Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/cpu_pm.h>
20#include <linux/kexec.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/extable.h>
25#include <linux/mm.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/debug.h>
28#include <linux/smp.h>
29#include <linux/spinlock.h>
30#include <linux/kallsyms.h>
31#include <linux/memblock.h>
32#include <linux/interrupt.h>
33#include <linux/ptrace.h>
34#include <linux/kgdb.h>
35#include <linux/kdebug.h>
36#include <linux/kprobes.h>
37#include <linux/notifier.h>
38#include <linux/kdb.h>
39#include <linux/irq.h>
40#include <linux/perf_event.h>
41
42#include <asm/addrspace.h>
43#include <asm/bootinfo.h>
44#include <asm/branch.h>
45#include <asm/break.h>
46#include <asm/cop2.h>
47#include <asm/cpu.h>
48#include <asm/cpu-type.h>
49#include <asm/dsp.h>
50#include <asm/fpu.h>
51#include <asm/fpu_emulator.h>
52#include <asm/idle.h>
53#include <asm/isa-rev.h>
54#include <asm/mips-cps.h>
55#include <asm/mips-r2-to-r6-emul.h>
56#include <asm/mipsregs.h>
57#include <asm/mipsmtregs.h>
58#include <asm/module.h>
59#include <asm/msa.h>
60#include <asm/ptrace.h>
61#include <asm/sections.h>
62#include <asm/siginfo.h>
63#include <asm/tlbdebug.h>
64#include <asm/traps.h>
65#include <linux/uaccess.h>
66#include <asm/watch.h>
67#include <asm/mmu_context.h>
68#include <asm/types.h>
69#include <asm/stacktrace.h>
70#include <asm/tlbex.h>
71#include <asm/uasm.h>
72
73#include <asm/mach-loongson64/cpucfg-emul.h>
74
75#include "access-helper.h"
76
77extern void check_wait(void);
78extern asmlinkage void rollback_handle_int(void);
79extern asmlinkage void handle_int(void);
80extern asmlinkage void handle_adel(void);
81extern asmlinkage void handle_ades(void);
82extern asmlinkage void handle_ibe(void);
83extern asmlinkage void handle_dbe(void);
84extern asmlinkage void handle_sys(void);
85extern asmlinkage void handle_bp(void);
86extern asmlinkage void handle_ri(void);
87extern asmlinkage void handle_ri_rdhwr_tlbp(void);
88extern asmlinkage void handle_ri_rdhwr(void);
89extern asmlinkage void handle_cpu(void);
90extern asmlinkage void handle_ov(void);
91extern asmlinkage void handle_tr(void);
92extern asmlinkage void handle_msa_fpe(void);
93extern asmlinkage void handle_fpe(void);
94extern asmlinkage void handle_ftlb(void);
95extern asmlinkage void handle_gsexc(void);
96extern asmlinkage void handle_msa(void);
97extern asmlinkage void handle_mdmx(void);
98extern asmlinkage void handle_watch(void);
99extern asmlinkage void handle_mt(void);
100extern asmlinkage void handle_dsp(void);
101extern asmlinkage void handle_mcheck(void);
102extern asmlinkage void handle_reserved(void);
103extern void tlb_do_page_fault_0(void);
104
105void (*board_be_init)(void);
106int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
107void (*board_nmi_handler_setup)(void);
108void (*board_ejtag_handler_setup)(void);
109void (*board_bind_eic_interrupt)(int irq, int regset);
110void (*board_ebase_setup)(void);
111void(*board_cache_error_setup)(void);
112
113static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
114 bool user)
115{
116 unsigned long *sp = (unsigned long *)(reg29 & ~3);
117 unsigned long addr;
118
119 printk("%sCall Trace:", loglvl);
120#ifdef CONFIG_KALLSYMS
121 printk("%s\n", loglvl);
122#endif
123 while (!kstack_end(sp)) {
124 if (__get_addr(&addr, sp++, user)) {
125 printk("%s (Bad stack address)", loglvl);
126 break;
127 }
128 if (__kernel_text_address(addr))
129 print_ip_sym(loglvl, addr);
130 }
131 printk("%s\n", loglvl);
132}
133
134#ifdef CONFIG_KALLSYMS
135int raw_show_trace;
136static int __init set_raw_show_trace(char *str)
137{
138 raw_show_trace = 1;
139 return 1;
140}
141__setup("raw_show_trace", set_raw_show_trace);
142#endif
143
144static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
145 const char *loglvl, bool user)
146{
147 unsigned long sp = regs->regs[29];
148 unsigned long ra = regs->regs[31];
149 unsigned long pc = regs->cp0_epc;
150
151 if (!task)
152 task = current;
153
154 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
155 show_raw_backtrace(sp, loglvl, user);
156 return;
157 }
158 printk("%sCall Trace:\n", loglvl);
159 do {
160 print_ip_sym(loglvl, pc);
161 pc = unwind_stack(task, &sp, pc, &ra);
162 } while (pc);
163 pr_cont("\n");
164}
165
166/*
167 * This routine abuses get_user()/put_user() to reference pointers
168 * with at least a bit of error checking ...
169 */
170static void show_stacktrace(struct task_struct *task,
171 const struct pt_regs *regs, const char *loglvl, bool user)
172{
173 const int field = 2 * sizeof(unsigned long);
174 unsigned long stackdata;
175 int i;
176 unsigned long *sp = (unsigned long *)regs->regs[29];
177
178 printk("%sStack :", loglvl);
179 i = 0;
180 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
181 if (i && ((i % (64 / field)) == 0)) {
182 pr_cont("\n");
183 printk("%s ", loglvl);
184 }
185 if (i > 39) {
186 pr_cont(" ...");
187 break;
188 }
189
190 if (__get_addr(&stackdata, sp++, user)) {
191 pr_cont(" (Bad stack address)");
192 break;
193 }
194
195 pr_cont(" %0*lx", field, stackdata);
196 i++;
197 }
198 pr_cont("\n");
199 show_backtrace(task, regs, loglvl, user);
200}
201
202void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
203{
204 struct pt_regs regs;
205
206 regs.cp0_status = KSU_KERNEL;
207 if (sp) {
208 regs.regs[29] = (unsigned long)sp;
209 regs.regs[31] = 0;
210 regs.cp0_epc = 0;
211 } else {
212 if (task && task != current) {
213 regs.regs[29] = task->thread.reg29;
214 regs.regs[31] = 0;
215 regs.cp0_epc = task->thread.reg31;
216 } else {
217 prepare_frametrace(®s);
218 }
219 }
220 show_stacktrace(task, ®s, loglvl, false);
221}
222
223static void show_code(void *pc, bool user)
224{
225 long i;
226 unsigned short *pc16 = NULL;
227
228 printk("Code:");
229
230 if ((unsigned long)pc & 1)
231 pc16 = (u16 *)((unsigned long)pc & ~1);
232
233 for(i = -3 ; i < 6 ; i++) {
234 if (pc16) {
235 u16 insn16;
236
237 if (__get_inst16(&insn16, pc16 + i, user))
238 goto bad_address;
239
240 pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
241 } else {
242 u32 insn32;
243
244 if (__get_inst32(&insn32, (u32 *)pc + i, user))
245 goto bad_address;
246
247 pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
248 }
249 }
250 pr_cont("\n");
251 return;
252
253bad_address:
254 pr_cont(" (Bad address in epc)\n\n");
255}
256
257static void __show_regs(const struct pt_regs *regs)
258{
259 const int field = 2 * sizeof(unsigned long);
260 unsigned int cause = regs->cp0_cause;
261 unsigned int exccode;
262 int i;
263
264 show_regs_print_info(KERN_DEFAULT);
265
266 /*
267 * Saved main processor registers
268 */
269 for (i = 0; i < 32; ) {
270 if ((i % 4) == 0)
271 printk("$%2d :", i);
272 if (i == 0)
273 pr_cont(" %0*lx", field, 0UL);
274 else if (i == 26 || i == 27)
275 pr_cont(" %*s", field, "");
276 else
277 pr_cont(" %0*lx", field, regs->regs[i]);
278
279 i++;
280 if ((i % 4) == 0)
281 pr_cont("\n");
282 }
283
284#ifdef CONFIG_CPU_HAS_SMARTMIPS
285 printk("Acx : %0*lx\n", field, regs->acx);
286#endif
287 if (MIPS_ISA_REV < 6) {
288 printk("Hi : %0*lx\n", field, regs->hi);
289 printk("Lo : %0*lx\n", field, regs->lo);
290 }
291
292 /*
293 * Saved cp0 registers
294 */
295 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
296 (void *) regs->cp0_epc);
297 printk("ra : %0*lx %pS\n", field, regs->regs[31],
298 (void *) regs->regs[31]);
299
300 printk("Status: %08x ", (uint32_t) regs->cp0_status);
301
302 if (cpu_has_3kex) {
303 if (regs->cp0_status & ST0_KUO)
304 pr_cont("KUo ");
305 if (regs->cp0_status & ST0_IEO)
306 pr_cont("IEo ");
307 if (regs->cp0_status & ST0_KUP)
308 pr_cont("KUp ");
309 if (regs->cp0_status & ST0_IEP)
310 pr_cont("IEp ");
311 if (regs->cp0_status & ST0_KUC)
312 pr_cont("KUc ");
313 if (regs->cp0_status & ST0_IEC)
314 pr_cont("IEc ");
315 } else if (cpu_has_4kex) {
316 if (regs->cp0_status & ST0_KX)
317 pr_cont("KX ");
318 if (regs->cp0_status & ST0_SX)
319 pr_cont("SX ");
320 if (regs->cp0_status & ST0_UX)
321 pr_cont("UX ");
322 switch (regs->cp0_status & ST0_KSU) {
323 case KSU_USER:
324 pr_cont("USER ");
325 break;
326 case KSU_SUPERVISOR:
327 pr_cont("SUPERVISOR ");
328 break;
329 case KSU_KERNEL:
330 pr_cont("KERNEL ");
331 break;
332 default:
333 pr_cont("BAD_MODE ");
334 break;
335 }
336 if (regs->cp0_status & ST0_ERL)
337 pr_cont("ERL ");
338 if (regs->cp0_status & ST0_EXL)
339 pr_cont("EXL ");
340 if (regs->cp0_status & ST0_IE)
341 pr_cont("IE ");
342 }
343 pr_cont("\n");
344
345 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
346 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
347
348 if (1 <= exccode && exccode <= 5)
349 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
350
351 printk("PrId : %08x (%s)\n", read_c0_prid(),
352 cpu_name_string());
353}
354
355/*
356 * FIXME: really the generic show_regs should take a const pointer argument.
357 */
358void show_regs(struct pt_regs *regs)
359{
360 __show_regs(regs);
361 dump_stack();
362}
363
364void show_registers(struct pt_regs *regs)
365{
366 const int field = 2 * sizeof(unsigned long);
367
368 __show_regs(regs);
369 print_modules();
370 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
371 current->comm, current->pid, current_thread_info(), current,
372 field, current_thread_info()->tp_value);
373 if (cpu_has_userlocal) {
374 unsigned long tls;
375
376 tls = read_c0_userlocal();
377 if (tls != current_thread_info()->tp_value)
378 printk("*HwTLS: %0*lx\n", field, tls);
379 }
380
381 show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
382 show_code((void *)regs->cp0_epc, user_mode(regs));
383 printk("\n");
384}
385
386static DEFINE_RAW_SPINLOCK(die_lock);
387
388void __noreturn die(const char *str, struct pt_regs *regs)
389{
390 static int die_counter;
391 int sig = SIGSEGV;
392
393 oops_enter();
394
395 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
396 SIGSEGV) == NOTIFY_STOP)
397 sig = 0;
398
399 console_verbose();
400 raw_spin_lock_irq(&die_lock);
401 bust_spinlocks(1);
402
403 printk("%s[#%d]:\n", str, ++die_counter);
404 show_registers(regs);
405 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
406 raw_spin_unlock_irq(&die_lock);
407
408 oops_exit();
409
410 if (in_interrupt())
411 panic("Fatal exception in interrupt");
412
413 if (panic_on_oops)
414 panic("Fatal exception");
415
416 if (regs && kexec_should_crash(current))
417 crash_kexec(regs);
418
419 do_exit(sig);
420}
421
422extern struct exception_table_entry __start___dbe_table[];
423extern struct exception_table_entry __stop___dbe_table[];
424
425__asm__(
426" .section __dbe_table, \"a\"\n"
427" .previous \n");
428
429/* Given an address, look for it in the exception tables. */
430static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
431{
432 const struct exception_table_entry *e;
433
434 e = search_extable(__start___dbe_table,
435 __stop___dbe_table - __start___dbe_table, addr);
436 if (!e)
437 e = search_module_dbetables(addr);
438 return e;
439}
440
441asmlinkage void do_be(struct pt_regs *regs)
442{
443 const int field = 2 * sizeof(unsigned long);
444 const struct exception_table_entry *fixup = NULL;
445 int data = regs->cp0_cause & 4;
446 int action = MIPS_BE_FATAL;
447 enum ctx_state prev_state;
448
449 prev_state = exception_enter();
450 /* XXX For now. Fixme, this searches the wrong table ... */
451 if (data && !user_mode(regs))
452 fixup = search_dbe_tables(exception_epc(regs));
453
454 if (fixup)
455 action = MIPS_BE_FIXUP;
456
457 if (board_be_handler)
458 action = board_be_handler(regs, fixup != NULL);
459 else
460 mips_cm_error_report();
461
462 switch (action) {
463 case MIPS_BE_DISCARD:
464 goto out;
465 case MIPS_BE_FIXUP:
466 if (fixup) {
467 regs->cp0_epc = fixup->nextinsn;
468 goto out;
469 }
470 break;
471 default:
472 break;
473 }
474
475 /*
476 * Assume it would be too dangerous to continue ...
477 */
478 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
479 data ? "Data" : "Instruction",
480 field, regs->cp0_epc, field, regs->regs[31]);
481 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
482 SIGBUS) == NOTIFY_STOP)
483 goto out;
484
485 die_if_kernel("Oops", regs);
486 force_sig(SIGBUS);
487
488out:
489 exception_exit(prev_state);
490}
491
492/*
493 * ll/sc, rdhwr, sync emulation
494 */
495
496#define OPCODE 0xfc000000
497#define BASE 0x03e00000
498#define RT 0x001f0000
499#define OFFSET 0x0000ffff
500#define LL 0xc0000000
501#define SC 0xe0000000
502#define SPEC0 0x00000000
503#define SPEC3 0x7c000000
504#define RD 0x0000f800
505#define FUNC 0x0000003f
506#define SYNC 0x0000000f
507#define RDHWR 0x0000003b
508
509/* microMIPS definitions */
510#define MM_POOL32A_FUNC 0xfc00ffff
511#define MM_RDHWR 0x00006b3c
512#define MM_RS 0x001f0000
513#define MM_RT 0x03e00000
514
515/*
516 * The ll_bit is cleared by r*_switch.S
517 */
518
519unsigned int ll_bit;
520struct task_struct *ll_task;
521
522static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
523{
524 unsigned long value, __user *vaddr;
525 long offset;
526
527 /*
528 * analyse the ll instruction that just caused a ri exception
529 * and put the referenced address to addr.
530 */
531
532 /* sign extend offset */
533 offset = opcode & OFFSET;
534 offset <<= 16;
535 offset >>= 16;
536
537 vaddr = (unsigned long __user *)
538 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
539
540 if ((unsigned long)vaddr & 3)
541 return SIGBUS;
542 if (get_user(value, vaddr))
543 return SIGSEGV;
544
545 preempt_disable();
546
547 if (ll_task == NULL || ll_task == current) {
548 ll_bit = 1;
549 } else {
550 ll_bit = 0;
551 }
552 ll_task = current;
553
554 preempt_enable();
555
556 regs->regs[(opcode & RT) >> 16] = value;
557
558 return 0;
559}
560
561static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
562{
563 unsigned long __user *vaddr;
564 unsigned long reg;
565 long offset;
566
567 /*
568 * analyse the sc instruction that just caused a ri exception
569 * and put the referenced address to addr.
570 */
571
572 /* sign extend offset */
573 offset = opcode & OFFSET;
574 offset <<= 16;
575 offset >>= 16;
576
577 vaddr = (unsigned long __user *)
578 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
579 reg = (opcode & RT) >> 16;
580
581 if ((unsigned long)vaddr & 3)
582 return SIGBUS;
583
584 preempt_disable();
585
586 if (ll_bit == 0 || ll_task != current) {
587 regs->regs[reg] = 0;
588 preempt_enable();
589 return 0;
590 }
591
592 preempt_enable();
593
594 if (put_user(regs->regs[reg], vaddr))
595 return SIGSEGV;
596
597 regs->regs[reg] = 1;
598
599 return 0;
600}
601
602/*
603 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
604 * opcodes are supposed to result in coprocessor unusable exceptions if
605 * executed on ll/sc-less processors. That's the theory. In practice a
606 * few processors such as NEC's VR4100 throw reserved instruction exceptions
607 * instead, so we're doing the emulation thing in both exception handlers.
608 */
609static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
610{
611 if ((opcode & OPCODE) == LL) {
612 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
613 1, regs, 0);
614 return simulate_ll(regs, opcode);
615 }
616 if ((opcode & OPCODE) == SC) {
617 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
618 1, regs, 0);
619 return simulate_sc(regs, opcode);
620 }
621
622 return -1; /* Must be something else ... */
623}
624
625/*
626 * Simulate trapping 'rdhwr' instructions to provide user accessible
627 * registers not implemented in hardware.
