Loading...
1/*
2 * Implementation of the SID table type.
3 *
4 * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5 */
6#include <linux/kernel.h>
7#include <linux/slab.h>
8#include <linux/spinlock.h>
9#include <linux/errno.h>
10#include "flask.h"
11#include "security.h"
12#include "sidtab.h"
13
14#define SIDTAB_HASH(sid) \
15(sid & SIDTAB_HASH_MASK)
16
17int sidtab_init(struct sidtab *s)
18{
19 int i;
20
21 s->htable = kmalloc(sizeof(*(s->htable)) * SIDTAB_SIZE, GFP_ATOMIC);
22 if (!s->htable)
23 return -ENOMEM;
24 for (i = 0; i < SIDTAB_SIZE; i++)
25 s->htable[i] = NULL;
26 s->nel = 0;
27 s->next_sid = 1;
28 s->shutdown = 0;
29 spin_lock_init(&s->lock);
30 return 0;
31}
32
33int sidtab_insert(struct sidtab *s, u32 sid, struct context *context)
34{
35 int hvalue, rc = 0;
36 struct sidtab_node *prev, *cur, *newnode;
37
38 if (!s) {
39 rc = -ENOMEM;
40 goto out;
41 }
42
43 hvalue = SIDTAB_HASH(sid);
44 prev = NULL;
45 cur = s->htable[hvalue];
46 while (cur && sid > cur->sid) {
47 prev = cur;
48 cur = cur->next;
49 }
50
51 if (cur && sid == cur->sid) {
52 rc = -EEXIST;
53 goto out;
54 }
55
56 newnode = kmalloc(sizeof(*newnode), GFP_ATOMIC);
57 if (newnode == NULL) {
58 rc = -ENOMEM;
59 goto out;
60 }
61 newnode->sid = sid;
62 if (context_cpy(&newnode->context, context)) {
63 kfree(newnode);
64 rc = -ENOMEM;
65 goto out;
66 }
67
68 if (prev) {
69 newnode->next = prev->next;
70 wmb();
71 prev->next = newnode;
72 } else {
73 newnode->next = s->htable[hvalue];
74 wmb();
75 s->htable[hvalue] = newnode;
76 }
77
78 s->nel++;
79 if (sid >= s->next_sid)
80 s->next_sid = sid + 1;
81out:
82 return rc;
83}
84
85static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
86{
87 int hvalue;
88 struct sidtab_node *cur;
89
90 if (!s)
91 return NULL;
92
93 hvalue = SIDTAB_HASH(sid);
94 cur = s->htable[hvalue];
95 while (cur && sid > cur->sid)
96 cur = cur->next;
97
98 if (force && cur && sid == cur->sid && cur->context.len)
99 return &cur->context;
100
101 if (cur == NULL || sid != cur->sid || cur->context.len) {
102 /* Remap invalid SIDs to the unlabeled SID. */
103 sid = SECINITSID_UNLABELED;
104 hvalue = SIDTAB_HASH(sid);
105 cur = s->htable[hvalue];
106 while (cur && sid > cur->sid)
107 cur = cur->next;
108 if (!cur || sid != cur->sid)
109 return NULL;
110 }
111
112 return &cur->context;
113}
114
115struct context *sidtab_search(struct sidtab *s, u32 sid)
116{
117 return sidtab_search_core(s, sid, 0);
118}
119
120struct context *sidtab_search_force(struct sidtab *s, u32 sid)
121{
122 return sidtab_search_core(s, sid, 1);
123}
124
125int sidtab_map(struct sidtab *s,
126 int (*apply) (u32 sid,
127 struct context *context,
128 void *args),
129 void *args)
130{
131 int i, rc = 0;
132 struct sidtab_node *cur;
133
134 if (!s)
135 goto out;
136
137 for (i = 0; i < SIDTAB_SIZE; i++) {
138 cur = s->htable[i];
139 while (cur) {
140 rc = apply(cur->sid, &cur->context, args);
141 if (rc)
142 goto out;
143 cur = cur->next;
144 }
145 }
146out:
147 return rc;
148}
149
150static void sidtab_update_cache(struct sidtab *s, struct sidtab_node *n, int loc)
151{
152 BUG_ON(loc >= SIDTAB_CACHE_LEN);
153
154 while (loc > 0) {
155 s->cache[loc] = s->cache[loc - 1];
156 loc--;
157 }
158 s->cache[0] = n;
159}
160
161static inline u32 sidtab_search_context(struct sidtab *s,
162 struct context *context)
163{
164 int i;
165 struct sidtab_node *cur;
