Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.6
 
  1/*
  2 * Implementation of the SID table type.
  3 *
  4 * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
 
 
 
  5 */
 
 
  6#include <linux/kernel.h>
 
 
  7#include <linux/slab.h>
 
  8#include <linux/spinlock.h>
  9#include <linux/errno.h>
 10#include "flask.h"
 11#include "security.h"
 12#include "sidtab.h"
 
 
 
 
 
 
 
 
 
 13
 14#define SIDTAB_HASH(sid) \
 15(sid & SIDTAB_HASH_MASK)
 16
 17int sidtab_init(struct sidtab *s)
 18{
 19	int i;
 
 
 
 
 
 
 
 
 
 
 20
 21	s->htable = kmalloc(sizeof(*(s->htable)) * SIDTAB_SIZE, GFP_ATOMIC);
 22	if (!s->htable)
 23		return -ENOMEM;
 24	for (i = 0; i < SIDTAB_SIZE; i++)
 25		s->htable[i] = NULL;
 26	s->nel = 0;
 27	s->next_sid = 1;
 28	s->shutdown = 0;
 29	spin_lock_init(&s->lock);
 
 
 
 
 
 
 
 30	return 0;
 31}
 32
 33int sidtab_insert(struct sidtab *s, u32 sid, struct context *context)
 34{
 35	int hvalue, rc = 0;
 36	struct sidtab_node *prev, *cur, *newnode;
 37
 38	if (!s) {
 39		rc = -ENOMEM;
 40		goto out;
 
 
 
 
 
 41	}
 
 
 
 42
 43	hvalue = SIDTAB_HASH(sid);
 44	prev = NULL;
 45	cur = s->htable[hvalue];
 46	while (cur && sid > cur->sid) {
 47		prev = cur;
 48		cur = cur->next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49	}
 50
 51	if (cur && sid == cur->sid) {
 52		rc = -EEXIST;
 53		goto out;
 54	}
 55
 56	newnode = kmalloc(sizeof(*newnode), GFP_ATOMIC);
 57	if (newnode == NULL) {
 58		rc = -ENOMEM;
 59		goto out;
 60	}
 61	newnode->sid = sid;
 62	if (context_cpy(&newnode->context, context)) {
 63		kfree(newnode);
 64		rc = -ENOMEM;
 65		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 66	}
 
 67
 68	if (prev) {
 69		newnode->next = prev->next;
 70		wmb();
 71		prev->next = newnode;
 72	} else {
 73		newnode->next = s->htable[hvalue];
 74		wmb();
 75		s->htable[hvalue] = newnode;
 
 
 
 
 
 
 
 
 
 
 76	}
 
 
 77
 78	s->nel++;
 79	if (sid >= s->next_sid)
 80		s->next_sid = sid + 1;
 81out:
 82	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 83}
 84
 85static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
 
 86{
 87	int hvalue;
 88	struct sidtab_node *cur;
 
 
 
 
 89
 90	if (!s)
 
 91		return NULL;
 92
 93	hvalue = SIDTAB_HASH(sid);
 94	cur = s->htable[hvalue];
 95	while (cur && sid > cur->sid)
 96		cur = cur->next;
 97
 98	if (force && cur && sid == cur->sid && cur->context.len)
 99		return &cur->context;
100
101	if (cur == NULL || sid != cur->sid || cur->context.len) {
102		/* Remap invalid SIDs to the unlabeled SID. */
103		sid = SECINITSID_UNLABELED;
104		hvalue = SIDTAB_HASH(sid);
105		cur = s->htable[hvalue];
106		while (cur && sid > cur->sid)
107			cur = cur->next;
108		if (!cur || sid != cur->sid)
 
 
 
 
 
 
109			return NULL;
110	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111
112	return &cur->context;
113}
114
115struct context *sidtab_search(struct sidtab *s, u32 sid)
116{
117	return sidtab_search_core(s, sid, 0);
118}
119
120struct context *sidtab_search_force(struct sidtab *s, u32 sid)
121{
122	return sidtab_search_core(s, sid, 1);
123}
124
125int sidtab_map(struct sidtab *s,
126	       int (*apply) (u32 sid,
127			     struct context *context,
128			     void *args),
129	       void *args)
130{
131	int i, rc = 0;
132	struct sidtab_node *cur;
133
134	if (!s)
135		goto out;
136
137	for (i = 0; i < SIDTAB_SIZE; i++) {
138		cur = s->htable[i];
139		while (cur) {
140			rc = apply(cur->sid, &cur->context, args);
141			if (rc)
142				goto out;
143			cur = cur->next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144		}
 
 
 
 
 
 
145	}
146out:
 
 
 
 
 
 
 
 
 
 
 
 
 
147	return rc;
148}
149
150static void sidtab_update_cache(struct sidtab *s, struct sidtab_node *n, int loc)
151{
152	BUG_ON(loc >= SIDTAB_CACHE_LEN);
 
153
154	while (loc > 0) {
155		s->cache[loc] = s->cache[loc - 1];
156		loc--;
 
 
 
157	}
158	s->cache[0] = n;
159}
160
161static inline u32 sidtab_search_context(struct sidtab *s,
162						  struct context *context)
 
 
163{
164	int i;
165	struct sidtab_node *cur;
166
167	for (i = 0; i < SIDTAB_SIZE; i++) {
168		cur = s->htable[i];
169		while (cur) {
170			if (context_cmp(&cur->context, context)) {
171				sidtab_update_cache(s, cur, SIDTAB_CACHE_LEN - 1);
172				return cur->sid;
173			}
174			cur = cur->next;
175		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176	}
177	return 0;
178}
179
180static inline u32 sidtab_search_cache(struct sidtab *s, struct context *context)
181{
182	int i;
183	struct sidtab_node *node;
 
184
185	for (i = 0; i < SIDTAB_CACHE_LEN; i++) {
186		node = s->cache[i];
187		if (unlikely(!node))
188			return 0;
189		if (context_cmp(&node->context, context)) {
190			sidtab_update_cache(s, node, i);
191			return node->sid;
192		}
193	}
194	return 0;
195}
196
197int sidtab_context_to_sid(struct sidtab *s,
198			  struct context *context,
199			  u32 *out_sid)
200{
201	u32 sid;
202	int ret = 0;
203	unsigned long flags;
 
 
 
 
204
205	*out_sid = SECSID_NULL;
 
206
207	sid  = sidtab_search_cache(s, context);
208	if (!sid)
209		sid = sidtab_search_context(s, context);
210	if (!sid) {
 
 
 
 
 
 
 
 
 
 
211		spin_lock_irqsave(&s->lock, flags);
212		/* Rescan now that we hold the lock. */
213		sid = sidtab_search_context(s, context);
214		if (sid)
215			goto unlock_out;
216		/* No SID exists for the context.  Allocate a new one. */
217		if (s->next_sid == UINT_MAX || s->shutdown) {
218			ret = -ENOMEM;
219			goto unlock_out;
220		}
221		sid = s->next_sid++;
222		if (context->len)
223			printk(KERN_INFO
224		       "SELinux:  Context %s is not valid (left unmapped).\n",
225			       context->str);
226		ret = sidtab_insert(s, sid, context);
227		if (ret)
228			s->next_sid--;
229unlock_out:
230		spin_unlock_irqrestore(&s->lock, flags);
 
231	}
 
 
 
 
 
 
 
232
233	if (ret)
234		return ret;
235
236	*out_sid = sid;
237	return 0;
238}
239
240void sidtab_hash_eval(struct sidtab *h, char *tag)
241{
242	int i, chain_len, slots_used, max_chain_len;
243	struct sidtab_node *cur;
244
245	slots_used = 0;
246	max_chain_len = 0;
247	for (i = 0; i < SIDTAB_SIZE; i++) {
248		cur = h->htable[i];
249		if (cur) {
250			slots_used++;
251			chain_len = 0;
252			while (cur) {
253				chain_len++;
254				cur = cur->next;
255			}
256
257			if (chain_len > max_chain_len)
258				max_chain_len = chain_len;
259		}
260	}
 
 
 
 
 
 
 
 
261
262	printk(KERN_DEBUG "%s:  %d entries and %d/%d buckets used, longest "
263	       "chain length %d\n", tag, h->nel, slots_used, SIDTAB_SIZE,
264	       max_chain_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265}
266
267void sidtab_destroy(struct sidtab *s)
268{
269	int i;
270	struct sidtab_node *cur, *temp;
271
272	if (!s)
273		return;
 
274
275	for (i = 0; i < SIDTAB_SIZE; i++) {
276		cur = s->htable[i];
277		while (cur) {
278			temp = cur;
279			cur = cur->next;
280			context_destroy(&temp->context);
281			kfree(temp);
282		}
283		s->htable[i] = NULL;
284	}
285	kfree(s->htable);
286	s->htable = NULL;
287	s->nel = 0;
288	s->next_sid = 1;
289}
290
291void sidtab_set(struct sidtab *dst, struct sidtab *src)
 
 
 
292{
 
293	unsigned long flags;
294	int i;
295
296	spin_lock_irqsave(&src->lock, flags);
297	dst->htable = src->htable;
298	dst->nel = src->nel;
299	dst->next_sid = src->next_sid;
300	dst->shutdown = 0;
301	for (i = 0; i < SIDTAB_CACHE_LEN; i++)
302		dst->cache[i] = NULL;
303	spin_unlock_irqrestore(&src->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304}
305
306void sidtab_shutdown(struct sidtab *s)
 
307{
308	unsigned long flags;
 
309
310	spin_lock_irqsave(&s->lock, flags);
311	s->shutdown = 1;
312	spin_unlock_irqrestore(&s->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
313}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implementation of the SID table type.
  4 *
  5 * Original author: Stephen Smalley, <stephen.smalley.work@gmail.com>
  6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
  7 *
  8 * Copyright (C) 2018 Red Hat, Inc.
  9 */
 10
 11#include <linux/errno.h>
 12#include <linux/kernel.h>
 13#include <linux/list.h>
 14#include <linux/rcupdate.h>
 15#include <linux/slab.h>
 16#include <linux/sched.h>
 17#include <linux/spinlock.h>
 18#include <asm/barrier.h>
 19#include "flask.h"
 20#include "security.h"
 21#include "sidtab.h"
 22#include "services.h"
 23
 24struct sidtab_str_cache {
 25	struct rcu_head rcu_member;
 26	struct list_head lru_member;
 27	struct sidtab_entry *parent;
 28	u32 len;
 29	char str[] __counted_by(len);
 30};
 31
 32#define index_to_sid(index) ((index) + SECINITSID_NUM + 1)
 33#define sid_to_index(sid)   ((sid) - (SECINITSID_NUM + 1))
 34
 35int sidtab_init(struct sidtab *s)
 36{
 37	u32 i;
 38
 39	memset(s->roots, 0, sizeof(s->roots));
 40
 41	for (i = 0; i < SECINITSID_NUM; i++)
 42		s->isids[i].set = 0;
 43
 44	s->frozen = false;
 45	s->count = 0;
 46	s->convert = NULL;
 47	hash_init(s->context_to_sid);
 48
 
 
 
 
 
 
 