628 */
629static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
630{
631 struct thread_info *ti = task_thread_info(current);
632
633 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
634 1, regs, 0);
635 switch (rd) {
636 case MIPS_HWR_CPUNUM: /* CPU number */
637 regs->regs[rt] = smp_processor_id();
638 return 0;
639 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
640 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
641 current_cpu_data.icache.linesz);
642 return 0;
643 case MIPS_HWR_CC: /* Read count register */
644 regs->regs[rt] = read_c0_count();
645 return 0;
646 case MIPS_HWR_CCRES: /* Count register resolution */
647 switch (current_cpu_type()) {
648 case CPU_20KC:
649 case CPU_25KF:
650 regs->regs[rt] = 1;
651 break;
652 default:
653 regs->regs[rt] = 2;
654 }
655 return 0;
656 case MIPS_HWR_ULR: /* Read UserLocal register */
657 regs->regs[rt] = ti->tp_value;
658 return 0;
659 default:
660 return -1;
661 }
662}
663
664static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
665{
666 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
667 int rd = (opcode & RD) >> 11;
668 int rt = (opcode & RT) >> 16;
669
670 simulate_rdhwr(regs, rd, rt);
671 return 0;
672 }
673
674 /* Not ours. */
675 return -1;
676}
677
678static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
679{
680 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
681 int rd = (opcode & MM_RS) >> 16;
682 int rt = (opcode & MM_RT) >> 21;
683 simulate_rdhwr(regs, rd, rt);
684 return 0;
685 }
686
687 /* Not ours. */
688 return -1;
689}
690
691static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
692{
693 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
694 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
695 1, regs, 0);
696 return 0;
697 }
698
699 return -1; /* Must be something else ... */
700}
701
702/*
703 * Loongson-3 CSR instructions emulation
704 */
705
706#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
707
708#define LWC2 0xc8000000
709#define RS BASE
710#define CSR_OPCODE2 0x00000118
711#define CSR_OPCODE2_MASK 0x000007ff
712#define CSR_FUNC_MASK RT
713#define CSR_FUNC_CPUCFG 0x8
714
715static int simulate_loongson3_cpucfg(struct pt_regs *regs,
716 unsigned int opcode)
717{
718 int op = opcode & OPCODE;
719 int op2 = opcode & CSR_OPCODE2_MASK;
720 int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
721
722 if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
723 int rd = (opcode & RD) >> 11;
724 int rs = (opcode & RS) >> 21;
725 __u64 sel = regs->regs[rs];
726
727 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
728
729 /* Do not emulate on unsupported core models. */
730 preempt_disable();
731 if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) {
732 preempt_enable();
733 return -1;
734 }
735 regs->regs[rd] = loongson3_cpucfg_read_synthesized(
736 ¤t_cpu_data, sel);
737 preempt_enable();
738 return 0;
739 }
740
741 /* Not ours. */
742 return -1;
743}
744#endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
745
746asmlinkage void do_ov(struct pt_regs *regs)
747{
748 enum ctx_state prev_state;
749
750 prev_state = exception_enter();
751 die_if_kernel("Integer overflow", regs);
752
753 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
754 exception_exit(prev_state);
755}
756
757#ifdef CONFIG_MIPS_FP_SUPPORT
758
759/*
760 * Send SIGFPE according to FCSR Cause bits, which must have already
761 * been masked against Enable bits. This is impotant as Inexact can
762 * happen together with Overflow or Underflow, and `ptrace' can set
763 * any bits.
764 */
765void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
766 struct task_struct *tsk)
767{
768 int si_code = FPE_FLTUNK;
769
770 if (fcr31 & FPU_CSR_INV_X)
771 si_code = FPE_FLTINV;
772 else if (fcr31 & FPU_CSR_DIV_X)
773 si_code = FPE_FLTDIV;
774 else if (fcr31 & FPU_CSR_OVF_X)
775 si_code = FPE_FLTOVF;
776 else if (fcr31 & FPU_CSR_UDF_X)
777 si_code = FPE_FLTUND;
778 else if (fcr31 & FPU_CSR_INE_X)
779 si_code = FPE_FLTRES;
780
781 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
782}
783
784int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
785{
786 int si_code;
787
788 switch (sig) {
789 case 0:
790 return 0;
791
792 case SIGFPE:
793 force_fcr31_sig(fcr31, fault_addr, current);
794 return 1;
795
796 case SIGBUS:
797 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
798 return 1;
799
800 case SIGSEGV:
801 mmap_read_lock(current->mm);
802 if (vma_lookup(current->mm, (unsigned long)fault_addr))
803 si_code = SEGV_ACCERR;
804 else
805 si_code = SEGV_MAPERR;
806 mmap_read_unlock(current->mm);
807 force_sig_fault(SIGSEGV, si_code, fault_addr);
808 return 1;
809
810 default:
811 force_sig(sig);
812 return 1;
813 }
814}
815
816static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
817 unsigned long old_epc, unsigned long old_ra)
818{
819 union mips_instruction inst = { .word = opcode };
820 void __user *fault_addr;
821 unsigned long fcr31;
822 int sig;
823
824 /* If it's obviously not an FP instruction, skip it */
825 switch (inst.i_format.opcode) {
826 case cop1_op:
827 case cop1x_op:
828 case lwc1_op:
829 case ldc1_op:
830 case swc1_op:
831 case sdc1_op:
832 break;
833
834 default:
835 return -1;
836 }
837
838 /*
839 * do_ri skipped over the instruction via compute_return_epc, undo
840 * that for the FPU emulator.
841 */
842 regs->cp0_epc = old_epc;
843 regs->regs[31] = old_ra;
844
845 /* Run the emulator */
846 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
847 &fault_addr);
848
849 /*
850 * We can't allow the emulated instruction to leave any
851 * enabled Cause bits set in $fcr31.
852 */
853 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
854 current->thread.fpu.fcr31 &= ~fcr31;
855
856 /* Restore the hardware register state */
857 own_fpu(1);
858
859 /* Send a signal if required. */
860 process_fpemu_return(sig, fault_addr, fcr31);
861
862 return 0;
863}
864
865/*
866 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
867 */
868asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
869{
870 enum ctx_state prev_state;
871 void __user *fault_addr;
872 int sig;
873
874 prev_state = exception_enter();
875 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
876 SIGFPE) == NOTIFY_STOP)
877 goto out;
878
879 /* Clear FCSR.Cause before enabling interrupts */
880 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
881 local_irq_enable();
882
883 die_if_kernel("FP exception in kernel code", regs);
884
885 if (fcr31 & FPU_CSR_UNI_X) {
886 /*
887 * Unimplemented operation exception. If we've got the full
888 * software emulator on-board, let's use it...
889 *
890 * Force FPU to dump state into task/thread context. We're
891 * moving a lot of data here for what is probably a single
892 * instruction, but the alternative is to pre-decode the FP
893 * register operands before invoking the emulator, which seems
894 * a bit extreme for what should be an infrequent event.
895 */
896
897 /* Run the emulator */
898 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
899 &fault_addr);
900
901 /*
902 * We can't allow the emulated instruction to leave any
903 * enabled Cause bits set in $fcr31.
904 */
905 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
906 current->thread.fpu.fcr31 &= ~fcr31;
907
908 /* Restore the hardware register state */
909 own_fpu(1); /* Using the FPU again. */
910 } else {
911 sig = SIGFPE;
912 fault_addr = (void __user *) regs->cp0_epc;
913 }
914
915 /* Send a signal if required. */
916 process_fpemu_return(sig, fault_addr, fcr31);
917
918out:
919 exception_exit(prev_state);
920}
921
922/*
923 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
924 * emulated more than some threshold number of instructions, force migration to
925 * a "CPU" that has FP support.
926 */
927static void mt_ase_fp_affinity(void)
928{
929#ifdef CONFIG_MIPS_MT_FPAFF
930 if (mt_fpemul_threshold > 0 &&
931 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
932 /*
933 * If there's no FPU present, or if the application has already
934 * restricted the allowed set to exclude any CPUs with FPUs,
935 * we'll skip the procedure.
936 */
937 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
938 cpumask_t tmask;
939
940 current->thread.user_cpus_allowed
941 = current->cpus_mask;
942 cpumask_and(&tmask, ¤t->cpus_mask,
943 &mt_fpu_cpumask);
944 set_cpus_allowed_ptr(current, &tmask);
945 set_thread_flag(TIF_FPUBOUND);
946 }
947 }
948#endif /* CONFIG_MIPS_MT_FPAFF */
949}
950
951#else /* !CONFIG_MIPS_FP_SUPPORT */
952
953static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
954 unsigned long old_epc, unsigned long old_ra)
955{
956 return -1;
957}
958
959#endif /* !CONFIG_MIPS_FP_SUPPORT */
960
961void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
962 const char *str)
963{
964 char b[40];
965
966#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
967 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
968 SIGTRAP) == NOTIFY_STOP)
969 return;
970#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
971
972 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
973 SIGTRAP) == NOTIFY_STOP)
974 return;
975
976 /*
977 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
978 * insns, even for trap and break codes that indicate arithmetic
979 * failures. Weird ...
980 * But should we continue the brokenness??? --macro
981 */
982 switch (code) {
983 case BRK_OVERFLOW:
984 case BRK_DIVZERO:
985 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
986 die_if_kernel(b, regs);
987 force_sig_fault(SIGFPE,
988 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
989 (void __user *) regs->cp0_epc);
990 break;
991 case BRK_BUG:
992 die_if_kernel("Kernel bug detected", regs);
993 force_sig(SIGTRAP);
994 break;
995 case BRK_MEMU:
996 /*
997 * This breakpoint code is used by the FPU emulator to retake
998 * control of the CPU after executing the instruction from the
999 * delay slot of an emulated branch.
1000 *
1001 * Terminate if exception was recognized as a delay slot return
1002 * otherwise handle as normal.
1003 */
1004 if (do_dsemulret(regs))
1005 return;
1006
1007 die_if_kernel("Math emu break/trap", regs);
1008 force_sig(SIGTRAP);
1009 break;
1010 default:
1011 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1012 die_if_kernel(b, regs);
1013 if (si_code) {
1014 force_sig_fault(SIGTRAP, si_code, NULL);
1015 } else {
1016 force_sig(SIGTRAP);
1017 }
1018 }
1019}
1020
1021asmlinkage void do_bp(struct pt_regs *regs)
1022{
1023 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1024 unsigned int opcode, bcode;
1025 enum ctx_state prev_state;
1026 bool user = user_mode(regs);
1027
1028 prev_state = exception_enter();
1029 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1030 if (get_isa16_mode(regs->cp0_epc)) {
1031 u16 instr[2];
1032
1033 if (__get_inst16(&instr[0], (u16 *)epc, user))
1034 goto out_sigsegv;
1035
1036 if (!cpu_has_mmips) {
1037 /* MIPS16e mode */
1038 bcode = (instr[0] >> 5) & 0x3f;
1039 } else if (mm_insn_16bit(instr[0])) {
1040 /* 16-bit microMIPS BREAK */
1041 bcode = instr[0] & 0xf;
1042 } else {
1043 /* 32-bit microMIPS BREAK */
1044 if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1045 goto out_sigsegv;
1046 opcode = (instr[0] << 16) | instr[1];
1047 bcode = (opcode >> 6) & ((1 << 20) - 1);
1048 }
1049 } else {
1050 if (__get_inst32(&opcode, (u32 *)epc, user))
1051 goto out_sigsegv;
1052 bcode = (opcode >> 6) & ((1 << 20) - 1);
1053 }
1054
1055 /*
1056 * There is the ancient bug in the MIPS assemblers that the break
1057 * code starts left to bit 16 instead to bit 6 in the opcode.
1058 * Gas is bug-compatible, but not always, grrr...
1059 * We handle both cases with a simple heuristics. --macro
1060 */
1061 if (bcode >= (1 << 10))
1062 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1063
1064 /*
1065 * notify the kprobe handlers, if instruction is likely to
1066 * pertain to them.
1067 */
1068 switch (bcode) {
1069 case BRK_UPROBE:
1070 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1071 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1072 goto out;
1073 else
1074 break;
1075 case BRK_UPROBE_XOL:
1076 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1077 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1078 goto out;
1079 else
1080 break;
1081 case BRK_KPROBE_BP:
1082 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1083 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1084 goto out;
1085 else
1086 break;
1087 case BRK_KPROBE_SSTEPBP:
1088 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1089 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1090 goto out;
1091 else
1092 break;
1093 default:
1094 break;
1095 }
1096
1097 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1098
1099out:
1100 exception_exit(prev_state);
1101 return;
1102
1103out_sigsegv:
1104 force_sig(SIGSEGV);
1105 goto out;
1106}
1107
1108asmlinkage void do_tr(struct pt_regs *regs)
1109{
1110 u32 opcode, tcode = 0;
1111 enum ctx_state prev_state;
1112 u16 instr[2];
1113 bool user = user_mode(regs);
1114 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1115
1116 prev_state = exception_enter();
1117 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1118 if (get_isa16_mode(regs->cp0_epc)) {
1119 if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1120 __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1121 goto out_sigsegv;
1122 opcode = (instr[0] << 16) | instr[1];
1123 /* Immediate versions don't provide a code. */
1124 if (!(opcode & OPCODE))
1125 tcode = (opcode >> 12) & ((1 << 4) - 1);
1126 } else {
1127 if (__get_inst32(&opcode, (u32 *)epc, user))
1128 goto out_sigsegv;
1129 /* Immediate versions don't provide a code. */
1130 if (!(opcode & OPCODE))
1131 tcode = (opcode >> 6) & ((1 << 10) - 1);
1132 }
1133
1134 do_trap_or_bp(regs, tcode, 0, "Trap");
1135
1136out:
1137 exception_exit(prev_state);
1138 return;
1139
1140out_sigsegv:
1141 force_sig(SIGSEGV);
1142 goto out;
1143}
1144
1145asmlinkage void do_ri(struct pt_regs *regs)
1146{
1147 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1148 unsigned long old_epc = regs->cp0_epc;
1149 unsigned long old31 = regs->regs[31];
1150 enum ctx_state prev_state;
1151 unsigned int opcode = 0;
1152 int status = -1;
1153
1154 /*
1155 * Avoid any kernel code. Just emulate the R2 instruction
1156 * as quickly as possible.
1157 */
1158 if (mipsr2_emulation && cpu_has_mips_r6 &&
1159 likely(user_mode(regs)) &&
1160 likely(get_user(opcode, epc) >= 0)) {
1161 unsigned long fcr31 = 0;
1162
1163 status = mipsr2_decoder(regs, opcode, &fcr31);
1164 switch (status) {
1165 case 0:
1166 case SIGEMT:
1167 return;
1168 case SIGILL:
1169 goto no_r2_instr;
1170 default:
1171 process_fpemu_return(status,
1172 ¤t->thread.cp0_baduaddr,
1173 fcr31);
1174 return;
1175 }
1176 }
1177
1178no_r2_instr:
1179
1180 prev_state = exception_enter();
1181 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1182
1183 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1184 SIGILL) == NOTIFY_STOP)
1185 goto out;
1186
1187 die_if_kernel("Reserved instruction in kernel code", regs);
1188
1189 if (unlikely(compute_return_epc(regs) < 0))
1190 goto out;
1191
1192 if (!get_isa16_mode(regs->cp0_epc)) {
1193 if (unlikely(get_user(opcode, epc) < 0))
1194 status = SIGSEGV;
1195
1196 if (!cpu_has_llsc && status < 0)
1197 status = simulate_llsc(regs, opcode);
1198
1199 if (status < 0)
1200 status = simulate_rdhwr_normal(regs, opcode);
1201
1202 if (status < 0)
1203 status = simulate_sync(regs, opcode);
1204
1205 if (status < 0)
1206 status = simulate_fp(regs, opcode, old_epc, old31);
1207
1208#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1209 if (status < 0)
1210 status = simulate_loongson3_cpucfg(regs, opcode);
1211#endif
1212 } else if (cpu_has_mmips) {
1213 unsigned short mmop[2] = { 0 };
1214
1215 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1216 status = SIGSEGV;
1217 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1218 status = SIGSEGV;
1219 opcode = mmop[0];
1220 opcode = (opcode << 16) | mmop[1];
1221
1222 if (status < 0)
1223 status = simulate_rdhwr_mm(regs, opcode);
1224 }
1225
1226 if (status < 0)
1227 status = SIGILL;
1228
1229 if (unlikely(status > 0)) {
1230 regs->cp0_epc = old_epc; /* Undo skip-over. */
1231 regs->regs[31] = old31;
1232 force_sig(status);
1233 }
1234
1235out:
1236 exception_exit(prev_state);
1237}
1238
1239/*
1240 * No lock; only written during early bootup by CPU 0.
1241 */
1242static RAW_NOTIFIER_HEAD(cu2_chain);
1243
1244int __ref register_cu2_notifier(struct notifier_block *nb)
1245{
1246 return raw_notifier_chain_register(&cu2_chain, nb);
1247}
1248
1249int cu2_notifier_call_chain(unsigned long val, void *v)
1250{
1251 return raw_notifier_call_chain(&cu2_chain, val, v);
1252}
1253
1254static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1255 void *data)
1256{
1257 struct pt_regs *regs = data;
1258
1259 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1260 "instruction", regs);
1261 force_sig(SIGILL);
1262
1263 return NOTIFY_OK;
1264}
1265
1266#ifdef CONFIG_MIPS_FP_SUPPORT
1267
1268static int enable_restore_fp_context(int msa)
1269{
1270 int err, was_fpu_owner, prior_msa;
1271 bool first_fp;
1272
1273 /* Initialize context if it hasn't been used already */
1274 first_fp = init_fp_ctx(current);
1275
1276 if (first_fp) {
1277 preempt_disable();
1278 err = own_fpu_inatomic(1);
1279 if (msa && !err) {
1280 enable_msa();
1281 /*
1282 * with MSA enabled, userspace can see MSACSR
1283 * and MSA regs, but the values in them are from
1284 * other task before current task, restore them
1285 * from saved fp/msa context
1286 */
1287 write_msa_csr(current->thread.fpu.msacsr);
1288 /*
1289 * own_fpu_inatomic(1) just restore low 64bit,
1290 * fix the high 64bit
1291 */
1292 init_msa_upper();
1293 set_thread_flag(TIF_USEDMSA);
1294 set_thread_flag(TIF_MSA_CTX_LIVE);
1295 }
1296 preempt_enable();
1297 return err;
1298 }
1299
1300 /*
1301 * This task has formerly used the FP context.
