Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
  23 *				:	Fragmentation on mtu decrease
  24 *				:	Segment collapse on retransmit
  25 *				:	AF independence
  26 *
  27 *		Linus Torvalds	:	send_delayed_ack
  28 *		David S. Miller	:	Charge memory using the right skb
  29 *					during syn/ack processing.
  30 *		David S. Miller :	Output engine completely rewritten.
  31 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
  32 *		Cacophonix Gaul :	draft-minshall-nagle-01
  33 *		J Hadi Salim	:	ECN support
  34 *
  35 */
  36
  37#define pr_fmt(fmt) "TCP: " fmt
  38
  39#include <net/tcp.h>
 
  40
  41#include <linux/compiler.h>
  42#include <linux/gfp.h>
  43#include <linux/module.h>
 
  44
  45/* People can turn this off for buggy TCP's found in printers etc. */
  46int sysctl_tcp_retrans_collapse __read_mostly = 1;
  47
  48/* People can turn this on to work with those rare, broken TCPs that
  49 * interpret the window field as a signed quantity.
  50 */
  51int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
  52
  53/* Default TSQ limit of four TSO segments */
  54int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
  55
  56/* This limits the percentage of the congestion window which we
  57 * will allow a single TSO frame to consume.  Building TSO frames
  58 * which are too large can cause TCP streams to be bursty.
  59 */
  60int sysctl_tcp_tso_win_divisor __read_mostly = 3;
  61
  62/* By default, RFC2861 behavior.  */
  63int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
 
  64
  65static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  66			   int push_one, gfp_t gfp);
  67
  68/* Account for new data that has been sent to the network. */
  69static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
  70{
  71	struct inet_connection_sock *icsk = inet_csk(sk);
  72	struct tcp_sock *tp = tcp_sk(sk);
  73	unsigned int prior_packets = tp->packets_out;
  74
  75	tcp_advance_send_head(sk, skb);
  76	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
 
 
 
 
 
  77
  78	tp->packets_out += tcp_skb_pcount(skb);
  79	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  80	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  81		tcp_rearm_rto(sk);
  82	}
  83
  84	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  85		      tcp_skb_pcount(skb));
 
  86}
  87
  88/* SND.NXT, if window was not shrunk.
 
  89 * If window has been shrunk, what should we make? It is not clear at all.
  90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  92 * invalid. OK, let's make this for now:
  93 */
  94static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  95{
  96	const struct tcp_sock *tp = tcp_sk(sk);
  97
  98	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
 
 
  99		return tp->snd_nxt;
 100	else
 101		return tcp_wnd_end(tp);
 102}
 103
 104/* Calculate mss to advertise in SYN segment.
 105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 106 *
 107 * 1. It is independent of path mtu.
 108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 110 *    attached devices, because some buggy hosts are confused by
 111 *    large MSS.
 112 * 4. We do not make 3, we advertise MSS, calculated from first
 113 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 114 *    This may be overridden via information stored in routing table.
 115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 116 *    probably even Jumbo".
 117 */
 118static __u16 tcp_advertise_mss(struct sock *sk)
 119{
 120	struct tcp_sock *tp = tcp_sk(sk);
 121	const struct dst_entry *dst = __sk_dst_get(sk);
 122	int mss = tp->advmss;
 123
 124	if (dst) {
 125		unsigned int metric = dst_metric_advmss(dst);
 126
 127		if (metric < mss) {
 128			mss = metric;
 129			tp->advmss = mss;
 130		}
 131	}
 132
 133	return (__u16)mss;
 134}
 135
 136/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 137 * This is the first part of cwnd validation mechanism.
 138 */
 139void tcp_cwnd_restart(struct sock *sk, s32 delta)
 140{
 141	struct tcp_sock *tp = tcp_sk(sk);
 142	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 143	u32 cwnd = tp->snd_cwnd;
 144
 145	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 146
 147	tp->snd_ssthresh = tcp_current_ssthresh(sk);
 148	restart_cwnd = min(restart_cwnd, cwnd);
 149
 150	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 151		cwnd >>= 1;
 152	tp->snd_cwnd = max(cwnd, restart_cwnd);
 153	tp->snd_cwnd_stamp = tcp_time_stamp;
 154	tp->snd_cwnd_used = 0;
 155}
 156
 157/* Congestion state accounting after a packet has been sent. */
 158static void tcp_event_data_sent(struct tcp_sock *tp,
 159				struct sock *sk)
 160{
 161	struct inet_connection_sock *icsk = inet_csk(sk);
 162	const u32 now = tcp_time_stamp;
 163
 164	if (tcp_packets_in_flight(tp) == 0)
 165		tcp_ca_event(sk, CA_EVENT_TX_START);
 166
 167	tp->lsndtime = now;
 168
 169	/* If it is a reply for ato after last received
 170	 * packet, enter pingpong mode.
 171	 */
 172	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 173		icsk->icsk_ack.pingpong = 1;
 174}
 175
 176/* Account for an ACK we sent. */
 177static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
 178{
 179	tcp_dec_quickack_mode(sk, pkts);
 180	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 181}
 182
 
 
 
 
 
 
 
 183
 184u32 tcp_default_init_rwnd(u32 mss)
 185{
 186	/* Initial receive window should be twice of TCP_INIT_CWND to
 187	 * enable proper sending of new unsent data during fast recovery
 188	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
 189	 * limit when mss is larger than 1460.
 190	 */
 191	u32 init_rwnd = TCP_INIT_CWND * 2;
 192
 193	if (mss > 1460)
 194		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
 195	return init_rwnd;
 196}
 197
 198/* Determine a window scaling and initial window to offer.
 199 * Based on the assumption that the given amount of space
 200 * will be offered. Store the results in the tp structure.
 201 * NOTE: for smooth operation initial space offering should
 202 * be a multiple of mss if possible. We assume here that mss >= 1.
 203 * This MUST be enforced by all callers.
 204 */
 205void tcp_select_initial_window(int __space, __u32 mss,
 206			       __u32 *rcv_wnd, __u32 *window_clamp,
 207			       int wscale_ok, __u8 *rcv_wscale,
 208			       __u32 init_rcv_wnd)
 209{
 210	unsigned int space = (__space < 0 ? 0 : __space);
 211
 212	/* If no clamp set the clamp to the max possible scaled window */
 213	if (*window_clamp == 0)
 214		(*window_clamp) = (65535 << 14);
 215	space = min(*window_clamp, space);
 216
 217	/* Quantize space offering to a multiple of mss if possible. */
 218	if (space > mss)
 219		space = (space / mss) * mss;
 220
 221	/* NOTE: offering an initial window larger than 32767
 222	 * will break some buggy TCP stacks. If the admin tells us
 223	 * it is likely we could be speaking with such a buggy stack
 224	 * we will truncate our initial window offering to 32K-1
 225	 * unless the remote has sent us a window scaling option,
 226	 * which we interpret as a sign the remote TCP is not
 227	 * misinterpreting the window field as a signed quantity.
 228	 */
 229	if (sysctl_tcp_workaround_signed_windows)
 230		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 231	else
 232		(*rcv_wnd) = space;
 
 
 
 233
 234	(*rcv_wscale) = 0;
 235	if (wscale_ok) {
 236		/* Set window scaling on max possible window
 237		 * See RFC1323 for an explanation of the limit to 14
 238		 */
 239		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
 240		space = min_t(u32, space, *window_clamp);
 241		while (space > 65535 && (*rcv_wscale) < 14) {
 242			space >>= 1;
 243			(*rcv_wscale)++;
 244		}
 245	}
 246
 247	if (mss > (1 << *rcv_wscale)) {
 248		if (!init_rcv_wnd) /* Use default unless specified otherwise */
 249			init_rcv_wnd = tcp_default_init_rwnd(mss);
 250		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 251	}
 252
 253	/* Set the clamp no higher than max representable value */
 254	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
 255}
 256EXPORT_SYMBOL(tcp_select_initial_window);
 257
 258/* Chose a new window to advertise, update state in tcp_sock for the
 259 * socket, and return result with RFC1323 scaling applied.  The return
 260 * value can be stuffed directly into th->window for an outgoing
 261 * frame.
 262 */
 263static u16 tcp_select_window(struct sock *sk)
 264{
 265	struct tcp_sock *tp = tcp_sk(sk);
 
 266	u32 old_win = tp->rcv_wnd;
 267	u32 cur_win = tcp_receive_window(tp);
 268	u32 new_win = __tcp_select_window(sk);
 
 
 
 
 
 
 269
 270	/* Never shrink the offered window */
 
 271	if (new_win < cur_win) {
 272		/* Danger Will Robinson!
 273		 * Don't update rcv_wup/rcv_wnd here or else
 274		 * we will not be able to advertise a zero
 275		 * window in time.  --DaveM
 276		 *
 277		 * Relax Will Robinson.
 278		 */
 279		if (new_win == 0)
 280			NET_INC_STATS(sock_net(sk),
 281				      LINUX_MIB_TCPWANTZEROWINDOWADV);
 282		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 
 
 283	}
 
 284	tp->rcv_wnd = new_win;
 285	tp->rcv_wup = tp->rcv_nxt;
 286
 287	/* Make sure we do not exceed the maximum possible
 288	 * scaled window.
 289	 */
 290	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
 
 291		new_win = min(new_win, MAX_TCP_WINDOW);
 292	else
 293		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 294
 295	/* RFC1323 scaling applied */
 296	new_win >>= tp->rx_opt.rcv_wscale;
 297
 298	/* If we advertise zero window, disable fast path. */
 299	if (new_win == 0) {
 300		tp->pred_flags = 0;
 301		if (old_win)
 302			NET_INC_STATS(sock_net(sk),
 303				      LINUX_MIB_TCPTOZEROWINDOWADV);
 304	} else if (old_win == 0) {
 305		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
 306	}
 307
 308	return new_win;
 309}
 310
 311/* Packet ECN state for a SYN-ACK */
 312static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 313{
 314	const struct tcp_sock *tp = tcp_sk(sk);
 315
 316	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 317	if (!(tp->ecn_flags & TCP_ECN_OK))
 318		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 319	else if (tcp_ca_needs_ecn(sk))
 
 320		INET_ECN_xmit(sk);
 321}
 322
 323/* Packet ECN state for a SYN.  */
 324static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 325{
 326	struct tcp_sock *tp = tcp_sk(sk);
 327	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
 328		       tcp_ca_needs_ecn(sk);
 
 329
 330	if (!use_ecn) {
 331		const struct dst_entry *dst = __sk_dst_get(sk);
 332
 333		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 334			use_ecn = true;
 335	}
 336
 337	tp->ecn_flags = 0;
 338
 339	if (use_ecn) {
 340		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 341		tp->ecn_flags = TCP_ECN_OK;
 342		if (tcp_ca_needs_ecn(sk))
 343			INET_ECN_xmit(sk);
 344	}
 345}
 346
 347static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 348{
 349	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
 350		/* tp->ecn_flags are cleared at a later point in time when
 351		 * SYN ACK is ultimatively being received.
 352		 */
 353		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 354}
 355
 356static void
 357tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 358{
 359	if (inet_rsk(req)->ecn_ok)
 360		th->ece = 1;
 361}
 362
 363/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 364 * be sent.
 365 */
 366static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 367				int tcp_header_len)
 368{
 369	struct tcp_sock *tp = tcp_sk(sk);
 370
 371	if (tp->ecn_flags & TCP_ECN_OK) {
 372		/* Not-retransmitted data segment: set ECT and inject CWR. */
 373		if (skb->len != tcp_header_len &&
 374		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 375			INET_ECN_xmit(sk);
 376			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 377				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 378				tcp_hdr(skb)->cwr = 1;
 379				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 380			}
 381		} else if (!tcp_ca_needs_ecn(sk)) {
 382			/* ACK or retransmitted segment: clear ECT|CE */
 383			INET_ECN_dontxmit(sk);
 384		}
 385		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 386			tcp_hdr(skb)->ece = 1;
 387	}
 388}
 389
 390/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 391 * auto increment end seqno.
 392 */
 393static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 394{
 395	skb->ip_summed = CHECKSUM_PARTIAL;
 396	skb->csum = 0;
 397
 398	TCP_SKB_CB(skb)->tcp_flags = flags;
 399	TCP_SKB_CB(skb)->sacked = 0;
 400
 401	tcp_skb_pcount_set(skb, 1);
 402
 403	TCP_SKB_CB(skb)->seq = seq;
 404	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 405		seq++;
 406	TCP_SKB_CB(skb)->end_seq = seq;
 407}
 408
 409static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 410{
 411	return tp->snd_una != tp->snd_up;
 412}
 413
 414#define OPTION_SACK_ADVERTISE	(1 << 0)
 415#define OPTION_TS		(1 << 1)
 416#define OPTION_MD5		(1 << 2)
 417#define OPTION_WSCALE		(1 << 3)
 418#define OPTION_FAST_OPEN_COOKIE	(1 << 8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 419
 420struct tcp_out_options {
 421	u16 options;		/* bit field of OPTION_* */
 422	u16 mss;		/* 0 to disable */
 423	u8 ws;			/* window scale, 0 to disable */
 424	u8 num_sack_blocks;	/* number of SACK blocks to include */
 425	u8 hash_size;		/* bytes in hash_location */
 
 426	__u8 *hash_location;	/* temporary pointer, overloaded */
 427	__u32 tsval, tsecr;	/* need to include OPTION_TS */
 428	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
 
 429};
 430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431/* Write previously computed TCP options to the packet.
 432 *
 433 * Beware: Something in the Internet is very sensitive to the ordering of
 434 * TCP options, we learned this through the hard way, so be careful here.
 435 * Luckily we can at least blame others for their non-compliance but from
 436 * inter-operability perspective it seems that we're somewhat stuck with
 437 * the ordering which we have been using if we want to keep working with
 438 * those broken things (not that it currently hurts anybody as there isn't
 439 * particular reason why the ordering would need to be changed).
 440 *
 441 * At least SACK_PERM as the first option is known to lead to a disaster
 442 * (but it may well be that other scenarios fail similarly).
 443 */
 444static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
 445			      struct tcp_out_options *opts)
 
 
 446{
 
 447	u16 options = opts->options;	/* mungable copy */
 448
 449	if (unlikely(OPTION_MD5 & options)) {
 450		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 451			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 452		/* overload cookie hash location */
 453		opts->hash_location = (__u8 *)ptr;
 454		ptr += 4;
 
 
 455	}
 456
 457	if (unlikely(opts->mss)) {
 458		*ptr++ = htonl((TCPOPT_MSS << 24) |
 459			       (TCPOLEN_MSS << 16) |
 460			       opts->mss);
 461	}
 462
 463	if (likely(OPTION_TS & options)) {
 464		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 465			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 466				       (TCPOLEN_SACK_PERM << 16) |
 467				       (TCPOPT_TIMESTAMP << 8) |
 468				       TCPOLEN_TIMESTAMP);
 469			options &= ~OPTION_SACK_ADVERTISE;
 470		} else {
 471			*ptr++ = htonl((TCPOPT_NOP << 24) |
 472				       (TCPOPT_NOP << 16) |
 473				       (TCPOPT_TIMESTAMP << 8) |
 474				       TCPOLEN_TIMESTAMP);
 475		}
 476		*ptr++ = htonl(opts->tsval);
 477		*ptr++ = htonl(opts->tsecr);
 478	}
 479
 480	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 481		*ptr++ = htonl((TCPOPT_NOP << 24) |
 482			       (TCPOPT_NOP << 16) |
 483			       (TCPOPT_SACK_PERM << 8) |
 484			       TCPOLEN_SACK_PERM);
 485	}
 486
 487	if (unlikely(OPTION_WSCALE & options)) {
 488		*ptr++ = htonl((TCPOPT_NOP << 24) |
 489			       (TCPOPT_WINDOW << 16) |
 490			       (TCPOLEN_WINDOW << 8) |
 491			       opts->ws);
 492	}
 493
 494	if (unlikely(opts->num_sack_blocks)) {
 495		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 496			tp->duplicate_sack : tp->selective_acks;
 497		int this_sack;
 498
 499		*ptr++ = htonl((TCPOPT_NOP  << 24) |
 500			       (TCPOPT_NOP  << 16) |
 501			       (TCPOPT_SACK <<  8) |
 502			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 503						     TCPOLEN_SACK_PERBLOCK)));
 504
 505		for (this_sack = 0; this_sack < opts->num_sack_blocks;
 506		     ++this_sack) {
 507			*ptr++ = htonl(sp[this_sack].start_seq);
 508			*ptr++ = htonl(sp[this_sack].end_seq);
 509		}
 510
 511		tp->rx_opt.dsack = 0;
 512	}
 513
 514	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 515		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 516		u8 *p = (u8 *)ptr;
 517		u32 len; /* Fast Open option length */
 518
 519		if (foc->exp) {
 520			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 521			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 522				     TCPOPT_FASTOPEN_MAGIC);
 523			p += TCPOLEN_EXP_FASTOPEN_BASE;
 524		} else {
 525			len = TCPOLEN_FASTOPEN_BASE + foc->len;
 526			*p++ = TCPOPT_FASTOPEN;
 527			*p++ = len;
 528		}
 529
 530		memcpy(p, foc->val, foc->len);
 531		if ((len & 3) == 2) {
 532			p[foc->len] = TCPOPT_NOP;
 533			p[foc->len + 1] = TCPOPT_NOP;
 534		}
 535		ptr += (len + 3) >> 2;
 536	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537}
 538
 539/* Compute TCP options for SYN packets. This is not the final
 540 * network wire format yet.
 541 */
 542static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 543				struct tcp_out_options *opts,
 544				struct tcp_md5sig_key **md5)
 545{
 546	struct tcp_sock *tp = tcp_sk(sk);
 547	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 548	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 
 549
 550#ifdef CONFIG_TCP_MD5SIG
 551	*md5 = tp->af_specific->md5_lookup(sk, sk);
 552	if (*md5) {
 553		opts->options |= OPTION_MD5;
 554		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 
 
 
 
 
 
 555	}
 556#else
 557	*md5 = NULL;
 558#endif
 559
 560	/* We always get an MSS option.  The option bytes which will be seen in
 561	 * normal data packets should timestamps be used, must be in the MSS
 562	 * advertised.  But we subtract them from tp->mss_cache so that
 563	 * calculations in tcp_sendmsg are simpler etc.  So account for this
 564	 * fact here if necessary.  If we don't do this correctly, as a
 565	 * receiver we won't recognize data packets as being full sized when we
 566	 * should, and thus we won't abide by the delayed ACK rules correctly.
 567	 * SACKs don't matter, we never delay an ACK when we have any of those
 568	 * going out.  */
 569	opts->mss = tcp_advertise_mss(sk);
 570	remaining -= TCPOLEN_MSS_ALIGNED;
 571
 572	if (likely(sysctl_tcp_timestamps && !*md5)) {
 573		opts->options |= OPTION_TS;
 574		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
 575		opts->tsecr = tp->rx_opt.ts_recent;
 576		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 577	}
 578	if (likely(sysctl_tcp_window_scaling)) {
 579		opts->ws = tp->rx_opt.rcv_wscale;
 580		opts->options |= OPTION_WSCALE;
 581		remaining -= TCPOLEN_WSCALE_ALIGNED;
 582	}
 583	if (likely(sysctl_tcp_sack)) {
 584		opts->options |= OPTION_SACK_ADVERTISE;
 585		if (unlikely(!(OPTION_TS & opts->options)))
 586			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 587	}
 588
 589	if (fastopen && fastopen->cookie.len >= 0) {
 590		u32 need = fastopen->cookie.len;
 591
 592		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 593					       TCPOLEN_FASTOPEN_BASE;
 594		need = (need + 3) & ~3U;  /* Align to 32 bits */
 595		if (remaining >= need) {
 596			opts->options |= OPTION_FAST_OPEN_COOKIE;
 597			opts->fastopen_cookie = &fastopen->cookie;
 598			remaining -= need;
 599			tp->syn_fastopen = 1;
 600			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 601		}
 602	}
 603
 
 
 
 
 
 
 
 
 
 
 
 
 
 604	return MAX_TCP_OPTION_SPACE - remaining;
 605}
 606
 607/* Set up TCP options for SYN-ACKs. */
 608static unsigned int tcp_synack_options(struct request_sock *req,
 
 609				       unsigned int mss, struct sk_buff *skb,
 610				       struct tcp_out_options *opts,
 611				       const struct tcp_md5sig_key *md5,
 612				       struct tcp_fastopen_cookie *foc)
 
 
 613{
 614	struct inet_request_sock *ireq = inet_rsk(req);
 615	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 616
 617#ifdef CONFIG_TCP_MD5SIG
 618	if (md5) {
 619		opts->options |= OPTION_MD5;
 620		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 621
 622		/* We can't fit any SACK blocks in a packet with MD5 + TS
 623		 * options. There was discussion about disabling SACK
 624		 * rather than TS in order to fit in better with old,
 625		 * buggy kernels, but that was deemed to be unnecessary.
 626		 */
 
 
 
 
 
 627		ireq->tstamp_ok &= !ireq->sack_ok;
 628	}
 629#endif
 630
 631	/* We always send an MSS option. */
 632	opts->mss = mss;
 633	remaining -= TCPOLEN_MSS_ALIGNED;
 634
 635	if (likely(ireq->wscale_ok)) {
 636		opts->ws = ireq->rcv_wscale;
 637		opts->options |= OPTION_WSCALE;
 638		remaining -= TCPOLEN_WSCALE_ALIGNED;
 639	}
 640	if (likely(ireq->tstamp_ok)) {
 641		opts->options |= OPTION_TS;
 642		opts->tsval = tcp_skb_timestamp(skb);
 643		opts->tsecr = req->ts_recent;
 
 644		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 645	}
 646	if (likely(ireq->sack_ok)) {
 647		opts->options |= OPTION_SACK_ADVERTISE;
 648		if (unlikely(!ireq->tstamp_ok))
 649			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 650	}
 651	if (foc != NULL && foc->len >= 0) {
 652		u32 need = foc->len;
 653
 654		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 655				   TCPOLEN_FASTOPEN_BASE;
 656		need = (need + 3) & ~3U;  /* Align to 32 bits */
 657		if (remaining >= need) {
 658			opts->options |= OPTION_FAST_OPEN_COOKIE;
 659			opts->fastopen_cookie = foc;
 660			remaining -= need;
 661		}
 662	}
 663
 
 
 
 
 
 
 
 664	return MAX_TCP_OPTION_SPACE - remaining;
 665}
 666
 667/* Compute TCP options for ESTABLISHED sockets. This is not the
 668 * final wire format yet.
 669 */
 670static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 671					struct tcp_out_options *opts,
 672					struct tcp_md5sig_key **md5)
 673{
 674	struct tcp_sock *tp = tcp_sk(sk);
 675	unsigned int size = 0;
 676	unsigned int eff_sacks;
 677
 678	opts->options = 0;
 679
 680#ifdef CONFIG_TCP_MD5SIG
 681	*md5 = tp->af_specific->md5_lookup(sk, sk);
 682	if (unlikely(*md5)) {
 683		opts->options |= OPTION_MD5;
 684		size += TCPOLEN_MD5SIG_ALIGNED;
 
 
 
 685	}
 686#else
 687	*md5 = NULL;
 688#endif
 689
 690	if (likely(tp->rx_opt.tstamp_ok)) {
 691		opts->options |= OPTION_TS;
 692		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
 
 693		opts->tsecr = tp->rx_opt.ts_recent;
 694		size += TCPOLEN_TSTAMP_ALIGNED;
 695	}
 696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 697	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
 698	if (unlikely(eff_sacks)) {
 699		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 
 
 
 
 700		opts->num_sack_blocks =
 701			min_t(unsigned int, eff_sacks,
 702			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
 703			      TCPOLEN_SACK_PERBLOCK);
 
 704		size += TCPOLEN_SACK_BASE_ALIGNED +
 705			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
 706	}
 707
 
 
 
 
 
 
 
 
 
 708	return size;
 709}
 710
 711
 712/* TCP SMALL QUEUES (TSQ)
 713 *
 714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
 715 * to reduce RTT and bufferbloat.
 716 * We do this using a special skb destructor (tcp_wfree).
 717 *
 718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
 719 * needs to be reallocated in a driver.
 720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
 721 *
 722 * Since transmit from skb destructor is forbidden, we use a tasklet
 723 * to process all sockets that eventually need to send more skbs.
 724 * We use one tasklet per cpu, with its own queue of sockets.
 725 */
 726struct tsq_tasklet {
 727	struct tasklet_struct	tasklet;
 728	struct list_head	head; /* queue of tcp sockets */
 729};
 730static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
 731
 732static void tcp_tsq_handler(struct sock *sk)
 733{
 734	if ((1 << sk->sk_state) &
 735	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
 736	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
 737		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
 
 
 
 
 
 
 
 
 738			       0, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
 739}
 740/*
 741 * One tasklet per cpu tries to send more skbs.
 742 * We run in tasklet context but need to disable irqs when
 743 * transferring tsq->head because tcp_wfree() might
 744 * interrupt us (non NAPI drivers)
 745 */
 746static void tcp_tasklet_func(unsigned long data)
 747{
 748	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
 749	LIST_HEAD(list);
 750	unsigned long flags;
 751	struct list_head *q, *n;
 752	struct tcp_sock *tp;
 753	struct sock *sk;
 754
 755	local_irq_save(flags);
 756	list_splice_init(&tsq->head, &list);
 757	local_irq_restore(flags);
 758
 759	list_for_each_safe(q, n, &list) {
 760		tp = list_entry(q, struct tcp_sock, tsq_node);
 761		list_del(&tp->tsq_node);
 762
 763		sk = (struct sock *)tp;
 764		bh_lock_sock(sk);
 
 765
 766		if (!sock_owned_by_user(sk)) {
 767			tcp_tsq_handler(sk);
 768		} else {
 769			/* defer the work to tcp_release_cb() */
 770			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
 771		}
 772		bh_unlock_sock(sk);
 773
 774		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
 775		sk_free(sk);
 776	}
 777}
 778
 779#define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
 780			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
 781			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
 782			  (1UL << TCP_MTU_REDUCED_DEFERRED))
 
 783/**
 784 * tcp_release_cb - tcp release_sock() callback
 785 * @sk: socket
 786 *
 787 * called from release_sock() to perform protocol dependent
 788 * actions before socket release.
 789 */
 790void tcp_release_cb(struct sock *sk)
 791{
 792	struct tcp_sock *tp = tcp_sk(sk);
 793	unsigned long flags, nflags;
 794
 795	/* perform an atomic operation only if at least one flag is set */
 796	do {
 797		flags = tp->tsq_flags;
 798		if (!(flags & TCP_DEFERRED_ALL))
 799			return;
 800		nflags = flags & ~TCP_DEFERRED_ALL;
 801	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
 802
 803	if (flags & (1UL << TCP_TSQ_DEFERRED))
 804		tcp_tsq_handler(sk);
 805
 806	/* Here begins the tricky part :
 807	 * We are called from release_sock() with :
 808	 * 1) BH disabled
 809	 * 2) sk_lock.slock spinlock held
 810	 * 3) socket owned by us (sk->sk_lock.owned == 1)
 811	 *
 812	 * But following code is meant to be called from BH handlers,
 813	 * so we should keep BH disabled, but early release socket ownership
 814	 */
 815	sock_release_ownership(sk);
 816
 817	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
 818		tcp_write_timer_handler(sk);
 819		__sock_put(sk);
 820	}
 821	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
 822		tcp_delack_timer_handler(sk);
 823		__sock_put(sk);
 824	}
 825	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
 826		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
 827		__sock_put(sk);
 828	}
 
 
 829}
 830EXPORT_SYMBOL(tcp_release_cb);
 831
 832void __init tcp_tasklet_init(void)
 833{
 834	int i;
 835
 836	for_each_possible_cpu(i) {
 837		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
 838
 839		INIT_LIST_HEAD(&tsq->head);
 840		tasklet_init(&tsq->tasklet,
 841			     tcp_tasklet_func,
 842			     (unsigned long)tsq);
 843	}
 844}
 845
 846/*
 847 * Write buffer destructor automatically called from kfree_skb.
 848 * We can't xmit new skbs from this context, as we might already
 849 * hold qdisc lock.
 850 */
 851void tcp_wfree(struct sk_buff *skb)
 852{
 853	struct sock *sk = skb->sk;
 854	struct tcp_sock *tp = tcp_sk(sk);
 855	int wmem;
 
 
 856
 857	/* Keep one reference on sk_wmem_alloc.
 858	 * Will be released by sk_free() from here or tcp_tasklet_func()
 859	 */
 860	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
 861
 862	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
 863	 * Wait until our queues (qdisc + devices) are drained.
 864	 * This gives :
 865	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
 866	 * - chance for incoming ACK (processed by another cpu maybe)
 867	 *   to migrate this flow (skb->ooo_okay will be eventually set)
 868	 */
 869	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
 870		goto out;
 871
 872	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
 873	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
 874		unsigned long flags;
 875		struct tsq_tasklet *tsq;
 876
 877		/* queue this socket to tasklet queue */
 878		local_irq_save(flags);
 879		tsq = this_cpu_ptr(&tsq_tasklet);
 880		list_add(&tp->tsq_node, &tsq->head);
 
 
 
 
 
 881		tasklet_schedule(&tsq->tasklet);
 882		local_irq_restore(flags);
 883		return;
 884	}
 885out:
 886	sk_free(sk);
 887}
 888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889/* This routine actually transmits TCP packets queued in by
 890 * tcp_do_sendmsg().  This is used by both the initial
 891 * transmission and possible later retransmissions.
 892 * All SKB's seen here are completely headerless.  It is our
 893 * job to build the TCP header, and pass the packet down to
 894 * IP so it can do the same plus pass the packet off to the
 895 * device.
 896 *
 897 * We are working here with either a clone of the original
 898 * SKB, or a fresh unique copy made by the retransmit engine.
 899 */
 900static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
 901			    gfp_t gfp_mask)
 902{
 903	const struct inet_connection_sock *icsk = inet_csk(sk);
 904	struct inet_sock *inet;
 905	struct tcp_sock *tp;
 906	struct tcp_skb_cb *tcb;
 907	struct tcp_out_options opts;
 908	unsigned int tcp_options_size, tcp_header_size;
 909	struct tcp_md5sig_key *md5;
 
 910	struct tcphdr *th;
 
 911	int err;
 912
 913	BUG_ON(!skb || !tcp_skb_pcount(skb));
 914
 
 
 
 915	if (clone_it) {
 916		skb_mstamp_get(&skb->skb_mstamp);
 
 
 
 
 
 
 
 917
 918		if (unlikely(skb_cloned(skb)))
 919			skb = pskb_copy(skb, gfp_mask);
 920		else
 921			skb = skb_clone(skb, gfp_mask);
 922		if (unlikely(!skb))
 923			return -ENOBUFS;
 
 
 
 
 924	}
 925
 926	inet = inet_sk(sk);
 927	tp = tcp_sk(sk);
 928	tcb = TCP_SKB_CB(skb);
 929	memset(&opts, 0, sizeof(opts));
 930
 931	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
 932		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
 933	else
 934		tcp_options_size = tcp_established_options(sk, skb, &opts,
 935							   &md5);
 
 
 
 
 
 
 
 
 
 
 
 936	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
 937
 938	/* if no packet is in qdisc/device queue, then allow XPS to select
 939	 * another queue. We can be called from tcp_tsq_handler()
 940	 * which holds one reference to sk_wmem_alloc.
 941	 *
 942	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
 943	 * One way to get this would be to set skb->truesize = 2 on them.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 944	 */
 945	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
 946
 947	skb_push(skb, tcp_header_size);
 948	skb_reset_transport_header(skb);
 949
 950	skb_orphan(skb);
 951	skb->sk = sk;
 952	skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
 953	skb_set_hash_from_sk(skb, sk);
 954	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
 
