Loading...
1/*
2 * Implementation of the SID table type.
3 *
4 * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
5 */
6#include <linux/kernel.h>
7#include <linux/slab.h>
8#include <linux/spinlock.h>
9#include <linux/errno.h>
10#include "flask.h"
11#include "security.h"
12#include "sidtab.h"
13
14#define SIDTAB_HASH(sid) \
15(sid & SIDTAB_HASH_MASK)
16
17int sidtab_init(struct sidtab *s)
18{
19 int i;
20
21 s->htable = kmalloc(sizeof(*(s->htable)) * SIDTAB_SIZE, GFP_ATOMIC);
22 if (!s->htable)
23 return -ENOMEM;
24 for (i = 0; i < SIDTAB_SIZE; i++)
25 s->htable[i] = NULL;
26 s->nel = 0;
27 s->next_sid = 1;
28 s->shutdown = 0;
29 spin_lock_init(&s->lock);
30 return 0;
31}
32
33int sidtab_insert(struct sidtab *s, u32 sid, struct context *context)
34{
35 int hvalue, rc = 0;
36 struct sidtab_node *prev, *cur, *newnode;
37
38 if (!s) {
39 rc = -ENOMEM;
40 goto out;
41 }
42
43 hvalue = SIDTAB_HASH(sid);
44 prev = NULL;
45 cur = s->htable[hvalue];
46 while (cur && sid > cur->sid) {
47 prev = cur;
48 cur = cur->next;
49 }
50
51 if (cur && sid == cur->sid) {
52 rc = -EEXIST;
53 goto out;
54 }
55
56 newnode = kmalloc(sizeof(*newnode), GFP_ATOMIC);
57 if (newnode == NULL) {
58 rc = -ENOMEM;
59 goto out;
60 }
61 newnode->sid = sid;
62 if (context_cpy(&newnode->context, context)) {
63 kfree(newnode);
64 rc = -ENOMEM;
65 goto out;
66 }
67
68 if (prev) {
69 newnode->next = prev->next;
70 wmb();
71 prev->next = newnode;
72 } else {
73 newnode->next = s->htable[hvalue];
74 wmb();
75 s->htable[hvalue] = newnode;
76 }
77
78 s->nel++;
79 if (sid >= s->next_sid)
80 s->next_sid = sid + 1;
81out:
82 return rc;
83}
84
85static struct context *sidtab_search_core(struct sidtab *s, u32 sid, int force)
86{
87 int hvalue;
88 struct sidtab_node *cur;
89
90 if (!s)
91 return NULL;
92
93 hvalue = SIDTAB_HASH(sid);
94 cur = s->htable[hvalue];
95 while (cur && sid > cur->sid)
96 cur = cur->next;
97
98 if (force && cur && sid == cur->sid && cur->context.len)
99 return &cur->context;
100
101 if (cur == NULL || sid != cur->sid || cur->context.len) {
102 /* Remap invalid SIDs to the unlabeled SID. */
103 sid = SECINITSID_UNLABELED;
104 hvalue = SIDTAB_HASH(sid);
105 cur = s->htable[hvalue];
106 while (cur && sid > cur->sid)
107 cur = cur->next;
108 if (!cur || sid != cur->sid)
109 return NULL;
110 }
111
112 return &cur->context;
113}
114
115struct context *sidtab_search(struct sidtab *s, u32 sid)
116{
117 return sidtab_search_core(s, sid, 0);
118}
119
120struct context *sidtab_search_force(struct sidtab *s, u32 sid)
121{
122 return sidtab_search_core(s, sid, 1);
123}
124
125int sidtab_map(struct sidtab *s,
126 int (*apply) (u32 sid,
127 struct context *context,
128 void *args),
129 void *args)
130{
131 int i, rc = 0;
132 struct sidtab_node *cur;
133
134 if (!s)
135 goto out;
136
137 for (i = 0; i < SIDTAB_SIZE; i++) {
138 cur = s->htable[i];
139 while (cur) {
140 rc = apply(cur->sid, &cur->context, args);
141 if (rc)
142 goto out;
143 cur = cur->next;
144 }
145 }
146out:
147 return rc;
148}
149
150static void sidtab_update_cache(struct sidtab *s, struct sidtab_node *n, int loc)
151{
152 BUG_ON(loc >= SIDTAB_CACHE_LEN);
153
154 while (loc > 0) {
155 s->cache[loc] = s->cache[loc - 1];
156 loc--;
157 }
158 s->cache[0] = n;
159}
160
161static inline u32 sidtab_search_context(struct sidtab *s,
162 struct context *context)
163{
164 int i;