166
167 for (i = 0; i < SIDTAB_SIZE; i++) {
168 cur = s->htable[i];
169 while (cur) {
170 if (context_cmp(&cur->context, context)) {
171 sidtab_update_cache(s, cur, SIDTAB_CACHE_LEN - 1);
172 return cur->sid;
173 }
174 cur = cur->next;
175 }
176 }
177 return 0;
178}
179
180static inline u32 sidtab_search_cache(struct sidtab *s, struct context *context)
181{
182 int i;
183 struct sidtab_node *node;
184
185 for (i = 0; i < SIDTAB_CACHE_LEN; i++) {
186 node = s->cache[i];
187 if (unlikely(!node))
188 return 0;
189 if (context_cmp(&node->context, context)) {
190 sidtab_update_cache(s, node, i);
191 return node->sid;
192 }
193 }
194 return 0;
195}
196
197int sidtab_context_to_sid(struct sidtab *s,
198 struct context *context,
199 u32 *out_sid)
200{
201 u32 sid;
202 int ret = 0;
203 unsigned long flags;
204
205 *out_sid = SECSID_NULL;
206
207 sid = sidtab_search_cache(s, context);
208 if (!sid)
209 sid = sidtab_search_context(s, context);
210 if (!sid) {
211 spin_lock_irqsave(&s->lock, flags);
212 /* Rescan now that we hold the lock. */
213 sid = sidtab_search_context(s, context);
214 if (sid)
215 goto unlock_out;
216 /* No SID exists for the context. Allocate a new one. */
217 if (s->next_sid == UINT_MAX || s->shutdown) {
218 ret = -ENOMEM;
219 goto unlock_out;
220 }
221 sid = s->next_sid++;
222 if (context->len)
223 printk(KERN_INFO
224 "SELinux: Context %s is not valid (left unmapped).\n",
225 context->str);
226 ret = sidtab_insert(s, sid, context);
227 if (ret)
228 s->next_sid--;
229unlock_out:
230 spin_unlock_irqrestore(&s->lock, flags);
231 }
232
233 if (ret)
234 return ret;
235
236 *out_sid = sid;
237 return 0;
238}
239
240void sidtab_hash_eval(struct sidtab *h, char *tag)
241{
242 int i, chain_len, slots_used, max_chain_len;
243 struct sidtab_node *cur;
244
245 slots_used = 0;
246 max_chain_len = 0;
247 for (i = 0; i < SIDTAB_SIZE; i++) {
248 cur = h->htable[i];
249 if (cur) {
250 slots_used++;
251 chain_len = 0;
252 while (cur) {
253 chain_len++;
254 cur = cur->next;
255 }
256
257 if (chain_len > max_chain_len)
258 max_chain_len = chain_len;
259 }
260 }
261
262 printk(KERN_DEBUG "%s: %d entries and %d/%d buckets used, longest "
263 "chain length %d\n", tag, h->nel, slots_used, SIDTAB_SIZE,
264 max_chain_len);
265}
266
267void sidtab_destroy(struct sidtab *s)
268{
269 int i;
270 struct sidtab_node *cur, *temp;
271
272 if (!s)
273 return;
274
275 for (i = 0; i < SIDTAB_SIZE; i++) {
276 cur = s->htable[i];
277 while (cur) {
278 temp = cur;
279 cur = cur->next;
280 context_destroy(&temp->context);
281 kfree(temp);
282 }
283 s->htable[i] = NULL;
284 }
285 kfree(s->htable);
286 s->htable = NULL;
287 s->nel = 0;
288 s->next_sid = 1;
289}
290
291void sidtab_set(struct sidtab *dst, struct sidtab *src)
292{
293 unsigned long flags;
294 int i;
295
296 spin_lock_irqsave(&src->lock, flags);
297 dst->htable = src->htable;
298 dst->nel = src->nel;
299 dst->next_sid = src->next_sid;
300 dst->shutdown = 0;
301 for (i = 0; i < SIDTAB_CACHE_LEN; i++)
302 dst->cache[i] = NULL;
303 spin_unlock_irqrestore(&src->lock, flags);
304}
305
306void sidtab_shutdown(struct sidtab *s)
307{
308 unsigned long flags;
309
310 spin_lock_irqsave(&s->lock, flags);
311 s->shutdown = 1;
312 spin_unlock_irqrestore(&s->lock, flags);
313}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Implementation of the SID table type.
