(), and arch_has_single_step() must be defined
323 * too.  arch_has_block_step() should evaluate to nonzero iff the machine
324 * supports step-until-branch for user mode.  It can be a constant or it
325 * can test a CPU feature bit.
326 */
327#define arch_has_block_step()		(0)
328
329/**
330 * user_enable_block_step - step until branch in user-mode task
331 * @task: either current or a task stopped in %TASK_TRACED
332 *
333 * This can only be called when arch_has_block_step() has returned nonzero,
334 * and will never be called when single-instruction stepping is being used.
335 * Set @task so that when it returns to user mode, it will trap after the
336 * next branch or trap taken.
337 */
338static inline void user_enable_block_step(struct task_struct *task)
339{
340	BUG();			/* This can never be called.  */
341}
342#else
343extern void user_enable_block_step(struct task_struct *);
344#endif	/* arch_has_block_step */
345
346#ifdef ARCH_HAS_USER_SINGLE_STEP_REPORT
347extern void user_single_step_report(struct pt_regs *regs);
 
348#else
349static inline void user_single_step_report(struct pt_regs *regs)
 
350{
351	kernel_siginfo_t info;
352	clear_siginfo(&info);
353	info.si_signo = SIGTRAP;
354	info.si_errno = 0;
355	info.si_code = SI_USER;
356	info.si_pid = 0;
357	info.si_uid = 0;
358	force_sig_info(&info);
359}
360#endif
361
362#ifndef arch_ptrace_stop_needed
363/**
364 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
365 * @code:	current->exit_code value ptrace will stop with
366 * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
367 *
368 * This is called with the siglock held, to decide whether or not it's
369 * necessary to release the siglock and call arch_ptrace_stop() with the
370 * same @code and @info arguments.  It can be defined to a constant if
371 * arch_ptrace_stop() is never required, or always is.  On machines where
372 * this makes sense, it should be defined to a quick test to optimize out
373 * calling arch_ptrace_stop() when it would be superfluous.  For example,
374 * if the thread has not been back to user mode since the last stop, the
375 * thread state might indicate that nothing needs to be done.
376 *
377 * This is guaranteed to be invoked once before a task stops for ptrace and
378 * may include arch-specific operations necessary prior to a ptrace stop.
379 */
380#define arch_ptrace_stop_needed(code, info)	(0)
381#endif
382
383#ifndef arch_ptrace_stop
384/**
385 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
386 * @code:	current->exit_code value ptrace will stop with
387 * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
388 *
389 * This is called with no locks held when arch_ptrace_stop_needed() has
390 * just returned nonzero.  It is allowed to block, e.g. for user memory
391 * access.  The arch can have machine-specific work to be done before
392 * ptrace stops.  On ia64, register backing store gets written back to user
393 * memory here.  Since this can be costly (requires dropping the siglock),
394 * we only do it when the arch requires it for this particular stop, as
395 * indicated by arch_ptrace_stop_needed().
396 */
397#define arch_ptrace_stop(code, info)		do { } while (0)
398#endif
399
400#ifndef current_pt_regs
401#define current_pt_regs() task_pt_regs(current)
402#endif
403
 
 
 
 
404/*
405 * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
406 * on *all* architectures; the only reason to have a per-arch definition
407 * is optimisation.
408 */
409#ifndef signal_pt_regs
410#define signal_pt_regs() task_pt_regs(current)
411#endif
412
413#ifndef current_user_stack_pointer
414#define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
415#endif
416
417extern int task_current_syscall(struct task_struct *target, struct syscall_info *info);
 
 
418
419extern void sigaction_compat_abi(struct k_sigaction *act, struct k_sigaction *oact);
420#endif
v3.15
 
  1#ifndef _LINUX_PTRACE_H
  2#define _LINUX_PTRACE_H
  3
  4#include <linux/compiler.h>		/* For unlikely.  */
  5#include <linux/sched.h>		/* For struct task_struct.  */
 
  6#include <linux/err.h>			/* for IS_ERR_VALUE */
  7#include <linux/bug.h>			/* For BUG_ON.  */
 
  8#include <uapi/linux/ptrace.h>
 
 
 
 
 
 
 
 
 