 
 49	spin_lock_init(&s->lock);
 50
 51#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 52	s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
 53	INIT_LIST_HEAD(&s->cache_lru_list);
 54	spin_lock_init(&s->cache_lock);
 55#endif
 56
 57	return 0;
 58}
 59
 60static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
 61{
 62	struct sidtab_entry *entry;
 63	u32 sid = 0;
 64
 65	rcu_read_lock();
 66	hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
 67		if (entry->hash != hash)
 68			continue;
 69		if (context_cmp(&entry->context, context)) {
 70			sid = entry->sid;
 71			break;
 72		}
 73	}
 74	rcu_read_unlock();
 75	return sid;
 76}
 77
 78int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
 79{
 80	struct sidtab_isid_entry *isid;
 81	u32 hash;
 82	int rc;
 83
 84	if (sid == 0 || sid > SECINITSID_NUM)
 85		return -EINVAL;
 86
 87	isid = &s->isids[sid - 1];
 88
 89	rc = context_cpy(&isid->entry.context, context);
 90	if (rc)
 91		return rc;
 92
 93#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
 94	isid->entry.cache = NULL;
 95#endif
 96	isid->set = 1;
 97
 98	hash = context_compute_hash(context);
 99
100	/*
101	 * Multiple initial sids may map to the same context. Check that this
102	 * context is not already represented in the context_to_sid hashtable
103	 * to avoid duplicate entries and long linked lists upon hash
104	 * collision.
105	 */
106	if (!context_to_sid(s, context, hash)) {
107		isid->entry.sid = sid;
108		isid->entry.hash = hash;
109		hash_add(s->context_to_sid, &isid->entry.list, hash);
110	}
111
112	return 0;
113}
 