4 *
5 * Original author: Stephen Smalley, <stephen.smalley.work@gmail.com>
6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
7 *
8 * Copyright (C) 2018 Red Hat, Inc.
9 */
10
11#include <linux/errno.h>
12#include <linux/kernel.h>
13#include <linux/list.h>
14#include <linux/rcupdate.h>
15#include <linux/slab.h>
16#include <linux/sched.h>
17#include <linux/spinlock.h>
18#include <asm/barrier.h>
19#include "flask.h"
20#include "security.h"
21#include "sidtab.h"
22#include "services.h"
23
24struct sidtab_str_cache {
25 struct rcu_head rcu_member;
26 struct list_head lru_member;
27 struct sidtab_entry *parent;
28 u32 len;
29 char str[] __counted_by(len);
30};
31
32#define index_to_sid(index) ((index) + SECINITSID_NUM + 1)
33#define sid_to_index(sid) ((sid) - (SECINITSID_NUM + 1))
34
35int sidtab_init(struct sidtab *s)
36{
37 u32 i;
38
39 memset(s->roots, 0, sizeof(s->roots));
40
41 for (i = 0; i < SECINITSID_NUM; i++)
42 s->isids[i].set = 0;
43
44 s->frozen = false;
45 s->count = 0;
46 s->convert = NULL;
47 hash_init(s->context_to_sid);
48
49 spin_lock_init(&s->lock);
50
51#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
52 s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
53 INIT_LIST_HEAD(&s->cache_lru_list);
54 spin_lock_init(&s->cache_lock);
55#endif
56
57 return 0;
58}
59
60static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
61{
62 struct sidtab_entry *entry;
63 u32 sid = 0;
64
65 rcu_read_lock();
66 hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
67 if (entry->hash != hash)
68 continue;
69 if (context_cmp(&entry->context, context)) {
70 sid = entry->sid;
71 break;
72 }
73 }
74 rcu_read_unlock();
75 return sid;
76}
77
78int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
79{
80 struct sidtab_isid_entry *isid;
81 u32 hash;
82 int rc;
83
84 if (sid == 0 || sid > SECINITSID_NUM)
85 return -EINVAL;
86
87 isid = &s->isids[sid - 1];
88
89 rc = context_cpy(&isid->entry.context, context);
90 if (rc)
91 return rc;
92
93#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
94 isid->entry.cache = NULL;
95#endif
96 isid->set = 1;
97
98 hash = context_compute_hash(context);
99
100 /*
101 * Multiple initial sids may map to the same context. Check that this
102 * context is not already represented in the context_to_sid hashtable
103 * to avoid duplicate entries and long linked lists upon hash
104 * collision.
105 */
106 if (!context_to_sid(s, context, hash)) {
107 isid->entry.sid = sid;
108 isid->entry.hash = hash;
109 hash_add(s->context_to_sid, &isid->entry.list, hash);
110 }
111
112 return 0;
113}
114
115int sidtab_hash_stats(struct sidtab *sidtab, char *page)
116{
117 int i;
118 int chain_len = 0;
119 int slots_used = 0;
120 int entries = 0;
121 int max_chain_len = 0;
122 int cur_bucket = 0;
123 struct sidtab_entry *entry;
124
125 rcu_read_lock();
126 hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
127 entries++;
128 if (i == cur_bucket) {
129 chain_len++;
130 if (chain_len == 1)
131 slots_used++;
132 } else {
133 cur_bucket = i;
134 if (chain_len > max_chain_len)
135 max_chain_len = chain_len;
136 chain_len = 0;
137 }
138 }
139 rcu_read_unlock();
140
141 if (chain_len > max_chain_len)
142 max_chain_len = chain_len;
143
144 return scnprintf(page, PAGE_SIZE,
145 "entries: %d\nbuckets used: %d/%d\n"
146 "longest chain: %d\n",
147 entries, slots_used, SIDTAB_HASH_BUCKETS,
148 max_chain_len);
149}
150
151static u32 sidtab_level_from_count(u32 count)
152{
153 u32 capacity = SIDTAB_LEAF_ENTRIES;
154 u32 level = 0;
155