 
  9
 10/*
 11 * Ptrace flags
 12 *
 13 * The owner ship rules for task->ptrace which holds the ptrace
 14 * flags is simple.  When a task is running it owns it's task->ptrace
 15 * flags.  When the a task is stopped the ptracer owns task->ptrace.
 16 */
 17
 18#define PT_SEIZED	0x00010000	/* SEIZE used, enable new behavior */
 19#define PT_PTRACED	0x00000001
 20#define PT_DTRACE	0x00000002	/* delayed trace (used on m68k, i386) */
 21#define PT_PTRACE_CAP	0x00000004	/* ptracer can follow suid-exec */
 22
 23#define PT_OPT_FLAG_SHIFT	3
 24/* PT_TRACE_* event enable flags */
 25#define PT_EVENT_FLAG(event)	(1 << (PT_OPT_FLAG_SHIFT + (event)))
 26#define PT_TRACESYSGOOD		PT_EVENT_FLAG(0)
 27#define PT_TRACE_FORK		PT_EVENT_FLAG(PTRACE_EVENT_FORK)
 28#define PT_TRACE_VFORK		PT_EVENT_FLAG(PTRACE_EVENT_VFORK)
 29#define PT_TRACE_CLONE		PT_EVENT_FLAG(PTRACE_EVENT_CLONE)
 30#define PT_TRACE_EXEC		PT_EVENT_FLAG(PTRACE_EVENT_EXEC)
 31#define PT_TRACE_VFORK_DONE	PT_EVENT_FLAG(PTRACE_EVENT_VFORK_DONE)
 32#define PT_TRACE_EXIT		PT_EVENT_FLAG(PTRACE_EVENT_EXIT)
 33#define PT_TRACE_SECCOMP	PT_EVENT_FLAG(PTRACE_EVENT_SECCOMP)
 34
 35#define PT_EXITKILL		(PTRACE_O_EXITKILL << PT_OPT_FLAG_SHIFT)
 
 36
 37/* single stepping state bits (used on ARM and PA-RISC) */
 38#define PT_SINGLESTEP_BIT	31
 39#define PT_SINGLESTEP		(1<<PT_SINGLESTEP_BIT)
 40#define PT_BLOCKSTEP_BIT	30
 41#define PT_BLOCKSTEP		(1<<PT_BLOCKSTEP_BIT)
 42
 43extern long arch_ptrace(struct task_struct *child, long request,
 44			unsigned long addr, unsigned long data);
 45extern int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len);
 46extern int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len);
 47extern void ptrace_disable(struct task_struct *);
 48extern int ptrace_request(struct task_struct *child, long request,
 49			  unsigned long addr, unsigned long data);
 50extern void ptrace_notify(int exit_code);
 51extern void __ptrace_link(struct task_struct *child,
 52			  struct task_struct *new_parent);
 
 53extern void __ptrace_unlink(struct task_struct *child);
 54extern void exit_ptrace(struct task_struct *tracer);
 55#define PTRACE_MODE_READ	0x01
 56#define PTRACE_MODE_ATTACH	0x02
 57#define PTRACE_MODE_NOAUDIT	0x04
 58/* Returns true on success, false on denial. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59extern bool ptrace_may_access(struct task_struct *task, unsigned int mode);
 60
 61static inline int ptrace_reparented(struct task_struct *child)
 62{
 63	return !same_thread_group(child->real_parent, child->parent);
 64}
 65
 66static inline void ptrace_unlink(struct task_struct *child)
 67{
 68	if (unlikely(child->ptrace))
 69		__ptrace_unlink(child);
 70}
 71
 72int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
 73			    unsigned long data);
 74int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
 75			    unsigned long data);
 76
 77/**
 78 * ptrace_parent - return the task that is tracing the given task
 79 * @task: task to consider
 80 *
 81 * Returns %NULL if no one is tracing @task, or the &struct task_struct
 82 * pointer to its tracer.
 83 *
 84 * Must called under rcu_read_lock().  The pointer returned might be kept
 85 * live only by RCU.  During exec, this may be called with task_lock() held
 86 * on @task, still held from when check_unsafe_exec() was called.
 87 */
 88static inline struct task_struct *ptrace_parent(struct task_struct *task)
 89{
 90	if (unlikely(task->ptrace))
 91		return rcu_dereference(task->parent);
 92	return NULL;
 93}
 94
 95/**
 96 * ptrace_event_enabled - test whether a ptrace event is enabled
 97 * @task: ptracee of interest
 98 * @event: %PTRACE_EVENT_* to test
 99 *
100 * Test whether @event is enabled for ptracee @task.
101 *
102 * Returns %true if @event is enabled, %false otherwise.
103 */
104static inline bool ptrace_event_enabled(struct task_struct *task, int event)
105{
106	return task->ptrace & PT_EVENT_FLAG(event);
107}
108
109/**
110 * ptrace_event - possibly stop for a ptrace event notification
111 * @event:	%PTRACE_EVENT_* value to report
112 * @message:	value for %PTRACE_GETEVENTMSG to return
113 *
114 * Check whether @event is enabled and, if so, report @event and @message
115 * to the ptrace parent.
116 *
117 * Called without locks.
118 */
119static inline void ptrace_event(int event, unsigned long message)
120{
121	if (unlikely(ptrace_event_enabled(current, event))) {
122		current->ptrace_message = message;
123		ptrace_notify((event << 8) | SIGTRAP);
124	} else if (event == PTRACE_EVENT_EXEC) {
125		/* legacy EXEC report via SIGTRAP */
126		if ((current->ptrace & (PT_PTRACED|PT_SEIZED)) == PT_PTRACED)
127			send_sig(SIGTRAP, current, 0);
128	}
129}
130
131/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132 * ptrace_init_task - initialize ptrace state for a new child
133 * @child:		new child task
134 * @ptrace:		true if child should be ptrace'd by parent's tracer
135 *
136 * This is called immediately after adding @child to its parent's children
137 * list.  @ptrace is false in the normal case, and true to ptrace @child.
138 *
139 * Called with current's siglock and write_lock_irq(&tasklist_lock) held.
140 */
141static inline void ptrace_init_task(struct task_struct *child, bool ptrace)
142{
143	INIT_LIST_HEAD(&child->ptrace_entry);
144	INIT_LIST_HEAD(&child->ptraced);
145	child->jobctl = 0;
146	child->ptrace = 0;
147	child->parent = child->real_parent;
148
149	if (unlikely(ptrace) && current->ptrace) {
150		child->ptrace = current->ptrace;
151		__ptrace_link(child, current->parent);
152
153		if (child->ptrace & PT_SEIZED)
154			task_set_jobctl_pending(child, JOBCTL_TRAP_STOP);
155		else
156			sigaddset(&child->pending.signal, SIGSTOP);
157
158		set_tsk_thread_flag(child, TIF_SIGPENDING);
159	}
 