1302 *
1303 * If this thread has no live MSA vector context then we can simply
1304 * restore the scalar FP context. If it has live MSA vector context
1305 * (that is, it has or may have used MSA since last performing a
1306 * function call) then we'll need to restore the vector context. This
1307 * applies even if we're currently only executing a scalar FP
1308 * instruction. This is because if we were to later execute an MSA
1309 * instruction then we'd either have to:
1310 *
1311 * - Restore the vector context & clobber any registers modified by
1312 * scalar FP instructions between now & then.
1313 *
1314 * or
1315 *
1316 * - Not restore the vector context & lose the most significant bits
1317 * of all vector registers.
1318 *
1319 * Neither of those options is acceptable. We cannot restore the least
1320 * significant bits of the registers now & only restore the most
1321 * significant bits later because the most significant bits of any
1322 * vector registers whose aliased FP register is modified now will have
1323 * been zeroed. We'd have no way to know that when restoring the vector
1324 * context & thus may load an outdated value for the most significant
1325 * bits of a vector register.
1326 */
1327 if (!msa && !thread_msa_context_live())
1328 return own_fpu(1);
1329
1330 /*
1331 * This task is using or has previously used MSA. Thus we require
1332 * that Status.FR == 1.
1333 */
1334 preempt_disable();
1335 was_fpu_owner = is_fpu_owner();
1336 err = own_fpu_inatomic(0);
1337 if (err)
1338 goto out;
1339
1340 enable_msa();
1341 write_msa_csr(current->thread.fpu.msacsr);
1342 set_thread_flag(TIF_USEDMSA);
1343
1344 /*
1345 * If this is the first time that the task is using MSA and it has
1346 * previously used scalar FP in this time slice then we already nave
1347 * FP context which we shouldn't clobber. We do however need to clear
1348 * the upper 64b of each vector register so that this task has no
1349 * opportunity to see data left behind by another.
1350 */
1351 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1352 if (!prior_msa && was_fpu_owner) {
1353 init_msa_upper();
1354
1355 goto out;
1356 }
1357
1358 if (!prior_msa) {
1359 /*
1360 * Restore the least significant 64b of each vector register
1361 * from the existing scalar FP context.
1362 */
1363 _restore_fp(current);
1364
1365 /*
1366 * The task has not formerly used MSA, so clear the upper 64b
1367 * of each vector register such that it cannot see data left
1368 * behind by another task.
1369 */
1370 init_msa_upper();
1371 } else {
1372 /* We need to restore the vector context. */
1373 restore_msa(current);
1374
1375 /* Restore the scalar FP control & status register */
1376 if (!was_fpu_owner)
1377 write_32bit_cp1_register(CP1_STATUS,
1378 current->thread.fpu.fcr31);
1379 }
1380
1381out:
1382 preempt_enable();
1383
1384 return 0;
1385}
1386
1387#else /* !CONFIG_MIPS_FP_SUPPORT */
1388
1389static int enable_restore_fp_context(int msa)
1390{
1391 return SIGILL;
1392}
1393
1394#endif /* CONFIG_MIPS_FP_SUPPORT */
1395
1396asmlinkage void do_cpu(struct pt_regs *regs)
1397{
1398 enum ctx_state prev_state;
1399 unsigned int __user *epc;
1400 unsigned long old_epc, old31;
1401 unsigned int opcode;
1402 unsigned int cpid;
1403 int status;
1404
1405 prev_state = exception_enter();
1406 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1407
1408 if (cpid != 2)
1409 die_if_kernel("do_cpu invoked from kernel context!", regs);
1410
1411 switch (cpid) {
1412 case 0:
1413 epc = (unsigned int __user *)exception_epc(regs);
1414 old_epc = regs->cp0_epc;
1415 old31 = regs->regs[31];
1416 opcode = 0;
1417 status = -1;
1418
1419 if (unlikely(compute_return_epc(regs) < 0))
1420 break;
1421
1422 if (!get_isa16_mode(regs->cp0_epc)) {
1423 if (unlikely(get_user(opcode, epc) < 0))
1424 status = SIGSEGV;
1425
1426 if (!cpu_has_llsc && status < 0)
1427 status = simulate_llsc(regs, opcode);
1428 }
1429
1430 if (status < 0)
1431 status = SIGILL;
1432
1433 if (unlikely(status > 0)) {
1434 regs->cp0_epc = old_epc; /* Undo skip-over. */
1435 regs->regs[31] = old31;
1436 force_sig(status);
1437 }
1438
1439 break;
1440
1441#ifdef CONFIG_MIPS_FP_SUPPORT
1442 case 3:
1443 /*
1444 * The COP3 opcode space and consequently the CP0.Status.CU3
1445 * bit and the CP0.Cause.CE=3 encoding have been removed as
1446 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1447 * up the space has been reused for COP1X instructions, that
1448 * are enabled by the CP0.Status.CU1 bit and consequently
1449 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1450 * exceptions. Some FPU-less processors that implement one
1451 * of these ISAs however use this code erroneously for COP1X
1452 * instructions. Therefore we redirect this trap to the FP
1453 * emulator too.
1454 */
1455 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1456 force_sig(SIGILL);
1457 break;
1458 }
1459 fallthrough;
1460 case 1: {
1461 void __user *fault_addr;
1462 unsigned long fcr31;
1463 int err, sig;
1464
1465 err = enable_restore_fp_context(0);
1466
1467 if (raw_cpu_has_fpu && !err)
1468 break;
1469
1470 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1471 &fault_addr);
1472
1473 /*
1474 * We can't allow the emulated instruction to leave
1475 * any enabled Cause bits set in $fcr31.
1476 */
1477 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1478 current->thread.fpu.fcr31 &= ~fcr31;
1479
1480 /* Send a signal if required. */
1481 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1482 mt_ase_fp_affinity();
1483
1484 break;
1485 }
1486#else /* CONFIG_MIPS_FP_SUPPORT */
1487 case 1:
1488 case 3:
1489 force_sig(SIGILL);
1490 break;
1491#endif /* CONFIG_MIPS_FP_SUPPORT */
1492
1493 case 2:
1494 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1495 break;
1496 }
1497
1498 exception_exit(prev_state);
1499}
1500
1501asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1502{
1503 enum ctx_state prev_state;
1504
1505 prev_state = exception_enter();
1506 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1507 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1508 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1509 goto out;
1510
1511 /* Clear MSACSR.Cause before enabling interrupts */
1512 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1513 local_irq_enable();
1514
1515 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1516 force_sig(SIGFPE);
1517out:
1518 exception_exit(prev_state);
1519}
1520
1521asmlinkage void do_msa(struct pt_regs *regs)
1522{
1523 enum ctx_state prev_state;
1524 int err;
1525
1526 prev_state = exception_enter();
1527
1528 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1529 force_sig(SIGILL);
1530 goto out;
1531 }
1532
1533 die_if_kernel("do_msa invoked from kernel context!", regs);
1534
1535 err = enable_restore_fp_context(1);
1536 if (err)
1537 force_sig(SIGILL);
1538out:
1539 exception_exit(prev_state);
1540}
1541
1542asmlinkage void do_mdmx(struct pt_regs *regs)
1543{
1544 enum ctx_state prev_state;
1545
1546 prev_state = exception_enter();
1547 force_sig(SIGILL);
1548 exception_exit(prev_state);
1549}
1550
1551/*
1552 * Called with interrupts disabled.
1553 */
1554asmlinkage void do_watch(struct pt_regs *regs)
1555{
1556 enum ctx_state prev_state;
1557
1558 prev_state = exception_enter();
1559 /*
1560 * Clear WP (bit 22) bit of cause register so we don't loop
1561 * forever.
1562 */
1563 clear_c0_cause(CAUSEF_WP);
1564
1565 /*
1566 * If the current thread has the watch registers loaded, save
1567 * their values and send SIGTRAP. Otherwise another thread
1568 * left the registers set, clear them and continue.
1569 */
1570 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1571 mips_read_watch_registers();
1572 local_irq_enable();
1573 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1574 } else {
1575 mips_clear_watch_registers();
1576 local_irq_enable();
1577 }
1578 exception_exit(prev_state);
1579}
1580
1581asmlinkage void do_mcheck(struct pt_regs *regs)
1582{
1583 int multi_match = regs->cp0_status & ST0_TS;
1584 enum ctx_state prev_state;
1585
1586 prev_state = exception_enter();
1587 show_regs(regs);
1588
1589 if (multi_match) {
1590 dump_tlb_regs();
1591 pr_info("\n");
1592 dump_tlb_all();
1593 }
1594
1595 show_code((void *)regs->cp0_epc, user_mode(regs));
1596
1597 /*
1598 * Some chips may have other causes of machine check (e.g. SB1
1599 * graduation timer)
1600 */
1601 panic("Caught Machine Check exception - %scaused by multiple "
1602 "matching entries in the TLB.",
1603 (multi_match) ? "" : "not ");
1604}
1605
1606asmlinkage void do_mt(struct pt_regs *regs)
1607{
1608 int subcode;
1609
1610 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1611 >> VPECONTROL_EXCPT_SHIFT;
1612 switch (subcode) {
1613 case 0:
1614 printk(KERN_DEBUG "Thread Underflow\n");
1615 break;
1616 case 1:
1617 printk(KERN_DEBUG "Thread Overflow\n");
1618 break;
1619 case 2:
1620 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1621 break;
1622 case 3:
1623 printk(KERN_DEBUG "Gating Storage Exception\n");
1624 break;
1625 case 4:
1626 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1627 break;
1628 case 5:
1629 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1630 break;
1631 default:
1632 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1633 subcode);
1634 break;
1635 }
1636 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1637
1638 force_sig(SIGILL);
1639}
1640
1641
1642asmlinkage void do_dsp(struct pt_regs *regs)
1643{
1644 if (cpu_has_dsp)
1645 panic("Unexpected DSP exception");
1646
1647 force_sig(SIGILL);
1648}
1649
1650asmlinkage void do_reserved(struct pt_regs *regs)
1651{
1652 /*
1653 * Game over - no way to handle this if it ever occurs. Most probably
1654 * caused by a new unknown cpu type or after another deadly
1655 * hard/software error.
1656 */
1657 show_regs(regs);
1658 panic("Caught reserved exception %ld - should not happen.",
1659 (regs->cp0_cause & 0x7f) >> 2);
1660}
1661
1662static int __initdata l1parity = 1;
1663static int __init nol1parity(char *s)
1664{
1665 l1parity = 0;
1666 return 1;
1667}
1668__setup("nol1par", nol1parity);
1669static int __initdata l2parity = 1;
1670static int __init nol2parity(char *s)
1671{
1672 l2parity = 0;
1673 return 1;
1674}
1675__setup("nol2par", nol2parity);
1676
1677/*
1678 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1679 * it different ways.
1680 */
1681static inline __init void parity_protection_init(void)
1682{
1683#define ERRCTL_PE 0x80000000
1684#define ERRCTL_L2P 0x00800000
1685
1686 if (mips_cm_revision() >= CM_REV_CM3) {
1687 ulong gcr_ectl, cp0_ectl;
1688
1689 /*
1690 * With CM3 systems we need to ensure that the L1 & L2
1691 * parity enables are set to the same value, since this
1692 * is presumed by the hardware engineers.
1693 *
1694 * If the user disabled either of L1 or L2 ECC checking,
1695 * disable both.
1696 */
1697 l1parity &= l2parity;
1698 l2parity &= l1parity;
1699
1700 /* Probe L1 ECC support */
1701 cp0_ectl = read_c0_ecc();
1702 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1703 back_to_back_c0_hazard();
1704 cp0_ectl = read_c0_ecc();
1705
1706 /* Probe L2 ECC support */
1707 gcr_ectl = read_gcr_err_control();
1708
1709 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1710 !(cp0_ectl & ERRCTL_PE)) {
1711 /*
1712 * One of L1 or L2 ECC checking isn't supported,
1713 * so we cannot enable either.
1714 */
1715 l1parity = l2parity = 0;
1716 }
1717
1718 /* Configure L1 ECC checking */
1719 if (l1parity)
1720 cp0_ectl |= ERRCTL_PE;
1721 else
1722 cp0_ectl &= ~ERRCTL_PE;
1723 write_c0_ecc(cp0_ectl);
1724 back_to_back_c0_hazard();
1725 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1726
1727 /* Configure L2 ECC checking */
1728 if (l2parity)
1729 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1730 else
1731 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1732 write_gcr_err_control(gcr_ectl);
1733 gcr_ectl = read_gcr_err_control();
1734 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1735 WARN_ON(!!gcr_ectl != l2parity);
1736
1737 pr_info("Cache parity protection %sabled\n",
1738 l1parity ? "en" : "dis");
1739 return;
1740 }
1741
1742 switch (current_cpu_type()) {
1743 case CPU_24K:
1744 case CPU_34K:
1745 case CPU_74K:
1746 case CPU_1004K:
1747 case CPU_1074K:
1748 case CPU_INTERAPTIV:
1749 case CPU_PROAPTIV:
1750 case CPU_P5600:
1751 case CPU_QEMU_GENERIC:
1752 case CPU_P6600:
1753 {
1754 unsigned long errctl;
1755 unsigned int l1parity_present, l2parity_present;
1756
1757 errctl = read_c0_ecc();
1758 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1759
1760 /* probe L1 parity support */
1761 write_c0_ecc(errctl | ERRCTL_PE);
1762 back_to_back_c0_hazard();
1763 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1764
1765 /* probe L2 parity support */
1766 write_c0_ecc(errctl|ERRCTL_L2P);
1767 back_to_back_c0_hazard();
1768 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1769
1770 if (l1parity_present && l2parity_present) {
1771 if (l1parity)
1772 errctl |= ERRCTL_PE;
1773 if (l1parity ^ l2parity)
1774 errctl |= ERRCTL_L2P;
1775 } else if (l1parity_present) {
1776 if (l1parity)
1777 errctl |= ERRCTL_PE;
1778 } else if (l2parity_present) {
1779 if (l2parity)
1780 errctl |= ERRCTL_L2P;
1781 } else {
1782 /* No parity available */
1783 }
1784
1785 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1786
1787 write_c0_ecc(errctl);
1788 back_to_back_c0_hazard();
1789 errctl = read_c0_ecc();
1790 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1791
1792 if (l1parity_present)
1793 printk(KERN_INFO "Cache parity protection %sabled\n",
1794 (errctl & ERRCTL_PE) ? "en" : "dis");
1795
1796 if (l2parity_present) {
1797 if (l1parity_present && l1parity)
1798 errctl ^= ERRCTL_L2P;
1799 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1800 (errctl & ERRCTL_L2P) ? "en" : "dis");
1801 }
1802 }
1803 break;
1804
1805 case CPU_5KC:
1806 case CPU_5KE:
1807 case CPU_LOONGSON32:
1808 write_c0_ecc(0x80000000);
1809 back_to_back_c0_hazard();
1810 /* Set the PE bit (bit 31) in the c0_errctl register. */
1811 printk(KERN_INFO "Cache parity protection %sabled\n",
1812 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1813 break;
1814 case CPU_20KC:
1815 case CPU_25KF:
1816 /* Clear the DE bit (bit 16) in the c0_status register. */
1817 printk(KERN_INFO "Enable cache parity protection for "
1818 "MIPS 20KC/25KF CPUs.\n");
1819 clear_c0_status(ST0_DE);
1820 break;
1821 default:
1822 break;
1823 }
1824}
1825
1826asmlinkage void cache_parity_error(void)
1827{
1828 const int field = 2 * sizeof(unsigned long);
1829 unsigned int reg_val;
1830
1831 /* For the moment, report the problem and hang. */
1832 printk("Cache error exception:\n");
1833 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1834 reg_val = read_c0_cacheerr();
1835 printk("c0_cacheerr == %08x\n", reg_val);
1836
1837 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1838 reg_val & (1<<30) ? "secondary" : "primary",
1839 reg_val & (1<<31) ? "data" : "insn");
1840 if ((cpu_has_mips_r2_r6) &&
1841 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1842 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1843 reg_val & (1<<29) ? "ED " : "",
1844 reg_val & (1<<28) ? "ET " : "",
1845 reg_val & (1<<27) ? "ES " : "",
1846 reg_val & (1<<26) ? "EE " : "",
1847 reg_val & (1<<25) ? "EB " : "",
1848 reg_val & (1<<24) ? "EI " : "",
1849 reg_val & (1<<23) ? "E1 " : "",
1850 reg_val & (1<<22) ? "E0 " : "");
1851 } else {
1852 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1853 reg_val & (1<<29) ? "ED " : "",
1854 reg_val & (1<<28) ? "ET " : "",
1855 reg_val & (1<<26) ? "EE " : "",
1856 reg_val & (1<<25) ? "EB " : "",
1857 reg_val & (1<<24) ? "EI " : "",
1858 reg_val & (1<<23) ? "E1 " : "",
1859 reg_val & (1<<22) ? "E0 " : "");
1860 }
1861 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1862
1863#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1864 if (reg_val & (1<<22))
1865 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1866
1867 if (reg_val & (1<<23))
1868 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1869#endif
1870
1871 panic("Can't handle the cache error!");
1872}
1873
1874asmlinkage void do_ftlb(void)
1875{
1876 const int field = 2 * sizeof(unsigned long);
1877 unsigned int reg_val;
1878
1879 /* For the moment, report the problem and hang. */
1880 if ((cpu_has_mips_r2_r6) &&
1881 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1882 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1883 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1884 read_c0_ecc());
1885 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1886 reg_val = read_c0_cacheerr();
1887 pr_err("c0_cacheerr == %08x\n", reg_val);
1888
1889 if ((reg_val & 0xc0000000) == 0xc0000000) {
1890 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1891 } else {
1892 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1893 reg_val & (1<<30) ? "secondary" : "primary",
1894 reg_val & (1<<31) ? "data" : "insn");
1895 }
1896 } else {
1897 pr_err("FTLB error exception\n");
1898 }
1899 /* Just print the cacheerr bits for now */
1900 cache_parity_error();
1901}
1902
1903asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1904{
1905 u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1906 LOONGSON_DIAG1_EXCCODE_SHIFT;
1907 enum ctx_state prev_state;
1908
1909 prev_state = exception_enter();
1910
1911 switch (exccode) {
1912 case 0x08:
1913 /* Undocumented exception, will trigger on certain
1914 * also-undocumented instructions accessible from userspace.