156 while (count > capacity) {
157 capacity <<= SIDTAB_INNER_SHIFT;
158 ++level;
159 }
160 return level;
161}
162
163static int sidtab_alloc_roots(struct sidtab *s, u32 level)
164{
165 u32 l;
166
167 if (!s->roots[0].ptr_leaf) {
168 s->roots[0].ptr_leaf =
169 kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
170 if (!s->roots[0].ptr_leaf)
171 return -ENOMEM;
172 }
173 for (l = 1; l <= level; ++l)
174 if (!s->roots[l].ptr_inner) {
175 s->roots[l].ptr_inner =
176 kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
177 if (!s->roots[l].ptr_inner)
178 return -ENOMEM;
179 s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
180 }
181 return 0;
182}
183
184static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
185 int alloc)
186{
187 union sidtab_entry_inner *entry;
188 u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
189
190 /* find the level of the subtree we need */
191 level = sidtab_level_from_count(index + 1);
192 capacity_shift = level * SIDTAB_INNER_SHIFT;
193
194 /* allocate roots if needed */
195 if (alloc && sidtab_alloc_roots(s, level) != 0)
196 return NULL;
197
198 /* lookup inside the subtree */
199 entry = &s->roots[level];
200 while (level != 0) {
201 capacity_shift -= SIDTAB_INNER_SHIFT;
202 --level;
203
204 entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
205 leaf_index &= ((u32)1 << capacity_shift) - 1;
206
207 if (!entry->ptr_inner) {
208 if (alloc)
209 entry->ptr_inner = kzalloc(
210 SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
211 if (!entry->ptr_inner)
212 return NULL;
213 }
214 }
215 if (!entry->ptr_leaf) {
216 if (alloc)
217 entry->ptr_leaf =
218 kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
219 if (!entry->ptr_leaf)
220 return NULL;
221 }
222 return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
223}
224
225static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
226{
227 /* read entries only after reading count */
228 u32 count = smp_load_acquire(&s->count);
229
230 if (index >= count)
231 return NULL;
232
233 return sidtab_do_lookup(s, index, 0);
234}
235
236static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
237{
238 return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
239}
240
241static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
242 int force)
243{
244 if (sid != 0) {
245 struct sidtab_entry *entry;
246
247 if (sid > SECINITSID_NUM)
248 entry = sidtab_lookup(s, sid_to_index(sid));
249 else
250 entry = sidtab_lookup_initial(s, sid);
251 if (entry && (!entry->context.len || force))
252 return entry;
253 }
254
255 return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
256}
257
258struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
259{
260 return sidtab_search_core(s, sid, 0);
261}
262
263struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
264{
265 return sidtab_search_core(s, sid, 1);
266}
267
268int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
269{
270 unsigned long flags;
271 u32 count, hash = context_compute_hash(context);
272 struct sidtab_convert_params *convert;
273 struct sidtab_entry *dst, *dst_convert;
274 int rc;
275
276 *sid = context_to_sid(s, context, hash);
277 if (*sid)
278 return 0;
279
280 /* lock-free search failed: lock, re-search, and insert if not found */
281 spin_lock_irqsave(&s->lock, flags);
282
283 rc = 0;
284 *sid = context_to_sid(s, context, hash);
285 if (*sid)
286 goto out_unlock;
287
288 if (unlikely(s->frozen)) {
289 /*
290 * This sidtab is now frozen - tell the caller to abort and
291 * get the new one.