 955
 956	/* Build TCP header and checksum it. */
 957	th = tcp_hdr(skb);
 958	th->source		= inet->inet_sport;
 959	th->dest		= inet->inet_dport;
 960	th->seq			= htonl(tcb->seq);
 961	th->ack_seq		= htonl(tp->rcv_nxt);
 962	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
 963					tcb->tcp_flags);
 964
 965	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
 966		/* RFC1323: The window in SYN & SYN/ACK segments
 967		 * is never scaled.
 968		 */
 969		th->window	= htons(min(tp->rcv_wnd, 65535U));
 970	} else {
 971		th->window	= htons(tcp_select_window(sk));
 972	}
 973	th->check		= 0;
 974	th->urg_ptr		= 0;
 975
 976	/* The urg_mode check is necessary during a below snd_una win probe */
 977	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
 978		if (before(tp->snd_up, tcb->seq + 0x10000)) {
 979			th->urg_ptr = htons(tp->snd_up - tcb->seq);
 980			th->urg = 1;
 981		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
 982			th->urg_ptr = htons(0xFFFF);
 983			th->urg = 1;
 984		}
 985	}
 986
 987	tcp_options_write((__be32 *)(th + 1), tp, &opts);
 988	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
 989	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
 990		tcp_ecn_send(sk, skb, tcp_header_size);
 
 
 
 
 
 
 
 991
 
 
 
 992#ifdef CONFIG_TCP_MD5SIG
 993	/* Calculate the MD5 hash, as we have all we need now */
 994	if (md5) {
 995		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
 996		tp->af_specific->calc_md5_hash(opts.hash_location,
 997					       md5, sk, skb);
 998	}
 999#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
1000
1001	icsk->icsk_af_ops->send_check(sk, skb);
 
 
1002
1003	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1004		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1005
1006	if (skb->len != tcp_header_size) {
1007		tcp_event_data_sent(tp, sk);
1008		tp->data_segs_out += tcp_skb_pcount(skb);
 
1009	}
1010
1011	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1012		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1013			      tcp_skb_pcount(skb));
1014
1015	tp->segs_out += tcp_skb_pcount(skb);
 
1016	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1017	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1018	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1019
1020	/* Our usage of tstamp should remain private */
1021	skb->tstamp.tv64 = 0;
1022
1023	/* Cleanup our debris for IP stacks */
1024	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1025			       sizeof(struct inet6_skb_parm)));
1026
1027	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1028
1029	if (likely(err <= 0))
1030		return err;
1031
1032	tcp_enter_cwr(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
1033
1034	return net_xmit_eval(err);
 
 
 
 
1035}
1036
1037/* This routine just queues the buffer for sending.
1038 *
1039 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1040 * otherwise socket can stall.
1041 */
1042static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1043{
1044	struct tcp_sock *tp = tcp_sk(sk);
1045
1046	/* Advance write_seq and place onto the write_queue. */
1047	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1048	__skb_header_release(skb);
1049	tcp_add_write_queue_tail(sk, skb);
1050	sk->sk_wmem_queued += skb->truesize;
1051	sk_mem_charge(sk, skb->truesize);
1052}
1053
1054/* Initialize TSO segments for a packet. */
1055static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1056{
1057	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1058		/* Avoid the costly divide in the normal
1059		 * non-TSO case.
1060		 */
1061		tcp_skb_pcount_set(skb, 1);
1062		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1063	} else {
1064		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1065		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1066	}
1067}
1068
1069/* When a modification to fackets out becomes necessary, we need to check
1070 * skb is counted to fackets_out or not.
1071 */
1072static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1073				   int decr)
1074{
1075	struct tcp_sock *tp = tcp_sk(sk);
1076
1077	if (!tp->sacked_out || tcp_is_reno(tp))
1078		return;
1079
1080	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1081		tp->fackets_out -= decr;
1082}
1083
1084/* Pcount in the middle of the write queue got changed, we need to do various
1085 * tweaks to fix counters
1086 */
1087static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1088{
1089	struct tcp_sock *tp = tcp_sk(sk);
1090
1091	tp->packets_out -= decr;
1092
1093	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1094		tp->sacked_out -= decr;
1095	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1096		tp->retrans_out -= decr;
1097	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1098		tp->lost_out -= decr;
1099
1100	/* Reno case is special. Sigh... */
1101	if (tcp_is_reno(tp) && decr > 0)
1102		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1103
1104	tcp_adjust_fackets_out(sk, skb, decr);
1105
1106	if (tp->lost_skb_hint &&
1107	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1108	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1109		tp->lost_cnt_hint -= decr;
1110
1111	tcp_verify_left_out(tp);
1112}
1113
 
 
 
 
 
 
1114static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1115{
1116	struct skb_shared_info *shinfo = skb_shinfo(skb);
1117
1118	if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1119	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1120		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1121		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1122
1123		shinfo->tx_flags &= ~tsflags;
1124		shinfo2->tx_flags |= tsflags;
1125		swap(shinfo->tskey, shinfo2->tskey);
 
 
1126	}
1127}
1128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129/* Function to create two new TCP segments.  Shrinks the given segment
1130 * to the specified size and appends a new segment with the rest of the
1131 * packet to the list.  This won't be called frequently, I hope.
1132 * Remember, these are still headerless SKBs at this point.
1133 */
1134int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
 
1135		 unsigned int mss_now, gfp_t gfp)
1136{
1137	struct tcp_sock *tp = tcp_sk(sk);
1138	struct sk_buff *buff;
1139	int nsize, old_factor;
 
1140	int nlen;
1141	u8 flags;
1142
1143	if (WARN_ON(len > skb->len))
1144		return -EINVAL;
1145
1146	nsize = skb_headlen(skb) - len;
1147	if (nsize < 0)
1148		nsize = 0;
1149
1150	if (skb_unclone(skb, gfp))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151		return -ENOMEM;
1152
1153	/* Get a new skb... force flag on. */
1154	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1155	if (!buff)
1156		return -ENOMEM; /* We'll just try again later. */
 
 
1157
1158	sk->sk_wmem_queued += buff->truesize;
1159	sk_mem_charge(sk, buff->truesize);
1160	nlen = skb->len - len - nsize;
1161	buff->truesize += nlen;
1162	skb->truesize -= nlen;
1163
1164	/* Correct the sequence numbers. */
1165	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1166	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1167	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1168
1169	/* PSH and FIN should only be set in the second packet. */
1170	flags = TCP_SKB_CB(skb)->tcp_flags;
1171	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1172	TCP_SKB_CB(buff)->tcp_flags = flags;
1173	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
 
1174
1175	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1176		/* Copy and checksum data tail into the new buffer. */
1177		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1178						       skb_put(buff, nsize),
1179						       nsize, 0);
1180
1181		skb_trim(skb, len);
1182
1183		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1184	} else {
1185		skb->ip_summed = CHECKSUM_PARTIAL;
1186		skb_split(skb, buff, len);
1187	}
1188
1189	buff->ip_summed = skb->ip_summed;
1190
1191	buff->tstamp = skb->tstamp;
1192	tcp_fragment_tstamp(skb, buff);
1193
1194	old_factor = tcp_skb_pcount(skb);
1195
1196	/* Fix up tso_factor for both original and new SKB.  */
1197	tcp_set_skb_tso_segs(skb, mss_now);
1198	tcp_set_skb_tso_segs(buff, mss_now);
1199
 
 
 
1200	/* If this packet has been sent out already, we must
1201	 * adjust the various packet counters.
1202	 */
1203	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1204		int diff = old_factor - tcp_skb_pcount(skb) -
1205			tcp_skb_pcount(buff);
1206
1207		if (diff)
1208			tcp_adjust_pcount(sk, skb, diff);
1209	}
1210
1211	/* Link BUFF into the send queue. */
1212	__skb_header_release(buff);
1213	tcp_insert_write_queue_after(skb, buff, sk);
 
 
1214
1215	return 0;
1216}
1217
1218/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1219 * eventually). The difference is that pulled data not copied, but
1220 * immediately discarded.
1221 */
1222static void __pskb_trim_head(struct sk_buff *skb, int len)
1223{
1224	struct skb_shared_info *shinfo;
1225	int i, k, eat;
1226
1227	eat = min_t(int, len, skb_headlen(skb));
1228	if (eat) {
1229		__skb_pull(skb, eat);
1230		len -= eat;
1231		if (!len)
1232			return;
1233	}
1234	eat = len;
1235	k = 0;
1236	shinfo = skb_shinfo(skb);
1237	for (i = 0; i < shinfo->nr_frags; i++) {
1238		int size = skb_frag_size(&shinfo->frags[i]);
1239
1240		if (size <= eat) {
1241			skb_frag_unref(skb, i);
1242			eat -= size;
1243		} else {
1244			shinfo->frags[k] = shinfo->frags[i];
1245			if (eat) {
1246				shinfo->frags[k].page_offset += eat;
1247				skb_frag_size_sub(&shinfo->frags[k], eat);
1248				eat = 0;
1249			}
1250			k++;
1251		}
1252	}
1253	shinfo->nr_frags = k;
1254
1255	skb_reset_tail_pointer(skb);
1256	skb->data_len -= len;
1257	skb->len = skb->data_len;
 
1258}
1259
1260/* Remove acked data from a packet in the transmit queue. */
1261int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1262{
1263	if (skb_unclone(skb, GFP_ATOMIC))
 
 
1264		return -ENOMEM;
1265
1266	__pskb_trim_head(skb, len);
1267
1268	TCP_SKB_CB(skb)->seq += len;
1269	skb->ip_summed = CHECKSUM_PARTIAL;
1270
1271	skb->truesize	     -= len;
1272	sk->sk_wmem_queued   -= len;
1273	sk_mem_uncharge(sk, len);
1274	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1275
1276	/* Any change of skb->len requires recalculation of tso factor. */
1277	if (tcp_skb_pcount(skb) > 1)
1278		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1279
1280	return 0;
1281}
1282
1283/* Calculate MSS not accounting any TCP options.  */
1284static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1285{
1286	const struct tcp_sock *tp = tcp_sk(sk);
1287	const struct inet_connection_sock *icsk = inet_csk(sk);
1288	int mss_now;
1289
1290	/* Calculate base mss without TCP options:
1291	   It is MMS_S - sizeof(tcphdr) of rfc1122
1292	 */
1293	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1294
1295	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1296	if (icsk->icsk_af_ops->net_frag_header_len) {
1297		const struct dst_entry *dst = __sk_dst_get(sk);
1298
1299		if (dst && dst_allfrag(dst))
1300			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1301	}
1302
1303	/* Clamp it (mss_clamp does not include tcp options) */
1304	if (mss_now > tp->rx_opt.mss_clamp)
1305		mss_now = tp->rx_opt.mss_clamp;
1306
1307	/* Now subtract optional transport overhead */
1308	mss_now -= icsk->icsk_ext_hdr_len;
1309
1310	/* Then reserve room for full set of TCP options and 8 bytes of data */
1311	if (mss_now < 48)
1312		mss_now = 48;
1313	return mss_now;
1314}
1315
1316/* Calculate MSS. Not accounting for SACKs here.  */
1317int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1318{
1319	/* Subtract TCP options size, not including SACKs */
1320	return __tcp_mtu_to_mss(sk, pmtu) -
1321	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1322}
 
1323
1324/* Inverse of above */
1325int tcp_mss_to_mtu(struct sock *sk, int mss)
1326{
1327	const struct tcp_sock *tp = tcp_sk(sk);
1328	const struct inet_connection_sock *icsk = inet_csk(sk);
1329	int mtu;
1330
1331	mtu = mss +
1332	      tp->tcp_header_len +
1333	      icsk->icsk_ext_hdr_len +
1334	      icsk->icsk_af_ops->net_header_len;
1335
1336	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1337	if (icsk->icsk_af_ops->net_frag_header_len) {
1338		const struct dst_entry *dst = __sk_dst_get(sk);
1339
1340		if (dst && dst_allfrag(dst))
1341			mtu += icsk->icsk_af_ops->net_frag_header_len;
1342	}
1343	return mtu;
1344}
 
1345
1346/* MTU probing init per socket */
1347void tcp_mtup_init(struct sock *sk)
1348{
1349	struct tcp_sock *tp = tcp_sk(sk);
1350	struct inet_connection_sock *icsk = inet_csk(sk);
1351	struct net *net = sock_net(sk);
1352
1353	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1354	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1355			       icsk->icsk_af_ops->net_header_len;
1356	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1357	icsk->icsk_mtup.probe_size = 0;
1358	if (icsk->icsk_mtup.enabled)
1359		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1360}
1361EXPORT_SYMBOL(tcp_mtup_init);
1362
1363/* This function synchronize snd mss to current pmtu/exthdr set.
1364
1365   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1366   for TCP options, but includes only bare TCP header.
1367
1368   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1369   It is minimum of user_mss and mss received with SYN.
1370   It also does not include TCP options.
1371
1372   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1373
1374   tp->mss_cache is current effective sending mss, including
1375   all tcp options except for SACKs. It is evaluated,
1376   taking into account current pmtu, but never exceeds
1377   tp->rx_opt.mss_clamp.
1378
1379   NOTE1. rfc1122 clearly states that advertised MSS
1380   DOES NOT include either tcp or ip options.
1381
1382   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1383   are READ ONLY outside this function.		--ANK (980731)
1384 */
1385unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1386{
1387	struct tcp_sock *tp = tcp_sk(sk);
1388	struct inet_connection_sock *icsk = inet_csk(sk);
1389	int mss_now;
1390
1391	if (icsk->icsk_mtup.search_high > pmtu)
1392		icsk->icsk_mtup.search_high = pmtu;
1393
1394	mss_now = tcp_mtu_to_mss(sk, pmtu);
1395	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1396
1397	/* And store cached results */
1398	icsk->icsk_pmtu_cookie = pmtu;
1399	if (icsk->icsk_mtup.enabled)
1400		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1401	tp->mss_cache = mss_now;
1402
1403	return mss_now;
1404}
1405EXPORT_SYMBOL(tcp_sync_mss);
1406
1407/* Compute the current effective MSS, taking SACKs and IP options,
1408 * and even PMTU discovery events into account.
1409 */
1410unsigned int tcp_current_mss(struct sock *sk)
1411{
1412	const struct tcp_sock *tp = tcp_sk(sk);
1413	const struct dst_entry *dst = __sk_dst_get(sk);
1414	u32 mss_now;
1415	unsigned int header_len;
1416	struct tcp_out_options opts;
1417	struct tcp_md5sig_key *md5;
1418
1419	mss_now = tp->mss_cache;
1420
1421	if (dst) {
1422		u32 mtu = dst_mtu(dst);
1423		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1424			mss_now = tcp_sync_mss(sk, mtu);
1425	}
1426
1427	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1428		     sizeof(struct tcphdr);
1429	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1430	 * some common options. If this is an odd packet (because we have SACK
1431	 * blocks etc) then our calculated header_len will be different, and
1432	 * we have to adjust mss_now correspondingly */
1433	if (header_len != tp->tcp_header_len) {
1434		int delta = (int) header_len - tp->tcp_header_len;
1435		mss_now -= delta;
1436	}
1437
1438	return mss_now;
1439}
1440
1441/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1442 * As additional protections, we do not touch cwnd in retransmission phases,
1443 * and if application hit its sndbuf limit recently.
1444 */
1445static void tcp_cwnd_application_limited(struct sock *sk)
1446{
1447	struct tcp_sock *tp = tcp_sk(sk);
1448
1449	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1450	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1451		/* Limited by application or receiver window. */
1452		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1453		u32 win_used = max(tp->snd_cwnd_used, init_win);
1454		if (win_used < tp->snd_cwnd) {
1455			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1456			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1457		}
1458		tp->snd_cwnd_used = 0;
1459	}
1460	tp->snd_cwnd_stamp = tcp_time_stamp;
1461}
1462
1463static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1464{
 
1465	struct tcp_sock *tp = tcp_sk(sk);
1466
1467	/* Track the maximum number of outstanding packets in each
1468	 * window, and remember whether we were cwnd-limited then.
 
 
 
 
1469	 */
1470	if (!before(tp->snd_una, tp->max_packets_seq) ||
1471	    tp->packets_out > tp->max_packets_out) {
1472		tp->max_packets_out = tp->packets_out;
1473		tp->max_packets_seq = tp->snd_nxt;
1474		tp->is_cwnd_limited = is_cwnd_limited;
 
 
1475	}
1476
1477	if (tcp_is_cwnd_limited(sk)) {
1478		/* Network is feed fully. */
1479		tp->snd_cwnd_used = 0;
1480		tp->snd_cwnd_stamp = tcp_time_stamp;
1481	} else {
1482		/* Network starves. */
1483		if (tp->packets_out > tp->snd_cwnd_used)
1484			tp->snd_cwnd_used = tp->packets_out;
1485
1486		if (sysctl_tcp_slow_start_after_idle &&
1487		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
 
1488			tcp_cwnd_application_limited(sk);
 
 
 
 
 
 
 
 
 
 
 
 
1489	}
1490}
1491
1492/* Minshall's variant of the Nagle send check. */
1493static bool tcp_minshall_check(const struct tcp_sock *tp)
1494{
1495	return after(tp->snd_sml, tp->snd_una) &&
1496		!after(tp->snd_sml, tp->snd_nxt);
1497}
1498
1499/* Update snd_sml if this skb is under mss
1500 * Note that a TSO packet might end with a sub-mss segment
1501 * The test is really :
1502 * if ((skb->len % mss) != 0)
1503 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1504 * But we can avoid doing the divide again given we already have
1505 *  skb_pcount = skb->len / mss_now
1506 */
1507static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1508				const struct sk_buff *skb)
1509{
1510	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1511		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1512}
1513
1514/* Return false, if packet can be sent now without violation Nagle's rules:
1515 * 1. It is full sized. (provided by caller in %partial bool)
1516 * 2. Or it contains FIN. (already checked by caller)
1517 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1518 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1519 *    With Minshall's modification: all sent small packets are ACKed.
1520 */
1521static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1522			    int nonagle)
1523{
1524	return partial &&
1525		((nonagle & TCP_NAGLE_CORK) ||
1526		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1527}
1528
1529/* Return how many segs we'd like on a TSO packet,
1530 * to send one TSO packet per ms
 
 
 
 
 
 
 
 
 
 
 
1531 */
1532static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
 
1533{
1534	u32 bytes, segs;
 
1535
1536	bytes = min(sk->sk_pacing_rate >> 10,
1537		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1538
1539	/* Goal is to send at least one packet per ms,
1540	 * not one big TSO packet every 100 ms.
1541	 * This preserves ACK clocking and is consistent
1542	 * with tcp_tso_should_defer() heuristic.
1543	 */
1544	segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
 
 
1545
1546	return min_t(u32, segs, sk->sk_gso_max_segs);
 
 
 
 
 
 
 
 
 
 
 
 
 
1547}
1548
1549/* Returns the portion of skb which can be sent right away */
1550static unsigned int tcp_mss_split_point(const struct sock *sk,
1551					const struct sk_buff *skb,
1552					unsigned int mss_now,
1553					unsigned int max_segs,
1554					int nonagle)
1555{
1556	const struct tcp_sock *tp = tcp_sk(sk);
1557	u32 partial, needed, window, max_len;
1558
1559	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1560	max_len = mss_now * max_segs;
1561
1562	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1563		return max_len;
1564
1565	needed = min(skb->len, window);
1566
1567	if (max_len <= needed)
1568		return max_len;
1569
1570	partial = needed % mss_now;
1571	/* If last segment is not a full MSS, check if Nagle rules allow us
1572	 * to include this last segment in this skb.
1573	 * Otherwise, we'll split the skb at last MSS boundary
1574	 */
1575	if (tcp_nagle_check(partial != 0, tp, nonagle))
1576		return needed - partial;
1577
1578	return needed;
1579}
1580
1581/* Can at least one segment of SKB be sent right now, according to the
1582 * congestion window rules?  If so, return how many segments are allowed.
1583 */
1584static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1585					 const struct sk_buff *skb)
1586{
1587	u32 in_flight, cwnd, halfcwnd;
1588
1589	/* Don't be strict about the congestion window for the final FIN.  */
1590	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1591	    tcp_skb_pcount(skb) == 1)
1592		return 1;
1593
1594	in_flight = tcp_packets_in_flight(tp);
1595	cwnd = tp->snd_cwnd;
1596	if (in_flight >= cwnd)
1597		return 0;
1598
1599	/* For better scheduling, ensure we have at least
1600	 * 2 GSO packets in flight.
1601	 */
1602	halfcwnd = max(cwnd >> 1, 1U);
1603	return min(halfcwnd, cwnd - in_flight);
1604}
1605
1606/* Initialize TSO state of a skb.
1607 * This must be invoked the first time we consider transmitting
1608 * SKB onto the wire.
1609 */
1610static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1611{
1612	int tso_segs = tcp_skb_pcount(skb);
1613
1614	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1615		tcp_set_skb_tso_segs(skb, mss_now);
1616		tso_segs = tcp_skb_pcount(skb);
1617	}
1618	return tso_segs;
1619}
1620
1621
1622/* Return true if the Nagle test allows this packet to be
1623 * sent now.
1624 */
1625static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1626				  unsigned int cur_mss, int nonagle)
1627{
1628	/* Nagle rule does not apply to frames, which sit in the middle of the
1629	 * write_queue (they have no chances to get new data).
1630	 *
1631	 * This is implemented in the callers, where they modify the 'nonagle'
1632	 * argument based upon the location of SKB in the send queue.
1633	 */
1634	if (nonagle & TCP_NAGLE_PUSH)
1635		return true;
1636
1637	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1638	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1639		return true;
1640
1641	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1642		return true;
1643
1644	return false;
1645}
1646
1647/* Does at least the first segment of SKB fit into the send window? */
1648static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1649			     const struct sk_buff *skb,
1650			     unsigned int cur_mss)
1651{
1652	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1653
1654	if (skb->len > cur_mss)
1655		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1656
1657	return !after(end_seq, tcp_wnd_end(tp));
1658}
1659
1660/* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1661 * should be put on the wire right now.  If so, it returns the number of
1662 * packets allowed by the congestion window.
1663 */
1664static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1665				 unsigned int cur_mss, int nonagle)
1666{
1667	const struct tcp_sock *tp = tcp_sk(sk);
1668	unsigned int cwnd_quota;
1669
1670	tcp_init_tso_segs(skb, cur_mss);
1671
1672	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1673		return 0;
1674
1675	cwnd_quota = tcp_cwnd_test(tp, skb);
1676	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1677		cwnd_quota = 0;
1678
1679	return cwnd_quota;
1680}
1681
1682/* Test if sending is allowed right now. */
1683bool tcp_may_send_now(struct sock *sk)
1684{
1685	const struct tcp_sock *tp = tcp_sk(sk);
1686	struct sk_buff *skb = tcp_send_head(sk);
1687
1688	return skb &&
1689		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1690			     (tcp_skb_is_last(sk, skb) ?
1691			      tp->nonagle : TCP_NAGLE_PUSH));
1692}
1693
1694/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1695 * which is put after SKB on the list.  It is very much like
1696 * tcp_fragment() except that it may make several kinds of assumptions
1697 * in order to speed up the splitting operation.  In particular, we
1698 * know that all the data is in scatter-gather pages, and that the
1699 * packet has never been sent out before (and thus is not cloned).
1700 */
1701static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1702			unsigned int mss_now, gfp_t gfp)
1703{
1704	struct sk_buff *buff;
1705	int nlen = skb->len - len;
 
1706	u8 flags;
1707
1708	/* All of a TSO frame must be composed of paged data.  */
1709	if (skb->len != skb->data_len)
1710		return tcp_fragment(sk, skb, len, mss_now, gfp);
1711
1712	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1713	if (unlikely(!buff))
1714		return -ENOMEM;
 
 
1715
1716	sk->sk_wmem_queued += buff->truesize;
1717	sk_mem_charge(sk, buff->truesize);
1718	buff->truesize += nlen;
1719	skb->truesize -= nlen;
1720
1721	/* Correct the sequence numbers. */
1722	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1723	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1724	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1725
1726	/* PSH and FIN should only be set in the second packet. */
1727	flags = TCP_SKB_CB(skb)->tcp_flags;
1728	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1729	TCP_SKB_CB(buff)->tcp_flags = flags;
1730
1731	/* This packet was never sent out yet, so no SACK bits. */
1732	TCP_SKB_CB(buff)->sacked = 0;
1733
1734	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1735	skb_split(skb, buff, len);
1736	tcp_fragment_tstamp(skb, buff);
1737
1738	/* Fix up tso_factor for both original and new SKB.  */
1739	tcp_set_skb_tso_segs(skb, mss_now);
1740	tcp_set_skb_tso_segs(buff, mss_now);
1741
1742	/* Link BUFF into the send queue. */
1743	__skb_header_release(buff);
1744	tcp_insert_write_queue_after(skb, buff, sk);
1745
1746	return 0;
1747}
1748
1749/* Try to defer sending, if possible, in order to minimize the amount
1750 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1751 *
1752 * This algorithm is from John Heffner.
1753 */
1754static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1755				 bool *is_cwnd_limited, u32 max_segs)
 
 
1756{
1757	const struct inet_connection_sock *icsk = inet_csk(sk);
1758	u32 age, send_win, cong_win, limit, in_flight;
1759	struct tcp_sock *tp = tcp_sk(sk);
1760	struct skb_mstamp now;
1761	struct sk_buff *head;
1762	int win_divisor;
1763
1764	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1765		goto send_now;
1766
1767	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1768		goto send_now;
1769
1770	/* Avoid bursty behavior by allowing defer
1771	 * only if the last write was recent.
 
 
1772	 */
1773	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
 
1774		goto send_now;
1775
1776	in_flight = tcp_packets_in_flight(tp);
1777
1778	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
 
1779
1780	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1781
1782	/* From in_flight test above, we know that cwnd > in_flight.  */
1783	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1784
1785	limit = min(send_win, cong_win);
1786
1787	/* If a full-sized TSO skb can be sent, do it. */
1788	if (limit >= max_segs * tp->mss_cache)
1789		goto send_now;
1790
1791	/* Middle in queue won't get any more data, full sendable already? */
1792	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1793		goto send_now;
1794
1795	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1796	if (win_divisor) {
1797		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1798
1799		/* If at least some fraction of a window is available,
1800		 * just use it.
1801		 */
1802		chunk /= win_divisor;
1803		if (limit >= chunk)
1804			goto send_now;
1805	} else {
1806		/* Different approach, try not to defer past a single
1807		 * ACK.  Receiver should ACK every other full sized
1808		 * frame, so if we have space for more than 3 frames
1809		 * then send now.
1810		 */
1811		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1812			goto send_now;
1813	}
1814
1815	head = tcp_write_queue_head(sk);
1816	skb_mstamp_get(&now);
1817	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
 
 
1818	/* If next ACK is likely to come too late (half srtt), do not defer */
1819	if (age < (tp->srtt_us >> 4))
1820		goto send_now;
1821
1822	/* Ok, it looks like it is advisable to defer. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823
1824	if (cong_win < send_win && cong_win <= skb->len)
1825		*is_cwnd_limited = true;
 
 
1826
1827	return true;
1828
1829send_now:
1830	return false;
1831}
1832
1833static inline void tcp_mtu_check_reprobe(struct sock *sk)
1834{
1835	struct inet_connection_sock *icsk = inet_csk(sk);
1836	struct tcp_sock *tp = tcp_sk(sk);
1837	struct net *net = sock_net(sk);
1838	u32 interval;
1839	s32 delta;
1840
1841	interval = net->ipv4.sysctl_tcp_probe_interval;
1842	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1843	if (unlikely(delta >= interval * HZ)) {
1844		int mss = tcp_current_mss(sk);
1845
1846		/* Update current search range */
1847		icsk->icsk_mtup.probe_size = 0;
1848		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1849			sizeof(struct tcphdr) +
1850			icsk->icsk_af_ops->net_header_len;
1851		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1852
1853		/* Update probe time stamp */
1854		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1855	}
1856}
1857
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858/* Create a new MTU probe if we are ready.
1859 * MTU probe is regularly attempting to increase the path MTU by
1860 * deliberately sending larger packets.  This discovers routing
1861 * changes resulting in larger path MTUs.
1862 *
1863 * Returns 0 if we should wait to probe (no cwnd available),
1864 *         1 if a probe was sent,
1865 *         -1 otherwise
1866 */
1867static int tcp_mtu_probe(struct sock *sk)
1868{
1869	struct tcp_sock *tp = tcp_sk(sk);
1870	struct inet_connection_sock *icsk = inet_csk(sk);
 
1871	struct sk_buff *skb, *nskb, *next;
1872	struct net *net = sock_net(sk);
1873	int len;
1874	int probe_size;
1875	int size_needed;
1876	int copy;
1877	int mss_now;
1878	int interval;
1879
1880	/* Not currently probing/verifying,
1881	 * not in recovery,
1882	 * have enough cwnd, and
1883	 * not SACKing (the variable headers throw things off) */
1884	if (!icsk->icsk_mtup.enabled ||
1885	    icsk->icsk_mtup.probe_size ||
1886	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1887	    tp->snd_cwnd < 11 ||
1888	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
 
1889		return -1;
1890
1891	/* Use binary search for probe_size between tcp_mss_base,
1892	 * and current mss_clamp. if (search_high - search_low)
1893	 * smaller than a threshold, backoff from probing.
1894	 */
1895	mss_now = tcp_current_mss(sk);
1896	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1897				    icsk->icsk_mtup.search_low) >> 1);
1898	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1899	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1900	/* When misfortune happens, we are reprobing actively,
1901	 * and then reprobe timer has expired. We stick with current
1902	 * probing process by not resetting search range to its orignal.
1903	 */
1904	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1905		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1906		/* Check whether enough time has elaplased for
1907		 * another round of probing.
1908		 */
1909		tcp_mtu_check_reprobe(sk);
1910		return -1;
1911	}
1912
1913	/* Have enough data in the send queue to probe? */
1914	if (tp->write_seq - tp->snd_nxt < size_needed)
1915		return -1;
1916
1917	if (tp->snd_wnd < size_needed)
1918		return -1;
1919	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1920		return 0;
1921
1922	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1923	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1924		if (!tcp_packets_in_flight(tp))
1925			return -1;
1926		else
1927			return 0;
1928	}
1929
 
 
 
1930	/* We're allowed to probe.  Build it now. */
1931	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1932	if (!nskb)
1933		return -1;
1934	sk->sk_wmem_queued += nskb->truesize;
 
 
 
 
 
 
 
1935	sk_mem_charge(sk, nskb->truesize);
1936
1937	skb = tcp_send_head(sk);
 
 
1938
1939	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1940	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1941	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1942	TCP_SKB_CB(nskb)->sacked = 0;
1943	nskb->csum = 0;
1944	nskb->ip_summed = skb->ip_summed;
1945
1946	tcp_insert_write_queue_before(nskb, skb, sk);
 
1947
1948	len = 0;
1949	tcp_for_write_queue_from_safe(skb, next, sk) {
1950		copy = min_t(int, skb->len, probe_size - len);
1951		if (nskb->ip_summed)
1952			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1953		else
1954			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1955							    skb_put(nskb, copy),
1956							    copy, nskb->csum);
1957
1958		if (skb->len <= copy) {
1959			/* We've eaten all the data from this skb.
1960			 * Throw it away. */
1961			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
 
 
 
 
 
1962			tcp_unlink_write_queue(skb, sk);
1963			sk_wmem_free_skb(sk, skb);
1964		} else {
1965			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1966						   ~(TCPHDR_FIN|TCPHDR_PSH);
1967			if (!skb_shinfo(skb)->nr_frags) {
1968				skb_pull(skb, copy);
1969				if (skb->ip_summed != CHECKSUM_PARTIAL)
1970					skb->csum = csum_partial(skb->data,
1971								 skb->len, 0);
1972			} else {
1973				__pskb_trim_head(skb, copy);
1974				tcp_set_skb_tso_segs(skb, mss_now);
1975			}
1976			TCP_SKB_CB(skb)->seq += copy;
1977		}
1978
1979		len += copy;
1980
1981		if (len >= probe_size)
1982			break;
1983	}
1984	tcp_init_tso_segs(nskb, nskb->len);
1985
1986	/* We're ready to send.  If this fails, the probe will
1987	 * be resegmented into mss-sized pieces by tcp_write_xmit().
1988	 */
1989	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1990		/* Decrement cwnd here because we are sending
1991		 * effectively two packets. */
1992		tp->snd_cwnd--;
1993		tcp_event_new_data_sent(sk, nskb);
1994
1995		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1996		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1997		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1998
1999		return 1;
2000	}
2001
2002	return -1;
2003}
2004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2005/* This routine writes packets to the network.  It advances the
2006 * send_head.  This happens as incoming acks open up the remote
2007 * window for us.
2008 *
2009 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2010 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2011 * account rare use of URG, this is not a big flaw.
2012 *
2013 * Send at most one packet when push_one > 0. Temporarily ignore
2014 * cwnd limit to force at most one packet out when push_one == 2.
2015
2016 * Returns true, if no segments are in flight and we have queued segments,
2017 * but cannot send anything now because of SWS or another problem.
2018 */
2019static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2020			   int push_one, gfp_t gfp)
2021{
2022	struct tcp_sock *tp = tcp_sk(sk);
2023	struct sk_buff *skb;
2024	unsigned int tso_segs, sent_pkts;
2025	int cwnd_quota;
2026	int result;
2027	bool is_cwnd_limited = false;
2028	u32 max_segs;
2029
2030	sent_pkts = 0;
2031
 
2032	if (!push_one) {
2033		/* Do MTU probing. */
2034		result = tcp_mtu_probe(sk);
2035		if (!result) {
2036			return false;
2037		} else if (result > 0) {
2038			sent_pkts = 1;
2039		}
2040	}
2041
2042	max_segs = tcp_tso_autosize(sk, mss_now);
2043	while ((skb = tcp_send_head(sk))) {
2044		unsigned int limit;
2045
2046		tso_segs = tcp_init_tso_segs(skb, mss_now);
2047		BUG_ON(!tso_segs);
2048
2049		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2050			/* "skb_mstamp" is used as a start point for the retransmit timer */
2051			skb_mstamp_get(&skb->skb_mstamp);
 
 
 
2052			goto repair; /* Skip network transmission */
2053		}
2054
 
 
 
 
 
 
2055		cwnd_quota = tcp_cwnd_test(tp, skb);
2056		if (!cwnd_quota) {
2057			if (push_one == 2)
2058				/* Force out a loss probe pkt. */
2059				cwnd_quota = 1;
2060			else
2061				break;
2062		}
2063
2064		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
 
2065			break;
 
2066
2067		if (tso_segs == 1) {
2068			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2069						     (tcp_skb_is_last(sk, skb) ?
2070						      nonagle : TCP_NAGLE_PUSH))))
2071				break;
2072		} else {
2073			if (!push_one &&
2074			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2075						 max_segs))
2076				break;
2077		}
2078
2079		limit = mss_now;
2080		if (tso_segs > 1 && !tcp_urg_mode(tp))
2081			limit = tcp_mss_split_point(sk, skb, mss_now,
2082						    min_t(unsigned int,
2083							  cwnd_quota,
2084							  max_segs),
2085						    nonagle);
2086
2087		if (skb->len > limit &&
2088		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2089			break;
2090
2091		/* TCP Small Queues :
2092		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2093		 * This allows for :
2094		 *  - better RTT estimation and ACK scheduling
2095		 *  - faster recovery
2096		 *  - high rates
2097		 * Alas, some drivers / subsystems require a fair amount
2098		 * of queued bytes to ensure line rate.
2099		 * One example is wifi aggregation (802.11 AMPDU)
2100		 */
2101		limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2102		limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2103
2104		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2105			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2106			/* It is possible TX completion already happened
2107			 * before we set TSQ_THROTTLED, so we must
2108			 * test again the condition.
2109			 */
2110			smp_mb__after_atomic();
2111			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2112				break;
2113		}
2114
2115		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2116			break;
2117
2118repair:
2119		/* Advance the send_head.  This one is sent out.
2120		 * This call will increment packets_out.
2121		 */
2122		tcp_event_new_data_sent(sk, skb);
2123
2124		tcp_minshall_update(tp, mss_now, skb);
2125		sent_pkts += tcp_skb_pcount(skb);
2126
2127		if (push_one)
2128			break;
2129	}
2130
 
 
 
 
 
 
 
 
 
2131	if (likely(sent_pkts)) {
2132		if (tcp_in_cwnd_reduction(sk))
2133			tp->prr_out += sent_pkts;
2134
2135		/* Send one loss probe per tail loss episode. */
2136		if (push_one != 2)
2137			tcp_schedule_loss_probe(sk);
2138		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2139		tcp_cwnd_validate(sk, is_cwnd_limited);
2140		return false;
2141	}
2142	return !tp->packets_out && tcp_send_head(sk);
2143}
2144
2145bool tcp_schedule_loss_probe(struct sock *sk)
2146{
2147	struct inet_connection_sock *icsk = inet_csk(sk);
2148	struct tcp_sock *tp = tcp_sk(sk);
2149	u32 timeout, tlp_time_stamp, rto_time_stamp;
2150	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2151
2152	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2153		return false;
2154	/* No consecutive loss probes. */
2155	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2156		tcp_rearm_rto(sk);
2157		return false;
2158	}
2159	/* Don't do any loss probe on a Fast Open connection before 3WHS
2160	 * finishes.
2161	 */
2162	if (tp->fastopen_rsk)
2163		return false;
2164
2165	/* TLP is only scheduled when next timer event is RTO. */
2166	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2167		return false;
2168
 
2169	/* Schedule a loss probe in 2*RTT for SACK capable connections
2170	 * in Open state, that are either limited by cwnd or application.
2171	 */
2172	if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2173	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
 
 
2174		return false;
2175
2176	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2177	     tcp_send_head(sk))
2178		return false;
2179
2180	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2181	 * for delayed ack when there's one outstanding packet. If no RTT
2182	 * sample is available then probe after TCP_TIMEOUT_INIT.
2183	 */
2184	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2185	if (tp->packets_out == 1)
2186		timeout = max_t(u32, timeout,
2187				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2188	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2189
2190	/* If RTO is shorter, just schedule TLP in its place. */
2191	tlp_time_stamp = tcp_time_stamp + timeout;
2192	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2193	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2194		s32 delta = rto_time_stamp - tcp_time_stamp;
2195		if (delta > 0)
2196			timeout = delta;
2197	}
2198
2199	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2200				  TCP_RTO_MAX);
 
 
 
 
 
 
2201	return true;
2202}
2203
2204/* Thanks to skb fast clones, we can detect if a prior transmit of
2205 * a packet is still in a qdisc or driver queue.
2206 * In this case, there is very little point doing a retransmit !
2207 * Note: This is called from BH context only.
2208 */
2209static bool skb_still_in_host_queue(const struct sock *sk,
2210				    const struct sk_buff *skb)
2211{
2212	if (unlikely(skb_fclone_busy(sk, skb))) {
2213		NET_INC_STATS_BH(sock_net(sk),
2214				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2215		return true;
 
 
 
 
2216	}
2217	return false;
2218}
2219
2220/* When probe timeout (PTO) fires, try send a new segment if possible, else
2221 * retransmit the last segment.
2222 */
2223void tcp_send_loss_probe(struct sock *sk)
2224{
2225	struct tcp_sock *tp = tcp_sk(sk);
2226	struct sk_buff *skb;
2227	int pcount;
2228	int mss = tcp_current_mss(sk);
2229
2230	skb = tcp_send_head(sk);
2231	if (skb) {
2232		if (tcp_snd_wnd_test(tp, skb, mss)) {
2233			pcount = tp->packets_out;
2234			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2235			if (tp->packets_out > pcount)
2236				goto probe_sent;
2237			goto rearm_timer;
2238		}
2239		skb = tcp_write_queue_prev(sk, skb);
2240	} else {
2241		skb = tcp_write_queue_tail(sk);
2242	}
2243
2244	/* At most one outstanding TLP retransmission. */
2245	if (tp->tlp_high_seq)
2246		goto rearm_timer;
2247
2248	/* Retransmit last segment. */
2249	if (WARN_ON(!skb))
 
 
 
 
 
2250		goto rearm_timer;
 
 
 
 
 
 
 
 
 
2251
2252	if (skb_still_in_host_queue(sk, skb))
2253		goto rearm_timer;
2254
2255	pcount = tcp_skb_pcount(skb);
2256	if (WARN_ON(!pcount))
2257		goto rearm_timer;
2258
2259	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2260		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
 
2261					  GFP_ATOMIC)))
2262			goto rearm_timer;
2263		skb = tcp_write_queue_next(sk, skb);
2264	}
2265
2266	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2267		goto rearm_timer;
2268
2269	if (__tcp_retransmit_skb(sk, skb))
2270		goto rearm_timer;
2271
 
 
 
2272	/* Record snd_nxt for loss detection. */
2273	tp->tlp_high_seq = tp->snd_nxt;
2274
2275probe_sent:
2276	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2277	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2278	inet_csk(sk)->icsk_pending = 0;
2279rearm_timer:
2280	tcp_rearm_rto(sk);
2281}
2282
2283/* Push out any pending frames which were held back due to
2284 * TCP_CORK or attempt at coalescing tiny packets.
2285 * The socket must be locked by the caller.
2286 */
2287void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2288			       int nonagle)
2289{
2290	/* If we are closed, the bytes will have to remain here.
2291	 * In time closedown will finish, we empty the write queue and
2292	 * all will be happy.
2293	 */
2294	if (unlikely(sk->sk_state == TCP_CLOSE))
2295		return;
2296
2297	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2298			   sk_gfp_mask(sk, GFP_ATOMIC)))
2299		tcp_check_probe_timer(sk);
2300}
2301
2302/* Send _single_ skb sitting at the send head. This function requires
2303 * true push pending frames to setup probe timer etc.
2304 */
2305void tcp_push_one(struct sock *sk, unsigned int mss_now)
2306{
2307	struct sk_buff *skb = tcp_send_head(sk);
2308
2309	BUG_ON(!skb || skb->len < mss_now);
2310
2311	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2312}
2313
2314/* This function returns the amount that we can raise the
2315 * usable window based on the following constraints
2316 *
2317 * 1. The window can never be shrunk once it is offered (RFC 793)
2318 * 2. We limit memory per socket
2319 *
2320 * RFC 1122:
2321 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2322 *  RECV.NEXT + RCV.WIN fixed until:
2323 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2324 *
2325 * i.e. don't raise the right edge of the window until you can raise
2326 * it at least MSS bytes.
2327 *
2328 * Unfortunately, the recommended algorithm breaks header prediction,
2329 * since header prediction assumes th->window stays fixed.
2330 *
2331 * Strictly speaking, keeping th->window fixed violates the receiver
2332 * side SWS prevention criteria. The problem is that under this rule
2333 * a stream of single byte packets will cause the right side of the
2334 * window to always advance by a single byte.
2335 *
2336 * Of course, if the sender implements sender side SWS prevention
2337 * then this will not be a problem.
2338 *
2339 * BSD seems to make the following compromise:
2340 *
2341 *	If the free space is less than the 1/4 of the maximum
2342 *	space available and the free space is less than 1/2 mss,
2343 *	then set the window to 0.
2344 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2345 *	Otherwise, just prevent the window from shrinking
2346 *	and from being larger than the largest representable value.
2347 *
2348 * This prevents incremental opening of the window in the regime
2349 * where TCP is limited by the speed of the reader side taking
2350 * data out of the TCP receive queue. It does nothing about
2351 * those cases where the window is constrained on the sender side
2352 * because the pipeline is full.
2353 *
2354 * BSD also seems to "accidentally" limit itself to windows that are a
2355 * multiple of MSS, at least until the free space gets quite small.
2356 * This would appear to be a side effect of the mbuf implementation.
2357 * Combining these two algorithms results in the observed behavior
2358 * of having a fixed window size at almost all times.
2359 *
2360 * Below we obtain similar behavior by forcing the offered window to
2361 * a multiple of the mss when it is feasible to do so.
2362 *
2363 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2364 * Regular options like TIMESTAMP are taken into account.
2365 */
2366u32 __tcp_select_window(struct sock *sk)
2367{
2368	struct inet_connection_sock *icsk = inet_csk(sk);
2369	struct tcp_sock *tp = tcp_sk(sk);
 
2370	/* MSS for the peer's data.  Previous versions used mss_clamp
2371	 * here.  I don't know if the value based on our guesses
2372	 * of peer's MSS is better for the performance.  It's more correct
2373	 * but may be worse for the performance because of rcv_mss
2374	 * fluctuations.  --SAW  1998/11/1
2375	 */
2376	int mss = icsk->icsk_ack.rcv_mss;
2377	int free_space = tcp_space(sk);
2378	int allowed_space = tcp_full_space(sk);
2379	int full_space = min_t(int, tp->window_clamp, allowed_space);
2380	int window;
2381
2382	if (mss > full_space)
 
 
 
 
 
2383		mss = full_space;
 
 
 
 
 
 
 
 
 
 
 
2384
2385	if (free_space < (full_space >> 1)) {
2386		icsk->icsk_ack.quick = 0;
2387
2388		if (tcp_under_memory_pressure(sk))
2389			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2390					       4U * tp->advmss);
2391
2392		/* free_space might become our new window, make sure we don't
2393		 * increase it due to wscale.
2394		 */
2395		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2396
2397		/* if free space is less than mss estimate, or is below 1/16th
2398		 * of the maximum allowed, try to move to zero-window, else
2399		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2400		 * new incoming data is dropped due to memory limits.
2401		 * With large window, mss test triggers way too late in order
2402		 * to announce zero window in time before rmem limit kicks in.
2403		 */
2404		if (free_space < (allowed_space >> 4) || free_space < mss)
2405			return 0;
2406	}
2407
2408	if (free_space > tp->rcv_ssthresh)
2409		free_space = tp->rcv_ssthresh;
2410
2411	/* Don't do rounding if we are using window scaling, since the
2412	 * scaled window will not line up with the MSS boundary anyway.
2413	 */
2414	window = tp->rcv_wnd;
2415	if (tp->rx_opt.rcv_wscale) {
2416		window = free_space;
2417
2418		/* Advertise enough space so that it won't get scaled away.
2419		 * Import case: prevent zero window announcement if
2420		 * 1<<rcv_wscale > mss.
2421		 */
2422		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2423			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2424				  << tp->rx_opt.rcv_wscale);
2425	} else {
 
2426		/* Get the largest window that is a nice multiple of mss.
2427		 * Window clamp already applied above.
2428		 * If our current window offering is within 1 mss of the
2429		 * free space we just keep it. This prevents the divide
2430		 * and multiply from happening most of the time.
2431		 * We also don't do any window rounding when the free space
2432		 * is too small.
2433		 */
2434		if (window <= free_space - mss || window > free_space)
2435			window = (free_space / mss) * mss;
2436		else if (mss == full_space &&
2437			 free_space > window + (full_space >> 1))
2438			window = free_space;
2439	}
2440
2441	return window;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2442}
2443
2444void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2445			     const struct sk_buff *next_skb)
2446{
2447	const struct skb_shared_info *next_shinfo = skb_shinfo(next_skb);
2448	u8 tsflags = next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2449
2450	if (unlikely(tsflags)) {
2451		struct skb_shared_info *shinfo = skb_shinfo(skb);
2452
2453		shinfo->tx_flags |= tsflags;
2454		shinfo->tskey = next_shinfo->tskey;
 
 
2455	}
2456}
2457
2458/* Collapses two adjacent SKB's during retransmission. */
2459static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2460{
2461	struct tcp_sock *tp = tcp_sk(sk);
2462	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2463	int skb_size, next_skb_size;
2464
2465	skb_size = skb->len;
2466	next_skb_size = next_skb->len;
2467
2468	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2469
2470	tcp_highest_sack_combine(sk, next_skb, skb);
2471
2472	tcp_unlink_write_queue(next_skb, sk);
2473
2474	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2475				  next_skb_size);
2476
2477	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2478		skb->ip_summed = CHECKSUM_PARTIAL;
2479
2480	if (skb->ip_summed != CHECKSUM_PARTIAL)
2481		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2482
2483	/* Update sequence range on original skb. */
2484	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2485
2486	/* Merge over control information. This moves PSH/FIN etc. over */
2487	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2488
2489	/* All done, get rid of second SKB and account for it so
2490	 * packet counting does not break.
2491	 */
2492	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
 
2493
2494	/* changed transmit queue under us so clear hints */
2495	tcp_clear_retrans_hints_partial(tp);
2496	if (next_skb == tp->retransmit_skb_hint)
2497		tp->retransmit_skb_hint = skb;
2498
2499	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2500
2501	tcp_skb_collapse_tstamp(skb, next_skb);
2502
2503	sk_wmem_free_skb(sk, next_skb);
 
2504}
2505
2506/* Check if coalescing SKBs is legal. */
2507static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2508{
2509	if (tcp_skb_pcount(skb) > 1)
2510		return false;
2511	/* TODO: SACK collapsing could be used to remove this condition */
2512	if (skb_shinfo(skb)->nr_frags != 0)
2513		return false;
2514	if (skb_cloned(skb))
2515		return false;
2516	if (skb == tcp_send_head(sk))
2517		return false;
2518	/* Some heurestics for collapsing over SACK'd could be invented */
2519	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2520		return false;
2521
2522	return true;
2523}
2524
2525/* Collapse packets in the retransmit queue to make to create
2526 * less packets on the wire. This is only done on retransmission.
2527 */
2528static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2529				     int space)
2530{
2531	struct tcp_sock *tp = tcp_sk(sk);
2532	struct sk_buff *skb = to, *tmp;
2533	bool first = true;
2534
2535	if (!sysctl_tcp_retrans_collapse)
2536		return;
2537	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2538		return;
2539
2540	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2541		if (!tcp_can_collapse(sk, skb))
2542			break;
2543
 
 
 
2544		space -= skb->len;
2545
2546		if (first) {
2547			first = false;
2548			continue;
2549		}
2550
2551		if (space < 0)
2552			break;
2553		/* Punt if not enough space exists in the first SKB for
2554		 * the data in the second
2555		 */
2556		if (skb->len > skb_availroom(to))
2557			break;
2558
2559		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2560			break;
2561
2562		tcp_collapse_retrans(sk, to);
 
2563	}
2564}
2565
2566/* This retransmits one SKB.  Policy decisions and retransmit queue
2567 * state updates are done by the caller.  Returns non-zero if an
2568 * error occurred which prevented the send.
2569 */
2570int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2571{
2572	struct tcp_sock *tp = tcp_sk(sk);
2573	struct inet_connection_sock *icsk = inet_csk(sk);
 
2574	unsigned int cur_mss;
2575	int err;
 
2576
2577	/* Inconslusive MTU probe */
2578	if (icsk->icsk_mtup.probe_size) {
2579		icsk->icsk_mtup.probe_size = 0;
2580	}
2581
2582	/* Do not sent more than we queued. 1/4 is reserved for possible
2583	 * copying overhead: fragmentation, tunneling, mangling etc.
2584	 */
2585	if (atomic_read(&sk->sk_wmem_alloc) >
2586	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2587		return -EAGAIN;
2588
2589	if (skb_still_in_host_queue(sk, skb))
2590		return -EBUSY;
2591
 
2592	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2593		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2594			BUG();
 
 
 
 
 
 
 
2595		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2596			return -ENOMEM;
2597	}
2598
2599	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2600		return -EHOSTUNREACH; /* Routing failure or similar. */
2601
2602	cur_mss = tcp_current_mss(sk);
 
2603
2604	/* If receiver has shrunk his window, and skb is out of
2605	 * new window, do not retransmit it. The exception is the
2606	 * case, when window is shrunk to zero. In this case
2607	 * our retransmit serves as a zero window probe.
2608	 */
2609	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2610	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2611		return -EAGAIN;
 
 
2612
2613	if (skb->len > cur_mss) {
2614		if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
 
 
 
 
 
 
 
2615			return -ENOMEM; /* We'll try again later. */
2616	} else {
2617		int oldpcount = tcp_skb_pcount(skb);
 
2618
2619		if (unlikely(oldpcount > 1)) {
2620			if (skb_unclone(skb, GFP_ATOMIC))
2621				return -ENOMEM;
2622			tcp_init_tso_segs(skb, cur_mss);
2623			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2624		}
 
 
2625	}
2626
2627	/* RFC3168, section 6.1.1.1. ECN fallback */
2628	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2629		tcp_ecn_clear_syn(sk, skb);
2630
2631	tcp_retrans_try_collapse(sk, skb, cur_mss);
2632
2633	/* Make a copy, if the first transmission SKB clone we made
2634	 * is still in somebody's hands, else make a clone.
2635	 */
 
 
2636
2637	/* make sure skb->data is aligned on arches that require it
2638	 * and check if ack-trimming & collapsing extended the headroom
2639	 * beyond what csum_start can cover.
2640	 */
2641	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2642		     skb_headroom(skb) >= 0xFFFF)) {
2643		struct sk_buff *nskb;
2644
2645		skb_mstamp_get(&skb->skb_mstamp);
2646		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2647		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2648			     -ENOBUFS;
 
 
 
 
 
 
 
 
 
 
2649	} else {
2650		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2651	}
2652
 
 
 
 
 
 
 
 
 
2653	if (likely(!err)) {
2654		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2655		/* Update global TCP statistics. */
2656		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2657		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2658			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2659		tp->total_retrans++;
2660	}
2661	return err;
2662}
2663
2664int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2665{
2666	struct tcp_sock *tp = tcp_sk(sk);
2667	int err = __tcp_retransmit_skb(sk, skb);
2668
2669	if (err == 0) {
2670#if FASTRETRANS_DEBUG > 0
2671		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2672			net_dbg_ratelimited("retrans_out leaked\n");
2673		}
2674#endif
2675		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2676		tp->retrans_out += tcp_skb_pcount(skb);
2677
2678		/* Save stamp of the first retransmit. */
2679		if (!tp->retrans_stamp)
2680			tp->retrans_stamp = tcp_skb_timestamp(skb);
2681
2682	} else if (err != -EBUSY) {
2683		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2684	}
2685
 
 
 
 
2686	if (tp->undo_retrans < 0)
2687		tp->undo_retrans = 0;
2688	tp->undo_retrans += tcp_skb_pcount(skb);
2689	return err;
2690}
2691
2692/* Check if we forward retransmits are possible in the current
2693 * window/congestion state.
2694 */
2695static bool tcp_can_forward_retransmit(struct sock *sk)
2696{
2697	const struct inet_connection_sock *icsk = inet_csk(sk);
2698	const struct tcp_sock *tp = tcp_sk(sk);
2699
2700	/* Forward retransmissions are possible only during Recovery. */
2701	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2702		return false;
2703
2704	/* No forward retransmissions in Reno are possible. */
2705	if (tcp_is_reno(tp))
2706		return false;
2707
2708	/* Yeah, we have to make difficult choice between forward transmission
2709	 * and retransmission... Both ways have their merits...
2710	 *
2711	 * For now we do not retransmit anything, while we have some new
2712	 * segments to send. In the other cases, follow rule 3 for
2713	 * NextSeg() specified in RFC3517.
2714	 */
2715
2716	if (tcp_may_send_now(sk))
2717		return false;
2718
2719	return true;
2720}
2721
2722/* This gets called after a retransmit timeout, and the initially
2723 * retransmitted data is acknowledged.  It tries to continue
2724 * resending the rest of the retransmit queue, until either
2725 * we've sent it all or the congestion window limit is reached.
2726 * If doing SACK, the first ACK which comes back for a timeout
2727 * based retransmit packet might feed us FACK information again.
2728 * If so, we use it to avoid unnecessarily retransmissions.
2729 */
2730void tcp_xmit_retransmit_queue(struct sock *sk)
2731{
2732	const struct inet_connection_sock *icsk = inet_csk(sk);
 
2733	struct tcp_sock *tp = tcp_sk(sk);
2734	struct sk_buff *skb;
2735	struct sk_buff *hole = NULL;
2736	u32 last_lost;
2737	int mib_idx;
2738	int fwd_rexmitting = 0;
2739
2740	if (!tp->packets_out)
2741		return;
2742
2743	if (!tp->lost_out)
2744		tp->retransmit_high = tp->snd_una;
 
 
 
 
2745
2746	if (tp->retransmit_skb_hint) {
2747		skb = tp->retransmit_skb_hint;
2748		last_lost = TCP_SKB_CB(skb)->end_seq;
2749		if (after(last_lost, tp->retransmit_high))
2750			last_lost = tp->retransmit_high;
2751	} else {
2752		skb = tcp_write_queue_head(sk);
2753		last_lost = tp->snd_una;
2754	}
2755
2756	tcp_for_write_queue_from(skb, sk) {
2757		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2758
2759		if (skb == tcp_send_head(sk))
2760			break;
 
2761		/* we could do better than to assign each time */
2762		if (!hole)
2763			tp->retransmit_skb_hint = skb;
2764
2765		/* Assume this retransmit will generate
2766		 * only one packet for congestion window
2767		 * calculation purposes.  This works because
2768		 * tcp_retransmit_skb() will chop up the
2769		 * packet to be MSS sized and all the
2770		 * packet counting works out.
2771		 */
2772		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2773			return;
2774
2775		if (fwd_rexmitting) {
2776begin_fwd:
2777			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2778				break;
2779			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2780
2781		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2782			tp->retransmit_high = last_lost;
2783			if (!tcp_can_forward_retransmit(sk))
2784				break;
2785			/* Backtrack if necessary to non-L'ed skb */
2786			if (hole) {
2787				skb = hole;
2788				hole = NULL;
2789			}
2790			fwd_rexmitting = 1;
2791			goto begin_fwd;
2792
 
 
2793		} else if (!(sacked & TCPCB_LOST)) {
2794			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2795				hole = skb;
2796			continue;
2797
2798		} else {
2799			last_lost = TCP_SKB_CB(skb)->end_seq;
2800			if (icsk->icsk_ca_state != TCP_CA_Loss)
2801				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2802			else
2803				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2804		}
2805
2806		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2807			continue;
2808
2809		if (tcp_retransmit_skb(sk, skb))
2810			return;
2811
2812		NET_INC_STATS_BH(sock_net(sk), mib_idx);
 
 
 
2813
2814		if (tcp_in_cwnd_reduction(sk))
2815			tp->prr_out += tcp_skb_pcount(skb);
2816
2817		if (skb == tcp_write_queue_head(sk))
2818			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2819						  inet_csk(sk)->icsk_rto,
2820						  TCP_RTO_MAX);
2821	}
 
 
 
 
2822}
2823
2824/* We allow to exceed memory limits for FIN packets to expedite
2825 * connection tear down and (memory) recovery.
2826 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2827 * or even be forced to close flow without any FIN.
2828 * In general, we want to allow one skb per socket to avoid hangs
2829 * with edge trigger epoll()
2830 */
2831void sk_forced_mem_schedule(struct sock *sk, int size)
2832{
2833	int amt;
2834
2835	if (size <= sk->sk_forward_alloc)
 
2836		return;
2837	amt = sk_mem_pages(size);
2838	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2839	sk_memory_allocated_add(sk, amt);
2840
2841	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2842		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
 
2843}
2844
2845/* Send a FIN. The caller locks the socket for us.
2846 * We should try to send a FIN packet really hard, but eventually give up.
2847 */
2848void tcp_send_fin(struct sock *sk)
2849{
2850	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2851	struct tcp_sock *tp = tcp_sk(sk);
2852
2853	/* Optimization, tack on the FIN if we have one skb in write queue and
2854	 * this skb was not yet sent, or we are under memory pressure.
2855	 * Note: in the latter case, FIN packet will be sent after a timeout,
2856	 * as TCP stack thinks it has already been transmitted.
2857	 */
2858	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2859coalesce:
 
 
 
2860		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2861		TCP_SKB_CB(tskb)->end_seq++;
2862		tp->write_seq++;
2863		if (!tcp_send_head(sk)) {
2864			/* This means tskb was already sent.
2865			 * Pretend we included the FIN on previous transmit.
2866			 * We need to set tp->snd_nxt to the value it would have
2867			 * if FIN had been sent. This is because retransmit path
2868			 * does not change tp->snd_nxt.
2869			 */
2870			tp->snd_nxt++;
2871			return;
2872		}
2873	} else {
2874		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2875		if (unlikely(!skb)) {
2876			if (tskb)
2877				goto coalesce;
2878			return;
2879		}
 
2880		skb_reserve(skb, MAX_TCP_HEADER);
2881		sk_forced_mem_schedule(sk, skb->truesize);
2882		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2883		tcp_init_nondata_skb(skb, tp->write_seq,
2884				     TCPHDR_ACK | TCPHDR_FIN);
2885		tcp_queue_skb(sk, skb);
2886	}
2887	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2888}
2889
2890/* We get here when a process closes a file descriptor (either due to
2891 * an explicit close() or as a byproduct of exit()'ing) and there
2892 * was unread data in the receive queue.  This behavior is recommended
2893 * by RFC 2525, section 2.17.  -DaveM
2894 */
2895void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2896{
2897	struct sk_buff *skb;
2898
 
 
2899	/* NOTE: No TCP options attached and we never retransmit this. */
2900	skb = alloc_skb(MAX_TCP_HEADER, priority);
2901	if (!skb) {
2902		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2903		return;
2904	}
2905
2906	/* Reserve space for headers and prepare control bits. */
2907	skb_reserve(skb, MAX_TCP_HEADER);
2908	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2909			     TCPHDR_ACK | TCPHDR_RST);
2910	skb_mstamp_get(&skb->skb_mstamp);
2911	/* Send it off. */
2912	if (tcp_transmit_skb(sk, skb, 0, priority))
2913		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2914
2915	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
 
 
 
2916}
2917
2918/* Send a crossed SYN-ACK during socket establishment.
2919 * WARNING: This routine must only be called when we have already sent
2920 * a SYN packet that crossed the incoming SYN that caused this routine
2921 * to get called. If this assumption fails then the initial rcv_wnd
2922 * and rcv_wscale values will not be correct.
2923 */
2924int tcp_send_synack(struct sock *sk)
2925{
2926	struct sk_buff *skb;
2927
2928	skb = tcp_write_queue_head(sk);
2929	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2930		pr_debug("%s: wrong queue state\n", __func__);
2931		return -EFAULT;
2932	}
2933	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2934		if (skb_cloned(skb)) {
2935			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
 
 
 
 
2936			if (!nskb)
2937				return -ENOMEM;
2938			tcp_unlink_write_queue(skb, sk);
 
 
2939			__skb_header_release(nskb);
2940			__tcp_add_write_queue_head(sk, nskb);
2941			sk_wmem_free_skb(sk, skb);
2942			sk->sk_wmem_queued += nskb->truesize;
2943			sk_mem_charge(sk, nskb->truesize);
2944			skb = nskb;
2945		}
2946
2947		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2948		tcp_ecn_send_synack(sk, skb);
2949	}
2950	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2951}
2952
2953/**
2954 * tcp_make_synack - Prepare a SYN-ACK.
2955 * sk: listener socket
2956 * dst: dst entry attached to the SYNACK
2957 * req: request_sock pointer
2958 *
2959 * Allocate one skb and build a SYNACK packet.
2960 * @dst is consumed : Caller should not use it again.
 
