Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/cpu_pm.h>
20#include <linux/kexec.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/extable.h>
25#include <linux/mm.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/debug.h>
28#include <linux/smp.h>
29#include <linux/spinlock.h>
30#include <linux/kallsyms.h>
31#include <linux/memblock.h>
32#include <linux/interrupt.h>
33#include <linux/ptrace.h>
34#include <linux/kgdb.h>
35#include <linux/kdebug.h>
36#include <linux/kprobes.h>
37#include <linux/notifier.h>
38#include <linux/kdb.h>
39#include <linux/irq.h>
40#include <linux/perf_event.h>
41
42#include <asm/addrspace.h>
43#include <asm/bootinfo.h>
44#include <asm/branch.h>
45#include <asm/break.h>
46#include <asm/cop2.h>
47#include <asm/cpu.h>
48#include <asm/cpu-type.h>
49#include <asm/dsp.h>
50#include <asm/fpu.h>
51#include <asm/fpu_emulator.h>
52#include <asm/idle.h>
53#include <asm/isa-rev.h>
54#include <asm/mips-cps.h>
55#include <asm/mips-r2-to-r6-emul.h>
56#include <asm/mipsregs.h>
57#include <asm/mipsmtregs.h>
58#include <asm/module.h>
59#include <asm/msa.h>
60#include <asm/ptrace.h>
61#include <asm/sections.h>
62#include <asm/siginfo.h>
63#include <asm/tlbdebug.h>
64#include <asm/traps.h>
65#include <linux/uaccess.h>
66#include <asm/watch.h>
67#include <asm/mmu_context.h>
68#include <asm/types.h>
69#include <asm/stacktrace.h>
70#include <asm/tlbex.h>
71#include <asm/uasm.h>
72
73#include <asm/mach-loongson64/cpucfg-emul.h>
74
75#include "access-helper.h"
76
77extern void check_wait(void);
78extern asmlinkage void rollback_handle_int(void);
79extern asmlinkage void handle_int(void);
80extern asmlinkage void handle_adel(void);
81extern asmlinkage void handle_ades(void);
82extern asmlinkage void handle_ibe(void);
83extern asmlinkage void handle_dbe(void);
84extern asmlinkage void handle_sys(void);
85extern asmlinkage void handle_bp(void);
86extern asmlinkage void handle_ri(void);
87extern asmlinkage void handle_ri_rdhwr_tlbp(void);
88extern asmlinkage void handle_ri_rdhwr(void);
89extern asmlinkage void handle_cpu(void);
90extern asmlinkage void handle_ov(void);
91extern asmlinkage void handle_tr(void);
92extern asmlinkage void handle_msa_fpe(void);
93extern asmlinkage void handle_fpe(void);
94extern asmlinkage void handle_ftlb(void);
95extern asmlinkage void handle_gsexc(void);
96extern asmlinkage void handle_msa(void);
97extern asmlinkage void handle_mdmx(void);
98extern asmlinkage void handle_watch(void);
99extern asmlinkage void handle_mt(void);
100extern asmlinkage void handle_dsp(void);
101extern asmlinkage void handle_mcheck(void);
102extern asmlinkage void handle_reserved(void);
103extern void tlb_do_page_fault_0(void);
104
105void (*board_be_init)(void);
106int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
107void (*board_nmi_handler_setup)(void);
108void (*board_ejtag_handler_setup)(void);
109void (*board_bind_eic_interrupt)(int irq, int regset);
110void (*board_ebase_setup)(void);
111void(*board_cache_error_setup)(void);
112
113static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
114 bool user)
115{
116 unsigned long *sp = (unsigned long *)(reg29 & ~3);
117 unsigned long addr;
118
119 printk("%sCall Trace:", loglvl);
120#ifdef CONFIG_KALLSYMS
121 printk("%s\n", loglvl);
122#endif
123 while (!kstack_end(sp)) {
124 if (__get_addr(&addr, sp++, user)) {
125 printk("%s (Bad stack address)", loglvl);
126 break;
127 }
128 if (__kernel_text_address(addr))
129 print_ip_sym(loglvl, addr);
130 }
131 printk("%s\n", loglvl);
132}
133
134#ifdef CONFIG_KALLSYMS
135int raw_show_trace;
136static int __init set_raw_show_trace(char *str)
137{
138 raw_show_trace = 1;
139 return 1;
140}
141__setup("raw_show_trace", set_raw_show_trace);
142#endif
143
144static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
145 const char *loglvl, bool user)
146{
147 unsigned long sp = regs->regs[29];
148 unsigned long ra = regs->regs[31];
149 unsigned long pc = regs->cp0_epc;
150
151 if (!task)
152 task = current;
153
154 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
155 show_raw_backtrace(sp, loglvl, user);
156 return;
157 }
158 printk("%sCall Trace:\n", loglvl);
159 do {
160 print_ip_sym(loglvl, pc);
161 pc = unwind_stack(task, &sp, pc, &ra);
162 } while (pc);
163 pr_cont("\n");
164}
165
166/*
167 * This routine abuses get_user()/put_user() to reference pointers
168 * with at least a bit of error checking ...
169 */
170static void show_stacktrace(struct task_struct *task,
171 const struct pt_regs *regs, const char *loglvl, bool user)
172{
173 const int field = 2 * sizeof(unsigned long);
174 unsigned long stackdata;
175 int i;
176 unsigned long *sp = (unsigned long *)regs->regs[29];
177
178 printk("%sStack :", loglvl);
179 i = 0;
180 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
181 if (i && ((i % (64 / field)) == 0)) {
182 pr_cont("\n");
183 printk("%s ", loglvl);
184 }
185 if (i > 39) {
186 pr_cont(" ...");
187 break;
188 }
189
190 if (__get_addr(&stackdata, sp++, user)) {
191 pr_cont(" (Bad stack address)");
192 break;
193 }
194
195 pr_cont(" %0*lx", field, stackdata);
196 i++;
197 }
198 pr_cont("\n");
199 show_backtrace(task, regs, loglvl, user);
200}
201
202void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
203{
204 struct pt_regs regs;
205
206 regs.cp0_status = KSU_KERNEL;
207 if (sp) {
208 regs.regs[29] = (unsigned long)sp;
209 regs.regs[31] = 0;
210 regs.cp0_epc = 0;
211 } else {
212 if (task && task != current) {
213 regs.regs[29] = task->thread.reg29;
214 regs.regs[31] = 0;
215 regs.cp0_epc = task->thread.reg31;
216 } else {
217 prepare_frametrace(®s);
218 }
219 }
220 show_stacktrace(task, ®s, loglvl, false);
221}
222
223static void show_code(void *pc, bool user)
224{
225 long i;
226 unsigned short *pc16 = NULL;
227
228 printk("Code:");
229
230 if ((unsigned long)pc & 1)
231 pc16 = (u16 *)((unsigned long)pc & ~1);
232
233 for(i = -3 ; i < 6 ; i++) {
234 if (pc16) {
235 u16 insn16;
236
237 if (__get_inst16(&insn16, pc16 + i, user))
238 goto bad_address;
239
240 pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
241 } else {
242 u32 insn32;
243
244 if (__get_inst32(&insn32, (u32 *)pc + i, user))
245 goto bad_address;
246
247 pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
248 }
249 }
250 pr_cont("\n");
251 return;
252
253bad_address:
254 pr_cont(" (Bad address in epc)\n\n");
255}
256
257static void __show_regs(const struct pt_regs *regs)
258{
259 const int field = 2 * sizeof(unsigned long);
260 unsigned int cause = regs->cp0_cause;
261 unsigned int exccode;
262 int i;
263
264 show_regs_print_info(KERN_DEFAULT);
265
266 /*
267 * Saved main processor registers
268 */
269 for (i = 0; i < 32; ) {
270 if ((i % 4) == 0)
271 printk("$%2d :", i);
272 if (i == 0)
273 pr_cont(" %0*lx", field, 0UL);
274 else if (i == 26 || i == 27)
275 pr_cont(" %*s", field, "");
276 else
277 pr_cont(" %0*lx", field, regs->regs[i]);
278
279 i++;
280 if ((i % 4) == 0)
281 pr_cont("\n");
282 }
283
284#ifdef CONFIG_CPU_HAS_SMARTMIPS
285 printk("Acx : %0*lx\n", field, regs->acx);
286#endif
287 if (MIPS_ISA_REV < 6) {
288 printk("Hi : %0*lx\n", field, regs->hi);
289 printk("Lo : %0*lx\n", field, regs->lo);
290 }
291
292 /*
293 * Saved cp0 registers
294 */
295 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
296 (void *) regs->cp0_epc);
297 printk("ra : %0*lx %pS\n", field, regs->regs[31],
298 (void *) regs->regs[31]);
299
300 printk("Status: %08x ", (uint32_t) regs->cp0_status);
301
302 if (cpu_has_3kex) {
303 if (regs->cp0_status & ST0_KUO)
304 pr_cont("KUo ");
305 if (regs->cp0_status & ST0_IEO)
306 pr_cont("IEo ");
307 if (regs->cp0_status & ST0_KUP)
308 pr_cont("KUp ");
309 if (regs->cp0_status & ST0_IEP)
310 pr_cont("IEp ");
311 if (regs->cp0_status & ST0_KUC)
312 pr_cont("KUc ");
313 if (regs->cp0_status & ST0_IEC)
314 pr_cont("IEc ");
315 } else if (cpu_has_4kex) {
316 if (regs->cp0_status & ST0_KX)
317 pr_cont("KX ");
318 if (regs->cp0_status & ST0_SX)
319 pr_cont("SX ");
320 if (regs->cp0_status & ST0_UX)
321 pr_cont("UX ");
322 switch (regs->cp0_status & ST0_KSU) {
323 case KSU_USER:
324 pr_cont("USER ");
325 break;
326 case KSU_SUPERVISOR:
327 pr_cont("SUPERVISOR ");
328 break;
329 case KSU_KERNEL:
330 pr_cont("KERNEL ");
331 break;
332 default:
333 pr_cont("BAD_MODE ");
334 break;
335 }
336 if (regs->cp0_status & ST0_ERL)
337 pr_cont("ERL ");
338 if (regs->cp0_status & ST0_EXL)
339 pr_cont("EXL ");
340 if (regs->cp0_status & ST0_IE)
341 pr_cont("IE ");
342 }
343 pr_cont("\n");
344
345 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
346 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
347
348 if (1 <= exccode && exccode <= 5)
349 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
350
351 printk("PrId : %08x (%s)\n", read_c0_prid(),
352 cpu_name_string());
353}
354
355/*
356 * FIXME: really the generic show_regs should take a const pointer argument.
357 */
358void show_regs(struct pt_regs *regs)
359{
360 __show_regs(regs);
361 dump_stack();
362}
363
364void show_registers(struct pt_regs *regs)
365{
366 const int field = 2 * sizeof(unsigned long);
367
368 __show_regs(regs);
369 print_modules();
370 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
371 current->comm, current->pid, current_thread_info(), current,
372 field, current_thread_info()->tp_value);
373 if (cpu_has_userlocal) {
374 unsigned long tls;
375
376 tls = read_c0_userlocal();
377 if (tls != current_thread_info()->tp_value)
378 printk("*HwTLS: %0*lx\n", field, tls);
379 }
380
381 show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
382 show_code((void *)regs->cp0_epc, user_mode(regs));
383 printk("\n");
384}
385
386static DEFINE_RAW_SPINLOCK(die_lock);
387
388void __noreturn die(const char *str, struct pt_regs *regs)
389{
390 static int die_counter;
391 int sig = SIGSEGV;
392
393 oops_enter();
394
395 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
396 SIGSEGV) == NOTIFY_STOP)
397 sig = 0;
398
399 console_verbose();
400 raw_spin_lock_irq(&die_lock);
401 bust_spinlocks(1);
402
403 printk("%s[#%d]:\n", str, ++die_counter);
404 show_registers(regs);
405 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
406 raw_spin_unlock_irq(&die_lock);
407
408 oops_exit();
409
410 if (in_interrupt())
411 panic("Fatal exception in interrupt");
412
413 if (panic_on_oops)
414 panic("Fatal exception");
415
416 if (regs && kexec_should_crash(current))
417 crash_kexec(regs);
418
419 do_exit(sig);
420}
421
422extern struct exception_table_entry __start___dbe_table[];
423extern struct exception_table_entry __stop___dbe_table[];
424
425__asm__(
426" .section __dbe_table, \"a\"\n"
427" .previous \n");
428
429/* Given an address, look for it in the exception tables. */
430static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
431{
432 const struct exception_table_entry *e;
433
434 e = search_extable(__start___dbe_table,
435 __stop___dbe_table - __start___dbe_table, addr);
436 if (!e)
437 e = search_module_dbetables(addr);
438 return e;
439}
440
441asmlinkage void do_be(struct pt_regs *regs)
442{
443 const int field = 2 * sizeof(unsigned long);
444 const struct exception_table_entry *fixup = NULL;
445 int data = regs->cp0_cause & 4;
446 int action = MIPS_BE_FATAL;
447 enum ctx_state prev_state;
448
449 prev_state = exception_enter();
450 /* XXX For now. Fixme, this searches the wrong table ... */
451 if (data && !user_mode(regs))
452 fixup = search_dbe_tables(exception_epc(regs));
453
454 if (fixup)
455 action = MIPS_BE_FIXUP;
456
457 if (board_be_handler)
458 action = board_be_handler(regs, fixup != NULL);
459 else
460 mips_cm_error_report();
461
462 switch (action) {
463 case MIPS_BE_DISCARD:
464 goto out;
465 case MIPS_BE_FIXUP:
466 if (fixup) {
467 regs->cp0_epc = fixup->nextinsn;
468 goto out;
469 }
470 break;
471 default:
472 break;
473 }
474
475 /*
476 * Assume it would be too dangerous to continue ...
477 */
478 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
479 data ? "Data" : "Instruction",
480 field, regs->cp0_epc, field, regs->regs[31]);
481 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
482 SIGBUS) == NOTIFY_STOP)
483 goto out;
484
485 die_if_kernel("Oops", regs);
486 force_sig(SIGBUS);
487
488out:
489 exception_exit(prev_state);
490}
491
492/*
493 * ll/sc, rdhwr, sync emulation
494 */
495
496#define OPCODE 0xfc000000
497#define BASE 0x03e00000
498#define RT 0x001f0000
499#define OFFSET 0x0000ffff
500#define LL 0xc0000000
501#define SC 0xe0000000
502#define SPEC0 0x00000000
503#define SPEC3 0x7c000000
504#define RD 0x0000f800
505#define FUNC 0x0000003f
506#define SYNC 0x0000000f
507#define RDHWR 0x0000003b
508
509/* microMIPS definitions */
510#define MM_POOL32A_FUNC 0xfc00ffff
511#define MM_RDHWR 0x00006b3c
512#define MM_RS 0x001f0000
513#define MM_RT 0x03e00000
514
515/*
516 * The ll_bit is cleared by r*_switch.S
517 */
518
519unsigned int ll_bit;
520struct task_struct *ll_task;
521
522static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
523{
524 unsigned long value, __user *vaddr;
525 long offset;
526
527 /*
528 * analyse the ll instruction that just caused a ri exception
529 * and put the referenced address to addr.
530 */
531
532 /* sign extend offset */
533 offset = opcode & OFFSET;
534 offset <<= 16;
535 offset >>= 16;
536
537 vaddr = (unsigned long __user *)
538 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
539
540 if ((unsigned long)vaddr & 3)
541 return SIGBUS;
542 if (get_user(value, vaddr))
543 return SIGSEGV;
544
545 preempt_disable();
546
547 if (ll_task == NULL || ll_task == current) {
548 ll_bit = 1;
549 } else {
550 ll_bit = 0;
551 }
552 ll_task = current;
553
554 preempt_enable();
555
556 regs->regs[(opcode & RT) >> 16] = value;
557
558 return 0;
559}
560
561static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
562{
563 unsigned long __user *vaddr;
564 unsigned long reg;
565 long offset;
566
567 /*
568 * analyse the sc instruction that just caused a ri exception
569 * and put the referenced address to addr.
570 */
571
572 /* sign extend offset */
573 offset = opcode & OFFSET;
574 offset <<= 16;
575 offset >>= 16;
576
577 vaddr = (unsigned long __user *)
578 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
579 reg = (opcode & RT) >> 16;
580
581 if ((unsigned long)vaddr & 3)
582 return SIGBUS;
583
584 preempt_disable();
585
586 if (ll_bit == 0 || ll_task != current) {
587 regs->regs[reg] = 0;
588 preempt_enable();
589 return 0;
590 }
591
592 preempt_enable();
593
594 if (put_user(regs->regs[reg], vaddr))
595 return SIGSEGV;
596
597 regs->regs[reg] = 1;
598
599 return 0;
600}
601
602/*
603 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
604 * opcodes are supposed to result in coprocessor unusable exceptions if
605 * executed on ll/sc-less processors. That's the theory. In practice a
606 * few processors such as NEC's VR4100 throw reserved instruction exceptions
607 * instead, so we're doing the emulation thing in both exception handlers.
608 */
609static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
610{
611 if ((opcode & OPCODE) == LL) {
612 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
613 1, regs, 0);
614 return simulate_ll(regs, opcode);
615 }
616 if ((opcode & OPCODE) == SC) {
617 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
618 1, regs, 0);
619 return simulate_sc(regs, opcode);
620 }
621
622 return -1; /* Must be something else ... */
623}
624
625/*
626 * Simulate trapping 'rdhwr' instructions to provide user accessible
627 * registers not implemented in hardware.