292 */
293 rc = -ESTALE;
294 goto out_unlock;
295 }
296
297 count = s->count;
298
299 /* bail out if we already reached max entries */
300 rc = -EOVERFLOW;
301 if (count >= SIDTAB_MAX)
302 goto out_unlock;
303
304 /* insert context into new entry */
305 rc = -ENOMEM;
306 dst = sidtab_do_lookup(s, count, 1);
307 if (!dst)
308 goto out_unlock;
309
310 dst->sid = index_to_sid(count);
311 dst->hash = hash;
312
313 rc = context_cpy(&dst->context, context);
314 if (rc)
315 goto out_unlock;
316
317 /*
318 * if we are building a new sidtab, we need to convert the context
319 * and insert it there as well
320 */
321 convert = s->convert;
322 if (convert) {
323 struct sidtab *target = convert->target;
324
325 rc = -ENOMEM;
326 dst_convert = sidtab_do_lookup(target, count, 1);
327 if (!dst_convert) {
328 context_destroy(&dst->context);
329 goto out_unlock;
330 }
331
332 rc = services_convert_context(convert->args, context,
333 &dst_convert->context,
334 GFP_ATOMIC);
335 if (rc) {
336 context_destroy(&dst->context);
337 goto out_unlock;
338 }
339 dst_convert->sid = index_to_sid(count);
340 dst_convert->hash = context_compute_hash(&dst_convert->context);
341 target->count = count + 1;
342
343 hash_add_rcu(target->context_to_sid, &dst_convert->list,
344 dst_convert->hash);
345 }
346
347 if (context->len)
348 pr_info("SELinux: Context %s is not valid (left unmapped).\n",
349 context->str);
350
351 *sid = index_to_sid(count);
352
353 /* write entries before updating count */
354 smp_store_release(&s->count, count + 1);
355 hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
356
357 rc = 0;
358out_unlock:
359 spin_unlock_irqrestore(&s->lock, flags);
360 return rc;
361}
362
363static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
364{
365 struct sidtab_entry *entry;
366 u32 i;
367
368 for (i = 0; i < count; i++) {
369 entry = sidtab_do_lookup(s, i, 0);
370 entry->sid = index_to_sid(i);
371 entry->hash = context_compute_hash(&entry->context);
372
373 hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
374 }
375}
376
377static int sidtab_convert_tree(union sidtab_entry_inner *edst,
378 union sidtab_entry_inner *esrc, u32 *pos,
379 u32 count, u32 level,
380 struct sidtab_convert_params *convert)
381{
382 int rc;
383 u32 i;
384
385 if (level != 0) {
386 if (!edst->ptr_inner) {
387 edst->ptr_inner =
388 kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_KERNEL);
389 if (!edst->ptr_inner)
390 return -ENOMEM;
391 }
392 i = 0;
393 while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
394 rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
395 &esrc->ptr_inner->entries[i],
396 pos, count, level - 1,
397 convert);
398 if (rc)
399 return rc;
400 i++;
401 }
402 } else {
403 if (!edst->ptr_leaf) {
404 edst->ptr_leaf =
405 kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_KERNEL);
406 if (!edst->ptr_leaf)
407 return -ENOMEM;
408 }
409 i = 0;
410 while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
411 rc = services_convert_context(
412 convert->args,
413 &esrc->ptr_leaf->entries[i].context,
414 &edst->ptr_leaf->entries[i].context,
415 GFP_KERNEL);
416 if (rc)
417 return rc;
418 (*pos)++;
419 i++;
420 }
421 cond_resched();
422 }
423 return 0;
424}
425
426int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
427{
428 unsigned long flags;
429 u32 count, level, pos;
430 int rc;
431
432 spin_lock_irqsave(&s->lock, flags);
433
434 /* concurrent policy loads are not allowed */
435 if (s->convert) {
436 spin_unlock_irqrestore(&s->lock, flags);
437 return -EBUSY;
438 }
439
440 count = s->count;
441 level = sidtab_level_from_count(count);
442
443 /* allocate last leaf in the new sidtab (to avoid race with
444 * live convert)
445 */
446 rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
447 if (rc) {
448 spin_unlock_irqrestore(&s->lock, flags);
449 return rc;
450 }
451
452 /* set count in case no new entries are added during conversion */
453 params->target->count = count;
454
455 /* enable live convert of new entries */
456 s->convert = params;
457
458 /* we can safely convert the tree outside the lock */
459 spin_unlock_irqrestore(&s->lock, flags);
460
461 pr_info("SELinux: Converting %u SID table entries...\n", count);
462
463 /* convert all entries not covered by live convert */
464 pos = 0;
465 rc = sidtab_convert_tree(¶ms->target->roots[level],
466 &s->roots[level], &pos, count, level, params);
467 if (rc) {
468 /* we need to keep the old table - disable live convert */
469 spin_lock_irqsave(&s->lock, flags);
470 s->convert = NULL;
471 spin_unlock_irqrestore(&s->lock, flags);
472 return rc;
473 }
474 /*
475 * The hashtable can also be modified in sidtab_context_to_sid()
476 * so we must re-acquire the lock here.