1915 * Processor state is not otherwise corrupted, but currently
1916 * we don't know how to proceed. Maybe there is some
1917 * undocumented control flag to enable the instructions?
1918 */
1919 force_sig(SIGILL);
1920 break;
1921
1922 default:
1923 /* None of the other exceptions, documented or not, have
1924 * further details given; none are encountered in the wild
1925 * either. Panic in case some of them turn out to be fatal.
1926 */
1927 show_regs(regs);
1928 panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1929 }
1930
1931 exception_exit(prev_state);
1932}
1933
1934/*
1935 * SDBBP EJTAG debug exception handler.
1936 * We skip the instruction and return to the next instruction.
1937 */
1938void ejtag_exception_handler(struct pt_regs *regs)
1939{
1940 const int field = 2 * sizeof(unsigned long);
1941 unsigned long depc, old_epc, old_ra;
1942 unsigned int debug;
1943
1944 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1945 depc = read_c0_depc();
1946 debug = read_c0_debug();
1947 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1948 if (debug & 0x80000000) {
1949 /*
1950 * In branch delay slot.
1951 * We cheat a little bit here and use EPC to calculate the
1952 * debug return address (DEPC). EPC is restored after the
1953 * calculation.
1954 */
1955 old_epc = regs->cp0_epc;
1956 old_ra = regs->regs[31];
1957 regs->cp0_epc = depc;
1958 compute_return_epc(regs);
1959 depc = regs->cp0_epc;
1960 regs->cp0_epc = old_epc;
1961 regs->regs[31] = old_ra;
1962 } else
1963 depc += 4;
1964 write_c0_depc(depc);
1965
1966#if 0
1967 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1968 write_c0_debug(debug | 0x100);
1969#endif
1970}
1971
1972/*
1973 * NMI exception handler.
1974 * No lock; only written during early bootup by CPU 0.
1975 */
1976static RAW_NOTIFIER_HEAD(nmi_chain);
1977
1978int register_nmi_notifier(struct notifier_block *nb)
1979{
1980 return raw_notifier_chain_register(&nmi_chain, nb);
1981}
1982
1983void __noreturn nmi_exception_handler(struct pt_regs *regs)
1984{
1985 char str[100];
1986
1987 nmi_enter();
1988 raw_notifier_call_chain(&nmi_chain, 0, regs);
1989 bust_spinlocks(1);
1990 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1991 smp_processor_id(), regs->cp0_epc);
1992 regs->cp0_epc = read_c0_errorepc();
1993 die(str, regs);
1994 nmi_exit();
1995}
1996
1997unsigned long ebase;
1998EXPORT_SYMBOL_GPL(ebase);
1999unsigned long exception_handlers[32];
2000unsigned long vi_handlers[64];
2001
2002void reserve_exception_space(phys_addr_t addr, unsigned long size)
2003{
2004 memblock_reserve(addr, size);
2005}
2006
2007void __init *set_except_vector(int n, void *addr)
2008{
2009 unsigned long handler = (unsigned long) addr;
2010 unsigned long old_handler;
2011
2012#ifdef CONFIG_CPU_MICROMIPS
2013 /*
2014 * Only the TLB handlers are cache aligned with an even
2015 * address. All other handlers are on an odd address and
2016 * require no modification. Otherwise, MIPS32 mode will
2017 * be entered when handling any TLB exceptions. That
2018 * would be bad...since we must stay in microMIPS mode.
2019 */
2020 if (!(handler & 0x1))
2021 handler |= 1;
2022#endif
2023 old_handler = xchg(&exception_handlers[n], handler);
2024
2025 if (n == 0 && cpu_has_divec) {
2026#ifdef CONFIG_CPU_MICROMIPS
2027 unsigned long jump_mask = ~((1 << 27) - 1);
2028#else
2029 unsigned long jump_mask = ~((1 << 28) - 1);
2030#endif
2031 u32 *buf = (u32 *)(ebase + 0x200);
2032 unsigned int k0 = 26;
2033 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2034 uasm_i_j(&buf, handler & ~jump_mask);
2035 uasm_i_nop(&buf);
2036 } else {
2037 UASM_i_LA(&buf, k0, handler);
2038 uasm_i_jr(&buf, k0);
2039 uasm_i_nop(&buf);
2040 }
2041 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2042 }
2043 return (void *)old_handler;
2044}
2045
2046static void do_default_vi(void)
2047{
2048 show_regs(get_irq_regs());
2049 panic("Caught unexpected vectored interrupt.");
2050}
2051
2052static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2053{
2054 unsigned long handler;
2055 unsigned long old_handler = vi_handlers[n];
2056 int srssets = current_cpu_data.srsets;
2057 u16 *h;
2058 unsigned char *b;
2059
2060 BUG_ON(!cpu_has_veic && !cpu_has_vint);
2061
2062 if (addr == NULL) {
2063 handler = (unsigned long) do_default_vi;
2064 srs = 0;
2065 } else
2066 handler = (unsigned long) addr;
2067 vi_handlers[n] = handler;
2068
2069 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2070
2071 if (srs >= srssets)
2072 panic("Shadow register set %d not supported", srs);
2073
2074 if (cpu_has_veic) {
2075 if (board_bind_eic_interrupt)
2076 board_bind_eic_interrupt(n, srs);
2077 } else if (cpu_has_vint) {
2078 /* SRSMap is only defined if shadow sets are implemented */
2079 if (srssets > 1)
2080 change_c0_srsmap(0xf << n*4, srs << n*4);
2081 }
2082
2083 if (srs == 0) {
2084 /*
2085 * If no shadow set is selected then use the default handler
2086 * that does normal register saving and standard interrupt exit
2087 */
2088 extern char except_vec_vi, except_vec_vi_lui;
2089 extern char except_vec_vi_ori, except_vec_vi_end;
2090 extern char rollback_except_vec_vi;
2091 char *vec_start = using_rollback_handler() ?
2092 &rollback_except_vec_vi : &except_vec_vi;
2093#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2094 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2095 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2096#else
2097 const int lui_offset = &except_vec_vi_lui - vec_start;
2098 const int ori_offset = &except_vec_vi_ori - vec_start;
2099#endif
2100 const int handler_len = &except_vec_vi_end - vec_start;
2101
2102 if (handler_len > VECTORSPACING) {
2103 /*
2104 * Sigh... panicing won't help as the console
2105 * is probably not configured :(
2106 */
2107 panic("VECTORSPACING too small");
2108 }
2109
2110 set_handler(((unsigned long)b - ebase), vec_start,
2111#ifdef CONFIG_CPU_MICROMIPS
2112 (handler_len - 1));
2113#else
2114 handler_len);
2115#endif
2116 h = (u16 *)(b + lui_offset);
2117 *h = (handler >> 16) & 0xffff;
2118 h = (u16 *)(b + ori_offset);
2119 *h = (handler & 0xffff);
2120 local_flush_icache_range((unsigned long)b,
2121 (unsigned long)(b+handler_len));
2122 }
2123 else {
2124 /*
2125 * In other cases jump directly to the interrupt handler. It
2126 * is the handler's responsibility to save registers if required
2127 * (eg hi/lo) and return from the exception using "eret".
2128 */
2129 u32 insn;
2130
2131 h = (u16 *)b;
2132 /* j handler */
2133#ifdef CONFIG_CPU_MICROMIPS
2134 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2135#else
2136 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2137#endif
2138 h[0] = (insn >> 16) & 0xffff;
2139 h[1] = insn & 0xffff;
2140 h[2] = 0;
2141 h[3] = 0;
2142 local_flush_icache_range((unsigned long)b,
2143 (unsigned long)(b+8));
2144 }
2145
2146 return (void *)old_handler;
2147}
2148
2149void *set_vi_handler(int n, vi_handler_t addr)
2150{
2151 return set_vi_srs_handler(n, addr, 0);
2152}
2153
2154extern void tlb_init(void);
2155
2156/*
2157 * Timer interrupt
2158 */
2159int cp0_compare_irq;
2160EXPORT_SYMBOL_GPL(cp0_compare_irq);
2161int cp0_compare_irq_shift;
2162
2163/*
2164 * Performance counter IRQ or -1 if shared with timer
2165 */
2166int cp0_perfcount_irq;
2167EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2168
2169/*
2170 * Fast debug channel IRQ or -1 if not present
2171 */
2172int cp0_fdc_irq;
2173EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2174
2175static int noulri;
2176
2177static int __init ulri_disable(char *s)
2178{
2179 pr_info("Disabling ulri\n");
2180 noulri = 1;
2181
2182 return 1;
2183}
2184__setup("noulri", ulri_disable);
2185
2186/* configure STATUS register */
2187static void configure_status(void)
2188{
2189 /*
2190 * Disable coprocessors and select 32-bit or 64-bit addressing
2191 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2192 * flag that some firmware may have left set and the TS bit (for
2193 * IP27). Set XX for ISA IV code to work.
2194 */
2195 unsigned int status_set = ST0_KERNEL_CUMASK;
2196#ifdef CONFIG_64BIT
2197 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2198#endif
2199 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2200 status_set |= ST0_XX;
2201 if (cpu_has_dsp)
2202 status_set |= ST0_MX;
2203
2204 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2205 status_set);
2206 back_to_back_c0_hazard();
2207}
2208
2209unsigned int hwrena;
2210EXPORT_SYMBOL_GPL(hwrena);
2211
2212/* configure HWRENA register */
2213static void configure_hwrena(void)
2214{
2215 hwrena = cpu_hwrena_impl_bits;
2216
2217 if (cpu_has_mips_r2_r6)
2218 hwrena |= MIPS_HWRENA_CPUNUM |
2219 MIPS_HWRENA_SYNCISTEP |
2220 MIPS_HWRENA_CC |
2221 MIPS_HWRENA_CCRES;
2222
2223 if (!noulri && cpu_has_userlocal)
2224 hwrena |= MIPS_HWRENA_ULR;
2225
2226 if (hwrena)
2227 write_c0_hwrena(hwrena);
2228}
2229
2230static void configure_exception_vector(void)
2231{
2232 if (cpu_has_mips_r2_r6) {
2233 unsigned long sr = set_c0_status(ST0_BEV);
2234 /* If available, use WG to set top bits of EBASE */
2235 if (cpu_has_ebase_wg) {
2236#ifdef CONFIG_64BIT
2237 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2238#else
2239 write_c0_ebase(ebase | MIPS_EBASE_WG);
2240#endif
2241 }
2242 write_c0_ebase(ebase);
2243 write_c0_status(sr);
2244 }
2245 if (cpu_has_veic || cpu_has_vint) {
2246 /* Setting vector spacing enables EI/VI mode */
2247 change_c0_intctl(0x3e0, VECTORSPACING);
2248 }
2249 if (cpu_has_divec) {
2250 if (cpu_has_mipsmt) {
2251 unsigned int vpflags = dvpe();
2252 set_c0_cause(CAUSEF_IV);
2253 evpe(vpflags);
2254 } else
2255 set_c0_cause(CAUSEF_IV);
2256 }
2257}
2258
2259void per_cpu_trap_init(bool is_boot_cpu)
2260{
2261 unsigned int cpu = smp_processor_id();
2262
2263 configure_status();
2264 configure_hwrena();
2265
2266 configure_exception_vector();
2267
2268 /*
2269 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2270 *
2271 * o read IntCtl.IPTI to determine the timer interrupt
2272 * o read IntCtl.IPPCI to determine the performance counter interrupt
2273 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2274 */
2275 if (cpu_has_mips_r2_r6) {
2276 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2277 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2278 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2279 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2280 if (!cp0_fdc_irq)
2281 cp0_fdc_irq = -1;
2282
2283 } else {
2284 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2285 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2286 cp0_perfcount_irq = -1;
2287 cp0_fdc_irq = -1;
2288 }
2289
2290 if (cpu_has_mmid)
2291 cpu_data[cpu].asid_cache = 0;
2292 else if (!cpu_data[cpu].asid_cache)
2293 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2294
2295 mmgrab(&init_mm);
2296 current->active_mm = &init_mm;
2297 BUG_ON(current->mm);
2298 enter_lazy_tlb(&init_mm, current);
2299
2300 /* Boot CPU's cache setup in setup_arch(). */
2301 if (!is_boot_cpu)
2302 cpu_cache_init();
2303 tlb_init();
2304 TLBMISS_HANDLER_SETUP();
2305}
2306
2307/* Install CPU exception handler */
2308void set_handler(unsigned long offset, void *addr, unsigned long size)
2309{
2310#ifdef CONFIG_CPU_MICROMIPS
2311 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2312#else
2313 memcpy((void *)(ebase + offset), addr, size);
2314#endif
2315 local_flush_icache_range(ebase + offset, ebase + offset + size);
2316}
2317
2318static const char panic_null_cerr[] =
2319 "Trying to set NULL cache error exception handler\n";
2320
2321/*
2322 * Install uncached CPU exception handler.
2323 * This is suitable only for the cache error exception which is the only
2324 * exception handler that is being run uncached.
2325 */
2326void set_uncached_handler(unsigned long offset, void *addr,
2327 unsigned long size)
2328{
2329 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2330
2331 if (!addr)
2332 panic(panic_null_cerr);
2333
2334 memcpy((void *)(uncached_ebase + offset), addr, size);
2335}
2336
2337static int __initdata rdhwr_noopt;
2338static int __init set_rdhwr_noopt(char *str)
2339{
2340 rdhwr_noopt = 1;
2341 return 1;
2342}
2343
2344__setup("rdhwr_noopt", set_rdhwr_noopt);
2345
2346void __init trap_init(void)
2347{
2348 extern char except_vec3_generic;
2349 extern char except_vec4;
2350 extern char except_vec3_r4000;
2351 unsigned long i, vec_size;
2352 phys_addr_t ebase_pa;
2353
2354 check_wait();
2355
2356 if (!cpu_has_mips_r2_r6) {
2357 ebase = CAC_BASE;
2358 vec_size = 0x400;
2359 } else {
2360 if (cpu_has_veic || cpu_has_vint)
2361 vec_size = 0x200 + VECTORSPACING*64;
2362 else
2363 vec_size = PAGE_SIZE;
2364
2365 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2366 if (!ebase_pa)
2367 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2368 __func__, vec_size, 1 << fls(vec_size));
2369
2370 /*
2371 * Try to ensure ebase resides in KSeg0 if possible.
2372 *
2373 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2374 * hitting a poorly defined exception base for Cache Errors.
2375 * The allocation is likely to be in the low 512MB of physical,
2376 * in which case we should be able to convert to KSeg0.
2377 *
2378 * EVA is special though as it allows segments to be rearranged
2379 * and to become uncached during cache error handling.
2380 */
2381 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2382 ebase = CKSEG0ADDR(ebase_pa);
2383 else
2384 ebase = (unsigned long)phys_to_virt(ebase_pa);
2385 }
2386
2387 if (cpu_has_mmips) {
2388 unsigned int config3 = read_c0_config3();
2389
2390 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2391 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2392 else
2393 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2394 }
2395
2396 if (board_ebase_setup)
2397 board_ebase_setup();
2398 per_cpu_trap_init(true);
2399 memblock_set_bottom_up(false);
2400
2401 /*
2402 * Copy the generic exception handlers to their final destination.
2403 * This will be overridden later as suitable for a particular
2404 * configuration.
2405 */
2406 set_handler(0x180, &except_vec3_generic, 0x80);
2407
2408 /*
2409 * Setup default vectors
2410 */
2411 for (i = 0; i <= 31; i++)
2412 set_except_vector(i, handle_reserved);
2413
2414 /*
2415 * Copy the EJTAG debug exception vector handler code to it's final
2416 * destination.
2417 */
2418 if (cpu_has_ejtag && board_ejtag_handler_setup)
2419 board_ejtag_handler_setup();
2420
2421 /*
2422 * Only some CPUs have the watch exceptions.