2961 */
2962struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2963				struct request_sock *req,
2964				struct tcp_fastopen_cookie *foc,
2965				bool attach_req)
 
2966{
2967	struct inet_request_sock *ireq = inet_rsk(req);
2968	const struct tcp_sock *tp = tcp_sk(sk);
2969	struct tcp_md5sig_key *md5 = NULL;
2970	struct tcp_out_options opts;
 
2971	struct sk_buff *skb;
2972	int tcp_header_size;
2973	struct tcphdr *th;
2974	u16 user_mss;
2975	int mss;
 
2976
2977	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2978	if (unlikely(!skb)) {
2979		dst_release(dst);
2980		return NULL;
2981	}
2982	/* Reserve space for headers. */
2983	skb_reserve(skb, MAX_TCP_HEADER);
2984
2985	if (attach_req) {
 
2986		skb_set_owner_w(skb, req_to_sk(req));
2987	} else {
 
 
 
 
 
 
2988		/* sk is a const pointer, because we want to express multiple
2989		 * cpu might call us concurrently.
2990		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
2991		 */
2992		skb_set_owner_w(skb, (struct sock *)sk);
 
2993	}
2994	skb_dst_set(skb, dst);
2995
2996	mss = dst_metric_advmss(dst);
2997	user_mss = READ_ONCE(tp->rx_opt.user_mss);
2998	if (user_mss && user_mss < mss)
2999		mss = user_mss;
3000
3001	memset(&opts, 0, sizeof(opts));
 
3002#ifdef CONFIG_SYN_COOKIES
3003	if (unlikely(req->cookie_ts))
3004		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
 
3005	else
3006#endif
3007	skb_mstamp_get(&skb->skb_mstamp);
 
 
 
 
3008
3009#ifdef CONFIG_TCP_MD5SIG
3010	rcu_read_lock();
3011	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3012#endif
3013	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3014	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3015			  sizeof(*th);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3016
3017	skb_push(skb, tcp_header_size);
3018	skb_reset_transport_header(skb);
3019
3020	th = tcp_hdr(skb);
3021	memset(th, 0, sizeof(struct tcphdr));
3022	th->syn = 1;
3023	th->ack = 1;
3024	tcp_ecn_make_synack(req, th);
3025	th->source = htons(ireq->ir_num);
3026	th->dest = ireq->ir_rmt_port;
3027	/* Setting of flags are superfluous here for callers (and ECE is
3028	 * not even correctly set)
3029	 */
3030	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3031			     TCPHDR_SYN | TCPHDR_ACK);
3032
3033	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3034	/* XXX data is queued and acked as is. No buffer/window check */
3035	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3036
3037	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3038	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3039	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3040	th->doff = (tcp_header_size >> 2);
3041	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3042
3043#ifdef CONFIG_TCP_MD5SIG
3044	/* Okay, we have all we need - do the md5 hash if needed */
3045	if (md5)
 
3046		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3047					       md5, req_to_sk(req), skb);
 
 
 
 
 
 
 
 
 
3048	rcu_read_unlock();
3049#endif
3050
3051	/* Do not fool tcpdump (if any), clean our debris */
3052	skb->tstamp.tv64 = 0;
 
 
 
 
3053	return skb;
3054}
3055EXPORT_SYMBOL(tcp_make_synack);
3056
3057static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3058{
3059	struct inet_connection_sock *icsk = inet_csk(sk);
3060	const struct tcp_congestion_ops *ca;
3061	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3062
3063	if (ca_key == TCP_CA_UNSPEC)
3064		return;
3065
3066	rcu_read_lock();
3067	ca = tcp_ca_find_key(ca_key);
3068	if (likely(ca && try_module_get(ca->owner))) {
3069		module_put(icsk->icsk_ca_ops->owner);
3070		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3071		icsk->icsk_ca_ops = ca;
3072	}
3073	rcu_read_unlock();
3074}
3075
3076/* Do all connect socket setups that can be done AF independent. */
3077static void tcp_connect_init(struct sock *sk)
3078{
3079	const struct dst_entry *dst = __sk_dst_get(sk);
3080	struct tcp_sock *tp = tcp_sk(sk);
3081	__u8 rcv_wscale;
 
3082
3083	/* We'll fix this up when we get a response from the other end.
3084	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3085	 */
3086	tp->tcp_header_len = sizeof(struct tcphdr) +
3087		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
 
3088
3089#ifdef CONFIG_TCP_MD5SIG
3090	if (tp->af_specific->md5_lookup(sk, sk))
3091		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3092#endif
3093
3094	/* If user gave his TCP_MAXSEG, record it to clamp */
3095	if (tp->rx_opt.user_mss)
3096		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3097	tp->max_window = 0;
3098	tcp_mtup_init(sk);
3099	tcp_sync_mss(sk, dst_mtu(dst));
3100
3101	tcp_ca_dst_init(sk, dst);
3102
3103	if (!tp->window_clamp)
3104		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3105	tp->advmss = dst_metric_advmss(dst);
3106	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3107		tp->advmss = tp->rx_opt.user_mss;
3108
3109	tcp_initialize_rcv_mss(sk);
3110
3111	/* limit the window selection if the user enforce a smaller rx buffer */
3112	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3113	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3114		tp->window_clamp = tcp_full_space(sk);
3115
3116	tcp_select_initial_window(tcp_full_space(sk),
 
 
 
 
3117				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3118				  &tp->rcv_wnd,
3119				  &tp->window_clamp,
3120				  sysctl_tcp_window_scaling,
3121				  &rcv_wscale,
3122				  dst_metric(dst, RTAX_INITRWND));
3123
3124	tp->rx_opt.rcv_wscale = rcv_wscale;
3125	tp->rcv_ssthresh = tp->rcv_wnd;
3126
3127	sk->sk_err = 0;
3128	sock_reset_flag(sk, SOCK_DONE);
3129	tp->snd_wnd = 0;
3130	tcp_init_wl(tp, 0);
 
3131	tp->snd_una = tp->write_seq;
3132	tp->snd_sml = tp->write_seq;
3133	tp->snd_up = tp->write_seq;
3134	tp->snd_nxt = tp->write_seq;
3135
3136	if (likely(!tp->repair))
3137		tp->rcv_nxt = 0;
3138	else
3139		tp->rcv_tstamp = tcp_time_stamp;
3140	tp->rcv_wup = tp->rcv_nxt;
3141	tp->copied_seq = tp->rcv_nxt;
3142
3143	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3144	inet_csk(sk)->icsk_retransmits = 0;
3145	tcp_clear_retrans(tp);
3146}
3147
3148static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3149{
3150	struct tcp_sock *tp = tcp_sk(sk);
3151	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3152
3153	tcb->end_seq += skb->len;
3154	__skb_header_release(skb);
3155	__tcp_add_write_queue_tail(sk, skb);
3156	sk->sk_wmem_queued += skb->truesize;
3157	sk_mem_charge(sk, skb->truesize);
3158	tp->write_seq = tcb->end_seq;
3159	tp->packets_out += tcp_skb_pcount(skb);
3160}
3161
3162/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3163 * queue a data-only packet after the regular SYN, such that regular SYNs
3164 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3165 * only the SYN sequence, the data are retransmitted in the first ACK.
3166 * If cookie is not cached or other error occurs, falls back to send a
3167 * regular SYN with Fast Open cookie request option.
3168 */
3169static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3170{
 
3171	struct tcp_sock *tp = tcp_sk(sk);
3172	struct tcp_fastopen_request *fo = tp->fastopen_req;
3173	int syn_loss = 0, space, err = 0;
3174	unsigned long last_syn_loss = 0;
3175	struct sk_buff *syn_data;
 
3176
3177	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3178	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3179			       &syn_loss, &last_syn_loss);
3180	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3181	if (syn_loss > 1 &&
3182	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3183		fo->cookie.len = -1;
3184		goto fallback;
3185	}
3186
3187	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3188		fo->cookie.len = -1;
3189	else if (fo->cookie.len <= 0)
3190		goto fallback;
3191
3192	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3193	 * user-MSS. Reserve maximum option space for middleboxes that add
3194	 * private TCP options. The cost is reduced data space in SYN :(
3195	 */
3196	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3197		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3198	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
 
 
3199		MAX_TCP_OPTION_SPACE;
3200
3201	space = min_t(size_t, space, fo->size);
3202
3203	/* limit to order-0 allocations */
3204	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3205
3206	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
 
3207	if (!syn_data)
3208		goto fallback;
3209	syn_data->ip_summed = CHECKSUM_PARTIAL;
3210	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3211	if (space) {
3212		int copied = copy_from_iter(skb_put(syn_data, space), space,
3213					    &fo->data->msg_iter);
3214		if (unlikely(!copied)) {
 
 
 
 
 
3215			kfree_skb(syn_data);
3216			goto fallback;
3217		}
3218		if (copied != space) {
3219			skb_trim(syn_data, copied);
3220			space = copied;
3221		}
 
 
3222	}
3223	/* No more data pending in inet_wait_for_connect() */
3224	if (space == fo->size)
3225		fo->data = NULL;
3226	fo->copied = space;
3227
3228	tcp_connect_queue_skb(sk, syn_data);
 
 
3229
3230	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3231
3232	syn->skb_mstamp = syn_data->skb_mstamp;
3233
3234	/* Now full SYN+DATA was cloned and sent (or not),
3235	 * remove the SYN from the original skb (syn_data)
3236	 * we keep in write queue in case of a retransmit, as we
3237	 * also have the SYN packet (with no data) in the same queue.
3238	 */
3239	TCP_SKB_CB(syn_data)->seq++;
3240	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3241	if (!err) {
3242		tp->syn_data = (fo->copied > 0);
 
3243		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3244		goto done;
3245	}
3246
 
 
 
 
3247fallback:
3248	/* Send a regular SYN with Fast Open cookie request option */
3249	if (fo->cookie.len > 0)
3250		fo->cookie.len = 0;
3251	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3252	if (err)
3253		tp->syn_fastopen = 0;
3254done:
3255	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3256	return err;
3257}
3258
3259/* Build a SYN and send it off. */
3260int tcp_connect(struct sock *sk)
3261{
3262	struct tcp_sock *tp = tcp_sk(sk);
3263	struct sk_buff *buff;
3264	int err;
3265
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3266	tcp_connect_init(sk);
3267
3268	if (unlikely(tp->repair)) {
3269		tcp_finish_connect(sk, NULL);
3270		return 0;
3271	}
3272
3273	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3274	if (unlikely(!buff))
3275		return -ENOBUFS;
3276
3277	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3278	tp->retrans_stamp = tcp_time_stamp;
 
3279	tcp_connect_queue_skb(sk, buff);
3280	tcp_ecn_send_syn(sk, buff);
 
3281
3282	/* Send off SYN; include data in Fast Open. */
3283	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3284	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3285	if (err == -ECONNREFUSED)
3286		return err;
3287
3288	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3289	 * in order to make this packet get counted in tcpOutSegs.
3290	 */
3291	tp->snd_nxt = tp->write_seq;
3292	tp->pushed_seq = tp->write_seq;
 
 
 
 
 
3293	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3294
3295	/* Timer for repeating the SYN until an answer. */
3296	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3297				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3298	return 0;
3299}
3300EXPORT_SYMBOL(tcp_connect);
3301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3302/* Send out a delayed ack, the caller does the policy checking
3303 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3304 * for details.
3305 */
3306void tcp_send_delayed_ack(struct sock *sk)
3307{
3308	struct inet_connection_sock *icsk = inet_csk(sk);
3309	int ato = icsk->icsk_ack.ato;
3310	unsigned long timeout;
3311
3312	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3313
3314	if (ato > TCP_DELACK_MIN) {
3315		const struct tcp_sock *tp = tcp_sk(sk);
3316		int max_ato = HZ / 2;
3317
3318		if (icsk->icsk_ack.pingpong ||
3319		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3320			max_ato = TCP_DELACK_MAX;
3321
3322		/* Slow path, intersegment interval is "high". */
3323
3324		/* If some rtt estimate is known, use it to bound delayed ack.
3325		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3326		 * directly.
3327		 */
3328		if (tp->srtt_us) {
3329			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3330					TCP_DELACK_MIN);
3331
3332			if (rtt < max_ato)
3333				max_ato = rtt;
3334		}
3335
3336		ato = min(ato, max_ato);
3337	}
3338
 
 
3339	/* Stay within the limit we were given */
3340	timeout = jiffies + ato;
3341
3342	/* Use new timeout only if there wasn't a older one earlier. */
3343	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3344		/* If delack timer was blocked or is about to expire,
3345		 * send ACK now.
3346		 */
3347		if (icsk->icsk_ack.blocked ||
3348		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3349			tcp_send_ack(sk);
3350			return;
3351		}
3352
3353		if (!time_before(timeout, icsk->icsk_ack.timeout))
3354			timeout = icsk->icsk_ack.timeout;
3355	}
3356	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3357	icsk->icsk_ack.timeout = timeout;
3358	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3359}
3360
3361/* This routine sends an ack and also updates the window. */
3362void tcp_send_ack(struct sock *sk)
3363{
3364	struct sk_buff *buff;
3365
3366	/* If we have been reset, we may not send again. */
3367	if (sk->sk_state == TCP_CLOSE)
3368		return;
3369
3370	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3371
3372	/* We are not putting this on the write queue, so
3373	 * tcp_transmit_skb() will set the ownership to this
3374	 * sock.
3375	 */
3376	buff = alloc_skb(MAX_TCP_HEADER,
3377			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3378	if (unlikely(!buff)) {
 
 
 
 
 
 
3379		inet_csk_schedule_ack(sk);
3380		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3381		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3382					  TCP_DELACK_MAX, TCP_RTO_MAX);
3383		return;
3384	}
3385
3386	/* Reserve space for headers and prepare control bits. */
3387	skb_reserve(buff, MAX_TCP_HEADER);
3388	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3389
3390	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3391	 * too much.
3392	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3393	 * We also avoid tcp_wfree() overhead (cache line miss accessing
3394	 * tp->tsq_flags) by using regular sock_wfree()
3395	 */
3396	skb_set_tcp_pure_ack(buff);
3397
3398	/* Send it off, this clears delayed acks for us. */
3399	skb_mstamp_get(&buff->skb_mstamp);
3400	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
 
 
 
 
 
3401}
3402EXPORT_SYMBOL_GPL(tcp_send_ack);
3403
3404/* This routine sends a packet with an out of date sequence
3405 * number. It assumes the other end will try to ack it.
3406 *
3407 * Question: what should we make while urgent mode?
3408 * 4.4BSD forces sending single byte of data. We cannot send
3409 * out of window data, because we have SND.NXT==SND.MAX...
3410 *
3411 * Current solution: to send TWO zero-length segments in urgent mode:
3412 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3413 * out-of-date with SND.UNA-1 to probe window.
3414 */
3415static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3416{
3417	struct tcp_sock *tp = tcp_sk(sk);
3418	struct sk_buff *skb;
3419
3420	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3421	skb = alloc_skb(MAX_TCP_HEADER,
3422			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3423	if (!skb)
3424		return -1;
3425
3426	/* Reserve space for headers and set control bits. */
3427	skb_reserve(skb, MAX_TCP_HEADER);
3428	/* Use a previous sequence.  This should cause the other
3429	 * end to send an ack.  Don't queue or clone SKB, just
3430	 * send it.
3431	 */
3432	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3433	skb_mstamp_get(&skb->skb_mstamp);
3434	NET_INC_STATS(sock_net(sk), mib);
3435	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3436}
3437
 
3438void tcp_send_window_probe(struct sock *sk)
3439{
3440	if (sk->sk_state == TCP_ESTABLISHED) {
3441		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
 
3442		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3443	}
3444}
3445
3446/* Initiate keepalive or window probe from timer. */
3447int tcp_write_wakeup(struct sock *sk, int mib)
3448{
3449	struct tcp_sock *tp = tcp_sk(sk);
3450	struct sk_buff *skb;
3451
3452	if (sk->sk_state == TCP_CLOSE)
3453		return -1;
3454
3455	skb = tcp_send_head(sk);
3456	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3457		int err;
3458		unsigned int mss = tcp_current_mss(sk);
3459		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3460
3461		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3462			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3463
3464		/* We are probing the opening of a window
3465		 * but the window size is != 0
3466		 * must have been a result SWS avoidance ( sender )
3467		 */
3468		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3469		    skb->len > mss) {
3470			seg_size = min(seg_size, mss);
3471			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3472			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
 
3473				return -1;
3474		} else if (!tcp_skb_pcount(skb))
3475			tcp_set_skb_tso_segs(skb, mss);
3476
3477		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3478		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3479		if (!err)
3480			tcp_event_new_data_sent(sk, skb);
3481		return err;
3482	} else {
3483		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3484			tcp_xmit_probe_skb(sk, 1, mib);
3485		return tcp_xmit_probe_skb(sk, 0, mib);
3486	}
3487}
3488
3489/* A window probe timeout has occurred.  If window is not closed send
3490 * a partial packet else a zero probe.
3491 */
3492void tcp_send_probe0(struct sock *sk)
3493{
3494	struct inet_connection_sock *icsk = inet_csk(sk);
3495	struct tcp_sock *tp = tcp_sk(sk);
3496	struct net *net = sock_net(sk);
3497	unsigned long probe_max;
3498	int err;
3499
3500	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3501
3502	if (tp->packets_out || !tcp_send_head(sk)) {
3503		/* Cancel probe timer, if it is not required. */
3504		icsk->icsk_probes_out = 0;
3505		icsk->icsk_backoff = 0;
 
3506		return;
3507	}
3508
 
3509	if (err <= 0) {
3510		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3511			icsk->icsk_backoff++;
3512		icsk->icsk_probes_out++;
3513		probe_max = TCP_RTO_MAX;
3514	} else {
3515		/* If packet was not sent due to local congestion,
3516		 * do not backoff and do not remember icsk_probes_out.
3517		 * Let local senders to fight for local resources.
3518		 *
3519		 * Use accumulated backoff yet.
3520		 */
3521		if (!icsk->icsk_probes_out)
3522			icsk->icsk_probes_out = 1;
3523		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3524	}
3525	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3526				  tcp_probe0_when(sk, probe_max),
3527				  TCP_RTO_MAX);
3528}
3529
3530int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3531{
3532	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3533	struct flowi fl;
3534	int res;
3535
3536	tcp_rsk(req)->txhash = net_tx_rndhash();
3537	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, true);
 
 
 
3538	if (!res) {
3539		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3540		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
 
 
 
 
 
 
 
 
3541	}
3542	return res;
3543}
3544EXPORT_SYMBOL(tcp_rtx_synack);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
  24 *				:	Fragmentation on mtu decrease
  25 *				:	Segment collapse on retransmit
  26 *				:	AF independence
  27 *
  28 *		Linus Torvalds	:	send_delayed_ack
  29 *		David S. Miller	:	Charge memory using the right skb
  30 *					during syn/ack processing.
  31 *		David S. Miller :	Output engine completely rewritten.
  32 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
  33 *		Cacophonix Gaul :	draft-minshall-nagle-01
  34 *		J Hadi Salim	:	ECN support
  35 *
  36 */
  37
  38#define pr_fmt(fmt) "TCP: " fmt
  39
  40#include <net/tcp.h>
  41#include <net/mptcp.h>
  42
  43#include <linux/compiler.h>
  44#include <linux/gfp.h>
  45#include <linux/module.h>
  46#include <linux/static_key.h>
  47
  48#include <trace/events/tcp.h>
 
  49
  50/* Refresh clocks of a TCP socket,
  51 * ensuring monotically increasing values.
  52 */
  53void tcp_mstamp_refresh(struct tcp_sock *tp)
  54{
  55	u64 val = tcp_clock_ns();
 
 
 
 
 
 
 
  56
  57	tp->tcp_clock_cache = val;
  58	tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
  59}
  60
  61static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  62			   int push_one, gfp_t gfp);
  63
  64/* Account for new data that has been sent to the network. */
  65static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
  66{
  67	struct inet_connection_sock *icsk = inet_csk(sk);
  68	struct tcp_sock *tp = tcp_sk(sk);
  69	unsigned int prior_packets = tp->packets_out;
  70
  71	WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
  72
  73	__skb_unlink(skb, &sk->sk_write_queue);
  74	tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
  75
  76	if (tp->highest_sack == NULL)
  77		tp->highest_sack = skb;
  78
  79	tp->packets_out += tcp_skb_pcount(skb);
  80	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
 
  81		tcp_rearm_rto(sk);
 
  82
  83	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  84		      tcp_skb_pcount(skb));
  85	tcp_check_space(sk);
  86}
  87
  88/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
  89 * window scaling factor due to loss of precision.
  90 * If window has been shrunk, what should we make? It is not clear at all.
  91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  93 * invalid. OK, let's make this for now:
  94 */
  95static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  96{
  97	const struct tcp_sock *tp = tcp_sk(sk);
  98
  99	if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
 100	    (tp->rx_opt.wscale_ok &&
 101	     ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
 102		return tp->snd_nxt;
 103	else
 104		return tcp_wnd_end(tp);
 105}
 106
 107/* Calculate mss to advertise in SYN segment.
 108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 109 *
 110 * 1. It is independent of path mtu.
 111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 113 *    attached devices, because some buggy hosts are confused by
 114 *    large MSS.
 115 * 4. We do not make 3, we advertise MSS, calculated from first
 116 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 117 *    This may be overridden via information stored in routing table.
 118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 119 *    probably even Jumbo".
 120 */
 121static __u16 tcp_advertise_mss(struct sock *sk)
 122{
 123	struct tcp_sock *tp = tcp_sk(sk);
 124	const struct dst_entry *dst = __sk_dst_get(sk);
 125	int mss = tp->advmss;
 126
 127	if (dst) {
 128		unsigned int metric = dst_metric_advmss(dst);
 129
 130		if (metric < mss) {
 131			mss = metric;
 132			tp->advmss = mss;
 133		}
 134	}
 135
 136	return (__u16)mss;
 137}
 138
 139/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 140 * This is the first part of cwnd validation mechanism.
 141 */
 142void tcp_cwnd_restart(struct sock *sk, s32 delta)
 143{
 144	struct tcp_sock *tp = tcp_sk(sk);
 145	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 146	u32 cwnd = tcp_snd_cwnd(tp);
 147
 148	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 149
 150	tp->snd_ssthresh = tcp_current_ssthresh(sk);
 151	restart_cwnd = min(restart_cwnd, cwnd);
 152
 153	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 154		cwnd >>= 1;
 155	tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
 156	tp->snd_cwnd_stamp = tcp_jiffies32;
 157	tp->snd_cwnd_used = 0;
 158}
 159
 160/* Congestion state accounting after a packet has been sent. */
 161static void tcp_event_data_sent(struct tcp_sock *tp,
 162				struct sock *sk)
 163{
 164	struct inet_connection_sock *icsk = inet_csk(sk);
 165	const u32 now = tcp_jiffies32;
 166
 167	if (tcp_packets_in_flight(tp) == 0)
 168		tcp_ca_event(sk, CA_EVENT_TX_START);
 169
 170	tp->lsndtime = now;
 171
 172	/* If it is a reply for ato after last received
 173	 * packet, increase pingpong count.
 174	 */
 175	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 176		inet_csk_inc_pingpong_cnt(sk);
 177}
 178
 179/* Account for an ACK we sent. */
 180static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
 181{
 182	struct tcp_sock *tp = tcp_sk(sk);
 
 
 183
 184	if (unlikely(tp->compressed_ack)) {
 185		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
 186			      tp->compressed_ack);
 187		tp->compressed_ack = 0;
 188		if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
 189			__sock_put(sk);
 190	}
 191
 192	if (unlikely(rcv_nxt != tp->rcv_nxt))
 193		return;  /* Special ACK sent by DCTCP to reflect ECN */
 194	tcp_dec_quickack_mode(sk);
 195	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 
 
 
 
 
 
 
 
 196}
 197
 198/* Determine a window scaling and initial window to offer.
 199 * Based on the assumption that the given amount of space
 200 * will be offered. Store the results in the tp structure.
 201 * NOTE: for smooth operation initial space offering should
 202 * be a multiple of mss if possible. We assume here that mss >= 1.
 203 * This MUST be enforced by all callers.
 204 */
 205void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
 206			       __u32 *rcv_wnd, __u32 *window_clamp,
 207			       int wscale_ok, __u8 *rcv_wscale,
 208			       __u32 init_rcv_wnd)
 209{
 210	unsigned int space = (__space < 0 ? 0 : __space);
 211
 212	/* If no clamp set the clamp to the max possible scaled window */
 213	if (*window_clamp == 0)
 214		(*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
 215	space = min(*window_clamp, space);
 216
 217	/* Quantize space offering to a multiple of mss if possible. */
 218	if (space > mss)
 219		space = rounddown(space, mss);
 220
 221	/* NOTE: offering an initial window larger than 32767
 222	 * will break some buggy TCP stacks. If the admin tells us
 223	 * it is likely we could be speaking with such a buggy stack
 224	 * we will truncate our initial window offering to 32K-1
 225	 * unless the remote has sent us a window scaling option,
 226	 * which we interpret as a sign the remote TCP is not
 227	 * misinterpreting the window field as a signed quantity.
 228	 */
 229	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
 230		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 231	else
 232		(*rcv_wnd) = min_t(u32, space, U16_MAX);
 233
 234	if (init_rcv_wnd)
 235		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 236
 237	*rcv_wscale = 0;
 238	if (wscale_ok) {
 239		/* Set window scaling on max possible window */
 240		space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
 241		space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
 
 242		space = min_t(u32, space, *window_clamp);
 243		*rcv_wscale = clamp_t(int, ilog2(space) - 15,
 244				      0, TCP_MAX_WSCALE);
 
 
 
 
 
 
 
 
 245	}
 
 246	/* Set the clamp no higher than max representable value */
 247	(*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
 248}
 249EXPORT_SYMBOL(tcp_select_initial_window);
 250
 251/* Chose a new window to advertise, update state in tcp_sock for the
 252 * socket, and return result with RFC1323 scaling applied.  The return
 253 * value can be stuffed directly into th->window for an outgoing
 254 * frame.
 255 */
 256static u16 tcp_select_window(struct sock *sk)
 257{
 258	struct tcp_sock *tp = tcp_sk(sk);
 259	struct net *net = sock_net(sk);
 260	u32 old_win = tp->rcv_wnd;
 261	u32 cur_win, new_win;
 262
 263	/* Make the window 0 if we failed to queue the data because we
 264	 * are out of memory. The window is temporary, so we don't store
 265	 * it on the socket.
 266	 */
 267	if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
 268		return 0;
 269
 270	cur_win = tcp_receive_window(tp);
 271	new_win = __tcp_select_window(sk);
 272	if (new_win < cur_win) {
 273		/* Danger Will Robinson!
 274		 * Don't update rcv_wup/rcv_wnd here or else
 275		 * we will not be able to advertise a zero
 276		 * window in time.  --DaveM
 277		 *
 278		 * Relax Will Robinson.
 279		 */
 280		if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
 281			/* Never shrink the offered window */
 282			if (new_win == 0)
 283				NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
 284			new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 285		}
 286	}
 287
 288	tp->rcv_wnd = new_win;
 289	tp->rcv_wup = tp->rcv_nxt;
 290
 291	/* Make sure we do not exceed the maximum possible
 292	 * scaled window.
 293	 */
 294	if (!tp->rx_opt.rcv_wscale &&
 295	    READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
 296		new_win = min(new_win, MAX_TCP_WINDOW);
 297	else
 298		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 299
 300	/* RFC1323 scaling applied */
 301	new_win >>= tp->rx_opt.rcv_wscale;
 302
 303	/* If we advertise zero window, disable fast path. */
 304	if (new_win == 0) {
 305		tp->pred_flags = 0;
 306		if (old_win)
 307			NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
 
 308	} else if (old_win == 0) {
 309		NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
 310	}
 311
 312	return new_win;
 313}
 314
 315/* Packet ECN state for a SYN-ACK */
 316static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 317{
 318	const struct tcp_sock *tp = tcp_sk(sk);
 319
 320	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 321	if (!(tp->ecn_flags & TCP_ECN_OK))
 322		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 323	else if (tcp_ca_needs_ecn(sk) ||
 324		 tcp_bpf_ca_needs_ecn(sk))
 325		INET_ECN_xmit(sk);
 326}
 327
 328/* Packet ECN state for a SYN.  */
 329static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 330{
 331	struct tcp_sock *tp = tcp_sk(sk);
 332	bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
 333	bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
 334		tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
 335
 336	if (!use_ecn) {
 337		const struct dst_entry *dst = __sk_dst_get(sk);
 338
 339		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 340			use_ecn = true;
 341	}
 342
 343	tp->ecn_flags = 0;
 344
 345	if (use_ecn) {
 346		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 347		tp->ecn_flags = TCP_ECN_OK;
 348		if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
 349			INET_ECN_xmit(sk);
 350	}
 351}
 352
 353static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 354{
 355	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
 356		/* tp->ecn_flags are cleared at a later point in time when
 357		 * SYN ACK is ultimatively being received.
 358		 */
 359		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 360}
 361
 362static void
 363tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 364{
 365	if (inet_rsk(req)->ecn_ok)
 366		th->ece = 1;
 367}
 368
 369/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 370 * be sent.
 371 */
 372static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 373			 struct tcphdr *th, int tcp_header_len)
 374{
 375	struct tcp_sock *tp = tcp_sk(sk);
 376
 377	if (tp->ecn_flags & TCP_ECN_OK) {
 378		/* Not-retransmitted data segment: set ECT and inject CWR. */
 379		if (skb->len != tcp_header_len &&
 380		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 381			INET_ECN_xmit(sk);
 382			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 383				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 384				th->cwr = 1;
 385				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 386			}
 387		} else if (!tcp_ca_needs_ecn(sk)) {
 388			/* ACK or retransmitted segment: clear ECT|CE */
 389			INET_ECN_dontxmit(sk);
 390		}
 391		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 392			th->ece = 1;
 393	}
 394}
 395
 396/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 397 * auto increment end seqno.
 398 */
 399static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 400{
 401	skb->ip_summed = CHECKSUM_PARTIAL;
 
 402
 403	TCP_SKB_CB(skb)->tcp_flags = flags;
 