477 */
478 spin_lock_irqsave(&s->lock, flags);
479 sidtab_convert_hashtable(params->target, count);
480 spin_unlock_irqrestore(&s->lock, flags);
481
482 return 0;
483}
484
485void sidtab_cancel_convert(struct sidtab *s)
486{
487 unsigned long flags;
488
489 /* cancelling policy load - disable live convert of sidtab */
490 spin_lock_irqsave(&s->lock, flags);
491 s->convert = NULL;
492 spin_unlock_irqrestore(&s->lock, flags);
493}
494
495void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags)
496 __acquires(&s->lock)
497{
498 spin_lock_irqsave(&s->lock, *flags);
499 s->frozen = true;
500 s->convert = NULL;
501}
502void sidtab_freeze_end(struct sidtab *s, unsigned long *flags)
503 __releases(&s->lock)
504{
505 spin_unlock_irqrestore(&s->lock, *flags);
506}
507
508static void sidtab_destroy_entry(struct sidtab_entry *entry)
509{
510 context_destroy(&entry->context);
511#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
512 kfree(rcu_dereference_raw(entry->cache));
513#endif
514}
515
516static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
517{
518 u32 i;
519
520 if (level != 0) {
521 struct sidtab_node_inner *node = entry.ptr_inner;
522
523 if (!node)
524 return;
525
526 for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
527 sidtab_destroy_tree(node->entries[i], level - 1);
528 kfree(node);
529 } else {
530 struct sidtab_node_leaf *node = entry.ptr_leaf;
531
532 if (!node)
533 return;
534
535 for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
536 sidtab_destroy_entry(&node->entries[i]);
537 kfree(node);
538 }
539}
540
541void sidtab_destroy(struct sidtab *s)
542{
543 u32 i, level;
544
545 for (i = 0; i < SECINITSID_NUM; i++)
546 if (s->isids[i].set)
547 sidtab_destroy_entry(&s->isids[i].entry);
548
549 level = SIDTAB_MAX_LEVEL;
550 while (level && !s->roots[level].ptr_inner)
551 --level;
552
553 sidtab_destroy_tree(s->roots[level], level);
554 /*
555 * The context_to_sid hashtable's objects are all shared
556 * with the isids array and context tree, and so don't need
557 * to be cleaned up here.
558 */
559}
560
561#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
562
563void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
564 const char *str, u32 str_len)
565{
566 struct sidtab_str_cache *cache, *victim = NULL;
567 unsigned long flags;
568
569 /* do not cache invalid contexts */
570 if (entry->context.len)
571 return;
572
573 spin_lock_irqsave(&s->cache_lock, flags);
574
575 cache = rcu_dereference_protected(entry->cache,
576 lockdep_is_held(&s->cache_lock));
577 if (cache) {
578 /* entry in cache - just bump to the head of LRU list */
579 list_move(&cache->lru_member, &s->cache_lru_list);
580 goto out_unlock;
581 }
582
583 cache = kmalloc(struct_size(cache, str, str_len), GFP_ATOMIC);
584 if (!cache)
585 goto out_unlock;
586
587 if (s->cache_free_slots == 0) {
588 /* pop a cache entry from the tail and free it */
589 victim = container_of(s->cache_lru_list.prev,
590 struct sidtab_str_cache, lru_member);
591 list_del(&victim->lru_member);
592 rcu_assign_pointer(victim->parent->cache, NULL);
593 } else {
594 s->cache_free_slots--;
595 }
596 cache->parent = entry;
597 cache->len = str_len;
598 memcpy(cache->str, str, str_len);
599 list_add(&cache->lru_member, &s->cache_lru_list);
600
601 rcu_assign_pointer(entry->cache, cache);
602
603out_unlock:
604 spin_unlock_irqrestore(&s->cache_lock, flags);
605 kfree_rcu(victim, rcu_member);
606}
607
608int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out,
609 u32 *out_len)
610{
611 struct sidtab_str_cache *cache;
612 int rc = 0;
613
614 if (entry->context.len)
615 return -ENOENT; /* do not cache invalid contexts */
616
617 rcu_read_lock();
618
619 cache = rcu_dereference(entry->cache);
620 if (!cache) {
621 rc = -ENOENT;
622 } else {
623 *out_len = cache->len;
624 if (out) {
625 *out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
626 if (!*out)
627 rc = -ENOMEM;
628 }
629 }
630
631 rcu_read_unlock();
632
633 if (!rc && out)
634 sidtab_sid2str_put(s, entry, *out, *out_len);
635 return rc;
636}
637
638#endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */