Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 */
6
7#define INCLUDE_VERMAGIC
8
9#include <linux/export.h>
10#include <linux/extable.h>
11#include <linux/moduleloader.h>
12#include <linux/module_signature.h>
13#include <linux/trace_events.h>
14#include <linux/init.h>
15#include <linux/kallsyms.h>
16#include <linux/buildid.h>
17#include <linux/file.h>
18#include <linux/fs.h>
19#include <linux/sysfs.h>
20#include <linux/kernel.h>
21#include <linux/kernel_read_file.h>
22#include <linux/slab.h>
23#include <linux/vmalloc.h>
24#include <linux/elf.h>
25#include <linux/proc_fs.h>
26#include <linux/security.h>
27#include <linux/seq_file.h>
28#include <linux/syscalls.h>
29#include <linux/fcntl.h>
30#include <linux/rcupdate.h>
31#include <linux/capability.h>
32#include <linux/cpu.h>
33#include <linux/moduleparam.h>
34#include <linux/errno.h>
35#include <linux/err.h>
36#include <linux/vermagic.h>
37#include <linux/notifier.h>
38#include <linux/sched.h>
39#include <linux/device.h>
40#include <linux/string.h>
41#include <linux/mutex.h>
42#include <linux/rculist.h>
43#include <linux/uaccess.h>
44#include <asm/cacheflush.h>
45#include <linux/set_memory.h>
46#include <asm/mmu_context.h>
47#include <linux/license.h>
48#include <asm/sections.h>
49#include <linux/tracepoint.h>
50#include <linux/ftrace.h>
51#include <linux/livepatch.h>
52#include <linux/async.h>
53#include <linux/percpu.h>
54#include <linux/kmemleak.h>
55#include <linux/jump_label.h>
56#include <linux/pfn.h>
57#include <linux/bsearch.h>
58#include <linux/dynamic_debug.h>
59#include <linux/audit.h>
60#include <uapi/linux/module.h>
61#include "module-internal.h"
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/module.h>
65
66#ifndef ARCH_SHF_SMALL
67#define ARCH_SHF_SMALL 0
68#endif
69
70/*
71 * Modules' sections will be aligned on page boundaries
72 * to ensure complete separation of code and data, but
73 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
74 */
75#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
76# define debug_align(X) ALIGN(X, PAGE_SIZE)
77#else
78# define debug_align(X) (X)
79#endif
80
81/* If this is set, the section belongs in the init part of the module */
82#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
83
84/*
85 * Mutex protects:
86 * 1) List of modules (also safely readable with preempt_disable),
87 * 2) module_use links,
88 * 3) module_addr_min/module_addr_max.
89 * (delete and add uses RCU list operations).
90 */
91static DEFINE_MUTEX(module_mutex);
92static LIST_HEAD(modules);
93
94/* Work queue for freeing init sections in success case */
95static void do_free_init(struct work_struct *w);
96static DECLARE_WORK(init_free_wq, do_free_init);
97static LLIST_HEAD(init_free_list);
98
99#ifdef CONFIG_MODULES_TREE_LOOKUP
100
101/*
102 * Use a latched RB-tree for __module_address(); this allows us to use
103 * RCU-sched lookups of the address from any context.
104 *
105 * This is conditional on PERF_EVENTS || TRACING because those can really hit
106 * __module_address() hard by doing a lot of stack unwinding; potentially from
107 * NMI context.
108 */
109
110static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
111{
112 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
113
114 return (unsigned long)layout->base;
115}
116
117static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
118{
119 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
120
121 return (unsigned long)layout->size;
122}
123
124static __always_inline bool
125mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
126{
127 return __mod_tree_val(a) < __mod_tree_val(b);
128}
129
130static __always_inline int
131mod_tree_comp(void *key, struct latch_tree_node *n)
132{
133 unsigned long val = (unsigned long)key;
134 unsigned long start, end;
135
136 start = __mod_tree_val(n);
137 if (val < start)
138 return -1;
139
140 end = start + __mod_tree_size(n);
141 if (val >= end)
142 return 1;
143
144 return 0;
145}
146
147static const struct latch_tree_ops mod_tree_ops = {
148 .less = mod_tree_less,
149 .comp = mod_tree_comp,
150};
151
152static struct mod_tree_root {
153 struct latch_tree_root root;
154 unsigned long addr_min;
155 unsigned long addr_max;
156} mod_tree __cacheline_aligned = {
157 .addr_min = -1UL,
158};
159
160#define module_addr_min mod_tree.addr_min
161#define module_addr_max mod_tree.addr_max
162
163static noinline void __mod_tree_insert(struct mod_tree_node *node)
164{
165 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
166}
167
168static void __mod_tree_remove(struct mod_tree_node *node)
169{
170 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
171}
172
173/*
174 * These modifications: insert, remove_init and remove; are serialized by the
175 * module_mutex.
176 */
177static void mod_tree_insert(struct module *mod)
178{
179 mod->core_layout.mtn.mod = mod;
180 mod->init_layout.mtn.mod = mod;
181
182 __mod_tree_insert(&mod->core_layout.mtn);
183 if (mod->init_layout.size)
184 __mod_tree_insert(&mod->init_layout.mtn);
185}
186
187static void mod_tree_remove_init(struct module *mod)
188{
189 if (mod->init_layout.size)
190 __mod_tree_remove(&mod->init_layout.mtn);
191}
192
193static void mod_tree_remove(struct module *mod)
194{
195 __mod_tree_remove(&mod->core_layout.mtn);
196 mod_tree_remove_init(mod);
197}
198
199static struct module *mod_find(unsigned long addr)
200{
201 struct latch_tree_node *ltn;
202
203 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
204 if (!ltn)
205 return NULL;
206
207 return container_of(ltn, struct mod_tree_node, node)->mod;
208}
209
210#else /* MODULES_TREE_LOOKUP */
211
212static unsigned long module_addr_min = -1UL, module_addr_max = 0;
213
214static void mod_tree_insert(struct module *mod) { }
215static void mod_tree_remove_init(struct module *mod) { }
216static void mod_tree_remove(struct module *mod) { }
217
218static struct module *mod_find(unsigned long addr)
219{
220 struct module *mod;
221
222 list_for_each_entry_rcu(mod, &modules, list,
223 lockdep_is_held(&module_mutex)) {
224 if (within_module(addr, mod))
225 return mod;
226 }
227
228 return NULL;
229}
230
231#endif /* MODULES_TREE_LOOKUP */
232
233/*
234 * Bounds of module text, for speeding up __module_address.
235 * Protected by module_mutex.
236 */
237static void __mod_update_bounds(void *base, unsigned int size)
238{
239 unsigned long min = (unsigned long)base;
240 unsigned long max = min + size;
241
242 if (min < module_addr_min)
243 module_addr_min = min;
244 if (max > module_addr_max)
245 module_addr_max = max;
246}
247
248static void mod_update_bounds(struct module *mod)
249{
250 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
251 if (mod->init_layout.size)
252 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
253}
254
255#ifdef CONFIG_KGDB_KDB
256struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
257#endif /* CONFIG_KGDB_KDB */
258
259static void module_assert_mutex_or_preempt(void)
260{
261#ifdef CONFIG_LOCKDEP
262 if (unlikely(!debug_locks))
263 return;
264
265 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
266 !lockdep_is_held(&module_mutex));
267#endif
268}
269
270#ifdef CONFIG_MODULE_SIG
271static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
272module_param(sig_enforce, bool_enable_only, 0644);
273
274void set_module_sig_enforced(void)
275{
276 sig_enforce = true;
277}
278#else
279#define sig_enforce false
280#endif
281
282/*
283 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
284 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
285 */
286bool is_module_sig_enforced(void)
287{
288 return sig_enforce;
289}
290EXPORT_SYMBOL(is_module_sig_enforced);
291
292/* Block module loading/unloading? */
293int modules_disabled = 0;
294core_param(nomodule, modules_disabled, bint, 0);
295
296/* Waiting for a module to finish initializing? */
297static DECLARE_WAIT_QUEUE_HEAD(module_wq);
298
299static BLOCKING_NOTIFIER_HEAD(module_notify_list);
300
301int register_module_notifier(struct notifier_block *nb)
302{
303 return blocking_notifier_chain_register(&module_notify_list, nb);
304}
305EXPORT_SYMBOL(register_module_notifier);
306
307int unregister_module_notifier(struct notifier_block *nb)
308{
309 return blocking_notifier_chain_unregister(&module_notify_list, nb);
310}
311EXPORT_SYMBOL(unregister_module_notifier);
312
313/*
314 * We require a truly strong try_module_get(): 0 means success.
315 * Otherwise an error is returned due to ongoing or failed
316 * initialization etc.
317 */
318static inline int strong_try_module_get(struct module *mod)
319{
320 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
321 if (mod && mod->state == MODULE_STATE_COMING)
322 return -EBUSY;
323 if (try_module_get(mod))
324 return 0;
325 else
326 return -ENOENT;
327}
328
329static inline void add_taint_module(struct module *mod, unsigned flag,
330 enum lockdep_ok lockdep_ok)
331{
332 add_taint(flag, lockdep_ok);
333 set_bit(flag, &mod->taints);
334}
335
336/*
337 * A thread that wants to hold a reference to a module only while it
338 * is running can call this to safely exit. nfsd and lockd use this.
339 */
340void __noreturn __module_put_and_exit(struct module *mod, long code)
341{
342 module_put(mod);
343 do_exit(code);
344}
345EXPORT_SYMBOL(__module_put_and_exit);
346
347/* Find a module section: 0 means not found. */
348static unsigned int find_sec(const struct load_info *info, const char *name)
349{
350 unsigned int i;
351
352 for (i = 1; i < info->hdr->e_shnum; i++) {
353 Elf_Shdr *shdr = &info->sechdrs[i];
354 /* Alloc bit cleared means "ignore it." */
355 if ((shdr->sh_flags & SHF_ALLOC)
356 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
357 return i;
358 }
359 return 0;
360}
361
362/* Find a module section, or NULL. */
363static void *section_addr(const struct load_info *info, const char *name)
364{
365 /* Section 0 has sh_addr 0. */
366 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
367}
368
369/* Find a module section, or NULL. Fill in number of "objects" in section. */
370static void *section_objs(const struct load_info *info,
371 const char *name,
372 size_t object_size,
373 unsigned int *num)
374{
375 unsigned int sec = find_sec(info, name);
376
377 /* Section 0 has sh_addr 0 and sh_size 0. */
378 *num = info->sechdrs[sec].sh_size / object_size;
379 return (void *)info->sechdrs[sec].sh_addr;
380}
381
382/* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
383static unsigned int find_any_sec(const struct load_info *info, const char *name)
384{
385 unsigned int i;
386
387 for (i = 1; i < info->hdr->e_shnum; i++) {
388 Elf_Shdr *shdr = &info->sechdrs[i];
389 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
390 return i;
391 }
392 return 0;
393}
394
395/*
396 * Find a module section, or NULL. Fill in number of "objects" in section.
397 * Ignores SHF_ALLOC flag.
398 */
399static __maybe_unused void *any_section_objs(const struct load_info *info,
400 const char *name,
401 size_t object_size,
402 unsigned int *num)
403{
404 unsigned int sec = find_any_sec(info, name);
405
406 /* Section 0 has sh_addr 0 and sh_size 0. */
407 *num = info->sechdrs[sec].sh_size / object_size;
408 return (void *)info->sechdrs[sec].sh_addr;
409}
410
411/* Provided by the linker */
412extern const struct kernel_symbol __start___ksymtab[];
413extern const struct kernel_symbol __stop___ksymtab[];
414extern const struct kernel_symbol __start___ksymtab_gpl[];
415extern const struct kernel_symbol __stop___ksymtab_gpl[];
416extern const s32 __start___kcrctab[];
417extern const s32 __start___kcrctab_gpl[];
418
419#ifndef CONFIG_MODVERSIONS
420#define symversion(base, idx) NULL
421#else
422#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
423#endif
424
425struct symsearch {
426 const struct kernel_symbol *start, *stop;
427 const s32 *crcs;
428 enum mod_license {
429 NOT_GPL_ONLY,
430 GPL_ONLY,
431 } license;
432};
433
434struct find_symbol_arg {
435 /* Input */
436 const char *name;
437 bool gplok;
438 bool warn;
439
440 /* Output */
441 struct module *owner;
442 const s32 *crc;
443 const struct kernel_symbol *sym;
444 enum mod_license license;
445};
446
447static bool check_exported_symbol(const struct symsearch *syms,
448 struct module *owner,
449 unsigned int symnum, void *data)
450{
451 struct find_symbol_arg *fsa = data;
452
453 if (!fsa->gplok && syms->license == GPL_ONLY)
454 return false;
455 fsa->owner = owner;
456 fsa->crc = symversion(syms->crcs, symnum);
457 fsa->sym = &syms->start[symnum];
458 fsa->license = syms->license;
459 return true;
460}
461
462static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
463{
464#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
465 return (unsigned long)offset_to_ptr(&sym->value_offset);
466#else
467 return sym->value;
468#endif
469}
470
471static const char *kernel_symbol_name(const struct kernel_symbol *sym)
472{
473#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
474 return offset_to_ptr(&sym->name_offset);
475#else
476 return sym->name;
477#endif
478}
479
480static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
481{
482#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
483 if (!sym->namespace_offset)
484 return NULL;
485 return offset_to_ptr(&sym->namespace_offset);
486#else
487 return sym->namespace;
488#endif
489}
490
491static int cmp_name(const void *name, const void *sym)
492{
493 return strcmp(name, kernel_symbol_name(sym));
494}
495
496static bool find_exported_symbol_in_section(const struct symsearch *syms,
497 struct module *owner,
498 void *data)
499{
500 struct find_symbol_arg *fsa = data;
501 struct kernel_symbol *sym;
502
503 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
504 sizeof(struct kernel_symbol), cmp_name);
505
506 if (sym != NULL && check_exported_symbol(syms, owner,
507 sym - syms->start, data))
508 return true;
509
510 return false;
511}
512
513/*
514 * Find an exported symbol and return it, along with, (optional) crc and
515 * (optional) module which owns it. Needs preempt disabled or module_mutex.
516 */
517static bool find_symbol(struct find_symbol_arg *fsa)
518{
519 static const struct symsearch arr[] = {
520 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
521 NOT_GPL_ONLY },
522 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
523 __start___kcrctab_gpl,
524 GPL_ONLY },
525 };
526 struct module *mod;
527 unsigned int i;
528
529 module_assert_mutex_or_preempt();
530
531 for (i = 0; i < ARRAY_SIZE(arr); i++)
532 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
533 return true;
534
535 list_for_each_entry_rcu(mod, &modules, list,
536 lockdep_is_held(&module_mutex)) {
537 struct symsearch arr[] = {
538 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
539 NOT_GPL_ONLY },
540 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
541 mod->gpl_crcs,
542 GPL_ONLY },
543 };
544
545 if (mod->state == MODULE_STATE_UNFORMED)
546 continue;
547
548 for (i = 0; i < ARRAY_SIZE(arr); i++)
549 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
550 return true;
551 }
552
553 pr_debug("Failed to find symbol %s\n", fsa->name);
554 return false;
555}
556
557/*
558 * Search for module by name: must hold module_mutex (or preempt disabled
559 * for read-only access).
560 */
561static struct module *find_module_all(const char *name, size_t len,
562 bool even_unformed)
563{
564 struct module *mod;
565
566 module_assert_mutex_or_preempt();
567
568 list_for_each_entry_rcu(mod, &modules, list,
569 lockdep_is_held(&module_mutex)) {
570 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
571 continue;
572 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
573 return mod;
574 }
575 return NULL;
576}
577
578struct module *find_module(const char *name)
579{
580 return find_module_all(name, strlen(name), false);
581}
582
583#ifdef CONFIG_SMP
584
585static inline void __percpu *mod_percpu(struct module *mod)
586{
587 return mod->percpu;
588}
589
590static int percpu_modalloc(struct module *mod, struct load_info *info)
591{
592 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
593 unsigned long align = pcpusec->sh_addralign;
594
595 if (!pcpusec->sh_size)
596 return 0;
597
598 if (align > PAGE_SIZE) {
599 pr_warn("%s: per-cpu alignment %li > %li\n",
600 mod->name, align, PAGE_SIZE);
601 align = PAGE_SIZE;
602 }
603
604 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
605 if (!mod->percpu) {
606 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
607 mod->name, (unsigned long)pcpusec->sh_size);
608 return -ENOMEM;
609 }
610 mod->percpu_size = pcpusec->sh_size;
611 return 0;
612}
613
614static void percpu_modfree(struct module *mod)
615{
616 free_percpu(mod->percpu);
617}
618
619static unsigned int find_pcpusec(struct load_info *info)
620{
621 return find_sec(info, ".data..percpu");
622}
623
624static void percpu_modcopy(struct module *mod,
625 const void *from, unsigned long size)
626{
627 int cpu;
628
629 for_each_possible_cpu(cpu)
630 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
631}
632
633bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
634{
635 struct module *mod;
636 unsigned int cpu;
637
638 preempt_disable();
639
640 list_for_each_entry_rcu(mod, &modules, list) {
641 if (mod->state == MODULE_STATE_UNFORMED)
642 continue;
643 if (!mod->percpu_size)
644 continue;
645 for_each_possible_cpu(cpu) {
646 void *start = per_cpu_ptr(mod->percpu, cpu);
647 void *va = (void *)addr;
648
649 if (va >= start && va < start + mod->percpu_size) {
650 if (can_addr) {
651 *can_addr = (unsigned long) (va - start);
652 *can_addr += (unsigned long)
653 per_cpu_ptr(mod->percpu,
654 get_boot_cpu_id());
655 }
656 preempt_enable();
657 return true;
658 }
659 }
660 }
661
662 preempt_enable();
663 return false;
664}
665
666/**
667 * is_module_percpu_address() - test whether address is from module static percpu
668 * @addr: address to test
669 *
670 * Test whether @addr belongs to module static percpu area.
671 *
672 * Return: %true if @addr is from module static percpu area
673 */
674bool is_module_percpu_address(unsigned long addr)
675{
676 return __is_module_percpu_address(addr, NULL);
677}
678
679#else /* ... !CONFIG_SMP */
680
681static inline void __percpu *mod_percpu(struct module *mod)
682{
683 return NULL;
684}
685static int percpu_modalloc(struct module *mod, struct load_info *info)
686{
687 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
688 if (info->sechdrs[info->index.pcpu].sh_size != 0)
689 return -ENOMEM;
690 return 0;
691}
692static inline void percpu_modfree(struct module *mod)
693{
694}
695static unsigned int find_pcpusec(struct load_info *info)
696{
697 return 0;
698}
699static inline void percpu_modcopy(struct module *mod,
700 const void *from, unsigned long size)
701{
702 /* pcpusec should be 0, and size of that section should be 0. */
703 BUG_ON(size != 0);
704}
705bool is_module_percpu_address(unsigned long addr)
706{
707 return false;
708}
709
710bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
711{
712 return false;
713}
714
715#endif /* CONFIG_SMP */
716
717#define MODINFO_ATTR(field) \
718static void setup_modinfo_##field(struct module *mod, const char *s) \
719{ \
720 mod->field = kstrdup(s, GFP_KERNEL); \
721} \
722static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
723 struct module_kobject *mk, char *buffer) \
724{ \
725 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
726} \
727static int modinfo_##field##_exists(struct module *mod) \
728{ \
729 return mod->field != NULL; \
730} \
731static void free_modinfo_##field(struct module *mod) \
732{ \
733 kfree(mod->field); \
734 mod->field = NULL; \
735} \
736static struct module_attribute modinfo_##field = { \
737 .attr = { .name = __stringify(field), .mode = 0444 }, \
738 .show = show_modinfo_##field, \
739 .setup = setup_modinfo_##field, \
740 .test = modinfo_##field##_exists, \
741 .free = free_modinfo_##field, \
742};
743
744MODINFO_ATTR(version);
745MODINFO_ATTR(srcversion);
746
747static char last_unloaded_module[MODULE_NAME_LEN+1];
748
749#ifdef CONFIG_MODULE_UNLOAD
750
751EXPORT_TRACEPOINT_SYMBOL(module_get);
752
753/* MODULE_REF_BASE is the base reference count by kmodule loader. */
754#define MODULE_REF_BASE 1
755
756/* Init the unload section of the module. */
757static int module_unload_init(struct module *mod)
758{
759 /*
760 * Initialize reference counter to MODULE_REF_BASE.
761 * refcnt == 0 means module is going.
762 */
763 atomic_set(&mod->refcnt, MODULE_REF_BASE);
764
765 INIT_LIST_HEAD(&mod->source_list);
766 INIT_LIST_HEAD(&mod->target_list);
767
768 /* Hold reference count during initialization. */
769 atomic_inc(&mod->refcnt);
770
771 return 0;
772}
773
774/* Does a already use b? */
775static int already_uses(struct module *a, struct module *b)
776{
777 struct module_use *use;
778
779 list_for_each_entry(use, &b->source_list, source_list) {
780 if (use->source == a) {
781 pr_debug("%s uses %s!\n", a->name, b->name);
782 return 1;
783 }
784 }
785 pr_debug("%s does not use %s!\n", a->name, b->name);
786 return 0;
787}
788
789/*
790 * Module a uses b
791 * - we add 'a' as a "source", 'b' as a "target" of module use
792 * - the module_use is added to the list of 'b' sources (so
793 * 'b' can walk the list to see who sourced them), and of 'a'
794 * targets (so 'a' can see what modules it targets).
795 */
796static int add_module_usage(struct module *a, struct module *b)
797{
798 struct module_use *use;
799
800 pr_debug("Allocating new usage for %s.\n", a->name);
801 use = kmalloc(sizeof(*use), GFP_ATOMIC);
802 if (!use)
803 return -ENOMEM;
804
805 use->source = a;
806 use->target = b;
807 list_add(&use->source_list, &b->source_list);
808 list_add(&use->target_list, &a->target_list);
809 return 0;
810}
811
812/* Module a uses b: caller needs module_mutex() */
813static int ref_module(struct module *a, struct module *b)
814{
815 int err;
816
817 if (b == NULL || already_uses(a, b))
818 return 0;
819
820 /* If module isn't available, we fail. */
821 err = strong_try_module_get(b);
822 if (err)
823 return err;
824
825 err = add_module_usage(a, b);
826 if (err) {
827 module_put(b);
828 return err;
829 }
830 return 0;
831}
832
833/* Clear the unload stuff of the module. */
834static void module_unload_free(struct module *mod)
835{
836 struct module_use *use, *tmp;
837
838 mutex_lock(&module_mutex);
839 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
840 struct module *i = use->target;
841 pr_debug("%s unusing %s\n", mod->name, i->name);
842 module_put(i);
843 list_del(&use->source_list);
844 list_del(&use->target_list);
845 kfree(use);
846 }
847 mutex_unlock(&module_mutex);
848}
849
850#ifdef CONFIG_MODULE_FORCE_UNLOAD
851static inline int try_force_unload(unsigned int flags)
852{
853 int ret = (flags & O_TRUNC);
854 if (ret)
855 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
856 return ret;
857}
858#else
859static inline int try_force_unload(unsigned int flags)
860{
861 return 0;
862}
863#endif /* CONFIG_MODULE_FORCE_UNLOAD */
864
865/* Try to release refcount of module, 0 means success. */
866static int try_release_module_ref(struct module *mod)
867{
868 int ret;
869
870 /* Try to decrement refcnt which we set at loading */
871 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
872 BUG_ON(ret < 0);
873 if (ret)
874 /* Someone can put this right now, recover with checking */
875 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
876
877 return ret;
878}
879
880static int try_stop_module(struct module *mod, int flags, int *forced)
881{
882 /* If it's not unused, quit unless we're forcing. */
883 if (try_release_module_ref(mod) != 0) {
884 *forced = try_force_unload(flags);
885 if (!(*forced))
886 return -EWOULDBLOCK;
887 }
888
889 /* Mark it as dying. */
890 mod->state = MODULE_STATE_GOING;
891
892 return 0;
893}
894
895/**
896 * module_refcount() - return the refcount or -1 if unloading
897 * @mod: the module we're checking
898 *
899 * Return:
900 * -1 if the module is in the process of unloading
901 * otherwise the number of references in the kernel to the module
902 */
903int module_refcount(struct module *mod)
904{
905 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
906}
907EXPORT_SYMBOL(module_refcount);
908
909/* This exists whether we can unload or not */
910static void free_module(struct module *mod);
911
912SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
913 unsigned int, flags)
914{
915 struct module *mod;
916 char name[MODULE_NAME_LEN];
917 int ret, forced = 0;
918
919 if (!capable(CAP_SYS_MODULE) || modules_disabled)
920 return -EPERM;
921
922 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
923 return -EFAULT;
924 name[MODULE_NAME_LEN-1] = '\0';
925
926 audit_log_kern_module(name);
927
928 if (mutex_lock_interruptible(&module_mutex) != 0)
929 return -EINTR;
930
931 mod = find_module(name);
932 if (!mod) {
933 ret = -ENOENT;
934 goto out;
935 }
936
937 if (!list_empty(&mod->source_list)) {
938 /* Other modules depend on us: get rid of them first. */
939 ret = -EWOULDBLOCK;
940 goto out;
941 }
942
943 /* Doing init or already dying? */
944 if (mod->state != MODULE_STATE_LIVE) {
945 /* FIXME: if (force), slam module count damn the torpedoes */
946 pr_debug("%s already dying\n", mod->name);
947 ret = -EBUSY;
948 goto out;
949 }
950
951 /* If it has an init func, it must have an exit func to unload */
952 if (mod->init && !mod->exit) {
953 forced = try_force_unload(flags);
954 if (!forced) {
955 /* This module can't be removed */
956 ret = -EBUSY;
957 goto out;
958 }
959 }
960
961 /* Stop the machine so refcounts can't move and disable module. */
962 ret = try_stop_module(mod, flags, &forced);
963 if (ret != 0)
964 goto out;
965
966 mutex_unlock(&module_mutex);
967 /* Final destruction now no one is using it. */
968 if (mod->exit != NULL)
969 mod->exit();
970 blocking_notifier_call_chain(&module_notify_list,
971 MODULE_STATE_GOING, mod);
972 klp_module_going(mod);
973 ftrace_release_mod(mod);
974
975 async_synchronize_full();
976
977 /* Store the name of the last unloaded module for diagnostic purposes */
978 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
979
980 free_module(mod);
981 /* someone could wait for the module in add_unformed_module() */
982 wake_up_all(&module_wq);
983 return 0;
984out:
985 mutex_unlock(&module_mutex);
986 return ret;
987}
988
989static inline void print_unload_info(struct seq_file *m, struct module *mod)
990{
991 struct module_use *use;
992 int printed_something = 0;
993
994 seq_printf(m, " %i ", module_refcount(mod));
995
996 /*
997 * Always include a trailing , so userspace can differentiate
998 * between this and the old multi-field proc format.
999 */
1000 list_for_each_entry(use, &mod->source_list, source_list) {
1001 printed_something = 1;
1002 seq_printf(m, "%s,", use->source->name);
1003 }
1004
1005 if (mod->init != NULL && mod->exit == NULL) {
1006 printed_something = 1;
1007 seq_puts(m, "[permanent],");
1008 }
1009
1010 if (!printed_something)
1011 seq_puts(m, "-");
1012}
1013
1014void __symbol_put(const char *symbol)
1015{
1016 struct find_symbol_arg fsa = {
1017 .name = symbol,
1018 .gplok = true,
1019 };
1020
1021 preempt_disable();
1022 BUG_ON(!find_symbol(&fsa));
1023 module_put(fsa.owner);
1024 preempt_enable();
1025}
1026EXPORT_SYMBOL(__symbol_put);
1027
1028/* Note this assumes addr is a function, which it currently always is. */
1029void symbol_put_addr(void *addr)
1030{
1031 struct module *modaddr;
1032 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1033
1034 if (core_kernel_text(a))
1035 return;
1036
1037 /*
1038 * Even though we hold a reference on the module; we still need to
1039 * disable preemption in order to safely traverse the data structure.