628 */
629static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
630{
631 struct thread_info *ti = task_thread_info(current);
632
633 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
634 1, regs, 0);
635 switch (rd) {
636 case MIPS_HWR_CPUNUM: /* CPU number */
637 regs->regs[rt] = smp_processor_id();
638 return 0;
639 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
640 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
641 current_cpu_data.icache.linesz);
642 return 0;
643 case MIPS_HWR_CC: /* Read count register */
644 regs->regs[rt] = read_c0_count();
645 return 0;
646 case MIPS_HWR_CCRES: /* Count register resolution */
647 switch (current_cpu_type()) {
648 case CPU_20KC:
649 case CPU_25KF:
650 regs->regs[rt] = 1;
651 break;
652 default:
653 regs->regs[rt] = 2;
654 }
655 return 0;
656 case MIPS_HWR_ULR: /* Read UserLocal register */
657 regs->regs[rt] = ti->tp_value;
658 return 0;
659 default:
660 return -1;
661 }
662}
663
664static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
665{
666 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
667 int rd = (opcode & RD) >> 11;
668 int rt = (opcode & RT) >> 16;
669
670 simulate_rdhwr(regs, rd, rt);
671 return 0;
672 }
673
674 /* Not ours. */
675 return -1;
676}
677
678static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
679{
680 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
681 int rd = (opcode & MM_RS) >> 16;
682 int rt = (opcode & MM_RT) >> 21;
683 simulate_rdhwr(regs, rd, rt);
684 return 0;
685 }
686
687 /* Not ours. */
688 return -1;
689}
690
691static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
692{
693 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
694 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
695 1, regs, 0);
696 return 0;
697 }
698
699 return -1; /* Must be something else ... */
700}
701
702/*
703 * Loongson-3 CSR instructions emulation
704 */
705
706#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
707
708#define LWC2 0xc8000000
709#define RS BASE
710#define CSR_OPCODE2 0x00000118
711#define CSR_OPCODE2_MASK 0x000007ff
712#define CSR_FUNC_MASK RT
713#define CSR_FUNC_CPUCFG 0x8
714
715static int simulate_loongson3_cpucfg(struct pt_regs *regs,
716 unsigned int opcode)
717{
718 int op = opcode & OPCODE;
719 int op2 = opcode & CSR_OPCODE2_MASK;
720 int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
721
722 if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
723 int rd = (opcode & RD) >> 11;
724 int rs = (opcode & RS) >> 21;
725 __u64 sel = regs->regs[rs];
726
727 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
728
729 /* Do not emulate on unsupported core models. */
730 preempt_disable();
731 if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) {
732 preempt_enable();
733 return -1;
734 }
735 regs->regs[rd] = loongson3_cpucfg_read_synthesized(
736 ¤t_cpu_data, sel);
737 preempt_enable();
738 return 0;
739 }
740
741 /* Not ours. */
742 return -1;
743}
744#endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
745
746asmlinkage void do_ov(struct pt_regs *regs)
747{
748 enum ctx_state prev_state;
749
750 prev_state = exception_enter();
751 die_if_kernel("Integer overflow", regs);
752
753 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
754 exception_exit(prev_state);
755}
756
757#ifdef CONFIG_MIPS_FP_SUPPORT
758
759/*
760 * Send SIGFPE according to FCSR Cause bits, which must have already
761 * been masked against Enable bits. This is impotant as Inexact can
762 * happen together with Overflow or Underflow, and `ptrace' can set
763 * any bits.
764 */
765void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
766 struct task_struct *tsk)
767{
768 int si_code = FPE_FLTUNK;
769
770 if (fcr31 & FPU_CSR_INV_X)
771 si_code = FPE_FLTINV;
772 else if (fcr31 & FPU_CSR_DIV_X)
773 si_code = FPE_FLTDIV;
774 else if (fcr31 & FPU_CSR_OVF_X)
775 si_code = FPE_FLTOVF;
776 else if (fcr31 & FPU_CSR_UDF_X)
777 si_code = FPE_FLTUND;
778 else if (fcr31 & FPU_CSR_INE_X)
779 si_code = FPE_FLTRES;
780
781 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
782}
783
784int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
785{
786 int si_code;
787
788 switch (sig) {
789 case 0:
790 return 0;
791
792 case SIGFPE:
793 force_fcr31_sig(fcr31, fault_addr, current);
794 return 1;
795
796 case SIGBUS:
797 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
798 return 1;
799
800 case SIGSEGV:
801 mmap_read_lock(current->mm);
802 if (vma_lookup(current->mm, (unsigned long)fault_addr))
803 si_code = SEGV_ACCERR;
804 else
805 si_code = SEGV_MAPERR;
806 mmap_read_unlock(current->mm);
807 force_sig_fault(SIGSEGV, si_code, fault_addr);
808 return 1;
809
810 default:
811 force_sig(sig);
812 return 1;
813 }
814}
815
816static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
817 unsigned long old_epc, unsigned long old_ra)
818{
819 union mips_instruction inst = { .word = opcode };
820 void __user *fault_addr;
821 unsigned long fcr31;
822 int sig;
823
824 /* If it's obviously not an FP instruction, skip it */
825 switch (inst.i_format.opcode) {
826 case cop1_op:
827 case cop1x_op:
828 case lwc1_op:
829 case ldc1_op:
830 case swc1_op:
831 case sdc1_op:
832 break;
833
834 default:
835 return -1;
836 }
837
838 /*
839 * do_ri skipped over the instruction via compute_return_epc, undo
840 * that for the FPU emulator.
841 */
842 regs->cp0_epc = old_epc;
843 regs->regs[31] = old_ra;
844
845 /* Run the emulator */
846 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
847 &fault_addr);
848
849 /*
850 * We can't allow the emulated instruction to leave any
851 * enabled Cause bits set in $fcr31.
852 */
853 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
854 current->thread.fpu.fcr31 &= ~fcr31;
855
856 /* Restore the hardware register state */
857 own_fpu(1);
858
859 /* Send a signal if required. */
860 process_fpemu_return(sig, fault_addr, fcr31);
861
862 return 0;
863}
864
865/*
866 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
867 */
868asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
869{
870 enum ctx_state prev_state;
871 void __user *fault_addr;
872 int sig;
873
874 prev_state = exception_enter();
875 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
876 SIGFPE) == NOTIFY_STOP)
877 goto out;
878
879 /* Clear FCSR.Cause before enabling interrupts */
880 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
881 local_irq_enable();
882
883 die_if_kernel("FP exception in kernel code", regs);
884
885 if (fcr31 & FPU_CSR_UNI_X) {
886 /*
887 * Unimplemented operation exception. If we've got the full
888 * software emulator on-board, let's use it...
889 *
890 * Force FPU to dump state into task/thread context. We're
891 * moving a lot of data here for what is probably a single
892 * instruction, but the alternative is to pre-decode the FP
893 * register operands before invoking the emulator, which seems
894 * a bit extreme for what should be an infrequent event.
895 */
896
897 /* Run the emulator */
898 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
899 &fault_addr);
900
901 /*
902 * We can't allow the emulated instruction to leave any
903 * enabled Cause bits set in $fcr31.
904 */
905 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
906 current->thread.fpu.fcr31 &= ~fcr31;
907
908 /* Restore the hardware register state */
909 own_fpu(1); /* Using the FPU again. */
910 } else {
911 sig = SIGFPE;
912 fault_addr = (void __user *) regs->cp0_epc;
913 }
914
915 /* Send a signal if required. */
916 process_fpemu_return(sig, fault_addr, fcr31);
917
918out:
919 exception_exit(prev_state);
920}
921
922/*
923 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
924 * emulated more than some threshold number of instructions, force migration to
925 * a "CPU" that has FP support.
926 */
927static void mt_ase_fp_affinity(void)
928{
929#ifdef CONFIG_MIPS_MT_FPAFF
930 if (mt_fpemul_threshold > 0 &&
931 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
932 /*
933 * If there's no FPU present, or if the application has already
934 * restricted the allowed set to exclude any CPUs with FPUs,
935 * we'll skip the procedure.
936 */
937 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
938 cpumask_t tmask;
939
940 current->thread.user_cpus_allowed
941 = current->cpus_mask;
942 cpumask_and(&tmask, ¤t->cpus_mask,
943 &mt_fpu_cpumask);
944 set_cpus_allowed_ptr(current, &tmask);
945 set_thread_flag(TIF_FPUBOUND);
946 }
947 }
948#endif /* CONFIG_MIPS_MT_FPAFF */
949}
950
951#else /* !CONFIG_MIPS_FP_SUPPORT */
952
953static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
954 unsigned long old_epc, unsigned long old_ra)
955{
956 return -1;
957}
958
959#endif /* !CONFIG_MIPS_FP_SUPPORT */
960
961void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
962 const char *str)
963{
964 char b[40];
965
966#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
967 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
968 SIGTRAP) == NOTIFY_STOP)
969 return;
970#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
971
972 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
973 SIGTRAP) == NOTIFY_STOP)
974 return;
975
976 /*
977 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
978 * insns, even for trap and break codes that indicate arithmetic
979 * failures. Weird ...
980 * But should we continue the brokenness??? --macro
981 */
982 switch (code) {
983 case BRK_OVERFLOW:
984 case BRK_DIVZERO:
985 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
986 die_if_kernel(b, regs);
987 force_sig_fault(SIGFPE,
988 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
989 (void __user *) regs->cp0_epc);
990 break;
991 case BRK_BUG:
992 die_if_kernel("Kernel bug detected", regs);
993 force_sig(SIGTRAP);
994 break;
995 case BRK_MEMU:
996 /*
997 * This breakpoint code is used by the FPU emulator to retake
998 * control of the CPU after executing the instruction from the
999 * delay slot of an emulated branch.
1000 *
1001 * Terminate if exception was recognized as a delay slot return
1002 * otherwise handle as normal.
1003 */
1004 if (do_dsemulret(regs))
1005 return;
1006
1007 die_if_kernel("Math emu break/trap", regs);
1008 force_sig(SIGTRAP);
1009 break;
1010 default:
1011 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1012 die_if_kernel(b, regs);
1013 if (si_code) {
1014 force_sig_fault(SIGTRAP, si_code, NULL);
1015 } else {
1016 force_sig(SIGTRAP);
1017 }
1018 }
1019}
1020
1021asmlinkage void do_bp(struct pt_regs *regs)
1022{
1023 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1024 unsigned int opcode, bcode;
1025 enum ctx_state prev_state;
1026 bool user = user_mode(regs);
1027
1028 prev_state = exception_enter();
1029 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1030 if (get_isa16_mode(regs->cp0_epc)) {
1031 u16 instr[2];
1032
1033 if (__get_inst16(&instr[0], (u16 *)epc, user))
1034 goto out_sigsegv;
1035
1036 if (!cpu_has_mmips) {
1037 /* MIPS16e mode */
1038 bcode = (instr[0] >> 5) & 0x3f;
1039 } else if (mm_insn_16bit(instr[0])) {
1040 /* 16-bit microMIPS BREAK */
1041 bcode = instr[0] & 0xf;
1042 } else {
1043 /* 32-bit microMIPS BREAK */
1044 if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1045 goto out_sigsegv;
1046 opcode = (instr[0] << 16) | instr[1];
1047 bcode = (opcode >> 6) & ((1 << 20) - 1);
1048 }
1049 } else {
1050 if (__get_inst32(&opcode, (u32 *)epc, user))
1051 goto out_sigsegv;
1052 bcode = (opcode >> 6) & ((1 << 20) - 1);
1053 }
1054
1055 /*
1056 * There is the ancient bug in the MIPS assemblers that the break
1057 * code starts left to bit 16 instead to bit 6 in the opcode.
1058 * Gas is bug-compatible, but not always, grrr...
1059 * We handle both cases with a simple heuristics. --macro
1060 */
1061 if (bcode >= (1 << 10))
1062 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1063
1064 /*
1065 * notify the kprobe handlers, if instruction is likely to
1066 * pertain to them.
1067 */
1068 switch (bcode) {
1069 case BRK_UPROBE:
1070 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1071 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1072 goto out;
1073 else
1074 break;
1075 case BRK_UPROBE_XOL:
1076 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1077 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1078 goto out;
1079 else
1080 break;
1081 case BRK_KPROBE_BP:
1082 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1083 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1084 goto out;
1085 else
1086 break;
1087 case BRK_KPROBE_SSTEPBP:
1088 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1089 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1090 goto out;
1091 else
1092 break;
1093 default:
1094 break;
1095 }
1096
1097 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1098
1099out:
1100 exception_exit(prev_state);
1101 return;
1102
1103out_sigsegv:
1104 force_sig(SIGSEGV);
1105 goto out;
1106}
1107
1108asmlinkage void do_tr(struct pt_regs *regs)
1109{
1110 u32 opcode, tcode = 0;
1111 enum ctx_state prev_state;
1112 u16 instr[2];
1113 bool user = user_mode(regs);
1114 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1115
1116 prev_state = exception_enter();
1117 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1118 if (get_isa16_mode(regs->cp0_epc)) {
1119 if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1120 __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1121 goto out_sigsegv;
1122 opcode = (instr[0] << 16) | instr[1];
1123 /* Immediate versions don't provide a code. */
1124 if (!(opcode & OPCODE))
1125 tcode = (opcode >> 12) & ((1 << 4) - 1);
1126 } else {
1127 if (__get_inst32(&opcode, (u32 *)epc, user))
1128 goto out_sigsegv;
1129 /* Immediate versions don't provide a code. */
1130 if (!(opcode & OPCODE))
1131 tcode = (opcode >> 6) & ((1 << 10) - 1);
1132 }
1133
1134 do_trap_or_bp(regs, tcode, 0, "Trap");
1135
1136out:
1137 exception_exit(prev_state);
1138 return;
1139
1140out_sigsegv:
1141 force_sig(SIGSEGV);
1142 goto out;
1143}
1144
1145asmlinkage void do_ri(struct pt_regs *regs)
1146{
1147 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1148 unsigned long old_epc = regs->cp0_epc;
1149 unsigned long old31 = regs->regs[31];
1150 enum ctx_state prev_state;
1151 unsigned int opcode = 0;
1152 int status = -1;
1153
1154 /*
1155 * Avoid any kernel code. Just emulate the R2 instruction
1156 * as quickly as possible.
1157 */
1158 if (mipsr2_emulation && cpu_has_mips_r6 &&
1159 likely(user_mode(regs)) &&
1160 likely(get_user(opcode, epc) >= 0)) {
1161 unsigned long fcr31 = 0;
1162
1163 status = mipsr2_decoder(regs, opcode, &fcr31);
1164 switch (status) {
1165 case 0:
1166 case SIGEMT:
1167 return;
1168 case SIGILL:
1169 goto no_r2_instr;
1170 default:
1171 process_fpemu_return(status,
1172 ¤t->thread.cp0_baduaddr,
1173 fcr31);
1174 return;
1175 }
1176 }
1177
1178no_r2_instr:
1179
1180 prev_state = exception_enter();
1181 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1182
1183 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1184 SIGILL) == NOTIFY_STOP)
1185 goto out;
1186
1187 die_if_kernel("Reserved instruction in kernel code", regs);
1188
1189 if (unlikely(compute_return_epc(regs) < 0))
1190 goto out;
1191
1192 if (!get_isa16_mode(regs->cp0_epc)) {
1193 if (unlikely(get_user(opcode, epc) < 0))
1194 status = SIGSEGV;
1195
1196 if (!cpu_has_llsc && status < 0)
1197 status = simulate_llsc(regs, opcode);
1198
1199 if (status < 0)
1200 status = simulate_rdhwr_normal(regs, opcode);
1201
1202 if (status < 0)
1203 status = simulate_sync(regs, opcode);
1204
1205 if (status < 0)
1206 status = simulate_fp(regs, opcode, old_epc, old31);
1207
1208#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1209 if (status < 0)
1210 status = simulate_loongson3_cpucfg(regs, opcode);
1211#endif
1212 } else if (cpu_has_mmips) {
1213 unsigned short mmop[2] = { 0 };
1214
1215 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1216 status = SIGSEGV;
1217 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1218 status = SIGSEGV;
1219 opcode = mmop[0];
1220 opcode = (opcode << 16) | mmop[1];
1221
1222 if (status < 0)
1223 status = simulate_rdhwr_mm(regs, opcode);
1224 }
1225
1226 if (status < 0)
1227 status = SIGILL;
1228
1229 if (unlikely(status > 0)) {
1230 regs->cp0_epc = old_epc; /* Undo skip-over. */
1231 regs->regs[31] = old31;
1232 force_sig(status);
1233 }
1234
1235out:
1236 exception_exit(prev_state);
1237}
1238
1239/*
1240 * No lock; only written during early bootup by CPU 0.
1241 */
1242static RAW_NOTIFIER_HEAD(cu2_chain);
1243
1244int __ref register_cu2_notifier(struct notifier_block *nb)
1245{
1246 return raw_notifier_chain_register(&cu2_chain, nb);
1247}
1248
1249int cu2_notifier_call_chain(unsigned long val, void *v)
1250{
1251 return raw_notifier_call_chain(&cu2_chain, val, v);
1252}
1253
1254static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1255 void *data)
1256{
1257 struct pt_regs *regs = data;
1258
1259 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1260 "instruction", regs);
1261 force_sig(SIGILL);
1262
1263 return NOTIFY_OK;
1264}
1265
1266#ifdef CONFIG_MIPS_FP_SUPPORT
1267
1268static int enable_restore_fp_context(int msa)
1269{
1270 int err, was_fpu_owner, prior_msa;
1271 bool first_fp;
1272
1273 /* Initialize context if it hasn't been used already */
1274 first_fp = init_fp_ctx(current);
1275
1276 if (first_fp) {
1277 preempt_disable();
1278 err = own_fpu_inatomic(1);
1279 if (msa && !err) {
1280 enable_msa();
1281 /*
1282 * with MSA enabled, userspace can see MSACSR
1283 * and MSA regs, but the values in them are from
1284 * other task before current task, restore them
1285 * from saved fp/msa context
1286 */
1287 write_msa_csr(current->thread.fpu.msacsr);
1288 /*
1289 * own_fpu_inatomic(1) just restore low 64bit,
1290 * fix the high 64bit
1291 */
1292 init_msa_upper();
1293 set_thread_flag(TIF_USEDMSA);
1294 set_thread_flag(TIF_MSA_CTX_LIVE);
1295 }
1296 preempt_enable();
1297 return err;
1298 }
1299
1300 /*
1301 * This task has formerly used the FP context.
1302 *
1303 * If this thread has no live MSA vector context then we can simply
1304 * restore the scalar FP context. If it has live MSA vector context
1305 * (that is, it has or may have used MSA since last performing a
1306 * function call) then we'll need to restore the vector context. This
1307 * applies even if we're currently only executing a scalar FP
1308 * instruction. This is because if we were to later execute an MSA
1309 * instruction then we'd either have to:
1310 *
1311 * - Restore the vector context & clobber any registers modified by
1312 * scalar FP instructions between now & then.
1313 *
1314 * or
1315 *
1316 * - Not restore the vector context & lose the most significant bits
1317 * of all vector registers.
1318 *
1319 * Neither of those options is acceptable. We cannot restore the least
1320 * significant bits of the registers now & only restore the most
1321 * significant bits later because the most significant bits of any
1322 * vector registers whose aliased FP register is modified now will have
1323 * been zeroed. We'd have no way to know that when restoring the vector
1324 * context & thus may load an outdated value for the most significant
1325 * bits of a vector register.
1326 */
1327 if (!msa && !thread_msa_context_live())
1328 return own_fpu(1);
1329
1330 /*
1331 * This task is using or has previously used MSA. Thus we require
1332 * that Status.FR == 1.