 
160}
161
162/**
163 * ptrace_release_task - final ptrace-related cleanup of a zombie being reaped
164 * @task:	task in %EXIT_DEAD state
165 *
166 * Called with write_lock(&tasklist_lock) held.
167 */
168static inline void ptrace_release_task(struct task_struct *task)
169{
170	BUG_ON(!list_empty(&task->ptraced));
171	ptrace_unlink(task);
172	BUG_ON(!list_empty(&task->ptrace_entry));
173}
174
175#ifndef force_successful_syscall_return
176/*
177 * System call handlers that, upon successful completion, need to return a
178 * negative value should call force_successful_syscall_return() right before
179 * returning.  On architectures where the syscall convention provides for a
180 * separate error flag (e.g., alpha, ia64, ppc{,64}, sparc{,64}, possibly
181 * others), this macro can be used to ensure that the error flag will not get
182 * set.  On architectures which do not support a separate error flag, the macro
183 * is a no-op and the spurious error condition needs to be filtered out by some
184 * other means (e.g., in user-level, by passing an extra argument to the
185 * syscall handler, or something along those lines).
186 */
187#define force_successful_syscall_return() do { } while (0)
188#endif
189
190#ifndef is_syscall_success
191/*
192 * On most systems we can tell if a syscall is a success based on if the retval
193 * is an error value.  On some systems like ia64 and powerpc they have different
194 * indicators of success/failure and must define their own.
195 */
196#define is_syscall_success(regs) (!IS_ERR_VALUE((unsigned long)(regs_return_value(regs))))
197#endif
198
199/*
200 * <asm/ptrace.h> should define the following things inside #ifdef __KERNEL__.
201 *
202 * These do-nothing inlines are used when the arch does not
203 * implement single-step.  The kerneldoc comments are here
204 * to document the interface for all arch definitions.
205 */
206
207#ifndef arch_has_single_step
208/**
209 * arch_has_single_step - does this CPU support user-mode single-step?
210 *
211 * If this is defined, then there must be function declarations or
212 * inlines for user_enable_single_step() and user_disable_single_step().
213 * arch_has_single_step() should evaluate to nonzero iff the machine
214 * supports instruction single-step for user mode.
215 * It can be a constant or it can test a CPU feature bit.
216 */
217#define arch_has_single_step()		(0)
218
219/**
220 * user_enable_single_step - single-step in user-mode task
221 * @task: either current or a task stopped in %TASK_TRACED
222 *
223 * This can only be called when arch_has_single_step() has returned nonzero.
224 * Set @task so that when it returns to user mode, it will trap after the
225 * next single instruction executes.  If arch_has_block_step() is defined,
226 * this must clear the effects of user_enable_block_step() too.
227 */
228static inline void user_enable_single_step(struct task_struct *task)
229{
230	BUG();			/* This can never be called.  */
231}
232
233/**
234 * user_disable_single_step - cancel user-mode single-step
235 * @task: either current or a task stopped in %TASK_TRACED
236 *
237 * Clear @task of the effects of user_enable_single_step() and
238 * user_enable_block_step().  This can be called whether or not either
239 * of those was ever called on @task, and even if arch_has_single_step()
240 * returned zero.
241 */
242static inline void user_disable_single_step(struct task_struct *task)
243{
244}
245#else
246extern void user_enable_single_step(struct task_struct *);
247extern void user_disable_single_step(struct task_struct *);
248#endif	/* arch_has_single_step */
249
250#ifndef arch_has_block_step
251/**
252 * arch_has_block_step - does this CPU support user-mode block-step?
253 *
254 * If this is defined, then there must be a function declaration or inline
255 * for user_enable_block_step(), and arch_has_single_step() must be defined
256 * too.  arch_has_block_step() should evaluate to nonzero iff the machine
257 * supports step-until-branch for user mode.  It can be a constant or it
258 * can test a CPU feature bit.
259 */
260#define arch_has_block_step()		(0)
261
262/**
263 * user_enable_block_step - step until branch in user-mode task
264 * @task: either current or a task stopped in %TASK_TRACED
265 *
266 * This can only be called when arch_has_block_step() has returned nonzero,
267 * and will never be called when single-instruction stepping is being used.
268 * Set @task so that when it returns to user mode, it will trap after the
269 * next branch or trap taken.
270 */
271static inline void user_enable_block_step(struct task_struct *task)
272{
273	BUG();			/* This can never be called.  */
274}
275#else
276extern void user_enable_block_step(struct task_struct *);
277#endif	/* arch_has_block_step */
278
279#ifdef ARCH_HAS_USER_SINGLE_STEP_INFO
280extern void user_single_step_siginfo(struct task_struct *tsk,
281				struct pt_regs *regs, siginfo_t *info);
282#else
283static inline void user_single_step_siginfo(struct task_struct *tsk,
284				struct pt_regs *regs, siginfo_t *info)
285{
286	memset(info, 0, sizeof(*info));
287	info->si_signo = SIGTRAP;
 