1040 */
1041 preempt_disable();
1042 modaddr = __module_text_address(a);
1043 BUG_ON(!modaddr);
1044 module_put(modaddr);
1045 preempt_enable();
1046}
1047EXPORT_SYMBOL_GPL(symbol_put_addr);
1048
1049static ssize_t show_refcnt(struct module_attribute *mattr,
1050 struct module_kobject *mk, char *buffer)
1051{
1052 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1053}
1054
1055static struct module_attribute modinfo_refcnt =
1056 __ATTR(refcnt, 0444, show_refcnt, NULL);
1057
1058void __module_get(struct module *module)
1059{
1060 if (module) {
1061 preempt_disable();
1062 atomic_inc(&module->refcnt);
1063 trace_module_get(module, _RET_IP_);
1064 preempt_enable();
1065 }
1066}
1067EXPORT_SYMBOL(__module_get);
1068
1069bool try_module_get(struct module *module)
1070{
1071 bool ret = true;
1072
1073 if (module) {
1074 preempt_disable();
1075 /* Note: here, we can fail to get a reference */
1076 if (likely(module_is_live(module) &&
1077 atomic_inc_not_zero(&module->refcnt) != 0))
1078 trace_module_get(module, _RET_IP_);
1079 else
1080 ret = false;
1081
1082 preempt_enable();
1083 }
1084 return ret;
1085}
1086EXPORT_SYMBOL(try_module_get);
1087
1088void module_put(struct module *module)
1089{
1090 int ret;
1091
1092 if (module) {
1093 preempt_disable();
1094 ret = atomic_dec_if_positive(&module->refcnt);
1095 WARN_ON(ret < 0); /* Failed to put refcount */
1096 trace_module_put(module, _RET_IP_);
1097 preempt_enable();
1098 }
1099}
1100EXPORT_SYMBOL(module_put);
1101
1102#else /* !CONFIG_MODULE_UNLOAD */
1103static inline void print_unload_info(struct seq_file *m, struct module *mod)
1104{
1105 /* We don't know the usage count, or what modules are using. */
1106 seq_puts(m, " - -");
1107}
1108
1109static inline void module_unload_free(struct module *mod)
1110{
1111}
1112
1113static int ref_module(struct module *a, struct module *b)
1114{
1115 return strong_try_module_get(b);
1116}
1117
1118static inline int module_unload_init(struct module *mod)
1119{
1120 return 0;
1121}
1122#endif /* CONFIG_MODULE_UNLOAD */
1123
1124static size_t module_flags_taint(struct module *mod, char *buf)
1125{
1126 size_t l = 0;
1127 int i;
1128
1129 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1130 if (taint_flags[i].module && test_bit(i, &mod->taints))
1131 buf[l++] = taint_flags[i].c_true;
1132 }
1133
1134 return l;
1135}
1136
1137static ssize_t show_initstate(struct module_attribute *mattr,
1138 struct module_kobject *mk, char *buffer)
1139{
1140 const char *state = "unknown";
1141
1142 switch (mk->mod->state) {
1143 case MODULE_STATE_LIVE:
1144 state = "live";
1145 break;
1146 case MODULE_STATE_COMING:
1147 state = "coming";
1148 break;
1149 case MODULE_STATE_GOING:
1150 state = "going";
1151 break;
1152 default:
1153 BUG();
1154 }
1155 return sprintf(buffer, "%s\n", state);
1156}
1157
1158static struct module_attribute modinfo_initstate =
1159 __ATTR(initstate, 0444, show_initstate, NULL);
1160
1161static ssize_t store_uevent(struct module_attribute *mattr,
1162 struct module_kobject *mk,
1163 const char *buffer, size_t count)
1164{
1165 int rc;
1166
1167 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1168 return rc ? rc : count;
1169}
1170
1171struct module_attribute module_uevent =
1172 __ATTR(uevent, 0200, NULL, store_uevent);
1173
1174static ssize_t show_coresize(struct module_attribute *mattr,
1175 struct module_kobject *mk, char *buffer)
1176{
1177 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1178}
1179
1180static struct module_attribute modinfo_coresize =
1181 __ATTR(coresize, 0444, show_coresize, NULL);
1182
1183static ssize_t show_initsize(struct module_attribute *mattr,
1184 struct module_kobject *mk, char *buffer)
1185{
1186 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1187}
1188
1189static struct module_attribute modinfo_initsize =
1190 __ATTR(initsize, 0444, show_initsize, NULL);
1191
1192static ssize_t show_taint(struct module_attribute *mattr,
1193 struct module_kobject *mk, char *buffer)
1194{
1195 size_t l;
1196
1197 l = module_flags_taint(mk->mod, buffer);
1198 buffer[l++] = '\n';
1199 return l;
1200}
1201
1202static struct module_attribute modinfo_taint =
1203 __ATTR(taint, 0444, show_taint, NULL);
1204
1205static struct module_attribute *modinfo_attrs[] = {
1206 &module_uevent,
1207 &modinfo_version,
1208 &modinfo_srcversion,
1209 &modinfo_initstate,
1210 &modinfo_coresize,
1211 &modinfo_initsize,
1212 &modinfo_taint,
1213#ifdef CONFIG_MODULE_UNLOAD
1214 &modinfo_refcnt,
1215#endif
1216 NULL,
1217};
1218
1219static const char vermagic[] = VERMAGIC_STRING;
1220
1221static int try_to_force_load(struct module *mod, const char *reason)
1222{
1223#ifdef CONFIG_MODULE_FORCE_LOAD
1224 if (!test_taint(TAINT_FORCED_MODULE))
1225 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1226 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1227 return 0;
1228#else
1229 return -ENOEXEC;
1230#endif
1231}
1232
1233#ifdef CONFIG_MODVERSIONS
1234
1235static u32 resolve_rel_crc(const s32 *crc)
1236{
1237 return *(u32 *)((void *)crc + *crc);
1238}
1239
1240static int check_version(const struct load_info *info,
1241 const char *symname,
1242 struct module *mod,
1243 const s32 *crc)
1244{
1245 Elf_Shdr *sechdrs = info->sechdrs;
1246 unsigned int versindex = info->index.vers;
1247 unsigned int i, num_versions;
1248 struct modversion_info *versions;
1249
1250 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1251 if (!crc)
1252 return 1;
1253
1254 /* No versions at all? modprobe --force does this. */
1255 if (versindex == 0)
1256 return try_to_force_load(mod, symname) == 0;
1257
1258 versions = (void *) sechdrs[versindex].sh_addr;
1259 num_versions = sechdrs[versindex].sh_size
1260 / sizeof(struct modversion_info);
1261
1262 for (i = 0; i < num_versions; i++) {
1263 u32 crcval;
1264
1265 if (strcmp(versions[i].name, symname) != 0)
1266 continue;
1267
1268 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1269 crcval = resolve_rel_crc(crc);
1270 else
1271 crcval = *crc;
1272 if (versions[i].crc == crcval)
1273 return 1;
1274 pr_debug("Found checksum %X vs module %lX\n",
1275 crcval, versions[i].crc);
1276 goto bad_version;
1277 }
1278
1279 /* Broken toolchain. Warn once, then let it go.. */
1280 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1281 return 1;
1282
1283bad_version:
1284 pr_warn("%s: disagrees about version of symbol %s\n",
1285 info->name, symname);
1286 return 0;
1287}
1288
1289static inline int check_modstruct_version(const struct load_info *info,
1290 struct module *mod)
1291{
1292 struct find_symbol_arg fsa = {
1293 .name = "module_layout",
1294 .gplok = true,
1295 };
1296
1297 /*
1298 * Since this should be found in kernel (which can't be removed), no
1299 * locking is necessary -- use preempt_disable() to placate lockdep.
1300 */
1301 preempt_disable();
1302 if (!find_symbol(&fsa)) {
1303 preempt_enable();
1304 BUG();
1305 }
1306 preempt_enable();
1307 return check_version(info, "module_layout", mod, fsa.crc);
1308}
1309
1310/* First part is kernel version, which we ignore if module has crcs. */
1311static inline int same_magic(const char *amagic, const char *bmagic,
1312 bool has_crcs)
1313{
1314 if (has_crcs) {
1315 amagic += strcspn(amagic, " ");
1316 bmagic += strcspn(bmagic, " ");
1317 }
1318 return strcmp(amagic, bmagic) == 0;
1319}
1320#else
1321static inline int check_version(const struct load_info *info,
1322 const char *symname,
1323 struct module *mod,
1324 const s32 *crc)
1325{
1326 return 1;
1327}
1328
1329static inline int check_modstruct_version(const struct load_info *info,
1330 struct module *mod)
1331{
1332 return 1;
1333}
1334
1335static inline int same_magic(const char *amagic, const char *bmagic,
1336 bool has_crcs)
1337{
1338 return strcmp(amagic, bmagic) == 0;
1339}
1340#endif /* CONFIG_MODVERSIONS */
1341
1342static char *get_modinfo(const struct load_info *info, const char *tag);
1343static char *get_next_modinfo(const struct load_info *info, const char *tag,
1344 char *prev);
1345
1346static int verify_namespace_is_imported(const struct load_info *info,
1347 const struct kernel_symbol *sym,
1348 struct module *mod)
1349{
1350 const char *namespace;
1351 char *imported_namespace;
1352
1353 namespace = kernel_symbol_namespace(sym);
1354 if (namespace && namespace[0]) {
1355 imported_namespace = get_modinfo(info, "import_ns");
1356 while (imported_namespace) {
1357 if (strcmp(namespace, imported_namespace) == 0)
1358 return 0;
1359 imported_namespace = get_next_modinfo(
1360 info, "import_ns", imported_namespace);
1361 }
1362#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1363 pr_warn(
1364#else
1365 pr_err(
1366#endif
1367 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1368 mod->name, kernel_symbol_name(sym), namespace);
1369#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1370 return -EINVAL;
1371#endif
1372 }
1373 return 0;
1374}
1375
1376static bool inherit_taint(struct module *mod, struct module *owner)
1377{
1378 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1379 return true;
1380
1381 if (mod->using_gplonly_symbols) {
1382 pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1383 mod->name, owner->name);
1384 return false;
1385 }
1386
1387 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1388 pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1389 mod->name, owner->name);
1390 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1391 }
1392 return true;
1393}
1394
1395/* Resolve a symbol for this module. I.e. if we find one, record usage. */
1396static const struct kernel_symbol *resolve_symbol(struct module *mod,
1397 const struct load_info *info,
1398 const char *name,
1399 char ownername[])
1400{
1401 struct find_symbol_arg fsa = {
1402 .name = name,
1403 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1404 .warn = true,
1405 };
1406 int err;
1407
1408 /*
1409 * The module_mutex should not be a heavily contended lock;
1410 * if we get the occasional sleep here, we'll go an extra iteration
1411 * in the wait_event_interruptible(), which is harmless.
1412 */
1413 sched_annotate_sleep();
1414 mutex_lock(&module_mutex);
1415 if (!find_symbol(&fsa))
1416 goto unlock;
1417
1418 if (fsa.license == GPL_ONLY)
1419 mod->using_gplonly_symbols = true;
1420
1421 if (!inherit_taint(mod, fsa.owner)) {
1422 fsa.sym = NULL;
1423 goto getname;
1424 }
1425
1426 if (!check_version(info, name, mod, fsa.crc)) {
1427 fsa.sym = ERR_PTR(-EINVAL);
1428 goto getname;
1429 }
1430
1431 err = verify_namespace_is_imported(info, fsa.sym, mod);
1432 if (err) {
1433 fsa.sym = ERR_PTR(err);
1434 goto getname;
1435 }
1436
1437 err = ref_module(mod, fsa.owner);
1438 if (err) {
1439 fsa.sym = ERR_PTR(err);
1440 goto getname;
1441 }
1442
1443getname:
1444 /* We must make copy under the lock if we failed to get ref. */
1445 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1446unlock:
1447 mutex_unlock(&module_mutex);
1448 return fsa.sym;
1449}
1450
1451static const struct kernel_symbol *
1452resolve_symbol_wait(struct module *mod,
1453 const struct load_info *info,
1454 const char *name)
1455{
1456 const struct kernel_symbol *ksym;
1457 char owner[MODULE_NAME_LEN];
1458
1459 if (wait_event_interruptible_timeout(module_wq,
1460 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1461 || PTR_ERR(ksym) != -EBUSY,
1462 30 * HZ) <= 0) {
1463 pr_warn("%s: gave up waiting for init of module %s.\n",
1464 mod->name, owner);
1465 }
1466 return ksym;
1467}
1468
1469#ifdef CONFIG_KALLSYMS
1470static inline bool sect_empty(const Elf_Shdr *sect)
1471{
1472 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1473}
1474#endif
1475
1476/*
1477 * /sys/module/foo/sections stuff
1478 * J. Corbet <corbet@lwn.net>
1479 */
1480#ifdef CONFIG_SYSFS
1481
1482#ifdef CONFIG_KALLSYMS
1483struct module_sect_attr {
1484 struct bin_attribute battr;
1485 unsigned long address;
1486};
1487
1488struct module_sect_attrs {
1489 struct attribute_group grp;
1490 unsigned int nsections;
1491 struct module_sect_attr attrs[];
1492};
1493
1494#define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
1495static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1496 struct bin_attribute *battr,
1497 char *buf, loff_t pos, size_t count)
1498{
1499 struct module_sect_attr *sattr =
1500 container_of(battr, struct module_sect_attr, battr);
1501 char bounce[MODULE_SECT_READ_SIZE + 1];
1502 size_t wrote;
1503
1504 if (pos != 0)
1505 return -EINVAL;
1506
1507 /*
1508 * Since we're a binary read handler, we must account for the
1509 * trailing NUL byte that sprintf will write: if "buf" is
1510 * too small to hold the NUL, or the NUL is exactly the last
1511 * byte, the read will look like it got truncated by one byte.
1512 * Since there is no way to ask sprintf nicely to not write
1513 * the NUL, we have to use a bounce buffer.
1514 */
1515 wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1516 kallsyms_show_value(file->f_cred)
1517 ? (void *)sattr->address : NULL);
1518 count = min(count, wrote);
1519 memcpy(buf, bounce, count);
1520
1521 return count;
1522}
1523
1524static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1525{
1526 unsigned int section;
1527
1528 for (section = 0; section < sect_attrs->nsections; section++)
1529 kfree(sect_attrs->attrs[section].battr.attr.name);
1530 kfree(sect_attrs);
1531}
1532
1533static void add_sect_attrs(struct module *mod, const struct load_info *info)
1534{
1535 unsigned int nloaded = 0, i, size[2];
1536 struct module_sect_attrs *sect_attrs;
1537 struct module_sect_attr *sattr;
1538 struct bin_attribute **gattr;
1539
1540 /* Count loaded sections and allocate structures */
1541 for (i = 0; i < info->hdr->e_shnum; i++)
1542 if (!sect_empty(&info->sechdrs[i]))
1543 nloaded++;
1544 size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1545 sizeof(sect_attrs->grp.bin_attrs[0]));
1546 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1547 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1548 if (sect_attrs == NULL)
1549 return;
1550
1551 /* Setup section attributes. */
1552 sect_attrs->grp.name = "sections";
1553 sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1554
1555 sect_attrs->nsections = 0;
1556 sattr = §_attrs->attrs[0];
1557 gattr = §_attrs->grp.bin_attrs[0];
1558 for (i = 0; i < info->hdr->e_shnum; i++) {
1559 Elf_Shdr *sec = &info->sechdrs[i];
1560 if (sect_empty(sec))
1561 continue;
1562 sysfs_bin_attr_init(&sattr->battr);
1563 sattr->address = sec->sh_addr;
1564 sattr->battr.attr.name =
1565 kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1566 if (sattr->battr.attr.name == NULL)
1567 goto out;
1568 sect_attrs->nsections++;
1569 sattr->battr.read = module_sect_read;
1570 sattr->battr.size = MODULE_SECT_READ_SIZE;
1571 sattr->battr.attr.mode = 0400;
1572 *(gattr++) = &(sattr++)->battr;
1573 }
1574 *gattr = NULL;
1575
1576 if (sysfs_create_group(&mod->mkobj.kobj, §_attrs->grp))
1577 goto out;
1578
1579 mod->sect_attrs = sect_attrs;
1580 return;
1581 out:
1582 free_sect_attrs(sect_attrs);
1583}
1584
1585static void remove_sect_attrs(struct module *mod)
1586{
1587 if (mod->sect_attrs) {
1588 sysfs_remove_group(&mod->mkobj.kobj,
1589 &mod->sect_attrs->grp);
1590 /*
1591 * We are positive that no one is using any sect attrs
1592 * at this point. Deallocate immediately.
1593 */
1594 free_sect_attrs(mod->sect_attrs);
1595 mod->sect_attrs = NULL;
1596 }
1597}
1598
1599/*
1600 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1601 */
1602
1603struct module_notes_attrs {
1604 struct kobject *dir;
1605 unsigned int notes;
1606 struct bin_attribute attrs[];
1607};
1608
1609static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1610 struct bin_attribute *bin_attr,
1611 char *buf, loff_t pos, size_t count)
1612{
1613 /*
1614 * The caller checked the pos and count against our size.
1615 */
1616 memcpy(buf, bin_attr->private + pos, count);
1617 return count;
1618}
1619
1620static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1621 unsigned int i)
1622{
1623 if (notes_attrs->dir) {
1624 while (i-- > 0)
1625 sysfs_remove_bin_file(notes_attrs->dir,
1626 ¬es_attrs->attrs[i]);
1627 kobject_put(notes_attrs->dir);
1628 }
1629 kfree(notes_attrs);
1630}
1631
1632static void add_notes_attrs(struct module *mod, const struct load_info *info)
1633{
1634 unsigned int notes, loaded, i;
1635 struct module_notes_attrs *notes_attrs;
1636 struct bin_attribute *nattr;
1637
1638 /* failed to create section attributes, so can't create notes */
1639 if (!mod->sect_attrs)
1640 return;
1641
1642 /* Count notes sections and allocate structures. */
1643 notes = 0;
1644 for (i = 0; i < info->hdr->e_shnum; i++)
1645 if (!sect_empty(&info->sechdrs[i]) &&
1646 (info->sechdrs[i].sh_type == SHT_NOTE))
1647 ++notes;
1648
1649 if (notes == 0)
1650 return;
1651
1652 notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1653 GFP_KERNEL);
1654 if (notes_attrs == NULL)
1655 return;
1656
1657 notes_attrs->notes = notes;
1658 nattr = ¬es_attrs->attrs[0];
1659 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1660 if (sect_empty(&info->sechdrs[i]))
1661 continue;
1662 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1663 sysfs_bin_attr_init(nattr);
1664 nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1665 nattr->attr.mode = S_IRUGO;
1666 nattr->size = info->sechdrs[i].sh_size;
1667 nattr->private = (void *) info->sechdrs[i].sh_addr;
1668 nattr->read = module_notes_read;
1669 ++nattr;
1670 }
1671 ++loaded;
1672 }
1673
1674 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1675 if (!notes_attrs->dir)
1676 goto out;
1677
1678 for (i = 0; i < notes; ++i)
1679 if (sysfs_create_bin_file(notes_attrs->dir,
1680 ¬es_attrs->attrs[i]))
1681 goto out;
1682
1683 mod->notes_attrs = notes_attrs;
1684 return;
1685
1686 out:
1687 free_notes_attrs(notes_attrs, i);
1688}
1689
1690static void remove_notes_attrs(struct module *mod)
1691{
1692 if (mod->notes_attrs)
1693 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1694}
1695
1696#else
1697
1698static inline void add_sect_attrs(struct module *mod,
1699 const struct load_info *info)
1700{
1701}
1702
1703static inline void remove_sect_attrs(struct module *mod)
1704{
1705}
1706
1707static inline void add_notes_attrs(struct module *mod,
1708 const struct load_info *info)
1709{
1710}
1711
1712static inline void remove_notes_attrs(struct module *mod)
1713{
1714}
1715#endif /* CONFIG_KALLSYMS */
1716
1717static void del_usage_links(struct module *mod)
1718{
1719#ifdef CONFIG_MODULE_UNLOAD
1720 struct module_use *use;
1721
1722 mutex_lock(&module_mutex);
1723 list_for_each_entry(use, &mod->target_list, target_list)
1724 sysfs_remove_link(use->target->holders_dir, mod->name);
1725 mutex_unlock(&module_mutex);
1726#endif
1727}
1728
1729static int add_usage_links(struct module *mod)
1730{
1731 int ret = 0;
1732#ifdef CONFIG_MODULE_UNLOAD
1733 struct module_use *use;
1734
1735 mutex_lock(&module_mutex);
1736 list_for_each_entry(use, &mod->target_list, target_list) {
1737 ret = sysfs_create_link(use->target->holders_dir,
1738 &mod->mkobj.kobj, mod->name);
1739 if (ret)
1740 break;
1741 }
1742 mutex_unlock(&module_mutex);
1743 if (ret)
1744 del_usage_links(mod);
1745#endif
1746 return ret;
1747}
1748
1749static void module_remove_modinfo_attrs(struct module *mod, int end);
1750
1751static int module_add_modinfo_attrs(struct module *mod)
1752{
1753 struct module_attribute *attr;
1754 struct module_attribute *temp_attr;
1755 int error = 0;
1756 int i;
1757
1758 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1759 (ARRAY_SIZE(modinfo_attrs) + 1)),
1760 GFP_KERNEL);
1761 if (!mod->modinfo_attrs)
1762 return -ENOMEM;
1763
1764 temp_attr = mod->modinfo_attrs;
1765 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1766 if (!attr->test || attr->test(mod)) {
1767 memcpy(temp_attr, attr, sizeof(*temp_attr));
1768 sysfs_attr_init(&temp_attr->attr);
1769 error = sysfs_create_file(&mod->mkobj.kobj,
1770 &temp_attr->attr);
1771 if (error)
1772 goto error_out;
1773 ++temp_attr;
1774 }
1775 }
1776
1777 return 0;
1778
1779error_out:
1780 if (i > 0)
1781 module_remove_modinfo_attrs(mod, --i);
1782 else
1783 kfree(mod->modinfo_attrs);
1784 return error;
1785}
1786
1787static void module_remove_modinfo_attrs(struct module *mod, int end)
1788{
1789 struct module_attribute *attr;
1790 int i;
1791
1792 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1793 if (end >= 0 && i > end)
1794 break;
1795 /* pick a field to test for end of list */
1796 if (!attr->attr.name)
1797 break;
1798 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1799 if (attr->free)
1800 attr->free(mod);
1801 }
1802 kfree(mod->modinfo_attrs);
1803}
1804
1805static void mod_kobject_put(struct module *mod)
1806{
1807 DECLARE_COMPLETION_ONSTACK(c);
1808 mod->mkobj.kobj_completion = &c;
1809 kobject_put(&mod->mkobj.kobj);
1810 wait_for_completion(&c);
1811}
1812
1813static int mod_sysfs_init(struct module *mod)
1814{
1815 int err;
1816 struct kobject *kobj;
1817
1818 if (!module_sysfs_initialized) {
1819 pr_err("%s: module sysfs not initialized\n", mod->name);
1820 err = -EINVAL;
1821 goto out;
1822 }
1823
1824 kobj = kset_find_obj(module_kset, mod->name);
1825 if (kobj) {
1826 pr_err("%s: module is already loaded\n", mod->name);
1827 kobject_put(kobj);
1828 err = -EINVAL;
1829 goto out;
1830 }
1831
1832 mod->mkobj.mod = mod;
1833
1834 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1835 mod->mkobj.kobj.kset = module_kset;
1836 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1837 "%s", mod->name);
1838 if (err)
1839 mod_kobject_put(mod);
1840
1841out:
1842 return err;
1843}
1844
1845static int mod_sysfs_setup(struct module *mod,
1846 const struct load_info *info,
1847 struct kernel_param *kparam,
1848 unsigned int num_params)
1849{
1850 int err;
1851
1852 err = mod_sysfs_init(mod);
1853 if (err)
1854 goto out;
1855
1856 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1857 if (!mod->holders_dir) {
1858 err = -ENOMEM;
1859 goto out_unreg;
1860 }
1861
1862 err = module_param_sysfs_setup(mod, kparam, num_params);
1863 if (err)
1864 goto out_unreg_holders;
1865
1866 err = module_add_modinfo_attrs(mod);
1867 if (err)
1868 goto out_unreg_param;
1869
1870 err = add_usage_links(mod);
1871 if (err)
1872 goto out_unreg_modinfo_attrs;
1873
1874 add_sect_attrs(mod, info);
1875 add_notes_attrs(mod, info);
1876
1877 return 0;
1878
1879out_unreg_modinfo_attrs:
1880 module_remove_modinfo_attrs(mod, -1);
1881out_unreg_param:
1882 module_param_sysfs_remove(mod);
1883out_unreg_holders:
1884 kobject_put(mod->holders_dir);
1885out_unreg:
1886 mod_kobject_put(mod);
1887out:
1888 return err;
1889}
1890
1891static void mod_sysfs_fini(struct module *mod)
1892{
1893 remove_notes_attrs(mod);
1894 remove_sect_attrs(mod);
1895 mod_kobject_put(mod);
1896}
1897
1898static void init_param_lock(struct module *mod)
1899{
1900 mutex_init(&mod->param_lock);
1901}
1902#else /* !CONFIG_SYSFS */
1903
1904static int mod_sysfs_setup(struct module *mod,
1905 const struct load_info *info,
1906 struct kernel_param *kparam,
1907 unsigned int num_params)
1908{
1909 return 0;
1910}
1911
1912static void mod_sysfs_fini(struct module *mod)
1913{
1914}
1915
1916static void module_remove_modinfo_attrs(struct module *mod, int end)
1917{
1918}
1919
1920static void del_usage_links(struct module *mod)
1921{
1922}
1923
1924static void init_param_lock(struct module *mod)
1925{
1926}
1927#endif /* CONFIG_SYSFS */
1928
1929static void mod_sysfs_teardown(struct module *mod)
1930{
1931 del_usage_links(mod);
1932 module_remove_modinfo_attrs(mod, -1);
1933 module_param_sysfs_remove(mod);
1934 kobject_put(mod->mkobj.drivers_dir);
1935 kobject_put(mod->holders_dir);
1936 mod_sysfs_fini(mod);
1937}
1938
1939/*
1940 * LKM RO/NX protection: protect module's text/ro-data
1941 * from modification and any data from execution.
1942 *
1943 * General layout of module is:
1944 * [text] [read-only-data] [ro-after-init] [writable data]
1945 * text_size -----^ ^ ^ ^
1946 * ro_size ------------------------| | |
1947 * ro_after_init_size -----------------------------| |
1948 * size -----------------------------------------------------------|
1949 *
1950 * These values are always page-aligned (as is base)
1951 */
1952
1953/*
1954 * Since some arches are moving towards PAGE_KERNEL module allocations instead
1955 * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
1956 * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
1957 * whether we are strict.
1958 */
1959#ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
1960static void frob_text(const struct module_layout *layout,
1961 int (*set_memory)(unsigned long start, int num_pages))
1962{
1963 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1964 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1965 set_memory((unsigned long)layout->base,
1966 layout->text_size >> PAGE_SHIFT);
1967}
1968
1969static void module_enable_x(const struct module *mod)
1970{
1971 frob_text(&mod->core_layout, set_memory_x);
1972 frob_text(&mod->init_layout, set_memory_x);
1973}
1974#else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1975static void module_enable_x(const struct module *mod) { }
1976#endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1977
1978#ifdef CONFIG_STRICT_MODULE_RWX
1979static void frob_rodata(const struct module_layout *layout,
1980 int (*set_memory)(unsigned long start, int num_pages))
1981{
1982 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1983 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1984 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1985 set_memory((unsigned long)layout->base + layout->text_size,
1986 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1987}
1988
1989static void frob_ro_after_init(const struct module_layout *layout,
1990 int (*set_memory)(unsigned long start, int num_pages))
1991{
1992 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1993 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1994 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1995 set_memory((unsigned long)layout->base + layout->ro_size,
1996 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1997}
1998
1999static void frob_writable_data(const struct module_layout *layout,
2000 int (*set_memory)(unsigned long start, int num_pages))
2001{
2002 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2003 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2004 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2005 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2006 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2007}
2008
2009static void module_enable_ro(const struct module *mod, bool after_init)
2010{
2011 if (!rodata_enabled)
2012 return;
2013
2014 set_vm_flush_reset_perms(mod->core_layout.base);
2015 set_vm_flush_reset_perms(mod->init_layout.base);
2016 frob_text(&mod->core_layout, set_memory_ro);
2017
2018 frob_rodata(&mod->core_layout, set_memory_ro);
2019 frob_text(&mod->init_layout, set_memory_ro);
2020 frob_rodata(&mod->init_layout, set_memory_ro);
2021
2022 if (after_init)
2023 frob_ro_after_init(&mod->core_layout, set_memory_ro);
2024}
2025
2026static void module_enable_nx(const struct module *mod)
2027{
2028 frob_rodata(&mod->core_layout, set_memory_nx);
2029 frob_ro_after_init(&mod->core_layout, set_memory_nx);
2030 frob_writable_data(&mod->core_layout, set_memory_nx);
2031 frob_rodata(&mod->init_layout, set_memory_nx);
2032 frob_writable_data(&mod->init_layout, set_memory_nx);
2033}
2034
2035static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2036 char *secstrings, struct module *mod)
2037{
2038 const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2039 int i;
2040
2041 for (i = 0; i < hdr->e_shnum; i++) {
2042 if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2043 pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2044 mod->name, secstrings + sechdrs[i].sh_name, i);
2045 return -ENOEXEC;
2046 }
2047 }
2048
2049 return 0;
2050}
2051
2052#else /* !CONFIG_STRICT_MODULE_RWX */
2053static void module_enable_nx(const struct module *mod) { }
2054static void module_enable_ro(const struct module *mod, bool after_init) {}
2055static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2056 char *secstrings, struct module *mod)
2057{
2058 return 0;
2059}
2060#endif /* CONFIG_STRICT_MODULE_RWX */
2061
2062#ifdef CONFIG_LIVEPATCH
2063/*
2064 * Persist Elf information about a module. Copy the Elf header,
2065 * section header table, section string table, and symtab section
2066 * index from info to mod->klp_info.
2067 */
2068static int copy_module_elf(struct module *mod, struct load_info *info)
2069{
2070 unsigned int size, symndx;
2071 int ret;
2072
2073 size = sizeof(*mod->klp_info);
2074 mod->klp_info = kmalloc(size, GFP_KERNEL);
2075 if (mod->klp_info == NULL)
2076 return -ENOMEM;
2077
2078 /* Elf header */
2079 size = sizeof(mod->klp_info->hdr);
2080 memcpy(&mod->klp_info->hdr, info->hdr, size);
2081
2082 /* Elf section header table */
2083 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2084 mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2085 if (mod->klp_info->sechdrs == NULL) {
2086 ret = -ENOMEM;
2087 goto free_info;
2088 }
2089
2090 /* Elf section name string table */
2091 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2092 mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2093 if (mod->klp_info->secstrings == NULL) {
2094 ret = -ENOMEM;
2095 goto free_sechdrs;
2096 }
2097
2098 /* Elf symbol section index */
2099 symndx = info->index.sym;
2100 mod->klp_info->symndx = symndx;
2101
2102 /*
2103 * For livepatch modules, core_kallsyms.symtab is a complete
2104 * copy of the original symbol table. Adjust sh_addr to point
2105 * to core_kallsyms.symtab since the copy of the symtab in module
2106 * init memory is freed at the end of do_init_module().
2107 */
2108 mod->klp_info->sechdrs[symndx].sh_addr = \
2109 (unsigned long) mod->core_kallsyms.symtab;
2110
2111 return 0;
2112
2113free_sechdrs:
2114 kfree(mod->klp_info->sechdrs);
2115free_info:
2116 kfree(mod->klp_info);
2117 return ret;
2118}
2119
2120static void free_module_elf(struct module *mod)
2121{
2122 kfree(mod->klp_info->sechdrs);
2123 kfree(mod->klp_info->secstrings);
2124 kfree(mod->klp_info);
2125}
2126#else /* !CONFIG_LIVEPATCH */
2127static int copy_module_elf(struct module *mod, struct load_info *info)
2128{
2129 return 0;
2130}
2131
2132static void free_module_elf(struct module *mod)
2133{
2134}
2135#endif /* CONFIG_LIVEPATCH */
2136
2137void __weak module_memfree(void *module_region)
2138{
2139 /*
2140 * This memory may be RO, and freeing RO memory in an interrupt is not
2141 * supported by vmalloc.
2142 */
2143 WARN_ON(in_interrupt());
2144 vfree(module_region);
2145}
2146
2147void __weak module_arch_cleanup(struct module *mod)
2148{
2149}
2150
2151void __weak module_arch_freeing_init(struct module *mod)
2152{
2153}
2154
2155static void cfi_cleanup(struct module *mod);
2156
2157/* Free a module, remove from lists, etc. */
2158static void free_module(struct module *mod)
2159{
2160 trace_module_free(mod);
2161
2162 mod_sysfs_teardown(mod);
2163
2164 /*
2165 * We leave it in list to prevent duplicate loads, but make sure
2166 * that noone uses it while it's being deconstructed.