165 struct sidtab_node *cur;
166
167 for (i = 0; i < SIDTAB_SIZE; i++) {
168 cur = s->htable[i];
169 while (cur) {
170 if (context_cmp(&cur->context, context)) {
171 sidtab_update_cache(s, cur, SIDTAB_CACHE_LEN - 1);
172 return cur->sid;
173 }
174 cur = cur->next;
175 }
176 }
177 return 0;
178}
179
180static inline u32 sidtab_search_cache(struct sidtab *s, struct context *context)
181{
182 int i;
183 struct sidtab_node *node;
184
185 for (i = 0; i < SIDTAB_CACHE_LEN; i++) {
186 node = s->cache[i];
187 if (unlikely(!node))
188 return 0;
189 if (context_cmp(&node->context, context)) {
190 sidtab_update_cache(s, node, i);
191 return node->sid;
192 }
193 }
194 return 0;
195}
196
197int sidtab_context_to_sid(struct sidtab *s,
198 struct context *context,
199 u32 *out_sid)
200{
201 u32 sid;
202 int ret = 0;
203 unsigned long flags;
204
205 *out_sid = SECSID_NULL;
206
207 sid = sidtab_search_cache(s, context);
208 if (!sid)
209 sid = sidtab_search_context(s, context);
210 if (!sid) {
211 spin_lock_irqsave(&s->lock, flags);
212 /* Rescan now that we hold the lock. */
213 sid = sidtab_search_context(s, context);
214 if (sid)
215 goto unlock_out;
216 /* No SID exists for the context. Allocate a new one. */
217 if (s->next_sid == UINT_MAX || s->shutdown) {
218 ret = -ENOMEM;
219 goto unlock_out;
220 }
221 sid = s->next_sid++;
222 if (context->len)
223 printk(KERN_INFO
224 "SELinux: Context %s is not valid (left unmapped).\n",
225 context->str);
226 ret = sidtab_insert(s, sid, context);
227 if (ret)
228 s->next_sid--;
229unlock_out:
230 spin_unlock_irqrestore(&s->lock, flags);
231 }
232
233 if (ret)
234 return ret;
235
236 *out_sid = sid;
237 return 0;
238}
239
240void sidtab_hash_eval(struct sidtab *h, char *tag)
241{
242 int i, chain_len, slots_used, max_chain_len;
243 struct sidtab_node *cur;
244
245 slots_used = 0;
246 max_chain_len = 0;
247 for (i = 0; i < SIDTAB_SIZE; i++) {
248 cur = h->htable[i];
249 if (cur) {
250 slots_used++;
251 chain_len = 0;
252 while (cur) {
253 chain_len++;
254 cur = cur->next;
255 }
256
257 if (chain_len > max_chain_len)
258 max_chain_len = chain_len;
259 }
260 }
261
262 printk(KERN_DEBUG "%s: %d entries and %d/%d buckets used, longest "
263 "chain length %d\n", tag, h->nel, slots_used, SIDTAB_SIZE,
264 max_chain_len);
265}
266
267void sidtab_destroy(struct sidtab *s)
268{
269 int i;
270 struct sidtab_node *cur, *temp;
271
272 if (!s)
273 return;
274
275 for (i = 0; i < SIDTAB_SIZE; i++) {
276 cur = s->htable[i];
277 while (cur) {
278 temp = cur;
279 cur = cur->next;
280 context_destroy(&temp->context);
281 kfree(temp);
282 }
283 s->htable[i] = NULL;
284 }
285 kfree(s->htable);
286 s->htable = NULL;
287 s->nel = 0;
288 s->next_sid = 1;
289}
290
291void sidtab_set(struct sidtab *dst, struct sidtab *src)
292{
293 unsigned long flags;
294 int i;
295
296 spin_lock_irqsave(&src->lock, flags);
297 dst->htable = src->htable;
298 dst->nel = src->nel;
299 dst->next_sid = src->next_sid;
300 dst->shutdown = 0;
301 for (i = 0; i < SIDTAB_CACHE_LEN; i++)
302 dst->cache[i] = NULL;
303 spin_unlock_irqrestore(&src->lock, flags);
304}
305
306void sidtab_shutdown(struct sidtab *s)
307{
308 unsigned long flags;
309
310 spin_lock_irqsave(&s->lock, flags);
311 s->shutdown = 1;
312 spin_unlock_irqrestore(&s->lock, flags);
313}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Implementation of the SID table type.