 
 
 
 
 
288}
289#endif
290
291#ifndef arch_ptrace_stop_needed
292/**
293 * arch_ptrace_stop_needed - Decide whether arch_ptrace_stop() should be called
294 * @code:	current->exit_code value ptrace will stop with
295 * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
296 *
297 * This is called with the siglock held, to decide whether or not it's
298 * necessary to release the siglock and call arch_ptrace_stop() with the
299 * same @code and @info arguments.  It can be defined to a constant if
300 * arch_ptrace_stop() is never required, or always is.  On machines where
301 * this makes sense, it should be defined to a quick test to optimize out
302 * calling arch_ptrace_stop() when it would be superfluous.  For example,
303 * if the thread has not been back to user mode since the last stop, the
304 * thread state might indicate that nothing needs to be done.
 
 
 
305 */
306#define arch_ptrace_stop_needed(code, info)	(0)
307#endif
308
309#ifndef arch_ptrace_stop
310/**
311 * arch_ptrace_stop - Do machine-specific work before stopping for ptrace
312 * @code:	current->exit_code value ptrace will stop with
313 * @info:	siginfo_t pointer (or %NULL) for signal ptrace will stop with
314 *
315 * This is called with no locks held when arch_ptrace_stop_needed() has
316 * just returned nonzero.  It is allowed to block, e.g. for user memory
317 * access.  The arch can have machine-specific work to be done before
318 * ptrace stops.  On ia64, register backing store gets written back to user
319 * memory here.  Since this can be costly (requires dropping the siglock),
320 * we only do it when the arch requires it for this particular stop, as
321 * indicated by arch_ptrace_stop_needed().
322 */
323#define arch_ptrace_stop(code, info)		do { } while (0)
324#endif
325
326#ifndef current_pt_regs
327#define current_pt_regs() task_pt_regs(current)
328#endif
329
330#ifndef ptrace_signal_deliver
331#define ptrace_signal_deliver() ((void)0)
332#endif
333
334/*
335 * unlike current_pt_regs(), this one is equal to task_pt_regs(current)
336 * on *all* architectures; the only reason to have a per-arch definition
337 * is optimisation.
338 */
339#ifndef signal_pt_regs
340#define signal_pt_regs() task_pt_regs(current)
341#endif
342
343#ifndef current_user_stack_pointer
344#define current_user_stack_pointer() user_stack_pointer(current_pt_regs())
345#endif
346
347extern int task_current_syscall(struct task_struct *target, long *callno,
348				unsigned long args[6], unsigned int maxargs,
349				unsigned long *sp, unsigned long *pc);
350
 
351#endif