2167 */
2168 mutex_lock(&module_mutex);
2169 mod->state = MODULE_STATE_UNFORMED;
2170 mutex_unlock(&module_mutex);
2171
2172 /* Remove dynamic debug info */
2173 ddebug_remove_module(mod->name);
2174
2175 /* Arch-specific cleanup. */
2176 module_arch_cleanup(mod);
2177
2178 /* Module unload stuff */
2179 module_unload_free(mod);
2180
2181 /* Free any allocated parameters. */
2182 destroy_params(mod->kp, mod->num_kp);
2183
2184 if (is_livepatch_module(mod))
2185 free_module_elf(mod);
2186
2187 /* Now we can delete it from the lists */
2188 mutex_lock(&module_mutex);
2189 /* Unlink carefully: kallsyms could be walking list. */
2190 list_del_rcu(&mod->list);
2191 mod_tree_remove(mod);
2192 /* Remove this module from bug list, this uses list_del_rcu */
2193 module_bug_cleanup(mod);
2194 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2195 synchronize_rcu();
2196 mutex_unlock(&module_mutex);
2197
2198 /* Clean up CFI for the module. */
2199 cfi_cleanup(mod);
2200
2201 /* This may be empty, but that's OK */
2202 module_arch_freeing_init(mod);
2203 module_memfree(mod->init_layout.base);
2204 kfree(mod->args);
2205 percpu_modfree(mod);
2206
2207 /* Free lock-classes; relies on the preceding sync_rcu(). */
2208 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2209
2210 /* Finally, free the core (containing the module structure) */
2211 module_memfree(mod->core_layout.base);
2212}
2213
2214void *__symbol_get(const char *symbol)
2215{
2216 struct find_symbol_arg fsa = {
2217 .name = symbol,
2218 .gplok = true,
2219 .warn = true,
2220 };
2221
2222 preempt_disable();
2223 if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
2224 preempt_enable();
2225 return NULL;
2226 }
2227 preempt_enable();
2228 return (void *)kernel_symbol_value(fsa.sym);
2229}
2230EXPORT_SYMBOL_GPL(__symbol_get);
2231
2232/*
2233 * Ensure that an exported symbol [global namespace] does not already exist
2234 * in the kernel or in some other module's exported symbol table.
2235 *
2236 * You must hold the module_mutex.
2237 */
2238static int verify_exported_symbols(struct module *mod)
2239{
2240 unsigned int i;
2241 const struct kernel_symbol *s;
2242 struct {
2243 const struct kernel_symbol *sym;
2244 unsigned int num;
2245 } arr[] = {
2246 { mod->syms, mod->num_syms },
2247 { mod->gpl_syms, mod->num_gpl_syms },
2248 };
2249
2250 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2251 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2252 struct find_symbol_arg fsa = {
2253 .name = kernel_symbol_name(s),
2254 .gplok = true,
2255 };
2256 if (find_symbol(&fsa)) {
2257 pr_err("%s: exports duplicate symbol %s"
2258 " (owned by %s)\n",
2259 mod->name, kernel_symbol_name(s),
2260 module_name(fsa.owner));
2261 return -ENOEXEC;
2262 }
2263 }
2264 }
2265 return 0;
2266}
2267
2268static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2269{
2270 /*
2271 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2272 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2273 * i386 has a similar problem but may not deserve a fix.
2274 *
2275 * If we ever have to ignore many symbols, consider refactoring the code to
2276 * only warn if referenced by a relocation.
2277 */
2278 if (emachine == EM_386 || emachine == EM_X86_64)
2279 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2280 return false;
2281}
2282
2283/* Change all symbols so that st_value encodes the pointer directly. */
2284static int simplify_symbols(struct module *mod, const struct load_info *info)
2285{
2286 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2287 Elf_Sym *sym = (void *)symsec->sh_addr;
2288 unsigned long secbase;
2289 unsigned int i;
2290 int ret = 0;
2291 const struct kernel_symbol *ksym;
2292
2293 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2294 const char *name = info->strtab + sym[i].st_name;
2295
2296 switch (sym[i].st_shndx) {
2297 case SHN_COMMON:
2298 /* Ignore common symbols */
2299 if (!strncmp(name, "__gnu_lto", 9))
2300 break;
2301
2302 /*
2303 * We compiled with -fno-common. These are not
2304 * supposed to happen.
2305 */
2306 pr_debug("Common symbol: %s\n", name);
2307 pr_warn("%s: please compile with -fno-common\n",
2308 mod->name);
2309 ret = -ENOEXEC;
2310 break;
2311
2312 case SHN_ABS:
2313 /* Don't need to do anything */
2314 pr_debug("Absolute symbol: 0x%08lx\n",
2315 (long)sym[i].st_value);
2316 break;
2317
2318 case SHN_LIVEPATCH:
2319 /* Livepatch symbols are resolved by livepatch */
2320 break;
2321
2322 case SHN_UNDEF:
2323 ksym = resolve_symbol_wait(mod, info, name);
2324 /* Ok if resolved. */
2325 if (ksym && !IS_ERR(ksym)) {
2326 sym[i].st_value = kernel_symbol_value(ksym);
2327 break;
2328 }
2329
2330 /* Ok if weak or ignored. */
2331 if (!ksym &&
2332 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2333 ignore_undef_symbol(info->hdr->e_machine, name)))
2334 break;
2335
2336 ret = PTR_ERR(ksym) ?: -ENOENT;
2337 pr_warn("%s: Unknown symbol %s (err %d)\n",
2338 mod->name, name, ret);
2339 break;
2340
2341 default:
2342 /* Divert to percpu allocation if a percpu var. */
2343 if (sym[i].st_shndx == info->index.pcpu)
2344 secbase = (unsigned long)mod_percpu(mod);
2345 else
2346 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2347 sym[i].st_value += secbase;
2348 break;
2349 }
2350 }
2351
2352 return ret;
2353}
2354
2355static int apply_relocations(struct module *mod, const struct load_info *info)
2356{
2357 unsigned int i;
2358 int err = 0;
2359
2360 /* Now do relocations. */
2361 for (i = 1; i < info->hdr->e_shnum; i++) {
2362 unsigned int infosec = info->sechdrs[i].sh_info;
2363
2364 /* Not a valid relocation section? */
2365 if (infosec >= info->hdr->e_shnum)
2366 continue;
2367
2368 /* Don't bother with non-allocated sections */
2369 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2370 continue;
2371
2372 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2373 err = klp_apply_section_relocs(mod, info->sechdrs,
2374 info->secstrings,
2375 info->strtab,
2376 info->index.sym, i,
2377 NULL);
2378 else if (info->sechdrs[i].sh_type == SHT_REL)
2379 err = apply_relocate(info->sechdrs, info->strtab,
2380 info->index.sym, i, mod);
2381 else if (info->sechdrs[i].sh_type == SHT_RELA)
2382 err = apply_relocate_add(info->sechdrs, info->strtab,
2383 info->index.sym, i, mod);
2384 if (err < 0)
2385 break;
2386 }
2387 return err;
2388}
2389
2390/* Additional bytes needed by arch in front of individual sections */
2391unsigned int __weak arch_mod_section_prepend(struct module *mod,
2392 unsigned int section)
2393{
2394 /* default implementation just returns zero */
2395 return 0;
2396}
2397
2398/* Update size with this section: return offset. */
2399static long get_offset(struct module *mod, unsigned int *size,
2400 Elf_Shdr *sechdr, unsigned int section)
2401{
2402 long ret;
2403
2404 *size += arch_mod_section_prepend(mod, section);
2405 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2406 *size = ret + sechdr->sh_size;
2407 return ret;
2408}
2409
2410static bool module_init_layout_section(const char *sname)
2411{
2412#ifndef CONFIG_MODULE_UNLOAD
2413 if (module_exit_section(sname))
2414 return true;
2415#endif
2416 return module_init_section(sname);
2417}
2418
2419/*
2420 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2421 * might -- code, read-only data, read-write data, small data. Tally
2422 * sizes, and place the offsets into sh_entsize fields: high bit means it
2423 * belongs in init.
2424 */
2425static void layout_sections(struct module *mod, struct load_info *info)
2426{
2427 static unsigned long const masks[][2] = {
2428 /*
2429 * NOTE: all executable code must be the first section
2430 * in this array; otherwise modify the text_size
2431 * finder in the two loops below
2432 */
2433 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2434 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2435 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2436 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2437 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2438 };
2439 unsigned int m, i;
2440
2441 for (i = 0; i < info->hdr->e_shnum; i++)
2442 info->sechdrs[i].sh_entsize = ~0UL;
2443
2444 pr_debug("Core section allocation order:\n");
2445 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2446 for (i = 0; i < info->hdr->e_shnum; ++i) {
2447 Elf_Shdr *s = &info->sechdrs[i];
2448 const char *sname = info->secstrings + s->sh_name;
2449
2450 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2451 || (s->sh_flags & masks[m][1])
2452 || s->sh_entsize != ~0UL
2453 || module_init_layout_section(sname))
2454 continue;
2455 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2456 pr_debug("\t%s\n", sname);
2457 }
2458 switch (m) {
2459 case 0: /* executable */
2460 mod->core_layout.size = debug_align(mod->core_layout.size);
2461 mod->core_layout.text_size = mod->core_layout.size;
2462 break;
2463 case 1: /* RO: text and ro-data */
2464 mod->core_layout.size = debug_align(mod->core_layout.size);
2465 mod->core_layout.ro_size = mod->core_layout.size;
2466 break;
2467 case 2: /* RO after init */
2468 mod->core_layout.size = debug_align(mod->core_layout.size);
2469 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2470 break;
2471 case 4: /* whole core */
2472 mod->core_layout.size = debug_align(mod->core_layout.size);
2473 break;
2474 }
2475 }
2476
2477 pr_debug("Init section allocation order:\n");
2478 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2479 for (i = 0; i < info->hdr->e_shnum; ++i) {
2480 Elf_Shdr *s = &info->sechdrs[i];
2481 const char *sname = info->secstrings + s->sh_name;
2482
2483 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2484 || (s->sh_flags & masks[m][1])
2485 || s->sh_entsize != ~0UL
2486 || !module_init_layout_section(sname))
2487 continue;
2488 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2489 | INIT_OFFSET_MASK);
2490 pr_debug("\t%s\n", sname);
2491 }
2492 switch (m) {
2493 case 0: /* executable */
2494 mod->init_layout.size = debug_align(mod->init_layout.size);
2495 mod->init_layout.text_size = mod->init_layout.size;
2496 break;
2497 case 1: /* RO: text and ro-data */
2498 mod->init_layout.size = debug_align(mod->init_layout.size);
2499 mod->init_layout.ro_size = mod->init_layout.size;
2500 break;
2501 case 2:
2502 /*
2503 * RO after init doesn't apply to init_layout (only
2504 * core_layout), so it just takes the value of ro_size.
2505 */
2506 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2507 break;
2508 case 4: /* whole init */
2509 mod->init_layout.size = debug_align(mod->init_layout.size);
2510 break;
2511 }
2512 }
2513}
2514
2515static void set_license(struct module *mod, const char *license)
2516{
2517 if (!license)
2518 license = "unspecified";
2519
2520 if (!license_is_gpl_compatible(license)) {
2521 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2522 pr_warn("%s: module license '%s' taints kernel.\n",
2523 mod->name, license);
2524 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2525 LOCKDEP_NOW_UNRELIABLE);
2526 }
2527}
2528
2529/* Parse tag=value strings from .modinfo section */
2530static char *next_string(char *string, unsigned long *secsize)
2531{
2532 /* Skip non-zero chars */
2533 while (string[0]) {
2534 string++;
2535 if ((*secsize)-- <= 1)
2536 return NULL;
2537 }
2538
2539 /* Skip any zero padding. */
2540 while (!string[0]) {
2541 string++;
2542 if ((*secsize)-- <= 1)
2543 return NULL;
2544 }
2545 return string;
2546}
2547
2548static char *get_next_modinfo(const struct load_info *info, const char *tag,
2549 char *prev)
2550{
2551 char *p;
2552 unsigned int taglen = strlen(tag);
2553 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2554 unsigned long size = infosec->sh_size;
2555
2556 /*
2557 * get_modinfo() calls made before rewrite_section_headers()
2558 * must use sh_offset, as sh_addr isn't set!
2559 */
2560 char *modinfo = (char *)info->hdr + infosec->sh_offset;
2561
2562 if (prev) {
2563 size -= prev - modinfo;
2564 modinfo = next_string(prev, &size);
2565 }
2566
2567 for (p = modinfo; p; p = next_string(p, &size)) {
2568 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2569 return p + taglen + 1;
2570 }
2571 return NULL;
2572}
2573
2574static char *get_modinfo(const struct load_info *info, const char *tag)
2575{
2576 return get_next_modinfo(info, tag, NULL);
2577}
2578
2579static void setup_modinfo(struct module *mod, struct load_info *info)
2580{
2581 struct module_attribute *attr;
2582 int i;
2583
2584 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2585 if (attr->setup)
2586 attr->setup(mod, get_modinfo(info, attr->attr.name));
2587 }
2588}
2589
2590static void free_modinfo(struct module *mod)
2591{
2592 struct module_attribute *attr;
2593 int i;
2594
2595 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2596 if (attr->free)
2597 attr->free(mod);
2598 }
2599}
2600
2601#ifdef CONFIG_KALLSYMS
2602
2603/* Lookup exported symbol in given range of kernel_symbols */
2604static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2605 const struct kernel_symbol *start,
2606 const struct kernel_symbol *stop)
2607{
2608 return bsearch(name, start, stop - start,
2609 sizeof(struct kernel_symbol), cmp_name);
2610}
2611
2612static int is_exported(const char *name, unsigned long value,
2613 const struct module *mod)
2614{
2615 const struct kernel_symbol *ks;
2616 if (!mod)
2617 ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2618 else
2619 ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2620
2621 return ks != NULL && kernel_symbol_value(ks) == value;
2622}
2623
2624/* As per nm */
2625static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2626{
2627 const Elf_Shdr *sechdrs = info->sechdrs;
2628
2629 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2630 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2631 return 'v';
2632 else
2633 return 'w';
2634 }
2635 if (sym->st_shndx == SHN_UNDEF)
2636 return 'U';
2637 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2638 return 'a';
2639 if (sym->st_shndx >= SHN_LORESERVE)
2640 return '?';
2641 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2642 return 't';
2643 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2644 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2645 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2646 return 'r';
2647 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2648 return 'g';
2649 else
2650 return 'd';
2651 }
2652 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2653 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2654 return 's';
2655 else
2656 return 'b';
2657 }
2658 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2659 ".debug")) {
2660 return 'n';
2661 }
2662 return '?';
2663}
2664
2665static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2666 unsigned int shnum, unsigned int pcpundx)
2667{
2668 const Elf_Shdr *sec;
2669
2670 if (src->st_shndx == SHN_UNDEF
2671 || src->st_shndx >= shnum
2672 || !src->st_name)
2673 return false;
2674
2675#ifdef CONFIG_KALLSYMS_ALL
2676 if (src->st_shndx == pcpundx)
2677 return true;
2678#endif
2679
2680 sec = sechdrs + src->st_shndx;
2681 if (!(sec->sh_flags & SHF_ALLOC)
2682#ifndef CONFIG_KALLSYMS_ALL
2683 || !(sec->sh_flags & SHF_EXECINSTR)
2684#endif
2685 || (sec->sh_entsize & INIT_OFFSET_MASK))
2686 return false;
2687
2688 return true;
2689}
2690
2691/*
2692 * We only allocate and copy the strings needed by the parts of symtab
2693 * we keep. This is simple, but has the effect of making multiple
2694 * copies of duplicates. We could be more sophisticated, see
2695 * linux-kernel thread starting with
2696 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2697 */
2698static void layout_symtab(struct module *mod, struct load_info *info)
2699{
2700 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2701 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2702 const Elf_Sym *src;
2703 unsigned int i, nsrc, ndst, strtab_size = 0;
2704
2705 /* Put symbol section at end of init part of module. */
2706 symsect->sh_flags |= SHF_ALLOC;
2707 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2708 info->index.sym) | INIT_OFFSET_MASK;
2709 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2710
2711 src = (void *)info->hdr + symsect->sh_offset;
2712 nsrc = symsect->sh_size / sizeof(*src);
2713
2714 /* Compute total space required for the core symbols' strtab. */
2715 for (ndst = i = 0; i < nsrc; i++) {
2716 if (i == 0 || is_livepatch_module(mod) ||
2717 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2718 info->index.pcpu)) {
2719 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2720 ndst++;
2721 }
2722 }
2723
2724 /* Append room for core symbols at end of core part. */
2725 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2726 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2727 mod->core_layout.size += strtab_size;
2728 info->core_typeoffs = mod->core_layout.size;
2729 mod->core_layout.size += ndst * sizeof(char);
2730 mod->core_layout.size = debug_align(mod->core_layout.size);
2731
2732 /* Put string table section at end of init part of module. */
2733 strsect->sh_flags |= SHF_ALLOC;
2734 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2735 info->index.str) | INIT_OFFSET_MASK;
2736 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2737
2738 /* We'll tack temporary mod_kallsyms on the end. */
2739 mod->init_layout.size = ALIGN(mod->init_layout.size,
2740 __alignof__(struct mod_kallsyms));
2741 info->mod_kallsyms_init_off = mod->init_layout.size;
2742 mod->init_layout.size += sizeof(struct mod_kallsyms);
2743 info->init_typeoffs = mod->init_layout.size;
2744 mod->init_layout.size += nsrc * sizeof(char);
2745 mod->init_layout.size = debug_align(mod->init_layout.size);
2746}
2747
2748/*
2749 * We use the full symtab and strtab which layout_symtab arranged to
2750 * be appended to the init section. Later we switch to the cut-down
2751 * core-only ones.
2752 */
2753static void add_kallsyms(struct module *mod, const struct load_info *info)
2754{
2755 unsigned int i, ndst;
2756 const Elf_Sym *src;
2757 Elf_Sym *dst;
2758 char *s;
2759 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2760
2761 /* Set up to point into init section. */
2762 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2763
2764 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2765 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2766 /* Make sure we get permanent strtab: don't use info->strtab. */
2767 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2768 mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2769
2770 /*
2771 * Now populate the cut down core kallsyms for after init
2772 * and set types up while we still have access to sections.
2773 */
2774 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2775 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2776 mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2777 src = mod->kallsyms->symtab;
2778 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2779 mod->kallsyms->typetab[i] = elf_type(src + i, info);
2780 if (i == 0 || is_livepatch_module(mod) ||
2781 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2782 info->index.pcpu)) {
2783 mod->core_kallsyms.typetab[ndst] =
2784 mod->kallsyms->typetab[i];
2785 dst[ndst] = src[i];
2786 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2787 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2788 KSYM_NAME_LEN) + 1;
2789 }
2790 }
2791 mod->core_kallsyms.num_symtab = ndst;
2792}
2793#else
2794static inline void layout_symtab(struct module *mod, struct load_info *info)
2795{
2796}
2797
2798static void add_kallsyms(struct module *mod, const struct load_info *info)
2799{
2800}
2801#endif /* CONFIG_KALLSYMS */
2802
2803#if IS_ENABLED(CONFIG_KALLSYMS) && IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
2804static void init_build_id(struct module *mod, const struct load_info *info)
2805{
2806 const Elf_Shdr *sechdr;
2807 unsigned int i;
2808
2809 for (i = 0; i < info->hdr->e_shnum; i++) {
2810 sechdr = &info->sechdrs[i];
2811 if (!sect_empty(sechdr) && sechdr->sh_type == SHT_NOTE &&
2812 !build_id_parse_buf((void *)sechdr->sh_addr, mod->build_id,
2813 sechdr->sh_size))
2814 break;
2815 }
2816}
2817#else
2818static void init_build_id(struct module *mod, const struct load_info *info)
2819{
2820}
2821#endif
2822
2823static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2824{
2825 if (!debug)
2826 return;
2827 ddebug_add_module(debug, num, mod->name);
2828}
2829
2830static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2831{
2832 if (debug)
2833 ddebug_remove_module(mod->name);
2834}
2835
2836void * __weak module_alloc(unsigned long size)
2837{
2838 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2839 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2840 NUMA_NO_NODE, __builtin_return_address(0));
2841}
2842
2843bool __weak module_init_section(const char *name)
2844{
2845 return strstarts(name, ".init");
2846}
2847
2848bool __weak module_exit_section(const char *name)
2849{
2850 return strstarts(name, ".exit");
2851}
2852
2853#ifdef CONFIG_DEBUG_KMEMLEAK
2854static void kmemleak_load_module(const struct module *mod,
2855 const struct load_info *info)
2856{
2857 unsigned int i;
2858
2859 /* only scan the sections containing data */
2860 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2861
2862 for (i = 1; i < info->hdr->e_shnum; i++) {
2863 /* Scan all writable sections that's not executable */
2864 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2865 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2866 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2867 continue;
2868
2869 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2870 info->sechdrs[i].sh_size, GFP_KERNEL);
2871 }
2872}
2873#else
2874static inline void kmemleak_load_module(const struct module *mod,
2875 const struct load_info *info)
2876{
2877}
2878#endif
2879
2880#ifdef CONFIG_MODULE_SIG
2881static int module_sig_check(struct load_info *info, int flags)
2882{
2883 int err = -ENODATA;
2884 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2885 const char *reason;
2886 const void *mod = info->hdr;
2887
2888 /*
2889 * Require flags == 0, as a module with version information
2890 * removed is no longer the module that was signed
2891 */
2892 if (flags == 0 &&
2893 info->len > markerlen &&
2894 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2895 /* We truncate the module to discard the signature */
2896 info->len -= markerlen;
2897 err = mod_verify_sig(mod, info);
2898 if (!err) {
2899 info->sig_ok = true;
2900 return 0;
2901 }
2902 }
2903
2904 /*
2905 * We don't permit modules to be loaded into the trusted kernels
2906 * without a valid signature on them, but if we're not enforcing,
2907 * certain errors are non-fatal.
2908 */
2909 switch (err) {
2910 case -ENODATA:
2911 reason = "unsigned module";
2912 break;
2913 case -ENOPKG:
2914 reason = "module with unsupported crypto";
2915 break;
2916 case -ENOKEY:
2917 reason = "module with unavailable key";
2918 break;
2919
2920 default:
2921 /*
2922 * All other errors are fatal, including lack of memory,
2923 * unparseable signatures, and signature check failures --
2924 * even if signatures aren't required.
2925 */
2926 return err;
2927 }
2928
2929 if (is_module_sig_enforced()) {
2930 pr_notice("Loading of %s is rejected\n", reason);
2931 return -EKEYREJECTED;
2932 }
2933
2934 return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2935}
2936#else /* !CONFIG_MODULE_SIG */
2937static int module_sig_check(struct load_info *info, int flags)
2938{
2939 return 0;
2940}
2941#endif /* !CONFIG_MODULE_SIG */
2942
2943static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
2944{
2945 unsigned long secend;
2946
2947 /*
2948 * Check for both overflow and offset/size being
2949 * too large.
2950 */
2951 secend = shdr->sh_offset + shdr->sh_size;
2952 if (secend < shdr->sh_offset || secend > info->len)
2953 return -ENOEXEC;
2954
2955 return 0;
2956}
2957
2958/*
2959 * Sanity checks against invalid binaries, wrong arch, weird elf version.
2960 *
2961 * Also do basic validity checks against section offsets and sizes, the
2962 * section name string table, and the indices used for it (sh_name).
2963 */
2964static int elf_validity_check(struct load_info *info)
2965{
2966 unsigned int i;
2967 Elf_Shdr *shdr, *strhdr;
2968 int err;
2969
2970 if (info->len < sizeof(*(info->hdr)))
2971 return -ENOEXEC;
2972
2973 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2974 || info->hdr->e_type != ET_REL
2975 || !elf_check_arch(info->hdr)
2976 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2977 return -ENOEXEC;
2978
2979 /*
2980 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
2981 * known and small. So e_shnum * sizeof(Elf_Shdr)
2982 * will not overflow unsigned long on any platform.
2983 */
2984 if (info->hdr->e_shoff >= info->len
2985 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2986 info->len - info->hdr->e_shoff))
2987 return -ENOEXEC;
2988
2989 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2990
2991 /*
2992 * Verify if the section name table index is valid.
2993 */
2994 if (info->hdr->e_shstrndx == SHN_UNDEF
2995 || info->hdr->e_shstrndx >= info->hdr->e_shnum)
2996 return -ENOEXEC;
2997
2998 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
2999 err = validate_section_offset(info, strhdr);
3000 if (err < 0)
3001 return err;
3002
3003 /*
3004 * The section name table must be NUL-terminated, as required
3005 * by the spec. This makes strcmp and pr_* calls that access
3006 * strings in the section safe.
3007 */
3008 info->secstrings = (void *)info->hdr + strhdr->sh_offset;
3009 if (info->secstrings[strhdr->sh_size - 1] != '\0')
3010 return -ENOEXEC;
3011
3012 /*
3013 * The code assumes that section 0 has a length of zero and
3014 * an addr of zero, so check for it.
3015 */
3016 if (info->sechdrs[0].sh_type != SHT_NULL
3017 || info->sechdrs[0].sh_size != 0
3018 || info->sechdrs[0].sh_addr != 0)
3019 return -ENOEXEC;
3020
3021 for (i = 1; i < info->hdr->e_shnum; i++) {
3022 shdr = &info->sechdrs[i];
3023 switch (shdr->sh_type) {
3024 case SHT_NULL:
3025 case SHT_NOBITS:
3026 continue;
3027 case SHT_SYMTAB:
3028 if (shdr->sh_link == SHN_UNDEF
3029 || shdr->sh_link >= info->hdr->e_shnum)
3030 return -ENOEXEC;
3031 fallthrough;
3032 default:
3033 err = validate_section_offset(info, shdr);
3034 if (err < 0) {
3035 pr_err("Invalid ELF section in module (section %u type %u)\n",
3036 i, shdr->sh_type);
3037 return err;
3038 }
3039
3040 if (shdr->sh_flags & SHF_ALLOC) {
3041 if (shdr->sh_name >= strhdr->sh_size) {
3042 pr_err("Invalid ELF section name in module (section %u type %u)\n",
3043 i, shdr->sh_type);
3044 return -ENOEXEC;
3045 }
3046 }
3047 break;
3048 }
3049 }
3050
3051 return 0;
3052}
3053
3054#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3055
3056static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3057{
3058 do {
3059 unsigned long n = min(len, COPY_CHUNK_SIZE);
3060
3061 if (copy_from_user(dst, usrc, n) != 0)
3062 return -EFAULT;
3063 cond_resched();
3064 dst += n;
3065 usrc += n;
3066 len -= n;
3067 } while (len);
3068 return 0;
3069}
3070
3071#ifdef CONFIG_LIVEPATCH
3072static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3073{
3074 if (get_modinfo(info, "livepatch")) {
3075 mod->klp = true;
3076 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3077 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3078 mod->name);
3079 }
3080
3081 return 0;
3082}
3083#else /* !CONFIG_LIVEPATCH */
3084static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3085{
3086 if (get_modinfo(info, "livepatch")) {
3087 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3088 mod->name);
3089 return -ENOEXEC;
3090 }
3091
3092 return 0;
3093}
3094#endif /* CONFIG_LIVEPATCH */
3095
3096static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3097{
3098 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3099 return;
3100
3101 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3102 mod->name);
3103}
3104
3105/* Sets info->hdr and info->len. */
3106static int copy_module_from_user(const void __user *umod, unsigned long len,
3107 struct load_info *info)
3108{
3109 int err;
3110
3111 info->len = len;
3112 if (info->len < sizeof(*(info->hdr)))
3113 return -ENOEXEC;
3114
3115 err = security_kernel_load_data(LOADING_MODULE, true);
3116 if (err)
3117 return err;
3118
3119 /* Suck in entire file: we'll want most of it. */
3120 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3121 if (!info->hdr)
3122 return -ENOMEM;
3123
3124 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3125 err = -EFAULT;
3126 goto out;
3127 }
3128
3129 err = security_kernel_post_load_data((char *)info->hdr, info->len,
3130 LOADING_MODULE, "init_module");
3131out:
3132 if (err)
3133 vfree(info->hdr);
3134
3135 return err;
3136}
3137
3138static void free_copy(struct load_info *info)
3139{
3140 vfree(info->hdr);
3141}
3142
3143static int rewrite_section_headers(struct load_info *info, int flags)
3144{
3145 unsigned int i;
3146
3147 /* This should always be true, but let's be sure. */
3148 info->sechdrs[0].sh_addr = 0;
3149
3150 for (i = 1; i < info->hdr->e_shnum; i++) {
3151 Elf_Shdr *shdr = &info->sechdrs[i];
3152
3153 /*
3154 * Mark all sections sh_addr with their address in the
3155 * temporary image.
3156 */
3157 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3158
3159 }
3160
3161 /* Track but don't keep modinfo and version sections. */
3162 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3163 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3164
3165 return 0;
3166}
3167
3168/*
3169 * Set up our basic convenience variables (pointers to section headers,
3170 * search for module section index etc), and do some basic section
3171 * verification.
3172 *
3173 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3174 * will be allocated in move_module().
3175 */
3176static int setup_load_info(struct load_info *info, int flags)
3177{
3178 unsigned int i;
3179
3180 /* Try to find a name early so we can log errors with a module name */
3181 info->index.info = find_sec(info, ".modinfo");
3182 if (info->index.info)
3183 info->name = get_modinfo(info, "name");
3184
3185 /* Find internal symbols and strings. */
3186 for (i = 1; i < info->hdr->e_shnum; i++) {
3187 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3188 info->index.sym = i;
3189 info->index.str = info->sechdrs[i].sh_link;
3190 info->strtab = (char *)info->hdr
3191 + info->sechdrs[info->index.str].sh_offset;
3192 break;
3193 }
3194 }
3195
3196 if (info->index.sym == 0) {
3197 pr_warn("%s: module has no symbols (stripped?)\n",
3198 info->name ?: "(missing .modinfo section or name field)");
3199 return -ENOEXEC;
3200 }
3201
3202 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3203 if (!info->index.mod) {
3204 pr_warn("%s: No module found in object\n",
3205 info->name ?: "(missing .modinfo section or name field)");
3206 return -ENOEXEC;
3207 }
3208 /* This is temporary: point mod into copy of data. */
3209 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3210
3211 /*
3212 * If we didn't load the .modinfo 'name' field earlier, fall back to
3213 * on-disk struct mod 'name' field.