4 *
5 * Original author: Stephen Smalley, <sds@tycho.nsa.gov>
6 * Author: Ondrej Mosnacek, <omosnacek@gmail.com>
7 *
8 * Copyright (C) 2018 Red Hat, Inc.
9 */
10#include <linux/errno.h>
11#include <linux/kernel.h>
12#include <linux/list.h>
13#include <linux/rcupdate.h>
14#include <linux/slab.h>
15#include <linux/sched.h>
16#include <linux/spinlock.h>
17#include <asm/barrier.h>
18#include "flask.h"
19#include "security.h"
20#include "sidtab.h"
21
22struct sidtab_str_cache {
23 struct rcu_head rcu_member;
24 struct list_head lru_member;
25 struct sidtab_entry *parent;
26 u32 len;
27 char str[];
28};
29
30#define index_to_sid(index) (index + SECINITSID_NUM + 1)
31#define sid_to_index(sid) (sid - (SECINITSID_NUM + 1))
32
33int sidtab_init(struct sidtab *s)
34{
35 u32 i;
36
37 memset(s->roots, 0, sizeof(s->roots));
38
39 for (i = 0; i < SECINITSID_NUM; i++)
40 s->isids[i].set = 0;
41
42 s->count = 0;
43 s->convert = NULL;
44 hash_init(s->context_to_sid);
45
46 spin_lock_init(&s->lock);
47
48#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
49 s->cache_free_slots = CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE;
50 INIT_LIST_HEAD(&s->cache_lru_list);
51 spin_lock_init(&s->cache_lock);
52#endif
53
54 return 0;
55}
56
57static u32 context_to_sid(struct sidtab *s, struct context *context, u32 hash)
58{
59 struct sidtab_entry *entry;
60 u32 sid = 0;
61
62 rcu_read_lock();
63 hash_for_each_possible_rcu(s->context_to_sid, entry, list, hash) {
64 if (entry->hash != hash)
65 continue;
66 if (context_cmp(&entry->context, context)) {
67 sid = entry->sid;
68 break;
69 }
70 }
71 rcu_read_unlock();
72 return sid;
73}
74
75int sidtab_set_initial(struct sidtab *s, u32 sid, struct context *context)
76{
77 struct sidtab_isid_entry *isid;
78 u32 hash;
79 int rc;
80
81 if (sid == 0 || sid > SECINITSID_NUM)
82 return -EINVAL;
83
84 isid = &s->isids[sid - 1];
85
86 rc = context_cpy(&isid->entry.context, context);
87 if (rc)
88 return rc;
89
90#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
91 isid->entry.cache = NULL;
92#endif
93 isid->set = 1;
94
95 hash = context_compute_hash(context);
96
97 /*
98 * Multiple initial sids may map to the same context. Check that this
99 * context is not already represented in the context_to_sid hashtable
100 * to avoid duplicate entries and long linked lists upon hash
101 * collision.
102 */
103 if (!context_to_sid(s, context, hash)) {
104 isid->entry.sid = sid;
105 isid->entry.hash = hash;
106 hash_add(s->context_to_sid, &isid->entry.list, hash);
107 }
108
109 return 0;
110}
111
112int sidtab_hash_stats(struct sidtab *sidtab, char *page)
113{
114 int i;
115 int chain_len = 0;
116 int slots_used = 0;
117 int entries = 0;
118 int max_chain_len = 0;
119 int cur_bucket = 0;
120 struct sidtab_entry *entry;
121
122 rcu_read_lock();
123 hash_for_each_rcu(sidtab->context_to_sid, i, entry, list) {
124 entries++;
125 if (i == cur_bucket) {
126 chain_len++;
127 if (chain_len == 1)
128 slots_used++;
129 } else {
130 cur_bucket = i;
131 if (chain_len > max_chain_len)
132 max_chain_len = chain_len;
133 chain_len = 0;
134 }
135 }
136 rcu_read_unlock();
137
138 if (chain_len > max_chain_len)
139 max_chain_len = chain_len;
140
141 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
142 "longest chain: %d\n", entries,
143 slots_used, SIDTAB_HASH_BUCKETS, max_chain_len);
144}
145
146static u32 sidtab_level_from_count(u32 count)
147{
148 u32 capacity = SIDTAB_LEAF_ENTRIES;
149 u32 level = 0;
150
151 while (count > capacity) {
152 capacity <<= SIDTAB_INNER_SHIFT;
153 ++level;
154 }
155 return level;
156}
157
158static int sidtab_alloc_roots(struct sidtab *s, u32 level)
159{
160 u32 l;
161
162 if (!s->roots[0].ptr_leaf) {
163 s->roots[0].ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
164 GFP_ATOMIC);
165 if (!s->roots[0].ptr_leaf)
166 return -ENOMEM;
167 }
168 for (l = 1; l <= level; ++l)
169 if (!s->roots[l].ptr_inner) {
170 s->roots[l].ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
171 GFP_ATOMIC);
172 if (!s->roots[l].ptr_inner)
173 return -ENOMEM;
174 s->roots[l].ptr_inner->entries[0] = s->roots[l - 1];
175 }
176 return 0;
177}
178
179static struct sidtab_entry *sidtab_do_lookup(struct sidtab *s, u32 index,
180 int alloc)
181{
182 union sidtab_entry_inner *entry;
183 u32 level, capacity_shift, leaf_index = index / SIDTAB_LEAF_ENTRIES;
184
185 /* find the level of the subtree we need */
186 level = sidtab_level_from_count(index + 1);
187 capacity_shift = level * SIDTAB_INNER_SHIFT;
188
189 /* allocate roots if needed */
190 if (alloc && sidtab_alloc_roots(s, level) != 0)
191 return NULL;
192
193 /* lookup inside the subtree */
194 entry = &s->roots[level];
195 while (level != 0) {
196 capacity_shift -= SIDTAB_INNER_SHIFT;
197 --level;
198
199 entry = &entry->ptr_inner->entries[leaf_index >> capacity_shift];
200 leaf_index &= ((u32)1 << capacity_shift) - 1;
201
202 if (!entry->ptr_inner) {
203 if (alloc)
204 entry->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
205 GFP_ATOMIC);
206 if (!entry->ptr_inner)
207 return NULL;
208 }
209 }
210 if (!entry->ptr_leaf) {
211 if (alloc)
212 entry->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
213 GFP_ATOMIC);
214 if (!entry->ptr_leaf)
215 return NULL;
216 }
217 return &entry->ptr_leaf->entries[index % SIDTAB_LEAF_ENTRIES];
218}
219
220static struct sidtab_entry *sidtab_lookup(struct sidtab *s, u32 index)
221{
222 /* read entries only after reading count */