 404
 405	tcp_skb_pcount_set(skb, 1);
 406
 407	TCP_SKB_CB(skb)->seq = seq;
 408	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 409		seq++;
 410	TCP_SKB_CB(skb)->end_seq = seq;
 411}
 412
 413static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 414{
 415	return tp->snd_una != tp->snd_up;
 416}
 417
 418#define OPTION_SACK_ADVERTISE	BIT(0)
 419#define OPTION_TS		BIT(1)
 420#define OPTION_MD5		BIT(2)
 421#define OPTION_WSCALE		BIT(3)
 422#define OPTION_FAST_OPEN_COOKIE	BIT(8)
 423#define OPTION_SMC		BIT(9)
 424#define OPTION_MPTCP		BIT(10)
 425#define OPTION_AO		BIT(11)
 426
 427static void smc_options_write(__be32 *ptr, u16 *options)
 428{
 429#if IS_ENABLED(CONFIG_SMC)
 430	if (static_branch_unlikely(&tcp_have_smc)) {
 431		if (unlikely(OPTION_SMC & *options)) {
 432			*ptr++ = htonl((TCPOPT_NOP  << 24) |
 433				       (TCPOPT_NOP  << 16) |
 434				       (TCPOPT_EXP <<  8) |
 435				       (TCPOLEN_EXP_SMC_BASE));
 436			*ptr++ = htonl(TCPOPT_SMC_MAGIC);
 437		}
 438	}
 439#endif
 440}
 441
 442struct tcp_out_options {
 443	u16 options;		/* bit field of OPTION_* */
 444	u16 mss;		/* 0 to disable */
 445	u8 ws;			/* window scale, 0 to disable */
 446	u8 num_sack_blocks;	/* number of SACK blocks to include */
 447	u8 hash_size;		/* bytes in hash_location */
 448	u8 bpf_opt_len;		/* length of BPF hdr option */
 449	__u8 *hash_location;	/* temporary pointer, overloaded */
 450	__u32 tsval, tsecr;	/* need to include OPTION_TS */
 451	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
 452	struct mptcp_out_options mptcp;
 453};
 454
 455static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
 456				struct tcp_sock *tp,
 457				struct tcp_out_options *opts)
 458{
 459#if IS_ENABLED(CONFIG_MPTCP)
 460	if (unlikely(OPTION_MPTCP & opts->options))
 461		mptcp_write_options(th, ptr, tp, &opts->mptcp);
 462#endif
 463}
 464
 465#ifdef CONFIG_CGROUP_BPF
 466static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
 467					enum tcp_synack_type synack_type)
 468{
 469	if (unlikely(!skb))
 470		return BPF_WRITE_HDR_TCP_CURRENT_MSS;
 471
 472	if (unlikely(synack_type == TCP_SYNACK_COOKIE))
 473		return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
 474
 475	return 0;
 476}
 477
 478/* req, syn_skb and synack_type are used when writing synack */
 479static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
 480				  struct request_sock *req,
 481				  struct sk_buff *syn_skb,
 482				  enum tcp_synack_type synack_type,
 483				  struct tcp_out_options *opts,
 484				  unsigned int *remaining)
 485{
 486	struct bpf_sock_ops_kern sock_ops;
 487	int err;
 488
 489	if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
 490					   BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
 491	    !*remaining)
 492		return;
 493
 494	/* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
 495
 496	/* init sock_ops */
 497	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 498
 499	sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
 500
 501	if (req) {
 502		/* The listen "sk" cannot be passed here because
 503		 * it is not locked.  It would not make too much
 504		 * sense to do bpf_setsockopt(listen_sk) based
 505		 * on individual connection request also.
 506		 *
 507		 * Thus, "req" is passed here and the cgroup-bpf-progs
 508		 * of the listen "sk" will be run.
 509		 *
 510		 * "req" is also used here for fastopen even the "sk" here is
 511		 * a fullsock "child" sk.  It is to keep the behavior
 512		 * consistent between fastopen and non-fastopen on
 513		 * the bpf programming side.
 514		 */
 515		sock_ops.sk = (struct sock *)req;
 516		sock_ops.syn_skb = syn_skb;
 517	} else {
 518		sock_owned_by_me(sk);
 519
 520		sock_ops.is_fullsock = 1;
 521		sock_ops.sk = sk;
 522	}
 523
 524	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
 525	sock_ops.remaining_opt_len = *remaining;
 526	/* tcp_current_mss() does not pass a skb */
 527	if (skb)
 528		bpf_skops_init_skb(&sock_ops, skb, 0);
 529
 530	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
 531
 532	if (err || sock_ops.remaining_opt_len == *remaining)
 533		return;
 534
 535	opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
 536	/* round up to 4 bytes */
 537	opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
 538
 539	*remaining -= opts->bpf_opt_len;
 540}
 541
 542static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
 543				    struct request_sock *req,
 544				    struct sk_buff *syn_skb,
 545				    enum tcp_synack_type synack_type,
 546				    struct tcp_out_options *opts)
 547{
 548	u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
 549	struct bpf_sock_ops_kern sock_ops;
 550	int err;
 551
 552	if (likely(!max_opt_len))
 553		return;
 554
 555	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
 556
 557	sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
 558
 559	if (req) {
 560		sock_ops.sk = (struct sock *)req;
 561		sock_ops.syn_skb = syn_skb;
 562	} else {
 563		sock_owned_by_me(sk);
 564
 565		sock_ops.is_fullsock = 1;
 566		sock_ops.sk = sk;
 567	}
 568
 569	sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
 570	sock_ops.remaining_opt_len = max_opt_len;
 571	first_opt_off = tcp_hdrlen(skb) - max_opt_len;
 572	bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
 573
 574	err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
 575
 576	if (err)
 577		nr_written = 0;
 578	else
 579		nr_written = max_opt_len - sock_ops.remaining_opt_len;
 580
 581	if (nr_written < max_opt_len)
 582		memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
 583		       max_opt_len - nr_written);
 584}
 585#else
 586static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
 587				  struct request_sock *req,
 588				  struct sk_buff *syn_skb,
 589				  enum tcp_synack_type synack_type,
 590				  struct tcp_out_options *opts,
 591				  unsigned int *remaining)
 592{
 593}
 594
 595static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
 596				    struct request_sock *req,
 597				    struct sk_buff *syn_skb,
 598				    enum tcp_synack_type synack_type,
 599				    struct tcp_out_options *opts)
 600{
 601}
 602#endif
 603
 604static __be32 *process_tcp_ao_options(struct tcp_sock *tp,
 605				      const struct tcp_request_sock *tcprsk,
 606				      struct tcp_out_options *opts,
 607				      struct tcp_key *key, __be32 *ptr)
 608{
 609#ifdef CONFIG_TCP_AO
 610	u8 maclen = tcp_ao_maclen(key->ao_key);
 611
 612	if (tcprsk) {
 613		u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
 614
 615		*ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
 616			       (tcprsk->ao_keyid << 8) |
 617			       (tcprsk->ao_rcv_next));
 618	} else {
 619		struct tcp_ao_key *rnext_key;
 620		struct tcp_ao_info *ao_info;
 621
 622		ao_info = rcu_dereference_check(tp->ao_info,
 623			lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
 624		rnext_key = READ_ONCE(ao_info->rnext_key);
 625		if (WARN_ON_ONCE(!rnext_key))
 626			return ptr;
 627		*ptr++ = htonl((TCPOPT_AO << 24) |
 628			       (tcp_ao_len(key->ao_key) << 16) |
 629			       (key->ao_key->sndid << 8) |
 630			       (rnext_key->rcvid));
 631	}
 632	opts->hash_location = (__u8 *)ptr;
 633	ptr += maclen / sizeof(*ptr);
 634	if (unlikely(maclen % sizeof(*ptr))) {
 635		memset(ptr, TCPOPT_NOP, sizeof(*ptr));
 636		ptr++;
 637	}
 638#endif
 639	return ptr;
 640}
 641
 642/* Write previously computed TCP options to the packet.
 643 *
 644 * Beware: Something in the Internet is very sensitive to the ordering of
 645 * TCP options, we learned this through the hard way, so be careful here.
 646 * Luckily we can at least blame others for their non-compliance but from
 647 * inter-operability perspective it seems that we're somewhat stuck with
 648 * the ordering which we have been using if we want to keep working with
 649 * those broken things (not that it currently hurts anybody as there isn't
 650 * particular reason why the ordering would need to be changed).
 651 *
 652 * At least SACK_PERM as the first option is known to lead to a disaster
 653 * (but it may well be that other scenarios fail similarly).
 654 */
 655static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
 656			      const struct tcp_request_sock *tcprsk,
 657			      struct tcp_out_options *opts,
 658			      struct tcp_key *key)
 659{
 660	__be32 *ptr = (__be32 *)(th + 1);
 661	u16 options = opts->options;	/* mungable copy */
 662
 663	if (tcp_key_is_md5(key)) {
 664		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 665			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 666		/* overload cookie hash location */
 667		opts->hash_location = (__u8 *)ptr;
 668		ptr += 4;
 669	} else if (tcp_key_is_ao(key)) {
 670		ptr = process_tcp_ao_options(tp, tcprsk, opts, key, ptr);
 671	}
 
 672	if (unlikely(opts->mss)) {
 673		*ptr++ = htonl((TCPOPT_MSS << 24) |
 674			       (TCPOLEN_MSS << 16) |
 675			       opts->mss);
 676	}
 677
 678	if (likely(OPTION_TS & options)) {
 679		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 680			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 681				       (TCPOLEN_SACK_PERM << 16) |
 682				       (TCPOPT_TIMESTAMP << 8) |
 683				       TCPOLEN_TIMESTAMP);
 684			options &= ~OPTION_SACK_ADVERTISE;
 685		} else {
 686			*ptr++ = htonl((TCPOPT_NOP << 24) |
 687				       (TCPOPT_NOP << 16) |
 688				       (TCPOPT_TIMESTAMP << 8) |
 689				       TCPOLEN_TIMESTAMP);
 690		}
 691		*ptr++ = htonl(opts->tsval);
 692		*ptr++ = htonl(opts->tsecr);
 693	}
 694
 695	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 696		*ptr++ = htonl((TCPOPT_NOP << 24) |
 697			       (TCPOPT_NOP << 16) |
 698			       (TCPOPT_SACK_PERM << 8) |
 699			       TCPOLEN_SACK_PERM);
 700	}
 701
 702	if (unlikely(OPTION_WSCALE & options)) {
 703		*ptr++ = htonl((TCPOPT_NOP << 24) |
 704			       (TCPOPT_WINDOW << 16) |
 705			       (TCPOLEN_WINDOW << 8) |
 706			       opts->ws);
 707	}
 708
 709	if (unlikely(opts->num_sack_blocks)) {
 710		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 711			tp->duplicate_sack : tp->selective_acks;
 712		int this_sack;
 713
 714		*ptr++ = htonl((TCPOPT_NOP  << 24) |
 715			       (TCPOPT_NOP  << 16) |
 716			       (TCPOPT_SACK <<  8) |
 717			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 718						     TCPOLEN_SACK_PERBLOCK)));
 719
 720		for (this_sack = 0; this_sack < opts->num_sack_blocks;
 721		     ++this_sack) {
 722			*ptr++ = htonl(sp[this_sack].start_seq);
 723			*ptr++ = htonl(sp[this_sack].end_seq);
 724		}
 725
 726		tp->rx_opt.dsack = 0;
 727	}
 728
 729	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 730		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 731		u8 *p = (u8 *)ptr;
 732		u32 len; /* Fast Open option length */
 733
 734		if (foc->exp) {
 735			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 736			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 737				     TCPOPT_FASTOPEN_MAGIC);
 738			p += TCPOLEN_EXP_FASTOPEN_BASE;
 739		} else {
 740			len = TCPOLEN_FASTOPEN_BASE + foc->len;
 741			*p++ = TCPOPT_FASTOPEN;
 742			*p++ = len;
 743		}
 744
 745		memcpy(p, foc->val, foc->len);
 746		if ((len & 3) == 2) {
 747			p[foc->len] = TCPOPT_NOP;
 748			p[foc->len + 1] = TCPOPT_NOP;
 749		}
 750		ptr += (len + 3) >> 2;
 751	}
 752
 753	smc_options_write(ptr, &options);
 754
 755	mptcp_options_write(th, ptr, tp, opts);
 756}
 757
 758static void smc_set_option(const struct tcp_sock *tp,
 759			   struct tcp_out_options *opts,
 760			   unsigned int *remaining)
 761{
 762#if IS_ENABLED(CONFIG_SMC)
 763	if (static_branch_unlikely(&tcp_have_smc)) {
 764		if (tp->syn_smc) {
 765			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 766				opts->options |= OPTION_SMC;
 767				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 768			}
 769		}
 770	}
 771#endif
 772}
 773
 774static void smc_set_option_cond(const struct tcp_sock *tp,
 775				const struct inet_request_sock *ireq,
 776				struct tcp_out_options *opts,
 777				unsigned int *remaining)
 778{
 779#if IS_ENABLED(CONFIG_SMC)
 780	if (static_branch_unlikely(&tcp_have_smc)) {
 781		if (tp->syn_smc && ireq->smc_ok) {
 782			if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
 783				opts->options |= OPTION_SMC;
 784				*remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
 785			}
 786		}
 787	}
 788#endif
 789}
 790
 791static void mptcp_set_option_cond(const struct request_sock *req,
 792				  struct tcp_out_options *opts,
 793				  unsigned int *remaining)
 794{
 795	if (rsk_is_mptcp(req)) {
 796		unsigned int size;
 797
 798		if (mptcp_synack_options(req, &size, &opts->mptcp)) {
 799			if (*remaining >= size) {
 800				opts->options |= OPTION_MPTCP;
 801				*remaining -= size;
 802			}
 803		}
 804	}
 805}
 806
 807/* Compute TCP options for SYN packets. This is not the final
 808 * network wire format yet.
 809 */
 810static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 811				struct tcp_out_options *opts,
 812				struct tcp_key *key)
 813{
 814	struct tcp_sock *tp = tcp_sk(sk);
 815	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 816	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 817	bool timestamps;
 818
 819	/* Better than switch (key.type) as it has static branches */
 820	if (tcp_key_is_md5(key)) {
 821		timestamps = false;
 822		opts->options |= OPTION_MD5;
 823		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 824	} else {
 825		timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
 826		if (tcp_key_is_ao(key)) {
 827			opts->options |= OPTION_AO;
 828			remaining -= tcp_ao_len_aligned(key->ao_key);
 829		}
 830	}
 
 
 
 831
 832	/* We always get an MSS option.  The option bytes which will be seen in
 833	 * normal data packets should timestamps be used, must be in the MSS
 834	 * advertised.  But we subtract them from tp->mss_cache so that
 835	 * calculations in tcp_sendmsg are simpler etc.  So account for this
 836	 * fact here if necessary.  If we don't do this correctly, as a
 837	 * receiver we won't recognize data packets as being full sized when we
 838	 * should, and thus we won't abide by the delayed ACK rules correctly.
 839	 * SACKs don't matter, we never delay an ACK when we have any of those
 840	 * going out.  */
 841	opts->mss = tcp_advertise_mss(sk);
 842	remaining -= TCPOLEN_MSS_ALIGNED;
 843
 844	if (likely(timestamps)) {
 845		opts->options |= OPTION_TS;
 846		opts->tsval = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) + tp->tsoffset;
 847		opts->tsecr = tp->rx_opt.ts_recent;
 848		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 849	}
 850	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
 851		opts->ws = tp->rx_opt.rcv_wscale;
 852		opts->options |= OPTION_WSCALE;
 853		remaining -= TCPOLEN_WSCALE_ALIGNED;
 854	}
 855	if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
 856		opts->options |= OPTION_SACK_ADVERTISE;
 857		if (unlikely(!(OPTION_TS & opts->options)))
 858			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 859	}
 860
 861	if (fastopen && fastopen->cookie.len >= 0) {
 862		u32 need = fastopen->cookie.len;
 863
 864		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 865					       TCPOLEN_FASTOPEN_BASE;
 866		need = (need + 3) & ~3U;  /* Align to 32 bits */
 867		if (remaining >= need) {
 868			opts->options |= OPTION_FAST_OPEN_COOKIE;
 869			opts->fastopen_cookie = &fastopen->cookie;
 870			remaining -= need;
 871			tp->syn_fastopen = 1;
 872			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 873		}
 874	}
 875
 876	smc_set_option(tp, opts, &remaining);
 877
 878	if (sk_is_mptcp(sk)) {
 879		unsigned int size;
 880
 881		if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
 882			opts->options |= OPTION_MPTCP;
 883			remaining -= size;
 884		}
 885	}
 886
 887	bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
 888
 889	return MAX_TCP_OPTION_SPACE - remaining;
 890}
 891
 892/* Set up TCP options for SYN-ACKs. */
 893static unsigned int tcp_synack_options(const struct sock *sk,
 894				       struct request_sock *req,
 895				       unsigned int mss, struct sk_buff *skb,
 896				       struct tcp_out_options *opts,
 897				       const struct tcp_key *key,
 898				       struct tcp_fastopen_cookie *foc,
 899				       enum tcp_synack_type synack_type,
 900				       struct sk_buff *syn_skb)
 901{
 902	struct inet_request_sock *ireq = inet_rsk(req);
 903	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 904
 905	if (tcp_key_is_md5(key)) {
 
 906		opts->options |= OPTION_MD5;
 907		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 908
 909		/* We can't fit any SACK blocks in a packet with MD5 + TS
 910		 * options. There was discussion about disabling SACK
 911		 * rather than TS in order to fit in better with old,
 912		 * buggy kernels, but that was deemed to be unnecessary.
 913		 */
 914		if (synack_type != TCP_SYNACK_COOKIE)
 915			ireq->tstamp_ok &= !ireq->sack_ok;
 916	} else if (tcp_key_is_ao(key)) {
 917		opts->options |= OPTION_AO;
 918		remaining -= tcp_ao_len_aligned(key->ao_key);
 919		ireq->tstamp_ok &= !ireq->sack_ok;
 920	}
 
 921
 922	/* We always send an MSS option. */
 923	opts->mss = mss;
 924	remaining -= TCPOLEN_MSS_ALIGNED;
 925
 926	if (likely(ireq->wscale_ok)) {
 927		opts->ws = ireq->rcv_wscale;
 928		opts->options |= OPTION_WSCALE;
 929		remaining -= TCPOLEN_WSCALE_ALIGNED;
 930	}
 931	if (likely(ireq->tstamp_ok)) {
 932		opts->options |= OPTION_TS;
 933		opts->tsval = tcp_skb_timestamp_ts(tcp_rsk(req)->req_usec_ts, skb) +
 934			      tcp_rsk(req)->ts_off;
 935		opts->tsecr = READ_ONCE(req->ts_recent);
 936		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 937	}
 938	if (likely(ireq->sack_ok)) {
 939		opts->options |= OPTION_SACK_ADVERTISE;
 940		if (unlikely(!ireq->tstamp_ok))
 941			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 942	}
 943	if (foc != NULL && foc->len >= 0) {
 944		u32 need = foc->len;
 945
 946		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 947				   TCPOLEN_FASTOPEN_BASE;
 948		need = (need + 3) & ~3U;  /* Align to 32 bits */
 949		if (remaining >= need) {
 950			opts->options |= OPTION_FAST_OPEN_COOKIE;
 951			opts->fastopen_cookie = foc;
 952			remaining -= need;
 953		}
 954	}
 955
 956	mptcp_set_option_cond(req, opts, &remaining);
 957
 958	smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
 959
 960	bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
 961			      synack_type, opts, &remaining);
 962
 963	return MAX_TCP_OPTION_SPACE - remaining;
 964}
 965
 966/* Compute TCP options for ESTABLISHED sockets. This is not the
 967 * final wire format yet.
 968 */
 969static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 970					struct tcp_out_options *opts,
 971					struct tcp_key *key)
 972{
 973	struct tcp_sock *tp = tcp_sk(sk);
 974	unsigned int size = 0;
 975	unsigned int eff_sacks;
 976
 977	opts->options = 0;
 978
 979	/* Better than switch (key.type) as it has static branches */
 980	if (tcp_key_is_md5(key)) {
 
 981		opts->options |= OPTION_MD5;
 982		size += TCPOLEN_MD5SIG_ALIGNED;
 983	} else if (tcp_key_is_ao(key)) {
 984		opts->options |= OPTION_AO;
 985		size += tcp_ao_len_aligned(key->ao_key);
 986	}
 
 
 
 987
 988	if (likely(tp->rx_opt.tstamp_ok)) {
 989		opts->options |= OPTION_TS;
 990		opts->tsval = skb ? tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb) +
 991				tp->tsoffset : 0;
 992		opts->tsecr = tp->rx_opt.ts_recent;
 993		size += TCPOLEN_TSTAMP_ALIGNED;
 994	}
 995
 996	/* MPTCP options have precedence over SACK for the limited TCP
 997	 * option space because a MPTCP connection would be forced to
 998	 * fall back to regular TCP if a required multipath option is
 999	 * missing. SACK still gets a chance to use whatever space is
1000	 * left.
1001	 */
1002	if (sk_is_mptcp(sk)) {
1003		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1004		unsigned int opt_size = 0;
1005
1006		if (mptcp_established_options(sk, skb, &opt_size, remaining,
1007					      &opts->mptcp)) {
1008			opts->options |= OPTION_MPTCP;
1009			size += opt_size;
1010		}
1011	}
1012
1013	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1014	if (unlikely(eff_sacks)) {
1015		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1016		if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1017					 TCPOLEN_SACK_PERBLOCK))
1018			return size;
1019
1020		opts->num_sack_blocks =
1021			min_t(unsigned int, eff_sacks,
1022			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1023			      TCPOLEN_SACK_PERBLOCK);
1024
1025		size += TCPOLEN_SACK_BASE_ALIGNED +
1026			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1027	}
1028
1029	if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1030					    BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1031		unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1032
1033		bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
1034
1035		size = MAX_TCP_OPTION_SPACE - remaining;
1036	}
1037
1038	return size;
1039}
1040
1041
1042/* TCP SMALL QUEUES (TSQ)
1043 *
1044 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1045 * to reduce RTT and bufferbloat.
1046 * We do this using a special skb destructor (tcp_wfree).
1047 *
1048 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1049 * needs to be reallocated in a driver.
1050 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1051 *
1052 * Since transmit from skb destructor is forbidden, we use a tasklet
1053 * to process all sockets that eventually need to send more skbs.
1054 * We use one tasklet per cpu, with its own queue of sockets.
1055 */
1056struct tsq_tasklet {
1057	struct tasklet_struct	tasklet;
1058	struct list_head	head; /* queue of tcp sockets */
1059};
1060static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1061
1062static void tcp_tsq_write(struct sock *sk)
1063{
1064	if ((1 << sk->sk_state) &
1065	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1066	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK)) {
1067		struct tcp_sock *tp = tcp_sk(sk);
1068
1069		if (tp->lost_out > tp->retrans_out &&
1070		    tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1071			tcp_mstamp_refresh(tp);
1072			tcp_xmit_retransmit_queue(sk);
1073		}
1074
1075		tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1076			       0, GFP_ATOMIC);
1077	}
1078}
1079
1080static void tcp_tsq_handler(struct sock *sk)
1081{
1082	bh_lock_sock(sk);
1083	if (!sock_owned_by_user(sk))
1084		tcp_tsq_write(sk);
1085	else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1086		sock_hold(sk);
1087	bh_unlock_sock(sk);
1088}
1089/*
1090 * One tasklet per cpu tries to send more skbs.
1091 * We run in tasklet context but need to disable irqs when
1092 * transferring tsq->head because tcp_wfree() might
1093 * interrupt us (non NAPI drivers)
1094 */
1095static void tcp_tasklet_func(struct tasklet_struct *t)
1096{
1097	struct tsq_tasklet *tsq = from_tasklet(tsq,  t, tasklet);
1098	LIST_HEAD(list);
1099	unsigned long flags;
1100	struct list_head *q, *n;
1101	struct tcp_sock *tp;
1102	struct sock *sk;
1103
1104	local_irq_save(flags);
1105	list_splice_init(&tsq->head, &list);
1106	local_irq_restore(flags);
1107
1108	list_for_each_safe(q, n, &list) {
1109		tp = list_entry(q, struct tcp_sock, tsq_node);
1110		list_del(&tp->tsq_node);
1111
1112		sk = (struct sock *)tp;
1113		smp_mb__before_atomic();
1114		clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1115
1116		tcp_tsq_handler(sk);
 
 
 
 
 
 
 
 
1117		sk_free(sk);
1118	}
1119}
1120
1121#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED |		\
1122			  TCPF_WRITE_TIMER_DEFERRED |	\
1123			  TCPF_DELACK_TIMER_DEFERRED |	\
1124			  TCPF_MTU_REDUCED_DEFERRED |	\
1125			  TCPF_ACK_DEFERRED)
1126/**
1127 * tcp_release_cb - tcp release_sock() callback
1128 * @sk: socket
1129 *
1130 * called from release_sock() to perform protocol dependent
1131 * actions before socket release.
1132 */
1133void tcp_release_cb(struct sock *sk)
1134{
1135	unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1136	unsigned long nflags;
1137
1138	/* perform an atomic operation only if at least one flag is set */
1139	do {
 
1140		if (!(flags & TCP_DEFERRED_ALL))
1141			return;
1142		nflags = flags & ~TCP_DEFERRED_ALL;
1143	} while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1144
1145	if (flags & TCPF_TSQ_DEFERRED) {
1146		tcp_tsq_write(sk);
1147		__sock_put(sk);
1148	}
 
 
 
 
 
 
 
 
 
1149
1150	if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1151		tcp_write_timer_handler(sk);
1152		__sock_put(sk);
1153	}
1154	if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1155		tcp_delack_timer_handler(sk);
1156		__sock_put(sk);
1157	}
1158	if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1159		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1160		__sock_put(sk);
1161	}
1162	if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1163		tcp_send_ack(sk);
1164}
1165EXPORT_SYMBOL(tcp_release_cb);
1166
1167void __init tcp_tasklet_init(void)
1168{
1169	int i;
1170
1171	for_each_possible_cpu(i) {
1172		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1173
1174		INIT_LIST_HEAD(&tsq->head);
1175		tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
 
 
1176	}
1177}
1178
1179/*
1180 * Write buffer destructor automatically called from kfree_skb.
1181 * We can't xmit new skbs from this context, as we might already
1182 * hold qdisc lock.
1183 */
1184void tcp_wfree(struct sk_buff *skb)
1185{
1186	struct sock *sk = skb->sk;
1187	struct tcp_sock *tp = tcp_sk(sk);
1188	unsigned long flags, nval, oval;
1189	struct tsq_tasklet *tsq;
1190	bool empty;
1191
1192	/* Keep one reference on sk_wmem_alloc.
1193	 * Will be released by sk_free() from here or tcp_tasklet_func()
1194	 */
1195	WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1196
1197	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
1198	 * Wait until our queues (qdisc + devices) are drained.
1199	 * This gives :
1200	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1201	 * - chance for incoming ACK (processed by another cpu maybe)
1202	 *   to migrate this flow (skb->ooo_okay will be eventually set)
1203	 */
1204	if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1205		goto out;
1206
1207	oval = smp_load_acquire(&sk->sk_tsq_flags);
1208	do {
1209		if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1210			goto out;
1211
1212		nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1213	} while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1214
1215	/* queue this socket to tasklet queue */
1216	local_irq_save(flags);
1217	tsq = this_cpu_ptr(&tsq_tasklet);
1218	empty = list_empty(&tsq->head);
1219	list_add(&tp->tsq_node, &tsq->head);
1220	if (empty)
1221		tasklet_schedule(&tsq->tasklet);
1222	local_irq_restore(flags);
1223	return;
 
1224out:
1225	sk_free(sk);
1226}
1227
1228/* Note: Called under soft irq.
1229 * We can call TCP stack right away, unless socket is owned by user.
1230 */
1231enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1232{
1233	struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1234	struct sock *sk = (struct sock *)tp;
1235
1236	tcp_tsq_handler(sk);
1237	sock_put(sk);
1238
1239	return HRTIMER_NORESTART;
1240}
1241
1242static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1243				      u64 prior_wstamp)
1244{
1245	struct tcp_sock *tp = tcp_sk(sk);
1246
1247	if (sk->sk_pacing_status != SK_PACING_NONE) {
1248		unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1249
1250		/* Original sch_fq does not pace first 10 MSS
1251		 * Note that tp->data_segs_out overflows after 2^32 packets,
1252		 * this is a minor annoyance.
1253		 */
1254		if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1255			u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1256			u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1257
1258			/* take into account OS jitter */
1259			len_ns -= min_t(u64, len_ns / 2, credit);
1260			tp->tcp_wstamp_ns += len_ns;
1261		}
1262	}
1263	list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1264}
1265
1266INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1267INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1268INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1269
1270/* This routine actually transmits TCP packets queued in by
1271 * tcp_do_sendmsg().  This is used by both the initial
1272 * transmission and possible later retransmissions.
1273 * All SKB's seen here are completely headerless.  It is our
1274 * job to build the TCP header, and pass the packet down to
1275 * IP so it can do the same plus pass the packet off to the
1276 * device.
1277 *
1278 * We are working here with either a clone of the original
1279 * SKB, or a fresh unique copy made by the retransmit engine.
1280 */
1281static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1282			      int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1283{
1284	const struct inet_connection_sock *icsk = inet_csk(sk);
1285	struct inet_sock *inet;
1286	struct tcp_sock *tp;
1287	struct tcp_skb_cb *tcb;
1288	struct tcp_out_options opts;
1289	unsigned int tcp_options_size, tcp_header_size;
1290	struct sk_buff *oskb = NULL;
1291	struct tcp_key key;
1292	struct tcphdr *th;
1293	u64 prior_wstamp;
1294	int err;
1295
1296	BUG_ON(!skb || !tcp_skb_pcount(skb));
1297	tp = tcp_sk(sk);
1298	prior_wstamp = tp->tcp_wstamp_ns;
1299	tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1300	skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
1301	if (clone_it) {
1302		oskb = skb;
1303
1304		tcp_skb_tsorted_save(oskb) {
1305			if (unlikely(skb_cloned(oskb)))
1306				skb = pskb_copy(oskb, gfp_mask);
1307			else
1308				skb = skb_clone(oskb, gfp_mask);
1309		} tcp_skb_tsorted_restore(oskb);
1310
 
 
 
 
1311		if (unlikely(!skb))
1312			return -ENOBUFS;
1313		/* retransmit skbs might have a non zero value in skb->dev
1314		 * because skb->dev is aliased with skb->rbnode.rb_left
1315		 */
1316		skb->dev = NULL;
1317	}
1318
1319	inet = inet_sk(sk);
 
1320	tcb = TCP_SKB_CB(skb);
1321	memset(&opts, 0, sizeof(opts));
1322
1323	tcp_get_current_key(sk, &key);
1324	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1325		tcp_options_size = tcp_syn_options(sk, skb, &opts, &key);
1326	} else {
1327		tcp_options_size = tcp_established_options(sk, skb, &opts, &key);
1328		/* Force a PSH flag on all (GSO) packets to expedite GRO flush
1329		 * at receiver : This slightly improve GRO performance.
1330		 * Note that we do not force the PSH flag for non GSO packets,
1331		 * because they might be sent under high congestion events,
1332		 * and in this case it is better to delay the delivery of 1-MSS
1333		 * packets and thus the corresponding ACK packet that would
1334		 * release the following packet.
1335		 */
1336		if (tcp_skb_pcount(skb) > 1)
1337			tcb->tcp_flags |= TCPHDR_PSH;
1338	}
1339	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1340
1341	/* We set skb->ooo_okay to one if this packet can select
1342	 * a different TX queue than prior packets of this flow,
1343	 * to avoid self inflicted reorders.
1344	 * The 'other' queue decision is based on current cpu number
1345	 * if XPS is enabled, or sk->sk_txhash otherwise.
1346	 * We can switch to another (and better) queue if:
1347	 * 1) No packet with payload is in qdisc/device queues.
1348	 *    Delays in TX completion can defeat the test
1349	 *    even if packets were already sent.
1350	 * 2) Or rtx queue is empty.
1351	 *    This mitigates above case if ACK packets for
1352	 *    all prior packets were already processed.
1353	 */
1354	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1355			tcp_rtx_queue_empty(sk);
1356
1357	/* If we had to use memory reserve to allocate this skb,
1358	 * this might cause drops if packet is looped back :
1359	 * Other socket might not have SOCK_MEMALLOC.
1360	 * Packets not looped back do not care about pfmemalloc.
1361	 */
1362	skb->pfmemalloc = 0;
1363
1364	skb_push(skb, tcp_header_size);
1365	skb_reset_transport_header(skb);
1366
1367	skb_orphan(skb);
1368	skb->sk = sk;
1369	skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1370	refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1371
1372	skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1373
1374	/* Build TCP header and checksum it. */
1375	th = (struct tcphdr *)skb->data;
1376	th->source		= inet->inet_sport;
1377	th->dest		= inet->inet_dport;
1378	th->seq			= htonl(tcb->seq);
1379	th->ack_seq		= htonl(rcv_nxt);
1380	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
1381					tcb->tcp_flags);
1382
 
 
 
 
 
 
 
 
1383	th->check		= 0;
1384	th->urg_ptr		= 0;
1385
1386	/* The urg_mode check is necessary during a below snd_una win probe */
1387	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1388		if (before(tp->snd_up, tcb->seq + 0x10000)) {
1389			th->urg_ptr = htons(tp->snd_up - tcb->seq);
1390			th->urg = 1;
1391		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1392			th->urg_ptr = htons(0xFFFF);
1393			th->urg = 1;
1394		}
1395	}
1396
 
1397	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1398	if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1399		th->window      = htons(tcp_select_window(sk));
1400		tcp_ecn_send(sk, skb, th, tcp_header_size);
1401	} else {
1402		/* RFC1323: The window in SYN & SYN/ACK segments
1403		 * is never scaled.
1404		 */
1405		th->window	= htons(min(tp->rcv_wnd, 65535U));
1406	}
1407
1408	tcp_options_write(th, tp, NULL, &opts, &key);
1409
1410	if (tcp_key_is_md5(&key)) {
1411#ifdef CONFIG_TCP_MD5SIG
1412		/* Calculate the MD5 hash, as we have all we need now */
1413		sk_gso_disable(sk);
 