3214 */
3215 if (!info->name)
3216 info->name = info->mod->name;
3217
3218 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3219 info->index.vers = 0; /* Pretend no __versions section! */
3220 else
3221 info->index.vers = find_sec(info, "__versions");
3222
3223 info->index.pcpu = find_pcpusec(info);
3224
3225 return 0;
3226}
3227
3228static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3229{
3230 const char *modmagic = get_modinfo(info, "vermagic");
3231 int err;
3232
3233 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3234 modmagic = NULL;
3235
3236 /* This is allowed: modprobe --force will invalidate it. */
3237 if (!modmagic) {
3238 err = try_to_force_load(mod, "bad vermagic");
3239 if (err)
3240 return err;
3241 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3242 pr_err("%s: version magic '%s' should be '%s'\n",
3243 info->name, modmagic, vermagic);
3244 return -ENOEXEC;
3245 }
3246
3247 if (!get_modinfo(info, "intree")) {
3248 if (!test_taint(TAINT_OOT_MODULE))
3249 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3250 mod->name);
3251 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3252 }
3253
3254 check_modinfo_retpoline(mod, info);
3255
3256 if (get_modinfo(info, "staging")) {
3257 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3258 pr_warn("%s: module is from the staging directory, the quality "
3259 "is unknown, you have been warned.\n", mod->name);
3260 }
3261
3262 err = check_modinfo_livepatch(mod, info);
3263 if (err)
3264 return err;
3265
3266 /* Set up license info based on the info section */
3267 set_license(mod, get_modinfo(info, "license"));
3268
3269 return 0;
3270}
3271
3272static int find_module_sections(struct module *mod, struct load_info *info)
3273{
3274 mod->kp = section_objs(info, "__param",
3275 sizeof(*mod->kp), &mod->num_kp);
3276 mod->syms = section_objs(info, "__ksymtab",
3277 sizeof(*mod->syms), &mod->num_syms);
3278 mod->crcs = section_addr(info, "__kcrctab");
3279 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3280 sizeof(*mod->gpl_syms),
3281 &mod->num_gpl_syms);
3282 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3283
3284#ifdef CONFIG_CONSTRUCTORS
3285 mod->ctors = section_objs(info, ".ctors",
3286 sizeof(*mod->ctors), &mod->num_ctors);
3287 if (!mod->ctors)
3288 mod->ctors = section_objs(info, ".init_array",
3289 sizeof(*mod->ctors), &mod->num_ctors);
3290 else if (find_sec(info, ".init_array")) {
3291 /*
3292 * This shouldn't happen with same compiler and binutils
3293 * building all parts of the module.
3294 */
3295 pr_warn("%s: has both .ctors and .init_array.\n",
3296 mod->name);
3297 return -EINVAL;
3298 }
3299#endif
3300
3301 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3302 &mod->noinstr_text_size);
3303
3304#ifdef CONFIG_TRACEPOINTS
3305 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3306 sizeof(*mod->tracepoints_ptrs),
3307 &mod->num_tracepoints);
3308#endif
3309#ifdef CONFIG_TREE_SRCU
3310 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3311 sizeof(*mod->srcu_struct_ptrs),
3312 &mod->num_srcu_structs);
3313#endif
3314#ifdef CONFIG_BPF_EVENTS
3315 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3316 sizeof(*mod->bpf_raw_events),
3317 &mod->num_bpf_raw_events);
3318#endif
3319#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3320 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
3321#endif
3322#ifdef CONFIG_JUMP_LABEL
3323 mod->jump_entries = section_objs(info, "__jump_table",
3324 sizeof(*mod->jump_entries),
3325 &mod->num_jump_entries);
3326#endif
3327#ifdef CONFIG_EVENT_TRACING
3328 mod->trace_events = section_objs(info, "_ftrace_events",
3329 sizeof(*mod->trace_events),
3330 &mod->num_trace_events);
3331 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3332 sizeof(*mod->trace_evals),
3333 &mod->num_trace_evals);
3334#endif
3335#ifdef CONFIG_TRACING
3336 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3337 sizeof(*mod->trace_bprintk_fmt_start),
3338 &mod->num_trace_bprintk_fmt);
3339#endif
3340#ifdef CONFIG_FTRACE_MCOUNT_RECORD
3341 /* sechdrs[0].sh_size is always zero */
3342 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3343 sizeof(*mod->ftrace_callsites),
3344 &mod->num_ftrace_callsites);
3345#endif
3346#ifdef CONFIG_FUNCTION_ERROR_INJECTION
3347 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3348 sizeof(*mod->ei_funcs),
3349 &mod->num_ei_funcs);
3350#endif
3351#ifdef CONFIG_KPROBES
3352 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3353 &mod->kprobes_text_size);
3354 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3355 sizeof(unsigned long),
3356 &mod->num_kprobe_blacklist);
3357#endif
3358#ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3359 mod->static_call_sites = section_objs(info, ".static_call_sites",
3360 sizeof(*mod->static_call_sites),
3361 &mod->num_static_call_sites);
3362#endif
3363 mod->extable = section_objs(info, "__ex_table",
3364 sizeof(*mod->extable), &mod->num_exentries);
3365
3366 if (section_addr(info, "__obsparm"))
3367 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3368
3369 info->debug = section_objs(info, "__dyndbg",
3370 sizeof(*info->debug), &info->num_debug);
3371
3372 return 0;
3373}
3374
3375static int move_module(struct module *mod, struct load_info *info)
3376{
3377 int i;
3378 void *ptr;
3379
3380 /* Do the allocs. */
3381 ptr = module_alloc(mod->core_layout.size);
3382 /*
3383 * The pointer to this block is stored in the module structure
3384 * which is inside the block. Just mark it as not being a
3385 * leak.
3386 */
3387 kmemleak_not_leak(ptr);
3388 if (!ptr)
3389 return -ENOMEM;
3390
3391 memset(ptr, 0, mod->core_layout.size);
3392 mod->core_layout.base = ptr;
3393
3394 if (mod->init_layout.size) {
3395 ptr = module_alloc(mod->init_layout.size);
3396 /*
3397 * The pointer to this block is stored in the module structure
3398 * which is inside the block. This block doesn't need to be
3399 * scanned as it contains data and code that will be freed
3400 * after the module is initialized.
3401 */
3402 kmemleak_ignore(ptr);
3403 if (!ptr) {
3404 module_memfree(mod->core_layout.base);
3405 return -ENOMEM;
3406 }
3407 memset(ptr, 0, mod->init_layout.size);
3408 mod->init_layout.base = ptr;
3409 } else
3410 mod->init_layout.base = NULL;
3411
3412 /* Transfer each section which specifies SHF_ALLOC */
3413 pr_debug("final section addresses:\n");
3414 for (i = 0; i < info->hdr->e_shnum; i++) {
3415 void *dest;
3416 Elf_Shdr *shdr = &info->sechdrs[i];
3417
3418 if (!(shdr->sh_flags & SHF_ALLOC))
3419 continue;
3420
3421 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3422 dest = mod->init_layout.base
3423 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3424 else
3425 dest = mod->core_layout.base + shdr->sh_entsize;
3426
3427 if (shdr->sh_type != SHT_NOBITS)
3428 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3429 /* Update sh_addr to point to copy in image. */
3430 shdr->sh_addr = (unsigned long)dest;
3431 pr_debug("\t0x%lx %s\n",
3432 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3433 }
3434
3435 return 0;
3436}
3437
3438static int check_module_license_and_versions(struct module *mod)
3439{
3440 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3441
3442 /*
3443 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3444 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3445 * using GPL-only symbols it needs.
3446 */
3447 if (strcmp(mod->name, "ndiswrapper") == 0)
3448 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3449
3450 /* driverloader was caught wrongly pretending to be under GPL */
3451 if (strcmp(mod->name, "driverloader") == 0)
3452 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3453 LOCKDEP_NOW_UNRELIABLE);
3454
3455 /* lve claims to be GPL but upstream won't provide source */
3456 if (strcmp(mod->name, "lve") == 0)
3457 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3458 LOCKDEP_NOW_UNRELIABLE);
3459
3460 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3461 pr_warn("%s: module license taints kernel.\n", mod->name);
3462
3463#ifdef CONFIG_MODVERSIONS
3464 if ((mod->num_syms && !mod->crcs) ||
3465 (mod->num_gpl_syms && !mod->gpl_crcs)) {
3466 return try_to_force_load(mod,
3467 "no versions for exported symbols");
3468 }
3469#endif
3470 return 0;
3471}
3472
3473static void flush_module_icache(const struct module *mod)
3474{
3475 /*
3476 * Flush the instruction cache, since we've played with text.
3477 * Do it before processing of module parameters, so the module
3478 * can provide parameter accessor functions of its own.
3479 */
3480 if (mod->init_layout.base)
3481 flush_icache_range((unsigned long)mod->init_layout.base,
3482 (unsigned long)mod->init_layout.base
3483 + mod->init_layout.size);
3484 flush_icache_range((unsigned long)mod->core_layout.base,
3485 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3486}
3487
3488int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3489 Elf_Shdr *sechdrs,
3490 char *secstrings,
3491 struct module *mod)
3492{
3493 return 0;
3494}
3495
3496/* module_blacklist is a comma-separated list of module names */
3497static char *module_blacklist;
3498static bool blacklisted(const char *module_name)
3499{
3500 const char *p;
3501 size_t len;
3502
3503 if (!module_blacklist)
3504 return false;
3505
3506 for (p = module_blacklist; *p; p += len) {
3507 len = strcspn(p, ",");
3508 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3509 return true;
3510 if (p[len] == ',')
3511 len++;
3512 }
3513 return false;
3514}
3515core_param(module_blacklist, module_blacklist, charp, 0400);
3516
3517static struct module *layout_and_allocate(struct load_info *info, int flags)
3518{
3519 struct module *mod;
3520 unsigned int ndx;
3521 int err;
3522
3523 err = check_modinfo(info->mod, info, flags);
3524 if (err)
3525 return ERR_PTR(err);
3526
3527 /* Allow arches to frob section contents and sizes. */
3528 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3529 info->secstrings, info->mod);
3530 if (err < 0)
3531 return ERR_PTR(err);
3532
3533 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3534 info->secstrings, info->mod);
3535 if (err < 0)
3536 return ERR_PTR(err);
3537
3538 /* We will do a special allocation for per-cpu sections later. */
3539 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3540
3541 /*
3542 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3543 * layout_sections() can put it in the right place.
3544 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3545 */
3546 ndx = find_sec(info, ".data..ro_after_init");
3547 if (ndx)
3548 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3549 /*
3550 * Mark the __jump_table section as ro_after_init as well: these data
3551 * structures are never modified, with the exception of entries that
3552 * refer to code in the __init section, which are annotated as such
3553 * at module load time.
3554 */
3555 ndx = find_sec(info, "__jump_table");
3556 if (ndx)
3557 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3558
3559 /*
3560 * Determine total sizes, and put offsets in sh_entsize. For now
3561 * this is done generically; there doesn't appear to be any
3562 * special cases for the architectures.
3563 */
3564 layout_sections(info->mod, info);
3565 layout_symtab(info->mod, info);
3566
3567 /* Allocate and move to the final place */
3568 err = move_module(info->mod, info);
3569 if (err)
3570 return ERR_PTR(err);
3571
3572 /* Module has been copied to its final place now: return it. */
3573 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3574 kmemleak_load_module(mod, info);
3575 return mod;
3576}
3577
3578/* mod is no longer valid after this! */
3579static void module_deallocate(struct module *mod, struct load_info *info)
3580{
3581 percpu_modfree(mod);
3582 module_arch_freeing_init(mod);
3583 module_memfree(mod->init_layout.base);
3584 module_memfree(mod->core_layout.base);
3585}
3586
3587int __weak module_finalize(const Elf_Ehdr *hdr,
3588 const Elf_Shdr *sechdrs,
3589 struct module *me)
3590{
3591 return 0;
3592}
3593
3594static int post_relocation(struct module *mod, const struct load_info *info)
3595{
3596 /* Sort exception table now relocations are done. */
3597 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3598
3599 /* Copy relocated percpu area over. */
3600 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3601 info->sechdrs[info->index.pcpu].sh_size);
3602
3603 /* Setup kallsyms-specific fields. */
3604 add_kallsyms(mod, info);
3605
3606 /* Arch-specific module finalizing. */
3607 return module_finalize(info->hdr, info->sechdrs, mod);
3608}
3609
3610/* Is this module of this name done loading? No locks held. */
3611static bool finished_loading(const char *name)
3612{
3613 struct module *mod;
3614 bool ret;
3615
3616 /*
3617 * The module_mutex should not be a heavily contended lock;
3618 * if we get the occasional sleep here, we'll go an extra iteration
3619 * in the wait_event_interruptible(), which is harmless.
3620 */
3621 sched_annotate_sleep();
3622 mutex_lock(&module_mutex);
3623 mod = find_module_all(name, strlen(name), true);
3624 ret = !mod || mod->state == MODULE_STATE_LIVE;
3625 mutex_unlock(&module_mutex);
3626
3627 return ret;
3628}
3629
3630/* Call module constructors. */
3631static void do_mod_ctors(struct module *mod)
3632{
3633#ifdef CONFIG_CONSTRUCTORS
3634 unsigned long i;
3635
3636 for (i = 0; i < mod->num_ctors; i++)
3637 mod->ctors[i]();
3638#endif
3639}
3640
3641/* For freeing module_init on success, in case kallsyms traversing */
3642struct mod_initfree {
3643 struct llist_node node;
3644 void *module_init;
3645};
3646
3647static void do_free_init(struct work_struct *w)
3648{
3649 struct llist_node *pos, *n, *list;
3650 struct mod_initfree *initfree;
3651
3652 list = llist_del_all(&init_free_list);
3653
3654 synchronize_rcu();
3655
3656 llist_for_each_safe(pos, n, list) {
3657 initfree = container_of(pos, struct mod_initfree, node);
3658 module_memfree(initfree->module_init);
3659 kfree(initfree);
3660 }
3661}
3662
3663/*
3664 * This is where the real work happens.
3665 *
3666 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3667 * helper command 'lx-symbols'.
3668 */
3669static noinline int do_init_module(struct module *mod)
3670{
3671 int ret = 0;
3672 struct mod_initfree *freeinit;
3673
3674 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3675 if (!freeinit) {
3676 ret = -ENOMEM;
3677 goto fail;
3678 }
3679 freeinit->module_init = mod->init_layout.base;
3680
3681 /*
3682 * We want to find out whether @mod uses async during init. Clear
3683 * PF_USED_ASYNC. async_schedule*() will set it.
3684 */
3685 current->flags &= ~PF_USED_ASYNC;
3686
3687 do_mod_ctors(mod);
3688 /* Start the module */
3689 if (mod->init != NULL)
3690 ret = do_one_initcall(mod->init);
3691 if (ret < 0) {
3692 goto fail_free_freeinit;
3693 }
3694 if (ret > 0) {
3695 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3696 "follow 0/-E convention\n"
3697 "%s: loading module anyway...\n",
3698 __func__, mod->name, ret, __func__);
3699 dump_stack();
3700 }
3701
3702 /* Now it's a first class citizen! */
3703 mod->state = MODULE_STATE_LIVE;
3704 blocking_notifier_call_chain(&module_notify_list,
3705 MODULE_STATE_LIVE, mod);
3706
3707 /* Delay uevent until module has finished its init routine */
3708 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3709
3710 /*
3711 * We need to finish all async code before the module init sequence
3712 * is done. This has potential to deadlock. For example, a newly
3713 * detected block device can trigger request_module() of the
3714 * default iosched from async probing task. Once userland helper
3715 * reaches here, async_synchronize_full() will wait on the async
3716 * task waiting on request_module() and deadlock.
3717 *
3718 * This deadlock is avoided by perfomring async_synchronize_full()
3719 * iff module init queued any async jobs. This isn't a full
3720 * solution as it will deadlock the same if module loading from
3721 * async jobs nests more than once; however, due to the various
3722 * constraints, this hack seems to be the best option for now.
3723 * Please refer to the following thread for details.
3724 *
3725 * http://thread.gmane.org/gmane.linux.kernel/1420814
3726 */
3727 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3728 async_synchronize_full();
3729
3730 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3731 mod->init_layout.size);
3732 mutex_lock(&module_mutex);
3733 /* Drop initial reference. */
3734 module_put(mod);
3735 trim_init_extable(mod);
3736#ifdef CONFIG_KALLSYMS
3737 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3738 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3739#endif
3740 module_enable_ro(mod, true);
3741 mod_tree_remove_init(mod);
3742 module_arch_freeing_init(mod);
3743 mod->init_layout.base = NULL;
3744 mod->init_layout.size = 0;
3745 mod->init_layout.ro_size = 0;
3746 mod->init_layout.ro_after_init_size = 0;
3747 mod->init_layout.text_size = 0;
3748#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3749 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
3750 mod->btf_data = NULL;
3751#endif
3752 /*
3753 * We want to free module_init, but be aware that kallsyms may be
3754 * walking this with preempt disabled. In all the failure paths, we
3755 * call synchronize_rcu(), but we don't want to slow down the success
3756 * path. module_memfree() cannot be called in an interrupt, so do the
3757 * work and call synchronize_rcu() in a work queue.
3758 *
3759 * Note that module_alloc() on most architectures creates W+X page
3760 * mappings which won't be cleaned up until do_free_init() runs. Any
3761 * code such as mark_rodata_ro() which depends on those mappings to
3762 * be cleaned up needs to sync with the queued work - ie
3763 * rcu_barrier()
3764 */
3765 if (llist_add(&freeinit->node, &init_free_list))
3766 schedule_work(&init_free_wq);
3767
3768 mutex_unlock(&module_mutex);
3769 wake_up_all(&module_wq);
3770
3771 return 0;
3772
3773fail_free_freeinit:
3774 kfree(freeinit);
3775fail:
3776 /* Try to protect us from buggy refcounters. */
3777 mod->state = MODULE_STATE_GOING;
3778 synchronize_rcu();
3779 module_put(mod);
3780 blocking_notifier_call_chain(&module_notify_list,
3781 MODULE_STATE_GOING, mod);
3782 klp_module_going(mod);
3783 ftrace_release_mod(mod);
3784 free_module(mod);
3785 wake_up_all(&module_wq);
3786 return ret;
3787}
3788
3789static int may_init_module(void)
3790{
3791 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3792 return -EPERM;
3793
3794 return 0;
3795}
3796
3797/*
3798 * We try to place it in the list now to make sure it's unique before
3799 * we dedicate too many resources. In particular, temporary percpu
3800 * memory exhaustion.
3801 */
3802static int add_unformed_module(struct module *mod)
3803{
3804 int err;
3805 struct module *old;
3806
3807 mod->state = MODULE_STATE_UNFORMED;
3808
3809again:
3810 mutex_lock(&module_mutex);
3811 old = find_module_all(mod->name, strlen(mod->name), true);
3812 if (old != NULL) {
3813 if (old->state != MODULE_STATE_LIVE) {
3814 /* Wait in case it fails to load. */
3815 mutex_unlock(&module_mutex);
3816 err = wait_event_interruptible(module_wq,
3817 finished_loading(mod->name));
3818 if (err)
3819 goto out_unlocked;
3820 goto again;
3821 }
3822 err = -EEXIST;
3823 goto out;
3824 }
3825 mod_update_bounds(mod);
3826 list_add_rcu(&mod->list, &modules);
3827 mod_tree_insert(mod);
3828 err = 0;
3829
3830out:
3831 mutex_unlock(&module_mutex);
3832out_unlocked:
3833 return err;
3834}
3835
3836static int complete_formation(struct module *mod, struct load_info *info)
3837{
3838 int err;
3839
3840 mutex_lock(&module_mutex);
3841
3842 /* Find duplicate symbols (must be called under lock). */
3843 err = verify_exported_symbols(mod);
3844 if (err < 0)
3845 goto out;
3846
3847 /* This relies on module_mutex for list integrity. */
3848 module_bug_finalize(info->hdr, info->sechdrs, mod);
3849
3850 module_enable_ro(mod, false);
3851 module_enable_nx(mod);
3852 module_enable_x(mod);
3853
3854 /*
3855 * Mark state as coming so strong_try_module_get() ignores us,
3856 * but kallsyms etc. can see us.
3857 */
3858 mod->state = MODULE_STATE_COMING;
3859 mutex_unlock(&module_mutex);
3860
3861 return 0;
3862
3863out:
3864 mutex_unlock(&module_mutex);
3865 return err;
3866}
3867
3868static int prepare_coming_module(struct module *mod)
3869{
3870 int err;
3871
3872 ftrace_module_enable(mod);
3873 err = klp_module_coming(mod);
3874 if (err)
3875 return err;
3876
3877 err = blocking_notifier_call_chain_robust(&module_notify_list,
3878 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3879 err = notifier_to_errno(err);
3880 if (err)
3881 klp_module_going(mod);
3882
3883 return err;
3884}
3885
3886static int unknown_module_param_cb(char *param, char *val, const char *modname,
3887 void *arg)
3888{
3889 struct module *mod = arg;
3890 int ret;
3891
3892 if (strcmp(param, "async_probe") == 0) {
3893 mod->async_probe_requested = true;
3894 return 0;
3895 }
3896
3897 /* Check for magic 'dyndbg' arg */
3898 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3899 if (ret != 0)
3900 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3901 return 0;
3902}
3903
3904static void cfi_init(struct module *mod);
3905
3906/*
3907 * Allocate and load the module: note that size of section 0 is always
3908 * zero, and we rely on this for optional sections.
3909 */
3910static int load_module(struct load_info *info, const char __user *uargs,
3911 int flags)
3912{
3913 struct module *mod;
3914 long err = 0;
3915 char *after_dashes;
3916
3917 /*
3918 * Do the signature check (if any) first. All that
3919 * the signature check needs is info->len, it does
3920 * not need any of the section info. That can be
3921 * set up later. This will minimize the chances
3922 * of a corrupt module causing problems before
3923 * we even get to the signature check.
3924 *
3925 * The check will also adjust info->len by stripping
3926 * off the sig length at the end of the module, making
3927 * checks against info->len more correct.
3928 */
3929 err = module_sig_check(info, flags);
3930 if (err)
3931 goto free_copy;
3932
3933 /*
3934 * Do basic sanity checks against the ELF header and
3935 * sections.
3936 */
3937 err = elf_validity_check(info);
3938 if (err) {
3939 pr_err("Module has invalid ELF structures\n");
3940 goto free_copy;
3941 }
3942
3943 /*
3944 * Everything checks out, so set up the section info
3945 * in the info structure.
3946 */
3947 err = setup_load_info(info, flags);
3948 if (err)
3949 goto free_copy;
3950
3951 /*
3952 * Now that we know we have the correct module name, check
3953 * if it's blacklisted.
3954 */
3955 if (blacklisted(info->name)) {
3956 err = -EPERM;
3957 pr_err("Module %s is blacklisted\n", info->name);
3958 goto free_copy;
3959 }
3960
3961 err = rewrite_section_headers(info, flags);
3962 if (err)
3963 goto free_copy;
3964
3965 /* Check module struct version now, before we try to use module. */
3966 if (!check_modstruct_version(info, info->mod)) {
3967 err = -ENOEXEC;
3968 goto free_copy;
3969 }
3970
3971 /* Figure out module layout, and allocate all the memory. */
3972 mod = layout_and_allocate(info, flags);
3973 if (IS_ERR(mod)) {
3974 err = PTR_ERR(mod);
3975 goto free_copy;
3976 }
3977
3978 audit_log_kern_module(mod->name);
3979
3980 /* Reserve our place in the list. */
3981 err = add_unformed_module(mod);
3982 if (err)
3983 goto free_module;
3984
3985#ifdef CONFIG_MODULE_SIG
3986 mod->sig_ok = info->sig_ok;
3987 if (!mod->sig_ok) {
3988 pr_notice_once("%s: module verification failed: signature "
3989 "and/or required key missing - tainting "
3990 "kernel\n", mod->name);
3991 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3992 }
3993#endif
3994
3995 /* To avoid stressing percpu allocator, do this once we're unique. */
3996 err = percpu_modalloc(mod, info);
3997 if (err)
3998 goto unlink_mod;
3999
4000 /* Now module is in final location, initialize linked lists, etc. */
4001 err = module_unload_init(mod);
4002 if (err)
4003 goto unlink_mod;
4004
4005 init_param_lock(mod);
4006
4007 /*
4008 * Now we've got everything in the final locations, we can
4009 * find optional sections.
4010 */
4011 err = find_module_sections(mod, info);
4012 if (err)
4013 goto free_unload;
4014
4015 err = check_module_license_and_versions(mod);
4016 if (err)
4017 goto free_unload;
4018
4019 /* Set up MODINFO_ATTR fields */
4020 setup_modinfo(mod, info);
4021
4022 /* Fix up syms, so that st_value is a pointer to location. */
4023 err = simplify_symbols(mod, info);
4024 if (err < 0)
4025 goto free_modinfo;
4026
4027 err = apply_relocations(mod, info);
4028 if (err < 0)
4029 goto free_modinfo;
4030
4031 err = post_relocation(mod, info);
4032 if (err < 0)
4033 goto free_modinfo;
4034
4035 flush_module_icache(mod);
4036
4037 /* Setup CFI for the module. */
4038 cfi_init(mod);
4039
4040 /* Now copy in args */
4041 mod->args = strndup_user(uargs, ~0UL >> 1);
4042 if (IS_ERR(mod->args)) {
4043 err = PTR_ERR(mod->args);
4044 goto free_arch_cleanup;
4045 }
4046
4047 init_build_id(mod, info);
4048 dynamic_debug_setup(mod, info->debug, info->num_debug);
4049
4050 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4051 ftrace_module_init(mod);
4052
4053 /* Finally it's fully formed, ready to start executing. */
4054 err = complete_formation(mod, info);
4055 if (err)
4056 goto ddebug_cleanup;
4057
4058 err = prepare_coming_module(mod);
4059 if (err)
4060 goto bug_cleanup;
4061
4062 /* Module is ready to execute: parsing args may do that. */
4063 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4064 -32768, 32767, mod,
4065 unknown_module_param_cb);
4066 if (IS_ERR(after_dashes)) {
4067 err = PTR_ERR(after_dashes);
4068 goto coming_cleanup;
4069 } else if (after_dashes) {
4070 pr_warn("%s: parameters '%s' after `--' ignored\n",
4071 mod->name, after_dashes);
4072 }
4073
4074 /* Link in to sysfs. */
4075 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4076 if (err < 0)
4077 goto coming_cleanup;
4078
4079 if (is_livepatch_module(mod)) {
4080 err = copy_module_elf(mod, info);
4081 if (err < 0)
4082 goto sysfs_cleanup;
4083 }
4084
4085 /* Get rid of temporary copy. */
4086 free_copy(info);
4087
4088 /* Done! */
4089 trace_module_load(mod);
4090
4091 return do_init_module(mod);
4092
4093 sysfs_cleanup:
4094 mod_sysfs_teardown(mod);
4095 coming_cleanup:
4096 mod->state = MODULE_STATE_GOING;
4097 destroy_params(mod->kp, mod->num_kp);
4098 blocking_notifier_call_chain(&module_notify_list,
4099 MODULE_STATE_GOING, mod);
4100 klp_module_going(mod);
4101 bug_cleanup:
4102 mod->state = MODULE_STATE_GOING;
4103 /* module_bug_cleanup needs module_mutex protection */
4104 mutex_lock(&module_mutex);
4105 module_bug_cleanup(mod);
4106 mutex_unlock(&module_mutex);
4107
4108 ddebug_cleanup:
4109 ftrace_release_mod(mod);
4110 dynamic_debug_remove(mod, info->debug);
4111 synchronize_rcu();
4112 kfree(mod->args);
4113 free_arch_cleanup:
4114 cfi_cleanup(mod);
4115 module_arch_cleanup(mod);
4116 free_modinfo:
4117 free_modinfo(mod);
4118 free_unload:
4119 module_unload_free(mod);
4120 unlink_mod:
4121 mutex_lock(&module_mutex);
4122 /* Unlink carefully: kallsyms could be walking list. */
4123 list_del_rcu(&mod->list);
4124 mod_tree_remove(mod);
4125 wake_up_all(&module_wq);
4126 /* Wait for RCU-sched synchronizing before releasing mod->list. */
4127 synchronize_rcu();
4128 mutex_unlock(&module_mutex);
4129 free_module:
4130 /* Free lock-classes; relies on the preceding sync_rcu() */
4131 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4132
4133 module_deallocate(mod, info);
4134 free_copy:
4135 free_copy(info);
4136 return err;
4137}
4138
4139SYSCALL_DEFINE3(init_module, void __user *, umod,
4140 unsigned long, len, const char __user *, uargs)
4141{
4142 int err;
4143 struct load_info info = { };
4144
4145 err = may_init_module();
4146 if (err)
4147 return err;
4148
4149 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4150 umod, len, uargs);
4151
4152 err = copy_module_from_user(umod, len, &info);
4153 if (err)
4154 return err;
4155
4156 return load_module(&info, uargs, 0);
4157}
4158
4159SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4160{
4161 struct load_info info = { };
4162 void *hdr = NULL;
4163 int err;
4164
4165 err = may_init_module();
4166 if (err)
4167 return err;
4168
4169 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4170
4171 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4172 |MODULE_INIT_IGNORE_VERMAGIC))
4173 return -EINVAL;
4174
4175 err = kernel_read_file_from_fd(fd, 0, &hdr, INT_MAX, NULL,
4176 READING_MODULE);
4177 if (err < 0)
4178 return err;
4179 info.hdr = hdr;
4180 info.len = err;
4181
4182 return load_module(&info, uargs, flags);
4183}
4184
4185static inline int within(unsigned long addr, void *start, unsigned long size)
4186{
4187 return ((void *)addr >= start && (void *)addr < start + size);
4188}
4189
4190#ifdef CONFIG_KALLSYMS
4191/*
4192 * This ignores the intensely annoying "mapping symbols" found
4193 * in ARM ELF files: $a, $t and $d.
4194 */
4195static inline int is_arm_mapping_symbol(const char *str)
4196{
4197 if (str[0] == '.' && str[1] == 'L')
4198 return true;
4199 return str[0] == '$' && strchr("axtd", str[1])
4200 && (str[2] == '\0' || str[2] == '.');
4201}
4202
4203static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4204{
4205 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4206}
4207
4208/*
4209 * Given a module and address, find the corresponding symbol and return its name
4210 * while providing its size and offset if needed.
4211 */
4212static const char *find_kallsyms_symbol(struct module *mod,
4213 unsigned long addr,
4214 unsigned long *size,
4215 unsigned long *offset)
4216{
4217 unsigned int i, best = 0;
4218 unsigned long nextval, bestval;
4219 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4220
4221 /* At worse, next value is at end of module */
4222 if (within_module_init(addr, mod))
4223 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4224 else
4225 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4226
4227 bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4228
4229 /*
4230 * Scan for closest preceding symbol, and next symbol. (ELF
4231 * starts real symbols at 1).