223 u32 count = smp_load_acquire(&s->count);
224
225 if (index >= count)
226 return NULL;
227
228 return sidtab_do_lookup(s, index, 0);
229}
230
231static struct sidtab_entry *sidtab_lookup_initial(struct sidtab *s, u32 sid)
232{
233 return s->isids[sid - 1].set ? &s->isids[sid - 1].entry : NULL;
234}
235
236static struct sidtab_entry *sidtab_search_core(struct sidtab *s, u32 sid,
237 int force)
238{
239 if (sid != 0) {
240 struct sidtab_entry *entry;
241
242 if (sid > SECINITSID_NUM)
243 entry = sidtab_lookup(s, sid_to_index(sid));
244 else
245 entry = sidtab_lookup_initial(s, sid);
246 if (entry && (!entry->context.len || force))
247 return entry;
248 }
249
250 return sidtab_lookup_initial(s, SECINITSID_UNLABELED);
251}
252
253struct sidtab_entry *sidtab_search_entry(struct sidtab *s, u32 sid)
254{
255 return sidtab_search_core(s, sid, 0);
256}
257
258struct sidtab_entry *sidtab_search_entry_force(struct sidtab *s, u32 sid)
259{
260 return sidtab_search_core(s, sid, 1);
261}
262
263int sidtab_context_to_sid(struct sidtab *s, struct context *context,
264 u32 *sid)
265{
266 unsigned long flags;
267 u32 count, hash = context_compute_hash(context);
268 struct sidtab_convert_params *convert;
269 struct sidtab_entry *dst, *dst_convert;
270 int rc;
271
272 *sid = context_to_sid(s, context, hash);
273 if (*sid)
274 return 0;
275
276 /* lock-free search failed: lock, re-search, and insert if not found */
277 spin_lock_irqsave(&s->lock, flags);
278
279 rc = 0;
280 *sid = context_to_sid(s, context, hash);
281 if (*sid)
282 goto out_unlock;
283
284 count = s->count;
285 convert = s->convert;
286
287 /* bail out if we already reached max entries */
288 rc = -EOVERFLOW;
289 if (count >= SIDTAB_MAX)
290 goto out_unlock;
291
292 /* insert context into new entry */
293 rc = -ENOMEM;
294 dst = sidtab_do_lookup(s, count, 1);
295 if (!dst)
296 goto out_unlock;
297
298 dst->sid = index_to_sid(count);
299 dst->hash = hash;
300
301 rc = context_cpy(&dst->context, context);
302 if (rc)
303 goto out_unlock;
304
305 /*
306 * if we are building a new sidtab, we need to convert the context
307 * and insert it there as well
308 */
309 if (convert) {
310 rc = -ENOMEM;
311 dst_convert = sidtab_do_lookup(convert->target, count, 1);
312 if (!dst_convert) {
313 context_destroy(&dst->context);
314 goto out_unlock;
315 }
316
317 rc = convert->func(context, &dst_convert->context,
318 convert->args);
319 if (rc) {
320 context_destroy(&dst->context);
321 goto out_unlock;
322 }
323 dst_convert->sid = index_to_sid(count);
324 dst_convert->hash = context_compute_hash(&dst_convert->context);
325 convert->target->count = count + 1;
326
327 hash_add_rcu(convert->target->context_to_sid,
328 &dst_convert->list, dst_convert->hash);
329 }
330
331 if (context->len)
332 pr_info("SELinux: Context %s is not valid (left unmapped).\n",
333 context->str);
334
335 *sid = index_to_sid(count);
336
337 /* write entries before updating count */
338 smp_store_release(&s->count, count + 1);
339 hash_add_rcu(s->context_to_sid, &dst->list, dst->hash);
340
341 rc = 0;