 
114
115int sidtab_hash_stats(struct sidtab *sidtab, char *page)
116{
117	int i;
118	int chain_len = 0;
119	int slots_used = 0;
120	int entries = 0;
121	int max_chain_len = 0;
122	int cur_bucket = 0;
123	struct sidtab_entry *entry;
124
125	rcu_read_lock();
126	hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
127		entries++;
128		if (i == cur_bucket) {
129			chain_len++;
130			if (chain_len == 1)
131				slots_used++;
132		} else {
133			cur_bucket = i;
134			if (chain_len > max_chain_len)
135				max_chain_len = chain_len;
136			chain_len = 0;
137		}
138	}
139	rcu_read_unlock();
140
141	if (chain_len > max_chain_len)
142		max_chain_len = chain_len;
143
144	return scnprintf(page, PAGE_SIZE,
145			 "entries: %d\nbuckets used: %d/%d\n"
146			 "longest chain: %d\n",
147			 entries, slots_used, SIDTAB_HASH_BUCKETS,
148			 max_chain_len);
149}
150
151static u32 sidtab_level_from_count(u32 count)
152{
153	u32 capacity = SIDTAB_LEAF_ENTRIES;
154	u32 level = 0;
155
156	while (count > capacity) {
157		capacity <<= SIDTAB_INNER_SHIFT;
158		++level;
159	}
160	return level;
161}
162
163static int sidtab_alloc_roots(struct sidtab *s, u32 level)
164{
165	u32 l;
166
167	if (!s->roots[0].ptr_leaf) {
168		s->roots[0].ptr_leaf =
169			kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
170		if (!s->roots[0].ptr_leaf)
171			return -ENOMEM;
172	}
173	for (l = 1; l <= level; ++l)
174		if (!s->roots[l].ptr_inner) {
175			s->roots[l].ptr_inner =
176				kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
177			if (!s->roots[l].ptr_inner)
178				return -ENOMEM;
179			s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
180		}
181	return 0;
182}
183
184static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
185					     int alloc)
186{
187	union sidtab_entry_inner *entry;
188	u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
189
190	/* find the level of the subtree we need */
191	level = sidtab_level_from_count(index + 1);
192	capacity_shift = level * SIDTAB_INNER_SHIFT;
193
194	/* allocate roots if needed */
195	if (alloc && sidtab_alloc_roots(s, level) != 0)
196		return NULL;
197
198	/* lookup inside the subtree */
199	entry = &s->roots[level];
200	while (level != 0) {
201		capacity_shift -= SIDTAB_INNER_SHIFT;
202		--level;
203
204		entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
205		leaf_index &= ((u32)1 << capacity_shift) - 1;
206
207		if (!entry->ptr_inner) {
208			if (alloc)
209				entry->ptr_inner = kzalloc(
210					SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
211			if (!entry->ptr_inner)
212				return NULL;
213		}
214	}
215	if (!entry->ptr_leaf) {
216		if (alloc)
217			entry->ptr_leaf =
218				kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_ATOMIC);
219		if (!entry->ptr_leaf)
220			return NULL;
221	}
222	return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
223}
224
225static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
226{
227	/* read entries only after reading count */
228	u32 count = smp_load_acquire(&s->count);
229
230	if (index >= count)
231		return NULL;
232
233	return sidtab_do_lookup(s, index, 0);
234}
235
236static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
237{
238	return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
239}
240
241static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
242					       int force)
243{
244	if (sid != 0) {
245		struct sidtab_entry *entry;
246
247		if (sid > SECINITSID_NUM)
248			entry = sidtab_lookup(s, sid_to_index(sid));
249		else
250			entry = sidtab_lookup_initial(s, sid);
251		if (entry && (!entry->context.len || force))
252			return entry;
253	}
254
255	return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
256}
257
258struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
259{
260	return sidtab_search_core(s, sid, 0);
261}
262
263struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
264{
265	return sidtab_search_core(s, sid, 1);
266}
267
268int sidtab_context_to_sid(struct sidtab *s, struct context *context, u32 *sid)
269{
270	unsigned long flags;
271	u32 count, hash = context_compute_hash(context);
272	struct sidtab_convert_params *convert;
273	struct sidtab_entry *dst, *dst_convert;
274	int rc;
275
276	*sid = context_to_sid(s, context, hash);
277	if (*sid)
278		return 0;
279
280	/* lock-free search failed: lock, re-search, and insert if not found */
281	spin_lock_irqsave(&s->lock, flags);
282
283	rc = 0;
284	*sid = context_to_sid(s, context, hash);
285	if (*sid)
286		goto out_unlock;
287
288	if (unlikely(s->frozen)) {
289		/*
290		 * This sidtab is now frozen - tell the caller to abort and
291		 * get the new one.
292		 */
293		rc = -ESTALE;
294		goto out_unlock;
295	}
296
297	count = s->count;
298
299	/* bail out if we already reached max entries */
300	rc = -EOVERFLOW;
301	if (count >= SIDTAB_MAX)
302		goto out_unlock;
303
304	/* insert context into new entry */
305	rc = -ENOMEM;
306	dst = sidtab_do_lookup(s, count, 1);
307	if (!dst)
308		goto out_unlock;
309
310	dst->sid = index_to_sid(count);
311	dst->hash = hash;
312
313	rc = context_cpy(&dst->context, context);
314	if (rc)
315		goto out_unlock;
316
317	/*
318	 * if we are building a new sidtab, we need to convert the context
319	 * and insert it there as well
320	 */
321	convert = s->convert;
322	if (convert) {
323		struct sidtab *target = convert->target;
324
325		rc = -ENOMEM;
326		dst_convert = sidtab_do_lookup(target, count, 1);
327		if (!dst_convert) {
328			context_destroy(&dst->context);
329			goto out_unlock;
330		}
331
332		rc = services_convert_context(convert->args, context,
333					      &dst_convert->context,
334					      GFP_ATOMIC);
335		if (rc) {
336			context_destroy(&dst->context);
337			goto out_unlock;
338		}
339		dst_convert->sid = index_to_sid(count);
340		dst_convert->hash = context_compute_hash(&dst_convert->context);
341		target->count = count + 1;
342
343		hash_add_rcu(target->context_to_sid, &dst_convert->list,
344			     dst_convert->hash);
345	}
346
347	if (context->len)
348		pr_info("SELinux:  Context %s is not valid (left unmapped).\n",
349			context->str);
350
351	*sid = index_to_sid(count);
352
353	/* write entries before updating count */
354	smp_store_release(&s->count, count + 1);
355	hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
356
357	rc = 0;
358out_unlock:
359	spin_unlock_irqrestore(&s->lock, flags);
360	return rc;
361}
362
363static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
364{
365	struct sidtab_entry *entry;
366	u32 i;
367
368	for (i = 0; i < count; i++) {
369		entry = sidtab_do_lookup(s, i, 0);
370		entry->sid = index_to_sid(i);
371		entry->hash = context_compute_hash(&entry->context);
372
373		hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
374	}
 