1333 */
1334 preempt_disable();
1335 was_fpu_owner = is_fpu_owner();
1336 err = own_fpu_inatomic(0);
1337 if (err)
1338 goto out;
1339
1340 enable_msa();
1341 write_msa_csr(current->thread.fpu.msacsr);
1342 set_thread_flag(TIF_USEDMSA);
1343
1344 /*
1345 * If this is the first time that the task is using MSA and it has
1346 * previously used scalar FP in this time slice then we already nave
1347 * FP context which we shouldn't clobber. We do however need to clear
1348 * the upper 64b of each vector register so that this task has no
1349 * opportunity to see data left behind by another.
1350 */
1351 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1352 if (!prior_msa && was_fpu_owner) {
1353 init_msa_upper();
1354
1355 goto out;
1356 }
1357
1358 if (!prior_msa) {
1359 /*
1360 * Restore the least significant 64b of each vector register
1361 * from the existing scalar FP context.
1362 */
1363 _restore_fp(current);
1364
1365 /*
1366 * The task has not formerly used MSA, so clear the upper 64b
1367 * of each vector register such that it cannot see data left
1368 * behind by another task.
1369 */
1370 init_msa_upper();
1371 } else {
1372 /* We need to restore the vector context. */
1373 restore_msa(current);
1374
1375 /* Restore the scalar FP control & status register */
1376 if (!was_fpu_owner)
1377 write_32bit_cp1_register(CP1_STATUS,
1378 current->thread.fpu.fcr31);
1379 }
1380
1381out:
1382 preempt_enable();
1383
1384 return 0;
1385}
1386
1387#else /* !CONFIG_MIPS_FP_SUPPORT */
1388
1389static int enable_restore_fp_context(int msa)
1390{
1391 return SIGILL;
1392}
1393
1394#endif /* CONFIG_MIPS_FP_SUPPORT */
1395
1396asmlinkage void do_cpu(struct pt_regs *regs)
1397{
1398 enum ctx_state prev_state;
1399 unsigned int __user *epc;
1400 unsigned long old_epc, old31;
1401 unsigned int opcode;
1402 unsigned int cpid;
1403 int status;
1404
1405 prev_state = exception_enter();
1406 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1407
1408 if (cpid != 2)
1409 die_if_kernel("do_cpu invoked from kernel context!", regs);
1410
1411 switch (cpid) {
1412 case 0:
1413 epc = (unsigned int __user *)exception_epc(regs);
1414 old_epc = regs->cp0_epc;
1415 old31 = regs->regs[31];
1416 opcode = 0;
1417 status = -1;
1418
1419 if (unlikely(compute_return_epc(regs) < 0))
1420 break;
1421
1422 if (!get_isa16_mode(regs->cp0_epc)) {
1423 if (unlikely(get_user(opcode, epc) < 0))
1424 status = SIGSEGV;
1425
1426 if (!cpu_has_llsc && status < 0)
1427 status = simulate_llsc(regs, opcode);
1428 }
1429
1430 if (status < 0)
1431 status = SIGILL;
1432
1433 if (unlikely(status > 0)) {
1434 regs->cp0_epc = old_epc; /* Undo skip-over. */
1435 regs->regs[31] = old31;
1436 force_sig(status);
1437 }
1438
1439 break;
1440
1441#ifdef CONFIG_MIPS_FP_SUPPORT
1442 case 3:
1443 /*
1444 * The COP3 opcode space and consequently the CP0.Status.CU3
1445 * bit and the CP0.Cause.CE=3 encoding have been removed as
1446 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1447 * up the space has been reused for COP1X instructions, that
1448 * are enabled by the CP0.Status.CU1 bit and consequently
1449 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1450 * exceptions. Some FPU-less processors that implement one
1451 * of these ISAs however use this code erroneously for COP1X
1452 * instructions. Therefore we redirect this trap to the FP
1453 * emulator too.
1454 */
1455 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1456 force_sig(SIGILL);
1457 break;
1458 }
1459 fallthrough;
1460 case 1: {
1461 void __user *fault_addr;
1462 unsigned long fcr31;
1463 int err, sig;
1464
1465 err = enable_restore_fp_context(0);
1466
1467 if (raw_cpu_has_fpu && !err)
1468 break;
1469
1470 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1471 &fault_addr);
1472
1473 /*
1474 * We can't allow the emulated instruction to leave
1475 * any enabled Cause bits set in $fcr31.
1476 */
1477 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1478 current->thread.fpu.fcr31 &= ~fcr31;
1479
1480 /* Send a signal if required. */
1481 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1482 mt_ase_fp_affinity();
1483
1484 break;
1485 }
1486#else /* CONFIG_MIPS_FP_SUPPORT */
1487 case 1:
1488 case 3:
1489 force_sig(SIGILL);
1490 break;
1491#endif /* CONFIG_MIPS_FP_SUPPORT */
1492
1493 case 2:
1494 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1495 break;
1496 }
1497
1498 exception_exit(prev_state);
1499}
1500
1501asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1502{
1503 enum ctx_state prev_state;
1504
1505 prev_state = exception_enter();
1506 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1507 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1508 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1509 goto out;
1510
1511 /* Clear MSACSR.Cause before enabling interrupts */
1512 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1513 local_irq_enable();
1514
1515 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1516 force_sig(SIGFPE);
1517out:
1518 exception_exit(prev_state);
1519}
1520
1521asmlinkage void do_msa(struct pt_regs *regs)
1522{
1523 enum ctx_state prev_state;
1524 int err;
1525
1526 prev_state = exception_enter();
1527
1528 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1529 force_sig(SIGILL);
1530 goto out;
1531 }
1532
1533 die_if_kernel("do_msa invoked from kernel context!", regs);
1534
1535 err = enable_restore_fp_context(1);
1536 if (err)
1537 force_sig(SIGILL);
1538out:
1539 exception_exit(prev_state);
1540}
1541
1542asmlinkage void do_mdmx(struct pt_regs *regs)
1543{
1544 enum ctx_state prev_state;
1545
1546 prev_state = exception_enter();
1547 force_sig(SIGILL);
1548 exception_exit(prev_state);
1549}
1550
1551/*
1552 * Called with interrupts disabled.
1553 */
1554asmlinkage void do_watch(struct pt_regs *regs)
1555{
1556 enum ctx_state prev_state;
1557
1558 prev_state = exception_enter();
1559 /*
1560 * Clear WP (bit 22) bit of cause register so we don't loop
1561 * forever.
1562 */
1563 clear_c0_cause(CAUSEF_WP);
1564
1565 /*
1566 * If the current thread has the watch registers loaded, save
1567 * their values and send SIGTRAP. Otherwise another thread
1568 * left the registers set, clear them and continue.
1569 */
1570 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1571 mips_read_watch_registers();
1572 local_irq_enable();
1573 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1574 } else {
1575 mips_clear_watch_registers();
1576 local_irq_enable();
1577 }
1578 exception_exit(prev_state);
1579}
1580
1581asmlinkage void do_mcheck(struct pt_regs *regs)
1582{
1583 int multi_match = regs->cp0_status & ST0_TS;
1584 enum ctx_state prev_state;
1585
1586 prev_state = exception_enter();
1587 show_regs(regs);
1588
1589 if (multi_match) {
1590 dump_tlb_regs();
1591 pr_info("\n");
1592 dump_tlb_all();
1593 }
1594
1595 show_code((void *)regs->cp0_epc, user_mode(regs));
1596
1597 /*
1598 * Some chips may have other causes of machine check (e.g. SB1
1599 * graduation timer)
1600 */
1601 panic("Caught Machine Check exception - %scaused by multiple "
1602 "matching entries in the TLB.",
1603 (multi_match) ? "" : "not ");
1604}
1605
1606asmlinkage void do_mt(struct pt_regs *regs)
1607{
1608 int subcode;
1609
1610 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1611 >> VPECONTROL_EXCPT_SHIFT;
1612 switch (subcode) {
1613 case 0:
1614 printk(KERN_DEBUG "Thread Underflow\n");
1615 break;
1616 case 1:
1617 printk(KERN_DEBUG "Thread Overflow\n");
1618 break;
1619 case 2:
1620 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1621 break;
1622 case 3:
1623 printk(KERN_DEBUG "Gating Storage Exception\n");
1624 break;
1625 case 4:
1626 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1627 break;
1628 case 5:
1629 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1630 break;
1631 default:
1632 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1633 subcode);
1634 break;
1635 }
1636 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1637
1638 force_sig(SIGILL);
1639}
1640
1641
1642asmlinkage void do_dsp(struct pt_regs *regs)
1643{
1644 if (cpu_has_dsp)
1645 panic("Unexpected DSP exception");
1646
1647 force_sig(SIGILL);
1648}
1649
1650asmlinkage void do_reserved(struct pt_regs *regs)
1651{
1652 /*
1653 * Game over - no way to handle this if it ever occurs. Most probably
1654 * caused by a new unknown cpu type or after another deadly
1655 * hard/software error.
1656 */
1657 show_regs(regs);
1658 panic("Caught reserved exception %ld - should not happen.",
1659 (regs->cp0_cause & 0x7f) >> 2);
1660}
1661
1662static int __initdata l1parity = 1;
1663static int __init nol1parity(char *s)
1664{
1665 l1parity = 0;
1666 return 1;
1667}
1668__setup("nol1par", nol1parity);
1669static int __initdata l2parity = 1;
1670static int __init nol2parity(char *s)
1671{
1672 l2parity = 0;
1673 return 1;
1674}
1675__setup("nol2par", nol2parity);
1676
1677/*
1678 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1679 * it different ways.
1680 */
1681static inline __init void parity_protection_init(void)
1682{
1683#define ERRCTL_PE 0x80000000
1684#define ERRCTL_L2P 0x00800000
1685
1686 if (mips_cm_revision() >= CM_REV_CM3) {
1687 ulong gcr_ectl, cp0_ectl;
1688
1689 /*
1690 * With CM3 systems we need to ensure that the L1 & L2
1691 * parity enables are set to the same value, since this
1692 * is presumed by the hardware engineers.
1693 *
1694 * If the user disabled either of L1 or L2 ECC checking,
1695 * disable both.
1696 */
1697 l1parity &= l2parity;
1698 l2parity &= l1parity;
1699
1700 /* Probe L1 ECC support */
1701 cp0_ectl = read_c0_ecc();
1702 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1703 back_to_back_c0_hazard();
1704 cp0_ectl = read_c0_ecc();
1705
1706 /* Probe L2 ECC support */
1707 gcr_ectl = read_gcr_err_control();
1708
1709 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1710 !(cp0_ectl & ERRCTL_PE)) {
1711 /*
1712 * One of L1 or L2 ECC checking isn't supported,
1713 * so we cannot enable either.
1714 */
1715 l1parity = l2parity = 0;
1716 }
1717
1718 /* Configure L1 ECC checking */
1719 if (l1parity)
1720 cp0_ectl |= ERRCTL_PE;
1721 else
1722 cp0_ectl &= ~ERRCTL_PE;
1723 write_c0_ecc(cp0_ectl);
1724 back_to_back_c0_hazard();
1725 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1726
1727 /* Configure L2 ECC checking */
1728 if (l2parity)
1729 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1730 else
1731 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1732 write_gcr_err_control(gcr_ectl);
1733 gcr_ectl = read_gcr_err_control();
1734 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1735 WARN_ON(!!gcr_ectl != l2parity);
1736
1737 pr_info("Cache parity protection %sabled\n",
1738 l1parity ? "en" : "dis");
1739 return;
1740 }
1741
1742 switch (current_cpu_type()) {
1743 case CPU_24K:
1744 case CPU_34K:
1745 case CPU_74K:
1746 case CPU_1004K:
1747 case CPU_1074K:
1748 case CPU_INTERAPTIV:
1749 case CPU_PROAPTIV:
1750 case CPU_P5600:
1751 case CPU_QEMU_GENERIC:
1752 case CPU_P6600:
1753 {
1754 unsigned long errctl;
1755 unsigned int l1parity_present, l2parity_present;
1756
1757 errctl = read_c0_ecc();
1758 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1759
1760 /* probe L1 parity support */
1761 write_c0_ecc(errctl | ERRCTL_PE);
1762 back_to_back_c0_hazard();
1763 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1764
1765 /* probe L2 parity support */
1766 write_c0_ecc(errctl|ERRCTL_L2P);
1767 back_to_back_c0_hazard();
1768 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1769
1770 if (l1parity_present && l2parity_present) {
1771 if (l1parity)
1772 errctl |= ERRCTL_PE;
1773 if (l1parity ^ l2parity)
1774 errctl |= ERRCTL_L2P;
1775 } else if (l1parity_present) {
1776 if (l1parity)
1777 errctl |= ERRCTL_PE;
1778 } else if (l2parity_present) {
1779 if (l2parity)
1780 errctl |= ERRCTL_L2P;
1781 } else {
1782 /* No parity available */
1783 }
1784
1785 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1786
1787 write_c0_ecc(errctl);
1788 back_to_back_c0_hazard();
1789 errctl = read_c0_ecc();
1790 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1791
1792 if (l1parity_present)
1793 printk(KERN_INFO "Cache parity protection %sabled\n",
1794 (errctl & ERRCTL_PE) ? "en" : "dis");
1795
1796 if (l2parity_present) {
1797 if (l1parity_present && l1parity)
1798 errctl ^= ERRCTL_L2P;
1799 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1800 (errctl & ERRCTL_L2P) ? "en" : "dis");
1801 }
1802 }
1803 break;
1804
1805 case CPU_5KC:
1806 case CPU_5KE:
1807 case CPU_LOONGSON32:
1808 write_c0_ecc(0x80000000);
1809 back_to_back_c0_hazard();
1810 /* Set the PE bit (bit 31) in the c0_errctl register. */
1811 printk(KERN_INFO "Cache parity protection %sabled\n",
1812 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1813 break;
1814 case CPU_20KC:
1815 case CPU_25KF:
1816 /* Clear the DE bit (bit 16) in the c0_status register. */
1817 printk(KERN_INFO "Enable cache parity protection for "
1818 "MIPS 20KC/25KF CPUs.\n");
1819 clear_c0_status(ST0_DE);
1820 break;
1821 default:
1822 break;
1823 }
1824}
1825
1826asmlinkage void cache_parity_error(void)
1827{
1828 const int field = 2 * sizeof(unsigned long);
1829 unsigned int reg_val;
1830
1831 /* For the moment, report the problem and hang. */
1832 printk("Cache error exception:\n");
1833 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1834 reg_val = read_c0_cacheerr();
1835 printk("c0_cacheerr == %08x\n", reg_val);
1836
1837 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1838 reg_val & (1<<30) ? "secondary" : "primary",
1839 reg_val & (1<<31) ? "data" : "insn");
1840 if ((cpu_has_mips_r2_r6) &&
1841 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1842 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1843 reg_val & (1<<29) ? "ED " : "",
1844 reg_val & (1<<28) ? "ET " : "",
1845 reg_val & (1<<27) ? "ES " : "",
1846 reg_val & (1<<26) ? "EE " : "",
1847 reg_val & (1<<25) ? "EB " : "",
1848 reg_val & (1<<24) ? "EI " : "",
1849 reg_val & (1<<23) ? "E1 " : "",
1850 reg_val & (1<<22) ? "E0 " : "");
1851 } else {
1852 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1853 reg_val & (1<<29) ? "ED " : "",
1854 reg_val & (1<<28) ? "ET " : "",
1855 reg_val & (1<<26) ? "EE " : "",
1856 reg_val & (1<<25) ? "EB " : "",
1857 reg_val & (1<<24) ? "EI " : "",
1858 reg_val & (1<<23) ? "E1 " : "",
1859 reg_val & (1<<22) ? "E0 " : "");
1860 }
1861 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1862
1863#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1864 if (reg_val & (1<<22))
1865 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1866
1867 if (reg_val & (1<<23))
1868 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1869#endif
1870
1871 panic("Can't handle the cache error!");
1872}
1873
1874asmlinkage void do_ftlb(void)
1875{
1876 const int field = 2 * sizeof(unsigned long);
1877 unsigned int reg_val;
1878
1879 /* For the moment, report the problem and hang. */
1880 if ((cpu_has_mips_r2_r6) &&
1881 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1882 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1883 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1884 read_c0_ecc());
1885 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1886 reg_val = read_c0_cacheerr();
1887 pr_err("c0_cacheerr == %08x\n", reg_val);
1888
1889 if ((reg_val & 0xc0000000) == 0xc0000000) {
1890 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1891 } else {
1892 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1893 reg_val & (1<<30) ? "secondary" : "primary",
1894 reg_val & (1<<31) ? "data" : "insn");
1895 }
1896 } else {
1897 pr_err("FTLB error exception\n");
1898 }
1899 /* Just print the cacheerr bits for now */
1900 cache_parity_error();
1901}
1902
1903asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1904{
1905 u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1906 LOONGSON_DIAG1_EXCCODE_SHIFT;
1907 enum ctx_state prev_state;
1908
1909 prev_state = exception_enter();
1910
1911 switch (exccode) {
1912 case 0x08:
1913 /* Undocumented exception, will trigger on certain
1914 * also-undocumented instructions accessible from userspace.
1915 * Processor state is not otherwise corrupted, but currently
1916 * we don't know how to proceed. Maybe there is some
1917 * undocumented control flag to enable the instructions?
1918 */
1919 force_sig(SIGILL);
1920 break;
1921
1922 default:
1923 /* None of the other exceptions, documented or not, have
1924 * further details given; none are encountered in the wild
1925 * either. Panic in case some of them turn out to be fatal.
1926 */
1927 show_regs(regs);
1928 panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1929 }
1930
1931 exception_exit(prev_state);
1932}
1933
1934/*
1935 * SDBBP EJTAG debug exception handler.
1936 * We skip the instruction and return to the next instruction.
1937 */
1938void ejtag_exception_handler(struct pt_regs *regs)
1939{
1940 const int field = 2 * sizeof(unsigned long);
1941 unsigned long depc, old_epc, old_ra;
1942 unsigned int debug;
1943
1944 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1945 depc = read_c0_depc();
1946 debug = read_c0_debug();
1947 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1948 if (debug & 0x80000000) {
1949 /*
1950 * In branch delay slot.
1951 * We cheat a little bit here and use EPC to calculate the
1952 * debug return address (DEPC). EPC is restored after the
1953 * calculation.
1954 */
1955 old_epc = regs->cp0_epc;
1956 old_ra = regs->regs[31];
1957 regs->cp0_epc = depc;
1958 compute_return_epc(regs);
1959 depc = regs->cp0_epc;
1960 regs->cp0_epc = old_epc;
1961 regs->regs[31] = old_ra;
1962 } else
1963 depc += 4;
1964 write_c0_depc(depc);
1965
1966#if 0
1967 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1968 write_c0_debug(debug | 0x100);
1969#endif
1970}
1971
1972/*
1973 * NMI exception handler.
1974 * No lock; only written during early bootup by CPU 0.
1975 */
1976static RAW_NOTIFIER_HEAD(nmi_chain);
1977
1978int register_nmi_notifier(struct notifier_block *nb)
1979{
1980 return raw_notifier_chain_register(&nmi_chain, nb);
1981}
1982
1983void __noreturn nmi_exception_handler(struct pt_regs *regs)
1984{
1985 char str[100];
1986
1987 nmi_enter();
1988 raw_notifier_call_chain(&nmi_chain, 0, regs);
1989 bust_spinlocks(1);
1990 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1991 smp_processor_id(), regs->cp0_epc);
1992 regs->cp0_epc = read_c0_errorepc();
1993 die(str, regs);
1994 nmi_exit();
1995}
1996
1997unsigned long ebase;
1998EXPORT_SYMBOL_GPL(ebase);
1999unsigned long exception_handlers[32];
2000unsigned long vi_handlers[64];
2001
2002void reserve_exception_space(phys_addr_t addr, unsigned long size)
2003{
2004 memblock_reserve(addr, size);
2005}
2006
2007void __init *set_except_vector(int n, void *addr)
2008{
2009 unsigned long handler = (unsigned long) addr;
2010 unsigned long old_handler;
2011
2012#ifdef CONFIG_CPU_MICROMIPS
2013 /*
2014 * Only the TLB handlers are cache aligned with an even
2015 * address. All other handlers are on an odd address and
2016 * require no modification. Otherwise, MIPS32 mode will
2017 * be entered when handling any TLB exceptions. That
2018 * would be bad...since we must stay in microMIPS mode.
2019 */
2020 if (!(handler & 0x1))
2021 handler |= 1;
2022#endif
2023 old_handler = xchg(&exception_handlers[n], handler);
2024
2025 if (n == 0 && cpu_has_divec) {
2026#ifdef CONFIG_CPU_MICROMIPS
2027 unsigned long jump_mask = ~((1 << 27) - 1);
2028#else
2029 unsigned long jump_mask = ~((1 << 28) - 1);
2030#endif
2031 u32 *buf = (u32 *)(ebase + 0x200);
2032 unsigned int k0 = 26;
2033 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2034 uasm_i_j(&buf, handler & ~jump_mask);
2035 uasm_i_nop(&buf);
2036 } else {
2037 UASM_i_LA(&buf, k0, handler);
2038 uasm_i_jr(&buf, k0);
2039 uasm_i_nop(&buf);
2040 }
2041 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2042 }
2043 return (void *)old_handler;
2044}
2045
2046static void do_default_vi(void)
2047{
2048 show_regs(get_irq_regs());
2049 panic("Caught unexpected vectored interrupt.");
2050}
2051
2052static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2053{
2054 unsigned long handler;
2055 unsigned long old_handler = vi_handlers[n];
2056 int srssets = current_cpu_data.srsets;
2057 u16 *h;
2058 unsigned char *b;
2059
2060 BUG_ON(!cpu_has_veic && !cpu_has_vint);
2061
2062 if (addr == NULL) {
2063 handler = (unsigned long) do_default_vi;
2064 srs = 0;
2065 } else
2066 handler = (unsigned long) addr;
2067 vi_handlers[n] = handler;
2068
2069 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2070
2071 if (srs >= srssets)
2072 panic("Shadow register set %d not supported", srs);
2073
2074 if (cpu_has_veic) {
2075 if (board_bind_eic_interrupt)
2076 board_bind_eic_interrupt(n, srs);
2077 } else if (cpu_has_vint) {
2078 /* SRSMap is only defined if shadow sets are implemented */
2079 if (srssets > 1)
2080 change_c0_srsmap(0xf << n*4, srs << n*4);
2081 }
2082
2083 if (srs == 0) {
2084 /*
2085 * If no shadow set is selected then use the default handler
2086 * that does normal register saving and standard interrupt exit
2087 */
2088 extern char except_vec_vi, except_vec_vi_lui;
2089 extern char except_vec_vi_ori, except_vec_vi_end;
2090 extern char rollback_except_vec_vi;
2091 char *vec_start = using_rollback_handler() ?
2092 &rollback_except_vec_vi : &except_vec_vi;
2093#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2094 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2095 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2096#else
2097 const int lui_offset = &except_vec_vi_lui - vec_start;
2098 const int ori_offset = &except_vec_vi_ori - vec_start;
2099#endif
2100 const int handler_len = &except_vec_vi_end - vec_start;
2101
2102 if (handler_len > VECTORSPACING) {
2103 /*
2104 * Sigh... panicing won't help as the console
2105 * is probably not configured :(
2106 */
2107 panic("VECTORSPACING too small");
2108 }
2109
2110 set_handler(((unsigned long)b - ebase), vec_start,
2111#ifdef CONFIG_CPU_MICROMIPS
2112 (handler_len - 1));
2113#else
2114 handler_len);
2115#endif
2116 h = (u16 *)(b + lui_offset);
2117 *h = (handler >> 16) & 0xffff;
2118 h = (u16 *)(b + ori_offset);
2119 *h = (handler & 0xffff);
2120 local_flush_icache_range((unsigned long)b,
2121 (unsigned long)(b+handler_len));
2122 }
2123 else {
2124 /*
2125 * In other cases jump directly to the interrupt handler. It
2126 * is the handler's responsibility to save registers if required
2127 * (eg hi/lo) and return from the exception using "eret".
2128 */
2129 u32 insn;
2130
2131 h = (u16 *)b;
2132 /* j handler */
2133#ifdef CONFIG_CPU_MICROMIPS
2134 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2135#else
2136 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2137#endif
2138 h[0] = (insn >> 16) & 0xffff;
2139 h[1] = insn & 0xffff;
2140 h[2] = 0;
2141 h[3] = 0;
2142 local_flush_icache_range((unsigned long)b,
2143 (unsigned long)(b+8));
2144 }
2145
2146 return (void *)old_handler;
2147}
2148
2149void *set_vi_handler(int n, vi_handler_t addr)
2150{
2151 return set_vi_srs_handler(n, addr, 0);
2152}
2153
2154extern void tlb_init(void);
2155
2156/*
2157 * Timer interrupt
2158 */
2159int cp0_compare_irq;
2160EXPORT_SYMBOL_GPL(cp0_compare_irq);
2161int cp0_compare_irq_shift;
2162
2163/*
2164 * Performance counter IRQ or -1 if shared with timer
2165 */
2166int cp0_perfcount_irq;
2167EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2168
2169/*
2170 * Fast debug channel IRQ or -1 if not present
2171 */
2172int cp0_fdc_irq;
2173EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2174
2175static int noulri;
2176
2177static int __init ulri_disable(char *s)
2178{
2179 pr_info("Disabling ulri\n");
2180 noulri = 1;
2181
2182 return 1;
2183}
2184__setup("noulri", ulri_disable);
2185
2186/* configure STATUS register */
2187static void configure_status(void)
2188{
2189 /*
2190 * Disable coprocessors and select 32-bit or 64-bit addressing
2191 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2192 * flag that some firmware may have left set and the TS bit (for
2193 * IP27). Set XX for ISA IV code to work.
2194 */
2195 unsigned int status_set = ST0_KERNEL_CUMASK;
2196#ifdef CONFIG_64BIT
2197 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2198#endif
2199 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2200 status_set |= ST0_XX;
2201 if (cpu_has_dsp)
2202 status_set |= ST0_MX;
2203
2204 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2205 status_set);
2206 back_to_back_c0_hazard();
2207}
2208
2209unsigned int hwrena;
2210EXPORT_SYMBOL_GPL(hwrena);
2211
2212/* configure HWRENA register */
2213static void configure_hwrena(void)
2214{
2215 hwrena = cpu_hwrena_impl_bits;
2216
2217 if (cpu_has_mips_r2_r6)
2218 hwrena |= MIPS_HWRENA_CPUNUM |
2219 MIPS_HWRENA_SYNCISTEP |
2220 MIPS_HWRENA_CC |
2221 MIPS_HWRENA_CCRES;
2222
2223 if (!noulri && cpu_has_userlocal)
2224 hwrena |= MIPS_HWRENA_ULR;
2225
2226 if (hwrena)
2227 write_c0_hwrena(hwrena);
2228}
2229
2230static void configure_exception_vector(void)
2231{
2232 if (cpu_has_mips_r2_r6) {
2233 unsigned long sr = set_c0_status(ST0_BEV);
2234 /* If available, use WG to set top bits of EBASE */
2235 if (cpu_has_ebase_wg) {
2236#ifdef CONFIG_64BIT
2237 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2238#else
2239 write_c0_ebase(ebase | MIPS_EBASE_WG);
2240#endif
2241 }
2242 write_c0_ebase(ebase);
2243 write_c0_status(sr);
2244 }
2245 if (cpu_has_veic || cpu_has_vint) {
2246 /* Setting vector spacing enables EI/VI mode */
2247 change_c0_intctl(0x3e0, VECTORSPACING);
2248 }
2249 if (cpu_has_divec) {
2250 if (cpu_has_mipsmt) {
2251 unsigned int vpflags = dvpe();
2252 set_c0_cause(CAUSEF_IV);
2253 evpe(vpflags);
2254 } else
2255 set_c0_cause(CAUSEF_IV);
2256 }
2257}
2258
2259void per_cpu_trap_init(bool is_boot_cpu)
2260{
2261 unsigned int cpu = smp_processor_id();
2262
2263 configure_status();
2264 configure_hwrena();
2265
2266 configure_exception_vector();
2267
2268 /*
2269 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2270 *
2271 * o read IntCtl.IPTI to determine the timer interrupt
2272 * o read IntCtl.IPPCI to determine the performance counter interrupt
2273 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2274 */
2275 if (cpu_has_mips_r2_r6) {
2276 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2277 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2278 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2279 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2280 if (!cp0_fdc_irq)
2281 cp0_fdc_irq = -1;
2282
2283 } else {
2284 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2285 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2286 cp0_perfcount_irq = -1;
2287 cp0_fdc_irq = -1;
2288 }
2289
2290 if (cpu_has_mmid)
2291 cpu_data[cpu].asid_cache = 0;
2292 else if (!cpu_data[cpu].asid_cache)
2293 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2294
2295 mmgrab(&init_mm);
2296 current->active_mm = &init_mm;
2297 BUG_ON(current->mm);
2298 enter_lazy_tlb(&init_mm, current);
2299
2300 /* Boot CPU's cache setup in setup_arch(). */
2301 if (!is_boot_cpu)
2302 cpu_cache_init();
2303 tlb_init();
2304 TLBMISS_HANDLER_SETUP();
2305}
2306
2307/* Install CPU exception handler */
2308void set_handler(unsigned long offset, void *addr, unsigned long size)
2309{
2310#ifdef CONFIG_CPU_MICROMIPS
2311 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2312#else
2313 memcpy((void *)(ebase + offset), addr, size);
2314#endif
2315 local_flush_icache_range(ebase + offset, ebase + offset + size);
2316}
2317
2318static const char panic_null_cerr[] =
2319 "Trying to set NULL cache error exception handler\n";
2320
2321/*
2322 * Install uncached CPU exception handler.
2323 * This is suitable only for the cache error exception which is the only
2324 * exception handler that is being run uncached.
2325 */
2326void set_uncached_handler(unsigned long offset, void *addr,
2327 unsigned long size)
2328{
2329 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2330
2331 if (!addr)
2332 panic(panic_null_cerr);
2333
2334 memcpy((void *)(uncached_ebase + offset), addr, size);
2335}
2336
2337static int __initdata rdhwr_noopt;
2338static int __init set_rdhwr_noopt(char *str)
2339{
2340 rdhwr_noopt = 1;
2341 return 1;
2342}
2343
2344__setup("rdhwr_noopt", set_rdhwr_noopt);
2345
2346void __init trap_init(void)
2347{
2348 extern char except_vec3_generic;
2349 extern char except_vec4;
2350 extern char except_vec3_r4000;
2351 unsigned long i, vec_size;
2352 phys_addr_t ebase_pa;
2353
2354 check_wait();
2355
2356 if (!cpu_has_mips_r2_r6) {
2357 ebase = CAC_BASE;
2358 vec_size = 0x400;
2359 } else {
2360 if (cpu_has_veic || cpu_has_vint)
2361 vec_size = 0x200 + VECTORSPACING*64;
2362 else
2363 vec_size = PAGE_SIZE;
2364
2365 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2366 if (!ebase_pa)
2367 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2368 __func__, vec_size, 1 << fls(vec_size));
2369
2370 /*
2371 * Try to ensure ebase resides in KSeg0 if possible.
2372 *
2373 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2374 * hitting a poorly defined exception base for Cache Errors.
2375 * The allocation is likely to be in the low 512MB of physical,
2376 * in which case we should be able to convert to KSeg0.
2377 *
2378 * EVA is special though as it allows segments to be rearranged
2379 * and to become uncached during cache error handling.
2380 */
2381 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2382 ebase = CKSEG0ADDR(ebase_pa);
2383 else
2384 ebase = (unsigned long)phys_to_virt(ebase_pa);
2385 }
2386
2387 if (cpu_has_mmips) {
2388 unsigned int config3 = read_c0_config3();
2389
2390 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2391 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2392 else
2393 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2394 }
2395
2396 if (board_ebase_setup)
2397 board_ebase_setup();
2398 per_cpu_trap_init(true);
2399 memblock_set_bottom_up(false);
2400
2401 /*
2402 * Copy the generic exception handlers to their final destination.
2403 * This will be overridden later as suitable for a particular
2404 * configuration.
2405 */
2406 set_handler(0x180, &except_vec3_generic, 0x80);
2407
2408 /*
2409 * Setup default vectors
2410 */
2411 for (i = 0; i <= 31; i++)
2412 set_except_vector(i, handle_reserved);
2413
2414 /*
2415 * Copy the EJTAG debug exception vector handler code to it's final
2416 * destination.
2417 */
2418 if (cpu_has_ejtag && board_ejtag_handler_setup)
2419 board_ejtag_handler_setup();
2420
2421 /*
2422 * Only some CPUs have the watch exceptions.
2423 */
2424 if (cpu_has_watch)
2425 set_except_vector(EXCCODE_WATCH, handle_watch);
2426
2427 /*
2428 * Initialise interrupt handlers
2429 */
2430 if (cpu_has_veic || cpu_has_vint) {
2431 int nvec = cpu_has_veic ? 64 : 8;
2432 for (i = 0; i < nvec; i++)
2433 set_vi_handler(i, NULL);
2434 }
2435 else if (cpu_has_divec)
2436 set_handler(0x200, &except_vec4, 0x8);
2437
2438 /*
2439 * Some CPUs can enable/disable for cache parity detection, but does
2440 * it different ways.
2441 */
2442 parity_protection_init();
2443
2444 /*
2445 * The Data Bus Errors / Instruction Bus Errors are signaled
2446 * by external hardware. Therefore these two exceptions
2447 * may have board specific handlers.