1414		tp->af_specific->calc_md5_hash(opts.hash_location,
1415					       key.md5_key, sk, skb);
 
1416#endif
1417	} else if (tcp_key_is_ao(&key)) {
1418		int err;
1419
1420		err = tcp_ao_transmit_skb(sk, skb, key.ao_key, th,
1421					  opts.hash_location);
1422		if (err) {
1423			kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1424			return -ENOMEM;
1425		}
1426	}
1427
1428	/* BPF prog is the last one writing header option */
1429	bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1430
1431	INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1432			   tcp_v6_send_check, tcp_v4_send_check,
1433			   sk, skb);
1434
1435	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1436		tcp_event_ack_sent(sk, rcv_nxt);
1437
1438	if (skb->len != tcp_header_size) {
1439		tcp_event_data_sent(tp, sk);
1440		tp->data_segs_out += tcp_skb_pcount(skb);
1441		tp->bytes_sent += skb->len - tcp_header_size;
1442	}
1443
1444	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1445		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1446			      tcp_skb_pcount(skb));
1447
1448	tp->segs_out += tcp_skb_pcount(skb);
1449	skb_set_hash_from_sk(skb, sk);
1450	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1451	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1452	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1453
1454	/* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
 
1455
1456	/* Cleanup our debris for IP stacks */
1457	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1458			       sizeof(struct inet6_skb_parm)));
1459
1460	tcp_add_tx_delay(skb, tp);
 
 
 
1461
1462	err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1463				 inet6_csk_xmit, ip_queue_xmit,
1464				 sk, skb, &inet->cork.fl);
1465
1466	if (unlikely(err > 0)) {
1467		tcp_enter_cwr(sk);
1468		err = net_xmit_eval(err);
1469	}
1470	if (!err && oskb) {
1471		tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1472		tcp_rate_skb_sent(sk, oskb);
1473	}
1474	return err;
1475}
1476
1477static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1478			    gfp_t gfp_mask)
1479{
1480	return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1481				  tcp_sk(sk)->rcv_nxt);
1482}
1483
1484/* This routine just queues the buffer for sending.
1485 *
1486 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1487 * otherwise socket can stall.
1488 */
1489static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1490{
1491	struct tcp_sock *tp = tcp_sk(sk);
1492
1493	/* Advance write_seq and place onto the write_queue. */
1494	WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1495	__skb_header_release(skb);
1496	tcp_add_write_queue_tail(sk, skb);
1497	sk_wmem_queued_add(sk, skb->truesize);
1498	sk_mem_charge(sk, skb->truesize);
1499}
1500
1501/* Initialize TSO segments for a packet. */
1502static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1503{
1504	if (skb->len <= mss_now) {
1505		/* Avoid the costly divide in the normal
1506		 * non-TSO case.
1507		 */
1508		tcp_skb_pcount_set(skb, 1);
1509		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1510	} else {
1511		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1512		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1513	}
1514}
1515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516/* Pcount in the middle of the write queue got changed, we need to do various
1517 * tweaks to fix counters
1518 */
1519static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1520{
1521	struct tcp_sock *tp = tcp_sk(sk);
1522
1523	tp->packets_out -= decr;
1524
1525	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1526		tp->sacked_out -= decr;
1527	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1528		tp->retrans_out -= decr;
1529	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1530		tp->lost_out -= decr;
1531
1532	/* Reno case is special. Sigh... */
1533	if (tcp_is_reno(tp) && decr > 0)
1534		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1535
 
 
1536	if (tp->lost_skb_hint &&
1537	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1538	    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1539		tp->lost_cnt_hint -= decr;
1540
1541	tcp_verify_left_out(tp);
1542}
1543
1544static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1545{
1546	return TCP_SKB_CB(skb)->txstamp_ack ||
1547		(skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1548}
1549
1550static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1551{
1552	struct skb_shared_info *shinfo = skb_shinfo(skb);
1553
1554	if (unlikely(tcp_has_tx_tstamp(skb)) &&
1555	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1556		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1557		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1558
1559		shinfo->tx_flags &= ~tsflags;
1560		shinfo2->tx_flags |= tsflags;
1561		swap(shinfo->tskey, shinfo2->tskey);
1562		TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1563		TCP_SKB_CB(skb)->txstamp_ack = 0;
1564	}
1565}
1566
1567static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1568{
1569	TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1570	TCP_SKB_CB(skb)->eor = 0;
1571}
1572
1573/* Insert buff after skb on the write or rtx queue of sk.  */
1574static void tcp_insert_write_queue_after(struct sk_buff *skb,
1575					 struct sk_buff *buff,
1576					 struct sock *sk,
1577					 enum tcp_queue tcp_queue)
1578{
1579	if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1580		__skb_queue_after(&sk->sk_write_queue, skb, buff);
1581	else
1582		tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1583}
1584
1585/* Function to create two new TCP segments.  Shrinks the given segment
1586 * to the specified size and appends a new segment with the rest of the
1587 * packet to the list.  This won't be called frequently, I hope.
1588 * Remember, these are still headerless SKBs at this point.
1589 */
1590int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1591		 struct sk_buff *skb, u32 len,
1592		 unsigned int mss_now, gfp_t gfp)
1593{
1594	struct tcp_sock *tp = tcp_sk(sk);
1595	struct sk_buff *buff;
1596	int old_factor;
1597	long limit;
1598	int nlen;
1599	u8 flags;
1600
1601	if (WARN_ON(len > skb->len))
1602		return -EINVAL;
1603
1604	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
 
 
1605
1606	/* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1607	 * We need some allowance to not penalize applications setting small
1608	 * SO_SNDBUF values.
1609	 * Also allow first and last skb in retransmit queue to be split.
1610	 */
1611	limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1612	if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1613		     tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1614		     skb != tcp_rtx_queue_head(sk) &&
1615		     skb != tcp_rtx_queue_tail(sk))) {
1616		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1617		return -ENOMEM;
1618	}
1619
1620	if (skb_unclone_keeptruesize(skb, gfp))
1621		return -ENOMEM;
1622
1623	/* Get a new skb... force flag on. */
1624	buff = tcp_stream_alloc_skb(sk, gfp, true);
1625	if (!buff)
1626		return -ENOMEM; /* We'll just try again later. */
1627	skb_copy_decrypted(buff, skb);
1628	mptcp_skb_ext_copy(buff, skb);
1629
1630	sk_wmem_queued_add(sk, buff->truesize);
1631	sk_mem_charge(sk, buff->truesize);
1632	nlen = skb->len - len;
1633	buff->truesize += nlen;
1634	skb->truesize -= nlen;
1635
1636	/* Correct the sequence numbers. */
1637	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1638	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1639	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1640
1641	/* PSH and FIN should only be set in the second packet. */
1642	flags = TCP_SKB_CB(skb)->tcp_flags;
1643	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1644	TCP_SKB_CB(buff)->tcp_flags = flags;
1645	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1646	tcp_skb_fragment_eor(skb, buff);
1647
1648	skb_split(skb, buff, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1649
1650	skb_set_delivery_time(buff, skb->tstamp, true);
1651	tcp_fragment_tstamp(skb, buff);
1652
1653	old_factor = tcp_skb_pcount(skb);
1654
1655	/* Fix up tso_factor for both original and new SKB.  */
1656	tcp_set_skb_tso_segs(skb, mss_now);
1657	tcp_set_skb_tso_segs(buff, mss_now);
1658
1659	/* Update delivered info for the new segment */
1660	TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1661
1662	/* If this packet has been sent out already, we must
1663	 * adjust the various packet counters.
1664	 */
1665	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1666		int diff = old_factor - tcp_skb_pcount(skb) -
1667			tcp_skb_pcount(buff);
1668
1669		if (diff)
1670			tcp_adjust_pcount(sk, skb, diff);
1671	}
1672
1673	/* Link BUFF into the send queue. */
1674	__skb_header_release(buff);
1675	tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1676	if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1677		list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1678
1679	return 0;
1680}
1681
1682/* This is similar to __pskb_pull_tail(). The difference is that pulled
1683 * data is not copied, but immediately discarded.
 
1684 */
1685static int __pskb_trim_head(struct sk_buff *skb, int len)
1686{
1687	struct skb_shared_info *shinfo;
1688	int i, k, eat;
1689
1690	DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
 
 
 
 
 
 
1691	eat = len;
1692	k = 0;
1693	shinfo = skb_shinfo(skb);
1694	for (i = 0; i < shinfo->nr_frags; i++) {
1695		int size = skb_frag_size(&shinfo->frags[i]);
1696
1697		if (size <= eat) {
1698			skb_frag_unref(skb, i);
1699			eat -= size;
1700		} else {
1701			shinfo->frags[k] = shinfo->frags[i];
1702			if (eat) {
1703				skb_frag_off_add(&shinfo->frags[k], eat);
1704				skb_frag_size_sub(&shinfo->frags[k], eat);
1705				eat = 0;
1706			}
1707			k++;
1708		}
1709	}
1710	shinfo->nr_frags = k;
1711
 
1712	skb->data_len -= len;
1713	skb->len = skb->data_len;
1714	return len;
1715}
1716
1717/* Remove acked data from a packet in the transmit queue. */
1718int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1719{
1720	u32 delta_truesize;
1721
1722	if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1723		return -ENOMEM;
1724
1725	delta_truesize = __pskb_trim_head(skb, len);
1726
1727	TCP_SKB_CB(skb)->seq += len;
 
1728
1729	skb->truesize	   -= delta_truesize;
1730	sk_wmem_queued_add(sk, -delta_truesize);
1731	if (!skb_zcopy_pure(skb))
1732		sk_mem_uncharge(sk, delta_truesize);
1733
1734	/* Any change of skb->len requires recalculation of tso factor. */
1735	if (tcp_skb_pcount(skb) > 1)
1736		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1737
1738	return 0;
1739}
1740
1741/* Calculate MSS not accounting any TCP options.  */
1742static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1743{
1744	const struct tcp_sock *tp = tcp_sk(sk);
1745	const struct inet_connection_sock *icsk = inet_csk(sk);
1746	int mss_now;
1747
1748	/* Calculate base mss without TCP options:
1749	   It is MMS_S - sizeof(tcphdr) of rfc1122
1750	 */
1751	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1752
 
 
 
 
 
 
 
 
1753	/* Clamp it (mss_clamp does not include tcp options) */
1754	if (mss_now > tp->rx_opt.mss_clamp)
1755		mss_now = tp->rx_opt.mss_clamp;
1756
1757	/* Now subtract optional transport overhead */
1758	mss_now -= icsk->icsk_ext_hdr_len;
1759
1760	/* Then reserve room for full set of TCP options and 8 bytes of data */
1761	mss_now = max(mss_now,
1762		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1763	return mss_now;
1764}
1765
1766/* Calculate MSS. Not accounting for SACKs here.  */
1767int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1768{
1769	/* Subtract TCP options size, not including SACKs */
1770	return __tcp_mtu_to_mss(sk, pmtu) -
1771	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1772}
1773EXPORT_SYMBOL(tcp_mtu_to_mss);
1774
1775/* Inverse of above */
1776int tcp_mss_to_mtu(struct sock *sk, int mss)
1777{
1778	const struct tcp_sock *tp = tcp_sk(sk);
1779	const struct inet_connection_sock *icsk = inet_csk(sk);
 
1780
1781	return mss +
1782	      tp->tcp_header_len +
1783	      icsk->icsk_ext_hdr_len +
1784	      icsk->icsk_af_ops->net_header_len;
 
 
 
 
 
 
 
 
 
1785}
1786EXPORT_SYMBOL(tcp_mss_to_mtu);
1787
1788/* MTU probing init per socket */
1789void tcp_mtup_init(struct sock *sk)
1790{
1791	struct tcp_sock *tp = tcp_sk(sk);
1792	struct inet_connection_sock *icsk = inet_csk(sk);
1793	struct net *net = sock_net(sk);
1794
1795	icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1796	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1797			       icsk->icsk_af_ops->net_header_len;
1798	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1799	icsk->icsk_mtup.probe_size = 0;
1800	if (icsk->icsk_mtup.enabled)
1801		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1802}
1803EXPORT_SYMBOL(tcp_mtup_init);
1804
1805/* This function synchronize snd mss to current pmtu/exthdr set.
1806
1807   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1808   for TCP options, but includes only bare TCP header.
1809
1810   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1811   It is minimum of user_mss and mss received with SYN.
1812   It also does not include TCP options.
1813
1814   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1815
1816   tp->mss_cache is current effective sending mss, including
1817   all tcp options except for SACKs. It is evaluated,
1818   taking into account current pmtu, but never exceeds
1819   tp->rx_opt.mss_clamp.
1820
1821   NOTE1. rfc1122 clearly states that advertised MSS
1822   DOES NOT include either tcp or ip options.
1823
1824   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1825   are READ ONLY outside this function.		--ANK (980731)
1826 */
1827unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1828{
1829	struct tcp_sock *tp = tcp_sk(sk);
1830	struct inet_connection_sock *icsk = inet_csk(sk);
1831	int mss_now;
1832
1833	if (icsk->icsk_mtup.search_high > pmtu)
1834		icsk->icsk_mtup.search_high = pmtu;
1835
1836	mss_now = tcp_mtu_to_mss(sk, pmtu);
1837	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1838
1839	/* And store cached results */
1840	icsk->icsk_pmtu_cookie = pmtu;
1841	if (icsk->icsk_mtup.enabled)
1842		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1843	tp->mss_cache = mss_now;
1844
1845	return mss_now;
1846}
1847EXPORT_SYMBOL(tcp_sync_mss);
1848
1849/* Compute the current effective MSS, taking SACKs and IP options,
1850 * and even PMTU discovery events into account.
1851 */
1852unsigned int tcp_current_mss(struct sock *sk)
1853{
1854	const struct tcp_sock *tp = tcp_sk(sk);
1855	const struct dst_entry *dst = __sk_dst_get(sk);
1856	u32 mss_now;
1857	unsigned int header_len;
1858	struct tcp_out_options opts;
1859	struct tcp_key key;
1860
1861	mss_now = tp->mss_cache;
1862
1863	if (dst) {
1864		u32 mtu = dst_mtu(dst);
1865		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1866			mss_now = tcp_sync_mss(sk, mtu);
1867	}
1868	tcp_get_current_key(sk, &key);
1869	header_len = tcp_established_options(sk, NULL, &opts, &key) +
1870		     sizeof(struct tcphdr);
1871	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1872	 * some common options. If this is an odd packet (because we have SACK
1873	 * blocks etc) then our calculated header_len will be different, and
1874	 * we have to adjust mss_now correspondingly */
1875	if (header_len != tp->tcp_header_len) {
1876		int delta = (int) header_len - tp->tcp_header_len;
1877		mss_now -= delta;
1878	}
1879
1880	return mss_now;
1881}
1882
1883/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1884 * As additional protections, we do not touch cwnd in retransmission phases,
1885 * and if application hit its sndbuf limit recently.
1886 */
1887static void tcp_cwnd_application_limited(struct sock *sk)
1888{
1889	struct tcp_sock *tp = tcp_sk(sk);
1890
1891	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1892	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1893		/* Limited by application or receiver window. */
1894		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1895		u32 win_used = max(tp->snd_cwnd_used, init_win);
1896		if (win_used < tcp_snd_cwnd(tp)) {
1897			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1898			tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1899		}
1900		tp->snd_cwnd_used = 0;
1901	}
1902	tp->snd_cwnd_stamp = tcp_jiffies32;
1903}
1904
1905static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1906{
1907	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1908	struct tcp_sock *tp = tcp_sk(sk);
1909
1910	/* Track the strongest available signal of the degree to which the cwnd
1911	 * is fully utilized. If cwnd-limited then remember that fact for the
1912	 * current window. If not cwnd-limited then track the maximum number of
1913	 * outstanding packets in the current window. (If cwnd-limited then we
1914	 * chose to not update tp->max_packets_out to avoid an extra else
1915	 * clause with no functional impact.)
1916	 */
1917	if (!before(tp->snd_una, tp->cwnd_usage_seq) ||
1918	    is_cwnd_limited ||
1919	    (!tp->is_cwnd_limited &&
1920	     tp->packets_out > tp->max_packets_out)) {
1921		tp->is_cwnd_limited = is_cwnd_limited;
1922		tp->max_packets_out = tp->packets_out;
1923		tp->cwnd_usage_seq = tp->snd_nxt;
1924	}
1925
1926	if (tcp_is_cwnd_limited(sk)) {
1927		/* Network is feed fully. */
1928		tp->snd_cwnd_used = 0;
1929		tp->snd_cwnd_stamp = tcp_jiffies32;
1930	} else {
1931		/* Network starves. */
1932		if (tp->packets_out > tp->snd_cwnd_used)
1933			tp->snd_cwnd_used = tp->packets_out;
1934
1935		if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1936		    (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1937		    !ca_ops->cong_control)
1938			tcp_cwnd_application_limited(sk);
1939
1940		/* The following conditions together indicate the starvation
1941		 * is caused by insufficient sender buffer:
1942		 * 1) just sent some data (see tcp_write_xmit)
1943		 * 2) not cwnd limited (this else condition)
1944		 * 3) no more data to send (tcp_write_queue_empty())
1945		 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1946		 */
1947		if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1948		    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1949		    (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1950			tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1951	}
1952}
1953
1954/* Minshall's variant of the Nagle send check. */
1955static bool tcp_minshall_check(const struct tcp_sock *tp)
1956{
1957	return after(tp->snd_sml, tp->snd_una) &&
1958		!after(tp->snd_sml, tp->snd_nxt);
1959}
1960
1961/* Update snd_sml if this skb is under mss
1962 * Note that a TSO packet might end with a sub-mss segment
1963 * The test is really :
1964 * if ((skb->len % mss) != 0)
1965 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1966 * But we can avoid doing the divide again given we already have
1967 *  skb_pcount = skb->len / mss_now
1968 */
1969static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1970				const struct sk_buff *skb)
1971{
1972	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1973		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1974}
1975
1976/* Return false, if packet can be sent now without violation Nagle's rules:
1977 * 1. It is full sized. (provided by caller in %partial bool)
1978 * 2. Or it contains FIN. (already checked by caller)
1979 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1980 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1981 *    With Minshall's modification: all sent small packets are ACKed.
1982 */
1983static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1984			    int nonagle)
1985{
1986	return partial &&
1987		((nonagle & TCP_NAGLE_CORK) ||
1988		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1989}
1990
1991/* Return how many segs we'd like on a TSO packet,
1992 * depending on current pacing rate, and how close the peer is.
1993 *
1994 * Rationale is:
1995 * - For close peers, we rather send bigger packets to reduce
1996 *   cpu costs, because occasional losses will be repaired fast.
1997 * - For long distance/rtt flows, we would like to get ACK clocking
1998 *   with 1 ACK per ms.
1999 *
2000 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
2001 * in bigger TSO bursts. We we cut the RTT-based allowance in half
2002 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
2003 * is below 1500 bytes after 6 * ~500 usec = 3ms.
2004 */
2005static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
2006			    int min_tso_segs)
2007{
2008	unsigned long bytes;
2009	u32 r;
2010
2011	bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
 
2012
2013	r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2014	if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2015		bytes += sk->sk_gso_max_size >> r;
2016
2017	bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2018
2019	return max_t(u32, bytes / mss_now, min_tso_segs);
2020}
2021
2022/* Return the number of segments we want in the skb we are transmitting.
2023 * See if congestion control module wants to decide; otherwise, autosize.
2024 */
2025static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2026{
2027	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2028	u32 min_tso, tso_segs;
2029
2030	min_tso = ca_ops->min_tso_segs ?
2031			ca_ops->min_tso_segs(sk) :
2032			READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2033
2034	tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
2035	return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2036}
2037
2038/* Returns the portion of skb which can be sent right away */
2039static unsigned int tcp_mss_split_point(const struct sock *sk,
2040					const struct sk_buff *skb,
2041					unsigned int mss_now,
2042					unsigned int max_segs,
2043					int nonagle)
2044{
2045	const struct tcp_sock *tp = tcp_sk(sk);
2046	u32 partial, needed, window, max_len;
2047
2048	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2049	max_len = mss_now * max_segs;
2050
2051	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2052		return max_len;
2053
2054	needed = min(skb->len, window);
2055
2056	if (max_len <= needed)
2057		return max_len;
2058
2059	partial = needed % mss_now;
2060	/* If last segment is not a full MSS, check if Nagle rules allow us
2061	 * to include this last segment in this skb.
2062	 * Otherwise, we'll split the skb at last MSS boundary
2063	 */
2064	if (tcp_nagle_check(partial != 0, tp, nonagle))
2065		return needed - partial;
2066
2067	return needed;
2068}
2069
2070/* Can at least one segment of SKB be sent right now, according to the
2071 * congestion window rules?  If so, return how many segments are allowed.
2072 */
2073static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2074					 const struct sk_buff *skb)
2075{
2076	u32 in_flight, cwnd, halfcwnd;
2077
2078	/* Don't be strict about the congestion window for the final FIN.  */
2079	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2080	    tcp_skb_pcount(skb) == 1)
2081		return 1;
2082
2083	in_flight = tcp_packets_in_flight(tp);
2084	cwnd = tcp_snd_cwnd(tp);
2085	if (in_flight >= cwnd)
2086		return 0;
2087
2088	/* For better scheduling, ensure we have at least
2089	 * 2 GSO packets in flight.
2090	 */
2091	halfcwnd = max(cwnd >> 1, 1U);
2092	return min(halfcwnd, cwnd - in_flight);
2093}
2094
2095/* Initialize TSO state of a skb.
2096 * This must be invoked the first time we consider transmitting
2097 * SKB onto the wire.
2098 */
2099static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2100{
2101	int tso_segs = tcp_skb_pcount(skb);
2102
2103	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2104		tcp_set_skb_tso_segs(skb, mss_now);
2105		tso_segs = tcp_skb_pcount(skb);
2106	}
2107	return tso_segs;
2108}
2109
2110
2111/* Return true if the Nagle test allows this packet to be
2112 * sent now.
2113 */
2114static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2115				  unsigned int cur_mss, int nonagle)
2116{
2117	/* Nagle rule does not apply to frames, which sit in the middle of the
2118	 * write_queue (they have no chances to get new data).
2119	 *
2120	 * This is implemented in the callers, where they modify the 'nonagle'
2121	 * argument based upon the location of SKB in the send queue.
2122	 */
2123	if (nonagle & TCP_NAGLE_PUSH)
2124		return true;
2125
2126	/* Don't use the nagle rule for urgent data (or for the final FIN). */
2127	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2128		return true;
2129
2130	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2131		return true;
2132
2133	return false;
2134}
2135
2136/* Does at least the first segment of SKB fit into the send window? */
2137static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2138			     const struct sk_buff *skb,
2139			     unsigned int cur_mss)
2140{
2141	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2142
2143	if (skb->len > cur_mss)
2144		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2145
2146	return !after(end_seq, tcp_wnd_end(tp));
2147}
2148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2149/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2150 * which is put after SKB on the list.  It is very much like
2151 * tcp_fragment() except that it may make several kinds of assumptions
2152 * in order to speed up the splitting operation.  In particular, we
2153 * know that all the data is in scatter-gather pages, and that the
2154 * packet has never been sent out before (and thus is not cloned).
2155 */
2156static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2157			unsigned int mss_now, gfp_t gfp)
2158{
 
2159	int nlen = skb->len - len;
2160	struct sk_buff *buff;
2161	u8 flags;
2162
2163	/* All of a TSO frame must be composed of paged data.  */
2164	DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
 
2165
2166	buff = tcp_stream_alloc_skb(sk, gfp, true);
2167	if (unlikely(!buff))
2168		return -ENOMEM;
2169	skb_copy_decrypted(buff, skb);
2170	mptcp_skb_ext_copy(buff, skb);
2171
2172	sk_wmem_queued_add(sk, buff->truesize);
2173	sk_mem_charge(sk, buff->truesize);
2174	buff->truesize += nlen;
2175	skb->truesize -= nlen;
2176
2177	/* Correct the sequence numbers. */
2178	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2179	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2180	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2181
2182	/* PSH and FIN should only be set in the second packet. */
2183	flags = TCP_SKB_CB(skb)->tcp_flags;
2184	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2185	TCP_SKB_CB(buff)->tcp_flags = flags;
2186
2187	tcp_skb_fragment_eor(skb, buff);
 
2188
 
2189	skb_split(skb, buff, len);
2190	tcp_fragment_tstamp(skb, buff);
2191
2192	/* Fix up tso_factor for both original and new SKB.  */
2193	tcp_set_skb_tso_segs(skb, mss_now);
2194	tcp_set_skb_tso_segs(buff, mss_now);
2195
2196	/* Link BUFF into the send queue. */
2197	__skb_header_release(buff);
2198	tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2199
2200	return 0;
2201}
2202
2203/* Try to defer sending, if possible, in order to minimize the amount
2204 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
2205 *
2206 * This algorithm is from John Heffner.
2207 */
2208static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2209				 bool *is_cwnd_limited,
2210				 bool *is_rwnd_limited,
2211				 u32 max_segs)
2212{
2213	const struct inet_connection_sock *icsk = inet_csk(sk);
2214	u32 send_win, cong_win, limit, in_flight;
2215	struct tcp_sock *tp = tcp_sk(sk);
 
2216	struct sk_buff *head;
2217	int win_divisor;
2218	s64 delta;
 
 
2219
2220	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2221		goto send_now;
2222
2223	/* Avoid bursty behavior by allowing defer
2224	 * only if the last write was recent (1 ms).
2225	 * Note that tp->tcp_wstamp_ns can be in the future if we have
2226	 * packets waiting in a qdisc or device for EDT delivery.
2227	 */
2228	delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2229	if (delta > 0)
2230		goto send_now;
2231
2232	in_flight = tcp_packets_in_flight(tp);
2233
2234	BUG_ON(tcp_skb_pcount(skb) <= 1);
2235	BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2236
2237	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2238
2239	/* From in_flight test above, we know that cwnd > in_flight.  */
2240	cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2241
2242	limit = min(send_win, cong_win);
2243
2244	/* If a full-sized TSO skb can be sent, do it. */
2245	if (limit >= max_segs * tp->mss_cache)
2246		goto send_now;
2247
2248	/* Middle in queue won't get any more data, full sendable already? */
2249	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2250		goto send_now;
2251
2252	win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2253	if (win_divisor) {
2254		u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2255
2256		/* If at least some fraction of a window is available,
2257		 * just use it.
2258		 */
2259		chunk /= win_divisor;
2260		if (limit >= chunk)
2261			goto send_now;
2262	} else {
2263		/* Different approach, try not to defer past a single
2264		 * ACK.  Receiver should ACK every other full sized
2265		 * frame, so if we have space for more than 3 frames
2266		 * then send now.
2267		 */
2268		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2269			goto send_now;
2270	}
2271
2272	/* TODO : use tsorted_sent_queue ? */
2273	head = tcp_rtx_queue_head(sk);
2274	if (!head)
2275		goto send_now;
2276	delta = tp->tcp_clock_cache - head->tstamp;
2277	/* If next ACK is likely to come too late (half srtt), do not defer */
2278	if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2279		goto send_now;
2280
2281	/* Ok, it looks like it is advisable to defer.
2282	 * Three cases are tracked :
2283	 * 1) We are cwnd-limited
2284	 * 2) We are rwnd-limited
2285	 * 3) We are application limited.
2286	 */
2287	if (cong_win < send_win) {
2288		if (cong_win <= skb->len) {
2289			*is_cwnd_limited = true;
2290			return true;
2291		}
2292	} else {
2293		if (send_win <= skb->len) {
2294			*is_rwnd_limited = true;
2295			return true;
2296		}
2297	}
2298
2299	/* If this packet won't get more data, do not wait. */
2300	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2301	    TCP_SKB_CB(skb)->eor)
2302		goto send_now;
2303
2304	return true;
2305
2306send_now:
2307	return false;
2308}
2309
2310static inline void tcp_mtu_check_reprobe(struct sock *sk)
2311{
2312	struct inet_connection_sock *icsk = inet_csk(sk);
2313	struct tcp_sock *tp = tcp_sk(sk);
2314	struct net *net = sock_net(sk);
2315	u32 interval;
2316	s32 delta;
2317
2318	interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2319	delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2320	if (unlikely(delta >= interval * HZ)) {
2321		int mss = tcp_current_mss(sk);
2322
2323		/* Update current search range */
2324		icsk->icsk_mtup.probe_size = 0;
2325		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2326			sizeof(struct tcphdr) +
2327			icsk->icsk_af_ops->net_header_len;
2328		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2329
2330		/* Update probe time stamp */
2331		icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2332	}
2333}
2334
2335static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2336{
2337	struct sk_buff *skb, *next;
2338
2339	skb = tcp_send_head(sk);
2340	tcp_for_write_queue_from_safe(skb, next, sk) {
2341		if (len <= skb->len)
2342			break;
2343
2344		if (unlikely(TCP_SKB_CB(skb)->eor) ||
2345		    tcp_has_tx_tstamp(skb) ||
2346		    !skb_pure_zcopy_same(skb, next))
2347			return false;
2348
2349		len -= skb->len;
2350	}
2351
2352	return true;
2353}
2354
2355static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2356			     int probe_size)
2357{
2358	skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2359	int i, todo, len = 0, nr_frags = 0;
2360	const struct sk_buff *skb;
2361
2362	if (!sk_wmem_schedule(sk, to->truesize + probe_size))
2363		return -ENOMEM;
2364
2365	skb_queue_walk(&sk->sk_write_queue, skb) {
2366		const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2367
2368		if (skb_headlen(skb))
2369			return -EINVAL;
2370
2371		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2372			if (len >= probe_size)
2373				goto commit;
2374			todo = min_t(int, skb_frag_size(fragfrom),
2375				     probe_size - len);
2376			len += todo;
2377			if (lastfrag &&
2378			    skb_frag_page(fragfrom) == skb_frag_page(lastfrag) &&
2379			    skb_frag_off(fragfrom) == skb_frag_off(lastfrag) +
2380						      skb_frag_size(lastfrag)) {
2381				skb_frag_size_add(lastfrag, todo);
2382				continue;
2383			}
2384			if (unlikely(nr_frags == MAX_SKB_FRAGS))
2385				return -E2BIG;
2386			skb_frag_page_copy(fragto, fragfrom);
2387			skb_frag_off_copy(fragto, fragfrom);
2388			skb_frag_size_set(fragto, todo);
2389			nr_frags++;
2390			lastfrag = fragto++;
2391		}
2392	}
2393commit:
2394	WARN_ON_ONCE(len != probe_size);
2395	for (i = 0; i < nr_frags; i++)
2396		skb_frag_ref(to, i);
2397
2398	skb_shinfo(to)->nr_frags = nr_frags;
2399	to->truesize += probe_size;
2400	to->len += probe_size;
2401	to->data_len += probe_size;
2402	__skb_header_release(to);
2403	return 0;
2404}
2405
2406/* Create a new MTU probe if we are ready.
2407 * MTU probe is regularly attempting to increase the path MTU by
2408 * deliberately sending larger packets.  This discovers routing
2409 * changes resulting in larger path MTUs.
2410 *
2411 * Returns 0 if we should wait to probe (no cwnd available),
2412 *         1 if a probe was sent,
2413 *         -1 otherwise
2414 */
2415static int tcp_mtu_probe(struct sock *sk)
2416{
 
2417	struct inet_connection_sock *icsk = inet_csk(sk);
2418	struct tcp_sock *tp = tcp_sk(sk);
2419	struct sk_buff *skb, *nskb, *next;
2420	struct net *net = sock_net(sk);
 