2423 */
2424 if (cpu_has_watch)
2425 set_except_vector(EXCCODE_WATCH, handle_watch);
2426
2427 /*
2428 * Initialise interrupt handlers
2429 */
2430 if (cpu_has_veic || cpu_has_vint) {
2431 int nvec = cpu_has_veic ? 64 : 8;
2432 for (i = 0; i < nvec; i++)
2433 set_vi_handler(i, NULL);
2434 }
2435 else if (cpu_has_divec)
2436 set_handler(0x200, &except_vec4, 0x8);
2437
2438 /*
2439 * Some CPUs can enable/disable for cache parity detection, but does
2440 * it different ways.
2441 */
2442 parity_protection_init();
2443
2444 /*
2445 * The Data Bus Errors / Instruction Bus Errors are signaled
2446 * by external hardware. Therefore these two exceptions
2447 * may have board specific handlers.
2448 */
2449 if (board_be_init)
2450 board_be_init();
2451
2452 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2453 rollback_handle_int : handle_int);
2454 set_except_vector(EXCCODE_MOD, handle_tlbm);
2455 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2456 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2457
2458 set_except_vector(EXCCODE_ADEL, handle_adel);
2459 set_except_vector(EXCCODE_ADES, handle_ades);
2460
2461 set_except_vector(EXCCODE_IBE, handle_ibe);
2462 set_except_vector(EXCCODE_DBE, handle_dbe);
2463
2464 set_except_vector(EXCCODE_SYS, handle_sys);
2465 set_except_vector(EXCCODE_BP, handle_bp);
2466
2467 if (rdhwr_noopt)
2468 set_except_vector(EXCCODE_RI, handle_ri);
2469 else {
2470 if (cpu_has_vtag_icache)
2471 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2472 else if (current_cpu_type() == CPU_LOONGSON64)
2473 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2474 else
2475 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2476 }
2477
2478 set_except_vector(EXCCODE_CPU, handle_cpu);
2479 set_except_vector(EXCCODE_OV, handle_ov);
2480 set_except_vector(EXCCODE_TR, handle_tr);
2481 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2482
2483 if (board_nmi_handler_setup)
2484 board_nmi_handler_setup();
2485
2486 if (cpu_has_fpu && !cpu_has_nofpuex)
2487 set_except_vector(EXCCODE_FPE, handle_fpe);
2488
2489 if (cpu_has_ftlbparex)
2490 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2491
2492 if (cpu_has_gsexcex)
2493 set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2494
2495 if (cpu_has_rixiex) {
2496 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2497 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2498 }
2499
2500 set_except_vector(EXCCODE_MSADIS, handle_msa);
2501 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2502
2503 if (cpu_has_mcheck)
2504 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2505
2506 if (cpu_has_mipsmt)
2507 set_except_vector(EXCCODE_THREAD, handle_mt);
2508
2509 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2510
2511 if (board_cache_error_setup)
2512 board_cache_error_setup();
2513
2514 if (cpu_has_vce)
2515 /* Special exception: R4[04]00 uses also the divec space. */
2516 set_handler(0x180, &except_vec3_r4000, 0x100);
2517 else if (cpu_has_4kex)
2518 set_handler(0x180, &except_vec3_generic, 0x80);
2519 else
2520 set_handler(0x080, &except_vec3_generic, 0x80);
2521
2522 local_flush_icache_range(ebase, ebase + vec_size);
2523
2524 sort_extable(__start___dbe_table, __stop___dbe_table);
2525
2526 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2527}
2528
2529static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2530 void *v)
2531{
2532 switch (cmd) {
2533 case CPU_PM_ENTER_FAILED:
2534 case CPU_PM_EXIT:
2535 configure_status();
2536 configure_hwrena();
2537 configure_exception_vector();
2538
2539 /* Restore register with CPU number for TLB handlers */
2540 TLBMISS_HANDLER_RESTORE();
2541
2542 break;
2543 }
2544
2545 return NOTIFY_OK;
2546}
2547
2548static struct notifier_block trap_pm_notifier_block = {
2549 .notifier_call = trap_pm_notifier,
2550};
2551
2552static int __init trap_pm_init(void)
2553{
2554 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2555}
2556arch_initcall(trap_pm_init);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15#include <linux/bug.h>
16#include <linux/compiler.h>
17#include <linux/context_tracking.h>
18#include <linux/kexec.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/mm.h>
23#include <linux/sched.h>
24#include <linux/smp.h>
25#include <linux/spinlock.h>
26#include <linux/kallsyms.h>
27#include <linux/bootmem.h>
28#include <linux/interrupt.h>
29#include <linux/ptrace.h>
30#include <linux/kgdb.h>
31#include <linux/kdebug.h>
32#include <linux/kprobes.h>
33#include <linux/notifier.h>
34#include <linux/kdb.h>
35#include <linux/irq.h>
36#include <linux/perf_event.h>
37
38#include <asm/bootinfo.h>
39#include <asm/branch.h>
40#include <asm/break.h>
41#include <asm/cop2.h>
42#include <asm/cpu.h>
43#include <asm/cpu-type.h>
44#include <asm/dsp.h>
45#include <asm/fpu.h>
46#include <asm/fpu_emulator.h>
47#include <asm/idle.h>
48#include <asm/mipsregs.h>
49#include <asm/mipsmtregs.h>
50#include <asm/module.h>
51#include <asm/msa.h>
52#include <asm/pgtable.h>
53#include <asm/ptrace.h>
54#include <asm/sections.h>
55#include <asm/tlbdebug.h>
56#include <asm/traps.h>
57#include <asm/uaccess.h>
58#include <asm/watch.h>
59#include <asm/mmu_context.h>
60#include <asm/types.h>
61#include <asm/stacktrace.h>
62#include <asm/uasm.h>
63
64extern void check_wait(void);
65extern asmlinkage void rollback_handle_int(void);
66extern asmlinkage void handle_int(void);
67extern u32 handle_tlbl[];
68extern u32 handle_tlbs[];
69extern u32 handle_tlbm[];
70extern asmlinkage void handle_adel(void);
71extern asmlinkage void handle_ades(void);
72extern asmlinkage void handle_ibe(void);
73extern asmlinkage void handle_dbe(void);
74extern asmlinkage void handle_sys(void);
75extern asmlinkage void handle_bp(void);
76extern asmlinkage void handle_ri(void);
77extern asmlinkage void handle_ri_rdhwr_vivt(void);
78extern asmlinkage void handle_ri_rdhwr(void);
79extern asmlinkage void handle_cpu(void);
80extern asmlinkage void handle_ov(void);
81extern asmlinkage void handle_tr(void);
82extern asmlinkage void handle_msa_fpe(void);
83extern asmlinkage void handle_fpe(void);
84extern asmlinkage void handle_ftlb(void);
85extern asmlinkage void handle_msa(void);
86extern asmlinkage void handle_mdmx(void);
87extern asmlinkage void handle_watch(void);
88extern asmlinkage void handle_mt(void);
89extern asmlinkage void handle_dsp(void);
90extern asmlinkage void handle_mcheck(void);
91extern asmlinkage void handle_reserved(void);
92
93void (*board_be_init)(void);
94int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
95void (*board_nmi_handler_setup)(void);
96void (*board_ejtag_handler_setup)(void);
97void (*board_bind_eic_interrupt)(int irq, int regset);
98void (*board_ebase_setup)(void);
99void(*board_cache_error_setup)(void);
100
101static void show_raw_backtrace(unsigned long reg29)
102{
103 unsigned long *sp = (unsigned long *)(reg29 & ~3);
104 unsigned long addr;
105
106 printk("Call Trace:");
107#ifdef CONFIG_KALLSYMS
108 printk("\n");
109#endif
110 while (!kstack_end(sp)) {
111 unsigned long __user *p =
112 (unsigned long __user *)(unsigned long)sp++;
113 if (__get_user(addr, p)) {
114 printk(" (Bad stack address)");
115 break;
116 }
117 if (__kernel_text_address(addr))
118 print_ip_sym(addr);
119 }
120 printk("\n");
121}
122
123#ifdef CONFIG_KALLSYMS
124int raw_show_trace;
125static int __init set_raw_show_trace(char *str)
126{
127 raw_show_trace = 1;
128 return 1;
129}
130__setup("raw_show_trace", set_raw_show_trace);
131#endif
132
133static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
134{
135 unsigned long sp = regs->regs[29];
136 unsigned long ra = regs->regs[31];
137 unsigned long pc = regs->cp0_epc;
138
139 if (!task)
140 task = current;
141
142 if (raw_show_trace || !__kernel_text_address(pc)) {
143 show_raw_backtrace(sp);
144 return;
145 }
146 printk("Call Trace:\n");
147 do {
148 print_ip_sym(pc);
149 pc = unwind_stack(task, &sp, pc, &ra);
150 } while (pc);
151 printk("\n");
152}
153
154/*
155 * This routine abuses get_user()/put_user() to reference pointers
156 * with at least a bit of error checking ...
157 */
158static void show_stacktrace(struct task_struct *task,
159 const struct pt_regs *regs)
160{
161 const int field = 2 * sizeof(unsigned long);
162 long stackdata;
163 int i;
164 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
165
166 printk("Stack :");
167 i = 0;
168 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
169 if (i && ((i % (64 / field)) == 0))
170 printk("\n ");
171 if (i > 39) {
172 printk(" ...");
173 break;
174 }
175
176 if (__get_user(stackdata, sp++)) {
177 printk(" (Bad stack address)");
178 break;
179 }
180
181 printk(" %0*lx", field, stackdata);
182 i++;
183 }
184 printk("\n");
185 show_backtrace(task, regs);
186}
187
188void show_stack(struct task_struct *task, unsigned long *sp)
189{
190 struct pt_regs regs;
191 if (sp) {
192 regs.regs[29] = (unsigned long)sp;
193 regs.regs[31] = 0;
194 regs.cp0_epc = 0;
195 } else {
196 if (task && task != current) {
197 regs.regs[29] = task->thread.reg29;
198 regs.regs[31] = 0;
199 regs.cp0_epc = task->thread.reg31;
200#ifdef CONFIG_KGDB_KDB
201 } else if (atomic_read(&kgdb_active) != -1 &&
202 kdb_current_regs) {
203 memcpy(®s, kdb_current_regs, sizeof(regs));
204#endif /* CONFIG_KGDB_KDB */
205 } else {
206 prepare_frametrace(®s);
207 }
208 }
209 show_stacktrace(task, ®s);
210}
211
212static void show_code(unsigned int __user *pc)
213{
214 long i;
215 unsigned short __user *pc16 = NULL;
216
217 printk("\nCode:");
218
219 if ((unsigned long)pc & 1)
220 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
221 for(i = -3 ; i < 6 ; i++) {
222 unsigned int insn;
223 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
224 printk(" (Bad address in epc)\n");
225 break;
226 }
227 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
228 }
229}
230
231static void __show_regs(const struct pt_regs *regs)
232{
233 const int field = 2 * sizeof(unsigned long);
234 unsigned int cause = regs->cp0_cause;
235 int i;
236
237 show_regs_print_info(KERN_DEFAULT);
238
239 /*
240 * Saved main processor registers
241 */
242 for (i = 0; i < 32; ) {
243 if ((i % 4) == 0)
244 printk("$%2d :", i);
245 if (i == 0)
246 printk(" %0*lx", field, 0UL);
247 else if (i == 26 || i == 27)
248 printk(" %*s", field, "");
249 else
250 printk(" %0*lx", field, regs->regs[i]);
251
252 i++;
253 if ((i % 4) == 0)
254 printk("\n");
255 }
256
257#ifdef CONFIG_CPU_HAS_SMARTMIPS
258 printk("Acx : %0*lx\n", field, regs->acx);
259#endif
260 printk("Hi : %0*lx\n", field, regs->hi);
261 printk("Lo : %0*lx\n", field, regs->lo);
262
263 /*
264 * Saved cp0 registers
265 */
266 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
267 (void *) regs->cp0_epc);
268 printk(" %s\n", print_tainted());
269 printk("ra : %0*lx %pS\n", field, regs->regs[31],
270 (void *) regs->regs[31]);
271
272 printk("Status: %08x ", (uint32_t) regs->cp0_status);
273
274 if (cpu_has_3kex) {
275 if (regs->cp0_status & ST0_KUO)
276 printk("KUo ");
277 if (regs->cp0_status & ST0_IEO)
278 printk("IEo ");
279 if (regs->cp0_status & ST0_KUP)
280 printk("KUp ");
281 if (regs->cp0_status & ST0_IEP)
282 printk("IEp ");
283 if (regs->cp0_status & ST0_KUC)
284 printk("KUc ");
285 if (regs->cp0_status & ST0_IEC)
286 printk("IEc ");
287 } else if (cpu_has_4kex) {
288 if (regs->cp0_status & ST0_KX)
289 printk("KX ");
290 if (regs->cp0_status & ST0_SX)
291 printk("SX ");
292 if (regs->cp0_status & ST0_UX)
293 printk("UX ");
294 switch (regs->cp0_status & ST0_KSU) {
295 case KSU_USER:
296 printk("USER ");
297 break;
298 case KSU_SUPERVISOR:
299 printk("SUPERVISOR ");
300 break;
301 case KSU_KERNEL:
302 printk("KERNEL ");
303 break;
304 default:
305 printk("BAD_MODE ");
306 break;
307 }
308 if (regs->cp0_status & ST0_ERL)
309 printk("ERL ");
310 if (regs->cp0_status & ST0_EXL)
311 printk("EXL ");
312 if (regs->cp0_status & ST0_IE)
313 printk("IE ");
314 }
315 printk("\n");
316
317 printk("Cause : %08x\n", cause);
318
319 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
320 if (1 <= cause && cause <= 5)
321 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
322
323 printk("PrId : %08x (%s)\n", read_c0_prid(),
324 cpu_name_string());
325}
326
327/*
328 * FIXME: really the generic show_regs should take a const pointer argument.
329 */
330void show_regs(struct pt_regs *regs)
331{
332 __show_regs((struct pt_regs *)regs);
333}
334
335void show_registers(struct pt_regs *regs)
336{
337 const int field = 2 * sizeof(unsigned long);
338 mm_segment_t old_fs = get_fs();
339
340 __show_regs(regs);
341 print_modules();
342 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
343 current->comm, current->pid, current_thread_info(), current,
344 field, current_thread_info()->tp_value);
345 if (cpu_has_userlocal) {
346 unsigned long tls;
347
348 tls = read_c0_userlocal();
349 if (tls != current_thread_info()->tp_value)
350 printk("*HwTLS: %0*lx\n", field, tls);
351 }
352
353 if (!user_mode(regs))
354 /* Necessary for getting the correct stack content */
355 set_fs(KERNEL_DS);
356 show_stacktrace(current, regs);
357 show_code((unsigned int __user *) regs->cp0_epc);
358 printk("\n");
359 set_fs(old_fs);
360}
361
362static int regs_to_trapnr(struct pt_regs *regs)
363{
364 return (regs->cp0_cause >> 2) & 0x1f;
365}
366
367static DEFINE_RAW_SPINLOCK(die_lock);
368
369void __noreturn die(const char *str, struct pt_regs *regs)
370{
371 static int die_counter;
372 int sig = SIGSEGV;
373#ifdef CONFIG_MIPS_MT_SMTC
374 unsigned long dvpret;
375#endif /* CONFIG_MIPS_MT_SMTC */
376
377 oops_enter();
378
379 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
380 SIGSEGV) == NOTIFY_STOP)
381 sig = 0;
382
383 console_verbose();
384 raw_spin_lock_irq(&die_lock);
385#ifdef CONFIG_MIPS_MT_SMTC
386 dvpret = dvpe();
387#endif /* CONFIG_MIPS_MT_SMTC */
388 bust_spinlocks(1);
389#ifdef CONFIG_MIPS_MT_SMTC
390 mips_mt_regdump(dvpret);
391#endif /* CONFIG_MIPS_MT_SMTC */
392
393 printk("%s[#%d]:\n", str, ++die_counter);
394 show_registers(regs);
395 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
396 raw_spin_unlock_irq(&die_lock);
397
398 oops_exit();
399
400 if (in_interrupt())
401 panic("Fatal exception in interrupt");
402
403 if (panic_on_oops) {
404 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
405 ssleep(5);
406 panic("Fatal exception");
407 }
408
409 if (regs && kexec_should_crash(current))
410 crash_kexec(regs);
411
412 do_exit(sig);
413}
414
415extern struct exception_table_entry __start___dbe_table[];
416extern struct exception_table_entry __stop___dbe_table[];
417
418__asm__(
419" .section __dbe_table, \"a\"\n"
420" .previous \n");
421
422/* Given an address, look for it in the exception tables. */
423static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
424{
425 const struct exception_table_entry *e;
426
427 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
428 if (!e)
429 e = search_module_dbetables(addr);
430 return e;
431}
432
433asmlinkage void do_be(struct pt_regs *regs)
434{
435 const int field = 2 * sizeof(unsigned long);
436 const struct exception_table_entry *fixup = NULL;
437 int data = regs->cp0_cause & 4;
438 int action = MIPS_BE_FATAL;
439 enum ctx_state prev_state;
440
441 prev_state = exception_enter();
442 /* XXX For now. Fixme, this searches the wrong table ... */
443 if (data && !user_mode(regs))
444 fixup = search_dbe_tables(exception_epc(regs));
445
446 if (fixup)
447 action = MIPS_BE_FIXUP;
448
449 if (board_be_handler)
450 action = board_be_handler(regs, fixup != NULL);
451
452 switch (action) {
453 case MIPS_BE_DISCARD:
454 goto out;
455 case MIPS_BE_FIXUP:
456 if (fixup) {
457 regs->cp0_epc = fixup->nextinsn;
458 goto out;
459 }
460 break;
461 default:
462 break;
463 }
464
465 /*
466 * Assume it would be too dangerous to continue ...
467 */
468 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
469 data ? "Data" : "Instruction",
470 field, regs->cp0_epc, field, regs->regs[31]);
471 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
472 SIGBUS) == NOTIFY_STOP)
473 goto out;
474
475 die_if_kernel("Oops", regs);
476 force_sig(SIGBUS, current);
477
478out:
479 exception_exit(prev_state);
480}
481
482/*
483 * ll/sc, rdhwr, sync emulation
484 */
485
486#define OPCODE 0xfc000000
487#define BASE 0x03e00000
488#define RT 0x001f0000
489#define OFFSET 0x0000ffff
490#define LL 0xc0000000
491#define SC 0xe0000000
492#define SPEC0 0x00000000
493#define SPEC3 0x7c000000
494#define RD 0x0000f800
495#define FUNC 0x0000003f
496#define SYNC 0x0000000f
497#define RDHWR 0x0000003b
498
499/* microMIPS definitions */
500#define MM_POOL32A_FUNC 0xfc00ffff
501#define MM_RDHWR 0x00006b3c
502#define MM_RS 0x001f0000
503#define MM_RT 0x03e00000
504
505/*
506 * The ll_bit is cleared by r*_switch.S
507 */
508
509unsigned int ll_bit;
510struct task_struct *ll_task;
511
512static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
513{
514 unsigned long value, __user *vaddr;
515 long offset;
516
517 /*
518 * analyse the ll instruction that just caused a ri exception
519 * and put the referenced address to addr.
520 */
521
522 /* sign extend offset */
523 offset = opcode & OFFSET;
524 offset <<= 16;
525 offset >>= 16;
526
527 vaddr = (unsigned long __user *)
528 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
529
530 if ((unsigned long)vaddr & 3)
531 return SIGBUS;
532 if (get_user(value, vaddr))
533 return SIGSEGV;
534
535 preempt_disable();
536
537 if (ll_task == NULL || ll_task == current) {
538 ll_bit = 1;
539 } else {
540 ll_bit = 0;
541 }
542 ll_task = current;
543
544 preempt_enable();
545
546 regs->regs[(opcode & RT) >> 16] = value;
547
548 return 0;
549}
550
551static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
552{
553 unsigned long __user *vaddr;
554 unsigned long reg;
555 long offset;
556
557 /*
558 * analyse the sc instruction that just caused a ri exception
559 * and put the referenced address to addr.
560 */
561
562 /* sign extend offset */
563 offset = opcode & OFFSET;
564 offset <<= 16;
565 offset >>= 16;
566
567 vaddr = (unsigned long __user *)
568 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
569 reg = (opcode & RT) >> 16;
570
571 if ((unsigned long)vaddr & 3)
572 return SIGBUS;
573
574 preempt_disable();
575
576 if (ll_bit == 0 || ll_task != current) {
577 regs->regs[reg] = 0;
578 preempt_enable();
579 return 0;
580 }
581
582 preempt_enable();
583
584 if (put_user(regs->regs[reg], vaddr))
585 return SIGSEGV;
586
587 regs->regs[reg] = 1;
588
589 return 0;
590}
591
592/*
593 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
594 * opcodes are supposed to result in coprocessor unusable exceptions if
595 * executed on ll/sc-less processors. That's the theory. In practice a
596 * few processors such as NEC's VR4100 throw reserved instruction exceptions
597 * instead, so we're doing the emulation thing in both exception handlers.
598 */
599static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
600{
601 if ((opcode & OPCODE) == LL) {
602 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
603 1, regs, 0);
604 return simulate_ll(regs, opcode);
605 }
606 if ((opcode & OPCODE) == SC) {
607 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
608 1, regs, 0);
609 return simulate_sc(regs, opcode);
610 }
611
612 return -1; /* Must be something else ... */
613}
614
615/*
616 * Simulate trapping 'rdhwr' instructions to provide user accessible
617 * registers not implemented in hardware.
618 */
619static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
620{
621 struct thread_info *ti = task_thread_info(current);
622
623 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
624 1, regs, 0);
625 switch (rd) {
626 case 0: /* CPU number */
627 regs->regs[rt] = smp_processor_id();
628 return 0;
629 case 1: /* SYNCI length */
630 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
631 current_cpu_data.icache.linesz);
632 return 0;
633 case 2: /* Read count register */
634 regs->regs[rt] = read_c0_count();
635 return 0;
636 case 3: /* Count register resolution */
637 switch (current_cpu_type()) {
638 case CPU_20KC:
639 case CPU_25KF:
640 regs->regs[rt] = 1;
641 break;
642 default:
643 regs->regs[rt] = 2;
644 }
645 return 0;
646 case 29:
647 regs->regs[rt] = ti->tp_value;
648 return 0;
649 default:
650 return -1;
651 }
652}
653
654static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
655{
656 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
657 int rd = (opcode & RD) >> 11;
658 int rt = (opcode & RT) >> 16;
659
660 simulate_rdhwr(regs, rd, rt);
661 return 0;
662 }
663
664 /* Not ours. */
665 return -1;
666}
667
668static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
669{
670 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
671 int rd = (opcode & MM_RS) >> 16;
672 int rt = (opcode & MM_RT) >> 21;
673 simulate_rdhwr(regs, rd, rt);
674 return 0;
675 }
676
677 /* Not ours. */
678 return -1;
679}
680
681static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
682{
683 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
684 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
685 1, regs, 0);
686 return 0;
687 }
688
689 return -1; /* Must be something else ... */
690}
691
692asmlinkage void do_ov(struct pt_regs *regs)
693{
694 enum ctx_state prev_state;
695 siginfo_t info;
696
697 prev_state = exception_enter();
698 die_if_kernel("Integer overflow", regs);
699
700 info.si_code = FPE_INTOVF;
701 info.si_signo = SIGFPE;
702 info.si_errno = 0;
703 info.si_addr = (void __user *) regs->cp0_epc;
704 force_sig_info(SIGFPE, &info, current);
705 exception_exit(prev_state);
706}
707
708int process_fpemu_return(int sig, void __user *fault_addr)
709{
710 if (sig == SIGSEGV || sig == SIGBUS) {
711 struct siginfo si = {0};
712 si.si_addr = fault_addr;
713 si.si_signo = sig;
714 if (sig == SIGSEGV) {
715 if (find_vma(current->mm, (unsigned long)fault_addr))
716 si.si_code = SEGV_ACCERR;
717 else
718 si.si_code = SEGV_MAPERR;
719 } else {
720 si.si_code = BUS_ADRERR;
721 }
722 force_sig_info(sig, &si, current);
723 return 1;
724 } else if (sig) {
725 force_sig(sig, current);
726 return 1;
727 } else {
728 return 0;
729 }
730}
731
732/*
733 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
734 */
735asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
736{
737 enum ctx_state prev_state;
738 siginfo_t info = {0};
739
740 prev_state = exception_enter();
741 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
742 SIGFPE) == NOTIFY_STOP)
743 goto out;
744 die_if_kernel("FP exception in kernel code", regs);
745
746 if (fcr31 & FPU_CSR_UNI_X) {
747 int sig;
748 void __user *fault_addr = NULL;
749
750 /*
751 * Unimplemented operation exception. If we've got the full
752 * software emulator on-board, let's use it...
753 *
754 * Force FPU to dump state into task/thread context. We're
755 * moving a lot of data here for what is probably a single
756 * instruction, but the alternative is to pre-decode the FP
757 * register operands before invoking the emulator, which seems
758 * a bit extreme for what should be an infrequent event.
759 */
760 /* Ensure 'resume' not overwrite saved fp context again. */
761 lose_fpu(1);
762
763 /* Run the emulator */
764 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
765 &fault_addr);
766
767 /*
768 * We can't allow the emulated instruction to leave any of
769 * the cause bit set in $fcr31.
770 */
771 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
772
773 /* Restore the hardware register state */
774 own_fpu(1); /* Using the FPU again. */
775
776 /* If something went wrong, signal */
777 process_fpemu_return(sig, fault_addr);
778
779 goto out;
780 } else if (fcr31 & FPU_CSR_INV_X)
781 info.si_code = FPE_FLTINV;
782 else if (fcr31 & FPU_CSR_DIV_X)
783 info.si_code = FPE_FLTDIV;
784 else if (fcr31 & FPU_CSR_OVF_X)
785 info.si_code = FPE_FLTOVF;
786 else if (fcr31 & FPU_CSR_UDF_X)
787 info.si_code = FPE_FLTUND;
788 else if (fcr31 & FPU_CSR_INE_X)
789 info.si_code = FPE_FLTRES;
790 else
791 info.si_code = __SI_FAULT;
792 info.si_signo = SIGFPE;
793 info.si_errno = 0;
794 info.si_addr = (void __user *) regs->cp0_epc;
795 force_sig_info(SIGFPE, &info, current);
796
797out:
798 exception_exit(prev_state);
799}
800
801static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
802 const char *str)
803{
804 siginfo_t info;
805 char b[40];
806
807#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
808 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
809 return;
810#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
811
812 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
813 SIGTRAP) == NOTIFY_STOP)
814 return;
815
816 /*
817 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
818 * insns, even for trap and break codes that indicate arithmetic
819 * failures. Weird ...
820 * But should we continue the brokenness??? --macro
821 */
822 switch (code) {
823 case BRK_OVERFLOW:
824 case BRK_DIVZERO:
825 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
826 die_if_kernel(b, regs);
827 if (code == BRK_DIVZERO)
828 info.si_code = FPE_INTDIV;
829 else
830 info.si_code = FPE_INTOVF;
831 info.si_signo = SIGFPE;
832 info.si_errno = 0;
833 info.si_addr = (void __user *) regs->cp0_epc;
834 force_sig_info(SIGFPE, &info, current);
835 break;
836 case BRK_BUG:
837 die_if_kernel("Kernel bug detected", regs);
838 force_sig(SIGTRAP, current);
839 break;
840 case BRK_MEMU:
841 /*
842 * Address errors may be deliberately induced by the FPU
843 * emulator to retake control of the CPU after executing the
844 * instruction in the delay slot of an emulated branch.
845 *
846 * Terminate if exception was recognized as a delay slot return
847 * otherwise handle as normal.
848 */
849 if (do_dsemulret(regs))
850 return;
851
852 die_if_kernel("Math emu break/trap", regs);
853 force_sig(SIGTRAP, current);
854 break;
855 default:
856 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
857 die_if_kernel(b, regs);
858 force_sig(SIGTRAP, current);
859 }
860}
861
862asmlinkage void do_bp(struct pt_regs *regs)
863{
864 unsigned int opcode, bcode;
865 enum ctx_state prev_state;
866 unsigned long epc;
867 u16 instr[2];
868 mm_segment_t seg;
869
870 seg = get_fs();
871 if (!user_mode(regs))
872 set_fs(KERNEL_DS);
873
874 prev_state = exception_enter();
875 if (get_isa16_mode(regs->cp0_epc)) {
876 /* Calculate EPC. */
877 epc = exception_epc(regs);
878 if (cpu_has_mmips) {
879 if ((__get_user(instr[0], (u16 __user *)msk_isa16_mode(epc)) ||
880 (__get_user(instr[1], (u16 __user *)msk_isa16_mode(epc + 2)))))
881 goto out_sigsegv;
882 opcode = (instr[0] << 16) | instr[1];
883 } else {
884 /* MIPS16e mode */
885 if (__get_user(instr[0],
886 (u16 __user *)msk_isa16_mode(epc)))
887 goto out_sigsegv;
888 bcode = (instr[0] >> 6) & 0x3f;
889 do_trap_or_bp(regs, bcode, "Break");
890 goto out;
891 }
892 } else {
893 if (__get_user(opcode,
894 (unsigned int __user *) exception_epc(regs)))
895 goto out_sigsegv;
896 }
897
898 /*
899 * There is the ancient bug in the MIPS assemblers that the break
900 * code starts left to bit 16 instead to bit 6 in the opcode.
901 * Gas is bug-compatible, but not always, grrr...
902 * We handle both cases with a simple heuristics. --macro
903 */
904 bcode = ((opcode >> 6) & ((1 << 20) - 1));
905 if (bcode >= (1 << 10))
906 bcode >>= 10;
907
908 /*
909 * notify the kprobe handlers, if instruction is likely to
910 * pertain to them.
911 */
912 switch (bcode) {
913 case BRK_KPROBE_BP:
914 if (notify_die(DIE_BREAK, "debug", regs, bcode,
915 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
916 goto out;
917 else
918 break;
919 case BRK_KPROBE_SSTEPBP:
920 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
921 regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
922 goto out;
923 else
924 break;
925 default:
926 break;
927 }
928
929 do_trap_or_bp(regs, bcode, "Break");
930
931out:
932 set_fs(seg);
933 exception_exit(prev_state);
934 return;
935
936out_sigsegv:
937 force_sig(SIGSEGV, current);
938 goto out;
939}
940
941asmlinkage void do_tr(struct pt_regs *regs)
942{
943 u32 opcode, tcode = 0;
944 enum ctx_state prev_state;
945 u16 instr[2];
946 mm_segment_t seg;
947 unsigned long epc = msk_isa16_mode(exception_epc(regs));
948
949 seg = get_fs();
950 if (!user_mode(regs))
951 set_fs(get_ds());
952
953 prev_state = exception_enter();
954 if (get_isa16_mode(regs->cp0_epc)) {
955 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
956 __get_user(instr[1], (u16 __user *)(epc + 2)))
957 goto out_sigsegv;
958 opcode = (instr[0] << 16) | instr[1];
959 /* Immediate versions don't provide a code. */
960 if (!(opcode & OPCODE))
961 tcode = (opcode >> 12) & ((1 << 4) - 1);
962 } else {
963 if (__get_user(opcode, (u32 __user *)epc))
964 goto out_sigsegv;
965 /* Immediate versions don't provide a code. */
966 if (!(opcode & OPCODE))
967 tcode = (opcode >> 6) & ((1 << 10) - 1);
968 }
969
970 do_trap_or_bp(regs, tcode, "Trap");
971
972out:
973 set_fs(seg);
974 exception_exit(prev_state);
975 return;
976
977out_sigsegv:
978 force_sig(SIGSEGV, current);
979 goto out;
980}
981
982asmlinkage void do_ri(struct pt_regs *regs)
983{
984 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
985 unsigned long old_epc = regs->cp0_epc;
986 unsigned long old31 = regs->regs[31];
987 enum ctx_state prev_state;
988 unsigned int opcode = 0;
989 int status = -1;
990
991 prev_state = exception_enter();
992 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
993 SIGILL) == NOTIFY_STOP)
994 goto out;
995
996 die_if_kernel("Reserved instruction in kernel code", regs);
997
998 if (unlikely(compute_return_epc(regs) < 0))
999 goto out;
1000
1001 if (get_isa16_mode(regs->cp0_epc)) {
1002 unsigned short mmop[2] = { 0 };
1003
1004 if (unlikely(get_user(mmop[0], epc) < 0))
1005 status = SIGSEGV;
1006 if (unlikely(get_user(mmop[1], epc) < 0))
1007 status = SIGSEGV;
1008 opcode = (mmop[0] << 16) | mmop[1];
1009
1010 if (status < 0)
1011 status = simulate_rdhwr_mm(regs, opcode);
1012 } else {
1013 if (unlikely(get_user(opcode, epc) < 0))
1014 status = SIGSEGV;
1015
1016 if (!cpu_has_llsc && status < 0)
1017 status = simulate_llsc(regs, opcode);
1018
1019 if (status < 0)
1020 status = simulate_rdhwr_normal(regs, opcode);
1021
1022 if (status < 0)
1023 status = simulate_sync(regs, opcode);
1024 }
1025
1026 if (status < 0)
1027 status = SIGILL;
1028
1029 if (unlikely(status > 0)) {
1030 regs->cp0_epc = old_epc; /* Undo skip-over. */
1031 regs->regs[31] = old31;
1032 force_sig(status, current);
1033 }
1034
1035out:
1036 exception_exit(prev_state);
1037}
1038
1039/*
1040 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1041 * emulated more than some threshold number of instructions, force migration to
1042 * a "CPU" that has FP support.
1043 */
1044static void mt_ase_fp_affinity(void)
1045{
1046#ifdef CONFIG_MIPS_MT_FPAFF
1047 if (mt_fpemul_threshold > 0 &&
1048 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1049 /*
1050 * If there's no FPU present, or if the application has already
1051 * restricted the allowed set to exclude any CPUs with FPUs,
1052 * we'll skip the procedure.
1053 */
1054 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
1055 cpumask_t tmask;
1056
1057 current->thread.user_cpus_allowed
1058 = current->cpus_allowed;
1059 cpus_and(tmask, current->cpus_allowed,
1060 mt_fpu_cpumask);
1061 set_cpus_allowed_ptr(current, &tmask);
1062 set_thread_flag(TIF_FPUBOUND);
1063 }
1064 }
1065#endif /* CONFIG_MIPS_MT_FPAFF */
1066}
1067
1068/*
1069 * No lock; only written during early bootup by CPU 0.