4232 */
4233 for (i = 1; i < kallsyms->num_symtab; i++) {
4234 const Elf_Sym *sym = &kallsyms->symtab[i];
4235 unsigned long thisval = kallsyms_symbol_value(sym);
4236
4237 if (sym->st_shndx == SHN_UNDEF)
4238 continue;
4239
4240 /*
4241 * We ignore unnamed symbols: they're uninformative
4242 * and inserted at a whim.
4243 */
4244 if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4245 || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4246 continue;
4247
4248 if (thisval <= addr && thisval > bestval) {
4249 best = i;
4250 bestval = thisval;
4251 }
4252 if (thisval > addr && thisval < nextval)
4253 nextval = thisval;
4254 }
4255
4256 if (!best)
4257 return NULL;
4258
4259 if (size)
4260 *size = nextval - bestval;
4261 if (offset)
4262 *offset = addr - bestval;
4263
4264 return kallsyms_symbol_name(kallsyms, best);
4265}
4266
4267void * __weak dereference_module_function_descriptor(struct module *mod,
4268 void *ptr)
4269{
4270 return ptr;
4271}
4272
4273/*
4274 * For kallsyms to ask for address resolution. NULL means not found. Careful
4275 * not to lock to avoid deadlock on oopses, simply disable preemption.
4276 */
4277const char *module_address_lookup(unsigned long addr,
4278 unsigned long *size,
4279 unsigned long *offset,
4280 char **modname,
4281 const unsigned char **modbuildid,
4282 char *namebuf)
4283{
4284 const char *ret = NULL;
4285 struct module *mod;
4286
4287 preempt_disable();
4288 mod = __module_address(addr);
4289 if (mod) {
4290 if (modname)
4291 *modname = mod->name;
4292 if (modbuildid) {
4293#if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
4294 *modbuildid = mod->build_id;
4295#else
4296 *modbuildid = NULL;
4297#endif
4298 }
4299
4300 ret = find_kallsyms_symbol(mod, addr, size, offset);
4301 }
4302 /* Make a copy in here where it's safe */
4303 if (ret) {
4304 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4305 ret = namebuf;
4306 }
4307 preempt_enable();
4308
4309 return ret;
4310}
4311
4312int lookup_module_symbol_name(unsigned long addr, char *symname)
4313{
4314 struct module *mod;
4315
4316 preempt_disable();
4317 list_for_each_entry_rcu(mod, &modules, list) {
4318 if (mod->state == MODULE_STATE_UNFORMED)
4319 continue;
4320 if (within_module(addr, mod)) {
4321 const char *sym;
4322
4323 sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4324 if (!sym)
4325 goto out;
4326
4327 strlcpy(symname, sym, KSYM_NAME_LEN);
4328 preempt_enable();
4329 return 0;
4330 }
4331 }
4332out:
4333 preempt_enable();
4334 return -ERANGE;
4335}
4336
4337int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4338 unsigned long *offset, char *modname, char *name)
4339{
4340 struct module *mod;
4341
4342 preempt_disable();
4343 list_for_each_entry_rcu(mod, &modules, list) {
4344 if (mod->state == MODULE_STATE_UNFORMED)
4345 continue;
4346 if (within_module(addr, mod)) {
4347 const char *sym;
4348
4349 sym = find_kallsyms_symbol(mod, addr, size, offset);
4350 if (!sym)
4351 goto out;
4352 if (modname)
4353 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4354 if (name)
4355 strlcpy(name, sym, KSYM_NAME_LEN);
4356 preempt_enable();
4357 return 0;
4358 }
4359 }
4360out:
4361 preempt_enable();
4362 return -ERANGE;
4363}
4364
4365int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4366 char *name, char *module_name, int *exported)
4367{
4368 struct module *mod;
4369
4370 preempt_disable();
4371 list_for_each_entry_rcu(mod, &modules, list) {
4372 struct mod_kallsyms *kallsyms;
4373
4374 if (mod->state == MODULE_STATE_UNFORMED)
4375 continue;
4376 kallsyms = rcu_dereference_sched(mod->kallsyms);
4377 if (symnum < kallsyms->num_symtab) {
4378 const Elf_Sym *sym = &kallsyms->symtab[symnum];
4379
4380 *value = kallsyms_symbol_value(sym);
4381 *type = kallsyms->typetab[symnum];
4382 strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4383 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4384 *exported = is_exported(name, *value, mod);
4385 preempt_enable();
4386 return 0;
4387 }
4388 symnum -= kallsyms->num_symtab;
4389 }
4390 preempt_enable();
4391 return -ERANGE;
4392}
4393
4394/* Given a module and name of symbol, find and return the symbol's value */
4395static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4396{
4397 unsigned int i;
4398 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4399
4400 for (i = 0; i < kallsyms->num_symtab; i++) {
4401 const Elf_Sym *sym = &kallsyms->symtab[i];
4402
4403 if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4404 sym->st_shndx != SHN_UNDEF)
4405 return kallsyms_symbol_value(sym);
4406 }
4407 return 0;
4408}
4409
4410/* Look for this name: can be of form module:name. */
4411unsigned long module_kallsyms_lookup_name(const char *name)
4412{
4413 struct module *mod;
4414 char *colon;
4415 unsigned long ret = 0;
4416
4417 /* Don't lock: we're in enough trouble already. */
4418 preempt_disable();
4419 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4420 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4421 ret = find_kallsyms_symbol_value(mod, colon+1);
4422 } else {
4423 list_for_each_entry_rcu(mod, &modules, list) {
4424 if (mod->state == MODULE_STATE_UNFORMED)
4425 continue;
4426 if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4427 break;
4428 }
4429 }
4430 preempt_enable();
4431 return ret;
4432}
4433
4434#ifdef CONFIG_LIVEPATCH
4435int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4436 struct module *, unsigned long),
4437 void *data)
4438{
4439 struct module *mod;
4440 unsigned int i;
4441 int ret = 0;
4442
4443 mutex_lock(&module_mutex);
4444 list_for_each_entry(mod, &modules, list) {
4445 /* We hold module_mutex: no need for rcu_dereference_sched */
4446 struct mod_kallsyms *kallsyms = mod->kallsyms;
4447
4448 if (mod->state == MODULE_STATE_UNFORMED)
4449 continue;
4450 for (i = 0; i < kallsyms->num_symtab; i++) {
4451 const Elf_Sym *sym = &kallsyms->symtab[i];
4452
4453 if (sym->st_shndx == SHN_UNDEF)
4454 continue;
4455
4456 ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4457 mod, kallsyms_symbol_value(sym));
4458 if (ret != 0)
4459 goto out;
4460 }
4461 }
4462out:
4463 mutex_unlock(&module_mutex);
4464 return ret;
4465}
4466#endif /* CONFIG_LIVEPATCH */
4467#endif /* CONFIG_KALLSYMS */
4468
4469static void cfi_init(struct module *mod)
4470{
4471#ifdef CONFIG_CFI_CLANG
4472 initcall_t *init;
4473 exitcall_t *exit;
4474
4475 rcu_read_lock_sched();
4476 mod->cfi_check = (cfi_check_fn)
4477 find_kallsyms_symbol_value(mod, "__cfi_check");
4478 init = (initcall_t *)
4479 find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
4480 exit = (exitcall_t *)
4481 find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
4482 rcu_read_unlock_sched();
4483
4484 /* Fix init/exit functions to point to the CFI jump table */
4485 if (init)
4486 mod->init = *init;
4487#ifdef CONFIG_MODULE_UNLOAD
4488 if (exit)
4489 mod->exit = *exit;
4490#endif
4491
4492 cfi_module_add(mod, module_addr_min);
4493#endif
4494}
4495
4496static void cfi_cleanup(struct module *mod)
4497{
4498#ifdef CONFIG_CFI_CLANG
4499 cfi_module_remove(mod, module_addr_min);
4500#endif
4501}
4502
4503/* Maximum number of characters written by module_flags() */
4504#define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4505
4506/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4507static char *module_flags(struct module *mod, char *buf)
4508{
4509 int bx = 0;
4510
4511 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4512 if (mod->taints ||
4513 mod->state == MODULE_STATE_GOING ||
4514 mod->state == MODULE_STATE_COMING) {
4515 buf[bx++] = '(';
4516 bx += module_flags_taint(mod, buf + bx);
4517 /* Show a - for module-is-being-unloaded */
4518 if (mod->state == MODULE_STATE_GOING)
4519 buf[bx++] = '-';
4520 /* Show a + for module-is-being-loaded */
4521 if (mod->state == MODULE_STATE_COMING)
4522 buf[bx++] = '+';
4523 buf[bx++] = ')';
4524 }
4525 buf[bx] = '\0';
4526
4527 return buf;
4528}
4529
4530#ifdef CONFIG_PROC_FS
4531/* Called by the /proc file system to return a list of modules. */
4532static void *m_start(struct seq_file *m, loff_t *pos)
4533{
4534 mutex_lock(&module_mutex);
4535 return seq_list_start(&modules, *pos);
4536}
4537
4538static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4539{
4540 return seq_list_next(p, &modules, pos);
4541}
4542
4543static void m_stop(struct seq_file *m, void *p)
4544{
4545 mutex_unlock(&module_mutex);
4546}
4547
4548static int m_show(struct seq_file *m, void *p)
4549{
4550 struct module *mod = list_entry(p, struct module, list);
4551 char buf[MODULE_FLAGS_BUF_SIZE];
4552 void *value;
4553
4554 /* We always ignore unformed modules. */
4555 if (mod->state == MODULE_STATE_UNFORMED)
4556 return 0;
4557
4558 seq_printf(m, "%s %u",
4559 mod->name, mod->init_layout.size + mod->core_layout.size);
4560 print_unload_info(m, mod);
4561
4562 /* Informative for users. */
4563 seq_printf(m, " %s",
4564 mod->state == MODULE_STATE_GOING ? "Unloading" :
4565 mod->state == MODULE_STATE_COMING ? "Loading" :
4566 "Live");
4567 /* Used by oprofile and other similar tools. */
4568 value = m->private ? NULL : mod->core_layout.base;
4569 seq_printf(m, " 0x%px", value);
4570
4571 /* Taints info */
4572 if (mod->taints)
4573 seq_printf(m, " %s", module_flags(mod, buf));
4574
4575 seq_puts(m, "\n");
4576 return 0;
4577}
4578
4579/*
4580 * Format: modulename size refcount deps address
4581 *
4582 * Where refcount is a number or -, and deps is a comma-separated list
4583 * of depends or -.
4584 */
4585static const struct seq_operations modules_op = {
4586 .start = m_start,
4587 .next = m_next,
4588 .stop = m_stop,
4589 .show = m_show
4590};
4591
4592/*
4593 * This also sets the "private" pointer to non-NULL if the
4594 * kernel pointers should be hidden (so you can just test
4595 * "m->private" to see if you should keep the values private).
4596 *
4597 * We use the same logic as for /proc/kallsyms.
4598 */
4599static int modules_open(struct inode *inode, struct file *file)
4600{
4601 int err = seq_open(file, &modules_op);
4602
4603 if (!err) {
4604 struct seq_file *m = file->private_data;
4605 m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4606 }
4607
4608 return err;
4609}
4610
4611static const struct proc_ops modules_proc_ops = {
4612 .proc_flags = PROC_ENTRY_PERMANENT,
4613 .proc_open = modules_open,
4614 .proc_read = seq_read,
4615 .proc_lseek = seq_lseek,
4616 .proc_release = seq_release,
4617};
4618
4619static int __init proc_modules_init(void)
4620{
4621 proc_create("modules", 0, NULL, &modules_proc_ops);
4622 return 0;
4623}
4624module_init(proc_modules_init);
4625#endif
4626
4627/* Given an address, look for it in the module exception tables. */
4628const struct exception_table_entry *search_module_extables(unsigned long addr)
4629{
4630 const struct exception_table_entry *e = NULL;
4631 struct module *mod;
4632
4633 preempt_disable();
4634 mod = __module_address(addr);
4635 if (!mod)
4636 goto out;
4637
4638 if (!mod->num_exentries)
4639 goto out;
4640
4641 e = search_extable(mod->extable,
4642 mod->num_exentries,
4643 addr);
4644out:
4645 preempt_enable();
4646
4647 /*
4648 * Now, if we found one, we are running inside it now, hence
4649 * we cannot unload the module, hence no refcnt needed.
4650 */
4651 return e;
4652}
4653
4654/**
4655 * is_module_address() - is this address inside a module?
4656 * @addr: the address to check.
4657 *
4658 * See is_module_text_address() if you simply want to see if the address
4659 * is code (not data).
4660 */
4661bool is_module_address(unsigned long addr)
4662{
4663 bool ret;
4664
4665 preempt_disable();
4666 ret = __module_address(addr) != NULL;
4667 preempt_enable();
4668
4669 return ret;
4670}
4671
4672/**
4673 * __module_address() - get the module which contains an address.
4674 * @addr: the address.
4675 *
4676 * Must be called with preempt disabled or module mutex held so that
4677 * module doesn't get freed during this.
4678 */
4679struct module *__module_address(unsigned long addr)
4680{
4681 struct module *mod;
4682
4683 if (addr < module_addr_min || addr > module_addr_max)
4684 return NULL;
4685
4686 module_assert_mutex_or_preempt();
4687
4688 mod = mod_find(addr);
4689 if (mod) {
4690 BUG_ON(!within_module(addr, mod));
4691 if (mod->state == MODULE_STATE_UNFORMED)
4692 mod = NULL;
4693 }
4694 return mod;
4695}
4696
4697/**
4698 * is_module_text_address() - is this address inside module code?
4699 * @addr: the address to check.
4700 *
4701 * See is_module_address() if you simply want to see if the address is
4702 * anywhere in a module. See kernel_text_address() for testing if an
4703 * address corresponds to kernel or module code.
4704 */
4705bool is_module_text_address(unsigned long addr)
4706{
4707 bool ret;
4708
4709 preempt_disable();
4710 ret = __module_text_address(addr) != NULL;
4711 preempt_enable();
4712
4713 return ret;
4714}
4715
4716/**
4717 * __module_text_address() - get the module whose code contains an address.
4718 * @addr: the address.
4719 *
4720 * Must be called with preempt disabled or module mutex held so that
4721 * module doesn't get freed during this.
4722 */
4723struct module *__module_text_address(unsigned long addr)
4724{
4725 struct module *mod = __module_address(addr);
4726 if (mod) {
4727 /* Make sure it's within the text section. */
4728 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4729 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4730 mod = NULL;
4731 }
4732 return mod;
4733}
4734
4735/* Don't grab lock, we're oopsing. */
4736void print_modules(void)
4737{
4738 struct module *mod;
4739 char buf[MODULE_FLAGS_BUF_SIZE];
4740
4741 printk(KERN_DEFAULT "Modules linked in:");
4742 /* Most callers should already have preempt disabled, but make sure */
4743 preempt_disable();
4744 list_for_each_entry_rcu(mod, &modules, list) {
4745 if (mod->state == MODULE_STATE_UNFORMED)
4746 continue;
4747 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4748 }
4749 preempt_enable();
4750 if (last_unloaded_module[0])
4751 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4752 pr_cont("\n");
4753}
4754
4755#ifdef CONFIG_MODVERSIONS
4756/*
4757 * Generate the signature for all relevant module structures here.
4758 * If these change, we don't want to try to parse the module.
4759 */
4760void module_layout(struct module *mod,
4761 struct modversion_info *ver,
4762 struct kernel_param *kp,
4763 struct kernel_symbol *ks,
4764 struct tracepoint * const *tp)
4765{
4766}
4767EXPORT_SYMBOL(module_layout);
4768#endif
1/*
2 Copyright (C) 2002 Richard Henderson
3 Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the Free Software
17 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18*/
19#include <linux/module.h>
20#include <linux/moduleloader.h>
21#include <linux/ftrace_event.h>
22#include <linux/init.h>
23#include <linux/kallsyms.h>
24#include <linux/fs.h>
25#include <linux/sysfs.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/vmalloc.h>
29#include <linux/elf.h>
30#include <linux/proc_fs.h>
31#include <linux/seq_file.h>
32#include <linux/syscalls.h>
33#include <linux/fcntl.h>
34#include <linux/rcupdate.h>
35#include <linux/capability.h>
36#include <linux/cpu.h>
37#include <linux/moduleparam.h>
38#include <linux/errno.h>
39#include <linux/err.h>
40#include <linux/vermagic.h>
41#include <linux/notifier.h>
42#include <linux/sched.h>
43#include <linux/stop_machine.h>
44#include <linux/device.h>
45#include <linux/string.h>
46#include <linux/mutex.h>
47#include <linux/rculist.h>
48#include <asm/uaccess.h>
49#include <asm/cacheflush.h>
50#include <asm/mmu_context.h>
51#include <linux/license.h>
52#include <asm/sections.h>
53#include <linux/tracepoint.h>
54#include <linux/ftrace.h>
55#include <linux/async.h>
56#include <linux/percpu.h>
57#include <linux/kmemleak.h>
58#include <linux/jump_label.h>
59#include <linux/pfn.h>
60#include <linux/bsearch.h>
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/module.h>
64
65#if 0
66#define DEBUGP printk
67#else
68#define DEBUGP(fmt , a...)
69#endif
70
71#ifndef ARCH_SHF_SMALL
72#define ARCH_SHF_SMALL 0
73#endif
74
75/*
76 * Modules' sections will be aligned on page boundaries
77 * to ensure complete separation of code and data, but
78 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
79 */
80#ifdef CONFIG_DEBUG_SET_MODULE_RONX
81# define debug_align(X) ALIGN(X, PAGE_SIZE)
82#else
83# define debug_align(X) (X)
84#endif
85
86/*
87 * Given BASE and SIZE this macro calculates the number of pages the
88 * memory regions occupies
89 */
90#define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ? \
91 (PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) - \
92 PFN_DOWN((unsigned long)BASE) + 1) \
93 : (0UL))
94
95/* If this is set, the section belongs in the init part of the module */
96#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
97
98/*
99 * Mutex protects:
100 * 1) List of modules (also safely readable with preempt_disable),
101 * 2) module_use links,
102 * 3) module_addr_min/module_addr_max.
103 * (delete uses stop_machine/add uses RCU list operations). */
104DEFINE_MUTEX(module_mutex);
105EXPORT_SYMBOL_GPL(module_mutex);
106static LIST_HEAD(modules);
107#ifdef CONFIG_KGDB_KDB
108struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
109#endif /* CONFIG_KGDB_KDB */
110
111
112/* Block module loading/unloading? */
113int modules_disabled = 0;
114
115/* Waiting for a module to finish initializing? */
116static DECLARE_WAIT_QUEUE_HEAD(module_wq);
117
118static BLOCKING_NOTIFIER_HEAD(module_notify_list);
119
120/* Bounds of module allocation, for speeding __module_address.
121 * Protected by module_mutex. */
122static unsigned long module_addr_min = -1UL, module_addr_max = 0;
123
124int register_module_notifier(struct notifier_block * nb)
125{
126 return blocking_notifier_chain_register(&module_notify_list, nb);
127}
128EXPORT_SYMBOL(register_module_notifier);
129
130int unregister_module_notifier(struct notifier_block * nb)
131{
132 return blocking_notifier_chain_unregister(&module_notify_list, nb);
133}
134EXPORT_SYMBOL(unregister_module_notifier);
135
136struct load_info {
137 Elf_Ehdr *hdr;
138 unsigned long len;
139 Elf_Shdr *sechdrs;
140 char *secstrings, *strtab;
141 unsigned long *strmap;
142 unsigned long symoffs, stroffs;
143 struct _ddebug *debug;
144 unsigned int num_debug;
145 struct {
146 unsigned int sym, str, mod, vers, info, pcpu;
147 } index;
148};
149
150/* We require a truly strong try_module_get(): 0 means failure due to
151 ongoing or failed initialization etc. */
152static inline int strong_try_module_get(struct module *mod)
153{
154 if (mod && mod->state == MODULE_STATE_COMING)
155 return -EBUSY;
156 if (try_module_get(mod))
157 return 0;
158 else
159 return -ENOENT;
160}
161
162static inline void add_taint_module(struct module *mod, unsigned flag)
163{
164 add_taint(flag);
165 mod->taints |= (1U << flag);
166}
167
168/*
169 * A thread that wants to hold a reference to a module only while it
170 * is running can call this to safely exit. nfsd and lockd use this.
171 */
172void __module_put_and_exit(struct module *mod, long code)
173{
174 module_put(mod);
175 do_exit(code);
176}
177EXPORT_SYMBOL(__module_put_and_exit);
178
179/* Find a module section: 0 means not found. */
180static unsigned int find_sec(const struct load_info *info, const char *name)
181{
182 unsigned int i;
183
184 for (i = 1; i < info->hdr->e_shnum; i++) {
185 Elf_Shdr *shdr = &info->sechdrs[i];
186 /* Alloc bit cleared means "ignore it." */
187 if ((shdr->sh_flags & SHF_ALLOC)
188 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
189 return i;
190 }
191 return 0;
192}
193
194/* Find a module section, or NULL. */
195static void *section_addr(const struct load_info *info, const char *name)
196{
197 /* Section 0 has sh_addr 0. */
198 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
199}
200
201/* Find a module section, or NULL. Fill in number of "objects" in section. */
202static void *section_objs(const struct load_info *info,
203 const char *name,
204 size_t object_size,
205 unsigned int *num)
206{
207 unsigned int sec = find_sec(info, name);
208
209 /* Section 0 has sh_addr 0 and sh_size 0. */
210 *num = info->sechdrs[sec].sh_size / object_size;
211 return (void *)info->sechdrs[sec].sh_addr;
212}
213
214/* Provided by the linker */
215extern const struct kernel_symbol __start___ksymtab[];
216extern const struct kernel_symbol __stop___ksymtab[];
217extern const struct kernel_symbol __start___ksymtab_gpl[];
218extern const struct kernel_symbol __stop___ksymtab_gpl[];
219extern const struct kernel_symbol __start___ksymtab_gpl_future[];
220extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
221extern const unsigned long __start___kcrctab[];
222extern const unsigned long __start___kcrctab_gpl[];
223extern const unsigned long __start___kcrctab_gpl_future[];
224#ifdef CONFIG_UNUSED_SYMBOLS
225extern const struct kernel_symbol __start___ksymtab_unused[];
226extern const struct kernel_symbol __stop___ksymtab_unused[];
227extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
228extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
229extern const unsigned long __start___kcrctab_unused[];
230extern const unsigned long __start___kcrctab_unused_gpl[];
231#endif
232
233#ifndef CONFIG_MODVERSIONS
234#define symversion(base, idx) NULL
235#else
236#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
237#endif
238
239static bool each_symbol_in_section(const struct symsearch *arr,
240 unsigned int arrsize,
241 struct module *owner,
242 bool (*fn)(const struct symsearch *syms,
243 struct module *owner,
244 void *data),
245 void *data)
246{
247 unsigned int j;
248
249 for (j = 0; j < arrsize; j++) {
250 if (fn(&arr[j], owner, data))
251 return true;
252 }
253
254 return false;
255}
256
257/* Returns true as soon as fn returns true, otherwise false. */
258bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
259 struct module *owner,
260 void *data),
261 void *data)
262{
263 struct module *mod;
264 static const struct symsearch arr[] = {
265 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
266 NOT_GPL_ONLY, false },
267 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
268 __start___kcrctab_gpl,
269 GPL_ONLY, false },
270 { __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
271 __start___kcrctab_gpl_future,
272 WILL_BE_GPL_ONLY, false },
273#ifdef CONFIG_UNUSED_SYMBOLS
274 { __start___ksymtab_unused, __stop___ksymtab_unused,
275 __start___kcrctab_unused,
276 NOT_GPL_ONLY, true },
277 { __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
278 __start___kcrctab_unused_gpl,
279 GPL_ONLY, true },
280#endif
281 };
282
283 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
284 return true;
285
286 list_for_each_entry_rcu(mod, &modules, list) {
287 struct symsearch arr[] = {
288 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
289 NOT_GPL_ONLY, false },
290 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
291 mod->gpl_crcs,
292 GPL_ONLY, false },
293 { mod->gpl_future_syms,
294 mod->gpl_future_syms + mod->num_gpl_future_syms,
295 mod->gpl_future_crcs,
296 WILL_BE_GPL_ONLY, false },
297#ifdef CONFIG_UNUSED_SYMBOLS
298 { mod->unused_syms,
299 mod->unused_syms + mod->num_unused_syms,
300 mod->unused_crcs,
301 NOT_GPL_ONLY, true },
302 { mod->unused_gpl_syms,
303 mod->unused_gpl_syms + mod->num_unused_gpl_syms,
304 mod->unused_gpl_crcs,
305 GPL_ONLY, true },
306#endif
307 };
308
309 if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
310 return true;
311 }
312 return false;
313}
314EXPORT_SYMBOL_GPL(each_symbol_section);
315
316struct find_symbol_arg {
317 /* Input */
318 const char *name;
319 bool gplok;
320 bool warn;
321
322 /* Output */
323 struct module *owner;
324 const unsigned long *crc;
325 const struct kernel_symbol *sym;
326};
327
328static bool check_symbol(const struct symsearch *syms,
329 struct module *owner,
330 unsigned int symnum, void *data)
331{
332 struct find_symbol_arg *fsa = data;
333
334 if (!fsa->gplok) {
335 if (syms->licence == GPL_ONLY)
336 return false;
337 if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
338 printk(KERN_WARNING "Symbol %s is being used "
339 "by a non-GPL module, which will not "
340 "be allowed in the future\n", fsa->name);
341 printk(KERN_WARNING "Please see the file "
342 "Documentation/feature-removal-schedule.txt "
343 "in the kernel source tree for more details.\n");
344 }
345 }
346
347#ifdef CONFIG_UNUSED_SYMBOLS
348 if (syms->unused && fsa->warn) {
349 printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
350 "however this module is using it.\n", fsa->name);
351 printk(KERN_WARNING
352 "This symbol will go away in the future.\n");
353 printk(KERN_WARNING
354 "Please evalute if this is the right api to use and if "
355 "it really is, submit a report the linux kernel "
356 "mailinglist together with submitting your code for "
357 "inclusion.\n");
358 }
359#endif
360
361 fsa->owner = owner;
362 fsa->crc = symversion(syms->crcs, symnum);
363 fsa->sym = &syms->start[symnum];
364 return true;
365}
366
367static int cmp_name(const void *va, const void *vb)
368{
369 const char *a;
370 const struct kernel_symbol *b;
371 a = va; b = vb;
372 return strcmp(a, b->name);
373}
374
375static bool find_symbol_in_section(const struct symsearch *syms,
376 struct module *owner,
377 void *data)
378{
379 struct find_symbol_arg *fsa = data;
380 struct kernel_symbol *sym;
381
382 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
383 sizeof(struct kernel_symbol), cmp_name);
384
385 if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
386 return true;
387
388 return false;
389}
390
391/* Find a symbol and return it, along with, (optional) crc and
392 * (optional) module which owns it. Needs preempt disabled or module_mutex. */
393const struct kernel_symbol *find_symbol(const char *name,
394 struct module **owner,
395 const unsigned long **crc,
396 bool gplok,
397 bool warn)
398{
399 struct find_symbol_arg fsa;
400
401 fsa.name = name;
402 fsa.gplok = gplok;
403 fsa.warn = warn;
404
405 if (each_symbol_section(find_symbol_in_section, &fsa)) {
406 if (owner)
407 *owner = fsa.owner;
408 if (crc)
409 *crc = fsa.crc;
410 return fsa.sym;
411 }
412
413 DEBUGP("Failed to find symbol %s\n", name);
414 return NULL;
415}
416EXPORT_SYMBOL_GPL(find_symbol);
417
418/* Search for module by name: must hold module_mutex. */
419struct module *find_module(const char *name)
420{
421 struct module *mod;
422
423 list_for_each_entry(mod, &modules, list) {
424 if (strcmp(mod->name, name) == 0)
425 return mod;
426 }
427 return NULL;
428}
429EXPORT_SYMBOL_GPL(find_module);
430
431#ifdef CONFIG_SMP
432
433static inline void __percpu *mod_percpu(struct module *mod)
434{
435 return mod->percpu;
436}
437
438static int percpu_modalloc(struct module *mod,
439 unsigned long size, unsigned long align)
440{
441 if (align > PAGE_SIZE) {
442 printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
443 mod->name, align, PAGE_SIZE);
444 align = PAGE_SIZE;
445 }
446
447 mod->percpu = __alloc_reserved_percpu(size, align);
448 if (!mod->percpu) {
449 printk(KERN_WARNING
450 "%s: Could not allocate %lu bytes percpu data\n",
451 mod->name, size);
452 return -ENOMEM;
453 }
454 mod->percpu_size = size;
455 return 0;
456}
457
458static void percpu_modfree(struct module *mod)
459{
460 free_percpu(mod->percpu);
461}
462
463static unsigned int find_pcpusec(struct load_info *info)
464{
465 return find_sec(info, ".data..percpu");
466}
467
468static void percpu_modcopy(struct module *mod,
469 const void *from, unsigned long size)
470{
471 int cpu;
472
473 for_each_possible_cpu(cpu)
474 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
475}
476
477/**
478 * is_module_percpu_address - test whether address is from module static percpu
479 * @addr: address to test
480 *
481 * Test whether @addr belongs to module static percpu area.