342out_unlock:
343 spin_unlock_irqrestore(&s->lock, flags);
344 return rc;
345}
346
347static void sidtab_convert_hashtable(struct sidtab *s, u32 count)
348{
349 struct sidtab_entry *entry;
350 u32 i;
351
352 for (i = 0; i < count; i++) {
353 entry = sidtab_do_lookup(s, i, 0);
354 entry->sid = index_to_sid(i);
355 entry->hash = context_compute_hash(&entry->context);
356
357 hash_add_rcu(s->context_to_sid, &entry->list, entry->hash);
358 }
359}
360
361static int sidtab_convert_tree(union sidtab_entry_inner *edst,
362 union sidtab_entry_inner *esrc,
363 u32 *pos, u32 count, u32 level,
364 struct sidtab_convert_params *convert)
365{
366 int rc;
367 u32 i;
368
369 if (level != 0) {
370 if (!edst->ptr_inner) {
371 edst->ptr_inner = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
372 GFP_KERNEL);
373 if (!edst->ptr_inner)
374 return -ENOMEM;
375 }
376 i = 0;
377 while (i < SIDTAB_INNER_ENTRIES && *pos < count) {
378 rc = sidtab_convert_tree(&edst->ptr_inner->entries[i],
379 &esrc->ptr_inner->entries[i],
380 pos, count, level - 1,
381 convert);
382 if (rc)
383 return rc;
384 i++;
385 }
386 } else {
387 if (!edst->ptr_leaf) {
388 edst->ptr_leaf = kzalloc(SIDTAB_NODE_ALLOC_SIZE,
389 GFP_KERNEL);
390 if (!edst->ptr_leaf)
391 return -ENOMEM;
392 }
393 i = 0;
394 while (i < SIDTAB_LEAF_ENTRIES && *pos < count) {
395 rc = convert->func(&esrc->ptr_leaf->entries[i].context,
396 &edst->ptr_leaf->entries[i].context,
397 convert->args);
398 if (rc)
399 return rc;
400 (*pos)++;
401 i++;
402 }
403 cond_resched();
404 }
405 return 0;
406}
407
408int sidtab_convert(struct sidtab *s, struct sidtab_convert_params *params)
409{
410 unsigned long flags;
411 u32 count, level, pos;
412 int rc;
413
414 spin_lock_irqsave(&s->lock, flags);
415
416 /* concurrent policy loads are not allowed */
417 if (s->convert) {
418 spin_unlock_irqrestore(&s->lock, flags);
419 return -EBUSY;
420 }
421
422 count = s->count;
423 level = sidtab_level_from_count(count);
424
425 /* allocate last leaf in the new sidtab (to avoid race with
426 * live convert)
427 */
428 rc = sidtab_do_lookup(params->target, count - 1, 1) ? 0 : -ENOMEM;
429 if (rc) {
430 spin_unlock_irqrestore(&s->lock, flags);
431 return rc;
432 }
433
434 /* set count in case no new entries are added during conversion */
435 params->target->count = count;
436
437 /* enable live convert of new entries */
438 s->convert = params;
439
440 /* we can safely convert the tree outside the lock */
441 spin_unlock_irqrestore(&s->lock, flags);
442
443 pr_info("SELinux: Converting %u SID table entries...\n", count);
444
445 /* convert all entries not covered by live convert */
446 pos = 0;
447 rc = sidtab_convert_tree(¶ms->target->roots[level],
448 &s->roots[level], &pos, count, level, params);
449 if (rc) {
450 /* we need to keep the old table - disable live convert */
451 spin_lock_irqsave(&s->lock, flags);
452 s->convert = NULL;
453 spin_unlock_irqrestore(&s->lock, flags);
454 return rc;
455 }
456 /*
457 * The hashtable can also be modified in sidtab_context_to_sid()
458 * so we must re-acquire the lock here.