2421	int probe_size;
2422	int size_needed;
2423	int copy, len;
2424	int mss_now;
2425	int interval;
2426
2427	/* Not currently probing/verifying,
2428	 * not in recovery,
2429	 * have enough cwnd, and
2430	 * not SACKing (the variable headers throw things off)
2431	 */
2432	if (likely(!icsk->icsk_mtup.enabled ||
2433		   icsk->icsk_mtup.probe_size ||
2434		   inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2435		   tcp_snd_cwnd(tp) < 11 ||
2436		   tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2437		return -1;
2438
2439	/* Use binary search for probe_size between tcp_mss_base,
2440	 * and current mss_clamp. if (search_high - search_low)
2441	 * smaller than a threshold, backoff from probing.
2442	 */
2443	mss_now = tcp_current_mss(sk);
2444	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2445				    icsk->icsk_mtup.search_low) >> 1);
2446	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2447	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2448	/* When misfortune happens, we are reprobing actively,
2449	 * and then reprobe timer has expired. We stick with current
2450	 * probing process by not resetting search range to its orignal.
2451	 */
2452	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2453	    interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2454		/* Check whether enough time has elaplased for
2455		 * another round of probing.
2456		 */
2457		tcp_mtu_check_reprobe(sk);
2458		return -1;
2459	}
2460
2461	/* Have enough data in the send queue to probe? */
2462	if (tp->write_seq - tp->snd_nxt < size_needed)
2463		return -1;
2464
2465	if (tp->snd_wnd < size_needed)
2466		return -1;
2467	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2468		return 0;
2469
2470	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
2471	if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2472		if (!tcp_packets_in_flight(tp))
2473			return -1;
2474		else
2475			return 0;
2476	}
2477
2478	if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2479		return -1;
2480
2481	/* We're allowed to probe.  Build it now. */
2482	nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, false);
2483	if (!nskb)
2484		return -1;
2485
2486	/* build the payload, and be prepared to abort if this fails. */
2487	if (tcp_clone_payload(sk, nskb, probe_size)) {
2488		tcp_skb_tsorted_anchor_cleanup(nskb);
2489		consume_skb(nskb);
2490		return -1;
2491	}
2492	sk_wmem_queued_add(sk, nskb->truesize);
2493	sk_mem_charge(sk, nskb->truesize);
2494
2495	skb = tcp_send_head(sk);
2496	skb_copy_decrypted(nskb, skb);
2497	mptcp_skb_ext_copy(nskb, skb);
2498
2499	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2500	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2501	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
 
 
 
2502
2503	tcp_insert_write_queue_before(nskb, skb, sk);
2504	tcp_highest_sack_replace(sk, skb, nskb);
2505
2506	len = 0;
2507	tcp_for_write_queue_from_safe(skb, next, sk) {
2508		copy = min_t(int, skb->len, probe_size - len);
 
 
 
 
 
 
2509
2510		if (skb->len <= copy) {
2511			/* We've eaten all the data from this skb.
2512			 * Throw it away. */
2513			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2514			/* If this is the last SKB we copy and eor is set
2515			 * we need to propagate it to the new skb.
2516			 */
2517			TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2518			tcp_skb_collapse_tstamp(nskb, skb);
2519			tcp_unlink_write_queue(skb, sk);
2520			tcp_wmem_free_skb(sk, skb);
2521		} else {
2522			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2523						   ~(TCPHDR_FIN|TCPHDR_PSH);
2524			__pskb_trim_head(skb, copy);
2525			tcp_set_skb_tso_segs(skb, mss_now);
 
 
 
 
 
 
 
2526			TCP_SKB_CB(skb)->seq += copy;
2527		}
2528
2529		len += copy;
2530
2531		if (len >= probe_size)
2532			break;
2533	}
2534	tcp_init_tso_segs(nskb, nskb->len);
2535
2536	/* We're ready to send.  If this fails, the probe will
2537	 * be resegmented into mss-sized pieces by tcp_write_xmit().
2538	 */
2539	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2540		/* Decrement cwnd here because we are sending
2541		 * effectively two packets. */
2542		tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2543		tcp_event_new_data_sent(sk, nskb);
2544
2545		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2546		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2547		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2548
2549		return 1;
2550	}
2551
2552	return -1;
2553}
2554
2555static bool tcp_pacing_check(struct sock *sk)
2556{
2557	struct tcp_sock *tp = tcp_sk(sk);
2558
2559	if (!tcp_needs_internal_pacing(sk))
2560		return false;
2561
2562	if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2563		return false;
2564
2565	if (!hrtimer_is_queued(&tp->pacing_timer)) {
2566		hrtimer_start(&tp->pacing_timer,
2567			      ns_to_ktime(tp->tcp_wstamp_ns),
2568			      HRTIMER_MODE_ABS_PINNED_SOFT);
2569		sock_hold(sk);
2570	}
2571	return true;
2572}
2573
2574static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2575{
2576	const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2577
2578	/* No skb in the rtx queue. */
2579	if (!node)
2580		return true;
2581
2582	/* Only one skb in rtx queue. */
2583	return !node->rb_left && !node->rb_right;
2584}
2585
2586/* TCP Small Queues :
2587 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2588 * (These limits are doubled for retransmits)
2589 * This allows for :
2590 *  - better RTT estimation and ACK scheduling
2591 *  - faster recovery
2592 *  - high rates
2593 * Alas, some drivers / subsystems require a fair amount
2594 * of queued bytes to ensure line rate.
2595 * One example is wifi aggregation (802.11 AMPDU)
2596 */
2597static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2598				  unsigned int factor)
2599{
2600	unsigned long limit;
2601
2602	limit = max_t(unsigned long,
2603		      2 * skb->truesize,
2604		      READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2605	if (sk->sk_pacing_status == SK_PACING_NONE)
2606		limit = min_t(unsigned long, limit,
2607			      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2608	limit <<= factor;
2609
2610	if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2611	    tcp_sk(sk)->tcp_tx_delay) {
2612		u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2613				  tcp_sk(sk)->tcp_tx_delay;
2614
2615		/* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2616		 * approximate our needs assuming an ~100% skb->truesize overhead.
2617		 * USEC_PER_SEC is approximated by 2^20.
2618		 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2619		 */
2620		extra_bytes >>= (20 - 1);
2621		limit += extra_bytes;
2622	}
2623	if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2624		/* Always send skb if rtx queue is empty or has one skb.
2625		 * No need to wait for TX completion to call us back,
2626		 * after softirq/tasklet schedule.
2627		 * This helps when TX completions are delayed too much.
2628		 */
2629		if (tcp_rtx_queue_empty_or_single_skb(sk))
2630			return false;
2631
2632		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2633		/* It is possible TX completion already happened
2634		 * before we set TSQ_THROTTLED, so we must
2635		 * test again the condition.
2636		 */
2637		smp_mb__after_atomic();
2638		if (refcount_read(&sk->sk_wmem_alloc) > limit)
2639			return true;
2640	}
2641	return false;
2642}
2643
2644static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2645{
2646	const u32 now = tcp_jiffies32;
2647	enum tcp_chrono old = tp->chrono_type;
2648
2649	if (old > TCP_CHRONO_UNSPEC)
2650		tp->chrono_stat[old - 1] += now - tp->chrono_start;
2651	tp->chrono_start = now;
2652	tp->chrono_type = new;
2653}
2654
2655void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2656{
2657	struct tcp_sock *tp = tcp_sk(sk);
2658
2659	/* If there are multiple conditions worthy of tracking in a
2660	 * chronograph then the highest priority enum takes precedence
2661	 * over the other conditions. So that if something "more interesting"
2662	 * starts happening, stop the previous chrono and start a new one.
2663	 */
2664	if (type > tp->chrono_type)
2665		tcp_chrono_set(tp, type);
2666}
2667
2668void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2669{
2670	struct tcp_sock *tp = tcp_sk(sk);
2671
2672
2673	/* There are multiple conditions worthy of tracking in a
2674	 * chronograph, so that the highest priority enum takes
2675	 * precedence over the other conditions (see tcp_chrono_start).
2676	 * If a condition stops, we only stop chrono tracking if
2677	 * it's the "most interesting" or current chrono we are
2678	 * tracking and starts busy chrono if we have pending data.
2679	 */
2680	if (tcp_rtx_and_write_queues_empty(sk))
2681		tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2682	else if (type == tp->chrono_type)
2683		tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2684}
2685
2686/* This routine writes packets to the network.  It advances the
2687 * send_head.  This happens as incoming acks open up the remote
2688 * window for us.
2689 *
2690 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2691 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2692 * account rare use of URG, this is not a big flaw.
2693 *
2694 * Send at most one packet when push_one > 0. Temporarily ignore
2695 * cwnd limit to force at most one packet out when push_one == 2.
2696
2697 * Returns true, if no segments are in flight and we have queued segments,
2698 * but cannot send anything now because of SWS or another problem.
2699 */
2700static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2701			   int push_one, gfp_t gfp)
2702{
2703	struct tcp_sock *tp = tcp_sk(sk);
2704	struct sk_buff *skb;
2705	unsigned int tso_segs, sent_pkts;
2706	int cwnd_quota;
2707	int result;
2708	bool is_cwnd_limited = false, is_rwnd_limited = false;
2709	u32 max_segs;
2710
2711	sent_pkts = 0;
2712
2713	tcp_mstamp_refresh(tp);
2714	if (!push_one) {
2715		/* Do MTU probing. */
2716		result = tcp_mtu_probe(sk);
2717		if (!result) {
2718			return false;
2719		} else if (result > 0) {
2720			sent_pkts = 1;
2721		}
2722	}
2723
2724	max_segs = tcp_tso_segs(sk, mss_now);
2725	while ((skb = tcp_send_head(sk))) {
2726		unsigned int limit;
2727
 
 
 
2728		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2729			/* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2730			tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2731			skb_set_delivery_time(skb, tp->tcp_wstamp_ns, true);
2732			list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2733			tcp_init_tso_segs(skb, mss_now);
2734			goto repair; /* Skip network transmission */
2735		}
2736
2737		if (tcp_pacing_check(sk))
2738			break;
2739
2740		tso_segs = tcp_init_tso_segs(skb, mss_now);
2741		BUG_ON(!tso_segs);
2742
2743		cwnd_quota = tcp_cwnd_test(tp, skb);
2744		if (!cwnd_quota) {
2745			if (push_one == 2)
2746				/* Force out a loss probe pkt. */
2747				cwnd_quota = 1;
2748			else
2749				break;
2750		}
2751
2752		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2753			is_rwnd_limited = true;
2754			break;
2755		}
2756
2757		if (tso_segs == 1) {
2758			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2759						     (tcp_skb_is_last(sk, skb) ?
2760						      nonagle : TCP_NAGLE_PUSH))))
2761				break;
2762		} else {
2763			if (!push_one &&
2764			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2765						 &is_rwnd_limited, max_segs))
2766				break;
2767		}
2768
2769		limit = mss_now;
2770		if (tso_segs > 1 && !tcp_urg_mode(tp))
2771			limit = tcp_mss_split_point(sk, skb, mss_now,
2772						    min_t(unsigned int,
2773							  cwnd_quota,
2774							  max_segs),
2775						    nonagle);
2776
2777		if (skb->len > limit &&
2778		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2779			break;
2780
2781		if (tcp_small_queue_check(sk, skb, 0))
2782			break;
2783
2784		/* Argh, we hit an empty skb(), presumably a thread
2785		 * is sleeping in sendmsg()/sk_stream_wait_memory().
2786		 * We do not want to send a pure-ack packet and have
2787		 * a strange looking rtx queue with empty packet(s).
2788		 */
2789		if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2790			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
2791
2792		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2793			break;
2794
2795repair:
2796		/* Advance the send_head.  This one is sent out.
2797		 * This call will increment packets_out.
2798		 */
2799		tcp_event_new_data_sent(sk, skb);
2800
2801		tcp_minshall_update(tp, mss_now, skb);
2802		sent_pkts += tcp_skb_pcount(skb);
2803
2804		if (push_one)
2805			break;
2806	}
2807
2808	if (is_rwnd_limited)
2809		tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2810	else
2811		tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2812
2813	is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2814	if (likely(sent_pkts || is_cwnd_limited))
2815		tcp_cwnd_validate(sk, is_cwnd_limited);
2816
2817	if (likely(sent_pkts)) {
2818		if (tcp_in_cwnd_reduction(sk))
2819			tp->prr_out += sent_pkts;
2820
2821		/* Send one loss probe per tail loss episode. */
2822		if (push_one != 2)
2823			tcp_schedule_loss_probe(sk, false);
 
 
2824		return false;
2825	}
2826	return !tp->packets_out && !tcp_write_queue_empty(sk);
2827}
2828
2829bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2830{
2831	struct inet_connection_sock *icsk = inet_csk(sk);
2832	struct tcp_sock *tp = tcp_sk(sk);
2833	u32 timeout, timeout_us, rto_delta_us;
2834	int early_retrans;
2835
 
 
 
 
 
 
 
2836	/* Don't do any loss probe on a Fast Open connection before 3WHS
2837	 * finishes.
2838	 */
2839	if (rcu_access_pointer(tp->fastopen_rsk))
 
 
 
 
2840		return false;
2841
2842	early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2843	/* Schedule a loss probe in 2*RTT for SACK capable connections
2844	 * not in loss recovery, that are either limited by cwnd or application.
2845	 */
2846	if ((early_retrans != 3 && early_retrans != 4) ||
2847	    !tp->packets_out || !tcp_is_sack(tp) ||
2848	    (icsk->icsk_ca_state != TCP_CA_Open &&
2849	     icsk->icsk_ca_state != TCP_CA_CWR))
2850		return false;
2851
2852	/* Probe timeout is 2*rtt. Add minimum RTO to account
 
 
 
 
2853	 * for delayed ack when there's one outstanding packet. If no RTT
2854	 * sample is available then probe after TCP_TIMEOUT_INIT.
2855	 */
2856	if (tp->srtt_us) {
2857		timeout_us = tp->srtt_us >> 2;
2858		if (tp->packets_out == 1)
2859			timeout_us += tcp_rto_min_us(sk);
2860		else
2861			timeout_us += TCP_TIMEOUT_MIN_US;
2862		timeout = usecs_to_jiffies(timeout_us);
2863	} else {
2864		timeout = TCP_TIMEOUT_INIT;
 
 
 
 
2865	}
2866
2867	/* If the RTO formula yields an earlier time, then use that time. */
2868	rto_delta_us = advancing_rto ?
2869			jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2870			tcp_rto_delta_us(sk);  /* How far in future is RTO? */
2871	if (rto_delta_us > 0)
2872		timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2873
2874	tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2875	return true;
2876}
2877
2878/* Thanks to skb fast clones, we can detect if a prior transmit of
2879 * a packet is still in a qdisc or driver queue.
2880 * In this case, there is very little point doing a retransmit !
 
2881 */
2882static bool skb_still_in_host_queue(struct sock *sk,
2883				    const struct sk_buff *skb)
2884{
2885	if (unlikely(skb_fclone_busy(sk, skb))) {
2886		set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2887		smp_mb__after_atomic();
2888		if (skb_fclone_busy(sk, skb)) {
2889			NET_INC_STATS(sock_net(sk),
2890				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2891			return true;
2892		}
2893	}
2894	return false;
2895}
2896
2897/* When probe timeout (PTO) fires, try send a new segment if possible, else
2898 * retransmit the last segment.
2899 */
2900void tcp_send_loss_probe(struct sock *sk)
2901{
2902	struct tcp_sock *tp = tcp_sk(sk);
2903	struct sk_buff *skb;
2904	int pcount;
2905	int mss = tcp_current_mss(sk);
2906
2907	/* At most one outstanding TLP */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2908	if (tp->tlp_high_seq)
2909		goto rearm_timer;
2910
2911	tp->tlp_retrans = 0;
2912	skb = tcp_send_head(sk);
2913	if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2914		pcount = tp->packets_out;
2915		tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2916		if (tp->packets_out > pcount)
2917			goto probe_sent;
2918		goto rearm_timer;
2919	}
2920	skb = skb_rb_last(&sk->tcp_rtx_queue);
2921	if (unlikely(!skb)) {
2922		WARN_ONCE(tp->packets_out,
2923			  "invalid inflight: %u state %u cwnd %u mss %d\n",
2924			  tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2925		inet_csk(sk)->icsk_pending = 0;
2926		return;
2927	}
2928
2929	if (skb_still_in_host_queue(sk, skb))
2930		goto rearm_timer;
2931
2932	pcount = tcp_skb_pcount(skb);
2933	if (WARN_ON(!pcount))
2934		goto rearm_timer;
2935
2936	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2937		if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2938					  (pcount - 1) * mss, mss,
2939					  GFP_ATOMIC)))
2940			goto rearm_timer;
2941		skb = skb_rb_next(skb);
2942	}
2943
2944	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2945		goto rearm_timer;
2946
2947	if (__tcp_retransmit_skb(sk, skb, 1))
2948		goto rearm_timer;
2949
2950	tp->tlp_retrans = 1;
2951
2952probe_sent:
2953	/* Record snd_nxt for loss detection. */
2954	tp->tlp_high_seq = tp->snd_nxt;
2955
2956	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
 
2957	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2958	inet_csk(sk)->icsk_pending = 0;
2959rearm_timer:
2960	tcp_rearm_rto(sk);
2961}
2962
2963/* Push out any pending frames which were held back due to
2964 * TCP_CORK or attempt at coalescing tiny packets.
2965 * The socket must be locked by the caller.
2966 */
2967void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2968			       int nonagle)
2969{
2970	/* If we are closed, the bytes will have to remain here.
2971	 * In time closedown will finish, we empty the write queue and
2972	 * all will be happy.
2973	 */
2974	if (unlikely(sk->sk_state == TCP_CLOSE))
2975		return;
2976
2977	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2978			   sk_gfp_mask(sk, GFP_ATOMIC)))
2979		tcp_check_probe_timer(sk);
2980}
2981
2982/* Send _single_ skb sitting at the send head. This function requires
2983 * true push pending frames to setup probe timer etc.
2984 */
2985void tcp_push_one(struct sock *sk, unsigned int mss_now)
2986{
2987	struct sk_buff *skb = tcp_send_head(sk);
2988
2989	BUG_ON(!skb || skb->len < mss_now);
2990
2991	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2992}
2993
2994/* This function returns the amount that we can raise the
2995 * usable window based on the following constraints
2996 *
2997 * 1. The window can never be shrunk once it is offered (RFC 793)
2998 * 2. We limit memory per socket
2999 *
3000 * RFC 1122:
3001 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
3002 *  RECV.NEXT + RCV.WIN fixed until:
3003 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
3004 *
3005 * i.e. don't raise the right edge of the window until you can raise
3006 * it at least MSS bytes.
3007 *
3008 * Unfortunately, the recommended algorithm breaks header prediction,
3009 * since header prediction assumes th->window stays fixed.
3010 *
3011 * Strictly speaking, keeping th->window fixed violates the receiver
3012 * side SWS prevention criteria. The problem is that under this rule
3013 * a stream of single byte packets will cause the right side of the
3014 * window to always advance by a single byte.
3015 *
3016 * Of course, if the sender implements sender side SWS prevention
3017 * then this will not be a problem.
3018 *
3019 * BSD seems to make the following compromise:
3020 *
3021 *	If the free space is less than the 1/4 of the maximum
3022 *	space available and the free space is less than 1/2 mss,
3023 *	then set the window to 0.
3024 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3025 *	Otherwise, just prevent the window from shrinking
3026 *	and from being larger than the largest representable value.
3027 *
3028 * This prevents incremental opening of the window in the regime
3029 * where TCP is limited by the speed of the reader side taking
3030 * data out of the TCP receive queue. It does nothing about
3031 * those cases where the window is constrained on the sender side
3032 * because the pipeline is full.
3033 *
3034 * BSD also seems to "accidentally" limit itself to windows that are a
3035 * multiple of MSS, at least until the free space gets quite small.
3036 * This would appear to be a side effect of the mbuf implementation.
3037 * Combining these two algorithms results in the observed behavior
3038 * of having a fixed window size at almost all times.
3039 *
3040 * Below we obtain similar behavior by forcing the offered window to
3041 * a multiple of the mss when it is feasible to do so.
3042 *
3043 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3044 * Regular options like TIMESTAMP are taken into account.
3045 */
3046u32 __tcp_select_window(struct sock *sk)
3047{
3048	struct inet_connection_sock *icsk = inet_csk(sk);
3049	struct tcp_sock *tp = tcp_sk(sk);
3050	struct net *net = sock_net(sk);
3051	/* MSS for the peer's data.  Previous versions used mss_clamp
3052	 * here.  I don't know if the value based on our guesses
3053	 * of peer's MSS is better for the performance.  It's more correct
3054	 * but may be worse for the performance because of rcv_mss
3055	 * fluctuations.  --SAW  1998/11/1
3056	 */
3057	int mss = icsk->icsk_ack.rcv_mss;
3058	int free_space = tcp_space(sk);
3059	int allowed_space = tcp_full_space(sk);
3060	int full_space, window;
 
3061
3062	if (sk_is_mptcp(sk))
3063		mptcp_space(sk, &free_space, &allowed_space);
3064
3065	full_space = min_t(int, tp->window_clamp, allowed_space);
3066
3067	if (unlikely(mss > full_space)) {
3068		mss = full_space;
3069		if (mss <= 0)
3070			return 0;
3071	}
3072
3073	/* Only allow window shrink if the sysctl is enabled and we have
3074	 * a non-zero scaling factor in effect.
3075	 */
3076	if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3077		goto shrink_window_allowed;
3078
3079	/* do not allow window to shrink */
3080
3081	if (free_space < (full_space >> 1)) {
3082		icsk->icsk_ack.quick = 0;
3083
3084		if (tcp_under_memory_pressure(sk))
3085			tcp_adjust_rcv_ssthresh(sk);
 
3086
3087		/* free_space might become our new window, make sure we don't
3088		 * increase it due to wscale.
3089		 */
3090		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3091
3092		/* if free space is less than mss estimate, or is below 1/16th
3093		 * of the maximum allowed, try to move to zero-window, else
3094		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3095		 * new incoming data is dropped due to memory limits.
3096		 * With large window, mss test triggers way too late in order
3097		 * to announce zero window in time before rmem limit kicks in.
3098		 */
3099		if (free_space < (allowed_space >> 4) || free_space < mss)
3100			return 0;
3101	}
3102
3103	if (free_space > tp->rcv_ssthresh)
3104		free_space = tp->rcv_ssthresh;
3105
3106	/* Don't do rounding if we are using window scaling, since the
3107	 * scaled window will not line up with the MSS boundary anyway.
3108	 */
 
3109	if (tp->rx_opt.rcv_wscale) {
3110		window = free_space;
3111
3112		/* Advertise enough space so that it won't get scaled away.
3113		 * Import case: prevent zero window announcement if
3114		 * 1<<rcv_wscale > mss.
3115		 */
3116		window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
 
 
3117	} else {
3118		window = tp->rcv_wnd;
3119		/* Get the largest window that is a nice multiple of mss.
3120		 * Window clamp already applied above.
3121		 * If our current window offering is within 1 mss of the
3122		 * free space we just keep it. This prevents the divide
3123		 * and multiply from happening most of the time.
3124		 * We also don't do any window rounding when the free space
3125		 * is too small.
3126		 */
3127		if (window <= free_space - mss || window > free_space)
3128			window = rounddown(free_space, mss);
3129		else if (mss == full_space &&
3130			 free_space > window + (full_space >> 1))
3131			window = free_space;
3132	}
3133
3134	return window;
3135
3136shrink_window_allowed:
3137	/* new window should always be an exact multiple of scaling factor */
3138	free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3139
3140	if (free_space < (full_space >> 1)) {
3141		icsk->icsk_ack.quick = 0;
3142
3143		if (tcp_under_memory_pressure(sk))
3144			tcp_adjust_rcv_ssthresh(sk);
3145
3146		/* if free space is too low, return a zero window */
3147		if (free_space < (allowed_space >> 4) || free_space < mss ||
3148			free_space < (1 << tp->rx_opt.rcv_wscale))
3149			return 0;
3150	}
3151
3152	if (free_space > tp->rcv_ssthresh) {
3153		free_space = tp->rcv_ssthresh;
3154		/* new window should always be an exact multiple of scaling factor
3155		 *
3156		 * For this case, we ALIGN "up" (increase free_space) because
3157		 * we know free_space is not zero here, it has been reduced from
3158		 * the memory-based limit, and rcv_ssthresh is not a hard limit
3159		 * (unlike sk_rcvbuf).
3160		 */
3161		free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3162	}
3163
3164	return free_space;
3165}
3166
3167void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3168			     const struct sk_buff *next_skb)
3169{
3170	if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3171		const struct skb_shared_info *next_shinfo =
3172			skb_shinfo(next_skb);
 
3173		struct skb_shared_info *shinfo = skb_shinfo(skb);
3174
3175		shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3176		shinfo->tskey = next_shinfo->tskey;
3177		TCP_SKB_CB(skb)->txstamp_ack |=
3178			TCP_SKB_CB(next_skb)->txstamp_ack;
3179	}
3180}
3181
3182/* Collapses two adjacent SKB's during retransmission. */
3183static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3184{
3185	struct tcp_sock *tp = tcp_sk(sk);
3186	struct sk_buff *next_skb = skb_rb_next(skb);
3187	int next_skb_size;
3188
 
3189	next_skb_size = next_skb->len;
3190
3191	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3192
3193	if (next_skb_size && !tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3194		return false;
 
 
 
 
 
 
 
3195
3196	tcp_highest_sack_replace(sk, next_skb, skb);
 
3197
3198	/* Update sequence range on original skb. */
3199	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3200
3201	/* Merge over control information. This moves PSH/FIN etc. over */
3202	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3203
3204	/* All done, get rid of second SKB and account for it so
3205	 * packet counting does not break.
3206	 */
3207	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3208	TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3209
3210	/* changed transmit queue under us so clear hints */
3211	tcp_clear_retrans_hints_partial(tp);
3212	if (next_skb == tp->retransmit_skb_hint)
3213		tp->retransmit_skb_hint = skb;
3214
3215	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3216
3217	tcp_skb_collapse_tstamp(skb, next_skb);
3218
3219	tcp_rtx_queue_unlink_and_free(next_skb, sk);
3220	return true;
3221}
3222
3223/* Check if coalescing SKBs is legal. */
3224static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3225{
3226	if (tcp_skb_pcount(skb) > 1)
3227		return false;
 
 
 
3228	if (skb_cloned(skb))
3229		return false;
3230	/* Some heuristics for collapsing over SACK'd could be invented */
 
 
3231	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3232		return false;
3233
3234	return true;
3235}
3236
3237/* Collapse packets in the retransmit queue to make to create
3238 * less packets on the wire. This is only done on retransmission.
3239 */
3240static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3241				     int space)
3242{
3243	struct tcp_sock *tp = tcp_sk(sk);
3244	struct sk_buff *skb = to, *tmp;
3245	bool first = true;
3246
3247	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3248		return;
3249	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3250		return;
3251
3252	skb_rbtree_walk_from_safe(skb, tmp) {
3253		if (!tcp_can_collapse(sk, skb))
3254			break;
3255
3256		if (!tcp_skb_can_collapse(to, skb))
3257			break;
3258
3259		space -= skb->len;
3260
3261		if (first) {
3262			first = false;
3263			continue;
3264		}
3265
3266		if (space < 0)
3267			break;
 
 
 
 
 
3268
3269		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3270			break;
3271
3272		if (!tcp_collapse_retrans(sk, to))
3273			break;
3274	}
3275}
3276
3277/* This retransmits one SKB.  Policy decisions and retransmit queue
3278 * state updates are done by the caller.  Returns non-zero if an
3279 * error occurred which prevented the send.
3280 */
3281int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3282{
 
3283	struct inet_connection_sock *icsk = inet_csk(sk);
3284	struct tcp_sock *tp = tcp_sk(sk);
3285	unsigned int cur_mss;
3286	int diff, len, err;
3287	int avail_wnd;
3288
3289	/* Inconclusive MTU probe */
3290	if (icsk->icsk_mtup.probe_size)
3291		icsk->icsk_mtup.probe_size = 0;
 
 
 
 
 
 
 
 
3292
3293	if (skb_still_in_host_queue(sk, skb))
3294		return -EBUSY;
3295
3296start:
3297	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3298		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3299			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3300			TCP_SKB_CB(skb)->seq++;
3301			goto start;
3302		}
3303		if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3304			WARN_ON_ONCE(1);
3305			return -EINVAL;
3306		}
3307		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3308			return -ENOMEM;
3309	}
3310
3311	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3312		return -EHOSTUNREACH; /* Routing failure or similar. */
3313
3314	cur_mss = tcp_current_mss(sk);
3315	avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3316
3317	/* If receiver has shrunk his window, and skb is out of
3318	 * new window, do not retransmit it. The exception is the
3319	 * case, when window is shrunk to zero. In this case
3320	 * our retransmit of one segment serves as a zero window probe.
3321	 */
3322	if (avail_wnd <= 0) {
3323		if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3324			return -EAGAIN;
3325		avail_wnd = cur_mss;
3326	}
3327
3328	len = cur_mss * segs;
3329	if (len > avail_wnd) {
3330		len = rounddown(avail_wnd, cur_mss);
3331		if (!len)
3332			len = avail_wnd;
3333	}
3334	if (skb->len > len) {
3335		if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3336				 cur_mss, GFP_ATOMIC))
3337			return -ENOMEM; /* We'll try again later. */
3338	} else {
3339		if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3340			return -ENOMEM;
3341
3342		diff = tcp_skb_pcount(skb);
3343		tcp_set_skb_tso_segs(skb, cur_mss);
3344		diff -= tcp_skb_pcount(skb);
3345		if (diff)
3346			tcp_adjust_pcount(sk, skb, diff);
3347		avail_wnd = min_t(int, avail_wnd, cur_mss);
3348		if (skb->len < avail_wnd)
3349			tcp_retrans_try_collapse(sk, skb, avail_wnd);
3350	}
3351
3352	/* RFC3168, section 6.1.1.1. ECN fallback */
3353	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3354		tcp_ecn_clear_syn(sk, skb);
3355
3356	/* Update global and local TCP statistics. */
3357	segs = tcp_skb_pcount(skb);
3358	TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3359	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3360		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3361	tp->total_retrans += segs;
3362	tp->bytes_retrans += skb->len;
3363
3364	/* make sure skb->data is aligned on arches that require it
3365	 * and check if ack-trimming & collapsing extended the headroom
3366	 * beyond what csum_start can cover.
3367	 */
3368	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3369		     skb_headroom(skb) >= 0xFFFF)) {
3370		struct sk_buff *nskb;
3371
3372		tcp_skb_tsorted_save(skb) {
3373			nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3374			if (nskb) {
3375				nskb->dev = NULL;
3376				err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3377			} else {
3378				err = -ENOBUFS;
3379			}
3380		} tcp_skb_tsorted_restore(skb);
3381
3382		if (!err) {
3383			tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3384			tcp_rate_skb_sent(sk, skb);
3385		}
3386	} else {
3387		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3388	}
3389
3390	/* To avoid taking spuriously low RTT samples based on a timestamp
3391	 * for a transmit that never happened, always mark EVER_RETRANS
3392	 */
3393	TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3394
3395	if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3396		tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3397				  TCP_SKB_CB(skb)->seq, segs, err);
3398
3399	if (likely(!err)) {
3400		trace_tcp_retransmit_skb(sk, skb);
3401	} else if (err != -EBUSY) {
3402		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
 
 
 
3403	}
3404	return err;
3405}
3406
3407int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3408{
3409	struct tcp_sock *tp = tcp_sk(sk);
3410	int err = __tcp_retransmit_skb(sk, skb, segs);
3411
3412	if (err == 0) {
3413#if FASTRETRANS_DEBUG > 0
3414		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3415			net_dbg_ratelimited("retrans_out leaked\n");
3416		}
3417#endif
3418		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3419		tp->retrans_out += tcp_skb_pcount(skb);
 
 
 
 
 
 
 
3420	}
3421
3422	/* Save stamp of the first (attempted) retransmit. */
3423	if (!tp->retrans_stamp)
3424		tp->retrans_stamp = tcp_skb_timestamp_ts(tp->tcp_usec_ts, skb);
3425
3426	if (tp->undo_retrans < 0)
3427		tp->undo_retrans = 0;
3428	tp->undo_retrans += tcp_skb_pcount(skb);
3429	return err;
3430}
3431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3432/* This gets called after a retransmit timeout, and the initially
3433 * retransmitted data is acknowledged.  It tries to continue
3434 * resending the rest of the retransmit queue, until either
3435 * we've sent it all or the congestion window limit is reached.
 
 
 
3436 */
3437void tcp_xmit_retransmit_queue(struct sock *sk)
3438{
3439	const struct inet_connection_sock *icsk = inet_csk(sk);
3440	struct sk_buff *skb, *rtx_head, *hole = NULL;
3441	struct tcp_sock *tp = tcp_sk(sk);
3442	bool rearm_timer = false;
3443	u32 max_segs;
 
3444	int mib_idx;
 
3445
3446	if (!tp->packets_out)
3447		return;
3448
3449	rtx_head = tcp_rtx_queue_head(sk);
3450	skb = tp->retransmit_skb_hint ?: rtx_head;
3451	max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3452	skb_rbtree_walk_from(skb) {
3453		__u8 sacked;
3454		int segs;
3455
3456		if (tcp_pacing_check(sk))
 
 
 
 
 
 
 
 
 
 
 
 
 
3457			break;
3458
3459		/* we could do better than to assign each time */
3460		if (!hole)
3461			tp->retransmit_skb_hint = skb;
3462
3463		segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3464		if (segs <= 0)
3465			break;
3466		sacked = TCP_SKB_CB(skb)->sacked;
3467		/* In case tcp_shift_skb_data() have aggregated large skbs,
3468		 * we need to make sure not sending too bigs TSO packets
3469		 */
3470		segs = min_t(int, segs, max_segs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3471
3472		if (tp->retrans_out >= tp->lost_out) {
3473			break;
3474		} else if (!(sacked & TCPCB_LOST)) {
3475			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3476				hole = skb;
3477			continue;
3478
3479		} else {
 
3480			if (icsk->icsk_ca_state != TCP_CA_Loss)
3481				mib_idx = LINUX_MIB_TCPFASTRETRANS;
3482			else
3483				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3484		}
3485
3486		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3487			continue;
3488
3489		if (tcp_small_queue_check(sk, skb, 1))
3490			break;
3491
3492		if (tcp_retransmit_skb(sk, skb, segs))
3493			break;
3494
3495		NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3496
3497		if (tcp_in_cwnd_reduction(sk))
3498			tp->prr_out += tcp_skb_pcount(skb);
3499
3500		if (skb == rtx_head &&
3501		    icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3502			rearm_timer = true;
3503
3504	}
3505	if (rearm_timer)
3506		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3507				     inet_csk(sk)->icsk_rto,
3508				     TCP_RTO_MAX);
3509}
3510
3511/* We allow to exceed memory limits for FIN packets to expedite
3512 * connection tear down and (memory) recovery.
3513 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3514 * or even be forced to close flow without any FIN.
3515 * In general, we want to allow one skb per socket to avoid hangs
3516 * with edge trigger epoll()
3517 */
3518void sk_forced_mem_schedule(struct sock *sk, int size)
3519{
3520	int delta, amt;
3521
3522	delta = size - sk->sk_forward_alloc;
3523	if (delta <= 0)
3524		return;
3525	amt = sk_mem_pages(delta);
3526	sk_forward_alloc_add(sk, amt << PAGE_SHIFT);
3527	sk_memory_allocated_add(sk, amt);
3528
3529	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3530		mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3531					gfp_memcg_charge() | __GFP_NOFAIL);
3532}
3533
3534/* Send a FIN. The caller locks the socket for us.
3535 * We should try to send a FIN packet really hard, but eventually give up.
3536 */
3537void tcp_send_fin(struct sock *sk)
3538{
3539	struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3540	struct tcp_sock *tp = tcp_sk(sk);
3541
3542	/* Optimization, tack on the FIN if we have one skb in write queue and
3543	 * this skb was not yet sent, or we are under memory pressure.
3544	 * Note: in the latter case, FIN packet will be sent after a timeout,
3545	 * as TCP stack thinks it has already been transmitted.
3546	 */
3547	tskb = tail;
3548	if (!tskb && tcp_under_memory_pressure(sk))
3549		tskb = skb_rb_last(&sk->tcp_rtx_queue);
3550
3551	if (tskb) {
3552		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3553		TCP_SKB_CB(tskb)->end_seq++;
3554		tp->write_seq++;
3555		if (!tail) {
3556			/* This means tskb was already sent.
3557			 * Pretend we included the FIN on previous transmit.
3558			 * We need to set tp->snd_nxt to the value it would have
3559			 * if FIN had been sent. This is because retransmit path
3560			 * does not change tp->snd_nxt.
3561			 */
3562			WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3563			return;
3564		}
3565	} else {
3566		skb = alloc_skb_fclone(MAX_TCP_HEADER,
3567				       sk_gfp_mask(sk, GFP_ATOMIC |
3568						       __GFP_NOWARN));
3569		if (unlikely(!skb))
3570			return;
3571
3572		INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3573		skb_reserve(skb, MAX_TCP_HEADER);
3574		sk_forced_mem_schedule(sk, skb->truesize);
3575		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3576		tcp_init_nondata_skb(skb, tp->write_seq,
3577				     TCPHDR_ACK | TCPHDR_FIN);
3578		tcp_queue_skb(sk, skb);
3579	}
3580	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3581}
3582
3583/* We get here when a process closes a file descriptor (either due to
3584 * an explicit close() or as a byproduct of exit()'ing) and there
3585 * was unread data in the receive queue.  This behavior is recommended
3586 * by RFC 2525, section 2.17.  -DaveM
3587 */
3588void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3589{
3590	struct sk_buff *skb;
3591
3592	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3593
3594	/* NOTE: No TCP options attached and we never retransmit this. */
3595	skb = alloc_skb(MAX_TCP_HEADER, priority);
3596	if (!skb) {
3597		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3598		return;
3599	}
3600
3601	/* Reserve space for headers and prepare control bits. */
3602	skb_reserve(skb, MAX_TCP_HEADER);
3603	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3604			     TCPHDR_ACK | TCPHDR_RST);
3605	tcp_mstamp_refresh(tcp_sk(sk));
3606	/* Send it off. */
3607	if (tcp_transmit_skb(sk, skb, 0, priority))
3608		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3609
3610	/* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3611	 * skb here is different to the troublesome skb, so use NULL
3612	 */
3613	trace_tcp_send_reset(sk, NULL);
3614}
3615
3616/* Send a crossed SYN-ACK during socket establishment.
3617 * WARNING: This routine must only be called when we have already sent
3618 * a SYN packet that crossed the incoming SYN that caused this routine
3619 * to get called. If this assumption fails then the initial rcv_wnd
3620 * and rcv_wscale values will not be correct.
3621 */
3622int tcp_send_synack(struct sock *sk)
3623{
3624	struct sk_buff *skb;
3625
3626	skb = tcp_rtx_queue_head(sk);
3627	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3628		pr_err("%s: wrong queue state\n", __func__);
3629		return -EFAULT;
3630	}
3631	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3632		if (skb_cloned(skb)) {
3633			struct sk_buff *nskb;
3634
3635			tcp_skb_tsorted_save(skb) {
3636				nskb = skb_copy(skb, GFP_ATOMIC);
3637			} tcp_skb_tsorted_restore(skb);
3638			if (!nskb)
3639				return -ENOMEM;
3640			INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3641			tcp_highest_sack_replace(sk, skb, nskb);
3642			tcp_rtx_queue_unlink_and_free(skb, sk);
3643			__skb_header_release(nskb);
3644			tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3645			sk_wmem_queued_add(sk, nskb->truesize);
 
3646			sk_mem_charge(sk, nskb->truesize);
3647			skb = nskb;
3648		}
3649
3650		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3651		tcp_ecn_send_synack(sk, skb);
3652	}
3653	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3654}
3655
3656/**
3657 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3658 * @sk: listener socket
3659 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3660 *       should not use it again.
3661 * @req: request_sock pointer
3662 * @foc: cookie for tcp fast open
3663 * @synack_type: Type of synack to prepare
3664 * @syn_skb: SYN packet just received.  It could be NULL for rtx case.
3665 */
3666struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3667				struct request_sock *req,
3668				struct tcp_fastopen_cookie *foc,
3669				enum tcp_synack_type synack_type,
3670				struct sk_buff *syn_skb)
3671{
3672	struct inet_request_sock *ireq = inet_rsk(req);
3673	const struct tcp_sock *tp = tcp_sk(sk);
 
3674	struct tcp_out_options opts;
3675	struct tcp_key key = {};
3676	struct sk_buff *skb;
3677	int tcp_header_size;
3678	struct tcphdr *th;
 
3679	int mss;
3680	u64 now;
3681
3682	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3683	if (unlikely(!skb)) {
3684		dst_release(dst);
3685		return NULL;
3686	}
3687	/* Reserve space for headers. */
3688	skb_reserve(skb, MAX_TCP_HEADER);
3689
3690	switch (synack_type) {
3691	case TCP_SYNACK_NORMAL:
3692		skb_set_owner_w(skb, req_to_sk(req));
3693		break;
3694	case TCP_SYNACK_COOKIE:
3695		/* Under synflood, we do not attach skb to a socket,
3696		 * to avoid false sharing.
3697		 */
3698		break;
3699	case TCP_SYNACK_FASTOPEN:
3700		/* sk is a const pointer, because we want to express multiple
3701		 * cpu might call us concurrently.
3702		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3703		 */
3704		skb_set_owner_w(skb, (struct sock *)sk);
3705		break;
3706	}
3707	skb_dst_set(skb, dst);
3708
3709	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
 
 
 
3710
3711	memset(&opts, 0, sizeof(opts));
3712	now = tcp_clock_ns();
3713#ifdef CONFIG_SYN_COOKIES
3714	if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3715		skb_set_delivery_time(skb, cookie_init_timestamp(req, now),
3716				      true);
3717	else
3718#endif
3719	{
3720		skb_set_delivery_time(skb, now, true);
3721		if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3722			tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3723	}
3724
3725#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3726	rcu_read_lock();
 
3727#endif
3728	if (tcp_rsk_used_ao(req)) {
3729#ifdef CONFIG_TCP_AO
3730		struct tcp_ao_key *ao_key = NULL;
3731		u8 keyid = tcp_rsk(req)->ao_keyid;
3732
3733		ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3734							    keyid, -1);
3735		/* If there is no matching key - avoid sending anything,
3736		 * especially usigned segments. It could try harder and lookup
3737		 * for another peer-matching key, but the peer has requested
3738		 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3739		 */
3740		if (unlikely(!ao_key)) {
3741			rcu_read_unlock();
3742			kfree_skb(skb);
3743			net_warn_ratelimited("TCP-AO: the keyid %u from SYN packet is not present - not sending SYNACK\n",
3744					     keyid);
3745			return NULL;
3746		}
3747		key.ao_key = ao_key;
3748		key.type = TCP_KEY_AO;
3749#endif
3750	} else {
3751#ifdef CONFIG_TCP_MD5SIG
3752		key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3753					req_to_sk(req));
3754		if (key.md5_key)
3755			key.type = TCP_KEY_MD5;
3756#endif
3757	}
3758	skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), PKT_HASH_TYPE_L4);
3759	/* bpf program will be interested in the tcp_flags */
3760	TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3761	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts,
3762					     &key, foc, synack_type, syn_skb)
3763					+ sizeof(*th);
3764
3765	skb_push(skb, tcp_header_size);
3766	skb_reset_transport_header(skb);
3767
3768	th = (struct tcphdr *)skb->data;
3769	memset(th, 0, sizeof(struct tcphdr));
3770	th->syn = 1;
3771	th->ack = 1;
3772	tcp_ecn_make_synack(req, th);
3773	th->source = htons(ireq->ir_num);
3774	th->dest = ireq->ir_rmt_port;
3775	skb->mark = ireq->ir_mark;
3776	skb->ip_summed = CHECKSUM_PARTIAL;
3777	th->seq = htonl(tcp_rsk(req)->snt_isn);
 
 
 
 
3778	/* XXX data is queued and acked as is. No buffer/window check */
3779	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3780
3781	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3782	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3783	tcp_options_write(th, NULL, tcp_rsk(req), &opts, &key);
3784	th->doff = (tcp_header_size >> 2);
3785	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3786
 
3787	/* Okay, we have all we need - do the md5 hash if needed */
3788	if (tcp_key_is_md5(&key)) {
3789#ifdef CONFIG_TCP_MD5SIG
3790		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3791					key.md5_key, req_to_sk(req), skb);
3792#endif
3793	} else if (tcp_key_is_ao(&key)) {
3794#ifdef CONFIG_TCP_AO
3795		tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3796					key.ao_key, req, skb,
3797					opts.hash_location - (u8 *)th, 0);
3798#endif
3799	}
3800#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3801	rcu_read_unlock();
3802#endif
3803
3804	bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3805				synack_type, &opts);
3806
3807	skb_set_delivery_time(skb, now, true);
3808	tcp_add_tx_delay(skb, tp);
3809
3810	return skb;
3811}
3812EXPORT_SYMBOL(tcp_make_synack);
3813
3814static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3815{
3816	struct inet_connection_sock *icsk = inet_csk(sk);
3817	const struct tcp_congestion_ops *ca;
3818	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3819
3820	if (ca_key == TCP_CA_UNSPEC)
3821		return;
3822
3823	rcu_read_lock();
3824	ca = tcp_ca_find_key(ca_key);
3825	if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3826		bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3827		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3828		icsk->icsk_ca_ops = ca;
3829	}
3830	rcu_read_unlock();
3831}
3832
3833/* Do all connect socket setups that can be done AF independent. */
3834static void tcp_connect_init(struct sock *sk)
3835{
3836	const struct dst_entry *dst = __sk_dst_get(sk);
3837	struct tcp_sock *tp = tcp_sk(sk);
3838	__u8 rcv_wscale;
3839	u32 rcv_wnd;
3840
3841	/* We'll fix this up when we get a response from the other end.
3842	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3843	 */
3844	tp->tcp_header_len = sizeof(struct tcphdr);
3845	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3846		tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3847
3848	tcp_ao_connect_init(sk);
 
 
 
3849
3850	/* If user gave his TCP_MAXSEG, record it to clamp */
3851	if (tp->rx_opt.user_mss)
3852		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3853	tp->max_window = 0;
3854	tcp_mtup_init(sk);
3855	tcp_sync_mss(sk, dst_mtu(dst));
3856
3857	tcp_ca_dst_init(sk, dst);
3858
3859	if (!tp->window_clamp)
3860		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3861	tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
 
 
3862
3863	tcp_initialize_rcv_mss(sk);
3864
3865	/* limit the window selection if the user enforce a smaller rx buffer */
3866	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3867	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3868		tp->window_clamp = tcp_full_space(sk);
3869
3870	rcv_wnd = tcp_rwnd_init_bpf(sk);
3871	if (rcv_wnd == 0)
3872		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3873
3874	tcp_select_initial_window(sk, tcp_full_space(sk),
3875				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3876				  &tp->rcv_wnd,
3877				  &tp->window_clamp,
3878				  READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3879				  &rcv_wscale,
3880				  rcv_wnd);
3881
3882	tp->rx_opt.rcv_wscale = rcv_wscale;
3883	tp->rcv_ssthresh = tp->rcv_wnd;
3884
3885	WRITE_ONCE(sk->sk_err, 0);
3886	sock_reset_flag(sk, SOCK_DONE);
3887	tp->snd_wnd = 0;
3888	tcp_init_wl(tp, 0);
3889	tcp_write_queue_purge(sk);
3890	tp->snd_una = tp->write_seq;
3891	tp->snd_sml = tp->write_seq;
3892	tp->snd_up = tp->write_seq;
3893	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3894
3895	if (likely(!tp->repair))
3896		tp->rcv_nxt = 0;
3897	else
3898		tp->rcv_tstamp = tcp_jiffies32;
3899	tp->rcv_wup = tp->rcv_nxt;
3900	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3901
3902	inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3903	inet_csk(sk)->icsk_retransmits = 0;
3904	tcp_clear_retrans(tp);
3905}
3906
3907static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3908{
3909	struct tcp_sock *tp = tcp_sk(sk);
3910	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3911
3912	tcb->end_seq += skb->len;
3913	__skb_header_release(skb);
3914	sk_wmem_queued_add(sk, skb->truesize);
 
3915	sk_mem_charge(sk, skb->truesize);
3916	WRITE_ONCE(tp->write_seq, tcb->end_seq);
3917	tp->packets_out += tcp_skb_pcount(skb);
3918}
3919
3920/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3921 * queue a data-only packet after the regular SYN, such that regular SYNs
3922 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3923 * only the SYN sequence, the data are retransmitted in the first ACK.
3924 * If cookie is not cached or other error occurs, falls back to send a
3925 * regular SYN with Fast Open cookie request option.
3926 */
3927static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3928{
3929	struct inet_connection_sock *icsk = inet_csk(sk);
3930	struct tcp_sock *tp = tcp_sk(sk);
3931	struct tcp_fastopen_request *fo = tp->fastopen_req;
3932	struct page_frag *pfrag = sk_page_frag(sk);
 
3933	struct sk_buff *syn_data;
3934	int space, err = 0;
3935
3936	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3937	if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
 
 
 
 
 
 
 
 
 
 
 
3938		goto fallback;
3939
3940	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3941	 * user-MSS. Reserve maximum option space for middleboxes that add
3942	 * private TCP options. The cost is reduced data space in SYN :(
3943	 */
3944	tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3945	/* Sync mss_cache after updating the mss_clamp */
3946	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3947
3948	space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3949		MAX_TCP_OPTION_SPACE;
3950
3951	space = min_t(size_t, space, fo->size);
3952
3953	if (space &&
3954	    !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3955				  pfrag, sk->sk_allocation))
3956		goto fallback;
3957	syn_data = tcp_stream_alloc_skb(sk, sk->sk_allocation, false);
3958	if (!syn_data)
3959		goto fallback;
 
3960	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3961	if (space) {
3962		space = min_t(size_t, space, pfrag->size - pfrag->offset);
3963		space = tcp_wmem_schedule(sk, space);
3964	}
3965	if (space) {
3966		space = copy_page_from_iter(pfrag->page, pfrag->offset,
3967					    space, &fo->data->msg_iter);
3968		if (unlikely(!space)) {
3969			tcp_skb_tsorted_anchor_cleanup(syn_data);
3970			kfree_skb(syn_data);
3971			goto fallback;
3972		}
3973		skb_fill_page_desc(syn_data, 0, pfrag->page,
3974				   pfrag->offset, space);
3975		page_ref_inc(pfrag->page);
3976		pfrag->offset += space;
3977		skb_len_add(syn_data, space);
3978		skb_zcopy_set(syn_data, fo->uarg, NULL);
3979	}
3980	/* No more data pending in inet_wait_for_connect() */
3981	if (space == fo->size)
3982		fo->data = NULL;
3983	fo->copied = space;
3984
3985	tcp_connect_queue_skb(sk, syn_data);
3986	if (syn_data->len)
3987		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3988
3989	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3990
3991	skb_set_delivery_time(syn, syn_data->skb_mstamp_ns, true);
3992
3993	/* Now full SYN+DATA was cloned and sent (or not),
3994	 * remove the SYN from the original skb (syn_data)
3995	 * we keep in write queue in case of a retransmit, as we
3996	 * also have the SYN packet (with no data) in the same queue.
3997	 */
3998	TCP_SKB_CB(syn_data)->seq++;
3999	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
4000	if (!err) {
4001		tp->syn_data = (fo->copied > 0);
4002		tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
4003		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
4004		goto done;
4005	}
4006
4007	/* data was not sent, put it in write_queue */
4008	__skb_queue_tail(&sk->sk_write_queue, syn_data);
4009	tp->packets_out -= tcp_skb_pcount(syn_data);
4010
4011fallback:
4012	/* Send a regular SYN with Fast Open cookie request option */
4013	if (fo->cookie.len > 0)
4014		fo->cookie.len = 0;
4015	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
4016	if (err)
4017		tp->syn_fastopen = 0;
4018done:
4019	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
4020	return err;
4021}
4022
4023/* Build a SYN and send it off. */
4024int tcp_connect(struct sock *sk)
4025{
4026	struct tcp_sock *tp = tcp_sk(sk);
4027	struct sk_buff *buff;
4028	int err;
4029
4030	tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
4031
4032#if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4033	/* Has to be checked late, after setting daddr/saddr/ops.
4034	 * Return error if the peer has both a md5 and a tcp-ao key
4035	 * configured as this is ambiguous.
4036	 */
4037	if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4038					       lockdep_sock_is_held(sk)))) {
4039		bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4040		bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4041		struct tcp_ao_info *ao_info;
4042
4043		ao_info = rcu_dereference_check(tp->ao_info,
4044						lockdep_sock_is_held(sk));
4045		if (ao_info) {
4046			/* This is an extra check: tcp_ao_required() in
4047			 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4048			 * md5 keys on ao_required socket.
4049			 */
4050			needs_ao |= ao_info->ao_required;
4051			WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4052		}
4053		if (needs_md5 && needs_ao)
4054			return -EKEYREJECTED;
4055
4056		/* If we have a matching md5 key and no matching tcp-ao key
4057		 * then free up ao_info if allocated.
4058		 */
4059		if (needs_md5) {
4060			tcp_ao_destroy_sock(sk, false);
4061		} else if (needs_ao) {
4062			tcp_clear_md5_list(sk);
4063			kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4064						  lockdep_sock_is_held(sk)));
4065		}
4066	}
4067#endif
4068#ifdef CONFIG_TCP_AO
4069	if (unlikely(rcu_dereference_protected(tp->ao_info,
4070					       lockdep_sock_is_held(sk)))) {
4071		/* Don't allow connecting if ao is configured but no
4072		 * matching key is found.
4073		 */
4074		if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4075			return -EKEYREJECTED;
4076	}
4077#endif
4078
4079	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4080		return -EHOSTUNREACH; /* Routing failure or similar. */
4081
4082	tcp_connect_init(sk);
4083
4084	if (unlikely(tp->repair)) {
4085		tcp_finish_connect(sk, NULL);
4086		return 0;
4087	}
4088
4089	buff = tcp_stream_alloc_skb(sk, sk->sk_allocation, true);
4090	if (unlikely(!buff))
4091		return -ENOBUFS;
4092
4093	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
4094	tcp_mstamp_refresh(tp);
4095	tp->retrans_stamp = tcp_time_stamp_ts(tp);
4096	tcp_connect_queue_skb(sk, buff);
4097	tcp_ecn_send_syn(sk, buff);
4098	tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
4099
4100	/* Send off SYN; include data in Fast Open. */
4101	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
4102	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
4103	if (err == -ECONNREFUSED)
4104		return err;
4105
4106	/* We change tp->snd_nxt after the tcp_transmit_skb() call
4107	 * in order to make this packet get counted in tcpOutSegs.
4108	 */
4109	WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4110	tp->pushed_seq = tp->write_seq;
4111	buff = tcp_send_head(sk);
4112	if (unlikely(buff)) {
4113		WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4114		tp->pushed_seq	= TCP_SKB_CB(buff)->seq;
4115	}
4116	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4117
4118	/* Timer for repeating the SYN until an answer. */
4119	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4120				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4121	return 0;
4122}
4123EXPORT_SYMBOL(tcp_connect);
4124
4125u32 tcp_delack_max(const struct sock *sk)
4126{
4127	const struct dst_entry *dst = __sk_dst_get(sk);
4128	u32 delack_max = inet_csk(sk)->icsk_delack_max;
4129
4130	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4131		u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4132		u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4133
4134		delack_max = min_t(u32, delack_max, delack_from_rto_min);
4135	}
4136	return delack_max;
4137}
4138
4139/* Send out a delayed ack, the caller does the policy checking
4140 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
4141 * for details.
4142 */
4143void tcp_send_delayed_ack(struct sock *sk)
4144{
4145	struct inet_connection_sock *icsk = inet_csk(sk);
4146	int ato = icsk->icsk_ack.ato;
4147	unsigned long timeout;
4148
 
 
4149	if (ato > TCP_DELACK_MIN) {
4150		const struct tcp_sock *tp = tcp_sk(sk);
4151		int max_ato = HZ / 2;
4152
4153		if (inet_csk_in_pingpong_mode(sk) ||
4154		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4155			max_ato = TCP_DELACK_MAX;
4156
4157		/* Slow path, intersegment interval is "high". */
4158
4159		/* If some rtt estimate is known, use it to bound delayed ack.
4160		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4161		 * directly.
4162		 */
4163		if (tp->srtt_us) {
4164			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4165					TCP_DELACK_MIN);
4166
4167			if (rtt < max_ato)
4168				max_ato = rtt;
4169		}
4170
4171		ato = min(ato, max_ato);
4172	}
4173
4174	ato = min_t(u32, ato, tcp_delack_max(sk));
4175
4176	/* Stay within the limit we were given */
4177	timeout = jiffies + ato;
4178
4179	/* Use new timeout only if there wasn't a older one earlier. */
4180	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4181		/* If delack timer is about to expire, send ACK now. */
4182		if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
 
 
 
4183			tcp_send_ack(sk);
4184			return;
4185		}
4186
4187		if (!time_before(timeout, icsk->icsk_ack.timeout))
4188			timeout = icsk->icsk_ack.timeout;
4189	}
4190	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4191	icsk->icsk_ack.timeout = timeout;
4192	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
4193}
4194
4195/* This routine sends an ack and also updates the window. */
4196void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4197{
4198	struct sk_buff *buff;
4199
4200	/* If we have been reset, we may not send again. */
4201	if (sk->sk_state == TCP_CLOSE)
4202		return;
4203
 
 
4204	/* We are not putting this on the write queue, so
4205	 * tcp_transmit_skb() will set the ownership to this
4206	 * sock.
4207	 */
4208	buff = alloc_skb(MAX_TCP_HEADER,
4209			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4210	if (unlikely(!buff)) {
4211		struct inet_connection_sock *icsk = inet_csk(sk);
4212		unsigned long delay;
4213
4214		delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4215		if (delay < TCP_RTO_MAX)
4216			icsk->icsk_ack.retry++;
4217		inet_csk_schedule_ack(sk);
4218		icsk->icsk_ack.ato = TCP_ATO_MIN;
4219		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
 
4220		return;
4221	}
4222
4223	/* Reserve space for headers and prepare control bits. */
4224	skb_reserve(buff, MAX_TCP_HEADER);
4225	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
4226
4227	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
4228	 * too much.
4229	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
 
 
4230	 */
4231	skb_set_tcp_pure_ack(buff);
4232
4233	/* Send it off, this clears delayed acks for us. */
4234	__tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4235}
4236EXPORT_SYMBOL_GPL(__tcp_send_ack);
4237
4238void tcp_send_ack(struct sock *sk)
4239{
4240	__tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4241}
 
4242
4243/* This routine sends a packet with an out of date sequence
4244 * number. It assumes the other end will try to ack it.
4245 *
4246 * Question: what should we make while urgent mode?
4247 * 4.4BSD forces sending single byte of data. We cannot send
4248 * out of window data, because we have SND.NXT==SND.MAX...
4249 *
4250 * Current solution: to send TWO zero-length segments in urgent mode:
4251 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4252 * out-of-date with SND.UNA-1 to probe window.
4253 */
4254static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4255{
4256	struct tcp_sock *tp = tcp_sk(sk);
4257	struct sk_buff *skb;
4258
4259	/* We don't queue it, tcp_transmit_skb() sets ownership. */
4260	skb = alloc_skb(MAX_TCP_HEADER,
4261			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4262	if (!skb)
4263		return -1;
4264
4265	/* Reserve space for headers and set control bits. */
4266	skb_reserve(skb, MAX_TCP_HEADER);
4267	/* Use a previous sequence.  This should cause the other
4268	 * end to send an ack.  Don't queue or clone SKB, just
4269	 * send it.
4270	 */
4271	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
 
4272	NET_INC_STATS(sock_net(sk), mib);
4273	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4274}
4275
4276/* Called from setsockopt( ... TCP_REPAIR ) */
4277void tcp_send_window_probe(struct sock *sk)
4278{
4279	if (sk->sk_state == TCP_ESTABLISHED) {
4280		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4281		tcp_mstamp_refresh(tcp_sk(sk));
4282		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4283	}
4284}
4285
4286/* Initiate keepalive or window probe from timer. */
4287int tcp_write_wakeup(struct sock *sk, int mib)
4288{
4289	struct tcp_sock *tp = tcp_sk(sk);
4290	struct sk_buff *skb;
4291
4292	if (sk->sk_state == TCP_CLOSE)
4293		return -1;
4294
4295	skb = tcp_send_head(sk);
4296	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4297		int err;
4298		unsigned int mss = tcp_current_mss(sk);
4299		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4300
4301		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4302			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4303
4304		/* We are probing the opening of a window
4305		 * but the window size is != 0
4306		 * must have been a result SWS avoidance ( sender )
4307		 */
4308		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4309		    skb->len > mss) {
4310			seg_size = min(seg_size, mss);
4311			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4312			if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4313					 skb, seg_size, mss, GFP_ATOMIC))
4314				return -1;
4315		} else if (!tcp_skb_pcount(skb))
4316			tcp_set_skb_tso_segs(skb, mss);
4317
4318		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4319		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4320		if (!err)
4321			tcp_event_new_data_sent(sk, skb);
4322		return err;
4323	} else {
4324		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4325			tcp_xmit_probe_skb(sk, 1, mib);
4326		return tcp_xmit_probe_skb(sk, 0, mib);
4327	}
4328}
4329
4330/* A window probe timeout has occurred.  If window is not closed send
4331 * a partial packet else a zero probe.
4332 */
4333void tcp_send_probe0(struct sock *sk)
4334{
4335	struct inet_connection_sock *icsk = inet_csk(sk);
4336	struct tcp_sock *tp = tcp_sk(sk);
4337	struct net *net = sock_net(sk);
4338	unsigned long timeout;
4339	int err;
4340
4341	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4342
4343	if (tp->packets_out || tcp_write_queue_empty(sk)) {
4344		/* Cancel probe timer, if it is not required. */
4345		icsk->icsk_probes_out = 0;
4346		icsk->icsk_backoff = 0;
4347		icsk->icsk_probes_tstamp = 0;
4348		return;
4349	}
4350
4351	icsk->icsk_probes_out++;
4352	if (err <= 0) {
4353		if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4354			icsk->icsk_backoff++;
4355		timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
 
4356	} else {
4357		/* If packet was not sent due to local congestion,
4358		 * Let senders fight for local resources conservatively.
 
 
 
4359		 */
4360		timeout = TCP_RESOURCE_PROBE_INTERVAL;
4361	}
4362
4363	timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4364	tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
 
 
4365}
4366
4367int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4368{
4369	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4370	struct flowi fl;
4371	int res;
4372
4373	/* Paired with WRITE_ONCE() in sock_setsockopt() */
4374	if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4375		WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4376	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4377				  NULL);
4378	if (!res) {
4379		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4380		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4381		if (unlikely(tcp_passive_fastopen(sk))) {
4382			/* sk has const attribute because listeners are lockless.
4383			 * However in this case, we are dealing with a passive fastopen
4384			 * socket thus we can change total_retrans value.
4385			 */
4386			tcp_sk_rw(sk)->total_retrans++;
4387		}
4388		trace_tcp_retransmit_synack(sk, req);
4389	}
4390	return res;
4391}
4392EXPORT_SYMBOL(tcp_rtx_synack);