2448 */
2449 if (board_be_init)
2450 board_be_init();
2451
2452 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2453 rollback_handle_int : handle_int);
2454 set_except_vector(EXCCODE_MOD, handle_tlbm);
2455 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2456 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2457
2458 set_except_vector(EXCCODE_ADEL, handle_adel);
2459 set_except_vector(EXCCODE_ADES, handle_ades);
2460
2461 set_except_vector(EXCCODE_IBE, handle_ibe);
2462 set_except_vector(EXCCODE_DBE, handle_dbe);
2463
2464 set_except_vector(EXCCODE_SYS, handle_sys);
2465 set_except_vector(EXCCODE_BP, handle_bp);
2466
2467 if (rdhwr_noopt)
2468 set_except_vector(EXCCODE_RI, handle_ri);
2469 else {
2470 if (cpu_has_vtag_icache)
2471 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2472 else if (current_cpu_type() == CPU_LOONGSON64)
2473 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2474 else
2475 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2476 }
2477
2478 set_except_vector(EXCCODE_CPU, handle_cpu);
2479 set_except_vector(EXCCODE_OV, handle_ov);
2480 set_except_vector(EXCCODE_TR, handle_tr);
2481 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2482
2483 if (board_nmi_handler_setup)
2484 board_nmi_handler_setup();
2485
2486 if (cpu_has_fpu && !cpu_has_nofpuex)
2487 set_except_vector(EXCCODE_FPE, handle_fpe);
2488
2489 if (cpu_has_ftlbparex)
2490 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2491
2492 if (cpu_has_gsexcex)
2493 set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2494
2495 if (cpu_has_rixiex) {
2496 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2497 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2498 }
2499
2500 set_except_vector(EXCCODE_MSADIS, handle_msa);
2501 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2502
2503 if (cpu_has_mcheck)
2504 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2505
2506 if (cpu_has_mipsmt)
2507 set_except_vector(EXCCODE_THREAD, handle_mt);
2508
2509 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2510
2511 if (board_cache_error_setup)
2512 board_cache_error_setup();
2513
2514 if (cpu_has_vce)
2515 /* Special exception: R4[04]00 uses also the divec space. */
2516 set_handler(0x180, &except_vec3_r4000, 0x100);
2517 else if (cpu_has_4kex)
2518 set_handler(0x180, &except_vec3_generic, 0x80);
2519 else
2520 set_handler(0x080, &except_vec3_generic, 0x80);
2521
2522 local_flush_icache_range(ebase, ebase + vec_size);
2523
2524 sort_extable(__start___dbe_table, __stop___dbe_table);
2525
2526 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2527}
2528
2529static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2530 void *v)
2531{
2532 switch (cmd) {
2533 case CPU_PM_ENTER_FAILED:
2534 case CPU_PM_EXIT:
2535 configure_status();
2536 configure_hwrena();
2537 configure_exception_vector();
2538
2539 /* Restore register with CPU number for TLB handlers */
2540 TLBMISS_HANDLER_RESTORE();
2541
2542 break;
2543 }
2544
2545 return NOTIFY_OK;
2546}
2547
2548static struct notifier_block trap_pm_notifier_block = {
2549 .notifier_call = trap_pm_notifier,
2550};
2551
2552static int __init trap_pm_init(void)
2553{
2554 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2555}
2556arch_initcall(trap_pm_init);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/cpu_pm.h>
20#include <linux/kexec.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/extable.h>
25#include <linux/mm.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/debug.h>
28#include <linux/smp.h>
29#include <linux/spinlock.h>
30#include <linux/kallsyms.h>
31#include <linux/memblock.h>
32#include <linux/interrupt.h>
33#include <linux/ptrace.h>
34#include <linux/kgdb.h>
35#include <linux/kdebug.h>
36#include <linux/kprobes.h>
37#include <linux/notifier.h>
38#include <linux/kdb.h>
39#include <linux/irq.h>
40#include <linux/perf_event.h>
41
42#include <asm/addrspace.h>
43#include <asm/bootinfo.h>
44#include <asm/branch.h>
45#include <asm/break.h>
46#include <asm/cop2.h>
47#include <asm/cpu.h>
48#include <asm/cpu-type.h>
49#include <asm/dsp.h>
50#include <asm/fpu.h>
51#include <asm/fpu_emulator.h>
52#include <asm/idle.h>
53#include <asm/isa-rev.h>
54#include <asm/mips-cps.h>
55#include <asm/mips-r2-to-r6-emul.h>
56#include <asm/mipsregs.h>
57#include <asm/mipsmtregs.h>
58#include <asm/module.h>
59#include <asm/msa.h>
60#include <asm/ptrace.h>
61#include <asm/sections.h>
62#include <asm/siginfo.h>
63#include <asm/tlbdebug.h>
64#include <asm/traps.h>
65#include <linux/uaccess.h>
66#include <asm/watch.h>
67#include <asm/mmu_context.h>
68#include <asm/types.h>
69#include <asm/stacktrace.h>
70#include <asm/tlbex.h>
71#include <asm/uasm.h>
72
73#include <asm/mach-loongson64/cpucfg-emul.h>
74
75extern void check_wait(void);
76extern asmlinkage void rollback_handle_int(void);
77extern asmlinkage void handle_int(void);
78extern asmlinkage void handle_adel(void);
79extern asmlinkage void handle_ades(void);
80extern asmlinkage void handle_ibe(void);
81extern asmlinkage void handle_dbe(void);
82extern asmlinkage void handle_sys(void);
83extern asmlinkage void handle_bp(void);
84extern asmlinkage void handle_ri(void);
85extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86extern asmlinkage void handle_ri_rdhwr(void);
87extern asmlinkage void handle_cpu(void);
88extern asmlinkage void handle_ov(void);
89extern asmlinkage void handle_tr(void);
90extern asmlinkage void handle_msa_fpe(void);
91extern asmlinkage void handle_fpe(void);
92extern asmlinkage void handle_ftlb(void);
93extern asmlinkage void handle_gsexc(void);
94extern asmlinkage void handle_msa(void);
95extern asmlinkage void handle_mdmx(void);
96extern asmlinkage void handle_watch(void);
97extern asmlinkage void handle_mt(void);
98extern asmlinkage void handle_dsp(void);
99extern asmlinkage void handle_mcheck(void);
100extern asmlinkage void handle_reserved(void);
101extern void tlb_do_page_fault_0(void);
102
103void (*board_be_init)(void);
104int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
105void (*board_nmi_handler_setup)(void);
106void (*board_ejtag_handler_setup)(void);
107void (*board_bind_eic_interrupt)(int irq, int regset);
108void (*board_ebase_setup)(void);
109void(*board_cache_error_setup)(void);
110
111static void show_raw_backtrace(unsigned long reg29, const char *loglvl)
112{
113 unsigned long *sp = (unsigned long *)(reg29 & ~3);
114 unsigned long addr;
115
116 printk("%sCall Trace:", loglvl);
117#ifdef CONFIG_KALLSYMS
118 printk("%s\n", loglvl);
119#endif
120 while (!kstack_end(sp)) {
121 unsigned long __user *p =
122 (unsigned long __user *)(unsigned long)sp++;
123 if (__get_user(addr, p)) {
124 printk("%s (Bad stack address)", loglvl);
125 break;
126 }
127 if (__kernel_text_address(addr))
128 print_ip_sym(loglvl, addr);
129 }
130 printk("%s\n", loglvl);
131}
132
133#ifdef CONFIG_KALLSYMS
134int raw_show_trace;
135static int __init set_raw_show_trace(char *str)
136{
137 raw_show_trace = 1;
138 return 1;
139}
140__setup("raw_show_trace", set_raw_show_trace);
141#endif
142
143static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
144 const char *loglvl)
145{
146 unsigned long sp = regs->regs[29];
147 unsigned long ra = regs->regs[31];
148 unsigned long pc = regs->cp0_epc;
149
150 if (!task)
151 task = current;
152
153 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
154 show_raw_backtrace(sp, loglvl);
155 return;
156 }
157 printk("%sCall Trace:\n", loglvl);
158 do {
159 print_ip_sym(loglvl, pc);
160 pc = unwind_stack(task, &sp, pc, &ra);
161 } while (pc);
162 pr_cont("\n");
163}
164
165/*
166 * This routine abuses get_user()/put_user() to reference pointers
167 * with at least a bit of error checking ...
168 */
169static void show_stacktrace(struct task_struct *task,
170 const struct pt_regs *regs, const char *loglvl)
171{
172 const int field = 2 * sizeof(unsigned long);
173 long stackdata;
174 int i;
175 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
176
177 printk("%sStack :", loglvl);
178 i = 0;
179 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
180 if (i && ((i % (64 / field)) == 0)) {
181 pr_cont("\n");
182 printk("%s ", loglvl);
183 }
184 if (i > 39) {
185 pr_cont(" ...");
186 break;
187 }
188
189 if (__get_user(stackdata, sp++)) {
190 pr_cont(" (Bad stack address)");
191 break;
192 }
193
194 pr_cont(" %0*lx", field, stackdata);
195 i++;
196 }
197 pr_cont("\n");
198 show_backtrace(task, regs, loglvl);
199}
200
201void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
202{
203 struct pt_regs regs;
204 mm_segment_t old_fs = get_fs();
205
206 regs.cp0_status = KSU_KERNEL;
207 if (sp) {
208 regs.regs[29] = (unsigned long)sp;
209 regs.regs[31] = 0;
210 regs.cp0_epc = 0;
211 } else {
212 if (task && task != current) {
213 regs.regs[29] = task->thread.reg29;
214 regs.regs[31] = 0;
215 regs.cp0_epc = task->thread.reg31;
216 } else {
217 prepare_frametrace(®s);
218 }
219 }
220 /*
221 * show_stack() deals exclusively with kernel mode, so be sure to access
222 * the stack in the kernel (not user) address space.
223 */
224 set_fs(KERNEL_DS);
225 show_stacktrace(task, ®s, loglvl);
226 set_fs(old_fs);
227}
228
229static void show_code(unsigned int __user *pc)
230{
231 long i;
232 unsigned short __user *pc16 = NULL;
233
234 printk("Code:");
235
236 if ((unsigned long)pc & 1)
237 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
238 for(i = -3 ; i < 6 ; i++) {
239 unsigned int insn;
240 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
241 pr_cont(" (Bad address in epc)\n");
242 break;
243 }
244 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
245 }
246 pr_cont("\n");
247}
248
249static void __show_regs(const struct pt_regs *regs)
250{
251 const int field = 2 * sizeof(unsigned long);
252 unsigned int cause = regs->cp0_cause;
253 unsigned int exccode;
254 int i;
255
256 show_regs_print_info(KERN_DEFAULT);
257
258 /*
259 * Saved main processor registers
260 */
261 for (i = 0; i < 32; ) {
262 if ((i % 4) == 0)
263 printk("$%2d :", i);
264 if (i == 0)
265 pr_cont(" %0*lx", field, 0UL);
266 else if (i == 26 || i == 27)
267 pr_cont(" %*s", field, "");
268 else
269 pr_cont(" %0*lx", field, regs->regs[i]);
270
271 i++;
272 if ((i % 4) == 0)
273 pr_cont("\n");
274 }
275
276#ifdef CONFIG_CPU_HAS_SMARTMIPS
277 printk("Acx : %0*lx\n", field, regs->acx);
278#endif
279 if (MIPS_ISA_REV < 6) {
280 printk("Hi : %0*lx\n", field, regs->hi);
281 printk("Lo : %0*lx\n", field, regs->lo);
282 }
283
284 /*
285 * Saved cp0 registers
286 */
287 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
288 (void *) regs->cp0_epc);
289 printk("ra : %0*lx %pS\n", field, regs->regs[31],
290 (void *) regs->regs[31]);
291
292 printk("Status: %08x ", (uint32_t) regs->cp0_status);
293
294 if (cpu_has_3kex) {
295 if (regs->cp0_status & ST0_KUO)
296 pr_cont("KUo ");
297 if (regs->cp0_status & ST0_IEO)
298 pr_cont("IEo ");
299 if (regs->cp0_status & ST0_KUP)
300 pr_cont("KUp ");
301 if (regs->cp0_status & ST0_IEP)
302 pr_cont("IEp ");
303 if (regs->cp0_status & ST0_KUC)
304 pr_cont("KUc ");
305 if (regs->cp0_status & ST0_IEC)
306 pr_cont("IEc ");
307 } else if (cpu_has_4kex) {
308 if (regs->cp0_status & ST0_KX)
309 pr_cont("KX ");
310 if (regs->cp0_status & ST0_SX)
311 pr_cont("SX ");
312 if (regs->cp0_status & ST0_UX)
313 pr_cont("UX ");
314 switch (regs->cp0_status & ST0_KSU) {
315 case KSU_USER:
316 pr_cont("USER ");
317 break;
318 case KSU_SUPERVISOR:
319 pr_cont("SUPERVISOR ");
320 break;
321 case KSU_KERNEL:
322 pr_cont("KERNEL ");
323 break;
324 default:
325 pr_cont("BAD_MODE ");
326 break;
327 }
328 if (regs->cp0_status & ST0_ERL)
329 pr_cont("ERL ");
330 if (regs->cp0_status & ST0_EXL)
331 pr_cont("EXL ");
332 if (regs->cp0_status & ST0_IE)
333 pr_cont("IE ");
334 }
335 pr_cont("\n");
336
337 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
338 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
339
340 if (1 <= exccode && exccode <= 5)
341 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
342
343 printk("PrId : %08x (%s)\n", read_c0_prid(),
344 cpu_name_string());
345}
346
347/*
348 * FIXME: really the generic show_regs should take a const pointer argument.
349 */
350void show_regs(struct pt_regs *regs)
351{
352 __show_regs(regs);
353 dump_stack();
354}
355
356void show_registers(struct pt_regs *regs)
357{
358 const int field = 2 * sizeof(unsigned long);
359 mm_segment_t old_fs = get_fs();
360
361 __show_regs(regs);
362 print_modules();
363 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 current->comm, current->pid, current_thread_info(), current,
365 field, current_thread_info()->tp_value);
366 if (cpu_has_userlocal) {
367 unsigned long tls;
368
369 tls = read_c0_userlocal();
370 if (tls != current_thread_info()->tp_value)
371 printk("*HwTLS: %0*lx\n", field, tls);
372 }
373
374 if (!user_mode(regs))
375 /* Necessary for getting the correct stack content */
376 set_fs(KERNEL_DS);
377 show_stacktrace(current, regs, KERN_DEFAULT);
378 show_code((unsigned int __user *) regs->cp0_epc);
379 printk("\n");
380 set_fs(old_fs);
381}
382
383static DEFINE_RAW_SPINLOCK(die_lock);
384
385void __noreturn die(const char *str, struct pt_regs *regs)
386{
387 static int die_counter;
388 int sig = SIGSEGV;
389
390 oops_enter();
391
392 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
393 SIGSEGV) == NOTIFY_STOP)
394 sig = 0;
395
396 console_verbose();
397 raw_spin_lock_irq(&die_lock);
398 bust_spinlocks(1);
399
400 printk("%s[#%d]:\n", str, ++die_counter);
401 show_registers(regs);
402 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
403 raw_spin_unlock_irq(&die_lock);
404
405 oops_exit();
406
407 if (in_interrupt())
408 panic("Fatal exception in interrupt");
409
410 if (panic_on_oops)
411 panic("Fatal exception");
412
413 if (regs && kexec_should_crash(current))
414 crash_kexec(regs);
415
416 do_exit(sig);
417}
418
419extern struct exception_table_entry __start___dbe_table[];
420extern struct exception_table_entry __stop___dbe_table[];
421
422__asm__(
423" .section __dbe_table, \"a\"\n"
424" .previous \n");
425
426/* Given an address, look for it in the exception tables. */
427static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428{
429 const struct exception_table_entry *e;
430
431 e = search_extable(__start___dbe_table,
432 __stop___dbe_table - __start___dbe_table, addr);
433 if (!e)
434 e = search_module_dbetables(addr);
435 return e;
436}
437
438asmlinkage void do_be(struct pt_regs *regs)
439{
440 const int field = 2 * sizeof(unsigned long);
441 const struct exception_table_entry *fixup = NULL;
442 int data = regs->cp0_cause & 4;
443 int action = MIPS_BE_FATAL;
444 enum ctx_state prev_state;
445
446 prev_state = exception_enter();
447 /* XXX For now. Fixme, this searches the wrong table ... */
448 if (data && !user_mode(regs))
449 fixup = search_dbe_tables(exception_epc(regs));
450
451 if (fixup)
452 action = MIPS_BE_FIXUP;
453
454 if (board_be_handler)
455 action = board_be_handler(regs, fixup != NULL);
456 else
457 mips_cm_error_report();
458
459 switch (action) {
460 case MIPS_BE_DISCARD:
461 goto out;
462 case MIPS_BE_FIXUP:
463 if (fixup) {
464 regs->cp0_epc = fixup->nextinsn;
465 goto out;
466 }
467 break;
468 default:
469 break;
470 }
471
472 /*
473 * Assume it would be too dangerous to continue ...
474 */
475 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
476 data ? "Data" : "Instruction",
477 field, regs->cp0_epc, field, regs->regs[31]);
478 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
479 SIGBUS) == NOTIFY_STOP)
480 goto out;
481
482 die_if_kernel("Oops", regs);
483 force_sig(SIGBUS);
484
485out:
486 exception_exit(prev_state);
487}
488
489/*
490 * ll/sc, rdhwr, sync emulation
491 */
492
493#define OPCODE 0xfc000000
494#define BASE 0x03e00000
495#define RT 0x001f0000
496#define OFFSET 0x0000ffff
497#define LL 0xc0000000
498#define SC 0xe0000000
499#define SPEC0 0x00000000
500#define SPEC3 0x7c000000
501#define RD 0x0000f800
502#define FUNC 0x0000003f
503#define SYNC 0x0000000f
504#define RDHWR 0x0000003b
505
506/* microMIPS definitions */
507#define MM_POOL32A_FUNC 0xfc00ffff
508#define MM_RDHWR 0x00006b3c
509#define MM_RS 0x001f0000
510#define MM_RT 0x03e00000
511
512/*
513 * The ll_bit is cleared by r*_switch.S
514 */
515
516unsigned int ll_bit;
517struct task_struct *ll_task;
518
519static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
520{
521 unsigned long value, __user *vaddr;
522 long offset;
523
524 /*
525 * analyse the ll instruction that just caused a ri exception
526 * and put the referenced address to addr.
527 */
528
529 /* sign extend offset */
530 offset = opcode & OFFSET;
531 offset <<= 16;
532 offset >>= 16;
533
534 vaddr = (unsigned long __user *)
535 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
536
537 if ((unsigned long)vaddr & 3)
538 return SIGBUS;
539 if (get_user(value, vaddr))
540 return SIGSEGV;
541
542 preempt_disable();
543
544 if (ll_task == NULL || ll_task == current) {
545 ll_bit = 1;
546 } else {
547 ll_bit = 0;
548 }
549 ll_task = current;
550
551 preempt_enable();
552
553 regs->regs[(opcode & RT) >> 16] = value;
554
555 return 0;
556}
557
558static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
559{
560 unsigned long __user *vaddr;
561 unsigned long reg;
562 long offset;
563
564 /*
565 * analyse the sc instruction that just caused a ri exception
566 * and put the referenced address to addr.
567 */
568
569 /* sign extend offset */
570 offset = opcode & OFFSET;
571 offset <<= 16;
572 offset >>= 16;
573
574 vaddr = (unsigned long __user *)
575 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
576 reg = (opcode & RT) >> 16;
577
578 if ((unsigned long)vaddr & 3)
579 return SIGBUS;
580
581 preempt_disable();
582
583 if (ll_bit == 0 || ll_task != current) {
584 regs->regs[reg] = 0;
585 preempt_enable();
586 return 0;
587 }
588
589 preempt_enable();
590
591 if (put_user(regs->regs[reg], vaddr))
592 return SIGSEGV;
593
594 regs->regs[reg] = 1;
595
596 return 0;
597}
598
599/*
600 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
601 * opcodes are supposed to result in coprocessor unusable exceptions if
602 * executed on ll/sc-less processors. That's the theory. In practice a
603 * few processors such as NEC's VR4100 throw reserved instruction exceptions
604 * instead, so we're doing the emulation thing in both exception handlers.
605 */
606static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
607{
608 if ((opcode & OPCODE) == LL) {
609 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 1, regs, 0);
611 return simulate_ll(regs, opcode);
612 }
613 if ((opcode & OPCODE) == SC) {
614 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
615 1, regs, 0);
616 return simulate_sc(regs, opcode);
617 }
618
619 return -1; /* Must be something else ... */
620}
621
622/*
623 * Simulate trapping 'rdhwr' instructions to provide user accessible
624 * registers not implemented in hardware.