482 *
483 * RETURNS:
484 * %true if @addr is from module static percpu area
485 */
486bool is_module_percpu_address(unsigned long addr)
487{
488 struct module *mod;
489 unsigned int cpu;
490
491 preempt_disable();
492
493 list_for_each_entry_rcu(mod, &modules, list) {
494 if (!mod->percpu_size)
495 continue;
496 for_each_possible_cpu(cpu) {
497 void *start = per_cpu_ptr(mod->percpu, cpu);
498
499 if ((void *)addr >= start &&
500 (void *)addr < start + mod->percpu_size) {
501 preempt_enable();
502 return true;
503 }
504 }
505 }
506
507 preempt_enable();
508 return false;
509}
510
511#else /* ... !CONFIG_SMP */
512
513static inline void __percpu *mod_percpu(struct module *mod)
514{
515 return NULL;
516}
517static inline int percpu_modalloc(struct module *mod,
518 unsigned long size, unsigned long align)
519{
520 return -ENOMEM;
521}
522static inline void percpu_modfree(struct module *mod)
523{
524}
525static unsigned int find_pcpusec(struct load_info *info)
526{
527 return 0;
528}
529static inline void percpu_modcopy(struct module *mod,
530 const void *from, unsigned long size)
531{
532 /* pcpusec should be 0, and size of that section should be 0. */
533 BUG_ON(size != 0);
534}
535bool is_module_percpu_address(unsigned long addr)
536{
537 return false;
538}
539
540#endif /* CONFIG_SMP */
541
542#define MODINFO_ATTR(field) \
543static void setup_modinfo_##field(struct module *mod, const char *s) \
544{ \
545 mod->field = kstrdup(s, GFP_KERNEL); \
546} \
547static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
548 struct module_kobject *mk, char *buffer) \
549{ \
550 return sprintf(buffer, "%s\n", mk->mod->field); \
551} \
552static int modinfo_##field##_exists(struct module *mod) \
553{ \
554 return mod->field != NULL; \
555} \
556static void free_modinfo_##field(struct module *mod) \
557{ \
558 kfree(mod->field); \
559 mod->field = NULL; \
560} \
561static struct module_attribute modinfo_##field = { \
562 .attr = { .name = __stringify(field), .mode = 0444 }, \
563 .show = show_modinfo_##field, \
564 .setup = setup_modinfo_##field, \
565 .test = modinfo_##field##_exists, \
566 .free = free_modinfo_##field, \
567};
568
569MODINFO_ATTR(version);
570MODINFO_ATTR(srcversion);
571
572static char last_unloaded_module[MODULE_NAME_LEN+1];
573
574#ifdef CONFIG_MODULE_UNLOAD
575
576EXPORT_TRACEPOINT_SYMBOL(module_get);
577
578/* Init the unload section of the module. */
579static int module_unload_init(struct module *mod)
580{
581 mod->refptr = alloc_percpu(struct module_ref);
582 if (!mod->refptr)
583 return -ENOMEM;
584
585 INIT_LIST_HEAD(&mod->source_list);
586 INIT_LIST_HEAD(&mod->target_list);
587
588 /* Hold reference count during initialization. */
589 __this_cpu_write(mod->refptr->incs, 1);
590 /* Backwards compatibility macros put refcount during init. */
591 mod->waiter = current;
592
593 return 0;
594}
595
596/* Does a already use b? */
597static int already_uses(struct module *a, struct module *b)
598{
599 struct module_use *use;
600
601 list_for_each_entry(use, &b->source_list, source_list) {
602 if (use->source == a) {
603 DEBUGP("%s uses %s!\n", a->name, b->name);
604 return 1;
605 }
606 }
607 DEBUGP("%s does not use %s!\n", a->name, b->name);
608 return 0;
609}
610
611/*
612 * Module a uses b
613 * - we add 'a' as a "source", 'b' as a "target" of module use
614 * - the module_use is added to the list of 'b' sources (so
615 * 'b' can walk the list to see who sourced them), and of 'a'
616 * targets (so 'a' can see what modules it targets).
617 */
618static int add_module_usage(struct module *a, struct module *b)
619{
620 struct module_use *use;
621
622 DEBUGP("Allocating new usage for %s.\n", a->name);
623 use = kmalloc(sizeof(*use), GFP_ATOMIC);
624 if (!use) {
625 printk(KERN_WARNING "%s: out of memory loading\n", a->name);
626 return -ENOMEM;
627 }
628
629 use->source = a;
630 use->target = b;
631 list_add(&use->source_list, &b->source_list);
632 list_add(&use->target_list, &a->target_list);
633 return 0;
634}
635
636/* Module a uses b: caller needs module_mutex() */
637int ref_module(struct module *a, struct module *b)
638{
639 int err;
640
641 if (b == NULL || already_uses(a, b))
642 return 0;
643
644 /* If module isn't available, we fail. */
645 err = strong_try_module_get(b);
646 if (err)
647 return err;
648
649 err = add_module_usage(a, b);
650 if (err) {
651 module_put(b);
652 return err;
653 }
654 return 0;
655}
656EXPORT_SYMBOL_GPL(ref_module);
657
658/* Clear the unload stuff of the module. */
659static void module_unload_free(struct module *mod)
660{
661 struct module_use *use, *tmp;
662
663 mutex_lock(&module_mutex);
664 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
665 struct module *i = use->target;
666 DEBUGP("%s unusing %s\n", mod->name, i->name);
667 module_put(i);
668 list_del(&use->source_list);
669 list_del(&use->target_list);
670 kfree(use);
671 }
672 mutex_unlock(&module_mutex);
673
674 free_percpu(mod->refptr);
675}
676
677#ifdef CONFIG_MODULE_FORCE_UNLOAD
678static inline int try_force_unload(unsigned int flags)
679{
680 int ret = (flags & O_TRUNC);
681 if (ret)
682 add_taint(TAINT_FORCED_RMMOD);
683 return ret;
684}
685#else
686static inline int try_force_unload(unsigned int flags)
687{
688 return 0;
689}
690#endif /* CONFIG_MODULE_FORCE_UNLOAD */
691
692struct stopref
693{
694 struct module *mod;
695 int flags;
696 int *forced;
697};
698
699/* Whole machine is stopped with interrupts off when this runs. */
700static int __try_stop_module(void *_sref)
701{
702 struct stopref *sref = _sref;
703
704 /* If it's not unused, quit unless we're forcing. */
705 if (module_refcount(sref->mod) != 0) {
706 if (!(*sref->forced = try_force_unload(sref->flags)))
707 return -EWOULDBLOCK;
708 }
709
710 /* Mark it as dying. */
711 sref->mod->state = MODULE_STATE_GOING;
712 return 0;
713}
714
715static int try_stop_module(struct module *mod, int flags, int *forced)
716{
717 if (flags & O_NONBLOCK) {
718 struct stopref sref = { mod, flags, forced };
719
720 return stop_machine(__try_stop_module, &sref, NULL);
721 } else {
722 /* We don't need to stop the machine for this. */
723 mod->state = MODULE_STATE_GOING;
724 synchronize_sched();
725 return 0;
726 }
727}
728
729unsigned int module_refcount(struct module *mod)
730{
731 unsigned int incs = 0, decs = 0;
732 int cpu;
733
734 for_each_possible_cpu(cpu)
735 decs += per_cpu_ptr(mod->refptr, cpu)->decs;
736 /*
737 * ensure the incs are added up after the decs.
738 * module_put ensures incs are visible before decs with smp_wmb.
739 *
740 * This 2-count scheme avoids the situation where the refcount
741 * for CPU0 is read, then CPU0 increments the module refcount,
742 * then CPU1 drops that refcount, then the refcount for CPU1 is
743 * read. We would record a decrement but not its corresponding
744 * increment so we would see a low count (disaster).
745 *
746 * Rare situation? But module_refcount can be preempted, and we
747 * might be tallying up 4096+ CPUs. So it is not impossible.
748 */
749 smp_rmb();
750 for_each_possible_cpu(cpu)
751 incs += per_cpu_ptr(mod->refptr, cpu)->incs;
752 return incs - decs;
753}
754EXPORT_SYMBOL(module_refcount);
755
756/* This exists whether we can unload or not */
757static void free_module(struct module *mod);
758
759static void wait_for_zero_refcount(struct module *mod)
760{
761 /* Since we might sleep for some time, release the mutex first */
762 mutex_unlock(&module_mutex);
763 for (;;) {
764 DEBUGP("Looking at refcount...\n");
765 set_current_state(TASK_UNINTERRUPTIBLE);
766 if (module_refcount(mod) == 0)
767 break;
768 schedule();
769 }
770 current->state = TASK_RUNNING;
771 mutex_lock(&module_mutex);
772}
773
774SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
775 unsigned int, flags)
776{
777 struct module *mod;
778 char name[MODULE_NAME_LEN];
779 int ret, forced = 0;
780
781 if (!capable(CAP_SYS_MODULE) || modules_disabled)
782 return -EPERM;
783
784 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
785 return -EFAULT;
786 name[MODULE_NAME_LEN-1] = '\0';
787
788 if (mutex_lock_interruptible(&module_mutex) != 0)
789 return -EINTR;
790
791 mod = find_module(name);
792 if (!mod) {
793 ret = -ENOENT;
794 goto out;
795 }
796
797 if (!list_empty(&mod->source_list)) {
798 /* Other modules depend on us: get rid of them first. */
799 ret = -EWOULDBLOCK;
800 goto out;
801 }
802
803 /* Doing init or already dying? */
804 if (mod->state != MODULE_STATE_LIVE) {
805 /* FIXME: if (force), slam module count and wake up
806 waiter --RR */
807 DEBUGP("%s already dying\n", mod->name);
808 ret = -EBUSY;
809 goto out;
810 }
811
812 /* If it has an init func, it must have an exit func to unload */
813 if (mod->init && !mod->exit) {
814 forced = try_force_unload(flags);
815 if (!forced) {
816 /* This module can't be removed */
817 ret = -EBUSY;
818 goto out;
819 }
820 }
821
822 /* Set this up before setting mod->state */
823 mod->waiter = current;
824
825 /* Stop the machine so refcounts can't move and disable module. */
826 ret = try_stop_module(mod, flags, &forced);
827 if (ret != 0)
828 goto out;
829
830 /* Never wait if forced. */
831 if (!forced && module_refcount(mod) != 0)
832 wait_for_zero_refcount(mod);
833
834 mutex_unlock(&module_mutex);
835 /* Final destruction now no one is using it. */
836 if (mod->exit != NULL)
837 mod->exit();
838 blocking_notifier_call_chain(&module_notify_list,
839 MODULE_STATE_GOING, mod);
840 async_synchronize_full();
841
842 /* Store the name of the last unloaded module for diagnostic purposes */
843 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
844
845 free_module(mod);
846 return 0;
847out:
848 mutex_unlock(&module_mutex);
849 return ret;
850}
851
852static inline void print_unload_info(struct seq_file *m, struct module *mod)
853{
854 struct module_use *use;
855 int printed_something = 0;
856
857 seq_printf(m, " %u ", module_refcount(mod));
858
859 /* Always include a trailing , so userspace can differentiate
860 between this and the old multi-field proc format. */
861 list_for_each_entry(use, &mod->source_list, source_list) {
862 printed_something = 1;
863 seq_printf(m, "%s,", use->source->name);
864 }
865
866 if (mod->init != NULL && mod->exit == NULL) {
867 printed_something = 1;
868 seq_printf(m, "[permanent],");
869 }
870
871 if (!printed_something)
872 seq_printf(m, "-");
873}
874
875void __symbol_put(const char *symbol)
876{
877 struct module *owner;
878
879 preempt_disable();
880 if (!find_symbol(symbol, &owner, NULL, true, false))
881 BUG();
882 module_put(owner);
883 preempt_enable();
884}
885EXPORT_SYMBOL(__symbol_put);
886
887/* Note this assumes addr is a function, which it currently always is. */
888void symbol_put_addr(void *addr)
889{
890 struct module *modaddr;
891 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
892
893 if (core_kernel_text(a))
894 return;
895
896 /* module_text_address is safe here: we're supposed to have reference
897 * to module from symbol_get, so it can't go away. */
898 modaddr = __module_text_address(a);
899 BUG_ON(!modaddr);
900 module_put(modaddr);
901}
902EXPORT_SYMBOL_GPL(symbol_put_addr);
903
904static ssize_t show_refcnt(struct module_attribute *mattr,
905 struct module_kobject *mk, char *buffer)
906{
907 return sprintf(buffer, "%u\n", module_refcount(mk->mod));
908}
909
910static struct module_attribute refcnt = {
911 .attr = { .name = "refcnt", .mode = 0444 },
912 .show = show_refcnt,
913};
914
915void module_put(struct module *module)
916{
917 if (module) {
918 preempt_disable();
919 smp_wmb(); /* see comment in module_refcount */
920 __this_cpu_inc(module->refptr->decs);
921
922 trace_module_put(module, _RET_IP_);
923 /* Maybe they're waiting for us to drop reference? */
924 if (unlikely(!module_is_live(module)))
925 wake_up_process(module->waiter);
926 preempt_enable();
927 }
928}
929EXPORT_SYMBOL(module_put);
930
931#else /* !CONFIG_MODULE_UNLOAD */
932static inline void print_unload_info(struct seq_file *m, struct module *mod)
933{
934 /* We don't know the usage count, or what modules are using. */
935 seq_printf(m, " - -");
936}
937
938static inline void module_unload_free(struct module *mod)
939{
940}
941
942int ref_module(struct module *a, struct module *b)
943{
944 return strong_try_module_get(b);
945}
946EXPORT_SYMBOL_GPL(ref_module);
947
948static inline int module_unload_init(struct module *mod)
949{
950 return 0;
951}
952#endif /* CONFIG_MODULE_UNLOAD */
953
954static ssize_t show_initstate(struct module_attribute *mattr,
955 struct module_kobject *mk, char *buffer)
956{
957 const char *state = "unknown";
958
959 switch (mk->mod->state) {
960 case MODULE_STATE_LIVE:
961 state = "live";
962 break;
963 case MODULE_STATE_COMING:
964 state = "coming";
965 break;
966 case MODULE_STATE_GOING:
967 state = "going";
968 break;
969 }
970 return sprintf(buffer, "%s\n", state);
971}
972
973static struct module_attribute initstate = {
974 .attr = { .name = "initstate", .mode = 0444 },
975 .show = show_initstate,
976};
977
978static ssize_t store_uevent(struct module_attribute *mattr,
979 struct module_kobject *mk,
980 const char *buffer, size_t count)
981{
982 enum kobject_action action;
983
984 if (kobject_action_type(buffer, count, &action) == 0)
985 kobject_uevent(&mk->kobj, action);
986 return count;
987}
988
989struct module_attribute module_uevent = {
990 .attr = { .name = "uevent", .mode = 0200 },
991 .store = store_uevent,
992};
993
994static struct module_attribute *modinfo_attrs[] = {
995 &modinfo_version,
996 &modinfo_srcversion,
997 &initstate,
998 &module_uevent,
999#ifdef CONFIG_MODULE_UNLOAD
1000 &refcnt,
1001#endif
1002 NULL,
1003};
1004
1005static const char vermagic[] = VERMAGIC_STRING;
1006
1007static int try_to_force_load(struct module *mod, const char *reason)
1008{
1009#ifdef CONFIG_MODULE_FORCE_LOAD
1010 if (!test_taint(TAINT_FORCED_MODULE))
1011 printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1012 mod->name, reason);
1013 add_taint_module(mod, TAINT_FORCED_MODULE);
1014 return 0;
1015#else
1016 return -ENOEXEC;
1017#endif
1018}
1019
1020#ifdef CONFIG_MODVERSIONS
1021/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1022static unsigned long maybe_relocated(unsigned long crc,
1023 const struct module *crc_owner)
1024{
1025#ifdef ARCH_RELOCATES_KCRCTAB
1026 if (crc_owner == NULL)
1027 return crc - (unsigned long)reloc_start;
1028#endif
1029 return crc;
1030}
1031
1032static int check_version(Elf_Shdr *sechdrs,
1033 unsigned int versindex,
1034 const char *symname,
1035 struct module *mod,
1036 const unsigned long *crc,
1037 const struct module *crc_owner)
1038{
1039 unsigned int i, num_versions;
1040 struct modversion_info *versions;
1041
1042 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1043 if (!crc)
1044 return 1;
1045
1046 /* No versions at all? modprobe --force does this. */
1047 if (versindex == 0)
1048 return try_to_force_load(mod, symname) == 0;
1049
1050 versions = (void *) sechdrs[versindex].sh_addr;
1051 num_versions = sechdrs[versindex].sh_size
1052 / sizeof(struct modversion_info);
1053
1054 for (i = 0; i < num_versions; i++) {
1055 if (strcmp(versions[i].name, symname) != 0)
1056 continue;
1057
1058 if (versions[i].crc == maybe_relocated(*crc, crc_owner))
1059 return 1;
1060 DEBUGP("Found checksum %lX vs module %lX\n",
1061 maybe_relocated(*crc, crc_owner), versions[i].crc);
1062 goto bad_version;
1063 }
1064
1065 printk(KERN_WARNING "%s: no symbol version for %s\n",
1066 mod->name, symname);
1067 return 0;
1068
1069bad_version:
1070 printk("%s: disagrees about version of symbol %s\n",
1071 mod->name, symname);
1072 return 0;
1073}
1074
1075static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1076 unsigned int versindex,
1077 struct module *mod)
1078{
1079 const unsigned long *crc;
1080
1081 /* Since this should be found in kernel (which can't be removed),
1082 * no locking is necessary. */
1083 if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1084 &crc, true, false))
1085 BUG();
1086 return check_version(sechdrs, versindex, "module_layout", mod, crc,
1087 NULL);
1088}
1089
1090/* First part is kernel version, which we ignore if module has crcs. */
1091static inline int same_magic(const char *amagic, const char *bmagic,
1092 bool has_crcs)
1093{
1094 if (has_crcs) {
1095 amagic += strcspn(amagic, " ");
1096 bmagic += strcspn(bmagic, " ");
1097 }
1098 return strcmp(amagic, bmagic) == 0;
1099}
1100#else
1101static inline int check_version(Elf_Shdr *sechdrs,
1102 unsigned int versindex,
1103 const char *symname,
1104 struct module *mod,
1105 const unsigned long *crc,
1106 const struct module *crc_owner)
1107{
1108 return 1;
1109}
1110
1111static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1112 unsigned int versindex,
1113 struct module *mod)
1114{
1115 return 1;
1116}
1117
1118static inline int same_magic(const char *amagic, const char *bmagic,
1119 bool has_crcs)
1120{
1121 return strcmp(amagic, bmagic) == 0;
1122}
1123#endif /* CONFIG_MODVERSIONS */
1124
1125/* Resolve a symbol for this module. I.e. if we find one, record usage. */
1126static const struct kernel_symbol *resolve_symbol(struct module *mod,
1127 const struct load_info *info,
1128 const char *name,
1129 char ownername[])
1130{
1131 struct module *owner;
1132 const struct kernel_symbol *sym;
1133 const unsigned long *crc;
1134 int err;
1135
1136 mutex_lock(&module_mutex);
1137 sym = find_symbol(name, &owner, &crc,
1138 !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1139 if (!sym)
1140 goto unlock;
1141
1142 if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1143 owner)) {
1144 sym = ERR_PTR(-EINVAL);
1145 goto getname;
1146 }
1147
1148 err = ref_module(mod, owner);
1149 if (err) {
1150 sym = ERR_PTR(err);
1151 goto getname;
1152 }
1153
1154getname:
1155 /* We must make copy under the lock if we failed to get ref. */
1156 strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1157unlock:
1158 mutex_unlock(&module_mutex);
1159 return sym;
1160}
1161
1162static const struct kernel_symbol *
1163resolve_symbol_wait(struct module *mod,
1164 const struct load_info *info,
1165 const char *name)
1166{
1167 const struct kernel_symbol *ksym;
1168 char owner[MODULE_NAME_LEN];
1169
1170 if (wait_event_interruptible_timeout(module_wq,
1171 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1172 || PTR_ERR(ksym) != -EBUSY,
1173 30 * HZ) <= 0) {
1174 printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1175 mod->name, owner);
1176 }
1177 return ksym;
1178}
1179
1180/*
1181 * /sys/module/foo/sections stuff
1182 * J. Corbet <corbet@lwn.net>
1183 */
1184#ifdef CONFIG_SYSFS
1185
1186#ifdef CONFIG_KALLSYMS
1187static inline bool sect_empty(const Elf_Shdr *sect)
1188{
1189 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1190}
1191
1192struct module_sect_attr
1193{
1194 struct module_attribute mattr;
1195 char *name;
1196 unsigned long address;
1197};
1198
1199struct module_sect_attrs
1200{
1201 struct attribute_group grp;
1202 unsigned int nsections;
1203 struct module_sect_attr attrs[0];
1204};
1205
1206static ssize_t module_sect_show(struct module_attribute *mattr,
1207 struct module_kobject *mk, char *buf)
1208{
1209 struct module_sect_attr *sattr =
1210 container_of(mattr, struct module_sect_attr, mattr);
1211 return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1212}
1213
1214static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1215{
1216 unsigned int section;
1217
1218 for (section = 0; section < sect_attrs->nsections; section++)
1219 kfree(sect_attrs->attrs[section].name);
1220 kfree(sect_attrs);
1221}
1222
1223static void add_sect_attrs(struct module *mod, const struct load_info *info)
1224{
1225 unsigned int nloaded = 0, i, size[2];
1226 struct module_sect_attrs *sect_attrs;
1227 struct module_sect_attr *sattr;
1228 struct attribute **gattr;
1229
1230 /* Count loaded sections and allocate structures */
1231 for (i = 0; i < info->hdr->e_shnum; i++)
1232 if (!sect_empty(&info->sechdrs[i]))
1233 nloaded++;
1234 size[0] = ALIGN(sizeof(*sect_attrs)
1235 + nloaded * sizeof(sect_attrs->attrs[0]),
1236 sizeof(sect_attrs->grp.attrs[0]));
1237 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1238 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1239 if (sect_attrs == NULL)
1240 return;
1241
1242 /* Setup section attributes. */
1243 sect_attrs->grp.name = "sections";
1244 sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1245
1246 sect_attrs->nsections = 0;
1247 sattr = §_attrs->attrs[0];
1248 gattr = §_attrs->grp.attrs[0];
1249 for (i = 0; i < info->hdr->e_shnum; i++) {
1250 Elf_Shdr *sec = &info->sechdrs[i];
1251 if (sect_empty(sec))
1252 continue;
1253 sattr->address = sec->sh_addr;
1254 sattr->name = kstrdup(info->secstrings + sec->sh_name,
1255 GFP_KERNEL);
1256 if (sattr->name == NULL)
1257 goto out;
1258 sect_attrs->nsections++;
1259 sysfs_attr_init(&sattr->mattr.attr);
1260 sattr->mattr.show = module_sect_show;
1261 sattr->mattr.store = NULL;
1262 sattr->mattr.attr.name = sattr->name;
1263 sattr->mattr.attr.mode = S_IRUGO;
1264 *(gattr++) = &(sattr++)->mattr.attr;
1265 }
1266 *gattr = NULL;
1267
1268 if (sysfs_create_group(&mod->mkobj.kobj, §_attrs->grp))
1269 goto out;
1270
1271 mod->sect_attrs = sect_attrs;
1272 return;
1273 out:
1274 free_sect_attrs(sect_attrs);
1275}
1276
1277static void remove_sect_attrs(struct module *mod)
1278{
1279 if (mod->sect_attrs) {
1280 sysfs_remove_group(&mod->mkobj.kobj,
1281 &mod->sect_attrs->grp);
1282 /* We are positive that no one is using any sect attrs
1283 * at this point. Deallocate immediately. */
1284 free_sect_attrs(mod->sect_attrs);
1285 mod->sect_attrs = NULL;
1286 }
1287}
1288
1289/*
1290 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1291 */
1292
1293struct module_notes_attrs {
1294 struct kobject *dir;
1295 unsigned int notes;
1296 struct bin_attribute attrs[0];
1297};
1298
1299static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1300 struct bin_attribute *bin_attr,
1301 char *buf, loff_t pos, size_t count)
1302{
1303 /*
1304 * The caller checked the pos and count against our size.
1305 */
1306 memcpy(buf, bin_attr->private + pos, count);
1307 return count;
1308}
1309
1310static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1311 unsigned int i)
1312{
1313 if (notes_attrs->dir) {
1314 while (i-- > 0)
1315 sysfs_remove_bin_file(notes_attrs->dir,
1316 ¬es_attrs->attrs[i]);
1317 kobject_put(notes_attrs->dir);
1318 }
1319 kfree(notes_attrs);
1320}
1321
1322static void add_notes_attrs(struct module *mod, const struct load_info *info)
1323{
1324 unsigned int notes, loaded, i;
1325 struct module_notes_attrs *notes_attrs;
1326 struct bin_attribute *nattr;
1327
1328 /* failed to create section attributes, so can't create notes */
1329 if (!mod->sect_attrs)
1330 return;
1331
1332 /* Count notes sections and allocate structures. */
1333 notes = 0;
1334 for (i = 0; i < info->hdr->e_shnum; i++)
1335 if (!sect_empty(&info->sechdrs[i]) &&
1336 (info->sechdrs[i].sh_type == SHT_NOTE))
1337 ++notes;
1338
1339 if (notes == 0)
1340 return;
1341
1342 notes_attrs = kzalloc(sizeof(*notes_attrs)
1343 + notes * sizeof(notes_attrs->attrs[0]),
1344 GFP_KERNEL);
1345 if (notes_attrs == NULL)
1346 return;
1347
1348 notes_attrs->notes = notes;
1349 nattr = ¬es_attrs->attrs[0];
1350 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1351 if (sect_empty(&info->sechdrs[i]))
1352 continue;
1353 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1354 sysfs_bin_attr_init(nattr);
1355 nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1356 nattr->attr.mode = S_IRUGO;
1357 nattr->size = info->sechdrs[i].sh_size;
1358 nattr->private = (void *) info->sechdrs[i].sh_addr;
1359 nattr->read = module_notes_read;
1360 ++nattr;
1361 }
1362 ++loaded;
1363 }
1364
1365 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1366 if (!notes_attrs->dir)
1367 goto out;
1368
1369 for (i = 0; i < notes; ++i)
1370 if (sysfs_create_bin_file(notes_attrs->dir,
1371 ¬es_attrs->attrs[i]))
1372 goto out;
1373
1374 mod->notes_attrs = notes_attrs;
1375 return;
1376
1377 out:
1378 free_notes_attrs(notes_attrs, i);
1379}
1380
1381static void remove_notes_attrs(struct module *mod)
1382{
1383 if (mod->notes_attrs)
1384 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1385}
1386
1387#else
1388
1389static inline void add_sect_attrs(struct module *mod,
1390 const struct load_info *info)
1391{
1392}
1393
1394static inline void remove_sect_attrs(struct module *mod)
1395{
1396}
1397
1398static inline void add_notes_attrs(struct module *mod,
1399 const struct load_info *info)
1400{
1401}
1402
1403static inline void remove_notes_attrs(struct module *mod)
1404{
1405}
1406#endif /* CONFIG_KALLSYMS */
1407
1408static void add_usage_links(struct module *mod)
1409{
1410#ifdef CONFIG_MODULE_UNLOAD
1411 struct module_use *use;
1412 int nowarn;
1413
1414 mutex_lock(&module_mutex);
1415 list_for_each_entry(use, &mod->target_list, target_list) {
1416 nowarn = sysfs_create_link(use->target->holders_dir,
1417 &mod->mkobj.kobj, mod->name);
1418 }
1419 mutex_unlock(&module_mutex);
1420#endif
1421}
1422
1423static void del_usage_links(struct module *mod)
1424{
1425#ifdef CONFIG_MODULE_UNLOAD
1426 struct module_use *use;
1427
1428 mutex_lock(&module_mutex);
1429 list_for_each_entry(use, &mod->target_list, target_list)
1430 sysfs_remove_link(use->target->holders_dir, mod->name);
1431 mutex_unlock(&module_mutex);
1432#endif
1433}
1434
1435static int module_add_modinfo_attrs(struct module *mod)
1436{
1437 struct module_attribute *attr;
1438 struct module_attribute *temp_attr;
1439 int error = 0;
1440 int i;
1441
1442 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1443 (ARRAY_SIZE(modinfo_attrs) + 1)),
1444 GFP_KERNEL);
1445 if (!mod->modinfo_attrs)
1446 return -ENOMEM;
1447
1448 temp_attr = mod->modinfo_attrs;
1449 for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1450 if (!attr->test ||
1451 (attr->test && attr->test(mod))) {
1452 memcpy(temp_attr, attr, sizeof(*temp_attr));
1453 sysfs_attr_init(&temp_attr->attr);
1454 error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
1455 ++temp_attr;
1456 }
1457 }
1458 return error;
1459}
1460
1461static void module_remove_modinfo_attrs(struct module *mod)
1462{
1463 struct module_attribute *attr;
1464 int i;
1465
1466 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1467 /* pick a field to test for end of list */
1468 if (!attr->attr.name)
1469 break;
1470 sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1471 if (attr->free)
1472 attr->free(mod);
1473 }
1474 kfree(mod->modinfo_attrs);
1475}
1476
1477static int mod_sysfs_init(struct module *mod)
1478{
1479 int err;
1480 struct kobject *kobj;
1481
1482 if (!module_sysfs_initialized) {
1483 printk(KERN_ERR "%s: module sysfs not initialized\n",
1484 mod->name);
1485 err = -EINVAL;
1486 goto out;
1487 }
1488
1489 kobj = kset_find_obj(module_kset, mod->name);
1490 if (kobj) {
1491 printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1492 kobject_put(kobj);
1493 err = -EINVAL;
1494 goto out;
1495 }
1496
1497 mod->mkobj.mod = mod;
1498
1499 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1500 mod->mkobj.kobj.kset = module_kset;
1501 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1502 "%s", mod->name);
1503 if (err)
1504 kobject_put(&mod->mkobj.kobj);
1505
1506 /* delay uevent until full sysfs population */
1507out:
1508 return err;
1509}
1510
1511static int mod_sysfs_setup(struct module *mod,
1512 const struct load_info *info,
1513 struct kernel_param *kparam,
1514 unsigned int num_params)
1515{
1516 int err;
1517
1518 err = mod_sysfs_init(mod);
1519 if (err)
1520 goto out;
1521
1522 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1523 if (!mod->holders_dir) {
1524 err = -ENOMEM;
1525 goto out_unreg;
1526 }
1527
1528 err = module_param_sysfs_setup(mod, kparam, num_params);
1529 if (err)
1530 goto out_unreg_holders;
1531
1532 err = module_add_modinfo_attrs(mod);
1533 if (err)
1534 goto out_unreg_param;
1535
1536 add_usage_links(mod);
1537 add_sect_attrs(mod, info);
1538 add_notes_attrs(mod, info);
1539
1540 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1541 return 0;
1542
1543out_unreg_param:
1544 module_param_sysfs_remove(mod);
1545out_unreg_holders:
1546 kobject_put(mod->holders_dir);
1547out_unreg:
1548 kobject_put(&mod->mkobj.kobj);
1549out:
1550 return err;
1551}
1552
1553static void mod_sysfs_fini(struct module *mod)
1554{
1555 remove_notes_attrs(mod);
1556 remove_sect_attrs(mod);
1557 kobject_put(&mod->mkobj.kobj);
1558}
1559
1560#else /* !CONFIG_SYSFS */
1561
1562static int mod_sysfs_setup(struct module *mod,
1563 const struct load_info *info,
1564 struct kernel_param *kparam,
1565 unsigned int num_params)
1566{
1567 return 0;
1568}
1569
1570static void mod_sysfs_fini(struct module *mod)
1571{
1572}
1573
1574static void module_remove_modinfo_attrs(struct module *mod)
1575{
1576}
1577
1578static void del_usage_links(struct module *mod)
1579{
1580}
1581
1582#endif /* CONFIG_SYSFS */
1583
1584static void mod_sysfs_teardown(struct module *mod)
1585{
1586 del_usage_links(mod);
1587 module_remove_modinfo_attrs(mod);
1588 module_param_sysfs_remove(mod);
1589 kobject_put(mod->mkobj.drivers_dir);
1590 kobject_put(mod->holders_dir);
1591 mod_sysfs_fini(mod);
1592}
1593
1594/*
1595 * unlink the module with the whole machine is stopped with interrupts off
1596 * - this defends against kallsyms not taking locks
1597 */
1598static int __unlink_module(void *_mod)
1599{
1600 struct module *mod = _mod;
1601 list_del(&mod->list);
1602 module_bug_cleanup(mod);
1603 return 0;
1604}
1605
1606#ifdef CONFIG_DEBUG_SET_MODULE_RONX
1607/*
1608 * LKM RO/NX protection: protect module's text/ro-data
1609 * from modification and any data from execution.