459 */
460 spin_lock_irqsave(&s->lock, flags);
461 sidtab_convert_hashtable(params->target, count);
462 spin_unlock_irqrestore(&s->lock, flags);
463
464 return 0;
465}
466
467static void sidtab_destroy_entry(struct sidtab_entry *entry)
468{
469 context_destroy(&entry->context);
470#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
471 kfree(rcu_dereference_raw(entry->cache));
472#endif
473}
474
475static void sidtab_destroy_tree(union sidtab_entry_inner entry, u32 level)
476{
477 u32 i;
478
479 if (level != 0) {
480 struct sidtab_node_inner *node = entry.ptr_inner;
481
482 if (!node)
483 return;
484
485 for (i = 0; i < SIDTAB_INNER_ENTRIES; i++)
486 sidtab_destroy_tree(node->entries[i], level - 1);
487 kfree(node);
488 } else {
489 struct sidtab_node_leaf *node = entry.ptr_leaf;
490
491 if (!node)
492 return;
493
494 for (i = 0; i < SIDTAB_LEAF_ENTRIES; i++)
495 sidtab_destroy_entry(&node->entries[i]);
496 kfree(node);
497 }
498}
499
500void sidtab_destroy(struct sidtab *s)
501{
502 u32 i, level;
503
504 for (i = 0; i < SECINITSID_NUM; i++)
505 if (s->isids[i].set)
506 sidtab_destroy_entry(&s->isids[i].entry);
507
508 level = SIDTAB_MAX_LEVEL;
509 while (level && !s->roots[level].ptr_inner)
510 --level;
511
512 sidtab_destroy_tree(s->roots[level], level);
513 /*
514 * The context_to_sid hashtable's objects are all shared
515 * with the isids array and context tree, and so don't need
516 * to be cleaned up here.
517 */
518}
519
520#if CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0
521
522void sidtab_sid2str_put(struct sidtab *s, struct sidtab_entry *entry,
523 const char *str, u32 str_len)
524{
525 struct sidtab_str_cache *cache, *victim = NULL;
526 unsigned long flags;
527
528 /* do not cache invalid contexts */
529 if (entry->context.len)
530 return;
531
532 spin_lock_irqsave(&s->cache_lock, flags);
533
534 cache = rcu_dereference_protected(entry->cache,
535 lockdep_is_held(&s->cache_lock));
536 if (cache) {
537 /* entry in cache - just bump to the head of LRU list */
538 list_move(&cache->lru_member, &s->cache_lru_list);
539 goto out_unlock;
540 }
541
542 cache = kmalloc(sizeof(struct sidtab_str_cache) + str_len, GFP_ATOMIC);
543 if (!cache)
544 goto out_unlock;
545
546 if (s->cache_free_slots == 0) {
547 /* pop a cache entry from the tail and free it */
548 victim = container_of(s->cache_lru_list.prev,
549 struct sidtab_str_cache, lru_member);
550 list_del(&victim->lru_member);
551 rcu_assign_pointer(victim->parent->cache, NULL);
552 } else {
553 s->cache_free_slots--;
554 }
555 cache->parent = entry;
556 cache->len = str_len;
557 memcpy(cache->str, str, str_len);
558 list_add(&cache->lru_member, &s->cache_lru_list);
559
560 rcu_assign_pointer(entry->cache, cache);
561
562out_unlock:
563 spin_unlock_irqrestore(&s->cache_lock, flags);
564 kfree_rcu(victim, rcu_member);
565}
566
567int sidtab_sid2str_get(struct sidtab *s, struct sidtab_entry *entry,
568 char **out, u32 *out_len)
569{
570 struct sidtab_str_cache *cache;
571 int rc = 0;
572
573 if (entry->context.len)
574 return -ENOENT; /* do not cache invalid contexts */
575
576 rcu_read_lock();
577
578 cache = rcu_dereference(entry->cache);
579 if (!cache) {
580 rc = -ENOENT;
581 } else {
582 *out_len = cache->len;
583 if (out) {
584 *out = kmemdup(cache->str, cache->len, GFP_ATOMIC);
585 if (!*out)
586 rc = -ENOMEM;
587 }
588 }
589
590 rcu_read_unlock();
591
592 if (!rc && out)
593 sidtab_sid2str_put(s, entry, *out, *out_len);
594 return rc;
595}
596
597#endif /* CONFIG_SECURITY_SELINUX_SID2STR_CACHE_SIZE > 0 */