375}
376
377static int sidtab_convert_tree(union sidtab_entry_inner *edst,
378			       union sidtab_entry_inner *esrc, u32 *pos,
379			       u32 count, u32 level,
380			       struct sidtab_convert_params *convert)
381{
382	int rc;
383	u32 i;
384
385	if (level != 0) {
386		if (!edst->ptr_inner) {
387			edst->ptr_inner =
388				kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_KERNEL);
389			if (!edst->ptr_inner)
390				return -ENOMEM;
 
 
391		}
392		i = 0;
393		while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
394			rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
395						 &esrc->ptr_inner->entries[i],
396						 pos, count, level - 1,
397						 convert);
398			if (rc)
399				return rc;
400			i++;
401		}
402	} else {
403		if (!edst->ptr_leaf) {
404			edst->ptr_leaf =
405				kzalloc(SIDTAB_NODE_ALLOC_SIZE, GFP_KERNEL);
406			if (!edst->ptr_leaf)
407				return -ENOMEM;
408		}
409		i = 0;
410		while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
411			rc = services_convert_context(
412				convert->args,
413				&esrc->ptr_leaf->entries[i].context,
414				&edst->ptr_leaf->entries[i].context,
415				GFP_KERNEL);
416			if (rc)
417				return rc;
418			(*pos)++;
419			i++;
420		}
421		cond_resched();
422	}
423	return 0;
424}
425
426int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
427{
428	unsigned long flags;
429	u32 count, level, pos;
430	int rc;
431
432	spin_lock_irqsave(&s->lock, flags);
433
434	/* concurrent policy loads are not allowed */
435	if (s->convert) {
436		spin_unlock_irqrestore(&s->lock, flags);
437		return -EBUSY;
 
 
438	}
 
 
439
440	count = s->count;
441	level = sidtab_level_from_count(count);
442
443	/* allocate last leaf in the new sidtab (to avoid race with
444	 * live convert)
445	 */
446	rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
447	if (rc) {
448		spin_unlock_irqrestore(&s->lock, flags);
449		return rc;
450	}
451
452	/* set count in case no new entries are added during conversion */
453	params->target->count = count;
454
455	/* enable live convert of new entries */
456	s->convert = params;
457
458	/* we can safely convert the tree outside the lock */
459	spin_unlock_irqrestore(&s->lock, flags);
460
461	pr_info("SELinux:  Converting %u SID table entries...\n", count);
462
463	/* convert all entries not covered by live convert */
464	pos = 0;
465	rc = sidtab_convert_tree(&params->target->roots[level],
466				 &s->roots[level], &pos, count, level, params);
467	if (rc) {
468		/* we need to keep the old table - disable live convert */
469		spin_lock_irqsave(&s->lock, flags);
470		s->convert = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471		spin_unlock_irqrestore(&s->lock, flags);
472		return rc;
473	}
474	/*
475	 * The hashtable can also be modified in sidtab_context_to_sid()
476	 * so we must re-acquire the lock here.
477	 */
478	spin_lock_irqsave(&s->lock, flags);
479	sidtab_convert_hashtable(params->target, count);
480	spin_unlock_irqrestore(&s->lock, flags);
481
 
 
 
 
482	return 0;
483}
484
485void sidtab_cancel_convert(struct sidtab *s)
486{
487	unsigned long flags;
 
488
489	/* cancelling policy load - disable live convert of sidtab */
490	spin_lock_irqsave(&s->lock, flags);
491	s->convert = NULL;
492	spin_unlock_irqrestore(&s->lock, flags);
493}
 
 
 
 
 