1610 */
1611void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1612{
1613 unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1614 unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1615
1616 if (end_pfn > begin_pfn)
1617 set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1618}
1619
1620static void set_section_ro_nx(void *base,
1621 unsigned long text_size,
1622 unsigned long ro_size,
1623 unsigned long total_size)
1624{
1625 /* begin and end PFNs of the current subsection */
1626 unsigned long begin_pfn;
1627 unsigned long end_pfn;
1628
1629 /*
1630 * Set RO for module text and RO-data:
1631 * - Always protect first page.
1632 * - Do not protect last partial page.
1633 */
1634 if (ro_size > 0)
1635 set_page_attributes(base, base + ro_size, set_memory_ro);
1636
1637 /*
1638 * Set NX permissions for module data:
1639 * - Do not protect first partial page.
1640 * - Always protect last page.
1641 */
1642 if (total_size > text_size) {
1643 begin_pfn = PFN_UP((unsigned long)base + text_size);
1644 end_pfn = PFN_UP((unsigned long)base + total_size);
1645 if (end_pfn > begin_pfn)
1646 set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1647 }
1648}
1649
1650static void unset_module_core_ro_nx(struct module *mod)
1651{
1652 set_page_attributes(mod->module_core + mod->core_text_size,
1653 mod->module_core + mod->core_size,
1654 set_memory_x);
1655 set_page_attributes(mod->module_core,
1656 mod->module_core + mod->core_ro_size,
1657 set_memory_rw);
1658}
1659
1660static void unset_module_init_ro_nx(struct module *mod)
1661{
1662 set_page_attributes(mod->module_init + mod->init_text_size,
1663 mod->module_init + mod->init_size,
1664 set_memory_x);
1665 set_page_attributes(mod->module_init,
1666 mod->module_init + mod->init_ro_size,
1667 set_memory_rw);
1668}
1669
1670/* Iterate through all modules and set each module's text as RW */
1671void set_all_modules_text_rw(void)
1672{
1673 struct module *mod;
1674
1675 mutex_lock(&module_mutex);
1676 list_for_each_entry_rcu(mod, &modules, list) {
1677 if ((mod->module_core) && (mod->core_text_size)) {
1678 set_page_attributes(mod->module_core,
1679 mod->module_core + mod->core_text_size,
1680 set_memory_rw);
1681 }
1682 if ((mod->module_init) && (mod->init_text_size)) {
1683 set_page_attributes(mod->module_init,
1684 mod->module_init + mod->init_text_size,
1685 set_memory_rw);
1686 }
1687 }
1688 mutex_unlock(&module_mutex);
1689}
1690
1691/* Iterate through all modules and set each module's text as RO */
1692void set_all_modules_text_ro(void)
1693{
1694 struct module *mod;
1695
1696 mutex_lock(&module_mutex);
1697 list_for_each_entry_rcu(mod, &modules, list) {
1698 if ((mod->module_core) && (mod->core_text_size)) {
1699 set_page_attributes(mod->module_core,
1700 mod->module_core + mod->core_text_size,
1701 set_memory_ro);
1702 }
1703 if ((mod->module_init) && (mod->init_text_size)) {
1704 set_page_attributes(mod->module_init,
1705 mod->module_init + mod->init_text_size,
1706 set_memory_ro);
1707 }
1708 }
1709 mutex_unlock(&module_mutex);
1710}
1711#else
1712static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1713static void unset_module_core_ro_nx(struct module *mod) { }
1714static void unset_module_init_ro_nx(struct module *mod) { }
1715#endif
1716
1717void __weak module_free(struct module *mod, void *module_region)
1718{
1719 vfree(module_region);
1720}
1721
1722void __weak module_arch_cleanup(struct module *mod)
1723{
1724}
1725
1726/* Free a module, remove from lists, etc. */
1727static void free_module(struct module *mod)
1728{
1729 trace_module_free(mod);
1730
1731 /* Delete from various lists */
1732 mutex_lock(&module_mutex);
1733 stop_machine(__unlink_module, mod, NULL);
1734 mutex_unlock(&module_mutex);
1735 mod_sysfs_teardown(mod);
1736
1737 /* Remove dynamic debug info */
1738 ddebug_remove_module(mod->name);
1739
1740 /* Arch-specific cleanup. */
1741 module_arch_cleanup(mod);
1742
1743 /* Module unload stuff */
1744 module_unload_free(mod);
1745
1746 /* Free any allocated parameters. */
1747 destroy_params(mod->kp, mod->num_kp);
1748
1749 /* This may be NULL, but that's OK */
1750 unset_module_init_ro_nx(mod);
1751 module_free(mod, mod->module_init);
1752 kfree(mod->args);
1753 percpu_modfree(mod);
1754
1755 /* Free lock-classes: */
1756 lockdep_free_key_range(mod->module_core, mod->core_size);
1757
1758 /* Finally, free the core (containing the module structure) */
1759 unset_module_core_ro_nx(mod);
1760 module_free(mod, mod->module_core);
1761
1762#ifdef CONFIG_MPU
1763 update_protections(current->mm);
1764#endif
1765}
1766
1767void *__symbol_get(const char *symbol)
1768{
1769 struct module *owner;
1770 const struct kernel_symbol *sym;
1771
1772 preempt_disable();
1773 sym = find_symbol(symbol, &owner, NULL, true, true);
1774 if (sym && strong_try_module_get(owner))
1775 sym = NULL;
1776 preempt_enable();
1777
1778 return sym ? (void *)sym->value : NULL;
1779}
1780EXPORT_SYMBOL_GPL(__symbol_get);
1781
1782/*
1783 * Ensure that an exported symbol [global namespace] does not already exist
1784 * in the kernel or in some other module's exported symbol table.
1785 *
1786 * You must hold the module_mutex.
1787 */
1788static int verify_export_symbols(struct module *mod)
1789{
1790 unsigned int i;
1791 struct module *owner;
1792 const struct kernel_symbol *s;
1793 struct {
1794 const struct kernel_symbol *sym;
1795 unsigned int num;
1796 } arr[] = {
1797 { mod->syms, mod->num_syms },
1798 { mod->gpl_syms, mod->num_gpl_syms },
1799 { mod->gpl_future_syms, mod->num_gpl_future_syms },
1800#ifdef CONFIG_UNUSED_SYMBOLS
1801 { mod->unused_syms, mod->num_unused_syms },
1802 { mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1803#endif
1804 };
1805
1806 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1807 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1808 if (find_symbol(s->name, &owner, NULL, true, false)) {
1809 printk(KERN_ERR
1810 "%s: exports duplicate symbol %s"
1811 " (owned by %s)\n",
1812 mod->name, s->name, module_name(owner));
1813 return -ENOEXEC;
1814 }
1815 }
1816 }
1817 return 0;
1818}
1819
1820/* Change all symbols so that st_value encodes the pointer directly. */
1821static int simplify_symbols(struct module *mod, const struct load_info *info)
1822{
1823 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1824 Elf_Sym *sym = (void *)symsec->sh_addr;
1825 unsigned long secbase;
1826 unsigned int i;
1827 int ret = 0;
1828 const struct kernel_symbol *ksym;
1829
1830 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1831 const char *name = info->strtab + sym[i].st_name;
1832
1833 switch (sym[i].st_shndx) {
1834 case SHN_COMMON:
1835 /* We compiled with -fno-common. These are not
1836 supposed to happen. */
1837 DEBUGP("Common symbol: %s\n", name);
1838 printk("%s: please compile with -fno-common\n",
1839 mod->name);
1840 ret = -ENOEXEC;
1841 break;
1842
1843 case SHN_ABS:
1844 /* Don't need to do anything */
1845 DEBUGP("Absolute symbol: 0x%08lx\n",
1846 (long)sym[i].st_value);
1847 break;
1848
1849 case SHN_UNDEF:
1850 ksym = resolve_symbol_wait(mod, info, name);
1851 /* Ok if resolved. */
1852 if (ksym && !IS_ERR(ksym)) {
1853 sym[i].st_value = ksym->value;
1854 break;
1855 }
1856
1857 /* Ok if weak. */
1858 if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1859 break;
1860
1861 printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
1862 mod->name, name, PTR_ERR(ksym));
1863 ret = PTR_ERR(ksym) ?: -ENOENT;
1864 break;
1865
1866 default:
1867 /* Divert to percpu allocation if a percpu var. */
1868 if (sym[i].st_shndx == info->index.pcpu)
1869 secbase = (unsigned long)mod_percpu(mod);
1870 else
1871 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1872 sym[i].st_value += secbase;
1873 break;
1874 }
1875 }
1876
1877 return ret;
1878}
1879
1880int __weak apply_relocate(Elf_Shdr *sechdrs,
1881 const char *strtab,
1882 unsigned int symindex,
1883 unsigned int relsec,
1884 struct module *me)
1885{
1886 pr_err("module %s: REL relocation unsupported\n", me->name);
1887 return -ENOEXEC;
1888}
1889
1890int __weak apply_relocate_add(Elf_Shdr *sechdrs,
1891 const char *strtab,
1892 unsigned int symindex,
1893 unsigned int relsec,
1894 struct module *me)
1895{
1896 pr_err("module %s: RELA relocation unsupported\n", me->name);
1897 return -ENOEXEC;
1898}
1899
1900static int apply_relocations(struct module *mod, const struct load_info *info)
1901{
1902 unsigned int i;
1903 int err = 0;
1904
1905 /* Now do relocations. */
1906 for (i = 1; i < info->hdr->e_shnum; i++) {
1907 unsigned int infosec = info->sechdrs[i].sh_info;
1908
1909 /* Not a valid relocation section? */
1910 if (infosec >= info->hdr->e_shnum)
1911 continue;
1912
1913 /* Don't bother with non-allocated sections */
1914 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1915 continue;
1916
1917 if (info->sechdrs[i].sh_type == SHT_REL)
1918 err = apply_relocate(info->sechdrs, info->strtab,
1919 info->index.sym, i, mod);
1920 else if (info->sechdrs[i].sh_type == SHT_RELA)
1921 err = apply_relocate_add(info->sechdrs, info->strtab,
1922 info->index.sym, i, mod);
1923 if (err < 0)
1924 break;
1925 }
1926 return err;
1927}
1928
1929/* Additional bytes needed by arch in front of individual sections */
1930unsigned int __weak arch_mod_section_prepend(struct module *mod,
1931 unsigned int section)
1932{
1933 /* default implementation just returns zero */
1934 return 0;
1935}
1936
1937/* Update size with this section: return offset. */
1938static long get_offset(struct module *mod, unsigned int *size,
1939 Elf_Shdr *sechdr, unsigned int section)
1940{
1941 long ret;
1942
1943 *size += arch_mod_section_prepend(mod, section);
1944 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
1945 *size = ret + sechdr->sh_size;
1946 return ret;
1947}
1948
1949/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1950 might -- code, read-only data, read-write data, small data. Tally
1951 sizes, and place the offsets into sh_entsize fields: high bit means it
1952 belongs in init. */
1953static void layout_sections(struct module *mod, struct load_info *info)
1954{
1955 static unsigned long const masks[][2] = {
1956 /* NOTE: all executable code must be the first section
1957 * in this array; otherwise modify the text_size
1958 * finder in the two loops below */
1959 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1960 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1961 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1962 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1963 };
1964 unsigned int m, i;
1965
1966 for (i = 0; i < info->hdr->e_shnum; i++)
1967 info->sechdrs[i].sh_entsize = ~0UL;
1968
1969 DEBUGP("Core section allocation order:\n");
1970 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1971 for (i = 0; i < info->hdr->e_shnum; ++i) {
1972 Elf_Shdr *s = &info->sechdrs[i];
1973 const char *sname = info->secstrings + s->sh_name;
1974
1975 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1976 || (s->sh_flags & masks[m][1])
1977 || s->sh_entsize != ~0UL
1978 || strstarts(sname, ".init"))
1979 continue;
1980 s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
1981 DEBUGP("\t%s\n", name);
1982 }
1983 switch (m) {
1984 case 0: /* executable */
1985 mod->core_size = debug_align(mod->core_size);
1986 mod->core_text_size = mod->core_size;
1987 break;
1988 case 1: /* RO: text and ro-data */
1989 mod->core_size = debug_align(mod->core_size);
1990 mod->core_ro_size = mod->core_size;
1991 break;
1992 case 3: /* whole core */
1993 mod->core_size = debug_align(mod->core_size);
1994 break;
1995 }
1996 }
1997
1998 DEBUGP("Init section allocation order:\n");
1999 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2000 for (i = 0; i < info->hdr->e_shnum; ++i) {
2001 Elf_Shdr *s = &info->sechdrs[i];
2002 const char *sname = info->secstrings + s->sh_name;
2003
2004 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2005 || (s->sh_flags & masks[m][1])
2006 || s->sh_entsize != ~0UL
2007 || !strstarts(sname, ".init"))
2008 continue;
2009 s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2010 | INIT_OFFSET_MASK);
2011 DEBUGP("\t%s\n", sname);
2012 }
2013 switch (m) {
2014 case 0: /* executable */
2015 mod->init_size = debug_align(mod->init_size);
2016 mod->init_text_size = mod->init_size;
2017 break;
2018 case 1: /* RO: text and ro-data */
2019 mod->init_size = debug_align(mod->init_size);
2020 mod->init_ro_size = mod->init_size;
2021 break;
2022 case 3: /* whole init */
2023 mod->init_size = debug_align(mod->init_size);
2024 break;
2025 }
2026 }
2027}
2028
2029static void set_license(struct module *mod, const char *license)
2030{
2031 if (!license)
2032 license = "unspecified";
2033
2034 if (!license_is_gpl_compatible(license)) {
2035 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2036 printk(KERN_WARNING "%s: module license '%s' taints "
2037 "kernel.\n", mod->name, license);
2038 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2039 }
2040}
2041
2042/* Parse tag=value strings from .modinfo section */
2043static char *next_string(char *string, unsigned long *secsize)
2044{
2045 /* Skip non-zero chars */
2046 while (string[0]) {
2047 string++;
2048 if ((*secsize)-- <= 1)
2049 return NULL;
2050 }
2051
2052 /* Skip any zero padding. */
2053 while (!string[0]) {
2054 string++;
2055 if ((*secsize)-- <= 1)
2056 return NULL;
2057 }
2058 return string;
2059}
2060
2061static char *get_modinfo(struct load_info *info, const char *tag)
2062{
2063 char *p;
2064 unsigned int taglen = strlen(tag);
2065 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2066 unsigned long size = infosec->sh_size;
2067
2068 for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2069 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2070 return p + taglen + 1;
2071 }
2072 return NULL;
2073}
2074
2075static void setup_modinfo(struct module *mod, struct load_info *info)
2076{
2077 struct module_attribute *attr;
2078 int i;
2079
2080 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2081 if (attr->setup)
2082 attr->setup(mod, get_modinfo(info, attr->attr.name));
2083 }
2084}
2085
2086static void free_modinfo(struct module *mod)
2087{
2088 struct module_attribute *attr;
2089 int i;
2090
2091 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2092 if (attr->free)
2093 attr->free(mod);
2094 }
2095}
2096
2097#ifdef CONFIG_KALLSYMS
2098
2099/* lookup symbol in given range of kernel_symbols */
2100static const struct kernel_symbol *lookup_symbol(const char *name,
2101 const struct kernel_symbol *start,
2102 const struct kernel_symbol *stop)
2103{
2104 return bsearch(name, start, stop - start,
2105 sizeof(struct kernel_symbol), cmp_name);
2106}
2107
2108static int is_exported(const char *name, unsigned long value,
2109 const struct module *mod)
2110{
2111 const struct kernel_symbol *ks;
2112 if (!mod)
2113 ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2114 else
2115 ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2116 return ks != NULL && ks->value == value;
2117}
2118
2119/* As per nm */
2120static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2121{
2122 const Elf_Shdr *sechdrs = info->sechdrs;
2123
2124 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2125 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2126 return 'v';
2127 else
2128 return 'w';
2129 }
2130 if (sym->st_shndx == SHN_UNDEF)
2131 return 'U';
2132 if (sym->st_shndx == SHN_ABS)
2133 return 'a';
2134 if (sym->st_shndx >= SHN_LORESERVE)
2135 return '?';
2136 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2137 return 't';
2138 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2139 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2140 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2141 return 'r';
2142 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2143 return 'g';
2144 else
2145 return 'd';
2146 }
2147 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2148 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2149 return 's';
2150 else
2151 return 'b';
2152 }
2153 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2154 ".debug")) {
2155 return 'n';
2156 }
2157 return '?';
2158}
2159
2160static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2161 unsigned int shnum)
2162{
2163 const Elf_Shdr *sec;
2164
2165 if (src->st_shndx == SHN_UNDEF
2166 || src->st_shndx >= shnum
2167 || !src->st_name)
2168 return false;
2169
2170 sec = sechdrs + src->st_shndx;
2171 if (!(sec->sh_flags & SHF_ALLOC)
2172#ifndef CONFIG_KALLSYMS_ALL
2173 || !(sec->sh_flags & SHF_EXECINSTR)
2174#endif
2175 || (sec->sh_entsize & INIT_OFFSET_MASK))
2176 return false;
2177
2178 return true;
2179}
2180
2181static void layout_symtab(struct module *mod, struct load_info *info)
2182{
2183 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2184 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2185 const Elf_Sym *src;
2186 unsigned int i, nsrc, ndst;
2187
2188 /* Put symbol section at end of init part of module. */
2189 symsect->sh_flags |= SHF_ALLOC;
2190 symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2191 info->index.sym) | INIT_OFFSET_MASK;
2192 DEBUGP("\t%s\n", info->secstrings + symsect->sh_name);
2193
2194 src = (void *)info->hdr + symsect->sh_offset;
2195 nsrc = symsect->sh_size / sizeof(*src);
2196 for (ndst = i = 1; i < nsrc; ++i, ++src)
2197 if (is_core_symbol(src, info->sechdrs, info->hdr->e_shnum)) {
2198 unsigned int j = src->st_name;
2199
2200 while (!__test_and_set_bit(j, info->strmap)
2201 && info->strtab[j])
2202 ++j;
2203 ++ndst;
2204 }
2205
2206 /* Append room for core symbols at end of core part. */
2207 info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2208 mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2209
2210 /* Put string table section at end of init part of module. */
2211 strsect->sh_flags |= SHF_ALLOC;
2212 strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2213 info->index.str) | INIT_OFFSET_MASK;
2214 DEBUGP("\t%s\n", info->secstrings + strsect->sh_name);
2215
2216 /* Append room for core symbols' strings at end of core part. */
2217 info->stroffs = mod->core_size;
2218 __set_bit(0, info->strmap);
2219 mod->core_size += bitmap_weight(info->strmap, strsect->sh_size);
2220}
2221
2222static void add_kallsyms(struct module *mod, const struct load_info *info)
2223{
2224 unsigned int i, ndst;
2225 const Elf_Sym *src;
2226 Elf_Sym *dst;
2227 char *s;
2228 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2229
2230 mod->symtab = (void *)symsec->sh_addr;
2231 mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2232 /* Make sure we get permanent strtab: don't use info->strtab. */
2233 mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2234
2235 /* Set types up while we still have access to sections. */
2236 for (i = 0; i < mod->num_symtab; i++)
2237 mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2238
2239 mod->core_symtab = dst = mod->module_core + info->symoffs;
2240 src = mod->symtab;
2241 *dst = *src;
2242 for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
2243 if (!is_core_symbol(src, info->sechdrs, info->hdr->e_shnum))
2244 continue;
2245 dst[ndst] = *src;
2246 dst[ndst].st_name = bitmap_weight(info->strmap,
2247 dst[ndst].st_name);
2248 ++ndst;
2249 }
2250 mod->core_num_syms = ndst;
2251
2252 mod->core_strtab = s = mod->module_core + info->stroffs;
2253 for (*s = 0, i = 1; i < info->sechdrs[info->index.str].sh_size; ++i)
2254 if (test_bit(i, info->strmap))
2255 *++s = mod->strtab[i];
2256}
2257#else
2258static inline void layout_symtab(struct module *mod, struct load_info *info)
2259{
2260}
2261
2262static void add_kallsyms(struct module *mod, const struct load_info *info)
2263{
2264}
2265#endif /* CONFIG_KALLSYMS */
2266
2267static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2268{
2269 if (!debug)
2270 return;
2271#ifdef CONFIG_DYNAMIC_DEBUG
2272 if (ddebug_add_module(debug, num, debug->modname))
2273 printk(KERN_ERR "dynamic debug error adding module: %s\n",
2274 debug->modname);
2275#endif
2276}
2277
2278static void dynamic_debug_remove(struct _ddebug *debug)
2279{
2280 if (debug)
2281 ddebug_remove_module(debug->modname);
2282}
2283
2284void * __weak module_alloc(unsigned long size)
2285{
2286 return size == 0 ? NULL : vmalloc_exec(size);
2287}
2288
2289static void *module_alloc_update_bounds(unsigned long size)
2290{
2291 void *ret = module_alloc(size);
2292
2293 if (ret) {
2294 mutex_lock(&module_mutex);
2295 /* Update module bounds. */
2296 if ((unsigned long)ret < module_addr_min)
2297 module_addr_min = (unsigned long)ret;
2298 if ((unsigned long)ret + size > module_addr_max)
2299 module_addr_max = (unsigned long)ret + size;
2300 mutex_unlock(&module_mutex);
2301 }
2302 return ret;
2303}
2304
2305#ifdef CONFIG_DEBUG_KMEMLEAK
2306static void kmemleak_load_module(const struct module *mod,
2307 const struct load_info *info)
2308{
2309 unsigned int i;
2310
2311 /* only scan the sections containing data */
2312 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2313
2314 for (i = 1; i < info->hdr->e_shnum; i++) {
2315 const char *name = info->secstrings + info->sechdrs[i].sh_name;
2316 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC))
2317 continue;
2318 if (!strstarts(name, ".data") && !strstarts(name, ".bss"))
2319 continue;
2320
2321 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2322 info->sechdrs[i].sh_size, GFP_KERNEL);
2323 }
2324}
2325#else
2326static inline void kmemleak_load_module(const struct module *mod,
2327 const struct load_info *info)
2328{
2329}
2330#endif
2331
2332/* Sets info->hdr and info->len. */
2333static int copy_and_check(struct load_info *info,
2334 const void __user *umod, unsigned long len,
2335 const char __user *uargs)
2336{
2337 int err;
2338 Elf_Ehdr *hdr;
2339
2340 if (len < sizeof(*hdr))
2341 return -ENOEXEC;
2342
2343 /* Suck in entire file: we'll want most of it. */
2344 /* vmalloc barfs on "unusual" numbers. Check here */
2345 if (len > 64 * 1024 * 1024 || (hdr = vmalloc(len)) == NULL)
2346 return -ENOMEM;
2347
2348 if (copy_from_user(hdr, umod, len) != 0) {
2349 err = -EFAULT;
2350 goto free_hdr;
2351 }
2352
2353 /* Sanity checks against insmoding binaries or wrong arch,
2354 weird elf version */
2355 if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2356 || hdr->e_type != ET_REL
2357 || !elf_check_arch(hdr)
2358 || hdr->e_shentsize != sizeof(Elf_Shdr)) {
2359 err = -ENOEXEC;
2360 goto free_hdr;
2361 }
2362
2363 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
2364 err = -ENOEXEC;
2365 goto free_hdr;
2366 }
2367
2368 info->hdr = hdr;
2369 info->len = len;
2370 return 0;
2371
2372free_hdr:
2373 vfree(hdr);
2374 return err;
2375}
2376
2377static void free_copy(struct load_info *info)
2378{
2379 vfree(info->hdr);
2380}
2381
2382static int rewrite_section_headers(struct load_info *info)
2383{
2384 unsigned int i;
2385
2386 /* This should always be true, but let's be sure. */
2387 info->sechdrs[0].sh_addr = 0;
2388
2389 for (i = 1; i < info->hdr->e_shnum; i++) {
2390 Elf_Shdr *shdr = &info->sechdrs[i];
2391 if (shdr->sh_type != SHT_NOBITS
2392 && info->len < shdr->sh_offset + shdr->sh_size) {
2393 printk(KERN_ERR "Module len %lu truncated\n",
2394 info->len);
2395 return -ENOEXEC;
2396 }
2397
2398 /* Mark all sections sh_addr with their address in the
2399 temporary image. */
2400 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2401
2402#ifndef CONFIG_MODULE_UNLOAD
2403 /* Don't load .exit sections */
2404 if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2405 shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2406#endif
2407 }
2408
2409 /* Track but don't keep modinfo and version sections. */
2410 info->index.vers = find_sec(info, "__versions");
2411 info->index.info = find_sec(info, ".modinfo");
2412 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2413 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2414 return 0;
2415}
2416
2417/*
2418 * Set up our basic convenience variables (pointers to section headers,
2419 * search for module section index etc), and do some basic section
2420 * verification.
2421 *
2422 * Return the temporary module pointer (we'll replace it with the final
2423 * one when we move the module sections around).
2424 */
2425static struct module *setup_load_info(struct load_info *info)
2426{
2427 unsigned int i;
2428 int err;
2429 struct module *mod;
2430
2431 /* Set up the convenience variables */
2432 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2433 info->secstrings = (void *)info->hdr
2434 + info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2435
2436 err = rewrite_section_headers(info);
2437 if (err)
2438 return ERR_PTR(err);
2439
2440 /* Find internal symbols and strings. */
2441 for (i = 1; i < info->hdr->e_shnum; i++) {
2442 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2443 info->index.sym = i;
2444 info->index.str = info->sechdrs[i].sh_link;
2445 info->strtab = (char *)info->hdr
2446 + info->sechdrs[info->index.str].sh_offset;
2447 break;
2448 }
2449 }
2450
2451 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2452 if (!info->index.mod) {
2453 printk(KERN_WARNING "No module found in object\n");
2454 return ERR_PTR(-ENOEXEC);
2455 }
2456 /* This is temporary: point mod into copy of data. */
2457 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2458
2459 if (info->index.sym == 0) {
2460 printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2461 mod->name);
2462 return ERR_PTR(-ENOEXEC);
2463 }
2464
2465 info->index.pcpu = find_pcpusec(info);
2466
2467 /* Check module struct version now, before we try to use module. */
2468 if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2469 return ERR_PTR(-ENOEXEC);
2470
2471 return mod;
2472}
2473
2474static int check_modinfo(struct module *mod, struct load_info *info)
2475{
2476 const char *modmagic = get_modinfo(info, "vermagic");
2477 int err;
2478
2479 /* This is allowed: modprobe --force will invalidate it. */
2480 if (!modmagic) {
2481 err = try_to_force_load(mod, "bad vermagic");
2482 if (err)
2483 return err;
2484 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2485 printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2486 mod->name, modmagic, vermagic);
2487 return -ENOEXEC;
2488 }
2489
2490 if (get_modinfo(info, "staging")) {
2491 add_taint_module(mod, TAINT_CRAP);
2492 printk(KERN_WARNING "%s: module is from the staging directory,"
2493 " the quality is unknown, you have been warned.\n",
2494 mod->name);
2495 }
2496
2497 /* Set up license info based on the info section */
2498 set_license(mod, get_modinfo(info, "license"));
2499
2500 return 0;
2501}
2502
2503static void find_module_sections(struct module *mod, struct load_info *info)
2504{
2505 mod->kp = section_objs(info, "__param",
2506 sizeof(*mod->kp), &mod->num_kp);
2507 mod->syms = section_objs(info, "__ksymtab",
2508 sizeof(*mod->syms), &mod->num_syms);
2509 mod->crcs = section_addr(info, "__kcrctab");
2510 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2511 sizeof(*mod->gpl_syms),
2512 &mod->num_gpl_syms);
2513 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2514 mod->gpl_future_syms = section_objs(info,
2515 "__ksymtab_gpl_future",
2516 sizeof(*mod->gpl_future_syms),
2517 &mod->num_gpl_future_syms);
2518 mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2519
2520#ifdef CONFIG_UNUSED_SYMBOLS
2521 mod->unused_syms = section_objs(info, "__ksymtab_unused",
2522 sizeof(*mod->unused_syms),
2523 &mod->num_unused_syms);
2524 mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2525 mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2526 sizeof(*mod->unused_gpl_syms),
2527 &mod->num_unused_gpl_syms);
2528 mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2529#endif
2530#ifdef CONFIG_CONSTRUCTORS
2531 mod->ctors = section_objs(info, ".ctors",
2532 sizeof(*mod->ctors), &mod->num_ctors);
2533#endif
2534
2535#ifdef CONFIG_TRACEPOINTS
2536 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2537 sizeof(*mod->tracepoints_ptrs),
2538 &mod->num_tracepoints);
2539#endif
2540#ifdef HAVE_JUMP_LABEL
2541 mod->jump_entries = section_objs(info, "__jump_table",
2542 sizeof(*mod->jump_entries),
2543 &mod->num_jump_entries);
2544#endif
2545#ifdef CONFIG_EVENT_TRACING
2546 mod->trace_events = section_objs(info, "_ftrace_events",
2547 sizeof(*mod->trace_events),
2548 &mod->num_trace_events);
2549 /*
2550 * This section contains pointers to allocated objects in the trace
2551 * code and not scanning it leads to false positives.
2552 */
2553 kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2554 mod->num_trace_events, GFP_KERNEL);
2555#endif
2556#ifdef CONFIG_TRACING
2557 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2558 sizeof(*mod->trace_bprintk_fmt_start),
2559 &mod->num_trace_bprintk_fmt);
2560 /*
2561 * This section contains pointers to allocated objects in the trace
2562 * code and not scanning it leads to false positives.