1070 */
1071static RAW_NOTIFIER_HEAD(cu2_chain);
1072
1073int __ref register_cu2_notifier(struct notifier_block *nb)
1074{
1075 return raw_notifier_chain_register(&cu2_chain, nb);
1076}
1077
1078int cu2_notifier_call_chain(unsigned long val, void *v)
1079{
1080 return raw_notifier_call_chain(&cu2_chain, val, v);
1081}
1082
1083static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1084 void *data)
1085{
1086 struct pt_regs *regs = data;
1087
1088 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1089 "instruction", regs);
1090 force_sig(SIGILL, current);
1091
1092 return NOTIFY_OK;
1093}
1094
1095static int enable_restore_fp_context(int msa)
1096{
1097 int err, was_fpu_owner;
1098
1099 if (!used_math()) {
1100 /* First time FP context user. */
1101 err = init_fpu();
1102 if (msa && !err)
1103 enable_msa();
1104 if (!err)
1105 set_used_math();
1106 return err;
1107 }
1108
1109 /*
1110 * This task has formerly used the FP context.
1111 *
1112 * If this thread has no live MSA vector context then we can simply
1113 * restore the scalar FP context. If it has live MSA vector context
1114 * (that is, it has or may have used MSA since last performing a
1115 * function call) then we'll need to restore the vector context. This
1116 * applies even if we're currently only executing a scalar FP
1117 * instruction. This is because if we were to later execute an MSA
1118 * instruction then we'd either have to:
1119 *
1120 * - Restore the vector context & clobber any registers modified by
1121 * scalar FP instructions between now & then.
1122 *
1123 * or
1124 *
1125 * - Not restore the vector context & lose the most significant bits
1126 * of all vector registers.
1127 *
1128 * Neither of those options is acceptable. We cannot restore the least
1129 * significant bits of the registers now & only restore the most
1130 * significant bits later because the most significant bits of any
1131 * vector registers whose aliased FP register is modified now will have
1132 * been zeroed. We'd have no way to know that when restoring the vector
1133 * context & thus may load an outdated value for the most significant
1134 * bits of a vector register.
1135 */
1136 if (!msa && !thread_msa_context_live())
1137 return own_fpu(1);
1138
1139 /*
1140 * This task is using or has previously used MSA. Thus we require
1141 * that Status.FR == 1.
1142 */
1143 was_fpu_owner = is_fpu_owner();
1144 err = own_fpu(0);
1145 if (err)
1146 return err;
1147
1148 enable_msa();
1149 write_msa_csr(current->thread.fpu.msacsr);
1150 set_thread_flag(TIF_USEDMSA);
1151
1152 /*
1153 * If this is the first time that the task is using MSA and it has
1154 * previously used scalar FP in this time slice then we already nave
1155 * FP context which we shouldn't clobber.
1156 */
1157 if (!test_and_set_thread_flag(TIF_MSA_CTX_LIVE) && was_fpu_owner)
1158 return 0;
1159
1160 /* We need to restore the vector context. */
1161 restore_msa(current);
1162 return 0;
1163}
1164
1165asmlinkage void do_cpu(struct pt_regs *regs)
1166{
1167 enum ctx_state prev_state;
1168 unsigned int __user *epc;
1169 unsigned long old_epc, old31;
1170 unsigned int opcode;
1171 unsigned int cpid;
1172 int status, err;
1173 unsigned long __maybe_unused flags;
1174
1175 prev_state = exception_enter();
1176 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1177
1178 if (cpid != 2)
1179 die_if_kernel("do_cpu invoked from kernel context!", regs);
1180
1181 switch (cpid) {
1182 case 0:
1183 epc = (unsigned int __user *)exception_epc(regs);
1184 old_epc = regs->cp0_epc;
1185 old31 = regs->regs[31];
1186 opcode = 0;
1187 status = -1;
1188
1189 if (unlikely(compute_return_epc(regs) < 0))
1190 goto out;
1191
1192 if (get_isa16_mode(regs->cp0_epc)) {
1193 unsigned short mmop[2] = { 0 };
1194
1195 if (unlikely(get_user(mmop[0], epc) < 0))
1196 status = SIGSEGV;
1197 if (unlikely(get_user(mmop[1], epc) < 0))
1198 status = SIGSEGV;
1199 opcode = (mmop[0] << 16) | mmop[1];
1200
1201 if (status < 0)
1202 status = simulate_rdhwr_mm(regs, opcode);
1203 } else {
1204 if (unlikely(get_user(opcode, epc) < 0))
1205 status = SIGSEGV;
1206
1207 if (!cpu_has_llsc && status < 0)
1208 status = simulate_llsc(regs, opcode);
1209
1210 if (status < 0)
1211 status = simulate_rdhwr_normal(regs, opcode);
1212 }
1213
1214 if (status < 0)
1215 status = SIGILL;
1216
1217 if (unlikely(status > 0)) {
1218 regs->cp0_epc = old_epc; /* Undo skip-over. */
1219 regs->regs[31] = old31;
1220 force_sig(status, current);
1221 }
1222
1223 goto out;
1224
1225 case 3:
1226 /*
1227 * Old (MIPS I and MIPS II) processors will set this code
1228 * for COP1X opcode instructions that replaced the original
1229 * COP3 space. We don't limit COP1 space instructions in
1230 * the emulator according to the CPU ISA, so we want to
1231 * treat COP1X instructions consistently regardless of which
1232 * code the CPU chose. Therefore we redirect this trap to
1233 * the FP emulator too.
1234 *
1235 * Then some newer FPU-less processors use this code
1236 * erroneously too, so they are covered by this choice
1237 * as well.
1238 */
1239 if (raw_cpu_has_fpu)
1240 break;
1241 /* Fall through. */
1242
1243 case 1:
1244 err = enable_restore_fp_context(0);
1245
1246 if (!raw_cpu_has_fpu || err) {
1247 int sig;
1248 void __user *fault_addr = NULL;
1249 sig = fpu_emulator_cop1Handler(regs,
1250 ¤t->thread.fpu,
1251 0, &fault_addr);
1252 if (!process_fpemu_return(sig, fault_addr) && !err)
1253 mt_ase_fp_affinity();
1254 }
1255
1256 goto out;
1257
1258 case 2:
1259 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1260 goto out;
1261 }
1262
1263 force_sig(SIGILL, current);
1264
1265out:
1266 exception_exit(prev_state);
1267}
1268
1269asmlinkage void do_msa_fpe(struct pt_regs *regs)
1270{
1271 enum ctx_state prev_state;
1272
1273 prev_state = exception_enter();
1274 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1275 force_sig(SIGFPE, current);
1276 exception_exit(prev_state);
1277}
1278
1279asmlinkage void do_msa(struct pt_regs *regs)
1280{
1281 enum ctx_state prev_state;
1282 int err;
1283
1284 prev_state = exception_enter();
1285
1286 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1287 force_sig(SIGILL, current);
1288 goto out;
1289 }
1290
1291 die_if_kernel("do_msa invoked from kernel context!", regs);
1292
1293 err = enable_restore_fp_context(1);
1294 if (err)
1295 force_sig(SIGILL, current);
1296out:
1297 exception_exit(prev_state);
1298}
1299
1300asmlinkage void do_mdmx(struct pt_regs *regs)
1301{
1302 enum ctx_state prev_state;
1303
1304 prev_state = exception_enter();
1305 force_sig(SIGILL, current);
1306 exception_exit(prev_state);
1307}
1308
1309/*
1310 * Called with interrupts disabled.
1311 */
1312asmlinkage void do_watch(struct pt_regs *regs)
1313{
1314 enum ctx_state prev_state;
1315 u32 cause;
1316
1317 prev_state = exception_enter();
1318 /*
1319 * Clear WP (bit 22) bit of cause register so we don't loop
1320 * forever.
1321 */
1322 cause = read_c0_cause();
1323 cause &= ~(1 << 22);
1324 write_c0_cause(cause);
1325
1326 /*
1327 * If the current thread has the watch registers loaded, save
1328 * their values and send SIGTRAP. Otherwise another thread
1329 * left the registers set, clear them and continue.
1330 */
1331 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1332 mips_read_watch_registers();
1333 local_irq_enable();
1334 force_sig(SIGTRAP, current);
1335 } else {
1336 mips_clear_watch_registers();
1337 local_irq_enable();
1338 }
1339 exception_exit(prev_state);
1340}
1341
1342asmlinkage void do_mcheck(struct pt_regs *regs)
1343{
1344 const int field = 2 * sizeof(unsigned long);
1345 int multi_match = regs->cp0_status & ST0_TS;
1346 enum ctx_state prev_state;
1347
1348 prev_state = exception_enter();
1349 show_regs(regs);
1350
1351 if (multi_match) {
1352 printk("Index : %0x\n", read_c0_index());
1353 printk("Pagemask: %0x\n", read_c0_pagemask());
1354 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1355 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1356 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1357 printk("\n");
1358 dump_tlb_all();
1359 }
1360
1361 show_code((unsigned int __user *) regs->cp0_epc);
1362
1363 /*
1364 * Some chips may have other causes of machine check (e.g. SB1
1365 * graduation timer)
1366 */
1367 panic("Caught Machine Check exception - %scaused by multiple "
1368 "matching entries in the TLB.",
1369 (multi_match) ? "" : "not ");
1370}
1371
1372asmlinkage void do_mt(struct pt_regs *regs)
1373{
1374 int subcode;
1375
1376 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1377 >> VPECONTROL_EXCPT_SHIFT;
1378 switch (subcode) {
1379 case 0:
1380 printk(KERN_DEBUG "Thread Underflow\n");
1381 break;
1382 case 1:
1383 printk(KERN_DEBUG "Thread Overflow\n");
1384 break;
1385 case 2:
1386 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1387 break;
1388 case 3:
1389 printk(KERN_DEBUG "Gating Storage Exception\n");
1390 break;
1391 case 4:
1392 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1393 break;
1394 case 5:
1395 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1396 break;
1397 default:
1398 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1399 subcode);
1400 break;
1401 }
1402 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1403
1404 force_sig(SIGILL, current);
1405}
1406
1407
1408asmlinkage void do_dsp(struct pt_regs *regs)
1409{
1410 if (cpu_has_dsp)
1411 panic("Unexpected DSP exception");
1412
1413 force_sig(SIGILL, current);
1414}
1415
1416asmlinkage void do_reserved(struct pt_regs *regs)
1417{
1418 /*
1419 * Game over - no way to handle this if it ever occurs. Most probably
1420 * caused by a new unknown cpu type or after another deadly
1421 * hard/software error.
1422 */
1423 show_regs(regs);
1424 panic("Caught reserved exception %ld - should not happen.",
1425 (regs->cp0_cause & 0x7f) >> 2);
1426}
1427
1428static int __initdata l1parity = 1;
1429static int __init nol1parity(char *s)
1430{
1431 l1parity = 0;
1432 return 1;
1433}
1434__setup("nol1par", nol1parity);
1435static int __initdata l2parity = 1;
1436static int __init nol2parity(char *s)
1437{
1438 l2parity = 0;
1439 return 1;
1440}
1441__setup("nol2par", nol2parity);
1442
1443/*
1444 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1445 * it different ways.
1446 */
1447static inline void parity_protection_init(void)
1448{
1449 switch (current_cpu_type()) {
1450 case CPU_24K:
1451 case CPU_34K:
1452 case CPU_74K:
1453 case CPU_1004K:
1454 case CPU_1074K:
1455 case CPU_INTERAPTIV:
1456 case CPU_PROAPTIV:
1457 case CPU_P5600:
1458 {
1459#define ERRCTL_PE 0x80000000
1460#define ERRCTL_L2P 0x00800000
1461 unsigned long errctl;
1462 unsigned int l1parity_present, l2parity_present;
1463
1464 errctl = read_c0_ecc();
1465 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1466
1467 /* probe L1 parity support */
1468 write_c0_ecc(errctl | ERRCTL_PE);
1469 back_to_back_c0_hazard();
1470 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1471
1472 /* probe L2 parity support */
1473 write_c0_ecc(errctl|ERRCTL_L2P);
1474 back_to_back_c0_hazard();
1475 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1476
1477 if (l1parity_present && l2parity_present) {
1478 if (l1parity)
1479 errctl |= ERRCTL_PE;
1480 if (l1parity ^ l2parity)
1481 errctl |= ERRCTL_L2P;
1482 } else if (l1parity_present) {
1483 if (l1parity)
1484 errctl |= ERRCTL_PE;
1485 } else if (l2parity_present) {
1486 if (l2parity)
1487 errctl |= ERRCTL_L2P;
1488 } else {
1489 /* No parity available */
1490 }
1491
1492 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1493
1494 write_c0_ecc(errctl);
1495 back_to_back_c0_hazard();
1496 errctl = read_c0_ecc();
1497 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1498
1499 if (l1parity_present)
1500 printk(KERN_INFO "Cache parity protection %sabled\n",
1501 (errctl & ERRCTL_PE) ? "en" : "dis");
1502
1503 if (l2parity_present) {
1504 if (l1parity_present && l1parity)
1505 errctl ^= ERRCTL_L2P;
1506 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1507 (errctl & ERRCTL_L2P) ? "en" : "dis");
1508 }
1509 }
1510 break;
1511
1512 case CPU_5KC:
1513 case CPU_5KE:
1514 case CPU_LOONGSON1:
1515 write_c0_ecc(0x80000000);
1516 back_to_back_c0_hazard();
1517 /* Set the PE bit (bit 31) in the c0_errctl register. */
1518 printk(KERN_INFO "Cache parity protection %sabled\n",
1519 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1520 break;
1521 case CPU_20KC:
1522 case CPU_25KF:
1523 /* Clear the DE bit (bit 16) in the c0_status register. */
1524 printk(KERN_INFO "Enable cache parity protection for "
1525 "MIPS 20KC/25KF CPUs.\n");
1526 clear_c0_status(ST0_DE);
1527 break;
1528 default:
1529 break;
1530 }
1531}
1532
1533asmlinkage void cache_parity_error(void)
1534{
1535 const int field = 2 * sizeof(unsigned long);
1536 unsigned int reg_val;
1537
1538 /* For the moment, report the problem and hang. */
1539 printk("Cache error exception:\n");
1540 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1541 reg_val = read_c0_cacheerr();
1542 printk("c0_cacheerr == %08x\n", reg_val);
1543
1544 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1545 reg_val & (1<<30) ? "secondary" : "primary",
1546 reg_val & (1<<31) ? "data" : "insn");
1547 if (cpu_has_mips_r2 &&
1548 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1549 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1550 reg_val & (1<<29) ? "ED " : "",
1551 reg_val & (1<<28) ? "ET " : "",
1552 reg_val & (1<<27) ? "ES " : "",
1553 reg_val & (1<<26) ? "EE " : "",
1554 reg_val & (1<<25) ? "EB " : "",
1555 reg_val & (1<<24) ? "EI " : "",
1556 reg_val & (1<<23) ? "E1 " : "",
1557 reg_val & (1<<22) ? "E0 " : "");
1558 } else {
1559 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1560 reg_val & (1<<29) ? "ED " : "",
1561 reg_val & (1<<28) ? "ET " : "",
1562 reg_val & (1<<26) ? "EE " : "",
1563 reg_val & (1<<25) ? "EB " : "",
1564 reg_val & (1<<24) ? "EI " : "",
1565 reg_val & (1<<23) ? "E1 " : "",
1566 reg_val & (1<<22) ? "E0 " : "");
1567 }
1568 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1569
1570#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1571 if (reg_val & (1<<22))
1572 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1573
1574 if (reg_val & (1<<23))
1575 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1576#endif
1577
1578 panic("Can't handle the cache error!");
1579}
1580
1581asmlinkage void do_ftlb(void)
1582{
1583 const int field = 2 * sizeof(unsigned long);
1584 unsigned int reg_val;
1585
1586 /* For the moment, report the problem and hang. */
1587 if (cpu_has_mips_r2 &&
1588 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1589 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1590 read_c0_ecc());
1591 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1592 reg_val = read_c0_cacheerr();
1593 pr_err("c0_cacheerr == %08x\n", reg_val);
1594
1595 if ((reg_val & 0xc0000000) == 0xc0000000) {
1596 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1597 } else {
1598 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1599 reg_val & (1<<30) ? "secondary" : "primary",
1600 reg_val & (1<<31) ? "data" : "insn");
1601 }
1602 } else {
1603 pr_err("FTLB error exception\n");
1604 }
1605 /* Just print the cacheerr bits for now */
1606 cache_parity_error();
1607}
1608
1609/*
1610 * SDBBP EJTAG debug exception handler.
1611 * We skip the instruction and return to the next instruction.
1612 */
1613void ejtag_exception_handler(struct pt_regs *regs)
1614{
1615 const int field = 2 * sizeof(unsigned long);
1616 unsigned long depc, old_epc, old_ra;
1617 unsigned int debug;
1618
1619 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1620 depc = read_c0_depc();
1621 debug = read_c0_debug();
1622 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1623 if (debug & 0x80000000) {
1624 /*
1625 * In branch delay slot.
1626 * We cheat a little bit here and use EPC to calculate the
1627 * debug return address (DEPC). EPC is restored after the
1628 * calculation.
1629 */
1630 old_epc = regs->cp0_epc;
1631 old_ra = regs->regs[31];
1632 regs->cp0_epc = depc;
1633 compute_return_epc(regs);
1634 depc = regs->cp0_epc;
1635 regs->cp0_epc = old_epc;
1636 regs->regs[31] = old_ra;
1637 } else
1638 depc += 4;
1639 write_c0_depc(depc);
1640
1641#if 0
1642 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1643 write_c0_debug(debug | 0x100);
1644#endif
1645}
1646
1647/*
1648 * NMI exception handler.
1649 * No lock; only written during early bootup by CPU 0.