625 */
626static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
627{
628 struct thread_info *ti = task_thread_info(current);
629
630 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
631 1, regs, 0);
632 switch (rd) {
633 case MIPS_HWR_CPUNUM: /* CPU number */
634 regs->regs[rt] = smp_processor_id();
635 return 0;
636 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
637 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
638 current_cpu_data.icache.linesz);
639 return 0;
640 case MIPS_HWR_CC: /* Read count register */
641 regs->regs[rt] = read_c0_count();
642 return 0;
643 case MIPS_HWR_CCRES: /* Count register resolution */
644 switch (current_cpu_type()) {
645 case CPU_20KC:
646 case CPU_25KF:
647 regs->regs[rt] = 1;
648 break;
649 default:
650 regs->regs[rt] = 2;
651 }
652 return 0;
653 case MIPS_HWR_ULR: /* Read UserLocal register */
654 regs->regs[rt] = ti->tp_value;
655 return 0;
656 default:
657 return -1;
658 }
659}
660
661static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
662{
663 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
664 int rd = (opcode & RD) >> 11;
665 int rt = (opcode & RT) >> 16;
666
667 simulate_rdhwr(regs, rd, rt);
668 return 0;
669 }
670
671 /* Not ours. */
672 return -1;
673}
674
675static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
676{
677 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
678 int rd = (opcode & MM_RS) >> 16;
679 int rt = (opcode & MM_RT) >> 21;
680 simulate_rdhwr(regs, rd, rt);
681 return 0;
682 }
683
684 /* Not ours. */
685 return -1;
686}
687
688static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
689{
690 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
691 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
692 1, regs, 0);
693 return 0;
694 }
695
696 return -1; /* Must be something else ... */
697}
698
699/*
700 * Loongson-3 CSR instructions emulation
701 */
702
703#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
704
705#define LWC2 0xc8000000
706#define RS BASE
707#define CSR_OPCODE2 0x00000118
708#define CSR_OPCODE2_MASK 0x000007ff
709#define CSR_FUNC_MASK RT
710#define CSR_FUNC_CPUCFG 0x8
711
712static int simulate_loongson3_cpucfg(struct pt_regs *regs,
713 unsigned int opcode)
714{
715 int op = opcode & OPCODE;
716 int op2 = opcode & CSR_OPCODE2_MASK;
717 int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
718
719 if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
720 int rd = (opcode & RD) >> 11;
721 int rs = (opcode & RS) >> 21;
722 __u64 sel = regs->regs[rs];
723
724 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
725
726 /* Do not emulate on unsupported core models. */
727 preempt_disable();
728 if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) {
729 preempt_enable();
730 return -1;
731 }
732 regs->regs[rd] = loongson3_cpucfg_read_synthesized(
733 ¤t_cpu_data, sel);
734 preempt_enable();
735 return 0;
736 }
737
738 /* Not ours. */
739 return -1;
740}
741#endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
742
743asmlinkage void do_ov(struct pt_regs *regs)
744{
745 enum ctx_state prev_state;
746
747 prev_state = exception_enter();
748 die_if_kernel("Integer overflow", regs);
749
750 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
751 exception_exit(prev_state);
752}
753
754#ifdef CONFIG_MIPS_FP_SUPPORT
755
756/*
757 * Send SIGFPE according to FCSR Cause bits, which must have already
758 * been masked against Enable bits. This is impotant as Inexact can
759 * happen together with Overflow or Underflow, and `ptrace' can set
760 * any bits.
761 */
762void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
763 struct task_struct *tsk)
764{
765 int si_code = FPE_FLTUNK;
766
767 if (fcr31 & FPU_CSR_INV_X)
768 si_code = FPE_FLTINV;
769 else if (fcr31 & FPU_CSR_DIV_X)
770 si_code = FPE_FLTDIV;
771 else if (fcr31 & FPU_CSR_OVF_X)
772 si_code = FPE_FLTOVF;
773 else if (fcr31 & FPU_CSR_UDF_X)
774 si_code = FPE_FLTUND;
775 else if (fcr31 & FPU_CSR_INE_X)
776 si_code = FPE_FLTRES;
777
778 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
779}
780
781int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
782{
783 int si_code;
784 struct vm_area_struct *vma;
785
786 switch (sig) {
787 case 0:
788 return 0;
789
790 case SIGFPE:
791 force_fcr31_sig(fcr31, fault_addr, current);
792 return 1;
793
794 case SIGBUS:
795 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
796 return 1;
797
798 case SIGSEGV:
799 mmap_read_lock(current->mm);
800 vma = find_vma(current->mm, (unsigned long)fault_addr);
801 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
802 si_code = SEGV_ACCERR;
803 else
804 si_code = SEGV_MAPERR;
805 mmap_read_unlock(current->mm);
806 force_sig_fault(SIGSEGV, si_code, fault_addr);
807 return 1;
808
809 default:
810 force_sig(sig);
811 return 1;
812 }
813}
814
815static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
816 unsigned long old_epc, unsigned long old_ra)
817{
818 union mips_instruction inst = { .word = opcode };
819 void __user *fault_addr;
820 unsigned long fcr31;
821 int sig;
822
823 /* If it's obviously not an FP instruction, skip it */
824 switch (inst.i_format.opcode) {
825 case cop1_op:
826 case cop1x_op:
827 case lwc1_op:
828 case ldc1_op:
829 case swc1_op:
830 case sdc1_op:
831 break;
832
833 default:
834 return -1;
835 }
836
837 /*
838 * do_ri skipped over the instruction via compute_return_epc, undo
839 * that for the FPU emulator.
840 */
841 regs->cp0_epc = old_epc;
842 regs->regs[31] = old_ra;
843
844 /* Run the emulator */
845 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
846 &fault_addr);
847
848 /*
849 * We can't allow the emulated instruction to leave any
850 * enabled Cause bits set in $fcr31.
851 */
852 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
853 current->thread.fpu.fcr31 &= ~fcr31;
854
855 /* Restore the hardware register state */
856 own_fpu(1);
857
858 /* Send a signal if required. */
859 process_fpemu_return(sig, fault_addr, fcr31);
860
861 return 0;
862}
863
864/*
865 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
866 */
867asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
868{
869 enum ctx_state prev_state;
870 void __user *fault_addr;
871 int sig;
872
873 prev_state = exception_enter();
874 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
875 SIGFPE) == NOTIFY_STOP)
876 goto out;
877
878 /* Clear FCSR.Cause before enabling interrupts */
879 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
880 local_irq_enable();
881
882 die_if_kernel("FP exception in kernel code", regs);
883
884 if (fcr31 & FPU_CSR_UNI_X) {
885 /*
886 * Unimplemented operation exception. If we've got the full
887 * software emulator on-board, let's use it...
888 *
889 * Force FPU to dump state into task/thread context. We're
890 * moving a lot of data here for what is probably a single
891 * instruction, but the alternative is to pre-decode the FP
892 * register operands before invoking the emulator, which seems
893 * a bit extreme for what should be an infrequent event.
894 */
895
896 /* Run the emulator */
897 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
898 &fault_addr);
899
900 /*
901 * We can't allow the emulated instruction to leave any
902 * enabled Cause bits set in $fcr31.
903 */
904 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
905 current->thread.fpu.fcr31 &= ~fcr31;
906
907 /* Restore the hardware register state */
908 own_fpu(1); /* Using the FPU again. */
909 } else {
910 sig = SIGFPE;
911 fault_addr = (void __user *) regs->cp0_epc;
912 }
913
914 /* Send a signal if required. */
915 process_fpemu_return(sig, fault_addr, fcr31);
916
917out:
918 exception_exit(prev_state);
919}
920
921/*
922 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
923 * emulated more than some threshold number of instructions, force migration to
924 * a "CPU" that has FP support.
925 */
926static void mt_ase_fp_affinity(void)
927{
928#ifdef CONFIG_MIPS_MT_FPAFF
929 if (mt_fpemul_threshold > 0 &&
930 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
931 /*
932 * If there's no FPU present, or if the application has already
933 * restricted the allowed set to exclude any CPUs with FPUs,
934 * we'll skip the procedure.
935 */
936 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
937 cpumask_t tmask;
938
939 current->thread.user_cpus_allowed
940 = current->cpus_mask;
941 cpumask_and(&tmask, ¤t->cpus_mask,
942 &mt_fpu_cpumask);
943 set_cpus_allowed_ptr(current, &tmask);
944 set_thread_flag(TIF_FPUBOUND);
945 }
946 }
947#endif /* CONFIG_MIPS_MT_FPAFF */
948}
949
950#else /* !CONFIG_MIPS_FP_SUPPORT */
951
952static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
953 unsigned long old_epc, unsigned long old_ra)
954{
955 return -1;
956}
957
958#endif /* !CONFIG_MIPS_FP_SUPPORT */
959
960void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
961 const char *str)
962{
963 char b[40];
964
965#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
966 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
967 SIGTRAP) == NOTIFY_STOP)
968 return;
969#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
970
971 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
972 SIGTRAP) == NOTIFY_STOP)
973 return;
974
975 /*
976 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
977 * insns, even for trap and break codes that indicate arithmetic
978 * failures. Weird ...
979 * But should we continue the brokenness??? --macro
980 */
981 switch (code) {
982 case BRK_OVERFLOW:
983 case BRK_DIVZERO:
984 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
985 die_if_kernel(b, regs);
986 force_sig_fault(SIGFPE,
987 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
988 (void __user *) regs->cp0_epc);
989 break;
990 case BRK_BUG:
991 die_if_kernel("Kernel bug detected", regs);
992 force_sig(SIGTRAP);
993 break;
994 case BRK_MEMU:
995 /*
996 * This breakpoint code is used by the FPU emulator to retake
997 * control of the CPU after executing the instruction from the
998 * delay slot of an emulated branch.
999 *
1000 * Terminate if exception was recognized as a delay slot return
1001 * otherwise handle as normal.
1002 */
1003 if (do_dsemulret(regs))
1004 return;
1005
1006 die_if_kernel("Math emu break/trap", regs);
1007 force_sig(SIGTRAP);
1008 break;
1009 default:
1010 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1011 die_if_kernel(b, regs);
1012 if (si_code) {
1013 force_sig_fault(SIGTRAP, si_code, NULL);
1014 } else {
1015 force_sig(SIGTRAP);
1016 }
1017 }
1018}
1019
1020asmlinkage void do_bp(struct pt_regs *regs)
1021{
1022 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1023 unsigned int opcode, bcode;
1024 enum ctx_state prev_state;
1025 mm_segment_t seg;
1026
1027 seg = get_fs();
1028 if (!user_mode(regs))
1029 set_fs(KERNEL_DS);
1030
1031 prev_state = exception_enter();
1032 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1033 if (get_isa16_mode(regs->cp0_epc)) {
1034 u16 instr[2];
1035
1036 if (__get_user(instr[0], (u16 __user *)epc))
1037 goto out_sigsegv;
1038
1039 if (!cpu_has_mmips) {
1040 /* MIPS16e mode */
1041 bcode = (instr[0] >> 5) & 0x3f;
1042 } else if (mm_insn_16bit(instr[0])) {
1043 /* 16-bit microMIPS BREAK */
1044 bcode = instr[0] & 0xf;
1045 } else {
1046 /* 32-bit microMIPS BREAK */
1047 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1048 goto out_sigsegv;
1049 opcode = (instr[0] << 16) | instr[1];
1050 bcode = (opcode >> 6) & ((1 << 20) - 1);
1051 }
1052 } else {
1053 if (__get_user(opcode, (unsigned int __user *)epc))
1054 goto out_sigsegv;
1055 bcode = (opcode >> 6) & ((1 << 20) - 1);
1056 }
1057
1058 /*
1059 * There is the ancient bug in the MIPS assemblers that the break
1060 * code starts left to bit 16 instead to bit 6 in the opcode.
1061 * Gas is bug-compatible, but not always, grrr...
1062 * We handle both cases with a simple heuristics. --macro
1063 */
1064 if (bcode >= (1 << 10))
1065 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1066
1067 /*
1068 * notify the kprobe handlers, if instruction is likely to
1069 * pertain to them.
1070 */
1071 switch (bcode) {
1072 case BRK_UPROBE:
1073 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1074 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1075 goto out;
1076 else
1077 break;
1078 case BRK_UPROBE_XOL:
1079 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1080 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1081 goto out;
1082 else
1083 break;
1084 case BRK_KPROBE_BP:
1085 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1086 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1087 goto out;
1088 else
1089 break;
1090 case BRK_KPROBE_SSTEPBP:
1091 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1092 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1093 goto out;
1094 else
1095 break;
1096 default:
1097 break;
1098 }
1099
1100 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1101
1102out:
1103 set_fs(seg);
1104 exception_exit(prev_state);
1105 return;
1106
1107out_sigsegv:
1108 force_sig(SIGSEGV);
1109 goto out;
1110}
1111
1112asmlinkage void do_tr(struct pt_regs *regs)
1113{
1114 u32 opcode, tcode = 0;
1115 enum ctx_state prev_state;
1116 u16 instr[2];
1117 mm_segment_t seg;
1118 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1119
1120 seg = get_fs();
1121 if (!user_mode(regs))
1122 set_fs(KERNEL_DS);
1123
1124 prev_state = exception_enter();
1125 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1126 if (get_isa16_mode(regs->cp0_epc)) {
1127 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1128 __get_user(instr[1], (u16 __user *)(epc + 2)))
1129 goto out_sigsegv;
1130 opcode = (instr[0] << 16) | instr[1];
1131 /* Immediate versions don't provide a code. */
1132 if (!(opcode & OPCODE))
1133 tcode = (opcode >> 12) & ((1 << 4) - 1);
1134 } else {
1135 if (__get_user(opcode, (u32 __user *)epc))
1136 goto out_sigsegv;
1137 /* Immediate versions don't provide a code. */
1138 if (!(opcode & OPCODE))
1139 tcode = (opcode >> 6) & ((1 << 10) - 1);
1140 }
1141
1142 do_trap_or_bp(regs, tcode, 0, "Trap");
1143
1144out:
1145 set_fs(seg);
1146 exception_exit(prev_state);
1147 return;
1148
1149out_sigsegv:
1150 force_sig(SIGSEGV);
1151 goto out;
1152}
1153
1154asmlinkage void do_ri(struct pt_regs *regs)
1155{
1156 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1157 unsigned long old_epc = regs->cp0_epc;
1158 unsigned long old31 = regs->regs[31];
1159 enum ctx_state prev_state;
1160 unsigned int opcode = 0;
1161 int status = -1;
1162
1163 /*
1164 * Avoid any kernel code. Just emulate the R2 instruction
1165 * as quickly as possible.
1166 */
1167 if (mipsr2_emulation && cpu_has_mips_r6 &&
1168 likely(user_mode(regs)) &&
1169 likely(get_user(opcode, epc) >= 0)) {
1170 unsigned long fcr31 = 0;
1171
1172 status = mipsr2_decoder(regs, opcode, &fcr31);
1173 switch (status) {
1174 case 0:
1175 case SIGEMT:
1176 return;
1177 case SIGILL:
1178 goto no_r2_instr;
1179 default:
1180 process_fpemu_return(status,
1181 ¤t->thread.cp0_baduaddr,
1182 fcr31);
1183 return;
1184 }
1185 }
1186
1187no_r2_instr:
1188
1189 prev_state = exception_enter();
1190 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1191
1192 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1193 SIGILL) == NOTIFY_STOP)
1194 goto out;
1195
1196 die_if_kernel("Reserved instruction in kernel code", regs);
1197
1198 if (unlikely(compute_return_epc(regs) < 0))
1199 goto out;
1200
1201 if (!get_isa16_mode(regs->cp0_epc)) {
1202 if (unlikely(get_user(opcode, epc) < 0))
1203 status = SIGSEGV;
1204
1205 if (!cpu_has_llsc && status < 0)
1206 status = simulate_llsc(regs, opcode);
1207
1208 if (status < 0)
1209 status = simulate_rdhwr_normal(regs, opcode);
1210
1211 if (status < 0)
1212 status = simulate_sync(regs, opcode);
1213
1214 if (status < 0)
1215 status = simulate_fp(regs, opcode, old_epc, old31);
1216
1217#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1218 if (status < 0)
1219 status = simulate_loongson3_cpucfg(regs, opcode);
1220#endif
1221 } else if (cpu_has_mmips) {
1222 unsigned short mmop[2] = { 0 };
1223
1224 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1225 status = SIGSEGV;
1226 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1227 status = SIGSEGV;
1228 opcode = mmop[0];
1229 opcode = (opcode << 16) | mmop[1];
1230
1231 if (status < 0)
1232 status = simulate_rdhwr_mm(regs, opcode);
1233 }
1234
1235 if (status < 0)
1236 status = SIGILL;
1237
1238 if (unlikely(status > 0)) {
1239 regs->cp0_epc = old_epc; /* Undo skip-over. */
1240 regs->regs[31] = old31;
1241 force_sig(status);
1242 }
1243
1244out:
1245 exception_exit(prev_state);
1246}
1247
1248/*
1249 * No lock; only written during early bootup by CPU 0.
1250 */
1251static RAW_NOTIFIER_HEAD(cu2_chain);
1252
1253int __ref register_cu2_notifier(struct notifier_block *nb)
1254{
1255 return raw_notifier_chain_register(&cu2_chain, nb);
1256}
1257
1258int cu2_notifier_call_chain(unsigned long val, void *v)
1259{
1260 return raw_notifier_call_chain(&cu2_chain, val, v);
1261}
1262
1263static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1264 void *data)
1265{
1266 struct pt_regs *regs = data;
1267
1268 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1269 "instruction", regs);
1270 force_sig(SIGILL);
1271
1272 return NOTIFY_OK;
1273}
1274
1275#ifdef CONFIG_MIPS_FP_SUPPORT
1276
1277static int enable_restore_fp_context(int msa)
1278{
1279 int err, was_fpu_owner, prior_msa;
1280 bool first_fp;
1281
1282 /* Initialize context if it hasn't been used already */
1283 first_fp = init_fp_ctx(current);
1284
1285 if (first_fp) {
1286 preempt_disable();
1287 err = own_fpu_inatomic(1);
1288 if (msa && !err) {
1289 enable_msa();
1290 /*
1291 * with MSA enabled, userspace can see MSACSR
1292 * and MSA regs, but the values in them are from
1293 * other task before current task, restore them
1294 * from saved fp/msa context
1295 */
1296 write_msa_csr(current->thread.fpu.msacsr);
1297 /*
1298 * own_fpu_inatomic(1) just restore low 64bit,
1299 * fix the high 64bit
1300 */
1301 init_msa_upper();
1302 set_thread_flag(TIF_USEDMSA);
1303 set_thread_flag(TIF_MSA_CTX_LIVE);
1304 }
1305 preempt_enable();
1306 return err;
1307 }
1308
1309 /*
1310 * This task has formerly used the FP context.
1311 *
1312 * If this thread has no live MSA vector context then we can simply
1313 * restore the scalar FP context. If it has live MSA vector context
1314 * (that is, it has or may have used MSA since last performing a
1315 * function call) then we'll need to restore the vector context. This
1316 * applies even if we're currently only executing a scalar FP
1317 * instruction. This is because if we were to later execute an MSA
1318 * instruction then we'd either have to:
1319 *
1320 * - Restore the vector context & clobber any registers modified by
1321 * scalar FP instructions between now & then.
1322 *
1323 * or
1324 *
1325 * - Not restore the vector context & lose the most significant bits
1326 * of all vector registers.
1327 *
1328 * Neither of those options is acceptable. We cannot restore the least
1329 * significant bits of the registers now & only restore the most
1330 * significant bits later because the most significant bits of any
1331 * vector registers whose aliased FP register is modified now will have
1332 * been zeroed. We'd have no way to know that when restoring the vector
1333 * context & thus may load an outdated value for the most significant
1334 * bits of a vector register.
1335 */
1336 if (!msa && !thread_msa_context_live())
1337 return own_fpu(1);
1338
1339 /*
1340 * This task is using or has previously used MSA. Thus we require
1341 * that Status.FR == 1.
1342 */
1343 preempt_disable();
1344 was_fpu_owner = is_fpu_owner();
1345 err = own_fpu_inatomic(0);
1346 if (err)
1347 goto out;
1348
1349 enable_msa();
1350 write_msa_csr(current->thread.fpu.msacsr);
1351 set_thread_flag(TIF_USEDMSA);
1352
1353 /*
1354 * If this is the first time that the task is using MSA and it has
1355 * previously used scalar FP in this time slice then we already nave
1356 * FP context which we shouldn't clobber. We do however need to clear
1357 * the upper 64b of each vector register so that this task has no
1358 * opportunity to see data left behind by another.
1359 */
1360 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1361 if (!prior_msa && was_fpu_owner) {
1362 init_msa_upper();
1363
1364 goto out;
1365 }
1366
1367 if (!prior_msa) {
1368 /*
1369 * Restore the least significant 64b of each vector register
1370 * from the existing scalar FP context.
1371 */
1372 _restore_fp(current);
1373
1374 /*
1375 * The task has not formerly used MSA, so clear the upper 64b
1376 * of each vector register such that it cannot see data left
1377 * behind by another task.
1378 */
1379 init_msa_upper();
1380 } else {
1381 /* We need to restore the vector context. */
1382 restore_msa(current);
1383
1384 /* Restore the scalar FP control & status register */
1385 if (!was_fpu_owner)
1386 write_32bit_cp1_register(CP1_STATUS,
1387 current->thread.fpu.fcr31);
1388 }
1389
1390out:
1391 preempt_enable();
1392
1393 return 0;
1394}
1395
1396#else /* !CONFIG_MIPS_FP_SUPPORT */
1397
1398static int enable_restore_fp_context(int msa)
1399{
1400 return SIGILL;
1401}
1402
1403#endif /* CONFIG_MIPS_FP_SUPPORT */
1404
1405asmlinkage void do_cpu(struct pt_regs *regs)
1406{
1407 enum ctx_state prev_state;
1408 unsigned int __user *epc;
1409 unsigned long old_epc, old31;
1410 unsigned int opcode;
1411 unsigned int cpid;
1412 int status;
1413
1414 prev_state = exception_enter();
1415 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1416
1417 if (cpid != 2)
1418 die_if_kernel("do_cpu invoked from kernel context!", regs);
1419
1420 switch (cpid) {
1421 case 0:
1422 epc = (unsigned int __user *)exception_epc(regs);
1423 old_epc = regs->cp0_epc;
1424 old31 = regs->regs[31];
1425 opcode = 0;
1426 status = -1;
1427
1428 if (unlikely(compute_return_epc(regs) < 0))
1429 break;
1430
1431 if (!get_isa16_mode(regs->cp0_epc)) {
1432 if (unlikely(get_user(opcode, epc) < 0))
1433 status = SIGSEGV;
1434
1435 if (!cpu_has_llsc && status < 0)
1436 status = simulate_llsc(regs, opcode);
1437 }
1438
1439 if (status < 0)
1440 status = SIGILL;
1441
1442 if (unlikely(status > 0)) {
1443 regs->cp0_epc = old_epc; /* Undo skip-over. */
1444 regs->regs[31] = old31;
1445 force_sig(status);
1446 }
1447
1448 break;
1449
1450#ifdef CONFIG_MIPS_FP_SUPPORT
1451 case 3:
1452 /*
1453 * The COP3 opcode space and consequently the CP0.Status.CU3
1454 * bit and the CP0.Cause.CE=3 encoding have been removed as
1455 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1456 * up the space has been reused for COP1X instructions, that
1457 * are enabled by the CP0.Status.CU1 bit and consequently
1458 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1459 * exceptions. Some FPU-less processors that implement one
1460 * of these ISAs however use this code erroneously for COP1X
1461 * instructions. Therefore we redirect this trap to the FP
1462 * emulator too.
1463 */
1464 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1465 force_sig(SIGILL);
1466 break;
1467 }
1468 fallthrough;
1469 case 1: {
1470 void __user *fault_addr;
1471 unsigned long fcr31;
1472 int err, sig;
1473
1474 err = enable_restore_fp_context(0);
1475
1476 if (raw_cpu_has_fpu && !err)
1477 break;
1478
1479 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1480 &fault_addr);
1481
1482 /*
1483 * We can't allow the emulated instruction to leave
1484 * any enabled Cause bits set in $fcr31.
1485 */
1486 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1487 current->thread.fpu.fcr31 &= ~fcr31;
1488
1489 /* Send a signal if required. */
1490 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1491 mt_ase_fp_affinity();
1492
1493 break;
1494 }
1495#else /* CONFIG_MIPS_FP_SUPPORT */
1496 case 1:
1497 case 3:
1498 force_sig(SIGILL);
1499 break;
1500#endif /* CONFIG_MIPS_FP_SUPPORT */
1501
1502 case 2:
1503 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1504 break;
1505 }
1506
1507 exception_exit(prev_state);
1508}
1509
1510asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1511{
1512 enum ctx_state prev_state;
1513
1514 prev_state = exception_enter();
1515 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1516 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1517 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1518 goto out;
1519
1520 /* Clear MSACSR.Cause before enabling interrupts */
1521 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1522 local_irq_enable();
1523
1524 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1525 force_sig(SIGFPE);
1526out:
1527 exception_exit(prev_state);
1528}
1529
1530asmlinkage void do_msa(struct pt_regs *regs)
1531{
1532 enum ctx_state prev_state;
1533 int err;
1534
1535 prev_state = exception_enter();
1536
1537 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1538 force_sig(SIGILL);
1539 goto out;
1540 }
1541
1542 die_if_kernel("do_msa invoked from kernel context!", regs);
1543
1544 err = enable_restore_fp_context(1);
1545 if (err)
1546 force_sig(SIGILL);
1547out:
1548 exception_exit(prev_state);
1549}
1550
1551asmlinkage void do_mdmx(struct pt_regs *regs)
1552{
1553 enum ctx_state prev_state;
1554
1555 prev_state = exception_enter();
1556 force_sig(SIGILL);
1557 exception_exit(prev_state);
1558}
1559
1560/*
1561 * Called with interrupts disabled.
1562 */
1563asmlinkage void do_watch(struct pt_regs *regs)
1564{
1565 enum ctx_state prev_state;
1566
1567 prev_state = exception_enter();
1568 /*
1569 * Clear WP (bit 22) bit of cause register so we don't loop
1570 * forever.
1571 */
1572 clear_c0_cause(CAUSEF_WP);
1573
1574 /*
1575 * If the current thread has the watch registers loaded, save
1576 * their values and send SIGTRAP. Otherwise another thread
1577 * left the registers set, clear them and continue.
1578 */
1579 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1580 mips_read_watch_registers();
1581 local_irq_enable();
1582 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1583 } else {
1584 mips_clear_watch_registers();
1585 local_irq_enable();
1586 }
1587 exception_exit(prev_state);
1588}
1589
1590asmlinkage void do_mcheck(struct pt_regs *regs)
1591{
1592 int multi_match = regs->cp0_status & ST0_TS;
1593 enum ctx_state prev_state;
1594 mm_segment_t old_fs = get_fs();
1595
1596 prev_state = exception_enter();
1597 show_regs(regs);
1598
1599 if (multi_match) {
1600 dump_tlb_regs();
1601 pr_info("\n");
1602 dump_tlb_all();
1603 }
1604
1605 if (!user_mode(regs))
1606 set_fs(KERNEL_DS);
1607
1608 show_code((unsigned int __user *) regs->cp0_epc);
1609
1610 set_fs(old_fs);
1611
1612 /*
1613 * Some chips may have other causes of machine check (e.g. SB1
1614 * graduation timer)
1615 */
1616 panic("Caught Machine Check exception - %scaused by multiple "
1617 "matching entries in the TLB.",
1618 (multi_match) ? "" : "not ");
1619}
1620
1621asmlinkage void do_mt(struct pt_regs *regs)
1622{
1623 int subcode;
1624
1625 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1626 >> VPECONTROL_EXCPT_SHIFT;
1627 switch (subcode) {
1628 case 0:
1629 printk(KERN_DEBUG "Thread Underflow\n");
1630 break;
1631 case 1:
1632 printk(KERN_DEBUG "Thread Overflow\n");
1633 break;
1634 case 2:
1635 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1636 break;
1637 case 3:
1638 printk(KERN_DEBUG "Gating Storage Exception\n");
1639 break;
1640 case 4:
1641 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1642 break;
1643 case 5:
1644 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1645 break;
1646 default:
1647 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1648 subcode);
1649 break;
1650 }
1651 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1652
1653 force_sig(SIGILL);
1654}
1655
1656
1657asmlinkage void do_dsp(struct pt_regs *regs)
1658{
1659 if (cpu_has_dsp)
1660 panic("Unexpected DSP exception");
1661
1662 force_sig(SIGILL);
1663}
1664
1665asmlinkage void do_reserved(struct pt_regs *regs)
1666{
1667 /*
1668 * Game over - no way to handle this if it ever occurs. Most probably
1669 * caused by a new unknown cpu type or after another deadly
1670 * hard/software error.
1671 */
1672 show_regs(regs);
1673 panic("Caught reserved exception %ld - should not happen.",
1674 (regs->cp0_cause & 0x7f) >> 2);
1675}
1676
1677static int __initdata l1parity = 1;
1678static int __init nol1parity(char *s)
1679{
1680 l1parity = 0;
1681 return 1;
1682}
1683__setup("nol1par", nol1parity);
1684static int __initdata l2parity = 1;
1685static int __init nol2parity(char *s)
1686{
1687 l2parity = 0;
1688 return 1;
1689}
1690__setup("nol2par", nol2parity);
1691
1692/*
1693 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1694 * it different ways.
1695 */
1696static inline __init void parity_protection_init(void)
1697{
1698#define ERRCTL_PE 0x80000000
1699#define ERRCTL_L2P 0x00800000
1700
1701 if (mips_cm_revision() >= CM_REV_CM3) {
1702 ulong gcr_ectl, cp0_ectl;
1703
1704 /*
1705 * With CM3 systems we need to ensure that the L1 & L2
1706 * parity enables are set to the same value, since this
1707 * is presumed by the hardware engineers.
1708 *
1709 * If the user disabled either of L1 or L2 ECC checking,
1710 * disable both.
1711 */
1712 l1parity &= l2parity;
1713 l2parity &= l1parity;
1714
1715 /* Probe L1 ECC support */
1716 cp0_ectl = read_c0_ecc();
1717 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1718 back_to_back_c0_hazard();
1719 cp0_ectl = read_c0_ecc();
1720
1721 /* Probe L2 ECC support */
1722 gcr_ectl = read_gcr_err_control();
1723
1724 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1725 !(cp0_ectl & ERRCTL_PE)) {
1726 /*
1727 * One of L1 or L2 ECC checking isn't supported,
1728 * so we cannot enable either.
1729 */
1730 l1parity = l2parity = 0;
1731 }
1732
1733 /* Configure L1 ECC checking */
1734 if (l1parity)
1735 cp0_ectl |= ERRCTL_PE;
1736 else
1737 cp0_ectl &= ~ERRCTL_PE;
1738 write_c0_ecc(cp0_ectl);
1739 back_to_back_c0_hazard();
1740 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1741
1742 /* Configure L2 ECC checking */
1743 if (l2parity)
1744 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1745 else
1746 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1747 write_gcr_err_control(gcr_ectl);
1748 gcr_ectl = read_gcr_err_control();
1749 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1750 WARN_ON(!!gcr_ectl != l2parity);
1751
1752 pr_info("Cache parity protection %sabled\n",
1753 l1parity ? "en" : "dis");
1754 return;
1755 }
1756
1757 switch (current_cpu_type()) {
1758 case CPU_24K:
1759 case CPU_34K:
1760 case CPU_74K:
1761 case CPU_1004K:
1762 case CPU_1074K:
1763 case CPU_INTERAPTIV:
1764 case CPU_PROAPTIV:
1765 case CPU_P5600:
1766 case CPU_QEMU_GENERIC:
1767 case CPU_P6600:
1768 {
1769 unsigned long errctl;
1770 unsigned int l1parity_present, l2parity_present;
1771
1772 errctl = read_c0_ecc();
1773 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1774
1775 /* probe L1 parity support */
1776 write_c0_ecc(errctl | ERRCTL_PE);
1777 back_to_back_c0_hazard();
1778 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1779
1780 /* probe L2 parity support */
1781 write_c0_ecc(errctl|ERRCTL_L2P);
1782 back_to_back_c0_hazard();
1783 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1784
1785 if (l1parity_present && l2parity_present) {
1786 if (l1parity)
1787 errctl |= ERRCTL_PE;
1788 if (l1parity ^ l2parity)
1789 errctl |= ERRCTL_L2P;
1790 } else if (l1parity_present) {
1791 if (l1parity)
1792 errctl |= ERRCTL_PE;
1793 } else if (l2parity_present) {
1794 if (l2parity)
1795 errctl |= ERRCTL_L2P;
1796 } else {
1797 /* No parity available */
1798 }
1799
1800 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1801
1802 write_c0_ecc(errctl);
1803 back_to_back_c0_hazard();
1804 errctl = read_c0_ecc();
1805 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1806
1807 if (l1parity_present)
1808 printk(KERN_INFO "Cache parity protection %sabled\n",
1809 (errctl & ERRCTL_PE) ? "en" : "dis");
1810
1811 if (l2parity_present) {
1812 if (l1parity_present && l1parity)
1813 errctl ^= ERRCTL_L2P;
1814 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1815 (errctl & ERRCTL_L2P) ? "en" : "dis");
1816 }
1817 }
1818 break;
1819
1820 case CPU_5KC:
1821 case CPU_5KE:
1822 case CPU_LOONGSON32:
1823 write_c0_ecc(0x80000000);
1824 back_to_back_c0_hazard();
1825 /* Set the PE bit (bit 31) in the c0_errctl register. */
1826 printk(KERN_INFO "Cache parity protection %sabled\n",
1827 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1828 break;
1829 case CPU_20KC:
1830 case CPU_25KF:
1831 /* Clear the DE bit (bit 16) in the c0_status register. */
1832 printk(KERN_INFO "Enable cache parity protection for "
1833 "MIPS 20KC/25KF CPUs.\n");
1834 clear_c0_status(ST0_DE);
1835 break;
1836 default:
1837 break;
1838 }
1839}
1840
1841asmlinkage void cache_parity_error(void)
1842{
1843 const int field = 2 * sizeof(unsigned long);
1844 unsigned int reg_val;
1845
1846 /* For the moment, report the problem and hang. */
1847 printk("Cache error exception:\n");
1848 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1849 reg_val = read_c0_cacheerr();
1850 printk("c0_cacheerr == %08x\n", reg_val);
1851
1852 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1853 reg_val & (1<<30) ? "secondary" : "primary",
1854 reg_val & (1<<31) ? "data" : "insn");
1855 if ((cpu_has_mips_r2_r6) &&
1856 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1857 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1858 reg_val & (1<<29) ? "ED " : "",
1859 reg_val & (1<<28) ? "ET " : "",
1860 reg_val & (1<<27) ? "ES " : "",
1861 reg_val & (1<<26) ? "EE " : "",
1862 reg_val & (1<<25) ? "EB " : "",
1863 reg_val & (1<<24) ? "EI " : "",
1864 reg_val & (1<<23) ? "E1 " : "",
1865 reg_val & (1<<22) ? "E0 " : "");
1866 } else {
1867 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1868 reg_val & (1<<29) ? "ED " : "",
1869 reg_val & (1<<28) ? "ET " : "",
1870 reg_val & (1<<26) ? "EE " : "",
1871 reg_val & (1<<25) ? "EB " : "",
1872 reg_val & (1<<24) ? "EI " : "",
1873 reg_val & (1<<23) ? "E1 " : "",
1874 reg_val & (1<<22) ? "E0 " : "");
1875 }
1876 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1877
1878#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1879 if (reg_val & (1<<22))
1880 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1881
1882 if (reg_val & (1<<23))
1883 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1884#endif
1885
1886 panic("Can't handle the cache error!");
1887}
1888
1889asmlinkage void do_ftlb(void)
1890{
1891 const int field = 2 * sizeof(unsigned long);
1892 unsigned int reg_val;
1893
1894 /* For the moment, report the problem and hang. */
1895 if ((cpu_has_mips_r2_r6) &&
1896 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1897 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1898 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1899 read_c0_ecc());
1900 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1901 reg_val = read_c0_cacheerr();
1902 pr_err("c0_cacheerr == %08x\n", reg_val);
1903
1904 if ((reg_val & 0xc0000000) == 0xc0000000) {
1905 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1906 } else {
1907 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1908 reg_val & (1<<30) ? "secondary" : "primary",
1909 reg_val & (1<<31) ? "data" : "insn");
1910 }
1911 } else {
1912 pr_err("FTLB error exception\n");
1913 }
1914 /* Just print the cacheerr bits for now */
1915 cache_parity_error();
1916}
1917
1918asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1919{
1920 u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1921 LOONGSON_DIAG1_EXCCODE_SHIFT;
1922 enum ctx_state prev_state;
1923
1924 prev_state = exception_enter();
1925
1926 switch (exccode) {
1927 case 0x08:
1928 /* Undocumented exception, will trigger on certain
1929 * also-undocumented instructions accessible from userspace.
1930 * Processor state is not otherwise corrupted, but currently
1931 * we don't know how to proceed. Maybe there is some
1932 * undocumented control flag to enable the instructions?
1933 */
1934 force_sig(SIGILL);
1935 break;
1936
1937 default:
1938 /* None of the other exceptions, documented or not, have
1939 * further details given; none are encountered in the wild
1940 * either. Panic in case some of them turn out to be fatal.
1941 */
1942 show_regs(regs);
1943 panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1944 }
1945
1946 exception_exit(prev_state);
1947}
1948
1949/*
1950 * SDBBP EJTAG debug exception handler.
1951 * We skip the instruction and return to the next instruction.
1952 */
1953void ejtag_exception_handler(struct pt_regs *regs)
1954{
1955 const int field = 2 * sizeof(unsigned long);
1956 unsigned long depc, old_epc, old_ra;
1957 unsigned int debug;
1958
1959 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1960 depc = read_c0_depc();
1961 debug = read_c0_debug();
1962 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1963 if (debug & 0x80000000) {
1964 /*
1965 * In branch delay slot.
1966 * We cheat a little bit here and use EPC to calculate the
1967 * debug return address (DEPC). EPC is restored after the
1968 * calculation.