2563 */
2564 kmemleak_scan_area(mod->trace_bprintk_fmt_start,
2565 sizeof(*mod->trace_bprintk_fmt_start) *
2566 mod->num_trace_bprintk_fmt, GFP_KERNEL);
2567#endif
2568#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2569 /* sechdrs[0].sh_size is always zero */
2570 mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2571 sizeof(*mod->ftrace_callsites),
2572 &mod->num_ftrace_callsites);
2573#endif
2574
2575 mod->extable = section_objs(info, "__ex_table",
2576 sizeof(*mod->extable), &mod->num_exentries);
2577
2578 if (section_addr(info, "__obsparm"))
2579 printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2580 mod->name);
2581
2582 info->debug = section_objs(info, "__verbose",
2583 sizeof(*info->debug), &info->num_debug);
2584}
2585
2586static int move_module(struct module *mod, struct load_info *info)
2587{
2588 int i;
2589 void *ptr;
2590
2591 /* Do the allocs. */
2592 ptr = module_alloc_update_bounds(mod->core_size);
2593 /*
2594 * The pointer to this block is stored in the module structure
2595 * which is inside the block. Just mark it as not being a
2596 * leak.
2597 */
2598 kmemleak_not_leak(ptr);
2599 if (!ptr)
2600 return -ENOMEM;
2601
2602 memset(ptr, 0, mod->core_size);
2603 mod->module_core = ptr;
2604
2605 ptr = module_alloc_update_bounds(mod->init_size);
2606 /*
2607 * The pointer to this block is stored in the module structure
2608 * which is inside the block. This block doesn't need to be
2609 * scanned as it contains data and code that will be freed
2610 * after the module is initialized.
2611 */
2612 kmemleak_ignore(ptr);
2613 if (!ptr && mod->init_size) {
2614 module_free(mod, mod->module_core);
2615 return -ENOMEM;
2616 }
2617 memset(ptr, 0, mod->init_size);
2618 mod->module_init = ptr;
2619
2620 /* Transfer each section which specifies SHF_ALLOC */
2621 DEBUGP("final section addresses:\n");
2622 for (i = 0; i < info->hdr->e_shnum; i++) {
2623 void *dest;
2624 Elf_Shdr *shdr = &info->sechdrs[i];
2625
2626 if (!(shdr->sh_flags & SHF_ALLOC))
2627 continue;
2628
2629 if (shdr->sh_entsize & INIT_OFFSET_MASK)
2630 dest = mod->module_init
2631 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2632 else
2633 dest = mod->module_core + shdr->sh_entsize;
2634
2635 if (shdr->sh_type != SHT_NOBITS)
2636 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2637 /* Update sh_addr to point to copy in image. */
2638 shdr->sh_addr = (unsigned long)dest;
2639 DEBUGP("\t0x%lx %s\n",
2640 shdr->sh_addr, info->secstrings + shdr->sh_name);
2641 }
2642
2643 return 0;
2644}
2645
2646static int check_module_license_and_versions(struct module *mod)
2647{
2648 /*
2649 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2650 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2651 * using GPL-only symbols it needs.
2652 */
2653 if (strcmp(mod->name, "ndiswrapper") == 0)
2654 add_taint(TAINT_PROPRIETARY_MODULE);
2655
2656 /* driverloader was caught wrongly pretending to be under GPL */
2657 if (strcmp(mod->name, "driverloader") == 0)
2658 add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
2659
2660#ifdef CONFIG_MODVERSIONS
2661 if ((mod->num_syms && !mod->crcs)
2662 || (mod->num_gpl_syms && !mod->gpl_crcs)
2663 || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2664#ifdef CONFIG_UNUSED_SYMBOLS
2665 || (mod->num_unused_syms && !mod->unused_crcs)
2666 || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2667#endif
2668 ) {
2669 return try_to_force_load(mod,
2670 "no versions for exported symbols");
2671 }
2672#endif
2673 return 0;
2674}
2675
2676static void flush_module_icache(const struct module *mod)
2677{
2678 mm_segment_t old_fs;
2679
2680 /* flush the icache in correct context */
2681 old_fs = get_fs();
2682 set_fs(KERNEL_DS);
2683
2684 /*
2685 * Flush the instruction cache, since we've played with text.
2686 * Do it before processing of module parameters, so the module
2687 * can provide parameter accessor functions of its own.
2688 */
2689 if (mod->module_init)
2690 flush_icache_range((unsigned long)mod->module_init,
2691 (unsigned long)mod->module_init
2692 + mod->init_size);
2693 flush_icache_range((unsigned long)mod->module_core,
2694 (unsigned long)mod->module_core + mod->core_size);
2695
2696 set_fs(old_fs);
2697}
2698
2699int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2700 Elf_Shdr *sechdrs,
2701 char *secstrings,
2702 struct module *mod)
2703{
2704 return 0;
2705}
2706
2707static struct module *layout_and_allocate(struct load_info *info)
2708{
2709 /* Module within temporary copy. */
2710 struct module *mod;
2711 Elf_Shdr *pcpusec;
2712 int err;
2713
2714 mod = setup_load_info(info);
2715 if (IS_ERR(mod))
2716 return mod;
2717
2718 err = check_modinfo(mod, info);
2719 if (err)
2720 return ERR_PTR(err);
2721
2722 /* Allow arches to frob section contents and sizes. */
2723 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2724 info->secstrings, mod);
2725 if (err < 0)
2726 goto out;
2727
2728 pcpusec = &info->sechdrs[info->index.pcpu];
2729 if (pcpusec->sh_size) {
2730 /* We have a special allocation for this section. */
2731 err = percpu_modalloc(mod,
2732 pcpusec->sh_size, pcpusec->sh_addralign);
2733 if (err)
2734 goto out;
2735 pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
2736 }
2737
2738 /* Determine total sizes, and put offsets in sh_entsize. For now
2739 this is done generically; there doesn't appear to be any
2740 special cases for the architectures. */
2741 layout_sections(mod, info);
2742
2743 info->strmap = kzalloc(BITS_TO_LONGS(info->sechdrs[info->index.str].sh_size)
2744 * sizeof(long), GFP_KERNEL);
2745 if (!info->strmap) {
2746 err = -ENOMEM;
2747 goto free_percpu;
2748 }
2749 layout_symtab(mod, info);
2750
2751 /* Allocate and move to the final place */
2752 err = move_module(mod, info);
2753 if (err)
2754 goto free_strmap;
2755
2756 /* Module has been copied to its final place now: return it. */
2757 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2758 kmemleak_load_module(mod, info);
2759 return mod;
2760
2761free_strmap:
2762 kfree(info->strmap);
2763free_percpu:
2764 percpu_modfree(mod);
2765out:
2766 return ERR_PTR(err);
2767}
2768
2769/* mod is no longer valid after this! */
2770static void module_deallocate(struct module *mod, struct load_info *info)
2771{
2772 kfree(info->strmap);
2773 percpu_modfree(mod);
2774 module_free(mod, mod->module_init);
2775 module_free(mod, mod->module_core);
2776}
2777
2778int __weak module_finalize(const Elf_Ehdr *hdr,
2779 const Elf_Shdr *sechdrs,
2780 struct module *me)
2781{
2782 return 0;
2783}
2784
2785static int post_relocation(struct module *mod, const struct load_info *info)
2786{
2787 /* Sort exception table now relocations are done. */
2788 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2789
2790 /* Copy relocated percpu area over. */
2791 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2792 info->sechdrs[info->index.pcpu].sh_size);
2793
2794 /* Setup kallsyms-specific fields. */
2795 add_kallsyms(mod, info);
2796
2797 /* Arch-specific module finalizing. */
2798 return module_finalize(info->hdr, info->sechdrs, mod);
2799}
2800
2801/* Allocate and load the module: note that size of section 0 is always
2802 zero, and we rely on this for optional sections. */
2803static struct module *load_module(void __user *umod,
2804 unsigned long len,
2805 const char __user *uargs)
2806{
2807 struct load_info info = { NULL, };
2808 struct module *mod;
2809 long err;
2810
2811 DEBUGP("load_module: umod=%p, len=%lu, uargs=%p\n",
2812 umod, len, uargs);
2813
2814 /* Copy in the blobs from userspace, check they are vaguely sane. */
2815 err = copy_and_check(&info, umod, len, uargs);
2816 if (err)
2817 return ERR_PTR(err);
2818
2819 /* Figure out module layout, and allocate all the memory. */
2820 mod = layout_and_allocate(&info);
2821 if (IS_ERR(mod)) {
2822 err = PTR_ERR(mod);
2823 goto free_copy;
2824 }
2825
2826 /* Now module is in final location, initialize linked lists, etc. */
2827 err = module_unload_init(mod);
2828 if (err)
2829 goto free_module;
2830
2831 /* Now we've got everything in the final locations, we can
2832 * find optional sections. */
2833 find_module_sections(mod, &info);
2834
2835 err = check_module_license_and_versions(mod);
2836 if (err)
2837 goto free_unload;
2838
2839 /* Set up MODINFO_ATTR fields */
2840 setup_modinfo(mod, &info);
2841
2842 /* Fix up syms, so that st_value is a pointer to location. */
2843 err = simplify_symbols(mod, &info);
2844 if (err < 0)
2845 goto free_modinfo;
2846
2847 err = apply_relocations(mod, &info);
2848 if (err < 0)
2849 goto free_modinfo;
2850
2851 err = post_relocation(mod, &info);
2852 if (err < 0)
2853 goto free_modinfo;
2854
2855 flush_module_icache(mod);
2856
2857 /* Now copy in args */
2858 mod->args = strndup_user(uargs, ~0UL >> 1);
2859 if (IS_ERR(mod->args)) {
2860 err = PTR_ERR(mod->args);
2861 goto free_arch_cleanup;
2862 }
2863
2864 /* Mark state as coming so strong_try_module_get() ignores us. */
2865 mod->state = MODULE_STATE_COMING;
2866
2867 /* Now sew it into the lists so we can get lockdep and oops
2868 * info during argument parsing. No one should access us, since
2869 * strong_try_module_get() will fail.
2870 * lockdep/oops can run asynchronous, so use the RCU list insertion
2871 * function to insert in a way safe to concurrent readers.
2872 * The mutex protects against concurrent writers.
2873 */
2874 mutex_lock(&module_mutex);
2875 if (find_module(mod->name)) {
2876 err = -EEXIST;
2877 goto unlock;
2878 }
2879
2880 /* This has to be done once we're sure module name is unique. */
2881 if (!mod->taints || mod->taints == (1U<<TAINT_CRAP))
2882 dynamic_debug_setup(info.debug, info.num_debug);
2883
2884 /* Find duplicate symbols */
2885 err = verify_export_symbols(mod);
2886 if (err < 0)
2887 goto ddebug;
2888
2889 module_bug_finalize(info.hdr, info.sechdrs, mod);
2890 list_add_rcu(&mod->list, &modules);
2891 mutex_unlock(&module_mutex);
2892
2893 /* Module is ready to execute: parsing args may do that. */
2894 err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, NULL);
2895 if (err < 0)
2896 goto unlink;
2897
2898 /* Link in to syfs. */
2899 err = mod_sysfs_setup(mod, &info, mod->kp, mod->num_kp);
2900 if (err < 0)
2901 goto unlink;
2902
2903 /* Get rid of temporary copy and strmap. */
2904 kfree(info.strmap);
2905 free_copy(&info);
2906
2907 /* Done! */
2908 trace_module_load(mod);
2909 return mod;
2910
2911 unlink:
2912 mutex_lock(&module_mutex);
2913 /* Unlink carefully: kallsyms could be walking list. */
2914 list_del_rcu(&mod->list);
2915 module_bug_cleanup(mod);
2916
2917 ddebug:
2918 if (!mod->taints || mod->taints == (1U<<TAINT_CRAP))
2919 dynamic_debug_remove(info.debug);
2920 unlock:
2921 mutex_unlock(&module_mutex);
2922 synchronize_sched();
2923 kfree(mod->args);
2924 free_arch_cleanup:
2925 module_arch_cleanup(mod);
2926 free_modinfo:
2927 free_modinfo(mod);
2928 free_unload:
2929 module_unload_free(mod);
2930 free_module:
2931 module_deallocate(mod, &info);
2932 free_copy:
2933 free_copy(&info);
2934 return ERR_PTR(err);
2935}
2936
2937/* Call module constructors. */
2938static void do_mod_ctors(struct module *mod)
2939{
2940#ifdef CONFIG_CONSTRUCTORS
2941 unsigned long i;
2942
2943 for (i = 0; i < mod->num_ctors; i++)
2944 mod->ctors[i]();
2945#endif
2946}
2947
2948/* This is where the real work happens */
2949SYSCALL_DEFINE3(init_module, void __user *, umod,
2950 unsigned long, len, const char __user *, uargs)
2951{
2952 struct module *mod;
2953 int ret = 0;
2954
2955 /* Must have permission */
2956 if (!capable(CAP_SYS_MODULE) || modules_disabled)
2957 return -EPERM;
2958
2959 /* Do all the hard work */
2960 mod = load_module(umod, len, uargs);
2961 if (IS_ERR(mod))
2962 return PTR_ERR(mod);
2963
2964 blocking_notifier_call_chain(&module_notify_list,
2965 MODULE_STATE_COMING, mod);
2966
2967 /* Set RO and NX regions for core */
2968 set_section_ro_nx(mod->module_core,
2969 mod->core_text_size,
2970 mod->core_ro_size,
2971 mod->core_size);
2972
2973 /* Set RO and NX regions for init */
2974 set_section_ro_nx(mod->module_init,
2975 mod->init_text_size,
2976 mod->init_ro_size,
2977 mod->init_size);
2978
2979 do_mod_ctors(mod);
2980 /* Start the module */
2981 if (mod->init != NULL)
2982 ret = do_one_initcall(mod->init);
2983 if (ret < 0) {
2984 /* Init routine failed: abort. Try to protect us from
2985 buggy refcounters. */
2986 mod->state = MODULE_STATE_GOING;
2987 synchronize_sched();
2988 module_put(mod);
2989 blocking_notifier_call_chain(&module_notify_list,
2990 MODULE_STATE_GOING, mod);
2991 free_module(mod);
2992 wake_up(&module_wq);
2993 return ret;
2994 }
2995 if (ret > 0) {
2996 printk(KERN_WARNING
2997"%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
2998"%s: loading module anyway...\n",
2999 __func__, mod->name, ret,
3000 __func__);
3001 dump_stack();
3002 }
3003
3004 /* Now it's a first class citizen! Wake up anyone waiting for it. */
3005 mod->state = MODULE_STATE_LIVE;
3006 wake_up(&module_wq);
3007 blocking_notifier_call_chain(&module_notify_list,
3008 MODULE_STATE_LIVE, mod);
3009
3010 /* We need to finish all async code before the module init sequence is done */
3011 async_synchronize_full();
3012
3013 mutex_lock(&module_mutex);
3014 /* Drop initial reference. */
3015 module_put(mod);
3016 trim_init_extable(mod);
3017#ifdef CONFIG_KALLSYMS
3018 mod->num_symtab = mod->core_num_syms;
3019 mod->symtab = mod->core_symtab;
3020 mod->strtab = mod->core_strtab;
3021#endif
3022 unset_module_init_ro_nx(mod);
3023 module_free(mod, mod->module_init);
3024 mod->module_init = NULL;
3025 mod->init_size = 0;
3026 mod->init_ro_size = 0;
3027 mod->init_text_size = 0;
3028 mutex_unlock(&module_mutex);
3029
3030 return 0;
3031}
3032
3033static inline int within(unsigned long addr, void *start, unsigned long size)
3034{
3035 return ((void *)addr >= start && (void *)addr < start + size);
3036}
3037
3038#ifdef CONFIG_KALLSYMS
3039/*
3040 * This ignores the intensely annoying "mapping symbols" found
3041 * in ARM ELF files: $a, $t and $d.
3042 */
3043static inline int is_arm_mapping_symbol(const char *str)
3044{
3045 return str[0] == '$' && strchr("atd", str[1])
3046 && (str[2] == '\0' || str[2] == '.');
3047}
3048
3049static const char *get_ksymbol(struct module *mod,
3050 unsigned long addr,
3051 unsigned long *size,
3052 unsigned long *offset)
3053{
3054 unsigned int i, best = 0;
3055 unsigned long nextval;
3056
3057 /* At worse, next value is at end of module */
3058 if (within_module_init(addr, mod))
3059 nextval = (unsigned long)mod->module_init+mod->init_text_size;
3060 else
3061 nextval = (unsigned long)mod->module_core+mod->core_text_size;
3062
3063 /* Scan for closest preceding symbol, and next symbol. (ELF
3064 starts real symbols at 1). */
3065 for (i = 1; i < mod->num_symtab; i++) {
3066 if (mod->symtab[i].st_shndx == SHN_UNDEF)
3067 continue;
3068
3069 /* We ignore unnamed symbols: they're uninformative
3070 * and inserted at a whim. */
3071 if (mod->symtab[i].st_value <= addr
3072 && mod->symtab[i].st_value > mod->symtab[best].st_value
3073 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3074 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3075 best = i;
3076 if (mod->symtab[i].st_value > addr
3077 && mod->symtab[i].st_value < nextval
3078 && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3079 && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3080 nextval = mod->symtab[i].st_value;
3081 }
3082
3083 if (!best)
3084 return NULL;
3085
3086 if (size)
3087 *size = nextval - mod->symtab[best].st_value;
3088 if (offset)
3089 *offset = addr - mod->symtab[best].st_value;
3090 return mod->strtab + mod->symtab[best].st_name;
3091}
3092
3093/* For kallsyms to ask for address resolution. NULL means not found. Careful
3094 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3095const char *module_address_lookup(unsigned long addr,
3096 unsigned long *size,
3097 unsigned long *offset,
3098 char **modname,
3099 char *namebuf)
3100{
3101 struct module *mod;
3102 const char *ret = NULL;
3103
3104 preempt_disable();
3105 list_for_each_entry_rcu(mod, &modules, list) {
3106 if (within_module_init(addr, mod) ||
3107 within_module_core(addr, mod)) {
3108 if (modname)
3109 *modname = mod->name;
3110 ret = get_ksymbol(mod, addr, size, offset);
3111 break;
3112 }
3113 }
3114 /* Make a copy in here where it's safe */
3115 if (ret) {
3116 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3117 ret = namebuf;
3118 }
3119 preempt_enable();
3120 return ret;
3121}
3122
3123int lookup_module_symbol_name(unsigned long addr, char *symname)
3124{
3125 struct module *mod;
3126
3127 preempt_disable();
3128 list_for_each_entry_rcu(mod, &modules, list) {
3129 if (within_module_init(addr, mod) ||
3130 within_module_core(addr, mod)) {
3131 const char *sym;
3132
3133 sym = get_ksymbol(mod, addr, NULL, NULL);
3134 if (!sym)
3135 goto out;
3136 strlcpy(symname, sym, KSYM_NAME_LEN);
3137 preempt_enable();
3138 return 0;
3139 }
3140 }
3141out:
3142 preempt_enable();
3143 return -ERANGE;
3144}
3145
3146int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3147 unsigned long *offset, char *modname, char *name)
3148{
3149 struct module *mod;
3150
3151 preempt_disable();
3152 list_for_each_entry_rcu(mod, &modules, list) {
3153 if (within_module_init(addr, mod) ||
3154 within_module_core(addr, mod)) {
3155 const char *sym;
3156
3157 sym = get_ksymbol(mod, addr, size, offset);
3158 if (!sym)
3159 goto out;
3160 if (modname)
3161 strlcpy(modname, mod->name, MODULE_NAME_LEN);
3162 if (name)
3163 strlcpy(name, sym, KSYM_NAME_LEN);
3164 preempt_enable();
3165 return 0;
3166 }
3167 }
3168out:
3169 preempt_enable();
3170 return -ERANGE;
3171}
3172
3173int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3174 char *name, char *module_name, int *exported)
3175{
3176 struct module *mod;
3177
3178 preempt_disable();
3179 list_for_each_entry_rcu(mod, &modules, list) {
3180 if (symnum < mod->num_symtab) {
3181 *value = mod->symtab[symnum].st_value;
3182 *type = mod->symtab[symnum].st_info;
3183 strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3184 KSYM_NAME_LEN);
3185 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3186 *exported = is_exported(name, *value, mod);
3187 preempt_enable();
3188 return 0;
3189 }
3190 symnum -= mod->num_symtab;
3191 }
3192 preempt_enable();
3193 return -ERANGE;
3194}
3195
3196static unsigned long mod_find_symname(struct module *mod, const char *name)
3197{
3198 unsigned int i;
3199
3200 for (i = 0; i < mod->num_symtab; i++)
3201 if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3202 mod->symtab[i].st_info != 'U')
3203 return mod->symtab[i].st_value;
3204 return 0;
3205}
3206
3207/* Look for this name: can be of form module:name. */
3208unsigned long module_kallsyms_lookup_name(const char *name)
3209{
3210 struct module *mod;
3211 char *colon;
3212 unsigned long ret = 0;
3213
3214 /* Don't lock: we're in enough trouble already. */
3215 preempt_disable();
3216 if ((colon = strchr(name, ':')) != NULL) {
3217 *colon = '\0';
3218 if ((mod = find_module(name)) != NULL)
3219 ret = mod_find_symname(mod, colon+1);
3220 *colon = ':';
3221 } else {
3222 list_for_each_entry_rcu(mod, &modules, list)
3223 if ((ret = mod_find_symname(mod, name)) != 0)
3224 break;
3225 }
3226 preempt_enable();
3227 return ret;
3228}
3229
3230int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3231 struct module *, unsigned long),
3232 void *data)
3233{
3234 struct module *mod;
3235 unsigned int i;
3236 int ret;
3237
3238 list_for_each_entry(mod, &modules, list) {
3239 for (i = 0; i < mod->num_symtab; i++) {
3240 ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3241 mod, mod->symtab[i].st_value);
3242 if (ret != 0)
3243 return ret;
3244 }
3245 }
3246 return 0;
3247}
3248#endif /* CONFIG_KALLSYMS */
3249
3250static char *module_flags(struct module *mod, char *buf)
3251{
3252 int bx = 0;
3253
3254 if (mod->taints ||
3255 mod->state == MODULE_STATE_GOING ||
3256 mod->state == MODULE_STATE_COMING) {
3257 buf[bx++] = '(';
3258 if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
3259 buf[bx++] = 'P';
3260 if (mod->taints & (1 << TAINT_FORCED_MODULE))
3261 buf[bx++] = 'F';
3262 if (mod->taints & (1 << TAINT_CRAP))
3263 buf[bx++] = 'C';
3264 /*
3265 * TAINT_FORCED_RMMOD: could be added.
3266 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
3267 * apply to modules.
3268 */
3269
3270 /* Show a - for module-is-being-unloaded */
3271 if (mod->state == MODULE_STATE_GOING)
3272 buf[bx++] = '-';
3273 /* Show a + for module-is-being-loaded */
3274 if (mod->state == MODULE_STATE_COMING)
3275 buf[bx++] = '+';
3276 buf[bx++] = ')';
3277 }
3278 buf[bx] = '\0';
3279
3280 return buf;
3281}
3282
3283#ifdef CONFIG_PROC_FS
3284/* Called by the /proc file system to return a list of modules. */
3285static void *m_start(struct seq_file *m, loff_t *pos)
3286{
3287 mutex_lock(&module_mutex);
3288 return seq_list_start(&modules, *pos);
3289}
3290
3291static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3292{
3293 return seq_list_next(p, &modules, pos);
3294}
3295
3296static void m_stop(struct seq_file *m, void *p)
3297{
3298 mutex_unlock(&module_mutex);
3299}
3300
3301static int m_show(struct seq_file *m, void *p)
3302{
3303 struct module *mod = list_entry(p, struct module, list);
3304 char buf[8];
3305
3306 seq_printf(m, "%s %u",
3307 mod->name, mod->init_size + mod->core_size);
3308 print_unload_info(m, mod);
3309
3310 /* Informative for users. */
3311 seq_printf(m, " %s",
3312 mod->state == MODULE_STATE_GOING ? "Unloading":
3313 mod->state == MODULE_STATE_COMING ? "Loading":
3314 "Live");
3315 /* Used by oprofile and other similar tools. */
3316 seq_printf(m, " 0x%pK", mod->module_core);
3317
3318 /* Taints info */
3319 if (mod->taints)
3320 seq_printf(m, " %s", module_flags(mod, buf));
3321
3322 seq_printf(m, "\n");
3323 return 0;
3324}
3325
3326/* Format: modulename size refcount deps address
3327
3328 Where refcount is a number or -, and deps is a comma-separated list
3329 of depends or -.
3330*/
3331static const struct seq_operations modules_op = {
3332 .start = m_start,
3333 .next = m_next,
3334 .stop = m_stop,
3335 .show = m_show
3336};
3337
3338static int modules_open(struct inode *inode, struct file *file)
3339{
3340 return seq_open(file, &modules_op);
3341}
3342
3343static const struct file_operations proc_modules_operations = {
3344 .open = modules_open,
3345 .read = seq_read,
3346 .llseek = seq_lseek,
3347 .release = seq_release,
3348};
3349
3350static int __init proc_modules_init(void)
3351{
3352 proc_create("modules", 0, NULL, &proc_modules_operations);
3353 return 0;
3354}
3355module_init(proc_modules_init);
3356#endif
3357
3358/* Given an address, look for it in the module exception tables. */
3359const struct exception_table_entry *search_module_extables(unsigned long addr)
3360{
3361 const struct exception_table_entry *e = NULL;
3362 struct module *mod;
3363
3364 preempt_disable();
3365 list_for_each_entry_rcu(mod, &modules, list) {
3366 if (mod->num_exentries == 0)
3367 continue;
3368
3369 e = search_extable(mod->extable,
3370 mod->extable + mod->num_exentries - 1,
3371 addr);
3372 if (e)
3373 break;
3374 }
3375 preempt_enable();
3376
3377 /* Now, if we found one, we are running inside it now, hence
3378 we cannot unload the module, hence no refcnt needed. */
3379 return e;
3380}
3381
3382/*
3383 * is_module_address - is this address inside a module?
3384 * @addr: the address to check.
3385 *
3386 * See is_module_text_address() if you simply want to see if the address
3387 * is code (not data).
3388 */
3389bool is_module_address(unsigned long addr)
3390{
3391 bool ret;
3392
3393 preempt_disable();
3394 ret = __module_address(addr) != NULL;
3395 preempt_enable();
3396
3397 return ret;
3398}
3399
3400/*
3401 * __module_address - get the module which contains an address.
3402 * @addr: the address.
3403 *
3404 * Must be called with preempt disabled or module mutex held so that
3405 * module doesn't get freed during this.
3406 */
3407struct module *__module_address(unsigned long addr)
3408{
3409 struct module *mod;
3410
3411 if (addr < module_addr_min || addr > module_addr_max)
3412 return NULL;
3413
3414 list_for_each_entry_rcu(mod, &modules, list)
3415 if (within_module_core(addr, mod)
3416 || within_module_init(addr, mod))
3417 return mod;
3418 return NULL;
3419}
3420EXPORT_SYMBOL_GPL(__module_address);
3421
3422/*
3423 * is_module_text_address - is this address inside module code?
3424 * @addr: the address to check.
3425 *
3426 * See is_module_address() if you simply want to see if the address is
3427 * anywhere in a module. See kernel_text_address() for testing if an
3428 * address corresponds to kernel or module code.
3429 */
3430bool is_module_text_address(unsigned long addr)
3431{
3432 bool ret;
3433
3434 preempt_disable();
3435 ret = __module_text_address(addr) != NULL;
3436 preempt_enable();
3437
3438 return ret;
3439}
3440
3441/*
3442 * __module_text_address - get the module whose code contains an address.
3443 * @addr: the address.
3444 *
3445 * Must be called with preempt disabled or module mutex held so that
3446 * module doesn't get freed during this.
3447 */
3448struct module *__module_text_address(unsigned long addr)
3449{
3450 struct module *mod = __module_address(addr);
3451 if (mod) {
3452 /* Make sure it's within the text section. */
3453 if (!within(addr, mod->module_init, mod->init_text_size)
3454 && !within(addr, mod->module_core, mod->core_text_size))
3455 mod = NULL;
3456 }
3457 return mod;
3458}
3459EXPORT_SYMBOL_GPL(__module_text_address);
3460
3461/* Don't grab lock, we're oopsing. */
3462void print_modules(void)
3463{
3464 struct module *mod;
3465 char buf[8];
3466
3467 printk(KERN_DEFAULT "Modules linked in:");
3468 /* Most callers should already have preempt disabled, but make sure */
3469 preempt_disable();
3470 list_for_each_entry_rcu(mod, &modules, list)
3471 printk(" %s%s", mod->name, module_flags(mod, buf));
3472 preempt_enable();
3473 if (last_unloaded_module[0])
3474 printk(" [last unloaded: %s]", last_unloaded_module);
3475 printk("\n");
3476}
3477
3478#ifdef CONFIG_MODVERSIONS
3479/* Generate the signature for all relevant module structures here.
3480 * If these change, we don't want to try to parse the module. */
3481void module_layout(struct module *mod,
3482 struct modversion_info *ver,
3483 struct kernel_param *kp,
3484 struct kernel_symbol *ks,
3485 struct tracepoint * const *tp)
3486{
3487}
3488EXPORT_SYMBOL(module_layout);
3489#endif
3490
3491#ifdef CONFIG_TRACEPOINTS
3492void module_update_tracepoints(void)
3493{
3494 struct module *mod;
3495
3496 mutex_lock(&module_mutex);
3497 list_for_each_entry(mod, &modules, list)
3498 if (!mod->taints)
3499 tracepoint_update_probe_range(mod->tracepoints_ptrs,
3500 mod->tracepoints_ptrs + mod->num_tracepoints);
3501 mutex_unlock(&module_mutex);
3502}
3503
3504/*
3505 * Returns 0 if current not found.
3506 * Returns 1 if current found.
3507 */
3508int module_get_iter_tracepoints(struct tracepoint_iter *iter)
3509{
3510 struct module *iter_mod;
3511 int found = 0;
3512
3513 mutex_lock(&module_mutex);
3514 list_for_each_entry(iter_mod, &modules, list) {
3515 if (!iter_mod->taints) {
3516 /*
3517 * Sorted module list
3518 */
3519 if (iter_mod < iter->module)
3520 continue;
3521 else if (iter_mod > iter->module)
3522 iter->tracepoint = NULL;
3523 found = tracepoint_get_iter_range(&iter->tracepoint,
3524 iter_mod->tracepoints_ptrs,
3525 iter_mod->tracepoints_ptrs
3526 + iter_mod->num_tracepoints);
3527 if (found) {
3528 iter->module = iter_mod;
3529 break;
3530 }
3531 }
3532 }
3533 mutex_unlock(&module_mutex);
3534 return found;
3535}
3536#endif