1650 */
1651static RAW_NOTIFIER_HEAD(nmi_chain);
1652
1653int register_nmi_notifier(struct notifier_block *nb)
1654{
1655 return raw_notifier_chain_register(&nmi_chain, nb);
1656}
1657
1658void __noreturn nmi_exception_handler(struct pt_regs *regs)
1659{
1660 char str[100];
1661
1662 raw_notifier_call_chain(&nmi_chain, 0, regs);
1663 bust_spinlocks(1);
1664 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1665 smp_processor_id(), regs->cp0_epc);
1666 regs->cp0_epc = read_c0_errorepc();
1667 die(str, regs);
1668}
1669
1670#define VECTORSPACING 0x100 /* for EI/VI mode */
1671
1672unsigned long ebase;
1673unsigned long exception_handlers[32];
1674unsigned long vi_handlers[64];
1675
1676void __init *set_except_vector(int n, void *addr)
1677{
1678 unsigned long handler = (unsigned long) addr;
1679 unsigned long old_handler;
1680
1681#ifdef CONFIG_CPU_MICROMIPS
1682 /*
1683 * Only the TLB handlers are cache aligned with an even
1684 * address. All other handlers are on an odd address and
1685 * require no modification. Otherwise, MIPS32 mode will
1686 * be entered when handling any TLB exceptions. That
1687 * would be bad...since we must stay in microMIPS mode.
1688 */
1689 if (!(handler & 0x1))
1690 handler |= 1;
1691#endif
1692 old_handler = xchg(&exception_handlers[n], handler);
1693
1694 if (n == 0 && cpu_has_divec) {
1695#ifdef CONFIG_CPU_MICROMIPS
1696 unsigned long jump_mask = ~((1 << 27) - 1);
1697#else
1698 unsigned long jump_mask = ~((1 << 28) - 1);
1699#endif
1700 u32 *buf = (u32 *)(ebase + 0x200);
1701 unsigned int k0 = 26;
1702 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1703 uasm_i_j(&buf, handler & ~jump_mask);
1704 uasm_i_nop(&buf);
1705 } else {
1706 UASM_i_LA(&buf, k0, handler);
1707 uasm_i_jr(&buf, k0);
1708 uasm_i_nop(&buf);
1709 }
1710 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1711 }
1712 return (void *)old_handler;
1713}
1714
1715static void do_default_vi(void)
1716{
1717 show_regs(get_irq_regs());
1718 panic("Caught unexpected vectored interrupt.");
1719}
1720
1721static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1722{
1723 unsigned long handler;
1724 unsigned long old_handler = vi_handlers[n];
1725 int srssets = current_cpu_data.srsets;
1726 u16 *h;
1727 unsigned char *b;
1728
1729 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1730
1731 if (addr == NULL) {
1732 handler = (unsigned long) do_default_vi;
1733 srs = 0;
1734 } else
1735 handler = (unsigned long) addr;
1736 vi_handlers[n] = handler;
1737
1738 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1739
1740 if (srs >= srssets)
1741 panic("Shadow register set %d not supported", srs);
1742
1743 if (cpu_has_veic) {
1744 if (board_bind_eic_interrupt)
1745 board_bind_eic_interrupt(n, srs);
1746 } else if (cpu_has_vint) {
1747 /* SRSMap is only defined if shadow sets are implemented */
1748 if (srssets > 1)
1749 change_c0_srsmap(0xf << n*4, srs << n*4);
1750 }
1751
1752 if (srs == 0) {
1753 /*
1754 * If no shadow set is selected then use the default handler
1755 * that does normal register saving and standard interrupt exit
1756 */
1757 extern char except_vec_vi, except_vec_vi_lui;
1758 extern char except_vec_vi_ori, except_vec_vi_end;
1759 extern char rollback_except_vec_vi;
1760 char *vec_start = using_rollback_handler() ?
1761 &rollback_except_vec_vi : &except_vec_vi;
1762#ifdef CONFIG_MIPS_MT_SMTC
1763 /*
1764 * We need to provide the SMTC vectored interrupt handler
1765 * not only with the address of the handler, but with the
1766 * Status.IM bit to be masked before going there.
1767 */
1768 extern char except_vec_vi_mori;
1769#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1770 const int mori_offset = &except_vec_vi_mori - vec_start + 2;
1771#else
1772 const int mori_offset = &except_vec_vi_mori - vec_start;
1773#endif
1774#endif /* CONFIG_MIPS_MT_SMTC */
1775#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1776 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1777 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1778#else
1779 const int lui_offset = &except_vec_vi_lui - vec_start;
1780 const int ori_offset = &except_vec_vi_ori - vec_start;
1781#endif
1782 const int handler_len = &except_vec_vi_end - vec_start;
1783
1784 if (handler_len > VECTORSPACING) {
1785 /*
1786 * Sigh... panicing won't help as the console
1787 * is probably not configured :(
1788 */
1789 panic("VECTORSPACING too small");
1790 }
1791
1792 set_handler(((unsigned long)b - ebase), vec_start,
1793#ifdef CONFIG_CPU_MICROMIPS
1794 (handler_len - 1));
1795#else
1796 handler_len);
1797#endif
1798#ifdef CONFIG_MIPS_MT_SMTC
1799 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1800
1801 h = (u16 *)(b + mori_offset);
1802 *h = (0x100 << n);
1803#endif /* CONFIG_MIPS_MT_SMTC */
1804 h = (u16 *)(b + lui_offset);
1805 *h = (handler >> 16) & 0xffff;
1806 h = (u16 *)(b + ori_offset);
1807 *h = (handler & 0xffff);
1808 local_flush_icache_range((unsigned long)b,
1809 (unsigned long)(b+handler_len));
1810 }
1811 else {
1812 /*
1813 * In other cases jump directly to the interrupt handler. It
1814 * is the handler's responsibility to save registers if required
1815 * (eg hi/lo) and return from the exception using "eret".
1816 */
1817 u32 insn;
1818
1819 h = (u16 *)b;
1820 /* j handler */
1821#ifdef CONFIG_CPU_MICROMIPS
1822 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
1823#else
1824 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
1825#endif
1826 h[0] = (insn >> 16) & 0xffff;
1827 h[1] = insn & 0xffff;
1828 h[2] = 0;
1829 h[3] = 0;
1830 local_flush_icache_range((unsigned long)b,
1831 (unsigned long)(b+8));
1832 }
1833
1834 return (void *)old_handler;
1835}
1836
1837void *set_vi_handler(int n, vi_handler_t addr)
1838{
1839 return set_vi_srs_handler(n, addr, 0);
1840}
1841
1842extern void tlb_init(void);
1843
1844/*
1845 * Timer interrupt
1846 */
1847int cp0_compare_irq;
1848EXPORT_SYMBOL_GPL(cp0_compare_irq);
1849int cp0_compare_irq_shift;
1850
1851/*
1852 * Performance counter IRQ or -1 if shared with timer
1853 */
1854int cp0_perfcount_irq;
1855EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1856
1857static int noulri;
1858
1859static int __init ulri_disable(char *s)
1860{
1861 pr_info("Disabling ulri\n");
1862 noulri = 1;
1863
1864 return 1;
1865}
1866__setup("noulri", ulri_disable);
1867
1868void per_cpu_trap_init(bool is_boot_cpu)
1869{
1870 unsigned int cpu = smp_processor_id();
1871 unsigned int status_set = ST0_CU0;
1872 unsigned int hwrena = cpu_hwrena_impl_bits;
1873#ifdef CONFIG_MIPS_MT_SMTC
1874 int secondaryTC = 0;
1875 int bootTC = (cpu == 0);
1876
1877 /*
1878 * Only do per_cpu_trap_init() for first TC of Each VPE.
1879 * Note that this hack assumes that the SMTC init code
1880 * assigns TCs consecutively and in ascending order.
1881 */
1882
1883 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1884 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1885 secondaryTC = 1;
1886#endif /* CONFIG_MIPS_MT_SMTC */
1887
1888 /*
1889 * Disable coprocessors and select 32-bit or 64-bit addressing
1890 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1891 * flag that some firmware may have left set and the TS bit (for
1892 * IP27). Set XX for ISA IV code to work.
1893 */
1894#ifdef CONFIG_64BIT
1895 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1896#endif
1897 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
1898 status_set |= ST0_XX;
1899 if (cpu_has_dsp)
1900 status_set |= ST0_MX;
1901
1902 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1903 status_set);
1904
1905 if (cpu_has_mips_r2)
1906 hwrena |= 0x0000000f;
1907
1908 if (!noulri && cpu_has_userlocal)
1909 hwrena |= (1 << 29);
1910
1911 if (hwrena)
1912 write_c0_hwrena(hwrena);
1913
1914#ifdef CONFIG_MIPS_MT_SMTC
1915 if (!secondaryTC) {
1916#endif /* CONFIG_MIPS_MT_SMTC */
1917
1918 if (cpu_has_veic || cpu_has_vint) {
1919 unsigned long sr = set_c0_status(ST0_BEV);
1920 write_c0_ebase(ebase);
1921 write_c0_status(sr);
1922 /* Setting vector spacing enables EI/VI mode */
1923 change_c0_intctl(0x3e0, VECTORSPACING);
1924 }
1925 if (cpu_has_divec) {
1926 if (cpu_has_mipsmt) {
1927 unsigned int vpflags = dvpe();
1928 set_c0_cause(CAUSEF_IV);
1929 evpe(vpflags);
1930 } else
1931 set_c0_cause(CAUSEF_IV);
1932 }
1933
1934 /*
1935 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1936 *
1937 * o read IntCtl.IPTI to determine the timer interrupt
1938 * o read IntCtl.IPPCI to determine the performance counter interrupt
1939 */
1940 if (cpu_has_mips_r2) {
1941 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1942 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1943 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1944 if (cp0_perfcount_irq == cp0_compare_irq)
1945 cp0_perfcount_irq = -1;
1946 } else {
1947 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1948 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1949 cp0_perfcount_irq = -1;
1950 }
1951
1952#ifdef CONFIG_MIPS_MT_SMTC
1953 }
1954#endif /* CONFIG_MIPS_MT_SMTC */
1955
1956 if (!cpu_data[cpu].asid_cache)
1957 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1958
1959 atomic_inc(&init_mm.mm_count);
1960 current->active_mm = &init_mm;
1961 BUG_ON(current->mm);
1962 enter_lazy_tlb(&init_mm, current);
1963
1964#ifdef CONFIG_MIPS_MT_SMTC
1965 if (bootTC) {
1966#endif /* CONFIG_MIPS_MT_SMTC */
1967 /* Boot CPU's cache setup in setup_arch(). */
1968 if (!is_boot_cpu)
1969 cpu_cache_init();
1970 tlb_init();
1971#ifdef CONFIG_MIPS_MT_SMTC
1972 } else if (!secondaryTC) {
1973 /*
1974 * First TC in non-boot VPE must do subset of tlb_init()
1975 * for MMU countrol registers.
1976 */
1977 write_c0_pagemask(PM_DEFAULT_MASK);
1978 write_c0_wired(0);
1979 }
1980#endif /* CONFIG_MIPS_MT_SMTC */
1981 TLBMISS_HANDLER_SETUP();
1982}
1983
1984/* Install CPU exception handler */
1985void set_handler(unsigned long offset, void *addr, unsigned long size)
1986{
1987#ifdef CONFIG_CPU_MICROMIPS
1988 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
1989#else
1990 memcpy((void *)(ebase + offset), addr, size);
1991#endif
1992 local_flush_icache_range(ebase + offset, ebase + offset + size);
1993}
1994
1995static char panic_null_cerr[] =
1996 "Trying to set NULL cache error exception handler";
1997
1998/*
1999 * Install uncached CPU exception handler.
2000 * This is suitable only for the cache error exception which is the only
2001 * exception handler that is being run uncached.
2002 */
2003void set_uncached_handler(unsigned long offset, void *addr,
2004 unsigned long size)
2005{
2006 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2007
2008 if (!addr)
2009 panic(panic_null_cerr);
2010
2011 memcpy((void *)(uncached_ebase + offset), addr, size);
2012}
2013
2014static int __initdata rdhwr_noopt;
2015static int __init set_rdhwr_noopt(char *str)
2016{
2017 rdhwr_noopt = 1;
2018 return 1;
2019}
2020
2021__setup("rdhwr_noopt", set_rdhwr_noopt);
2022
2023void __init trap_init(void)
2024{
2025 extern char except_vec3_generic;
2026 extern char except_vec4;
2027 extern char except_vec3_r4000;
2028 unsigned long i;
2029
2030 check_wait();
2031
2032#if defined(CONFIG_KGDB)
2033 if (kgdb_early_setup)
2034 return; /* Already done */
2035#endif
2036
2037 if (cpu_has_veic || cpu_has_vint) {
2038 unsigned long size = 0x200 + VECTORSPACING*64;
2039 ebase = (unsigned long)
2040 __alloc_bootmem(size, 1 << fls(size), 0);
2041 } else {
2042#ifdef CONFIG_KVM_GUEST
2043#define KVM_GUEST_KSEG0 0x40000000
2044 ebase = KVM_GUEST_KSEG0;
2045#else
2046 ebase = CKSEG0;
2047#endif
2048 if (cpu_has_mips_r2)
2049 ebase += (read_c0_ebase() & 0x3ffff000);
2050 }
2051
2052 if (cpu_has_mmips) {
2053 unsigned int config3 = read_c0_config3();
2054
2055 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2056 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2057 else
2058 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2059 }
2060
2061 if (board_ebase_setup)
2062 board_ebase_setup();
2063 per_cpu_trap_init(true);
2064
2065 /*
2066 * Copy the generic exception handlers to their final destination.
2067 * This will be overriden later as suitable for a particular
2068 * configuration.
2069 */
2070 set_handler(0x180, &except_vec3_generic, 0x80);
2071
2072 /*
2073 * Setup default vectors
2074 */
2075 for (i = 0; i <= 31; i++)
2076 set_except_vector(i, handle_reserved);
2077
2078 /*
2079 * Copy the EJTAG debug exception vector handler code to it's final
2080 * destination.
2081 */
2082 if (cpu_has_ejtag && board_ejtag_handler_setup)
2083 board_ejtag_handler_setup();
2084
2085 /*
2086 * Only some CPUs have the watch exceptions.
2087 */
2088 if (cpu_has_watch)
2089 set_except_vector(23, handle_watch);
2090
2091 /*
2092 * Initialise interrupt handlers
2093 */
2094 if (cpu_has_veic || cpu_has_vint) {
2095 int nvec = cpu_has_veic ? 64 : 8;
2096 for (i = 0; i < nvec; i++)
2097 set_vi_handler(i, NULL);
2098 }
2099 else if (cpu_has_divec)
2100 set_handler(0x200, &except_vec4, 0x8);
2101
2102 /*
2103 * Some CPUs can enable/disable for cache parity detection, but does
2104 * it different ways.
2105 */
2106 parity_protection_init();
2107
2108 /*
2109 * The Data Bus Errors / Instruction Bus Errors are signaled
2110 * by external hardware. Therefore these two exceptions
2111 * may have board specific handlers.
2112 */
2113 if (board_be_init)
2114 board_be_init();
2115
2116 set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2117 : handle_int);
2118 set_except_vector(1, handle_tlbm);
2119 set_except_vector(2, handle_tlbl);
2120 set_except_vector(3, handle_tlbs);
2121
2122 set_except_vector(4, handle_adel);
2123 set_except_vector(5, handle_ades);
2124
2125 set_except_vector(6, handle_ibe);
2126 set_except_vector(7, handle_dbe);
2127
2128 set_except_vector(8, handle_sys);
2129 set_except_vector(9, handle_bp);
2130 set_except_vector(10, rdhwr_noopt ? handle_ri :
2131 (cpu_has_vtag_icache ?
2132 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2133 set_except_vector(11, handle_cpu);
2134 set_except_vector(12, handle_ov);
2135 set_except_vector(13, handle_tr);
2136 set_except_vector(14, handle_msa_fpe);
2137
2138 if (current_cpu_type() == CPU_R6000 ||
2139 current_cpu_type() == CPU_R6000A) {
2140 /*
2141 * The R6000 is the only R-series CPU that features a machine
2142 * check exception (similar to the R4000 cache error) and
2143 * unaligned ldc1/sdc1 exception. The handlers have not been
2144 * written yet. Well, anyway there is no R6000 machine on the
2145 * current list of targets for Linux/MIPS.
2146 * (Duh, crap, there is someone with a triple R6k machine)
2147 */
2148 //set_except_vector(14, handle_mc);
2149 //set_except_vector(15, handle_ndc);
2150 }
2151
2152
2153 if (board_nmi_handler_setup)
2154 board_nmi_handler_setup();
2155
2156 if (cpu_has_fpu && !cpu_has_nofpuex)
2157 set_except_vector(15, handle_fpe);
2158
2159 set_except_vector(16, handle_ftlb);
2160 set_except_vector(21, handle_msa);
2161 set_except_vector(22, handle_mdmx);
2162
2163 if (cpu_has_mcheck)
2164 set_except_vector(24, handle_mcheck);
2165
2166 if (cpu_has_mipsmt)
2167 set_except_vector(25, handle_mt);
2168
2169 set_except_vector(26, handle_dsp);
2170
2171 if (board_cache_error_setup)
2172 board_cache_error_setup();
2173
2174 if (cpu_has_vce)
2175 /* Special exception: R4[04]00 uses also the divec space. */
2176 set_handler(0x180, &except_vec3_r4000, 0x100);
2177 else if (cpu_has_4kex)
2178 set_handler(0x180, &except_vec3_generic, 0x80);
2179 else
2180 set_handler(0x080, &except_vec3_generic, 0x80);
2181
2182 local_flush_icache_range(ebase, ebase + 0x400);
2183
2184 sort_extable(__start___dbe_table, __stop___dbe_table);
2185
2186 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2187}