1969 */
1970 old_epc = regs->cp0_epc;
1971 old_ra = regs->regs[31];
1972 regs->cp0_epc = depc;
1973 compute_return_epc(regs);
1974 depc = regs->cp0_epc;
1975 regs->cp0_epc = old_epc;
1976 regs->regs[31] = old_ra;
1977 } else
1978 depc += 4;
1979 write_c0_depc(depc);
1980
1981#if 0
1982 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1983 write_c0_debug(debug | 0x100);
1984#endif
1985}
1986
1987/*
1988 * NMI exception handler.
1989 * No lock; only written during early bootup by CPU 0.
1990 */
1991static RAW_NOTIFIER_HEAD(nmi_chain);
1992
1993int register_nmi_notifier(struct notifier_block *nb)
1994{
1995 return raw_notifier_chain_register(&nmi_chain, nb);
1996}
1997
1998void __noreturn nmi_exception_handler(struct pt_regs *regs)
1999{
2000 char str[100];
2001
2002 nmi_enter();
2003 raw_notifier_call_chain(&nmi_chain, 0, regs);
2004 bust_spinlocks(1);
2005 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
2006 smp_processor_id(), regs->cp0_epc);
2007 regs->cp0_epc = read_c0_errorepc();
2008 die(str, regs);
2009 nmi_exit();
2010}
2011
2012#define VECTORSPACING 0x100 /* for EI/VI mode */
2013
2014unsigned long ebase;
2015EXPORT_SYMBOL_GPL(ebase);
2016unsigned long exception_handlers[32];
2017unsigned long vi_handlers[64];
2018
2019void __init *set_except_vector(int n, void *addr)
2020{
2021 unsigned long handler = (unsigned long) addr;
2022 unsigned long old_handler;
2023
2024#ifdef CONFIG_CPU_MICROMIPS
2025 /*
2026 * Only the TLB handlers are cache aligned with an even
2027 * address. All other handlers are on an odd address and
2028 * require no modification. Otherwise, MIPS32 mode will
2029 * be entered when handling any TLB exceptions. That
2030 * would be bad...since we must stay in microMIPS mode.
2031 */
2032 if (!(handler & 0x1))
2033 handler |= 1;
2034#endif
2035 old_handler = xchg(&exception_handlers[n], handler);
2036
2037 if (n == 0 && cpu_has_divec) {
2038#ifdef CONFIG_CPU_MICROMIPS
2039 unsigned long jump_mask = ~((1 << 27) - 1);
2040#else
2041 unsigned long jump_mask = ~((1 << 28) - 1);
2042#endif
2043 u32 *buf = (u32 *)(ebase + 0x200);
2044 unsigned int k0 = 26;
2045 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2046 uasm_i_j(&buf, handler & ~jump_mask);
2047 uasm_i_nop(&buf);
2048 } else {
2049 UASM_i_LA(&buf, k0, handler);
2050 uasm_i_jr(&buf, k0);
2051 uasm_i_nop(&buf);
2052 }
2053 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2054 }
2055 return (void *)old_handler;
2056}
2057
2058static void do_default_vi(void)
2059{
2060 show_regs(get_irq_regs());
2061 panic("Caught unexpected vectored interrupt.");
2062}
2063
2064static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2065{
2066 unsigned long handler;
2067 unsigned long old_handler = vi_handlers[n];
2068 int srssets = current_cpu_data.srsets;
2069 u16 *h;
2070 unsigned char *b;
2071
2072 BUG_ON(!cpu_has_veic && !cpu_has_vint);
2073
2074 if (addr == NULL) {
2075 handler = (unsigned long) do_default_vi;
2076 srs = 0;
2077 } else
2078 handler = (unsigned long) addr;
2079 vi_handlers[n] = handler;
2080
2081 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2082
2083 if (srs >= srssets)
2084 panic("Shadow register set %d not supported", srs);
2085
2086 if (cpu_has_veic) {
2087 if (board_bind_eic_interrupt)
2088 board_bind_eic_interrupt(n, srs);
2089 } else if (cpu_has_vint) {
2090 /* SRSMap is only defined if shadow sets are implemented */
2091 if (srssets > 1)
2092 change_c0_srsmap(0xf << n*4, srs << n*4);
2093 }
2094
2095 if (srs == 0) {
2096 /*
2097 * If no shadow set is selected then use the default handler
2098 * that does normal register saving and standard interrupt exit
2099 */
2100 extern char except_vec_vi, except_vec_vi_lui;
2101 extern char except_vec_vi_ori, except_vec_vi_end;
2102 extern char rollback_except_vec_vi;
2103 char *vec_start = using_rollback_handler() ?
2104 &rollback_except_vec_vi : &except_vec_vi;
2105#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2106 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2107 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2108#else
2109 const int lui_offset = &except_vec_vi_lui - vec_start;
2110 const int ori_offset = &except_vec_vi_ori - vec_start;
2111#endif
2112 const int handler_len = &except_vec_vi_end - vec_start;
2113
2114 if (handler_len > VECTORSPACING) {
2115 /*
2116 * Sigh... panicing won't help as the console
2117 * is probably not configured :(
2118 */
2119 panic("VECTORSPACING too small");
2120 }
2121
2122 set_handler(((unsigned long)b - ebase), vec_start,
2123#ifdef CONFIG_CPU_MICROMIPS
2124 (handler_len - 1));
2125#else
2126 handler_len);
2127#endif
2128 h = (u16 *)(b + lui_offset);
2129 *h = (handler >> 16) & 0xffff;
2130 h = (u16 *)(b + ori_offset);
2131 *h = (handler & 0xffff);
2132 local_flush_icache_range((unsigned long)b,
2133 (unsigned long)(b+handler_len));
2134 }
2135 else {
2136 /*
2137 * In other cases jump directly to the interrupt handler. It
2138 * is the handler's responsibility to save registers if required
2139 * (eg hi/lo) and return from the exception using "eret".
2140 */
2141 u32 insn;
2142
2143 h = (u16 *)b;
2144 /* j handler */
2145#ifdef CONFIG_CPU_MICROMIPS
2146 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2147#else
2148 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2149#endif
2150 h[0] = (insn >> 16) & 0xffff;
2151 h[1] = insn & 0xffff;
2152 h[2] = 0;
2153 h[3] = 0;
2154 local_flush_icache_range((unsigned long)b,
2155 (unsigned long)(b+8));
2156 }
2157
2158 return (void *)old_handler;
2159}
2160
2161void *set_vi_handler(int n, vi_handler_t addr)
2162{
2163 return set_vi_srs_handler(n, addr, 0);
2164}
2165
2166extern void tlb_init(void);
2167
2168/*
2169 * Timer interrupt
2170 */
2171int cp0_compare_irq;
2172EXPORT_SYMBOL_GPL(cp0_compare_irq);
2173int cp0_compare_irq_shift;
2174
2175/*
2176 * Performance counter IRQ or -1 if shared with timer
2177 */
2178int cp0_perfcount_irq;
2179EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2180
2181/*
2182 * Fast debug channel IRQ or -1 if not present
2183 */
2184int cp0_fdc_irq;
2185EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2186
2187static int noulri;
2188
2189static int __init ulri_disable(char *s)
2190{
2191 pr_info("Disabling ulri\n");
2192 noulri = 1;
2193
2194 return 1;
2195}
2196__setup("noulri", ulri_disable);
2197
2198/* configure STATUS register */
2199static void configure_status(void)
2200{
2201 /*
2202 * Disable coprocessors and select 32-bit or 64-bit addressing
2203 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2204 * flag that some firmware may have left set and the TS bit (for
2205 * IP27). Set XX for ISA IV code to work.
2206 */
2207 unsigned int status_set = ST0_CU0;
2208#ifdef CONFIG_64BIT
2209 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2210#endif
2211 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2212 status_set |= ST0_XX;
2213 if (cpu_has_dsp)
2214 status_set |= ST0_MX;
2215
2216 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2217 status_set);
2218 back_to_back_c0_hazard();
2219}
2220
2221unsigned int hwrena;
2222EXPORT_SYMBOL_GPL(hwrena);
2223
2224/* configure HWRENA register */
2225static void configure_hwrena(void)
2226{
2227 hwrena = cpu_hwrena_impl_bits;
2228
2229 if (cpu_has_mips_r2_r6)
2230 hwrena |= MIPS_HWRENA_CPUNUM |
2231 MIPS_HWRENA_SYNCISTEP |
2232 MIPS_HWRENA_CC |
2233 MIPS_HWRENA_CCRES;
2234
2235 if (!noulri && cpu_has_userlocal)
2236 hwrena |= MIPS_HWRENA_ULR;
2237
2238 if (hwrena)
2239 write_c0_hwrena(hwrena);
2240}
2241
2242static void configure_exception_vector(void)
2243{
2244 if (cpu_has_mips_r2_r6) {
2245 unsigned long sr = set_c0_status(ST0_BEV);
2246 /* If available, use WG to set top bits of EBASE */
2247 if (cpu_has_ebase_wg) {
2248#ifdef CONFIG_64BIT
2249 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2250#else
2251 write_c0_ebase(ebase | MIPS_EBASE_WG);
2252#endif
2253 }
2254 write_c0_ebase(ebase);
2255 write_c0_status(sr);
2256 }
2257 if (cpu_has_veic || cpu_has_vint) {
2258 /* Setting vector spacing enables EI/VI mode */
2259 change_c0_intctl(0x3e0, VECTORSPACING);
2260 }
2261 if (cpu_has_divec) {
2262 if (cpu_has_mipsmt) {
2263 unsigned int vpflags = dvpe();
2264 set_c0_cause(CAUSEF_IV);
2265 evpe(vpflags);
2266 } else
2267 set_c0_cause(CAUSEF_IV);
2268 }
2269}
2270
2271void per_cpu_trap_init(bool is_boot_cpu)
2272{
2273 unsigned int cpu = smp_processor_id();
2274
2275 configure_status();
2276 configure_hwrena();
2277
2278 configure_exception_vector();
2279
2280 /*
2281 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2282 *
2283 * o read IntCtl.IPTI to determine the timer interrupt
2284 * o read IntCtl.IPPCI to determine the performance counter interrupt
2285 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2286 */
2287 if (cpu_has_mips_r2_r6) {
2288 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2289 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2290 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2291 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2292 if (!cp0_fdc_irq)
2293 cp0_fdc_irq = -1;
2294
2295 } else {
2296 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2297 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2298 cp0_perfcount_irq = -1;
2299 cp0_fdc_irq = -1;
2300 }
2301
2302 if (cpu_has_mmid)
2303 cpu_data[cpu].asid_cache = 0;
2304 else if (!cpu_data[cpu].asid_cache)
2305 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2306
2307 mmgrab(&init_mm);
2308 current->active_mm = &init_mm;
2309 BUG_ON(current->mm);
2310 enter_lazy_tlb(&init_mm, current);
2311
2312 /* Boot CPU's cache setup in setup_arch(). */
2313 if (!is_boot_cpu)
2314 cpu_cache_init();
2315 tlb_init();
2316 TLBMISS_HANDLER_SETUP();
2317}
2318
2319/* Install CPU exception handler */
2320void set_handler(unsigned long offset, void *addr, unsigned long size)
2321{
2322#ifdef CONFIG_CPU_MICROMIPS
2323 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2324#else
2325 memcpy((void *)(ebase + offset), addr, size);
2326#endif
2327 local_flush_icache_range(ebase + offset, ebase + offset + size);
2328}
2329
2330static const char panic_null_cerr[] =
2331 "Trying to set NULL cache error exception handler\n";
2332
2333/*
2334 * Install uncached CPU exception handler.
2335 * This is suitable only for the cache error exception which is the only
2336 * exception handler that is being run uncached.
2337 */
2338void set_uncached_handler(unsigned long offset, void *addr,
2339 unsigned long size)
2340{
2341 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2342
2343 if (!addr)
2344 panic(panic_null_cerr);
2345
2346 memcpy((void *)(uncached_ebase + offset), addr, size);
2347}
2348
2349static int __initdata rdhwr_noopt;
2350static int __init set_rdhwr_noopt(char *str)
2351{
2352 rdhwr_noopt = 1;
2353 return 1;
2354}
2355
2356__setup("rdhwr_noopt", set_rdhwr_noopt);
2357
2358void __init trap_init(void)
2359{
2360 extern char except_vec3_generic;
2361 extern char except_vec4;
2362 extern char except_vec3_r4000;
2363 unsigned long i, vec_size;
2364 phys_addr_t ebase_pa;
2365
2366 check_wait();
2367
2368 if (!cpu_has_mips_r2_r6) {
2369 ebase = CAC_BASE;
2370 ebase_pa = virt_to_phys((void *)ebase);
2371 vec_size = 0x400;
2372
2373 memblock_reserve(ebase_pa, vec_size);
2374 } else {
2375 if (cpu_has_veic || cpu_has_vint)
2376 vec_size = 0x200 + VECTORSPACING*64;
2377 else
2378 vec_size = PAGE_SIZE;
2379
2380 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2381 if (!ebase_pa)
2382 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2383 __func__, vec_size, 1 << fls(vec_size));
2384
2385 /*
2386 * Try to ensure ebase resides in KSeg0 if possible.
2387 *
2388 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2389 * hitting a poorly defined exception base for Cache Errors.
2390 * The allocation is likely to be in the low 512MB of physical,
2391 * in which case we should be able to convert to KSeg0.
2392 *
2393 * EVA is special though as it allows segments to be rearranged
2394 * and to become uncached during cache error handling.
2395 */
2396 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2397 ebase = CKSEG0ADDR(ebase_pa);
2398 else
2399 ebase = (unsigned long)phys_to_virt(ebase_pa);
2400 }
2401
2402 if (cpu_has_mmips) {
2403 unsigned int config3 = read_c0_config3();
2404
2405 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2406 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2407 else
2408 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2409 }
2410
2411 if (board_ebase_setup)
2412 board_ebase_setup();
2413 per_cpu_trap_init(true);
2414 memblock_set_bottom_up(false);
2415
2416 /*
2417 * Copy the generic exception handlers to their final destination.
2418 * This will be overridden later as suitable for a particular
2419 * configuration.
2420 */
2421 set_handler(0x180, &except_vec3_generic, 0x80);
2422
2423 /*
2424 * Setup default vectors
2425 */
2426 for (i = 0; i <= 31; i++)
2427 set_except_vector(i, handle_reserved);
2428
2429 /*
2430 * Copy the EJTAG debug exception vector handler code to it's final
2431 * destination.
2432 */
2433 if (cpu_has_ejtag && board_ejtag_handler_setup)
2434 board_ejtag_handler_setup();
2435
2436 /*
2437 * Only some CPUs have the watch exceptions.
2438 */
2439 if (cpu_has_watch)
2440 set_except_vector(EXCCODE_WATCH, handle_watch);
2441
2442 /*
2443 * Initialise interrupt handlers
2444 */
2445 if (cpu_has_veic || cpu_has_vint) {
2446 int nvec = cpu_has_veic ? 64 : 8;
2447 for (i = 0; i < nvec; i++)
2448 set_vi_handler(i, NULL);
2449 }
2450 else if (cpu_has_divec)
2451 set_handler(0x200, &except_vec4, 0x8);
2452
2453 /*
2454 * Some CPUs can enable/disable for cache parity detection, but does
2455 * it different ways.
2456 */
2457 parity_protection_init();
2458
2459 /*
2460 * The Data Bus Errors / Instruction Bus Errors are signaled
2461 * by external hardware. Therefore these two exceptions
2462 * may have board specific handlers.
2463 */
2464 if (board_be_init)
2465 board_be_init();
2466
2467 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2468 rollback_handle_int : handle_int);
2469 set_except_vector(EXCCODE_MOD, handle_tlbm);
2470 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2471 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2472
2473 set_except_vector(EXCCODE_ADEL, handle_adel);
2474 set_except_vector(EXCCODE_ADES, handle_ades);
2475
2476 set_except_vector(EXCCODE_IBE, handle_ibe);
2477 set_except_vector(EXCCODE_DBE, handle_dbe);
2478
2479 set_except_vector(EXCCODE_SYS, handle_sys);
2480 set_except_vector(EXCCODE_BP, handle_bp);
2481
2482 if (rdhwr_noopt)
2483 set_except_vector(EXCCODE_RI, handle_ri);
2484 else {
2485 if (cpu_has_vtag_icache)
2486 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2487 else if (current_cpu_type() == CPU_LOONGSON64)
2488 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2489 else
2490 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2491 }
2492
2493 set_except_vector(EXCCODE_CPU, handle_cpu);
2494 set_except_vector(EXCCODE_OV, handle_ov);
2495 set_except_vector(EXCCODE_TR, handle_tr);
2496 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2497
2498 if (board_nmi_handler_setup)
2499 board_nmi_handler_setup();
2500
2501 if (cpu_has_fpu && !cpu_has_nofpuex)
2502 set_except_vector(EXCCODE_FPE, handle_fpe);
2503
2504 if (cpu_has_ftlbparex)
2505 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2506
2507 if (cpu_has_gsexcex)
2508 set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2509
2510 if (cpu_has_rixiex) {
2511 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2512 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2513 }
2514
2515 set_except_vector(EXCCODE_MSADIS, handle_msa);
2516 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2517
2518 if (cpu_has_mcheck)
2519 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2520
2521 if (cpu_has_mipsmt)
2522 set_except_vector(EXCCODE_THREAD, handle_mt);
2523
2524 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2525
2526 if (board_cache_error_setup)
2527 board_cache_error_setup();
2528
2529 if (cpu_has_vce)
2530 /* Special exception: R4[04]00 uses also the divec space. */
2531 set_handler(0x180, &except_vec3_r4000, 0x100);
2532 else if (cpu_has_4kex)
2533 set_handler(0x180, &except_vec3_generic, 0x80);
2534 else
2535 set_handler(0x080, &except_vec3_generic, 0x80);
2536
2537 local_flush_icache_range(ebase, ebase + vec_size);
2538
2539 sort_extable(__start___dbe_table, __stop___dbe_table);
2540
2541 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2542}
2543
2544static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2545 void *v)
2546{
2547 switch (cmd) {
2548 case CPU_PM_ENTER_FAILED:
2549 case CPU_PM_EXIT:
2550 configure_status();
2551 configure_hwrena();
2552 configure_exception_vector();
2553
2554 /* Restore register with CPU number for TLB handlers */
2555 TLBMISS_HANDLER_RESTORE();
2556
2557 break;
2558 }
2559
2560 return NOTIFY_OK;
2561}
2562
2563static struct notifier_block trap_pm_notifier_block = {
2564 .notifier_call = trap_pm_notifier,
2565};
2566
2567static int __init trap_pm_init(void)
2568{
2569 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2570}
2571arch_initcall(trap_pm_init);