 
494
495void sidtab_freeze_begin(struct sidtab *s, unsigned long *flags)
496	__acquires(&s->lock)
497{
498	spin_lock_irqsave(&s->lock, *flags);
499	s->frozen = true;
500	s->convert = NULL;
501}
502void sidtab_freeze_end(struct sidtab *s, unsigned long *flags)
503	__releases(&s->lock)
504{
505	spin_unlock_irqrestore(&s->lock, *flags);
506}
507
508static void sidtab_destroy_entry(struct sidtab_entry *entry)
509{
510	context_destroy(&entry->context);
511#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
512	kfree(rcu_dereference_raw(entry->cache));
513#endif
514}
515
516static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
517{
518	u32 i;
519
520	if (level != 0) {
521		struct sidtab_node_inner *node = entry.ptr_inner;
522
523		if (!node)
524			return;
525
526		for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
527			sidtab_destroy_tree(node->entries[i], level - 1);
528		kfree(node);
529	} else {
530		struct sidtab_node_leaf *node = entry.ptr_leaf;
531
532		if (!node)
533			return;
534
535		for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
536			sidtab_destroy_entry(&node->entries[i]);
537		kfree(node);
538	}
539}
540
541void sidtab_destroy(struct sidtab *s)
542{
543	u32 i, level;
 
544
545	for (i = 0; i < SECINITSID_NUM; i++)
546		if (s->isids[i].set)
547			sidtab_destroy_entry(&s->isids[i].entry);
548
549	level = SIDTAB_MAX_LEVEL;
550	while (level && !s->roots[level].ptr_inner)
551		--level;
552
553	sidtab_destroy_tree(s->roots[level], level);
554	/*
555	 * The context_to_sid hashtable's objects are all shared
556	 * with the isids array and context tree, and so don't need
557	 * to be cleaned up here.
558	 */
 
 
 
 
559}
560
561#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
562
563void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
564			const char *str, u32 str_len)
565{
566	struct sidtab_str_cache *cache, *victim = NULL;
567	unsigned long flags;
 
568
569	/* do not cache invalid contexts */
570	if (entry->context.len)
571		return;
572
573	spin_lock_irqsave(&s->cache_lock, flags);
574
575	cache = rcu_dereference_protected(entry->cache,
576					  lockdep_is_held(&s->cache_lock));
577	if (cache) {
578		/* entry in cache - just bump to the head of LRU list */
579		list_move(&cache->lru_member, &s->cache_lru_list);
580		goto out_unlock;
581	}
582
583	cache = kmalloc(struct_size(cache, str, str_len), GFP_ATOMIC);
584	if (!cache)
585		goto out_unlock;
586
587	if (s->cache_free_slots == 0) {
588		/* pop a cache entry from the tail and free it */
589		victim = container_of(s->cache_lru_list.prev,
590				      struct sidtab_str_cache, lru_member);
591		list_del(&victim->lru_member);
592		rcu_assign_pointer(victim->parent->cache, NULL);
593	} else {
594		s->cache_free_slots--;
595	}
596	cache->parent = entry;
597	cache->len = str_len;
598	memcpy(cache->str, str, str_len);
599	list_add(&cache->lru_member, &s->cache_lru_list);
600
601	rcu_assign_pointer(entry->cache, cache);
602
603out_unlock:
604	spin_unlock_irqrestore(&s->cache_lock, flags);
605	kfree_rcu(victim, rcu_member);
606}
607
608int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry, char **out,
609		       u32 *out_len)
610{
611	struct sidtab_str_cache *cache;
612	int rc = 0;
613
614	if (entry->context.len)
615		return -ENOENT; /* do not cache invalid contexts */
616
617	rcu_read_lock();
618
619	cache = rcu_dereference(entry->cache);
620	if (!cache) {
621		rc = -ENOENT;
622	} else {
623		*out_len = cache->len;
624		if (out) {
625			*out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
626			if (!*out)
627				rc = -ENOMEM;
628		}
629	}
630
631	rcu_read_unlock();
632
633	if (!rc && out)
634		sidtab_sid2str_put(s, entry, *out, *out_len);
635	return rc;
636}
637
638#endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */