Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
  23 *				:	Fragmentation on mtu decrease
  24 *				:	Segment collapse on retransmit
  25 *				:	AF independence
  26 *
  27 *		Linus Torvalds	:	send_delayed_ack
  28 *		David S. Miller	:	Charge memory using the right skb
  29 *					during syn/ack processing.
  30 *		David S. Miller :	Output engine completely rewritten.
  31 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
  32 *		Cacophonix Gaul :	draft-minshall-nagle-01
  33 *		J Hadi Salim	:	ECN support
  34 *
  35 */
  36
  37#define pr_fmt(fmt) "TCP: " fmt
  38
  39#include <net/tcp.h>
  40
  41#include <linux/compiler.h>
  42#include <linux/gfp.h>
  43#include <linux/module.h>
  44
  45/* People can turn this off for buggy TCP's found in printers etc. */
  46int sysctl_tcp_retrans_collapse __read_mostly = 1;
  47
  48/* People can turn this on to work with those rare, broken TCPs that
  49 * interpret the window field as a signed quantity.
  50 */
  51int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
  52
  53/* Default TSQ limit of four TSO segments */
  54int sysctl_tcp_limit_output_bytes __read_mostly = 262144;
  55
  56/* This limits the percentage of the congestion window which we
  57 * will allow a single TSO frame to consume.  Building TSO frames
  58 * which are too large can cause TCP streams to be bursty.
  59 */
  60int sysctl_tcp_tso_win_divisor __read_mostly = 3;
  61
 
 
 
  62/* By default, RFC2861 behavior.  */
  63int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
  64
 
 
 
  65static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  66			   int push_one, gfp_t gfp);
  67
  68/* Account for new data that has been sent to the network. */
  69static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
  70{
  71	struct inet_connection_sock *icsk = inet_csk(sk);
  72	struct tcp_sock *tp = tcp_sk(sk);
  73	unsigned int prior_packets = tp->packets_out;
  74
  75	tcp_advance_send_head(sk, skb);
  76	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  77
  78	tp->packets_out += tcp_skb_pcount(skb);
  79	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  80	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  81		tcp_rearm_rto(sk);
  82	}
  83
  84	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  85		      tcp_skb_pcount(skb));
  86}
  87
  88/* SND.NXT, if window was not shrunk.
  89 * If window has been shrunk, what should we make? It is not clear at all.
  90 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  91 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  92 * invalid. OK, let's make this for now:
  93 */
  94static inline __u32 tcp_acceptable_seq(const struct sock *sk)
  95{
  96	const struct tcp_sock *tp = tcp_sk(sk);
  97
  98	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
  99		return tp->snd_nxt;
 100	else
 101		return tcp_wnd_end(tp);
 102}
 103
 104/* Calculate mss to advertise in SYN segment.
 105 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 106 *
 107 * 1. It is independent of path mtu.
 108 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 109 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 110 *    attached devices, because some buggy hosts are confused by
 111 *    large MSS.
 112 * 4. We do not make 3, we advertise MSS, calculated from first
 113 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 114 *    This may be overridden via information stored in routing table.
 115 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 116 *    probably even Jumbo".
 117 */
 118static __u16 tcp_advertise_mss(struct sock *sk)
 119{
 120	struct tcp_sock *tp = tcp_sk(sk);
 121	const struct dst_entry *dst = __sk_dst_get(sk);
 122	int mss = tp->advmss;
 123
 124	if (dst) {
 125		unsigned int metric = dst_metric_advmss(dst);
 126
 127		if (metric < mss) {
 128			mss = metric;
 129			tp->advmss = mss;
 130		}
 131	}
 132
 133	return (__u16)mss;
 134}
 135
 136/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 137 * This is the first part of cwnd validation mechanism.
 138 */
 139void tcp_cwnd_restart(struct sock *sk, s32 delta)
 140{
 141	struct tcp_sock *tp = tcp_sk(sk);
 142	u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
 
 143	u32 cwnd = tp->snd_cwnd;
 144
 145	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 146
 147	tp->snd_ssthresh = tcp_current_ssthresh(sk);
 148	restart_cwnd = min(restart_cwnd, cwnd);
 149
 150	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 151		cwnd >>= 1;
 152	tp->snd_cwnd = max(cwnd, restart_cwnd);
 153	tp->snd_cwnd_stamp = tcp_time_stamp;
 154	tp->snd_cwnd_used = 0;
 155}
 156
 157/* Congestion state accounting after a packet has been sent. */
 158static void tcp_event_data_sent(struct tcp_sock *tp,
 159				struct sock *sk)
 160{
 161	struct inet_connection_sock *icsk = inet_csk(sk);
 162	const u32 now = tcp_time_stamp;
 
 163
 164	if (tcp_packets_in_flight(tp) == 0)
 165		tcp_ca_event(sk, CA_EVENT_TX_START);
 
 166
 167	tp->lsndtime = now;
 168
 169	/* If it is a reply for ato after last received
 170	 * packet, enter pingpong mode.
 171	 */
 172	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
 173		icsk->icsk_ack.pingpong = 1;
 
 174}
 175
 176/* Account for an ACK we sent. */
 177static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
 178{
 179	tcp_dec_quickack_mode(sk, pkts);
 180	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 181}
 182
 183
 184u32 tcp_default_init_rwnd(u32 mss)
 185{
 186	/* Initial receive window should be twice of TCP_INIT_CWND to
 187	 * enable proper sending of new unsent data during fast recovery
 188	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
 189	 * limit when mss is larger than 1460.
 190	 */
 191	u32 init_rwnd = TCP_INIT_CWND * 2;
 192
 193	if (mss > 1460)
 194		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
 195	return init_rwnd;
 196}
 197
 198/* Determine a window scaling and initial window to offer.
 199 * Based on the assumption that the given amount of space
 200 * will be offered. Store the results in the tp structure.
 201 * NOTE: for smooth operation initial space offering should
 202 * be a multiple of mss if possible. We assume here that mss >= 1.
 203 * This MUST be enforced by all callers.
 204 */
 205void tcp_select_initial_window(int __space, __u32 mss,
 206			       __u32 *rcv_wnd, __u32 *window_clamp,
 207			       int wscale_ok, __u8 *rcv_wscale,
 208			       __u32 init_rcv_wnd)
 209{
 210	unsigned int space = (__space < 0 ? 0 : __space);
 211
 212	/* If no clamp set the clamp to the max possible scaled window */
 213	if (*window_clamp == 0)
 214		(*window_clamp) = (65535 << 14);
 215	space = min(*window_clamp, space);
 216
 217	/* Quantize space offering to a multiple of mss if possible. */
 218	if (space > mss)
 219		space = (space / mss) * mss;
 220
 221	/* NOTE: offering an initial window larger than 32767
 222	 * will break some buggy TCP stacks. If the admin tells us
 223	 * it is likely we could be speaking with such a buggy stack
 224	 * we will truncate our initial window offering to 32K-1
 225	 * unless the remote has sent us a window scaling option,
 226	 * which we interpret as a sign the remote TCP is not
 227	 * misinterpreting the window field as a signed quantity.
 228	 */
 229	if (sysctl_tcp_workaround_signed_windows)
 230		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 231	else
 232		(*rcv_wnd) = space;
 233
 234	(*rcv_wscale) = 0;
 235	if (wscale_ok) {
 236		/* Set window scaling on max possible window
 237		 * See RFC1323 for an explanation of the limit to 14
 238		 */
 239		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
 240		space = min_t(u32, space, *window_clamp);
 241		while (space > 65535 && (*rcv_wscale) < 14) {
 242			space >>= 1;
 243			(*rcv_wscale)++;
 244		}
 245	}
 246
 247	if (mss > (1 << *rcv_wscale)) {
 248		if (!init_rcv_wnd) /* Use default unless specified otherwise */
 249			init_rcv_wnd = tcp_default_init_rwnd(mss);
 250		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 251	}
 252
 253	/* Set the clamp no higher than max representable value */
 254	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
 255}
 256EXPORT_SYMBOL(tcp_select_initial_window);
 257
 258/* Chose a new window to advertise, update state in tcp_sock for the
 259 * socket, and return result with RFC1323 scaling applied.  The return
 260 * value can be stuffed directly into th->window for an outgoing
 261 * frame.
 262 */
 263static u16 tcp_select_window(struct sock *sk)
 264{
 265	struct tcp_sock *tp = tcp_sk(sk);
 266	u32 old_win = tp->rcv_wnd;
 267	u32 cur_win = tcp_receive_window(tp);
 268	u32 new_win = __tcp_select_window(sk);
 269
 270	/* Never shrink the offered window */
 271	if (new_win < cur_win) {
 272		/* Danger Will Robinson!
 273		 * Don't update rcv_wup/rcv_wnd here or else
 274		 * we will not be able to advertise a zero
 275		 * window in time.  --DaveM
 276		 *
 277		 * Relax Will Robinson.
 278		 */
 279		if (new_win == 0)
 280			NET_INC_STATS(sock_net(sk),
 281				      LINUX_MIB_TCPWANTZEROWINDOWADV);
 282		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 283	}
 284	tp->rcv_wnd = new_win;
 285	tp->rcv_wup = tp->rcv_nxt;
 286
 287	/* Make sure we do not exceed the maximum possible
 288	 * scaled window.
 289	 */
 290	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
 291		new_win = min(new_win, MAX_TCP_WINDOW);
 292	else
 293		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 294
 295	/* RFC1323 scaling applied */
 296	new_win >>= tp->rx_opt.rcv_wscale;
 297
 298	/* If we advertise zero window, disable fast path. */
 299	if (new_win == 0) {
 300		tp->pred_flags = 0;
 301		if (old_win)
 302			NET_INC_STATS(sock_net(sk),
 303				      LINUX_MIB_TCPTOZEROWINDOWADV);
 304	} else if (old_win == 0) {
 305		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
 306	}
 307
 308	return new_win;
 309}
 310
 311/* Packet ECN state for a SYN-ACK */
 312static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
 313{
 314	const struct tcp_sock *tp = tcp_sk(sk);
 315
 316	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 317	if (!(tp->ecn_flags & TCP_ECN_OK))
 318		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 319	else if (tcp_ca_needs_ecn(sk))
 320		INET_ECN_xmit(sk);
 321}
 322
 323/* Packet ECN state for a SYN.  */
 324static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
 325{
 326	struct tcp_sock *tp = tcp_sk(sk);
 327	bool use_ecn = sock_net(sk)->ipv4.sysctl_tcp_ecn == 1 ||
 328		       tcp_ca_needs_ecn(sk);
 329
 330	if (!use_ecn) {
 331		const struct dst_entry *dst = __sk_dst_get(sk);
 332
 333		if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
 334			use_ecn = true;
 335	}
 336
 337	tp->ecn_flags = 0;
 338
 339	if (use_ecn) {
 340		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 341		tp->ecn_flags = TCP_ECN_OK;
 342		if (tcp_ca_needs_ecn(sk))
 343			INET_ECN_xmit(sk);
 344	}
 345}
 346
 347static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
 348{
 349	if (sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback)
 350		/* tp->ecn_flags are cleared at a later point in time when
 351		 * SYN ACK is ultimatively being received.
 352		 */
 353		TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
 354}
 355
 356static void
 357tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
 358{
 359	if (inet_rsk(req)->ecn_ok)
 360		th->ece = 1;
 361}
 362
 363/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 364 * be sent.
 365 */
 366static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
 367				int tcp_header_len)
 368{
 369	struct tcp_sock *tp = tcp_sk(sk);
 370
 371	if (tp->ecn_flags & TCP_ECN_OK) {
 372		/* Not-retransmitted data segment: set ECT and inject CWR. */
 373		if (skb->len != tcp_header_len &&
 374		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 375			INET_ECN_xmit(sk);
 376			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 377				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 378				tcp_hdr(skb)->cwr = 1;
 379				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 380			}
 381		} else if (!tcp_ca_needs_ecn(sk)) {
 382			/* ACK or retransmitted segment: clear ECT|CE */
 383			INET_ECN_dontxmit(sk);
 384		}
 385		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 386			tcp_hdr(skb)->ece = 1;
 387	}
 388}
 389
 390/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 391 * auto increment end seqno.
 392 */
 393static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 394{
 
 
 395	skb->ip_summed = CHECKSUM_PARTIAL;
 396	skb->csum = 0;
 397
 398	TCP_SKB_CB(skb)->tcp_flags = flags;
 399	TCP_SKB_CB(skb)->sacked = 0;
 400
 401	tcp_skb_pcount_set(skb, 1);
 
 
 402
 403	TCP_SKB_CB(skb)->seq = seq;
 404	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 405		seq++;
 406	TCP_SKB_CB(skb)->end_seq = seq;
 407}
 408
 409static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 410{
 411	return tp->snd_una != tp->snd_up;
 412}
 413
 414#define OPTION_SACK_ADVERTISE	(1 << 0)
 415#define OPTION_TS		(1 << 1)
 416#define OPTION_MD5		(1 << 2)
 417#define OPTION_WSCALE		(1 << 3)
 418#define OPTION_FAST_OPEN_COOKIE	(1 << 8)
 419
 420struct tcp_out_options {
 421	u16 options;		/* bit field of OPTION_* */
 422	u16 mss;		/* 0 to disable */
 423	u8 ws;			/* window scale, 0 to disable */
 424	u8 num_sack_blocks;	/* number of SACK blocks to include */
 425	u8 hash_size;		/* bytes in hash_location */
 426	__u8 *hash_location;	/* temporary pointer, overloaded */
 427	__u32 tsval, tsecr;	/* need to include OPTION_TS */
 428	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
 429};
 430
 431/* Write previously computed TCP options to the packet.
 432 *
 433 * Beware: Something in the Internet is very sensitive to the ordering of
 434 * TCP options, we learned this through the hard way, so be careful here.
 435 * Luckily we can at least blame others for their non-compliance but from
 436 * inter-operability perspective it seems that we're somewhat stuck with
 437 * the ordering which we have been using if we want to keep working with
 438 * those broken things (not that it currently hurts anybody as there isn't
 439 * particular reason why the ordering would need to be changed).
 440 *
 441 * At least SACK_PERM as the first option is known to lead to a disaster
 442 * (but it may well be that other scenarios fail similarly).
 443 */
 444static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
 445			      struct tcp_out_options *opts)
 446{
 447	u16 options = opts->options;	/* mungable copy */
 448
 449	if (unlikely(OPTION_MD5 & options)) {
 450		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 451			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 452		/* overload cookie hash location */
 453		opts->hash_location = (__u8 *)ptr;
 454		ptr += 4;
 455	}
 456
 457	if (unlikely(opts->mss)) {
 458		*ptr++ = htonl((TCPOPT_MSS << 24) |
 459			       (TCPOLEN_MSS << 16) |
 460			       opts->mss);
 461	}
 462
 463	if (likely(OPTION_TS & options)) {
 464		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 465			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 466				       (TCPOLEN_SACK_PERM << 16) |
 467				       (TCPOPT_TIMESTAMP << 8) |
 468				       TCPOLEN_TIMESTAMP);
 469			options &= ~OPTION_SACK_ADVERTISE;
 470		} else {
 471			*ptr++ = htonl((TCPOPT_NOP << 24) |
 472				       (TCPOPT_NOP << 16) |
 473				       (TCPOPT_TIMESTAMP << 8) |
 474				       TCPOLEN_TIMESTAMP);
 475		}
 476		*ptr++ = htonl(opts->tsval);
 477		*ptr++ = htonl(opts->tsecr);
 478	}
 479
 480	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 481		*ptr++ = htonl((TCPOPT_NOP << 24) |
 482			       (TCPOPT_NOP << 16) |
 483			       (TCPOPT_SACK_PERM << 8) |
 484			       TCPOLEN_SACK_PERM);
 485	}
 486
 487	if (unlikely(OPTION_WSCALE & options)) {
 488		*ptr++ = htonl((TCPOPT_NOP << 24) |
 489			       (TCPOPT_WINDOW << 16) |
 490			       (TCPOLEN_WINDOW << 8) |
 491			       opts->ws);
 492	}
 493
 494	if (unlikely(opts->num_sack_blocks)) {
 495		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 496			tp->duplicate_sack : tp->selective_acks;
 497		int this_sack;
 498
 499		*ptr++ = htonl((TCPOPT_NOP  << 24) |
 500			       (TCPOPT_NOP  << 16) |
 501			       (TCPOPT_SACK <<  8) |
 502			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 503						     TCPOLEN_SACK_PERBLOCK)));
 504
 505		for (this_sack = 0; this_sack < opts->num_sack_blocks;
 506		     ++this_sack) {
 507			*ptr++ = htonl(sp[this_sack].start_seq);
 508			*ptr++ = htonl(sp[this_sack].end_seq);
 509		}
 510
 511		tp->rx_opt.dsack = 0;
 512	}
 513
 514	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 515		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 516		u8 *p = (u8 *)ptr;
 517		u32 len; /* Fast Open option length */
 518
 519		if (foc->exp) {
 520			len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 521			*ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
 522				     TCPOPT_FASTOPEN_MAGIC);
 523			p += TCPOLEN_EXP_FASTOPEN_BASE;
 524		} else {
 525			len = TCPOLEN_FASTOPEN_BASE + foc->len;
 526			*p++ = TCPOPT_FASTOPEN;
 527			*p++ = len;
 528		}
 529
 530		memcpy(p, foc->val, foc->len);
 531		if ((len & 3) == 2) {
 532			p[foc->len] = TCPOPT_NOP;
 533			p[foc->len + 1] = TCPOPT_NOP;
 
 
 
 
 534		}
 535		ptr += (len + 3) >> 2;
 536	}
 537}
 538
 539/* Compute TCP options for SYN packets. This is not the final
 540 * network wire format yet.
 541 */
 542static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 543				struct tcp_out_options *opts,
 544				struct tcp_md5sig_key **md5)
 545{
 546	struct tcp_sock *tp = tcp_sk(sk);
 547	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 548	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 549
 550#ifdef CONFIG_TCP_MD5SIG
 551	*md5 = tp->af_specific->md5_lookup(sk, sk);
 552	if (*md5) {
 553		opts->options |= OPTION_MD5;
 554		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 555	}
 556#else
 557	*md5 = NULL;
 558#endif
 559
 560	/* We always get an MSS option.  The option bytes which will be seen in
 561	 * normal data packets should timestamps be used, must be in the MSS
 562	 * advertised.  But we subtract them from tp->mss_cache so that
 563	 * calculations in tcp_sendmsg are simpler etc.  So account for this
 564	 * fact here if necessary.  If we don't do this correctly, as a
 565	 * receiver we won't recognize data packets as being full sized when we
 566	 * should, and thus we won't abide by the delayed ACK rules correctly.
 567	 * SACKs don't matter, we never delay an ACK when we have any of those
 568	 * going out.  */
 569	opts->mss = tcp_advertise_mss(sk);
 570	remaining -= TCPOLEN_MSS_ALIGNED;
 571
 572	if (likely(sysctl_tcp_timestamps && !*md5)) {
 573		opts->options |= OPTION_TS;
 574		opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
 575		opts->tsecr = tp->rx_opt.ts_recent;
 576		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 577	}
 578	if (likely(sysctl_tcp_window_scaling)) {
 579		opts->ws = tp->rx_opt.rcv_wscale;
 580		opts->options |= OPTION_WSCALE;
 581		remaining -= TCPOLEN_WSCALE_ALIGNED;
 582	}
 583	if (likely(sysctl_tcp_sack)) {
 584		opts->options |= OPTION_SACK_ADVERTISE;
 585		if (unlikely(!(OPTION_TS & opts->options)))
 586			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 587	}
 588
 589	if (fastopen && fastopen->cookie.len >= 0) {
 590		u32 need = fastopen->cookie.len;
 591
 592		need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 593					       TCPOLEN_FASTOPEN_BASE;
 594		need = (need + 3) & ~3U;  /* Align to 32 bits */
 595		if (remaining >= need) {
 596			opts->options |= OPTION_FAST_OPEN_COOKIE;
 597			opts->fastopen_cookie = &fastopen->cookie;
 598			remaining -= need;
 599			tp->syn_fastopen = 1;
 600			tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
 601		}
 602	}
 603
 604	return MAX_TCP_OPTION_SPACE - remaining;
 605}
 606
 607/* Set up TCP options for SYN-ACKs. */
 608static unsigned int tcp_synack_options(struct request_sock *req,
 609				       unsigned int mss, struct sk_buff *skb,
 610				       struct tcp_out_options *opts,
 611				       const struct tcp_md5sig_key *md5,
 612				       struct tcp_fastopen_cookie *foc)
 
 613{
 614	struct inet_request_sock *ireq = inet_rsk(req);
 615	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 616
 617#ifdef CONFIG_TCP_MD5SIG
 618	if (md5) {
 
 619		opts->options |= OPTION_MD5;
 620		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 621
 622		/* We can't fit any SACK blocks in a packet with MD5 + TS
 623		 * options. There was discussion about disabling SACK
 624		 * rather than TS in order to fit in better with old,
 625		 * buggy kernels, but that was deemed to be unnecessary.
 626		 */
 627		ireq->tstamp_ok &= !ireq->sack_ok;
 628	}
 
 
 629#endif
 630
 631	/* We always send an MSS option. */
 632	opts->mss = mss;
 633	remaining -= TCPOLEN_MSS_ALIGNED;
 634
 635	if (likely(ireq->wscale_ok)) {
 636		opts->ws = ireq->rcv_wscale;
 637		opts->options |= OPTION_WSCALE;
 638		remaining -= TCPOLEN_WSCALE_ALIGNED;
 639	}
 640	if (likely(ireq->tstamp_ok)) {
 641		opts->options |= OPTION_TS;
 642		opts->tsval = tcp_skb_timestamp(skb);
 643		opts->tsecr = req->ts_recent;
 644		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 645	}
 646	if (likely(ireq->sack_ok)) {
 647		opts->options |= OPTION_SACK_ADVERTISE;
 648		if (unlikely(!ireq->tstamp_ok))
 649			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 650	}
 651	if (foc != NULL && foc->len >= 0) {
 652		u32 need = foc->len;
 653
 654		need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
 655				   TCPOLEN_FASTOPEN_BASE;
 656		need = (need + 3) & ~3U;  /* Align to 32 bits */
 657		if (remaining >= need) {
 658			opts->options |= OPTION_FAST_OPEN_COOKIE;
 659			opts->fastopen_cookie = foc;
 660			remaining -= need;
 661		}
 662	}
 663
 664	return MAX_TCP_OPTION_SPACE - remaining;
 665}
 666
 667/* Compute TCP options for ESTABLISHED sockets. This is not the
 668 * final wire format yet.
 669 */
 670static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 671					struct tcp_out_options *opts,
 672					struct tcp_md5sig_key **md5)
 673{
 
 674	struct tcp_sock *tp = tcp_sk(sk);
 675	unsigned int size = 0;
 676	unsigned int eff_sacks;
 677
 678	opts->options = 0;
 679
 680#ifdef CONFIG_TCP_MD5SIG
 681	*md5 = tp->af_specific->md5_lookup(sk, sk);
 682	if (unlikely(*md5)) {
 683		opts->options |= OPTION_MD5;
 684		size += TCPOLEN_MD5SIG_ALIGNED;
 685	}
 686#else
 687	*md5 = NULL;
 688#endif
 689
 690	if (likely(tp->rx_opt.tstamp_ok)) {
 691		opts->options |= OPTION_TS;
 692		opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
 693		opts->tsecr = tp->rx_opt.ts_recent;
 694		size += TCPOLEN_TSTAMP_ALIGNED;
 695	}
 696
 697	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
 698	if (unlikely(eff_sacks)) {
 699		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 700		opts->num_sack_blocks =
 701			min_t(unsigned int, eff_sacks,
 702			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
 703			      TCPOLEN_SACK_PERBLOCK);
 704		size += TCPOLEN_SACK_BASE_ALIGNED +
 705			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
 706	}
 707
 708	return size;
 709}
 710
 711
 712/* TCP SMALL QUEUES (TSQ)
 713 *
 714 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
 715 * to reduce RTT and bufferbloat.
 716 * We do this using a special skb destructor (tcp_wfree).
 717 *
 718 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
 719 * needs to be reallocated in a driver.
 720 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
 721 *
 722 * Since transmit from skb destructor is forbidden, we use a tasklet
 723 * to process all sockets that eventually need to send more skbs.
 724 * We use one tasklet per cpu, with its own queue of sockets.
 725 */
 726struct tsq_tasklet {
 727	struct tasklet_struct	tasklet;
 728	struct list_head	head; /* queue of tcp sockets */
 729};
 730static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
 731
 732static void tcp_tsq_handler(struct sock *sk)
 733{
 734	if ((1 << sk->sk_state) &
 735	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
 736	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
 737		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
 738			       0, GFP_ATOMIC);
 739}
 740/*
 741 * One tasklet per cpu tries to send more skbs.
 742 * We run in tasklet context but need to disable irqs when
 743 * transferring tsq->head because tcp_wfree() might
 744 * interrupt us (non NAPI drivers)
 745 */
 746static void tcp_tasklet_func(unsigned long data)
 747{
 748	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
 749	LIST_HEAD(list);
 750	unsigned long flags;
 751	struct list_head *q, *n;
 752	struct tcp_sock *tp;
 753	struct sock *sk;
 754
 755	local_irq_save(flags);
 756	list_splice_init(&tsq->head, &list);
 757	local_irq_restore(flags);
 758
 759	list_for_each_safe(q, n, &list) {
 760		tp = list_entry(q, struct tcp_sock, tsq_node);
 761		list_del(&tp->tsq_node);
 762
 763		sk = (struct sock *)tp;
 764		bh_lock_sock(sk);
 765
 766		if (!sock_owned_by_user(sk)) {
 767			tcp_tsq_handler(sk);
 768		} else {
 769			/* defer the work to tcp_release_cb() */
 770			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
 771		}
 772		bh_unlock_sock(sk);
 773
 774		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
 775		sk_free(sk);
 776	}
 777}
 778
 779#define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
 780			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
 781			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
 782			  (1UL << TCP_MTU_REDUCED_DEFERRED))
 783/**
 784 * tcp_release_cb - tcp release_sock() callback
 785 * @sk: socket
 786 *
 787 * called from release_sock() to perform protocol dependent
 788 * actions before socket release.
 789 */
 790void tcp_release_cb(struct sock *sk)
 791{
 792	struct tcp_sock *tp = tcp_sk(sk);
 793	unsigned long flags, nflags;
 794
 795	/* perform an atomic operation only if at least one flag is set */
 796	do {
 797		flags = tp->tsq_flags;
 798		if (!(flags & TCP_DEFERRED_ALL))
 799			return;
 800		nflags = flags & ~TCP_DEFERRED_ALL;
 801	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
 802
 803	if (flags & (1UL << TCP_TSQ_DEFERRED))
 804		tcp_tsq_handler(sk);
 805
 806	/* Here begins the tricky part :
 807	 * We are called from release_sock() with :
 808	 * 1) BH disabled
 809	 * 2) sk_lock.slock spinlock held
 810	 * 3) socket owned by us (sk->sk_lock.owned == 1)
 811	 *
 812	 * But following code is meant to be called from BH handlers,
 813	 * so we should keep BH disabled, but early release socket ownership
 814	 */
 815	sock_release_ownership(sk);
 816
 817	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
 818		tcp_write_timer_handler(sk);
 819		__sock_put(sk);
 820	}
 821	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
 822		tcp_delack_timer_handler(sk);
 823		__sock_put(sk);
 824	}
 825	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
 826		inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
 827		__sock_put(sk);
 828	}
 829}
 830EXPORT_SYMBOL(tcp_release_cb);
 831
 832void __init tcp_tasklet_init(void)
 833{
 834	int i;
 835
 836	for_each_possible_cpu(i) {
 837		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
 838
 839		INIT_LIST_HEAD(&tsq->head);
 840		tasklet_init(&tsq->tasklet,
 841			     tcp_tasklet_func,
 842			     (unsigned long)tsq);
 843	}
 844}
 845
 846/*
 847 * Write buffer destructor automatically called from kfree_skb.
 848 * We can't xmit new skbs from this context, as we might already
 849 * hold qdisc lock.
 850 */
 851void tcp_wfree(struct sk_buff *skb)
 852{
 853	struct sock *sk = skb->sk;
 854	struct tcp_sock *tp = tcp_sk(sk);
 855	int wmem;
 856
 857	/* Keep one reference on sk_wmem_alloc.
 858	 * Will be released by sk_free() from here or tcp_tasklet_func()
 859	 */
 860	wmem = atomic_sub_return(skb->truesize - 1, &sk->sk_wmem_alloc);
 861
 862	/* If this softirq is serviced by ksoftirqd, we are likely under stress.
 863	 * Wait until our queues (qdisc + devices) are drained.
 864	 * This gives :
 865	 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
 866	 * - chance for incoming ACK (processed by another cpu maybe)
 867	 *   to migrate this flow (skb->ooo_okay will be eventually set)
 868	 */
 869	if (wmem >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
 870		goto out;
 871
 872	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
 873	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
 874		unsigned long flags;
 875		struct tsq_tasklet *tsq;
 876
 
 
 
 
 
 877		/* queue this socket to tasklet queue */
 878		local_irq_save(flags);
 879		tsq = this_cpu_ptr(&tsq_tasklet);
 880		list_add(&tp->tsq_node, &tsq->head);
 881		tasklet_schedule(&tsq->tasklet);
 882		local_irq_restore(flags);
 883		return;
 
 884	}
 885out:
 886	sk_free(sk);
 887}
 888
 889/* This routine actually transmits TCP packets queued in by
 890 * tcp_do_sendmsg().  This is used by both the initial
 891 * transmission and possible later retransmissions.
 892 * All SKB's seen here are completely headerless.  It is our
 893 * job to build the TCP header, and pass the packet down to
 894 * IP so it can do the same plus pass the packet off to the
 895 * device.
 896 *
 897 * We are working here with either a clone of the original
 898 * SKB, or a fresh unique copy made by the retransmit engine.
 899 */
 900static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
 901			    gfp_t gfp_mask)
 902{
 903	const struct inet_connection_sock *icsk = inet_csk(sk);
 904	struct inet_sock *inet;
 905	struct tcp_sock *tp;
 906	struct tcp_skb_cb *tcb;
 907	struct tcp_out_options opts;
 908	unsigned int tcp_options_size, tcp_header_size;
 909	struct tcp_md5sig_key *md5;
 910	struct tcphdr *th;
 911	int err;
 912
 913	BUG_ON(!skb || !tcp_skb_pcount(skb));
 914
 915	if (clone_it) {
 
 
 916		skb_mstamp_get(&skb->skb_mstamp);
 917
 
 
 
 
 
 918		if (unlikely(skb_cloned(skb)))
 919			skb = pskb_copy(skb, gfp_mask);
 920		else
 921			skb = skb_clone(skb, gfp_mask);
 922		if (unlikely(!skb))
 923			return -ENOBUFS;
 
 
 924	}
 925
 926	inet = inet_sk(sk);
 927	tp = tcp_sk(sk);
 928	tcb = TCP_SKB_CB(skb);
 929	memset(&opts, 0, sizeof(opts));
 930
 931	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
 932		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
 933	else
 934		tcp_options_size = tcp_established_options(sk, skb, &opts,
 935							   &md5);
 936	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
 937
 
 
 
 938	/* if no packet is in qdisc/device queue, then allow XPS to select
 939	 * another queue. We can be called from tcp_tsq_handler()
 940	 * which holds one reference to sk_wmem_alloc.
 941	 *
 942	 * TODO: Ideally, in-flight pure ACK packets should not matter here.
 943	 * One way to get this would be to set skb->truesize = 2 on them.
 944	 */
 945	skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
 946
 947	skb_push(skb, tcp_header_size);
 948	skb_reset_transport_header(skb);
 949
 950	skb_orphan(skb);
 951	skb->sk = sk;
 952	skb->destructor = skb_is_tcp_pure_ack(skb) ? sock_wfree : tcp_wfree;
 953	skb_set_hash_from_sk(skb, sk);
 954	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
 955
 956	/* Build TCP header and checksum it. */
 957	th = tcp_hdr(skb);
 958	th->source		= inet->inet_sport;
 959	th->dest		= inet->inet_dport;
 960	th->seq			= htonl(tcb->seq);
 961	th->ack_seq		= htonl(tp->rcv_nxt);
 962	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
 963					tcb->tcp_flags);
 964
 965	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
 966		/* RFC1323: The window in SYN & SYN/ACK segments
 967		 * is never scaled.
 968		 */
 969		th->window	= htons(min(tp->rcv_wnd, 65535U));
 970	} else {
 971		th->window	= htons(tcp_select_window(sk));
 972	}
 973	th->check		= 0;
 974	th->urg_ptr		= 0;
 975
 976	/* The urg_mode check is necessary during a below snd_una win probe */
 977	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
 978		if (before(tp->snd_up, tcb->seq + 0x10000)) {
 979			th->urg_ptr = htons(tp->snd_up - tcb->seq);
 980			th->urg = 1;
 981		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
 982			th->urg_ptr = htons(0xFFFF);
 983			th->urg = 1;
 984		}
 985	}
 986
 987	tcp_options_write((__be32 *)(th + 1), tp, &opts);
 988	skb_shinfo(skb)->gso_type = sk->sk_gso_type;
 989	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
 990		tcp_ecn_send(sk, skb, tcp_header_size);
 991
 992#ifdef CONFIG_TCP_MD5SIG
 993	/* Calculate the MD5 hash, as we have all we need now */
 994	if (md5) {
 995		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
 996		tp->af_specific->calc_md5_hash(opts.hash_location,
 997					       md5, sk, skb);
 998	}
 999#endif
1000
1001	icsk->icsk_af_ops->send_check(sk, skb);
1002
1003	if (likely(tcb->tcp_flags & TCPHDR_ACK))
1004		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
1005
1006	if (skb->len != tcp_header_size) {
1007		tcp_event_data_sent(tp, sk);
1008		tp->data_segs_out += tcp_skb_pcount(skb);
1009	}
1010
1011	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1012		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1013			      tcp_skb_pcount(skb));
1014
1015	tp->segs_out += tcp_skb_pcount(skb);
1016	/* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1017	skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1018	skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1019
1020	/* Our usage of tstamp should remain private */
1021	skb->tstamp.tv64 = 0;
1022
1023	/* Cleanup our debris for IP stacks */
1024	memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1025			       sizeof(struct inet6_skb_parm)));
1026
1027	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
1028
1029	if (likely(err <= 0))
1030		return err;
1031
1032	tcp_enter_cwr(sk);
1033
1034	return net_xmit_eval(err);
1035}
1036
1037/* This routine just queues the buffer for sending.
1038 *
1039 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1040 * otherwise socket can stall.
1041 */
1042static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1043{
1044	struct tcp_sock *tp = tcp_sk(sk);
1045
1046	/* Advance write_seq and place onto the write_queue. */
1047	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1048	__skb_header_release(skb);
1049	tcp_add_write_queue_tail(sk, skb);
1050	sk->sk_wmem_queued += skb->truesize;
1051	sk_mem_charge(sk, skb->truesize);
1052}
1053
1054/* Initialize TSO segments for a packet. */
1055static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
 
1056{
 
 
 
 
 
1057	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1058		/* Avoid the costly divide in the normal
1059		 * non-TSO case.
1060		 */
1061		tcp_skb_pcount_set(skb, 1);
1062		TCP_SKB_CB(skb)->tcp_gso_size = 0;
 
1063	} else {
1064		tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1065		TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
 
1066	}
1067}
1068
1069/* When a modification to fackets out becomes necessary, we need to check
1070 * skb is counted to fackets_out or not.
1071 */
1072static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1073				   int decr)
1074{
1075	struct tcp_sock *tp = tcp_sk(sk);
1076
1077	if (!tp->sacked_out || tcp_is_reno(tp))
1078		return;
1079
1080	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1081		tp->fackets_out -= decr;
1082}
1083
1084/* Pcount in the middle of the write queue got changed, we need to do various
1085 * tweaks to fix counters
1086 */
1087static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1088{
1089	struct tcp_sock *tp = tcp_sk(sk);
1090
1091	tp->packets_out -= decr;
1092
1093	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1094		tp->sacked_out -= decr;
1095	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1096		tp->retrans_out -= decr;
1097	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1098		tp->lost_out -= decr;
1099
1100	/* Reno case is special. Sigh... */
1101	if (tcp_is_reno(tp) && decr > 0)
1102		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1103
1104	tcp_adjust_fackets_out(sk, skb, decr);
1105
1106	if (tp->lost_skb_hint &&
1107	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1108	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1109		tp->lost_cnt_hint -= decr;
1110
1111	tcp_verify_left_out(tp);
1112}
1113
1114static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1115{
1116	struct skb_shared_info *shinfo = skb_shinfo(skb);
1117
1118	if (unlikely(shinfo->tx_flags & SKBTX_ANY_TSTAMP) &&
1119	    !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1120		struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1121		u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1122
1123		shinfo->tx_flags &= ~tsflags;
1124		shinfo2->tx_flags |= tsflags;
1125		swap(shinfo->tskey, shinfo2->tskey);
1126	}
1127}
1128
1129/* Function to create two new TCP segments.  Shrinks the given segment
1130 * to the specified size and appends a new segment with the rest of the
1131 * packet to the list.  This won't be called frequently, I hope.
1132 * Remember, these are still headerless SKBs at this point.
1133 */
1134int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1135		 unsigned int mss_now, gfp_t gfp)
1136{
1137	struct tcp_sock *tp = tcp_sk(sk);
1138	struct sk_buff *buff;
1139	int nsize, old_factor;
1140	int nlen;
1141	u8 flags;
1142
1143	if (WARN_ON(len > skb->len))
1144		return -EINVAL;
1145
1146	nsize = skb_headlen(skb) - len;
1147	if (nsize < 0)
1148		nsize = 0;
1149
1150	if (skb_unclone(skb, gfp))
1151		return -ENOMEM;
1152
1153	/* Get a new skb... force flag on. */
1154	buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1155	if (!buff)
1156		return -ENOMEM; /* We'll just try again later. */
1157
1158	sk->sk_wmem_queued += buff->truesize;
1159	sk_mem_charge(sk, buff->truesize);
1160	nlen = skb->len - len - nsize;
1161	buff->truesize += nlen;
1162	skb->truesize -= nlen;
1163
1164	/* Correct the sequence numbers. */
1165	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1166	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1167	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1168
1169	/* PSH and FIN should only be set in the second packet. */
1170	flags = TCP_SKB_CB(skb)->tcp_flags;
1171	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1172	TCP_SKB_CB(buff)->tcp_flags = flags;
1173	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1174
1175	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1176		/* Copy and checksum data tail into the new buffer. */
1177		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1178						       skb_put(buff, nsize),
1179						       nsize, 0);
1180
1181		skb_trim(skb, len);
1182
1183		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1184	} else {
1185		skb->ip_summed = CHECKSUM_PARTIAL;
1186		skb_split(skb, buff, len);
1187	}
1188
1189	buff->ip_summed = skb->ip_summed;
1190
 
 
 
 
1191	buff->tstamp = skb->tstamp;
1192	tcp_fragment_tstamp(skb, buff);
1193
1194	old_factor = tcp_skb_pcount(skb);
1195
1196	/* Fix up tso_factor for both original and new SKB.  */
1197	tcp_set_skb_tso_segs(skb, mss_now);
1198	tcp_set_skb_tso_segs(buff, mss_now);
1199
1200	/* If this packet has been sent out already, we must
1201	 * adjust the various packet counters.
1202	 */
1203	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1204		int diff = old_factor - tcp_skb_pcount(skb) -
1205			tcp_skb_pcount(buff);
1206
1207		if (diff)
1208			tcp_adjust_pcount(sk, skb, diff);
1209	}
1210
1211	/* Link BUFF into the send queue. */
1212	__skb_header_release(buff);
1213	tcp_insert_write_queue_after(skb, buff, sk);
1214
1215	return 0;
1216}
1217
1218/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1219 * eventually). The difference is that pulled data not copied, but
1220 * immediately discarded.
1221 */
1222static void __pskb_trim_head(struct sk_buff *skb, int len)
1223{
1224	struct skb_shared_info *shinfo;
1225	int i, k, eat;
1226
1227	eat = min_t(int, len, skb_headlen(skb));
1228	if (eat) {
1229		__skb_pull(skb, eat);
1230		len -= eat;
1231		if (!len)
1232			return;
1233	}
1234	eat = len;
1235	k = 0;
1236	shinfo = skb_shinfo(skb);
1237	for (i = 0; i < shinfo->nr_frags; i++) {
1238		int size = skb_frag_size(&shinfo->frags[i]);
1239
1240		if (size <= eat) {
1241			skb_frag_unref(skb, i);
1242			eat -= size;
1243		} else {
1244			shinfo->frags[k] = shinfo->frags[i];
1245			if (eat) {
1246				shinfo->frags[k].page_offset += eat;
1247				skb_frag_size_sub(&shinfo->frags[k], eat);
1248				eat = 0;
1249			}
1250			k++;
1251		}
1252	}
1253	shinfo->nr_frags = k;
1254
1255	skb_reset_tail_pointer(skb);
1256	skb->data_len -= len;
1257	skb->len = skb->data_len;
1258}
1259
1260/* Remove acked data from a packet in the transmit queue. */
1261int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1262{
1263	if (skb_unclone(skb, GFP_ATOMIC))
1264		return -ENOMEM;
1265
1266	__pskb_trim_head(skb, len);
1267
1268	TCP_SKB_CB(skb)->seq += len;
1269	skb->ip_summed = CHECKSUM_PARTIAL;
1270
1271	skb->truesize	     -= len;
1272	sk->sk_wmem_queued   -= len;
1273	sk_mem_uncharge(sk, len);
1274	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1275
1276	/* Any change of skb->len requires recalculation of tso factor. */
1277	if (tcp_skb_pcount(skb) > 1)
1278		tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1279
1280	return 0;
1281}
1282
1283/* Calculate MSS not accounting any TCP options.  */
1284static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1285{
1286	const struct tcp_sock *tp = tcp_sk(sk);
1287	const struct inet_connection_sock *icsk = inet_csk(sk);
1288	int mss_now;
1289
1290	/* Calculate base mss without TCP options:
1291	   It is MMS_S - sizeof(tcphdr) of rfc1122
1292	 */
1293	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1294
1295	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1296	if (icsk->icsk_af_ops->net_frag_header_len) {
1297		const struct dst_entry *dst = __sk_dst_get(sk);
1298
1299		if (dst && dst_allfrag(dst))
1300			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1301	}
1302
1303	/* Clamp it (mss_clamp does not include tcp options) */
1304	if (mss_now > tp->rx_opt.mss_clamp)
1305		mss_now = tp->rx_opt.mss_clamp;
1306
1307	/* Now subtract optional transport overhead */
1308	mss_now -= icsk->icsk_ext_hdr_len;
1309
1310	/* Then reserve room for full set of TCP options and 8 bytes of data */
1311	if (mss_now < 48)
1312		mss_now = 48;
1313	return mss_now;
1314}
1315
1316/* Calculate MSS. Not accounting for SACKs here.  */
1317int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1318{
1319	/* Subtract TCP options size, not including SACKs */
1320	return __tcp_mtu_to_mss(sk, pmtu) -
1321	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1322}
1323
1324/* Inverse of above */
1325int tcp_mss_to_mtu(struct sock *sk, int mss)
1326{
1327	const struct tcp_sock *tp = tcp_sk(sk);
1328	const struct inet_connection_sock *icsk = inet_csk(sk);
1329	int mtu;
1330
1331	mtu = mss +
1332	      tp->tcp_header_len +
1333	      icsk->icsk_ext_hdr_len +
1334	      icsk->icsk_af_ops->net_header_len;
1335
1336	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1337	if (icsk->icsk_af_ops->net_frag_header_len) {
1338		const struct dst_entry *dst = __sk_dst_get(sk);
1339
1340		if (dst && dst_allfrag(dst))
1341			mtu += icsk->icsk_af_ops->net_frag_header_len;
1342	}
1343	return mtu;
1344}
1345
1346/* MTU probing init per socket */
1347void tcp_mtup_init(struct sock *sk)
1348{
1349	struct tcp_sock *tp = tcp_sk(sk);
1350	struct inet_connection_sock *icsk = inet_csk(sk);
1351	struct net *net = sock_net(sk);
1352
1353	icsk->icsk_mtup.enabled = net->ipv4.sysctl_tcp_mtu_probing > 1;
1354	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1355			       icsk->icsk_af_ops->net_header_len;
1356	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, net->ipv4.sysctl_tcp_base_mss);
1357	icsk->icsk_mtup.probe_size = 0;
1358	if (icsk->icsk_mtup.enabled)
1359		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1360}
1361EXPORT_SYMBOL(tcp_mtup_init);
1362
1363/* This function synchronize snd mss to current pmtu/exthdr set.
1364
1365   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1366   for TCP options, but includes only bare TCP header.
1367
1368   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1369   It is minimum of user_mss and mss received with SYN.
1370   It also does not include TCP options.
1371
1372   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1373
1374   tp->mss_cache is current effective sending mss, including
1375   all tcp options except for SACKs. It is evaluated,
1376   taking into account current pmtu, but never exceeds
1377   tp->rx_opt.mss_clamp.
1378
1379   NOTE1. rfc1122 clearly states that advertised MSS
1380   DOES NOT include either tcp or ip options.
1381
1382   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1383   are READ ONLY outside this function.		--ANK (980731)
1384 */
1385unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1386{
1387	struct tcp_sock *tp = tcp_sk(sk);
1388	struct inet_connection_sock *icsk = inet_csk(sk);
1389	int mss_now;
1390
1391	if (icsk->icsk_mtup.search_high > pmtu)
1392		icsk->icsk_mtup.search_high = pmtu;
1393
1394	mss_now = tcp_mtu_to_mss(sk, pmtu);
1395	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1396
1397	/* And store cached results */
1398	icsk->icsk_pmtu_cookie = pmtu;
1399	if (icsk->icsk_mtup.enabled)
1400		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1401	tp->mss_cache = mss_now;
1402
1403	return mss_now;
1404}
1405EXPORT_SYMBOL(tcp_sync_mss);
1406
1407/* Compute the current effective MSS, taking SACKs and IP options,
1408 * and even PMTU discovery events into account.
1409 */
1410unsigned int tcp_current_mss(struct sock *sk)
1411{
1412	const struct tcp_sock *tp = tcp_sk(sk);
1413	const struct dst_entry *dst = __sk_dst_get(sk);
1414	u32 mss_now;
1415	unsigned int header_len;
1416	struct tcp_out_options opts;
1417	struct tcp_md5sig_key *md5;
1418
1419	mss_now = tp->mss_cache;
1420
1421	if (dst) {
1422		u32 mtu = dst_mtu(dst);
1423		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1424			mss_now = tcp_sync_mss(sk, mtu);
1425	}
1426
1427	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1428		     sizeof(struct tcphdr);
1429	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1430	 * some common options. If this is an odd packet (because we have SACK
1431	 * blocks etc) then our calculated header_len will be different, and
1432	 * we have to adjust mss_now correspondingly */
1433	if (header_len != tp->tcp_header_len) {
1434		int delta = (int) header_len - tp->tcp_header_len;
1435		mss_now -= delta;
1436	}
1437
1438	return mss_now;
1439}
1440
1441/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1442 * As additional protections, we do not touch cwnd in retransmission phases,
1443 * and if application hit its sndbuf limit recently.
1444 */
1445static void tcp_cwnd_application_limited(struct sock *sk)
1446{
1447	struct tcp_sock *tp = tcp_sk(sk);
1448
1449	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1450	    sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1451		/* Limited by application or receiver window. */
1452		u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1453		u32 win_used = max(tp->snd_cwnd_used, init_win);
1454		if (win_used < tp->snd_cwnd) {
1455			tp->snd_ssthresh = tcp_current_ssthresh(sk);
1456			tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
1457		}
1458		tp->snd_cwnd_used = 0;
1459	}
1460	tp->snd_cwnd_stamp = tcp_time_stamp;
1461}
1462
1463static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1464{
1465	struct tcp_sock *tp = tcp_sk(sk);
1466
1467	/* Track the maximum number of outstanding packets in each
1468	 * window, and remember whether we were cwnd-limited then.
1469	 */
1470	if (!before(tp->snd_una, tp->max_packets_seq) ||
1471	    tp->packets_out > tp->max_packets_out) {
1472		tp->max_packets_out = tp->packets_out;
1473		tp->max_packets_seq = tp->snd_nxt;
1474		tp->is_cwnd_limited = is_cwnd_limited;
1475	}
1476
1477	if (tcp_is_cwnd_limited(sk)) {
1478		/* Network is feed fully. */
1479		tp->snd_cwnd_used = 0;
1480		tp->snd_cwnd_stamp = tcp_time_stamp;
1481	} else {
1482		/* Network starves. */
1483		if (tp->packets_out > tp->snd_cwnd_used)
1484			tp->snd_cwnd_used = tp->packets_out;
1485
1486		if (sysctl_tcp_slow_start_after_idle &&
1487		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1488			tcp_cwnd_application_limited(sk);
1489	}
1490}
1491
1492/* Minshall's variant of the Nagle send check. */
1493static bool tcp_minshall_check(const struct tcp_sock *tp)
1494{
1495	return after(tp->snd_sml, tp->snd_una) &&
1496		!after(tp->snd_sml, tp->snd_nxt);
1497}
1498
1499/* Update snd_sml if this skb is under mss
1500 * Note that a TSO packet might end with a sub-mss segment
1501 * The test is really :
1502 * if ((skb->len % mss) != 0)
1503 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1504 * But we can avoid doing the divide again given we already have
1505 *  skb_pcount = skb->len / mss_now
1506 */
1507static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1508				const struct sk_buff *skb)
1509{
1510	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1511		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1512}
1513
1514/* Return false, if packet can be sent now without violation Nagle's rules:
1515 * 1. It is full sized. (provided by caller in %partial bool)
1516 * 2. Or it contains FIN. (already checked by caller)
1517 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1518 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1519 *    With Minshall's modification: all sent small packets are ACKed.
1520 */
1521static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1522			    int nonagle)
1523{
1524	return partial &&
1525		((nonagle & TCP_NAGLE_CORK) ||
1526		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1527}
1528
1529/* Return how many segs we'd like on a TSO packet,
1530 * to send one TSO packet per ms
1531 */
1532static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now)
1533{
1534	u32 bytes, segs;
1535
1536	bytes = min(sk->sk_pacing_rate >> 10,
1537		    sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1538
1539	/* Goal is to send at least one packet per ms,
1540	 * not one big TSO packet every 100 ms.
1541	 * This preserves ACK clocking and is consistent
1542	 * with tcp_tso_should_defer() heuristic.
1543	 */
1544	segs = max_t(u32, bytes / mss_now, sysctl_tcp_min_tso_segs);
1545
1546	return min_t(u32, segs, sk->sk_gso_max_segs);
1547}
1548
1549/* Returns the portion of skb which can be sent right away */
1550static unsigned int tcp_mss_split_point(const struct sock *sk,
1551					const struct sk_buff *skb,
1552					unsigned int mss_now,
1553					unsigned int max_segs,
1554					int nonagle)
1555{
1556	const struct tcp_sock *tp = tcp_sk(sk);
1557	u32 partial, needed, window, max_len;
1558
1559	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1560	max_len = mss_now * max_segs;
1561
1562	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1563		return max_len;
1564
1565	needed = min(skb->len, window);
1566
1567	if (max_len <= needed)
1568		return max_len;
1569
1570	partial = needed % mss_now;
1571	/* If last segment is not a full MSS, check if Nagle rules allow us
1572	 * to include this last segment in this skb.
1573	 * Otherwise, we'll split the skb at last MSS boundary
1574	 */
1575	if (tcp_nagle_check(partial != 0, tp, nonagle))
1576		return needed - partial;
1577
1578	return needed;
1579}
1580
1581/* Can at least one segment of SKB be sent right now, according to the
1582 * congestion window rules?  If so, return how many segments are allowed.
1583 */
1584static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1585					 const struct sk_buff *skb)
1586{
1587	u32 in_flight, cwnd, halfcwnd;
1588
1589	/* Don't be strict about the congestion window for the final FIN.  */
1590	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1591	    tcp_skb_pcount(skb) == 1)
1592		return 1;
1593
1594	in_flight = tcp_packets_in_flight(tp);
1595	cwnd = tp->snd_cwnd;
1596	if (in_flight >= cwnd)
1597		return 0;
1598
1599	/* For better scheduling, ensure we have at least
1600	 * 2 GSO packets in flight.
1601	 */
1602	halfcwnd = max(cwnd >> 1, 1U);
1603	return min(halfcwnd, cwnd - in_flight);
1604}
1605
1606/* Initialize TSO state of a skb.
1607 * This must be invoked the first time we consider transmitting
1608 * SKB onto the wire.
1609 */
1610static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
 
1611{
1612	int tso_segs = tcp_skb_pcount(skb);
1613
1614	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1615		tcp_set_skb_tso_segs(skb, mss_now);
1616		tso_segs = tcp_skb_pcount(skb);
1617	}
1618	return tso_segs;
1619}
1620
1621
1622/* Return true if the Nagle test allows this packet to be
1623 * sent now.
1624 */
1625static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1626				  unsigned int cur_mss, int nonagle)
1627{
1628	/* Nagle rule does not apply to frames, which sit in the middle of the
1629	 * write_queue (they have no chances to get new data).
1630	 *
1631	 * This is implemented in the callers, where they modify the 'nonagle'
1632	 * argument based upon the location of SKB in the send queue.
1633	 */
1634	if (nonagle & TCP_NAGLE_PUSH)
1635		return true;
1636
1637	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1638	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1639		return true;
1640
1641	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1642		return true;
1643
1644	return false;
1645}
1646
1647/* Does at least the first segment of SKB fit into the send window? */
1648static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1649			     const struct sk_buff *skb,
1650			     unsigned int cur_mss)
1651{
1652	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1653
1654	if (skb->len > cur_mss)
1655		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1656
1657	return !after(end_seq, tcp_wnd_end(tp));
1658}
1659
1660/* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1661 * should be put on the wire right now.  If so, it returns the number of
1662 * packets allowed by the congestion window.
1663 */
1664static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1665				 unsigned int cur_mss, int nonagle)
1666{
1667	const struct tcp_sock *tp = tcp_sk(sk);
1668	unsigned int cwnd_quota;
1669
1670	tcp_init_tso_segs(skb, cur_mss);
1671
1672	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1673		return 0;
1674
1675	cwnd_quota = tcp_cwnd_test(tp, skb);
1676	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1677		cwnd_quota = 0;
1678
1679	return cwnd_quota;
1680}
1681
1682/* Test if sending is allowed right now. */
1683bool tcp_may_send_now(struct sock *sk)
1684{
1685	const struct tcp_sock *tp = tcp_sk(sk);
1686	struct sk_buff *skb = tcp_send_head(sk);
1687
1688	return skb &&
1689		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1690			     (tcp_skb_is_last(sk, skb) ?
1691			      tp->nonagle : TCP_NAGLE_PUSH));
1692}
1693
1694/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1695 * which is put after SKB on the list.  It is very much like
1696 * tcp_fragment() except that it may make several kinds of assumptions
1697 * in order to speed up the splitting operation.  In particular, we
1698 * know that all the data is in scatter-gather pages, and that the
1699 * packet has never been sent out before (and thus is not cloned).
1700 */
1701static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1702			unsigned int mss_now, gfp_t gfp)
1703{
1704	struct sk_buff *buff;
1705	int nlen = skb->len - len;
1706	u8 flags;
1707
1708	/* All of a TSO frame must be composed of paged data.  */
1709	if (skb->len != skb->data_len)
1710		return tcp_fragment(sk, skb, len, mss_now, gfp);
1711
1712	buff = sk_stream_alloc_skb(sk, 0, gfp, true);
1713	if (unlikely(!buff))
1714		return -ENOMEM;
1715
1716	sk->sk_wmem_queued += buff->truesize;
1717	sk_mem_charge(sk, buff->truesize);
1718	buff->truesize += nlen;
1719	skb->truesize -= nlen;
1720
1721	/* Correct the sequence numbers. */
1722	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1723	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1724	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1725
1726	/* PSH and FIN should only be set in the second packet. */
1727	flags = TCP_SKB_CB(skb)->tcp_flags;
1728	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1729	TCP_SKB_CB(buff)->tcp_flags = flags;
1730
1731	/* This packet was never sent out yet, so no SACK bits. */
1732	TCP_SKB_CB(buff)->sacked = 0;
1733
1734	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1735	skb_split(skb, buff, len);
1736	tcp_fragment_tstamp(skb, buff);
1737
1738	/* Fix up tso_factor for both original and new SKB.  */
1739	tcp_set_skb_tso_segs(skb, mss_now);
1740	tcp_set_skb_tso_segs(buff, mss_now);
1741
1742	/* Link BUFF into the send queue. */
1743	__skb_header_release(buff);
1744	tcp_insert_write_queue_after(skb, buff, sk);
1745
1746	return 0;
1747}
1748
1749/* Try to defer sending, if possible, in order to minimize the amount
1750 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1751 *
1752 * This algorithm is from John Heffner.
1753 */
1754static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
1755				 bool *is_cwnd_limited, u32 max_segs)
1756{
1757	const struct inet_connection_sock *icsk = inet_csk(sk);
1758	u32 age, send_win, cong_win, limit, in_flight;
1759	struct tcp_sock *tp = tcp_sk(sk);
1760	struct skb_mstamp now;
1761	struct sk_buff *head;
1762	int win_divisor;
1763
1764	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1765		goto send_now;
1766
1767	if (icsk->icsk_ca_state >= TCP_CA_Recovery)
1768		goto send_now;
1769
1770	/* Avoid bursty behavior by allowing defer
1771	 * only if the last write was recent.
1772	 */
1773	if ((s32)(tcp_time_stamp - tp->lsndtime) > 0)
1774		goto send_now;
1775
1776	in_flight = tcp_packets_in_flight(tp);
1777
1778	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1779
1780	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1781
1782	/* From in_flight test above, we know that cwnd > in_flight.  */
1783	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1784
1785	limit = min(send_win, cong_win);
1786
1787	/* If a full-sized TSO skb can be sent, do it. */
1788	if (limit >= max_segs * tp->mss_cache)
 
1789		goto send_now;
1790
1791	/* Middle in queue won't get any more data, full sendable already? */
1792	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1793		goto send_now;
1794
1795	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1796	if (win_divisor) {
1797		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1798
1799		/* If at least some fraction of a window is available,
1800		 * just use it.
1801		 */
1802		chunk /= win_divisor;
1803		if (limit >= chunk)
1804			goto send_now;
1805	} else {
1806		/* Different approach, try not to defer past a single
1807		 * ACK.  Receiver should ACK every other full sized
1808		 * frame, so if we have space for more than 3 frames
1809		 * then send now.
1810		 */
1811		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1812			goto send_now;
1813	}
1814
1815	head = tcp_write_queue_head(sk);
1816	skb_mstamp_get(&now);
1817	age = skb_mstamp_us_delta(&now, &head->skb_mstamp);
1818	/* If next ACK is likely to come too late (half srtt), do not defer */
1819	if (age < (tp->srtt_us >> 4))
1820		goto send_now;
1821
1822	/* Ok, it looks like it is advisable to defer. */
1823
1824	if (cong_win < send_win && cong_win <= skb->len)
1825		*is_cwnd_limited = true;
1826
1827	return true;
1828
1829send_now:
 
1830	return false;
1831}
1832
1833static inline void tcp_mtu_check_reprobe(struct sock *sk)
1834{
1835	struct inet_connection_sock *icsk = inet_csk(sk);
1836	struct tcp_sock *tp = tcp_sk(sk);
1837	struct net *net = sock_net(sk);
1838	u32 interval;
1839	s32 delta;
1840
1841	interval = net->ipv4.sysctl_tcp_probe_interval;
1842	delta = tcp_time_stamp - icsk->icsk_mtup.probe_timestamp;
1843	if (unlikely(delta >= interval * HZ)) {
1844		int mss = tcp_current_mss(sk);
1845
1846		/* Update current search range */
1847		icsk->icsk_mtup.probe_size = 0;
1848		icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
1849			sizeof(struct tcphdr) +
1850			icsk->icsk_af_ops->net_header_len;
1851		icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
1852
1853		/* Update probe time stamp */
1854		icsk->icsk_mtup.probe_timestamp = tcp_time_stamp;
1855	}
1856}
1857
1858/* Create a new MTU probe if we are ready.
1859 * MTU probe is regularly attempting to increase the path MTU by
1860 * deliberately sending larger packets.  This discovers routing
1861 * changes resulting in larger path MTUs.
1862 *
1863 * Returns 0 if we should wait to probe (no cwnd available),
1864 *         1 if a probe was sent,
1865 *         -1 otherwise
1866 */
1867static int tcp_mtu_probe(struct sock *sk)
1868{
1869	struct tcp_sock *tp = tcp_sk(sk);
1870	struct inet_connection_sock *icsk = inet_csk(sk);
1871	struct sk_buff *skb, *nskb, *next;
1872	struct net *net = sock_net(sk);
1873	int len;
1874	int probe_size;
1875	int size_needed;
1876	int copy;
1877	int mss_now;
1878	int interval;
1879
1880	/* Not currently probing/verifying,
1881	 * not in recovery,
1882	 * have enough cwnd, and
1883	 * not SACKing (the variable headers throw things off) */
1884	if (!icsk->icsk_mtup.enabled ||
1885	    icsk->icsk_mtup.probe_size ||
1886	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1887	    tp->snd_cwnd < 11 ||
1888	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1889		return -1;
1890
1891	/* Use binary search for probe_size between tcp_mss_base,
1892	 * and current mss_clamp. if (search_high - search_low)
1893	 * smaller than a threshold, backoff from probing.
1894	 */
1895	mss_now = tcp_current_mss(sk);
1896	probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
1897				    icsk->icsk_mtup.search_low) >> 1);
1898	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1899	interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
1900	/* When misfortune happens, we are reprobing actively,
1901	 * and then reprobe timer has expired. We stick with current
1902	 * probing process by not resetting search range to its orignal.
1903	 */
1904	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
1905		interval < net->ipv4.sysctl_tcp_probe_threshold) {
1906		/* Check whether enough time has elaplased for
1907		 * another round of probing.
1908		 */
1909		tcp_mtu_check_reprobe(sk);
1910		return -1;
1911	}
1912
1913	/* Have enough data in the send queue to probe? */
1914	if (tp->write_seq - tp->snd_nxt < size_needed)
1915		return -1;
1916
1917	if (tp->snd_wnd < size_needed)
1918		return -1;
1919	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1920		return 0;
1921
1922	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1923	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1924		if (!tcp_packets_in_flight(tp))
1925			return -1;
1926		else
1927			return 0;
1928	}
1929
1930	/* We're allowed to probe.  Build it now. */
1931	nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
1932	if (!nskb)
1933		return -1;
1934	sk->sk_wmem_queued += nskb->truesize;
1935	sk_mem_charge(sk, nskb->truesize);
1936
1937	skb = tcp_send_head(sk);
1938
1939	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1940	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1941	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1942	TCP_SKB_CB(nskb)->sacked = 0;
1943	nskb->csum = 0;
1944	nskb->ip_summed = skb->ip_summed;
1945
1946	tcp_insert_write_queue_before(nskb, skb, sk);
1947
1948	len = 0;
1949	tcp_for_write_queue_from_safe(skb, next, sk) {
1950		copy = min_t(int, skb->len, probe_size - len);
1951		if (nskb->ip_summed)
1952			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1953		else
1954			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1955							    skb_put(nskb, copy),
1956							    copy, nskb->csum);
1957
1958		if (skb->len <= copy) {
1959			/* We've eaten all the data from this skb.
1960			 * Throw it away. */
1961			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1962			tcp_unlink_write_queue(skb, sk);
1963			sk_wmem_free_skb(sk, skb);
1964		} else {
1965			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1966						   ~(TCPHDR_FIN|TCPHDR_PSH);
1967			if (!skb_shinfo(skb)->nr_frags) {
1968				skb_pull(skb, copy);
1969				if (skb->ip_summed != CHECKSUM_PARTIAL)
1970					skb->csum = csum_partial(skb->data,
1971								 skb->len, 0);
1972			} else {
1973				__pskb_trim_head(skb, copy);
1974				tcp_set_skb_tso_segs(skb, mss_now);
1975			}
1976			TCP_SKB_CB(skb)->seq += copy;
1977		}
1978
1979		len += copy;
1980
1981		if (len >= probe_size)
1982			break;
1983	}
1984	tcp_init_tso_segs(nskb, nskb->len);
1985
1986	/* We're ready to send.  If this fails, the probe will
1987	 * be resegmented into mss-sized pieces by tcp_write_xmit().
1988	 */
1989	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1990		/* Decrement cwnd here because we are sending
1991		 * effectively two packets. */
1992		tp->snd_cwnd--;
1993		tcp_event_new_data_sent(sk, nskb);
1994
1995		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1996		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1997		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1998
1999		return 1;
2000	}
2001
2002	return -1;
2003}
2004
2005/* This routine writes packets to the network.  It advances the
2006 * send_head.  This happens as incoming acks open up the remote
2007 * window for us.
2008 *
2009 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2010 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2011 * account rare use of URG, this is not a big flaw.
2012 *
2013 * Send at most one packet when push_one > 0. Temporarily ignore
2014 * cwnd limit to force at most one packet out when push_one == 2.
2015
2016 * Returns true, if no segments are in flight and we have queued segments,
2017 * but cannot send anything now because of SWS or another problem.
2018 */
2019static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2020			   int push_one, gfp_t gfp)
2021{
2022	struct tcp_sock *tp = tcp_sk(sk);
2023	struct sk_buff *skb;
2024	unsigned int tso_segs, sent_pkts;
2025	int cwnd_quota;
2026	int result;
2027	bool is_cwnd_limited = false;
2028	u32 max_segs;
2029
2030	sent_pkts = 0;
2031
2032	if (!push_one) {
2033		/* Do MTU probing. */
2034		result = tcp_mtu_probe(sk);
2035		if (!result) {
2036			return false;
2037		} else if (result > 0) {
2038			sent_pkts = 1;
2039		}
2040	}
2041
2042	max_segs = tcp_tso_autosize(sk, mss_now);
2043	while ((skb = tcp_send_head(sk))) {
2044		unsigned int limit;
2045
2046		tso_segs = tcp_init_tso_segs(skb, mss_now);
2047		BUG_ON(!tso_segs);
2048
2049		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2050			/* "skb_mstamp" is used as a start point for the retransmit timer */
2051			skb_mstamp_get(&skb->skb_mstamp);
2052			goto repair; /* Skip network transmission */
2053		}
2054
2055		cwnd_quota = tcp_cwnd_test(tp, skb);
2056		if (!cwnd_quota) {
2057			if (push_one == 2)
2058				/* Force out a loss probe pkt. */
2059				cwnd_quota = 1;
2060			else
2061				break;
2062		}
2063
2064		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
2065			break;
2066
2067		if (tso_segs == 1) {
2068			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2069						     (tcp_skb_is_last(sk, skb) ?
2070						      nonagle : TCP_NAGLE_PUSH))))
2071				break;
2072		} else {
2073			if (!push_one &&
2074			    tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2075						 max_segs))
2076				break;
2077		}
2078
2079		limit = mss_now;
2080		if (tso_segs > 1 && !tcp_urg_mode(tp))
2081			limit = tcp_mss_split_point(sk, skb, mss_now,
2082						    min_t(unsigned int,
2083							  cwnd_quota,
2084							  max_segs),
2085						    nonagle);
2086
2087		if (skb->len > limit &&
2088		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2089			break;
2090
2091		/* TCP Small Queues :
2092		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2093		 * This allows for :
2094		 *  - better RTT estimation and ACK scheduling
2095		 *  - faster recovery
2096		 *  - high rates
2097		 * Alas, some drivers / subsystems require a fair amount
2098		 * of queued bytes to ensure line rate.
2099		 * One example is wifi aggregation (802.11 AMPDU)
2100		 */
2101		limit = max(2 * skb->truesize, sk->sk_pacing_rate >> 10);
2102		limit = min_t(u32, limit, sysctl_tcp_limit_output_bytes);
2103
2104		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
2105			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
2106			/* It is possible TX completion already happened
2107			 * before we set TSQ_THROTTLED, so we must
2108			 * test again the condition.
 
 
2109			 */
2110			smp_mb__after_atomic();
2111			if (atomic_read(&sk->sk_wmem_alloc) > limit)
2112				break;
2113		}
2114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2116			break;
2117
2118repair:
2119		/* Advance the send_head.  This one is sent out.
2120		 * This call will increment packets_out.
2121		 */
2122		tcp_event_new_data_sent(sk, skb);
2123
2124		tcp_minshall_update(tp, mss_now, skb);
2125		sent_pkts += tcp_skb_pcount(skb);
2126
2127		if (push_one)
2128			break;
2129	}
2130
2131	if (likely(sent_pkts)) {
2132		if (tcp_in_cwnd_reduction(sk))
2133			tp->prr_out += sent_pkts;
2134
2135		/* Send one loss probe per tail loss episode. */
2136		if (push_one != 2)
2137			tcp_schedule_loss_probe(sk);
2138		is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tp->snd_cwnd);
2139		tcp_cwnd_validate(sk, is_cwnd_limited);
2140		return false;
2141	}
2142	return !tp->packets_out && tcp_send_head(sk);
2143}
2144
2145bool tcp_schedule_loss_probe(struct sock *sk)
2146{
2147	struct inet_connection_sock *icsk = inet_csk(sk);
2148	struct tcp_sock *tp = tcp_sk(sk);
2149	u32 timeout, tlp_time_stamp, rto_time_stamp;
2150	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
2151
2152	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
2153		return false;
2154	/* No consecutive loss probes. */
2155	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
2156		tcp_rearm_rto(sk);
2157		return false;
2158	}
2159	/* Don't do any loss probe on a Fast Open connection before 3WHS
2160	 * finishes.
2161	 */
2162	if (tp->fastopen_rsk)
2163		return false;
2164
2165	/* TLP is only scheduled when next timer event is RTO. */
2166	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2167		return false;
2168
2169	/* Schedule a loss probe in 2*RTT for SACK capable connections
2170	 * in Open state, that are either limited by cwnd or application.
2171	 */
2172	if (sysctl_tcp_early_retrans < 3 || !tp->packets_out ||
2173	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2174		return false;
2175
2176	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2177	     tcp_send_head(sk))
2178		return false;
2179
2180	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2181	 * for delayed ack when there's one outstanding packet. If no RTT
2182	 * sample is available then probe after TCP_TIMEOUT_INIT.
2183	 */
2184	timeout = rtt << 1 ? : TCP_TIMEOUT_INIT;
2185	if (tp->packets_out == 1)
2186		timeout = max_t(u32, timeout,
2187				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2188	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2189
2190	/* If RTO is shorter, just schedule TLP in its place. */
2191	tlp_time_stamp = tcp_time_stamp + timeout;
2192	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2193	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2194		s32 delta = rto_time_stamp - tcp_time_stamp;
2195		if (delta > 0)
2196			timeout = delta;
2197	}
2198
2199	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2200				  TCP_RTO_MAX);
2201	return true;
2202}
2203
2204/* Thanks to skb fast clones, we can detect if a prior transmit of
2205 * a packet is still in a qdisc or driver queue.
2206 * In this case, there is very little point doing a retransmit !
2207 * Note: This is called from BH context only.
2208 */
2209static bool skb_still_in_host_queue(const struct sock *sk,
2210				    const struct sk_buff *skb)
2211{
2212	if (unlikely(skb_fclone_busy(sk, skb))) {
2213		NET_INC_STATS_BH(sock_net(sk),
2214				 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2215		return true;
2216	}
2217	return false;
2218}
2219
2220/* When probe timeout (PTO) fires, try send a new segment if possible, else
2221 * retransmit the last segment.
2222 */
2223void tcp_send_loss_probe(struct sock *sk)
2224{
2225	struct tcp_sock *tp = tcp_sk(sk);
2226	struct sk_buff *skb;
2227	int pcount;
2228	int mss = tcp_current_mss(sk);
 
2229
2230	skb = tcp_send_head(sk);
2231	if (skb) {
2232		if (tcp_snd_wnd_test(tp, skb, mss)) {
2233			pcount = tp->packets_out;
2234			tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2235			if (tp->packets_out > pcount)
2236				goto probe_sent;
2237			goto rearm_timer;
2238		}
2239		skb = tcp_write_queue_prev(sk, skb);
2240	} else {
2241		skb = tcp_write_queue_tail(sk);
2242	}
2243
2244	/* At most one outstanding TLP retransmission. */
2245	if (tp->tlp_high_seq)
2246		goto rearm_timer;
2247
2248	/* Retransmit last segment. */
 
2249	if (WARN_ON(!skb))
2250		goto rearm_timer;
2251
2252	if (skb_still_in_host_queue(sk, skb))
2253		goto rearm_timer;
2254
2255	pcount = tcp_skb_pcount(skb);
2256	if (WARN_ON(!pcount))
2257		goto rearm_timer;
2258
2259	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2260		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss,
2261					  GFP_ATOMIC)))
2262			goto rearm_timer;
2263		skb = tcp_write_queue_next(sk, skb);
2264	}
2265
2266	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2267		goto rearm_timer;
2268
2269	if (__tcp_retransmit_skb(sk, skb))
2270		goto rearm_timer;
 
2271
2272	/* Record snd_nxt for loss detection. */
2273	tp->tlp_high_seq = tp->snd_nxt;
 
2274
2275probe_sent:
2276	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2277	/* Reset s.t. tcp_rearm_rto will restart timer from now */
2278	inet_csk(sk)->icsk_pending = 0;
2279rearm_timer:
2280	tcp_rearm_rto(sk);
 
 
 
 
 
 
2281}
2282
2283/* Push out any pending frames which were held back due to
2284 * TCP_CORK or attempt at coalescing tiny packets.
2285 * The socket must be locked by the caller.
2286 */
2287void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2288			       int nonagle)
2289{
2290	/* If we are closed, the bytes will have to remain here.
2291	 * In time closedown will finish, we empty the write queue and
2292	 * all will be happy.
2293	 */
2294	if (unlikely(sk->sk_state == TCP_CLOSE))
2295		return;
2296
2297	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2298			   sk_gfp_mask(sk, GFP_ATOMIC)))
2299		tcp_check_probe_timer(sk);
2300}
2301
2302/* Send _single_ skb sitting at the send head. This function requires
2303 * true push pending frames to setup probe timer etc.
2304 */
2305void tcp_push_one(struct sock *sk, unsigned int mss_now)
2306{
2307	struct sk_buff *skb = tcp_send_head(sk);
2308
2309	BUG_ON(!skb || skb->len < mss_now);
2310
2311	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2312}
2313
2314/* This function returns the amount that we can raise the
2315 * usable window based on the following constraints
2316 *
2317 * 1. The window can never be shrunk once it is offered (RFC 793)
2318 * 2. We limit memory per socket
2319 *
2320 * RFC 1122:
2321 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2322 *  RECV.NEXT + RCV.WIN fixed until:
2323 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2324 *
2325 * i.e. don't raise the right edge of the window until you can raise
2326 * it at least MSS bytes.
2327 *
2328 * Unfortunately, the recommended algorithm breaks header prediction,
2329 * since header prediction assumes th->window stays fixed.
2330 *
2331 * Strictly speaking, keeping th->window fixed violates the receiver
2332 * side SWS prevention criteria. The problem is that under this rule
2333 * a stream of single byte packets will cause the right side of the
2334 * window to always advance by a single byte.
2335 *
2336 * Of course, if the sender implements sender side SWS prevention
2337 * then this will not be a problem.
2338 *
2339 * BSD seems to make the following compromise:
2340 *
2341 *	If the free space is less than the 1/4 of the maximum
2342 *	space available and the free space is less than 1/2 mss,
2343 *	then set the window to 0.
2344 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2345 *	Otherwise, just prevent the window from shrinking
2346 *	and from being larger than the largest representable value.
2347 *
2348 * This prevents incremental opening of the window in the regime
2349 * where TCP is limited by the speed of the reader side taking
2350 * data out of the TCP receive queue. It does nothing about
2351 * those cases where the window is constrained on the sender side
2352 * because the pipeline is full.
2353 *
2354 * BSD also seems to "accidentally" limit itself to windows that are a
2355 * multiple of MSS, at least until the free space gets quite small.
2356 * This would appear to be a side effect of the mbuf implementation.
2357 * Combining these two algorithms results in the observed behavior
2358 * of having a fixed window size at almost all times.
2359 *
2360 * Below we obtain similar behavior by forcing the offered window to
2361 * a multiple of the mss when it is feasible to do so.
2362 *
2363 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2364 * Regular options like TIMESTAMP are taken into account.
2365 */
2366u32 __tcp_select_window(struct sock *sk)
2367{
2368	struct inet_connection_sock *icsk = inet_csk(sk);
2369	struct tcp_sock *tp = tcp_sk(sk);
2370	/* MSS for the peer's data.  Previous versions used mss_clamp
2371	 * here.  I don't know if the value based on our guesses
2372	 * of peer's MSS is better for the performance.  It's more correct
2373	 * but may be worse for the performance because of rcv_mss
2374	 * fluctuations.  --SAW  1998/11/1
2375	 */
2376	int mss = icsk->icsk_ack.rcv_mss;
2377	int free_space = tcp_space(sk);
2378	int allowed_space = tcp_full_space(sk);
2379	int full_space = min_t(int, tp->window_clamp, allowed_space);
2380	int window;
2381
2382	if (mss > full_space)
2383		mss = full_space;
2384
2385	if (free_space < (full_space >> 1)) {
2386		icsk->icsk_ack.quick = 0;
2387
2388		if (tcp_under_memory_pressure(sk))
2389			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2390					       4U * tp->advmss);
2391
2392		/* free_space might become our new window, make sure we don't
2393		 * increase it due to wscale.
2394		 */
2395		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2396
2397		/* if free space is less than mss estimate, or is below 1/16th
2398		 * of the maximum allowed, try to move to zero-window, else
2399		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2400		 * new incoming data is dropped due to memory limits.
2401		 * With large window, mss test triggers way too late in order
2402		 * to announce zero window in time before rmem limit kicks in.
2403		 */
2404		if (free_space < (allowed_space >> 4) || free_space < mss)
2405			return 0;
2406	}
2407
2408	if (free_space > tp->rcv_ssthresh)
2409		free_space = tp->rcv_ssthresh;
2410
2411	/* Don't do rounding if we are using window scaling, since the
2412	 * scaled window will not line up with the MSS boundary anyway.
2413	 */
2414	window = tp->rcv_wnd;
2415	if (tp->rx_opt.rcv_wscale) {
2416		window = free_space;
2417
2418		/* Advertise enough space so that it won't get scaled away.
2419		 * Import case: prevent zero window announcement if
2420		 * 1<<rcv_wscale > mss.
2421		 */
2422		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2423			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2424				  << tp->rx_opt.rcv_wscale);
2425	} else {
2426		/* Get the largest window that is a nice multiple of mss.
2427		 * Window clamp already applied above.
2428		 * If our current window offering is within 1 mss of the
2429		 * free space we just keep it. This prevents the divide
2430		 * and multiply from happening most of the time.
2431		 * We also don't do any window rounding when the free space
2432		 * is too small.
2433		 */
2434		if (window <= free_space - mss || window > free_space)
2435			window = (free_space / mss) * mss;
2436		else if (mss == full_space &&
2437			 free_space > window + (full_space >> 1))
2438			window = free_space;
2439	}
2440
2441	return window;
2442}
2443
2444void tcp_skb_collapse_tstamp(struct sk_buff *skb,
2445			     const struct sk_buff *next_skb)
2446{
2447	const struct skb_shared_info *next_shinfo = skb_shinfo(next_skb);
2448	u8 tsflags = next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
2449
2450	if (unlikely(tsflags)) {
2451		struct skb_shared_info *shinfo = skb_shinfo(skb);
2452
2453		shinfo->tx_flags |= tsflags;
2454		shinfo->tskey = next_shinfo->tskey;
2455	}
2456}
2457
2458/* Collapses two adjacent SKB's during retransmission. */
2459static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2460{
2461	struct tcp_sock *tp = tcp_sk(sk);
2462	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2463	int skb_size, next_skb_size;
2464
2465	skb_size = skb->len;
2466	next_skb_size = next_skb->len;
2467
2468	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2469
2470	tcp_highest_sack_combine(sk, next_skb, skb);
2471
2472	tcp_unlink_write_queue(next_skb, sk);
2473
2474	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2475				  next_skb_size);
2476
2477	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2478		skb->ip_summed = CHECKSUM_PARTIAL;
2479
2480	if (skb->ip_summed != CHECKSUM_PARTIAL)
2481		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2482
2483	/* Update sequence range on original skb. */
2484	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2485
2486	/* Merge over control information. This moves PSH/FIN etc. over */
2487	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2488
2489	/* All done, get rid of second SKB and account for it so
2490	 * packet counting does not break.
2491	 */
2492	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2493
2494	/* changed transmit queue under us so clear hints */
2495	tcp_clear_retrans_hints_partial(tp);
2496	if (next_skb == tp->retransmit_skb_hint)
2497		tp->retransmit_skb_hint = skb;
2498
2499	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2500
2501	tcp_skb_collapse_tstamp(skb, next_skb);
2502
2503	sk_wmem_free_skb(sk, next_skb);
2504}
2505
2506/* Check if coalescing SKBs is legal. */
2507static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2508{
2509	if (tcp_skb_pcount(skb) > 1)
2510		return false;
2511	/* TODO: SACK collapsing could be used to remove this condition */
2512	if (skb_shinfo(skb)->nr_frags != 0)
2513		return false;
2514	if (skb_cloned(skb))
2515		return false;
2516	if (skb == tcp_send_head(sk))
2517		return false;
2518	/* Some heurestics for collapsing over SACK'd could be invented */
2519	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2520		return false;
2521
2522	return true;
2523}
2524
2525/* Collapse packets in the retransmit queue to make to create
2526 * less packets on the wire. This is only done on retransmission.
2527 */
2528static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2529				     int space)
2530{
2531	struct tcp_sock *tp = tcp_sk(sk);
2532	struct sk_buff *skb = to, *tmp;
2533	bool first = true;
2534
2535	if (!sysctl_tcp_retrans_collapse)
2536		return;
2537	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2538		return;
2539
2540	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2541		if (!tcp_can_collapse(sk, skb))
2542			break;
2543
2544		space -= skb->len;
2545
2546		if (first) {
2547			first = false;
2548			continue;
2549		}
2550
2551		if (space < 0)
2552			break;
2553		/* Punt if not enough space exists in the first SKB for
2554		 * the data in the second
2555		 */
2556		if (skb->len > skb_availroom(to))
2557			break;
2558
2559		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2560			break;
2561
2562		tcp_collapse_retrans(sk, to);
2563	}
2564}
2565
2566/* This retransmits one SKB.  Policy decisions and retransmit queue
2567 * state updates are done by the caller.  Returns non-zero if an
2568 * error occurred which prevented the send.
2569 */
2570int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2571{
2572	struct tcp_sock *tp = tcp_sk(sk);
2573	struct inet_connection_sock *icsk = inet_csk(sk);
2574	unsigned int cur_mss;
2575	int err;
2576
2577	/* Inconslusive MTU probe */
2578	if (icsk->icsk_mtup.probe_size) {
2579		icsk->icsk_mtup.probe_size = 0;
2580	}
2581
2582	/* Do not sent more than we queued. 1/4 is reserved for possible
2583	 * copying overhead: fragmentation, tunneling, mangling etc.
2584	 */
2585	if (atomic_read(&sk->sk_wmem_alloc) >
2586	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2587		return -EAGAIN;
2588
2589	if (skb_still_in_host_queue(sk, skb))
2590		return -EBUSY;
2591
2592	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2593		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2594			BUG();
2595		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2596			return -ENOMEM;
2597	}
2598
2599	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2600		return -EHOSTUNREACH; /* Routing failure or similar. */
2601
2602	cur_mss = tcp_current_mss(sk);
2603
2604	/* If receiver has shrunk his window, and skb is out of
2605	 * new window, do not retransmit it. The exception is the
2606	 * case, when window is shrunk to zero. In this case
2607	 * our retransmit serves as a zero window probe.
2608	 */
2609	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2610	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2611		return -EAGAIN;
2612
2613	if (skb->len > cur_mss) {
2614		if (tcp_fragment(sk, skb, cur_mss, cur_mss, GFP_ATOMIC))
2615			return -ENOMEM; /* We'll try again later. */
2616	} else {
2617		int oldpcount = tcp_skb_pcount(skb);
2618
2619		if (unlikely(oldpcount > 1)) {
2620			if (skb_unclone(skb, GFP_ATOMIC))
2621				return -ENOMEM;
2622			tcp_init_tso_segs(skb, cur_mss);
2623			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2624		}
2625	}
2626
2627	/* RFC3168, section 6.1.1.1. ECN fallback */
2628	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
2629		tcp_ecn_clear_syn(sk, skb);
2630
2631	tcp_retrans_try_collapse(sk, skb, cur_mss);
2632
2633	/* Make a copy, if the first transmission SKB clone we made
2634	 * is still in somebody's hands, else make a clone.
2635	 */
 
2636
2637	/* make sure skb->data is aligned on arches that require it
2638	 * and check if ack-trimming & collapsing extended the headroom
2639	 * beyond what csum_start can cover.
2640	 */
2641	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2642		     skb_headroom(skb) >= 0xFFFF)) {
2643		struct sk_buff *nskb;
2644
2645		skb_mstamp_get(&skb->skb_mstamp);
2646		nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
2647		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2648			     -ENOBUFS;
2649	} else {
2650		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2651	}
2652
2653	if (likely(!err)) {
2654		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2655		/* Update global TCP statistics. */
2656		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2657		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2658			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2659		tp->total_retrans++;
2660	}
2661	return err;
2662}
2663
2664int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2665{
2666	struct tcp_sock *tp = tcp_sk(sk);
2667	int err = __tcp_retransmit_skb(sk, skb);
2668
2669	if (err == 0) {
2670#if FASTRETRANS_DEBUG > 0
2671		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2672			net_dbg_ratelimited("retrans_out leaked\n");
2673		}
2674#endif
 
 
2675		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2676		tp->retrans_out += tcp_skb_pcount(skb);
2677
2678		/* Save stamp of the first retransmit. */
2679		if (!tp->retrans_stamp)
2680			tp->retrans_stamp = tcp_skb_timestamp(skb);
 
 
2681
2682	} else if (err != -EBUSY) {
 
 
 
 
2683		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2684	}
2685
2686	if (tp->undo_retrans < 0)
2687		tp->undo_retrans = 0;
2688	tp->undo_retrans += tcp_skb_pcount(skb);
2689	return err;
2690}
2691
2692/* Check if we forward retransmits are possible in the current
2693 * window/congestion state.
2694 */
2695static bool tcp_can_forward_retransmit(struct sock *sk)
2696{
2697	const struct inet_connection_sock *icsk = inet_csk(sk);
2698	const struct tcp_sock *tp = tcp_sk(sk);
2699
2700	/* Forward retransmissions are possible only during Recovery. */
2701	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2702		return false;
2703
2704	/* No forward retransmissions in Reno are possible. */
2705	if (tcp_is_reno(tp))
2706		return false;
2707
2708	/* Yeah, we have to make difficult choice between forward transmission
2709	 * and retransmission... Both ways have their merits...
2710	 *
2711	 * For now we do not retransmit anything, while we have some new
2712	 * segments to send. In the other cases, follow rule 3 for
2713	 * NextSeg() specified in RFC3517.
2714	 */
2715
2716	if (tcp_may_send_now(sk))
2717		return false;
2718
2719	return true;
2720}
2721
2722/* This gets called after a retransmit timeout, and the initially
2723 * retransmitted data is acknowledged.  It tries to continue
2724 * resending the rest of the retransmit queue, until either
2725 * we've sent it all or the congestion window limit is reached.
2726 * If doing SACK, the first ACK which comes back for a timeout
2727 * based retransmit packet might feed us FACK information again.
2728 * If so, we use it to avoid unnecessarily retransmissions.
2729 */
2730void tcp_xmit_retransmit_queue(struct sock *sk)
2731{
2732	const struct inet_connection_sock *icsk = inet_csk(sk);
2733	struct tcp_sock *tp = tcp_sk(sk);
2734	struct sk_buff *skb;
2735	struct sk_buff *hole = NULL;
2736	u32 last_lost;
2737	int mib_idx;
2738	int fwd_rexmitting = 0;
2739
2740	if (!tp->packets_out)
2741		return;
2742
2743	if (!tp->lost_out)
2744		tp->retransmit_high = tp->snd_una;
2745
2746	if (tp->retransmit_skb_hint) {
2747		skb = tp->retransmit_skb_hint;
2748		last_lost = TCP_SKB_CB(skb)->end_seq;
2749		if (after(last_lost, tp->retransmit_high))
2750			last_lost = tp->retransmit_high;
2751	} else {
2752		skb = tcp_write_queue_head(sk);
2753		last_lost = tp->snd_una;
2754	}
2755
2756	tcp_for_write_queue_from(skb, sk) {
2757		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2758
2759		if (skb == tcp_send_head(sk))
2760			break;
2761		/* we could do better than to assign each time */
2762		if (!hole)
2763			tp->retransmit_skb_hint = skb;
2764
2765		/* Assume this retransmit will generate
2766		 * only one packet for congestion window
2767		 * calculation purposes.  This works because
2768		 * tcp_retransmit_skb() will chop up the
2769		 * packet to be MSS sized and all the
2770		 * packet counting works out.
2771		 */
2772		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2773			return;
2774
2775		if (fwd_rexmitting) {
2776begin_fwd:
2777			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2778				break;
2779			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2780
2781		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2782			tp->retransmit_high = last_lost;
2783			if (!tcp_can_forward_retransmit(sk))
2784				break;
2785			/* Backtrack if necessary to non-L'ed skb */
2786			if (hole) {
2787				skb = hole;
2788				hole = NULL;
2789			}
2790			fwd_rexmitting = 1;
2791			goto begin_fwd;
2792
2793		} else if (!(sacked & TCPCB_LOST)) {
2794			if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2795				hole = skb;
2796			continue;
2797
2798		} else {
2799			last_lost = TCP_SKB_CB(skb)->end_seq;
2800			if (icsk->icsk_ca_state != TCP_CA_Loss)
2801				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2802			else
2803				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2804		}
2805
2806		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2807			continue;
2808
2809		if (tcp_retransmit_skb(sk, skb))
2810			return;
2811
2812		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2813
2814		if (tcp_in_cwnd_reduction(sk))
2815			tp->prr_out += tcp_skb_pcount(skb);
2816
2817		if (skb == tcp_write_queue_head(sk))
2818			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2819						  inet_csk(sk)->icsk_rto,
2820						  TCP_RTO_MAX);
2821	}
2822}
2823
2824/* We allow to exceed memory limits for FIN packets to expedite
2825 * connection tear down and (memory) recovery.
2826 * Otherwise tcp_send_fin() could be tempted to either delay FIN
2827 * or even be forced to close flow without any FIN.
2828 * In general, we want to allow one skb per socket to avoid hangs
2829 * with edge trigger epoll()
2830 */
2831void sk_forced_mem_schedule(struct sock *sk, int size)
2832{
2833	int amt;
2834
2835	if (size <= sk->sk_forward_alloc)
2836		return;
2837	amt = sk_mem_pages(size);
2838	sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
2839	sk_memory_allocated_add(sk, amt);
2840
2841	if (mem_cgroup_sockets_enabled && sk->sk_memcg)
2842		mem_cgroup_charge_skmem(sk->sk_memcg, amt);
2843}
2844
2845/* Send a FIN. The caller locks the socket for us.
2846 * We should try to send a FIN packet really hard, but eventually give up.
2847 */
2848void tcp_send_fin(struct sock *sk)
2849{
2850	struct sk_buff *skb, *tskb = tcp_write_queue_tail(sk);
2851	struct tcp_sock *tp = tcp_sk(sk);
 
 
2852
2853	/* Optimization, tack on the FIN if we have one skb in write queue and
2854	 * this skb was not yet sent, or we are under memory pressure.
2855	 * Note: in the latter case, FIN packet will be sent after a timeout,
2856	 * as TCP stack thinks it has already been transmitted.
2857	 */
2858	if (tskb && (tcp_send_head(sk) || tcp_under_memory_pressure(sk))) {
2859coalesce:
2860		TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
2861		TCP_SKB_CB(tskb)->end_seq++;
2862		tp->write_seq++;
2863		if (!tcp_send_head(sk)) {
2864			/* This means tskb was already sent.
2865			 * Pretend we included the FIN on previous transmit.
2866			 * We need to set tp->snd_nxt to the value it would have
2867			 * if FIN had been sent. This is because retransmit path
2868			 * does not change tp->snd_nxt.
2869			 */
2870			tp->snd_nxt++;
2871			return;
2872		}
2873	} else {
2874		skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
2875		if (unlikely(!skb)) {
2876			if (tskb)
2877				goto coalesce;
2878			return;
 
 
2879		}
 
 
2880		skb_reserve(skb, MAX_TCP_HEADER);
2881		sk_forced_mem_schedule(sk, skb->truesize);
2882		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2883		tcp_init_nondata_skb(skb, tp->write_seq,
2884				     TCPHDR_ACK | TCPHDR_FIN);
2885		tcp_queue_skb(sk, skb);
2886	}
2887	__tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
2888}
2889
2890/* We get here when a process closes a file descriptor (either due to
2891 * an explicit close() or as a byproduct of exit()'ing) and there
2892 * was unread data in the receive queue.  This behavior is recommended
2893 * by RFC 2525, section 2.17.  -DaveM
2894 */
2895void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2896{
2897	struct sk_buff *skb;
2898
2899	/* NOTE: No TCP options attached and we never retransmit this. */
2900	skb = alloc_skb(MAX_TCP_HEADER, priority);
2901	if (!skb) {
2902		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2903		return;
2904	}
2905
2906	/* Reserve space for headers and prepare control bits. */
2907	skb_reserve(skb, MAX_TCP_HEADER);
2908	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2909			     TCPHDR_ACK | TCPHDR_RST);
2910	skb_mstamp_get(&skb->skb_mstamp);
2911	/* Send it off. */
 
2912	if (tcp_transmit_skb(sk, skb, 0, priority))
2913		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2914
2915	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2916}
2917
2918/* Send a crossed SYN-ACK during socket establishment.
2919 * WARNING: This routine must only be called when we have already sent
2920 * a SYN packet that crossed the incoming SYN that caused this routine
2921 * to get called. If this assumption fails then the initial rcv_wnd
2922 * and rcv_wscale values will not be correct.
2923 */
2924int tcp_send_synack(struct sock *sk)
2925{
2926	struct sk_buff *skb;
2927
2928	skb = tcp_write_queue_head(sk);
2929	if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2930		pr_debug("%s: wrong queue state\n", __func__);
2931		return -EFAULT;
2932	}
2933	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2934		if (skb_cloned(skb)) {
2935			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2936			if (!nskb)
2937				return -ENOMEM;
2938			tcp_unlink_write_queue(skb, sk);
2939			__skb_header_release(nskb);
2940			__tcp_add_write_queue_head(sk, nskb);
2941			sk_wmem_free_skb(sk, skb);
2942			sk->sk_wmem_queued += nskb->truesize;
2943			sk_mem_charge(sk, nskb->truesize);
2944			skb = nskb;
2945		}
2946
2947		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2948		tcp_ecn_send_synack(sk, skb);
2949	}
 
2950	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2951}
2952
2953/**
2954 * tcp_make_synack - Prepare a SYN-ACK.
2955 * sk: listener socket
2956 * dst: dst entry attached to the SYNACK
2957 * req: request_sock pointer
2958 *
2959 * Allocate one skb and build a SYNACK packet.
2960 * @dst is consumed : Caller should not use it again.
2961 */
2962struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
2963				struct request_sock *req,
2964				struct tcp_fastopen_cookie *foc,
2965				bool attach_req)
2966{
2967	struct inet_request_sock *ireq = inet_rsk(req);
2968	const struct tcp_sock *tp = tcp_sk(sk);
2969	struct tcp_md5sig_key *md5 = NULL;
2970	struct tcp_out_options opts;
 
 
 
2971	struct sk_buff *skb;
 
2972	int tcp_header_size;
2973	struct tcphdr *th;
2974	u16 user_mss;
2975	int mss;
2976
2977	skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
2978	if (unlikely(!skb)) {
2979		dst_release(dst);
2980		return NULL;
2981	}
2982	/* Reserve space for headers. */
2983	skb_reserve(skb, MAX_TCP_HEADER);
2984
2985	if (attach_req) {
2986		skb_set_owner_w(skb, req_to_sk(req));
2987	} else {
2988		/* sk is a const pointer, because we want to express multiple
2989		 * cpu might call us concurrently.
2990		 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
2991		 */
2992		skb_set_owner_w(skb, (struct sock *)sk);
2993	}
2994	skb_dst_set(skb, dst);
 
2995
2996	mss = dst_metric_advmss(dst);
2997	user_mss = READ_ONCE(tp->rx_opt.user_mss);
2998	if (user_mss && user_mss < mss)
2999		mss = user_mss;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3000
3001	memset(&opts, 0, sizeof(opts));
3002#ifdef CONFIG_SYN_COOKIES
3003	if (unlikely(req->cookie_ts))
3004		skb->skb_mstamp.stamp_jiffies = cookie_init_timestamp(req);
3005	else
3006#endif
3007	skb_mstamp_get(&skb->skb_mstamp);
3008
3009#ifdef CONFIG_TCP_MD5SIG
3010	rcu_read_lock();
3011	md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3012#endif
3013	skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3014	tcp_header_size = tcp_synack_options(req, mss, skb, &opts, md5, foc) +
3015			  sizeof(*th);
3016
3017	skb_push(skb, tcp_header_size);
3018	skb_reset_transport_header(skb);
3019
3020	th = tcp_hdr(skb);
3021	memset(th, 0, sizeof(struct tcphdr));
3022	th->syn = 1;
3023	th->ack = 1;
3024	tcp_ecn_make_synack(req, th);
3025	th->source = htons(ireq->ir_num);
3026	th->dest = ireq->ir_rmt_port;
3027	/* Setting of flags are superfluous here for callers (and ECE is
3028	 * not even correctly set)
3029	 */
3030	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
3031			     TCPHDR_SYN | TCPHDR_ACK);
3032
3033	th->seq = htonl(TCP_SKB_CB(skb)->seq);
3034	/* XXX data is queued and acked as is. No buffer/window check */
3035	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3036
3037	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3038	th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3039	tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3040	th->doff = (tcp_header_size >> 2);
3041	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
3042
3043#ifdef CONFIG_TCP_MD5SIG
3044	/* Okay, we have all we need - do the md5 hash if needed */
3045	if (md5)
3046		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3047					       md5, req_to_sk(req), skb);
3048	rcu_read_unlock();
3049#endif
3050
3051	/* Do not fool tcpdump (if any), clean our debris */
3052	skb->tstamp.tv64 = 0;
3053	return skb;
3054}
3055EXPORT_SYMBOL(tcp_make_synack);
3056
3057static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3058{
3059	struct inet_connection_sock *icsk = inet_csk(sk);
3060	const struct tcp_congestion_ops *ca;
3061	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3062
3063	if (ca_key == TCP_CA_UNSPEC)
3064		return;
3065
3066	rcu_read_lock();
3067	ca = tcp_ca_find_key(ca_key);
3068	if (likely(ca && try_module_get(ca->owner))) {
3069		module_put(icsk->icsk_ca_ops->owner);
3070		icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3071		icsk->icsk_ca_ops = ca;
3072	}
3073	rcu_read_unlock();
3074}
3075
3076/* Do all connect socket setups that can be done AF independent. */
3077static void tcp_connect_init(struct sock *sk)
3078{
3079	const struct dst_entry *dst = __sk_dst_get(sk);
3080	struct tcp_sock *tp = tcp_sk(sk);
3081	__u8 rcv_wscale;
3082
3083	/* We'll fix this up when we get a response from the other end.
3084	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3085	 */
3086	tp->tcp_header_len = sizeof(struct tcphdr) +
3087		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
3088
3089#ifdef CONFIG_TCP_MD5SIG
3090	if (tp->af_specific->md5_lookup(sk, sk))
3091		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3092#endif
3093
3094	/* If user gave his TCP_MAXSEG, record it to clamp */
3095	if (tp->rx_opt.user_mss)
3096		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3097	tp->max_window = 0;
3098	tcp_mtup_init(sk);
3099	tcp_sync_mss(sk, dst_mtu(dst));
3100
3101	tcp_ca_dst_init(sk, dst);
3102
3103	if (!tp->window_clamp)
3104		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3105	tp->advmss = dst_metric_advmss(dst);
3106	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
3107		tp->advmss = tp->rx_opt.user_mss;
3108
3109	tcp_initialize_rcv_mss(sk);
3110
3111	/* limit the window selection if the user enforce a smaller rx buffer */
3112	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3113	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3114		tp->window_clamp = tcp_full_space(sk);
3115
3116	tcp_select_initial_window(tcp_full_space(sk),
3117				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3118				  &tp->rcv_wnd,
3119				  &tp->window_clamp,
3120				  sysctl_tcp_window_scaling,
3121				  &rcv_wscale,
3122				  dst_metric(dst, RTAX_INITRWND));
3123
3124	tp->rx_opt.rcv_wscale = rcv_wscale;
3125	tp->rcv_ssthresh = tp->rcv_wnd;
3126
3127	sk->sk_err = 0;
3128	sock_reset_flag(sk, SOCK_DONE);
3129	tp->snd_wnd = 0;
3130	tcp_init_wl(tp, 0);
3131	tp->snd_una = tp->write_seq;
3132	tp->snd_sml = tp->write_seq;
3133	tp->snd_up = tp->write_seq;
3134	tp->snd_nxt = tp->write_seq;
3135
3136	if (likely(!tp->repair))
3137		tp->rcv_nxt = 0;
3138	else
3139		tp->rcv_tstamp = tcp_time_stamp;
3140	tp->rcv_wup = tp->rcv_nxt;
3141	tp->copied_seq = tp->rcv_nxt;
3142
3143	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
3144	inet_csk(sk)->icsk_retransmits = 0;
3145	tcp_clear_retrans(tp);
3146}
3147
3148static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3149{
3150	struct tcp_sock *tp = tcp_sk(sk);
3151	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3152
3153	tcb->end_seq += skb->len;
3154	__skb_header_release(skb);
3155	__tcp_add_write_queue_tail(sk, skb);
3156	sk->sk_wmem_queued += skb->truesize;
3157	sk_mem_charge(sk, skb->truesize);
3158	tp->write_seq = tcb->end_seq;
3159	tp->packets_out += tcp_skb_pcount(skb);
3160}
3161
3162/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3163 * queue a data-only packet after the regular SYN, such that regular SYNs
3164 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3165 * only the SYN sequence, the data are retransmitted in the first ACK.
3166 * If cookie is not cached or other error occurs, falls back to send a
3167 * regular SYN with Fast Open cookie request option.
3168 */
3169static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3170{
3171	struct tcp_sock *tp = tcp_sk(sk);
3172	struct tcp_fastopen_request *fo = tp->fastopen_req;
3173	int syn_loss = 0, space, err = 0;
 
3174	unsigned long last_syn_loss = 0;
3175	struct sk_buff *syn_data;
3176
3177	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
3178	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
3179			       &syn_loss, &last_syn_loss);
3180	/* Recurring FO SYN losses: revert to regular handshake temporarily */
3181	if (syn_loss > 1 &&
3182	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
3183		fo->cookie.len = -1;
3184		goto fallback;
3185	}
3186
3187	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
3188		fo->cookie.len = -1;
3189	else if (fo->cookie.len <= 0)
3190		goto fallback;
3191
3192	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3193	 * user-MSS. Reserve maximum option space for middleboxes that add
3194	 * private TCP options. The cost is reduced data space in SYN :(
3195	 */
3196	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
3197		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3198	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
3199		MAX_TCP_OPTION_SPACE;
3200
3201	space = min_t(size_t, space, fo->size);
3202
3203	/* limit to order-0 allocations */
3204	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3205
3206	syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3207	if (!syn_data)
 
3208		goto fallback;
3209	syn_data->ip_summed = CHECKSUM_PARTIAL;
3210	memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3211	if (space) {
3212		int copied = copy_from_iter(skb_put(syn_data, space), space,
3213					    &fo->data->msg_iter);
3214		if (unlikely(!copied)) {
3215			kfree_skb(syn_data);
3216			goto fallback;
3217		}
3218		if (copied != space) {
3219			skb_trim(syn_data, copied);
3220			space = copied;
3221		}
3222	}
3223	/* No more data pending in inet_wait_for_connect() */
3224	if (space == fo->size)
3225		fo->data = NULL;
3226	fo->copied = space;
3227
3228	tcp_connect_queue_skb(sk, syn_data);
 
 
 
 
 
 
 
 
 
3229
3230	err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
 
 
3231
3232	syn->skb_mstamp = syn_data->skb_mstamp;
 
 
 
 
 
 
 
 
3233
3234	/* Now full SYN+DATA was cloned and sent (or not),
3235	 * remove the SYN from the original skb (syn_data)
3236	 * we keep in write queue in case of a retransmit, as we
3237	 * also have the SYN packet (with no data) in the same queue.
3238	 */
3239	TCP_SKB_CB(syn_data)->seq++;
3240	TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3241	if (!err) {
 
3242		tp->syn_data = (fo->copied > 0);
3243		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3244		goto done;
3245	}
 
3246
3247fallback:
3248	/* Send a regular SYN with Fast Open cookie request option */
3249	if (fo->cookie.len > 0)
3250		fo->cookie.len = 0;
3251	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3252	if (err)
3253		tp->syn_fastopen = 0;
 
3254done:
3255	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3256	return err;
3257}
3258
3259/* Build a SYN and send it off. */
3260int tcp_connect(struct sock *sk)
3261{
3262	struct tcp_sock *tp = tcp_sk(sk);
3263	struct sk_buff *buff;
3264	int err;
3265
3266	tcp_connect_init(sk);
3267
3268	if (unlikely(tp->repair)) {
3269		tcp_finish_connect(sk, NULL);
3270		return 0;
3271	}
3272
3273	buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3274	if (unlikely(!buff))
3275		return -ENOBUFS;
3276
 
 
 
3277	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3278	tp->retrans_stamp = tcp_time_stamp;
3279	tcp_connect_queue_skb(sk, buff);
3280	tcp_ecn_send_syn(sk, buff);
3281
3282	/* Send off SYN; include data in Fast Open. */
3283	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3284	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3285	if (err == -ECONNREFUSED)
3286		return err;
3287
3288	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3289	 * in order to make this packet get counted in tcpOutSegs.
3290	 */
3291	tp->snd_nxt = tp->write_seq;
3292	tp->pushed_seq = tp->write_seq;
3293	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3294
3295	/* Timer for repeating the SYN until an answer. */
3296	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3297				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3298	return 0;
3299}
3300EXPORT_SYMBOL(tcp_connect);
3301
3302/* Send out a delayed ack, the caller does the policy checking
3303 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3304 * for details.
3305 */
3306void tcp_send_delayed_ack(struct sock *sk)
3307{
3308	struct inet_connection_sock *icsk = inet_csk(sk);
3309	int ato = icsk->icsk_ack.ato;
3310	unsigned long timeout;
3311
3312	tcp_ca_event(sk, CA_EVENT_DELAYED_ACK);
3313
3314	if (ato > TCP_DELACK_MIN) {
3315		const struct tcp_sock *tp = tcp_sk(sk);
3316		int max_ato = HZ / 2;
3317
3318		if (icsk->icsk_ack.pingpong ||
3319		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3320			max_ato = TCP_DELACK_MAX;
3321
3322		/* Slow path, intersegment interval is "high". */
3323
3324		/* If some rtt estimate is known, use it to bound delayed ack.
3325		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3326		 * directly.
3327		 */
3328		if (tp->srtt_us) {
3329			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3330					TCP_DELACK_MIN);
3331
3332			if (rtt < max_ato)
3333				max_ato = rtt;
3334		}
3335
3336		ato = min(ato, max_ato);
3337	}
3338
3339	/* Stay within the limit we were given */
3340	timeout = jiffies + ato;
3341
3342	/* Use new timeout only if there wasn't a older one earlier. */
3343	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3344		/* If delack timer was blocked or is about to expire,
3345		 * send ACK now.
3346		 */
3347		if (icsk->icsk_ack.blocked ||
3348		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3349			tcp_send_ack(sk);
3350			return;
3351		}
3352
3353		if (!time_before(timeout, icsk->icsk_ack.timeout))
3354			timeout = icsk->icsk_ack.timeout;
3355	}
3356	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3357	icsk->icsk_ack.timeout = timeout;
3358	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3359}
3360
3361/* This routine sends an ack and also updates the window. */
3362void tcp_send_ack(struct sock *sk)
3363{
3364	struct sk_buff *buff;
3365
3366	/* If we have been reset, we may not send again. */
3367	if (sk->sk_state == TCP_CLOSE)
3368		return;
3369
3370	tcp_ca_event(sk, CA_EVENT_NON_DELAYED_ACK);
3371
3372	/* We are not putting this on the write queue, so
3373	 * tcp_transmit_skb() will set the ownership to this
3374	 * sock.
3375	 */
3376	buff = alloc_skb(MAX_TCP_HEADER,
3377			 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3378	if (unlikely(!buff)) {
3379		inet_csk_schedule_ack(sk);
3380		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3381		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3382					  TCP_DELACK_MAX, TCP_RTO_MAX);
3383		return;
3384	}
3385
3386	/* Reserve space for headers and prepare control bits. */
3387	skb_reserve(buff, MAX_TCP_HEADER);
3388	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3389
3390	/* We do not want pure acks influencing TCP Small Queues or fq/pacing
3391	 * too much.
3392	 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
3393	 * We also avoid tcp_wfree() overhead (cache line miss accessing
3394	 * tp->tsq_flags) by using regular sock_wfree()
3395	 */
3396	skb_set_tcp_pure_ack(buff);
3397
3398	/* Send it off, this clears delayed acks for us. */
3399	skb_mstamp_get(&buff->skb_mstamp);
3400	tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0);
3401}
3402EXPORT_SYMBOL_GPL(tcp_send_ack);
3403
3404/* This routine sends a packet with an out of date sequence
3405 * number. It assumes the other end will try to ack it.
3406 *
3407 * Question: what should we make while urgent mode?
3408 * 4.4BSD forces sending single byte of data. We cannot send
3409 * out of window data, because we have SND.NXT==SND.MAX...
3410 *
3411 * Current solution: to send TWO zero-length segments in urgent mode:
3412 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3413 * out-of-date with SND.UNA-1 to probe window.
3414 */
3415static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
3416{
3417	struct tcp_sock *tp = tcp_sk(sk);
3418	struct sk_buff *skb;
3419
3420	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3421	skb = alloc_skb(MAX_TCP_HEADER,
3422			sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3423	if (!skb)
3424		return -1;
3425
3426	/* Reserve space for headers and set control bits. */
3427	skb_reserve(skb, MAX_TCP_HEADER);
3428	/* Use a previous sequence.  This should cause the other
3429	 * end to send an ack.  Don't queue or clone SKB, just
3430	 * send it.
3431	 */
3432	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3433	skb_mstamp_get(&skb->skb_mstamp);
3434	NET_INC_STATS(sock_net(sk), mib);
3435	return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
3436}
3437
3438void tcp_send_window_probe(struct sock *sk)
3439{
3440	if (sk->sk_state == TCP_ESTABLISHED) {
3441		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3442		tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
3443	}
3444}
3445
3446/* Initiate keepalive or window probe from timer. */
3447int tcp_write_wakeup(struct sock *sk, int mib)
3448{
3449	struct tcp_sock *tp = tcp_sk(sk);
3450	struct sk_buff *skb;
3451
3452	if (sk->sk_state == TCP_CLOSE)
3453		return -1;
3454
3455	skb = tcp_send_head(sk);
3456	if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3457		int err;
3458		unsigned int mss = tcp_current_mss(sk);
3459		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3460
3461		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3462			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3463
3464		/* We are probing the opening of a window
3465		 * but the window size is != 0
3466		 * must have been a result SWS avoidance ( sender )
3467		 */
3468		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3469		    skb->len > mss) {
3470			seg_size = min(seg_size, mss);
3471			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3472			if (tcp_fragment(sk, skb, seg_size, mss, GFP_ATOMIC))
3473				return -1;
3474		} else if (!tcp_skb_pcount(skb))
3475			tcp_set_skb_tso_segs(skb, mss);
3476
3477		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 
3478		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3479		if (!err)
3480			tcp_event_new_data_sent(sk, skb);
3481		return err;
3482	} else {
3483		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3484			tcp_xmit_probe_skb(sk, 1, mib);
3485		return tcp_xmit_probe_skb(sk, 0, mib);
3486	}
3487}
3488
3489/* A window probe timeout has occurred.  If window is not closed send
3490 * a partial packet else a zero probe.
3491 */
3492void tcp_send_probe0(struct sock *sk)
3493{
3494	struct inet_connection_sock *icsk = inet_csk(sk);
3495	struct tcp_sock *tp = tcp_sk(sk);
3496	struct net *net = sock_net(sk);
3497	unsigned long probe_max;
3498	int err;
3499
3500	err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
3501
3502	if (tp->packets_out || !tcp_send_head(sk)) {
3503		/* Cancel probe timer, if it is not required. */
3504		icsk->icsk_probes_out = 0;
3505		icsk->icsk_backoff = 0;
3506		return;
3507	}
3508
3509	if (err <= 0) {
3510		if (icsk->icsk_backoff < net->ipv4.sysctl_tcp_retries2)
3511			icsk->icsk_backoff++;
3512		icsk->icsk_probes_out++;
3513		probe_max = TCP_RTO_MAX;
 
 
3514	} else {
3515		/* If packet was not sent due to local congestion,
3516		 * do not backoff and do not remember icsk_probes_out.
3517		 * Let local senders to fight for local resources.
3518		 *
3519		 * Use accumulated backoff yet.
3520		 */
3521		if (!icsk->icsk_probes_out)
3522			icsk->icsk_probes_out = 1;
3523		probe_max = TCP_RESOURCE_PROBE_INTERVAL;
3524	}
3525	inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3526				  tcp_probe0_when(sk, probe_max),
3527				  TCP_RTO_MAX);
3528}
3529
3530int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
3531{
3532	const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
3533	struct flowi fl;
3534	int res;
3535
3536	tcp_rsk(req)->txhash = net_tx_rndhash();
3537	res = af_ops->send_synack(sk, NULL, &fl, req, NULL, true);
3538	if (!res) {
3539		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_RETRANSSEGS);
3540		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3541	}
3542	return res;
3543}
3544EXPORT_SYMBOL(tcp_rtx_synack);
v3.15
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *		Florian La Roche, <flla@stud.uni-sb.de>
  13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *		Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:	Pedro Roque	:	Retransmit queue handled by TCP.
  23 *				:	Fragmentation on mtu decrease
  24 *				:	Segment collapse on retransmit
  25 *				:	AF independence
  26 *
  27 *		Linus Torvalds	:	send_delayed_ack
  28 *		David S. Miller	:	Charge memory using the right skb
  29 *					during syn/ack processing.
  30 *		David S. Miller :	Output engine completely rewritten.
  31 *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr.
  32 *		Cacophonix Gaul :	draft-minshall-nagle-01
  33 *		J Hadi Salim	:	ECN support
  34 *
  35 */
  36
  37#define pr_fmt(fmt) "TCP: " fmt
  38
  39#include <net/tcp.h>
  40
  41#include <linux/compiler.h>
  42#include <linux/gfp.h>
  43#include <linux/module.h>
  44
  45/* People can turn this off for buggy TCP's found in printers etc. */
  46int sysctl_tcp_retrans_collapse __read_mostly = 1;
  47
  48/* People can turn this on to work with those rare, broken TCPs that
  49 * interpret the window field as a signed quantity.
  50 */
  51int sysctl_tcp_workaround_signed_windows __read_mostly = 0;
  52
  53/* Default TSQ limit of two TSO segments */
  54int sysctl_tcp_limit_output_bytes __read_mostly = 131072;
  55
  56/* This limits the percentage of the congestion window which we
  57 * will allow a single TSO frame to consume.  Building TSO frames
  58 * which are too large can cause TCP streams to be bursty.
  59 */
  60int sysctl_tcp_tso_win_divisor __read_mostly = 3;
  61
  62int sysctl_tcp_mtu_probing __read_mostly = 0;
  63int sysctl_tcp_base_mss __read_mostly = TCP_BASE_MSS;
  64
  65/* By default, RFC2861 behavior.  */
  66int sysctl_tcp_slow_start_after_idle __read_mostly = 1;
  67
  68unsigned int sysctl_tcp_notsent_lowat __read_mostly = UINT_MAX;
  69EXPORT_SYMBOL(sysctl_tcp_notsent_lowat);
  70
  71static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
  72			   int push_one, gfp_t gfp);
  73
  74/* Account for new data that has been sent to the network. */
  75static void tcp_event_new_data_sent(struct sock *sk, const struct sk_buff *skb)
  76{
  77	struct inet_connection_sock *icsk = inet_csk(sk);
  78	struct tcp_sock *tp = tcp_sk(sk);
  79	unsigned int prior_packets = tp->packets_out;
  80
  81	tcp_advance_send_head(sk, skb);
  82	tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;
  83
  84	tp->packets_out += tcp_skb_pcount(skb);
  85	if (!prior_packets || icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  86	    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  87		tcp_rearm_rto(sk);
  88	}
  89
  90	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
  91		      tcp_skb_pcount(skb));
  92}
  93
  94/* SND.NXT, if window was not shrunk.
  95 * If window has been shrunk, what should we make? It is not clear at all.
  96 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
  97 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
  98 * invalid. OK, let's make this for now:
  99 */
 100static inline __u32 tcp_acceptable_seq(const struct sock *sk)
 101{
 102	const struct tcp_sock *tp = tcp_sk(sk);
 103
 104	if (!before(tcp_wnd_end(tp), tp->snd_nxt))
 105		return tp->snd_nxt;
 106	else
 107		return tcp_wnd_end(tp);
 108}
 109
 110/* Calculate mss to advertise in SYN segment.
 111 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 112 *
 113 * 1. It is independent of path mtu.
 114 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 115 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 116 *    attached devices, because some buggy hosts are confused by
 117 *    large MSS.
 118 * 4. We do not make 3, we advertise MSS, calculated from first
 119 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 120 *    This may be overridden via information stored in routing table.
 121 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 122 *    probably even Jumbo".
 123 */
 124static __u16 tcp_advertise_mss(struct sock *sk)
 125{
 126	struct tcp_sock *tp = tcp_sk(sk);
 127	const struct dst_entry *dst = __sk_dst_get(sk);
 128	int mss = tp->advmss;
 129
 130	if (dst) {
 131		unsigned int metric = dst_metric_advmss(dst);
 132
 133		if (metric < mss) {
 134			mss = metric;
 135			tp->advmss = mss;
 136		}
 137	}
 138
 139	return (__u16)mss;
 140}
 141
 142/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 143 * This is the first part of cwnd validation mechanism. */
 144static void tcp_cwnd_restart(struct sock *sk, const struct dst_entry *dst)
 
 145{
 146	struct tcp_sock *tp = tcp_sk(sk);
 147	s32 delta = tcp_time_stamp - tp->lsndtime;
 148	u32 restart_cwnd = tcp_init_cwnd(tp, dst);
 149	u32 cwnd = tp->snd_cwnd;
 150
 151	tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
 152
 153	tp->snd_ssthresh = tcp_current_ssthresh(sk);
 154	restart_cwnd = min(restart_cwnd, cwnd);
 155
 156	while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
 157		cwnd >>= 1;
 158	tp->snd_cwnd = max(cwnd, restart_cwnd);
 159	tp->snd_cwnd_stamp = tcp_time_stamp;
 160	tp->snd_cwnd_used = 0;
 161}
 162
 163/* Congestion state accounting after a packet has been sent. */
 164static void tcp_event_data_sent(struct tcp_sock *tp,
 165				struct sock *sk)
 166{
 167	struct inet_connection_sock *icsk = inet_csk(sk);
 168	const u32 now = tcp_time_stamp;
 169	const struct dst_entry *dst = __sk_dst_get(sk);
 170
 171	if (sysctl_tcp_slow_start_after_idle &&
 172	    (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
 173		tcp_cwnd_restart(sk, __sk_dst_get(sk));
 174
 175	tp->lsndtime = now;
 176
 177	/* If it is a reply for ato after last received
 178	 * packet, enter pingpong mode.
 179	 */
 180	if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato &&
 181	    (!dst || !dst_metric(dst, RTAX_QUICKACK)))
 182			icsk->icsk_ack.pingpong = 1;
 183}
 184
 185/* Account for an ACK we sent. */
 186static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
 187{
 188	tcp_dec_quickack_mode(sk, pkts);
 189	inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
 190}
 191
 192
 193u32 tcp_default_init_rwnd(u32 mss)
 194{
 195	/* Initial receive window should be twice of TCP_INIT_CWND to
 196	 * enable proper sending of new unsent data during fast recovery
 197	 * (RFC 3517, Section 4, NextSeg() rule (2)). Further place a
 198	 * limit when mss is larger than 1460.
 199	 */
 200	u32 init_rwnd = TCP_INIT_CWND * 2;
 201
 202	if (mss > 1460)
 203		init_rwnd = max((1460 * init_rwnd) / mss, 2U);
 204	return init_rwnd;
 205}
 206
 207/* Determine a window scaling and initial window to offer.
 208 * Based on the assumption that the given amount of space
 209 * will be offered. Store the results in the tp structure.
 210 * NOTE: for smooth operation initial space offering should
 211 * be a multiple of mss if possible. We assume here that mss >= 1.
 212 * This MUST be enforced by all callers.
 213 */
 214void tcp_select_initial_window(int __space, __u32 mss,
 215			       __u32 *rcv_wnd, __u32 *window_clamp,
 216			       int wscale_ok, __u8 *rcv_wscale,
 217			       __u32 init_rcv_wnd)
 218{
 219	unsigned int space = (__space < 0 ? 0 : __space);
 220
 221	/* If no clamp set the clamp to the max possible scaled window */
 222	if (*window_clamp == 0)
 223		(*window_clamp) = (65535 << 14);
 224	space = min(*window_clamp, space);
 225
 226	/* Quantize space offering to a multiple of mss if possible. */
 227	if (space > mss)
 228		space = (space / mss) * mss;
 229
 230	/* NOTE: offering an initial window larger than 32767
 231	 * will break some buggy TCP stacks. If the admin tells us
 232	 * it is likely we could be speaking with such a buggy stack
 233	 * we will truncate our initial window offering to 32K-1
 234	 * unless the remote has sent us a window scaling option,
 235	 * which we interpret as a sign the remote TCP is not
 236	 * misinterpreting the window field as a signed quantity.
 237	 */
 238	if (sysctl_tcp_workaround_signed_windows)
 239		(*rcv_wnd) = min(space, MAX_TCP_WINDOW);
 240	else
 241		(*rcv_wnd) = space;
 242
 243	(*rcv_wscale) = 0;
 244	if (wscale_ok) {
 245		/* Set window scaling on max possible window
 246		 * See RFC1323 for an explanation of the limit to 14
 247		 */
 248		space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
 249		space = min_t(u32, space, *window_clamp);
 250		while (space > 65535 && (*rcv_wscale) < 14) {
 251			space >>= 1;
 252			(*rcv_wscale)++;
 253		}
 254	}
 255
 256	if (mss > (1 << *rcv_wscale)) {
 257		if (!init_rcv_wnd) /* Use default unless specified otherwise */
 258			init_rcv_wnd = tcp_default_init_rwnd(mss);
 259		*rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
 260	}
 261
 262	/* Set the clamp no higher than max representable value */
 263	(*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
 264}
 265EXPORT_SYMBOL(tcp_select_initial_window);
 266
 267/* Chose a new window to advertise, update state in tcp_sock for the
 268 * socket, and return result with RFC1323 scaling applied.  The return
 269 * value can be stuffed directly into th->window for an outgoing
 270 * frame.
 271 */
 272static u16 tcp_select_window(struct sock *sk)
 273{
 274	struct tcp_sock *tp = tcp_sk(sk);
 275	u32 old_win = tp->rcv_wnd;
 276	u32 cur_win = tcp_receive_window(tp);
 277	u32 new_win = __tcp_select_window(sk);
 278
 279	/* Never shrink the offered window */
 280	if (new_win < cur_win) {
 281		/* Danger Will Robinson!
 282		 * Don't update rcv_wup/rcv_wnd here or else
 283		 * we will not be able to advertise a zero
 284		 * window in time.  --DaveM
 285		 *
 286		 * Relax Will Robinson.
 287		 */
 288		if (new_win == 0)
 289			NET_INC_STATS(sock_net(sk),
 290				      LINUX_MIB_TCPWANTZEROWINDOWADV);
 291		new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
 292	}
 293	tp->rcv_wnd = new_win;
 294	tp->rcv_wup = tp->rcv_nxt;
 295
 296	/* Make sure we do not exceed the maximum possible
 297	 * scaled window.
 298	 */
 299	if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
 300		new_win = min(new_win, MAX_TCP_WINDOW);
 301	else
 302		new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
 303
 304	/* RFC1323 scaling applied */
 305	new_win >>= tp->rx_opt.rcv_wscale;
 306
 307	/* If we advertise zero window, disable fast path. */
 308	if (new_win == 0) {
 309		tp->pred_flags = 0;
 310		if (old_win)
 311			NET_INC_STATS(sock_net(sk),
 312				      LINUX_MIB_TCPTOZEROWINDOWADV);
 313	} else if (old_win == 0) {
 314		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
 315	}
 316
 317	return new_win;
 318}
 319
 320/* Packet ECN state for a SYN-ACK */
 321static inline void TCP_ECN_send_synack(const struct tcp_sock *tp, struct sk_buff *skb)
 322{
 
 
 323	TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
 324	if (!(tp->ecn_flags & TCP_ECN_OK))
 325		TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
 
 
 326}
 327
 328/* Packet ECN state for a SYN.  */
 329static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
 330{
 331	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 332
 333	tp->ecn_flags = 0;
 334	if (sock_net(sk)->ipv4.sysctl_tcp_ecn == 1) {
 
 335		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
 336		tp->ecn_flags = TCP_ECN_OK;
 
 
 337	}
 338}
 339
 340static __inline__ void
 341TCP_ECN_make_synack(const struct request_sock *req, struct tcphdr *th)
 
 
 
 
 
 
 
 
 
 342{
 343	if (inet_rsk(req)->ecn_ok)
 344		th->ece = 1;
 345}
 346
 347/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
 348 * be sent.
 349 */
 350static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
 351				int tcp_header_len)
 352{
 353	struct tcp_sock *tp = tcp_sk(sk);
 354
 355	if (tp->ecn_flags & TCP_ECN_OK) {
 356		/* Not-retransmitted data segment: set ECT and inject CWR. */
 357		if (skb->len != tcp_header_len &&
 358		    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
 359			INET_ECN_xmit(sk);
 360			if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
 361				tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 362				tcp_hdr(skb)->cwr = 1;
 363				skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
 364			}
 365		} else {
 366			/* ACK or retransmitted segment: clear ECT|CE */
 367			INET_ECN_dontxmit(sk);
 368		}
 369		if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
 370			tcp_hdr(skb)->ece = 1;
 371	}
 372}
 373
 374/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 375 * auto increment end seqno.
 376 */
 377static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
 378{
 379	struct skb_shared_info *shinfo = skb_shinfo(skb);
 380
 381	skb->ip_summed = CHECKSUM_PARTIAL;
 382	skb->csum = 0;
 383
 384	TCP_SKB_CB(skb)->tcp_flags = flags;
 385	TCP_SKB_CB(skb)->sacked = 0;
 386
 387	shinfo->gso_segs = 1;
 388	shinfo->gso_size = 0;
 389	shinfo->gso_type = 0;
 390
 391	TCP_SKB_CB(skb)->seq = seq;
 392	if (flags & (TCPHDR_SYN | TCPHDR_FIN))
 393		seq++;
 394	TCP_SKB_CB(skb)->end_seq = seq;
 395}
 396
 397static inline bool tcp_urg_mode(const struct tcp_sock *tp)
 398{
 399	return tp->snd_una != tp->snd_up;
 400}
 401
 402#define OPTION_SACK_ADVERTISE	(1 << 0)
 403#define OPTION_TS		(1 << 1)
 404#define OPTION_MD5		(1 << 2)
 405#define OPTION_WSCALE		(1 << 3)
 406#define OPTION_FAST_OPEN_COOKIE	(1 << 8)
 407
 408struct tcp_out_options {
 409	u16 options;		/* bit field of OPTION_* */
 410	u16 mss;		/* 0 to disable */
 411	u8 ws;			/* window scale, 0 to disable */
 412	u8 num_sack_blocks;	/* number of SACK blocks to include */
 413	u8 hash_size;		/* bytes in hash_location */
 414	__u8 *hash_location;	/* temporary pointer, overloaded */
 415	__u32 tsval, tsecr;	/* need to include OPTION_TS */
 416	struct tcp_fastopen_cookie *fastopen_cookie;	/* Fast open cookie */
 417};
 418
 419/* Write previously computed TCP options to the packet.
 420 *
 421 * Beware: Something in the Internet is very sensitive to the ordering of
 422 * TCP options, we learned this through the hard way, so be careful here.
 423 * Luckily we can at least blame others for their non-compliance but from
 424 * inter-operability perspective it seems that we're somewhat stuck with
 425 * the ordering which we have been using if we want to keep working with
 426 * those broken things (not that it currently hurts anybody as there isn't
 427 * particular reason why the ordering would need to be changed).
 428 *
 429 * At least SACK_PERM as the first option is known to lead to a disaster
 430 * (but it may well be that other scenarios fail similarly).
 431 */
 432static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
 433			      struct tcp_out_options *opts)
 434{
 435	u16 options = opts->options;	/* mungable copy */
 436
 437	if (unlikely(OPTION_MD5 & options)) {
 438		*ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
 439			       (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
 440		/* overload cookie hash location */
 441		opts->hash_location = (__u8 *)ptr;
 442		ptr += 4;
 443	}
 444
 445	if (unlikely(opts->mss)) {
 446		*ptr++ = htonl((TCPOPT_MSS << 24) |
 447			       (TCPOLEN_MSS << 16) |
 448			       opts->mss);
 449	}
 450
 451	if (likely(OPTION_TS & options)) {
 452		if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 453			*ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
 454				       (TCPOLEN_SACK_PERM << 16) |
 455				       (TCPOPT_TIMESTAMP << 8) |
 456				       TCPOLEN_TIMESTAMP);
 457			options &= ~OPTION_SACK_ADVERTISE;
 458		} else {
 459			*ptr++ = htonl((TCPOPT_NOP << 24) |
 460				       (TCPOPT_NOP << 16) |
 461				       (TCPOPT_TIMESTAMP << 8) |
 462				       TCPOLEN_TIMESTAMP);
 463		}
 464		*ptr++ = htonl(opts->tsval);
 465		*ptr++ = htonl(opts->tsecr);
 466	}
 467
 468	if (unlikely(OPTION_SACK_ADVERTISE & options)) {
 469		*ptr++ = htonl((TCPOPT_NOP << 24) |
 470			       (TCPOPT_NOP << 16) |
 471			       (TCPOPT_SACK_PERM << 8) |
 472			       TCPOLEN_SACK_PERM);
 473	}
 474
 475	if (unlikely(OPTION_WSCALE & options)) {
 476		*ptr++ = htonl((TCPOPT_NOP << 24) |
 477			       (TCPOPT_WINDOW << 16) |
 478			       (TCPOLEN_WINDOW << 8) |
 479			       opts->ws);
 480	}
 481
 482	if (unlikely(opts->num_sack_blocks)) {
 483		struct tcp_sack_block *sp = tp->rx_opt.dsack ?
 484			tp->duplicate_sack : tp->selective_acks;
 485		int this_sack;
 486
 487		*ptr++ = htonl((TCPOPT_NOP  << 24) |
 488			       (TCPOPT_NOP  << 16) |
 489			       (TCPOPT_SACK <<  8) |
 490			       (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
 491						     TCPOLEN_SACK_PERBLOCK)));
 492
 493		for (this_sack = 0; this_sack < opts->num_sack_blocks;
 494		     ++this_sack) {
 495			*ptr++ = htonl(sp[this_sack].start_seq);
 496			*ptr++ = htonl(sp[this_sack].end_seq);
 497		}
 498
 499		tp->rx_opt.dsack = 0;
 500	}
 501
 502	if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
 503		struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
 
 
 
 
 
 
 
 
 
 
 
 
 
 504
 505		*ptr++ = htonl((TCPOPT_EXP << 24) |
 506			       ((TCPOLEN_EXP_FASTOPEN_BASE + foc->len) << 16) |
 507			       TCPOPT_FASTOPEN_MAGIC);
 508
 509		memcpy(ptr, foc->val, foc->len);
 510		if ((foc->len & 3) == 2) {
 511			u8 *align = ((u8 *)ptr) + foc->len;
 512			align[0] = align[1] = TCPOPT_NOP;
 513		}
 514		ptr += (foc->len + 3) >> 2;
 515	}
 516}
 517
 518/* Compute TCP options for SYN packets. This is not the final
 519 * network wire format yet.
 520 */
 521static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
 522				struct tcp_out_options *opts,
 523				struct tcp_md5sig_key **md5)
 524{
 525	struct tcp_sock *tp = tcp_sk(sk);
 526	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 527	struct tcp_fastopen_request *fastopen = tp->fastopen_req;
 528
 529#ifdef CONFIG_TCP_MD5SIG
 530	*md5 = tp->af_specific->md5_lookup(sk, sk);
 531	if (*md5) {
 532		opts->options |= OPTION_MD5;
 533		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 534	}
 535#else
 536	*md5 = NULL;
 537#endif
 538
 539	/* We always get an MSS option.  The option bytes which will be seen in
 540	 * normal data packets should timestamps be used, must be in the MSS
 541	 * advertised.  But we subtract them from tp->mss_cache so that
 542	 * calculations in tcp_sendmsg are simpler etc.  So account for this
 543	 * fact here if necessary.  If we don't do this correctly, as a
 544	 * receiver we won't recognize data packets as being full sized when we
 545	 * should, and thus we won't abide by the delayed ACK rules correctly.
 546	 * SACKs don't matter, we never delay an ACK when we have any of those
 547	 * going out.  */
 548	opts->mss = tcp_advertise_mss(sk);
 549	remaining -= TCPOLEN_MSS_ALIGNED;
 550
 551	if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
 552		opts->options |= OPTION_TS;
 553		opts->tsval = TCP_SKB_CB(skb)->when + tp->tsoffset;
 554		opts->tsecr = tp->rx_opt.ts_recent;
 555		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 556	}
 557	if (likely(sysctl_tcp_window_scaling)) {
 558		opts->ws = tp->rx_opt.rcv_wscale;
 559		opts->options |= OPTION_WSCALE;
 560		remaining -= TCPOLEN_WSCALE_ALIGNED;
 561	}
 562	if (likely(sysctl_tcp_sack)) {
 563		opts->options |= OPTION_SACK_ADVERTISE;
 564		if (unlikely(!(OPTION_TS & opts->options)))
 565			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 566	}
 567
 568	if (fastopen && fastopen->cookie.len >= 0) {
 569		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + fastopen->cookie.len;
 
 
 
 570		need = (need + 3) & ~3U;  /* Align to 32 bits */
 571		if (remaining >= need) {
 572			opts->options |= OPTION_FAST_OPEN_COOKIE;
 573			opts->fastopen_cookie = &fastopen->cookie;
 574			remaining -= need;
 575			tp->syn_fastopen = 1;
 
 576		}
 577	}
 578
 579	return MAX_TCP_OPTION_SPACE - remaining;
 580}
 581
 582/* Set up TCP options for SYN-ACKs. */
 583static unsigned int tcp_synack_options(struct sock *sk,
 584				   struct request_sock *req,
 585				   unsigned int mss, struct sk_buff *skb,
 586				   struct tcp_out_options *opts,
 587				   struct tcp_md5sig_key **md5,
 588				   struct tcp_fastopen_cookie *foc)
 589{
 590	struct inet_request_sock *ireq = inet_rsk(req);
 591	unsigned int remaining = MAX_TCP_OPTION_SPACE;
 592
 593#ifdef CONFIG_TCP_MD5SIG
 594	*md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
 595	if (*md5) {
 596		opts->options |= OPTION_MD5;
 597		remaining -= TCPOLEN_MD5SIG_ALIGNED;
 598
 599		/* We can't fit any SACK blocks in a packet with MD5 + TS
 600		 * options. There was discussion about disabling SACK
 601		 * rather than TS in order to fit in better with old,
 602		 * buggy kernels, but that was deemed to be unnecessary.
 603		 */
 604		ireq->tstamp_ok &= !ireq->sack_ok;
 605	}
 606#else
 607	*md5 = NULL;
 608#endif
 609
 610	/* We always send an MSS option. */
 611	opts->mss = mss;
 612	remaining -= TCPOLEN_MSS_ALIGNED;
 613
 614	if (likely(ireq->wscale_ok)) {
 615		opts->ws = ireq->rcv_wscale;
 616		opts->options |= OPTION_WSCALE;
 617		remaining -= TCPOLEN_WSCALE_ALIGNED;
 618	}
 619	if (likely(ireq->tstamp_ok)) {
 620		opts->options |= OPTION_TS;
 621		opts->tsval = TCP_SKB_CB(skb)->when;
 622		opts->tsecr = req->ts_recent;
 623		remaining -= TCPOLEN_TSTAMP_ALIGNED;
 624	}
 625	if (likely(ireq->sack_ok)) {
 626		opts->options |= OPTION_SACK_ADVERTISE;
 627		if (unlikely(!ireq->tstamp_ok))
 628			remaining -= TCPOLEN_SACKPERM_ALIGNED;
 629	}
 630	if (foc != NULL) {
 631		u32 need = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
 
 
 
 632		need = (need + 3) & ~3U;  /* Align to 32 bits */
 633		if (remaining >= need) {
 634			opts->options |= OPTION_FAST_OPEN_COOKIE;
 635			opts->fastopen_cookie = foc;
 636			remaining -= need;
 637		}
 638	}
 639
 640	return MAX_TCP_OPTION_SPACE - remaining;
 641}
 642
 643/* Compute TCP options for ESTABLISHED sockets. This is not the
 644 * final wire format yet.
 645 */
 646static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
 647					struct tcp_out_options *opts,
 648					struct tcp_md5sig_key **md5)
 649{
 650	struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
 651	struct tcp_sock *tp = tcp_sk(sk);
 652	unsigned int size = 0;
 653	unsigned int eff_sacks;
 654
 655	opts->options = 0;
 656
 657#ifdef CONFIG_TCP_MD5SIG
 658	*md5 = tp->af_specific->md5_lookup(sk, sk);
 659	if (unlikely(*md5)) {
 660		opts->options |= OPTION_MD5;
 661		size += TCPOLEN_MD5SIG_ALIGNED;
 662	}
 663#else
 664	*md5 = NULL;
 665#endif
 666
 667	if (likely(tp->rx_opt.tstamp_ok)) {
 668		opts->options |= OPTION_TS;
 669		opts->tsval = tcb ? tcb->when + tp->tsoffset : 0;
 670		opts->tsecr = tp->rx_opt.ts_recent;
 671		size += TCPOLEN_TSTAMP_ALIGNED;
 672	}
 673
 674	eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
 675	if (unlikely(eff_sacks)) {
 676		const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
 677		opts->num_sack_blocks =
 678			min_t(unsigned int, eff_sacks,
 679			      (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
 680			      TCPOLEN_SACK_PERBLOCK);
 681		size += TCPOLEN_SACK_BASE_ALIGNED +
 682			opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
 683	}
 684
 685	return size;
 686}
 687
 688
 689/* TCP SMALL QUEUES (TSQ)
 690 *
 691 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
 692 * to reduce RTT and bufferbloat.
 693 * We do this using a special skb destructor (tcp_wfree).
 694 *
 695 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
 696 * needs to be reallocated in a driver.
 697 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
 698 *
 699 * Since transmit from skb destructor is forbidden, we use a tasklet
 700 * to process all sockets that eventually need to send more skbs.
 701 * We use one tasklet per cpu, with its own queue of sockets.
 702 */
 703struct tsq_tasklet {
 704	struct tasklet_struct	tasklet;
 705	struct list_head	head; /* queue of tcp sockets */
 706};
 707static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
 708
 709static void tcp_tsq_handler(struct sock *sk)
 710{
 711	if ((1 << sk->sk_state) &
 712	    (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
 713	     TCPF_CLOSE_WAIT  | TCPF_LAST_ACK))
 714		tcp_write_xmit(sk, tcp_current_mss(sk), tcp_sk(sk)->nonagle,
 715			       0, GFP_ATOMIC);
 716}
 717/*
 718 * One tasklet per cpu tries to send more skbs.
 719 * We run in tasklet context but need to disable irqs when
 720 * transferring tsq->head because tcp_wfree() might
 721 * interrupt us (non NAPI drivers)
 722 */
 723static void tcp_tasklet_func(unsigned long data)
 724{
 725	struct tsq_tasklet *tsq = (struct tsq_tasklet *)data;
 726	LIST_HEAD(list);
 727	unsigned long flags;
 728	struct list_head *q, *n;
 729	struct tcp_sock *tp;
 730	struct sock *sk;
 731
 732	local_irq_save(flags);
 733	list_splice_init(&tsq->head, &list);
 734	local_irq_restore(flags);
 735
 736	list_for_each_safe(q, n, &list) {
 737		tp = list_entry(q, struct tcp_sock, tsq_node);
 738		list_del(&tp->tsq_node);
 739
 740		sk = (struct sock *)tp;
 741		bh_lock_sock(sk);
 742
 743		if (!sock_owned_by_user(sk)) {
 744			tcp_tsq_handler(sk);
 745		} else {
 746			/* defer the work to tcp_release_cb() */
 747			set_bit(TCP_TSQ_DEFERRED, &tp->tsq_flags);
 748		}
 749		bh_unlock_sock(sk);
 750
 751		clear_bit(TSQ_QUEUED, &tp->tsq_flags);
 752		sk_free(sk);
 753	}
 754}
 755
 756#define TCP_DEFERRED_ALL ((1UL << TCP_TSQ_DEFERRED) |		\
 757			  (1UL << TCP_WRITE_TIMER_DEFERRED) |	\
 758			  (1UL << TCP_DELACK_TIMER_DEFERRED) |	\
 759			  (1UL << TCP_MTU_REDUCED_DEFERRED))
 760/**
 761 * tcp_release_cb - tcp release_sock() callback
 762 * @sk: socket
 763 *
 764 * called from release_sock() to perform protocol dependent
 765 * actions before socket release.
 766 */
 767void tcp_release_cb(struct sock *sk)
 768{
 769	struct tcp_sock *tp = tcp_sk(sk);
 770	unsigned long flags, nflags;
 771
 772	/* perform an atomic operation only if at least one flag is set */
 773	do {
 774		flags = tp->tsq_flags;
 775		if (!(flags & TCP_DEFERRED_ALL))
 776			return;
 777		nflags = flags & ~TCP_DEFERRED_ALL;
 778	} while (cmpxchg(&tp->tsq_flags, flags, nflags) != flags);
 779
 780	if (flags & (1UL << TCP_TSQ_DEFERRED))
 781		tcp_tsq_handler(sk);
 782
 783	/* Here begins the tricky part :
 784	 * We are called from release_sock() with :
 785	 * 1) BH disabled
 786	 * 2) sk_lock.slock spinlock held
 787	 * 3) socket owned by us (sk->sk_lock.owned == 1)
 788	 *
 789	 * But following code is meant to be called from BH handlers,
 790	 * so we should keep BH disabled, but early release socket ownership
 791	 */
 792	sock_release_ownership(sk);
 793
 794	if (flags & (1UL << TCP_WRITE_TIMER_DEFERRED)) {
 795		tcp_write_timer_handler(sk);
 796		__sock_put(sk);
 797	}
 798	if (flags & (1UL << TCP_DELACK_TIMER_DEFERRED)) {
 799		tcp_delack_timer_handler(sk);
 800		__sock_put(sk);
 801	}
 802	if (flags & (1UL << TCP_MTU_REDUCED_DEFERRED)) {
 803		sk->sk_prot->mtu_reduced(sk);
 804		__sock_put(sk);
 805	}
 806}
 807EXPORT_SYMBOL(tcp_release_cb);
 808
 809void __init tcp_tasklet_init(void)
 810{
 811	int i;
 812
 813	for_each_possible_cpu(i) {
 814		struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
 815
 816		INIT_LIST_HEAD(&tsq->head);
 817		tasklet_init(&tsq->tasklet,
 818			     tcp_tasklet_func,
 819			     (unsigned long)tsq);
 820	}
 821}
 822
 823/*
 824 * Write buffer destructor automatically called from kfree_skb.
 825 * We can't xmit new skbs from this context, as we might already
 826 * hold qdisc lock.
 827 */
 828void tcp_wfree(struct sk_buff *skb)
 829{
 830	struct sock *sk = skb->sk;
 831	struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832
 833	if (test_and_clear_bit(TSQ_THROTTLED, &tp->tsq_flags) &&
 834	    !test_and_set_bit(TSQ_QUEUED, &tp->tsq_flags)) {
 835		unsigned long flags;
 836		struct tsq_tasklet *tsq;
 837
 838		/* Keep a ref on socket.
 839		 * This last ref will be released in tcp_tasklet_func()
 840		 */
 841		atomic_sub(skb->truesize - 1, &sk->sk_wmem_alloc);
 842
 843		/* queue this socket to tasklet queue */
 844		local_irq_save(flags);
 845		tsq = &__get_cpu_var(tsq_tasklet);
 846		list_add(&tp->tsq_node, &tsq->head);
 847		tasklet_schedule(&tsq->tasklet);
 848		local_irq_restore(flags);
 849	} else {
 850		sock_wfree(skb);
 851	}
 
 
 852}
 853
 854/* This routine actually transmits TCP packets queued in by
 855 * tcp_do_sendmsg().  This is used by both the initial
 856 * transmission and possible later retransmissions.
 857 * All SKB's seen here are completely headerless.  It is our
 858 * job to build the TCP header, and pass the packet down to
 859 * IP so it can do the same plus pass the packet off to the
 860 * device.
 861 *
 862 * We are working here with either a clone of the original
 863 * SKB, or a fresh unique copy made by the retransmit engine.
 864 */
 865static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
 866			    gfp_t gfp_mask)
 867{
 868	const struct inet_connection_sock *icsk = inet_csk(sk);
 869	struct inet_sock *inet;
 870	struct tcp_sock *tp;
 871	struct tcp_skb_cb *tcb;
 872	struct tcp_out_options opts;
 873	unsigned int tcp_options_size, tcp_header_size;
 874	struct tcp_md5sig_key *md5;
 875	struct tcphdr *th;
 876	int err;
 877
 878	BUG_ON(!skb || !tcp_skb_pcount(skb));
 879
 880	if (clone_it) {
 881		const struct sk_buff *fclone = skb + 1;
 882
 883		skb_mstamp_get(&skb->skb_mstamp);
 884
 885		if (unlikely(skb->fclone == SKB_FCLONE_ORIG &&
 886			     fclone->fclone == SKB_FCLONE_CLONE))
 887			NET_INC_STATS(sock_net(sk),
 888				      LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
 889
 890		if (unlikely(skb_cloned(skb)))
 891			skb = pskb_copy(skb, gfp_mask);
 892		else
 893			skb = skb_clone(skb, gfp_mask);
 894		if (unlikely(!skb))
 895			return -ENOBUFS;
 896		/* Our usage of tstamp should remain private */
 897		skb->tstamp.tv64 = 0;
 898	}
 899
 900	inet = inet_sk(sk);
 901	tp = tcp_sk(sk);
 902	tcb = TCP_SKB_CB(skb);
 903	memset(&opts, 0, sizeof(opts));
 904
 905	if (unlikely(tcb->tcp_flags & TCPHDR_SYN))
 906		tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
 907	else
 908		tcp_options_size = tcp_established_options(sk, skb, &opts,
 909							   &md5);
 910	tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
 911
 912	if (tcp_packets_in_flight(tp) == 0)
 913		tcp_ca_event(sk, CA_EVENT_TX_START);
 914
 915	/* if no packet is in qdisc/device queue, then allow XPS to select
 916	 * another queue.
 
 
 
 
 917	 */
 918	skb->ooo_okay = sk_wmem_alloc_get(sk) == 0;
 919
 920	skb_push(skb, tcp_header_size);
 921	skb_reset_transport_header(skb);
 922
 923	skb_orphan(skb);
 924	skb->sk = sk;
 925	skb->destructor = tcp_wfree;
 
 926	atomic_add(skb->truesize, &sk->sk_wmem_alloc);
 927
 928	/* Build TCP header and checksum it. */
 929	th = tcp_hdr(skb);
 930	th->source		= inet->inet_sport;
 931	th->dest		= inet->inet_dport;
 932	th->seq			= htonl(tcb->seq);
 933	th->ack_seq		= htonl(tp->rcv_nxt);
 934	*(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) |
 935					tcb->tcp_flags);
 936
 937	if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
 938		/* RFC1323: The window in SYN & SYN/ACK segments
 939		 * is never scaled.
 940		 */
 941		th->window	= htons(min(tp->rcv_wnd, 65535U));
 942	} else {
 943		th->window	= htons(tcp_select_window(sk));
 944	}
 945	th->check		= 0;
 946	th->urg_ptr		= 0;
 947
 948	/* The urg_mode check is necessary during a below snd_una win probe */
 949	if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
 950		if (before(tp->snd_up, tcb->seq + 0x10000)) {
 951			th->urg_ptr = htons(tp->snd_up - tcb->seq);
 952			th->urg = 1;
 953		} else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
 954			th->urg_ptr = htons(0xFFFF);
 955			th->urg = 1;
 956		}
 957	}
 958
 959	tcp_options_write((__be32 *)(th + 1), tp, &opts);
 
 960	if (likely((tcb->tcp_flags & TCPHDR_SYN) == 0))
 961		TCP_ECN_send(sk, skb, tcp_header_size);
 962
 963#ifdef CONFIG_TCP_MD5SIG
 964	/* Calculate the MD5 hash, as we have all we need now */
 965	if (md5) {
 966		sk_nocaps_add(sk, NETIF_F_GSO_MASK);
 967		tp->af_specific->calc_md5_hash(opts.hash_location,
 968					       md5, sk, NULL, skb);
 969	}
 970#endif
 971
 972	icsk->icsk_af_ops->send_check(sk, skb);
 973
 974	if (likely(tcb->tcp_flags & TCPHDR_ACK))
 975		tcp_event_ack_sent(sk, tcp_skb_pcount(skb));
 976
 977	if (skb->len != tcp_header_size)
 978		tcp_event_data_sent(tp, sk);
 
 
 979
 980	if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
 981		TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
 982			      tcp_skb_pcount(skb));
 983
 
 
 
 
 
 
 
 
 
 
 
 
 984	err = icsk->icsk_af_ops->queue_xmit(sk, skb, &inet->cork.fl);
 
 985	if (likely(err <= 0))
 986		return err;
 987
 988	tcp_enter_cwr(sk, 1);
 989
 990	return net_xmit_eval(err);
 991}
 992
 993/* This routine just queues the buffer for sending.
 994 *
 995 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
 996 * otherwise socket can stall.
 997 */
 998static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
 999{
1000	struct tcp_sock *tp = tcp_sk(sk);
1001
1002	/* Advance write_seq and place onto the write_queue. */
1003	tp->write_seq = TCP_SKB_CB(skb)->end_seq;
1004	skb_header_release(skb);
1005	tcp_add_write_queue_tail(sk, skb);
1006	sk->sk_wmem_queued += skb->truesize;
1007	sk_mem_charge(sk, skb->truesize);
1008}
1009
1010/* Initialize TSO segments for a packet. */
1011static void tcp_set_skb_tso_segs(const struct sock *sk, struct sk_buff *skb,
1012				 unsigned int mss_now)
1013{
1014	struct skb_shared_info *shinfo = skb_shinfo(skb);
1015
1016	/* Make sure we own this skb before messing gso_size/gso_segs */
1017	WARN_ON_ONCE(skb_cloned(skb));
1018
1019	if (skb->len <= mss_now || skb->ip_summed == CHECKSUM_NONE) {
1020		/* Avoid the costly divide in the normal
1021		 * non-TSO case.
1022		 */
1023		shinfo->gso_segs = 1;
1024		shinfo->gso_size = 0;
1025		shinfo->gso_type = 0;
1026	} else {
1027		shinfo->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
1028		shinfo->gso_size = mss_now;
1029		shinfo->gso_type = sk->sk_gso_type;
1030	}
1031}
1032
1033/* When a modification to fackets out becomes necessary, we need to check
1034 * skb is counted to fackets_out or not.
1035 */
1036static void tcp_adjust_fackets_out(struct sock *sk, const struct sk_buff *skb,
1037				   int decr)
1038{
1039	struct tcp_sock *tp = tcp_sk(sk);
1040
1041	if (!tp->sacked_out || tcp_is_reno(tp))
1042		return;
1043
1044	if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
1045		tp->fackets_out -= decr;
1046}
1047
1048/* Pcount in the middle of the write queue got changed, we need to do various
1049 * tweaks to fix counters
1050 */
1051static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1052{
1053	struct tcp_sock *tp = tcp_sk(sk);
1054
1055	tp->packets_out -= decr;
1056
1057	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1058		tp->sacked_out -= decr;
1059	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1060		tp->retrans_out -= decr;
1061	if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1062		tp->lost_out -= decr;
1063
1064	/* Reno case is special. Sigh... */
1065	if (tcp_is_reno(tp) && decr > 0)
1066		tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1067
1068	tcp_adjust_fackets_out(sk, skb, decr);
1069
1070	if (tp->lost_skb_hint &&
1071	    before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1072	    (tcp_is_fack(tp) || (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)))
1073		tp->lost_cnt_hint -= decr;
1074
1075	tcp_verify_left_out(tp);
1076}
1077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078/* Function to create two new TCP segments.  Shrinks the given segment
1079 * to the specified size and appends a new segment with the rest of the
1080 * packet to the list.  This won't be called frequently, I hope.
1081 * Remember, these are still headerless SKBs at this point.
1082 */
1083int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
1084		 unsigned int mss_now)
1085{
1086	struct tcp_sock *tp = tcp_sk(sk);
1087	struct sk_buff *buff;
1088	int nsize, old_factor;
1089	int nlen;
1090	u8 flags;
1091
1092	if (WARN_ON(len > skb->len))
1093		return -EINVAL;
1094
1095	nsize = skb_headlen(skb) - len;
1096	if (nsize < 0)
1097		nsize = 0;
1098
1099	if (skb_unclone(skb, GFP_ATOMIC))
1100		return -ENOMEM;
1101
1102	/* Get a new skb... force flag on. */
1103	buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
1104	if (buff == NULL)
1105		return -ENOMEM; /* We'll just try again later. */
1106
1107	sk->sk_wmem_queued += buff->truesize;
1108	sk_mem_charge(sk, buff->truesize);
1109	nlen = skb->len - len - nsize;
1110	buff->truesize += nlen;
1111	skb->truesize -= nlen;
1112
1113	/* Correct the sequence numbers. */
1114	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1115	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1116	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1117
1118	/* PSH and FIN should only be set in the second packet. */
1119	flags = TCP_SKB_CB(skb)->tcp_flags;
1120	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1121	TCP_SKB_CB(buff)->tcp_flags = flags;
1122	TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1123
1124	if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
1125		/* Copy and checksum data tail into the new buffer. */
1126		buff->csum = csum_partial_copy_nocheck(skb->data + len,
1127						       skb_put(buff, nsize),
1128						       nsize, 0);
1129
1130		skb_trim(skb, len);
1131
1132		skb->csum = csum_block_sub(skb->csum, buff->csum, len);
1133	} else {
1134		skb->ip_summed = CHECKSUM_PARTIAL;
1135		skb_split(skb, buff, len);
1136	}
1137
1138	buff->ip_summed = skb->ip_summed;
1139
1140	/* Looks stupid, but our code really uses when of
1141	 * skbs, which it never sent before. --ANK
1142	 */
1143	TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
1144	buff->tstamp = skb->tstamp;
 
1145
1146	old_factor = tcp_skb_pcount(skb);
1147
1148	/* Fix up tso_factor for both original and new SKB.  */
1149	tcp_set_skb_tso_segs(sk, skb, mss_now);
1150	tcp_set_skb_tso_segs(sk, buff, mss_now);
1151
1152	/* If this packet has been sent out already, we must
1153	 * adjust the various packet counters.
1154	 */
1155	if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1156		int diff = old_factor - tcp_skb_pcount(skb) -
1157			tcp_skb_pcount(buff);
1158
1159		if (diff)
1160			tcp_adjust_pcount(sk, skb, diff);
1161	}
1162
1163	/* Link BUFF into the send queue. */
1164	skb_header_release(buff);
1165	tcp_insert_write_queue_after(skb, buff, sk);
1166
1167	return 0;
1168}
1169
1170/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
1171 * eventually). The difference is that pulled data not copied, but
1172 * immediately discarded.
1173 */
1174static void __pskb_trim_head(struct sk_buff *skb, int len)
1175{
1176	struct skb_shared_info *shinfo;
1177	int i, k, eat;
1178
1179	eat = min_t(int, len, skb_headlen(skb));
1180	if (eat) {
1181		__skb_pull(skb, eat);
1182		len -= eat;
1183		if (!len)
1184			return;
1185	}
1186	eat = len;
1187	k = 0;
1188	shinfo = skb_shinfo(skb);
1189	for (i = 0; i < shinfo->nr_frags; i++) {
1190		int size = skb_frag_size(&shinfo->frags[i]);
1191
1192		if (size <= eat) {
1193			skb_frag_unref(skb, i);
1194			eat -= size;
1195		} else {
1196			shinfo->frags[k] = shinfo->frags[i];
1197			if (eat) {
1198				shinfo->frags[k].page_offset += eat;
1199				skb_frag_size_sub(&shinfo->frags[k], eat);
1200				eat = 0;
1201			}
1202			k++;
1203		}
1204	}
1205	shinfo->nr_frags = k;
1206
1207	skb_reset_tail_pointer(skb);
1208	skb->data_len -= len;
1209	skb->len = skb->data_len;
1210}
1211
1212/* Remove acked data from a packet in the transmit queue. */
1213int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1214{
1215	if (skb_unclone(skb, GFP_ATOMIC))
1216		return -ENOMEM;
1217
1218	__pskb_trim_head(skb, len);
1219
1220	TCP_SKB_CB(skb)->seq += len;
1221	skb->ip_summed = CHECKSUM_PARTIAL;
1222
1223	skb->truesize	     -= len;
1224	sk->sk_wmem_queued   -= len;
1225	sk_mem_uncharge(sk, len);
1226	sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1227
1228	/* Any change of skb->len requires recalculation of tso factor. */
1229	if (tcp_skb_pcount(skb) > 1)
1230		tcp_set_skb_tso_segs(sk, skb, tcp_skb_mss(skb));
1231
1232	return 0;
1233}
1234
1235/* Calculate MSS not accounting any TCP options.  */
1236static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1237{
1238	const struct tcp_sock *tp = tcp_sk(sk);
1239	const struct inet_connection_sock *icsk = inet_csk(sk);
1240	int mss_now;
1241
1242	/* Calculate base mss without TCP options:
1243	   It is MMS_S - sizeof(tcphdr) of rfc1122
1244	 */
1245	mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1246
1247	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1248	if (icsk->icsk_af_ops->net_frag_header_len) {
1249		const struct dst_entry *dst = __sk_dst_get(sk);
1250
1251		if (dst && dst_allfrag(dst))
1252			mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1253	}
1254
1255	/* Clamp it (mss_clamp does not include tcp options) */
1256	if (mss_now > tp->rx_opt.mss_clamp)
1257		mss_now = tp->rx_opt.mss_clamp;
1258
1259	/* Now subtract optional transport overhead */
1260	mss_now -= icsk->icsk_ext_hdr_len;
1261
1262	/* Then reserve room for full set of TCP options and 8 bytes of data */
1263	if (mss_now < 48)
1264		mss_now = 48;
1265	return mss_now;
1266}
1267
1268/* Calculate MSS. Not accounting for SACKs here.  */
1269int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1270{
1271	/* Subtract TCP options size, not including SACKs */
1272	return __tcp_mtu_to_mss(sk, pmtu) -
1273	       (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1274}
1275
1276/* Inverse of above */
1277int tcp_mss_to_mtu(struct sock *sk, int mss)
1278{
1279	const struct tcp_sock *tp = tcp_sk(sk);
1280	const struct inet_connection_sock *icsk = inet_csk(sk);
1281	int mtu;
1282
1283	mtu = mss +
1284	      tp->tcp_header_len +
1285	      icsk->icsk_ext_hdr_len +
1286	      icsk->icsk_af_ops->net_header_len;
1287
1288	/* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1289	if (icsk->icsk_af_ops->net_frag_header_len) {
1290		const struct dst_entry *dst = __sk_dst_get(sk);
1291
1292		if (dst && dst_allfrag(dst))
1293			mtu += icsk->icsk_af_ops->net_frag_header_len;
1294	}
1295	return mtu;
1296}
1297
1298/* MTU probing init per socket */
1299void tcp_mtup_init(struct sock *sk)
1300{
1301	struct tcp_sock *tp = tcp_sk(sk);
1302	struct inet_connection_sock *icsk = inet_csk(sk);
 
1303
1304	icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
1305	icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1306			       icsk->icsk_af_ops->net_header_len;
1307	icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
1308	icsk->icsk_mtup.probe_size = 0;
 
 
1309}
1310EXPORT_SYMBOL(tcp_mtup_init);
1311
1312/* This function synchronize snd mss to current pmtu/exthdr set.
1313
1314   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1315   for TCP options, but includes only bare TCP header.
1316
1317   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1318   It is minimum of user_mss and mss received with SYN.
1319   It also does not include TCP options.
1320
1321   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1322
1323   tp->mss_cache is current effective sending mss, including
1324   all tcp options except for SACKs. It is evaluated,
1325   taking into account current pmtu, but never exceeds
1326   tp->rx_opt.mss_clamp.
1327
1328   NOTE1. rfc1122 clearly states that advertised MSS
1329   DOES NOT include either tcp or ip options.
1330
1331   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1332   are READ ONLY outside this function.		--ANK (980731)
1333 */
1334unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1335{
1336	struct tcp_sock *tp = tcp_sk(sk);
1337	struct inet_connection_sock *icsk = inet_csk(sk);
1338	int mss_now;
1339
1340	if (icsk->icsk_mtup.search_high > pmtu)
1341		icsk->icsk_mtup.search_high = pmtu;
1342
1343	mss_now = tcp_mtu_to_mss(sk, pmtu);
1344	mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1345
1346	/* And store cached results */
1347	icsk->icsk_pmtu_cookie = pmtu;
1348	if (icsk->icsk_mtup.enabled)
1349		mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1350	tp->mss_cache = mss_now;
1351
1352	return mss_now;
1353}
1354EXPORT_SYMBOL(tcp_sync_mss);
1355
1356/* Compute the current effective MSS, taking SACKs and IP options,
1357 * and even PMTU discovery events into account.
1358 */
1359unsigned int tcp_current_mss(struct sock *sk)
1360{
1361	const struct tcp_sock *tp = tcp_sk(sk);
1362	const struct dst_entry *dst = __sk_dst_get(sk);
1363	u32 mss_now;
1364	unsigned int header_len;
1365	struct tcp_out_options opts;
1366	struct tcp_md5sig_key *md5;
1367
1368	mss_now = tp->mss_cache;
1369
1370	if (dst) {
1371		u32 mtu = dst_mtu(dst);
1372		if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1373			mss_now = tcp_sync_mss(sk, mtu);
1374	}
1375
1376	header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1377		     sizeof(struct tcphdr);
1378	/* The mss_cache is sized based on tp->tcp_header_len, which assumes
1379	 * some common options. If this is an odd packet (because we have SACK
1380	 * blocks etc) then our calculated header_len will be different, and
1381	 * we have to adjust mss_now correspondingly */
1382	if (header_len != tp->tcp_header_len) {
1383		int delta = (int) header_len - tp->tcp_header_len;
1384		mss_now -= delta;
1385	}
1386
1387	return mss_now;
1388}
1389
1390/* Congestion window validation. (RFC2861) */
1391static void tcp_cwnd_validate(struct sock *sk)
 
 
 
1392{
1393	struct tcp_sock *tp = tcp_sk(sk);
1394
1395	if (tp->packets_out >= tp->snd_cwnd) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396		/* Network is feed fully. */
1397		tp->snd_cwnd_used = 0;
1398		tp->snd_cwnd_stamp = tcp_time_stamp;
1399	} else {
1400		/* Network starves. */
1401		if (tp->packets_out > tp->snd_cwnd_used)
1402			tp->snd_cwnd_used = tp->packets_out;
1403
1404		if (sysctl_tcp_slow_start_after_idle &&
1405		    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
1406			tcp_cwnd_application_limited(sk);
1407	}
1408}
1409
1410/* Minshall's variant of the Nagle send check. */
1411static bool tcp_minshall_check(const struct tcp_sock *tp)
1412{
1413	return after(tp->snd_sml, tp->snd_una) &&
1414		!after(tp->snd_sml, tp->snd_nxt);
1415}
1416
1417/* Update snd_sml if this skb is under mss
1418 * Note that a TSO packet might end with a sub-mss segment
1419 * The test is really :
1420 * if ((skb->len % mss) != 0)
1421 *        tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1422 * But we can avoid doing the divide again given we already have
1423 *  skb_pcount = skb->len / mss_now
1424 */
1425static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1426				const struct sk_buff *skb)
1427{
1428	if (skb->len < tcp_skb_pcount(skb) * mss_now)
1429		tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1430}
1431
1432/* Return false, if packet can be sent now without violation Nagle's rules:
1433 * 1. It is full sized. (provided by caller in %partial bool)
1434 * 2. Or it contains FIN. (already checked by caller)
1435 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1436 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1437 *    With Minshall's modification: all sent small packets are ACKed.
1438 */
1439static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1440			    int nonagle)
1441{
1442	return partial &&
1443		((nonagle & TCP_NAGLE_CORK) ||
1444		 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1445}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446/* Returns the portion of skb which can be sent right away */
1447static unsigned int tcp_mss_split_point(const struct sock *sk,
1448					const struct sk_buff *skb,
1449					unsigned int mss_now,
1450					unsigned int max_segs,
1451					int nonagle)
1452{
1453	const struct tcp_sock *tp = tcp_sk(sk);
1454	u32 partial, needed, window, max_len;
1455
1456	window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1457	max_len = mss_now * max_segs;
1458
1459	if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
1460		return max_len;
1461
1462	needed = min(skb->len, window);
1463
1464	if (max_len <= needed)
1465		return max_len;
1466
1467	partial = needed % mss_now;
1468	/* If last segment is not a full MSS, check if Nagle rules allow us
1469	 * to include this last segment in this skb.
1470	 * Otherwise, we'll split the skb at last MSS boundary
1471	 */
1472	if (tcp_nagle_check(partial != 0, tp, nonagle))
1473		return needed - partial;
1474
1475	return needed;
1476}
1477
1478/* Can at least one segment of SKB be sent right now, according to the
1479 * congestion window rules?  If so, return how many segments are allowed.
1480 */
1481static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
1482					 const struct sk_buff *skb)
1483{
1484	u32 in_flight, cwnd;
1485
1486	/* Don't be strict about the congestion window for the final FIN.  */
1487	if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
1488	    tcp_skb_pcount(skb) == 1)
1489		return 1;
1490
1491	in_flight = tcp_packets_in_flight(tp);
1492	cwnd = tp->snd_cwnd;
1493	if (in_flight < cwnd)
1494		return (cwnd - in_flight);
1495
1496	return 0;
 
 
 
 
1497}
1498
1499/* Initialize TSO state of a skb.
1500 * This must be invoked the first time we consider transmitting
1501 * SKB onto the wire.
1502 */
1503static int tcp_init_tso_segs(const struct sock *sk, struct sk_buff *skb,
1504			     unsigned int mss_now)
1505{
1506	int tso_segs = tcp_skb_pcount(skb);
1507
1508	if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
1509		tcp_set_skb_tso_segs(sk, skb, mss_now);
1510		tso_segs = tcp_skb_pcount(skb);
1511	}
1512	return tso_segs;
1513}
1514
1515
1516/* Return true if the Nagle test allows this packet to be
1517 * sent now.
1518 */
1519static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
1520				  unsigned int cur_mss, int nonagle)
1521{
1522	/* Nagle rule does not apply to frames, which sit in the middle of the
1523	 * write_queue (they have no chances to get new data).
1524	 *
1525	 * This is implemented in the callers, where they modify the 'nonagle'
1526	 * argument based upon the location of SKB in the send queue.
1527	 */
1528	if (nonagle & TCP_NAGLE_PUSH)
1529		return true;
1530
1531	/* Don't use the nagle rule for urgent data (or for the final FIN). */
1532	if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
1533		return true;
1534
1535	if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
1536		return true;
1537
1538	return false;
1539}
1540
1541/* Does at least the first segment of SKB fit into the send window? */
1542static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
1543			     const struct sk_buff *skb,
1544			     unsigned int cur_mss)
1545{
1546	u32 end_seq = TCP_SKB_CB(skb)->end_seq;
1547
1548	if (skb->len > cur_mss)
1549		end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
1550
1551	return !after(end_seq, tcp_wnd_end(tp));
1552}
1553
1554/* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1555 * should be put on the wire right now.  If so, it returns the number of
1556 * packets allowed by the congestion window.
1557 */
1558static unsigned int tcp_snd_test(const struct sock *sk, struct sk_buff *skb,
1559				 unsigned int cur_mss, int nonagle)
1560{
1561	const struct tcp_sock *tp = tcp_sk(sk);
1562	unsigned int cwnd_quota;
1563
1564	tcp_init_tso_segs(sk, skb, cur_mss);
1565
1566	if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
1567		return 0;
1568
1569	cwnd_quota = tcp_cwnd_test(tp, skb);
1570	if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
1571		cwnd_quota = 0;
1572
1573	return cwnd_quota;
1574}
1575
1576/* Test if sending is allowed right now. */
1577bool tcp_may_send_now(struct sock *sk)
1578{
1579	const struct tcp_sock *tp = tcp_sk(sk);
1580	struct sk_buff *skb = tcp_send_head(sk);
1581
1582	return skb &&
1583		tcp_snd_test(sk, skb, tcp_current_mss(sk),
1584			     (tcp_skb_is_last(sk, skb) ?
1585			      tp->nonagle : TCP_NAGLE_PUSH));
1586}
1587
1588/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1589 * which is put after SKB on the list.  It is very much like
1590 * tcp_fragment() except that it may make several kinds of assumptions
1591 * in order to speed up the splitting operation.  In particular, we
1592 * know that all the data is in scatter-gather pages, and that the
1593 * packet has never been sent out before (and thus is not cloned).
1594 */
1595static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
1596			unsigned int mss_now, gfp_t gfp)
1597{
1598	struct sk_buff *buff;
1599	int nlen = skb->len - len;
1600	u8 flags;
1601
1602	/* All of a TSO frame must be composed of paged data.  */
1603	if (skb->len != skb->data_len)
1604		return tcp_fragment(sk, skb, len, mss_now);
1605
1606	buff = sk_stream_alloc_skb(sk, 0, gfp);
1607	if (unlikely(buff == NULL))
1608		return -ENOMEM;
1609
1610	sk->sk_wmem_queued += buff->truesize;
1611	sk_mem_charge(sk, buff->truesize);
1612	buff->truesize += nlen;
1613	skb->truesize -= nlen;
1614
1615	/* Correct the sequence numbers. */
1616	TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1617	TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1618	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1619
1620	/* PSH and FIN should only be set in the second packet. */
1621	flags = TCP_SKB_CB(skb)->tcp_flags;
1622	TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1623	TCP_SKB_CB(buff)->tcp_flags = flags;
1624
1625	/* This packet was never sent out yet, so no SACK bits. */
1626	TCP_SKB_CB(buff)->sacked = 0;
1627
1628	buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
1629	skb_split(skb, buff, len);
 
1630
1631	/* Fix up tso_factor for both original and new SKB.  */
1632	tcp_set_skb_tso_segs(sk, skb, mss_now);
1633	tcp_set_skb_tso_segs(sk, buff, mss_now);
1634
1635	/* Link BUFF into the send queue. */
1636	skb_header_release(buff);
1637	tcp_insert_write_queue_after(skb, buff, sk);
1638
1639	return 0;
1640}
1641
1642/* Try to defer sending, if possible, in order to minimize the amount
1643 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
1644 *
1645 * This algorithm is from John Heffner.
1646 */
1647static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
 
1648{
 
 
1649	struct tcp_sock *tp = tcp_sk(sk);
1650	const struct inet_connection_sock *icsk = inet_csk(sk);
1651	u32 send_win, cong_win, limit, in_flight;
1652	int win_divisor;
1653
1654	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1655		goto send_now;
1656
1657	if (icsk->icsk_ca_state != TCP_CA_Open)
1658		goto send_now;
1659
1660	/* Defer for less than two clock ticks. */
1661	if (tp->tso_deferred &&
1662	    (((u32)jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
 
1663		goto send_now;
1664
1665	in_flight = tcp_packets_in_flight(tp);
1666
1667	BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));
1668
1669	send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
1670
1671	/* From in_flight test above, we know that cwnd > in_flight.  */
1672	cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;
1673
1674	limit = min(send_win, cong_win);
1675
1676	/* If a full-sized TSO skb can be sent, do it. */
1677	if (limit >= min_t(unsigned int, sk->sk_gso_max_size,
1678			   tp->xmit_size_goal_segs * tp->mss_cache))
1679		goto send_now;
1680
1681	/* Middle in queue won't get any more data, full sendable already? */
1682	if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
1683		goto send_now;
1684
1685	win_divisor = ACCESS_ONCE(sysctl_tcp_tso_win_divisor);
1686	if (win_divisor) {
1687		u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);
1688
1689		/* If at least some fraction of a window is available,
1690		 * just use it.
1691		 */
1692		chunk /= win_divisor;
1693		if (limit >= chunk)
1694			goto send_now;
1695	} else {
1696		/* Different approach, try not to defer past a single
1697		 * ACK.  Receiver should ACK every other full sized
1698		 * frame, so if we have space for more than 3 frames
1699		 * then send now.
1700		 */
1701		if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
1702			goto send_now;
1703	}
1704
1705	/* Ok, it looks like it is advisable to defer.
1706	 * Do not rearm the timer if already set to not break TCP ACK clocking.
1707	 */
1708	if (!tp->tso_deferred)
1709		tp->tso_deferred = 1 | (jiffies << 1);
 
 
 
 
 
 
1710
1711	return true;
1712
1713send_now:
1714	tp->tso_deferred = 0;
1715	return false;
1716}
1717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1718/* Create a new MTU probe if we are ready.
1719 * MTU probe is regularly attempting to increase the path MTU by
1720 * deliberately sending larger packets.  This discovers routing
1721 * changes resulting in larger path MTUs.
1722 *
1723 * Returns 0 if we should wait to probe (no cwnd available),
1724 *         1 if a probe was sent,
1725 *         -1 otherwise
1726 */
1727static int tcp_mtu_probe(struct sock *sk)
1728{
1729	struct tcp_sock *tp = tcp_sk(sk);
1730	struct inet_connection_sock *icsk = inet_csk(sk);
1731	struct sk_buff *skb, *nskb, *next;
 
1732	int len;
1733	int probe_size;
1734	int size_needed;
1735	int copy;
1736	int mss_now;
 
1737
1738	/* Not currently probing/verifying,
1739	 * not in recovery,
1740	 * have enough cwnd, and
1741	 * not SACKing (the variable headers throw things off) */
1742	if (!icsk->icsk_mtup.enabled ||
1743	    icsk->icsk_mtup.probe_size ||
1744	    inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
1745	    tp->snd_cwnd < 11 ||
1746	    tp->rx_opt.num_sacks || tp->rx_opt.dsack)
1747		return -1;
1748
1749	/* Very simple search strategy: just double the MSS. */
 
 
 
1750	mss_now = tcp_current_mss(sk);
1751	probe_size = 2 * tp->mss_cache;
 
1752	size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
1753	if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
1754		/* TODO: set timer for probe_converge_event */
 
 
 
 
 
 
 
 
 
1755		return -1;
1756	}
1757
1758	/* Have enough data in the send queue to probe? */
1759	if (tp->write_seq - tp->snd_nxt < size_needed)
1760		return -1;
1761
1762	if (tp->snd_wnd < size_needed)
1763		return -1;
1764	if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
1765		return 0;
1766
1767	/* Do we need to wait to drain cwnd? With none in flight, don't stall */
1768	if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
1769		if (!tcp_packets_in_flight(tp))
1770			return -1;
1771		else
1772			return 0;
1773	}
1774
1775	/* We're allowed to probe.  Build it now. */
1776	if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
 
1777		return -1;
1778	sk->sk_wmem_queued += nskb->truesize;
1779	sk_mem_charge(sk, nskb->truesize);
1780
1781	skb = tcp_send_head(sk);
1782
1783	TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
1784	TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
1785	TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
1786	TCP_SKB_CB(nskb)->sacked = 0;
1787	nskb->csum = 0;
1788	nskb->ip_summed = skb->ip_summed;
1789
1790	tcp_insert_write_queue_before(nskb, skb, sk);
1791
1792	len = 0;
1793	tcp_for_write_queue_from_safe(skb, next, sk) {
1794		copy = min_t(int, skb->len, probe_size - len);
1795		if (nskb->ip_summed)
1796			skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
1797		else
1798			nskb->csum = skb_copy_and_csum_bits(skb, 0,
1799							    skb_put(nskb, copy),
1800							    copy, nskb->csum);
1801
1802		if (skb->len <= copy) {
1803			/* We've eaten all the data from this skb.
1804			 * Throw it away. */
1805			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1806			tcp_unlink_write_queue(skb, sk);
1807			sk_wmem_free_skb(sk, skb);
1808		} else {
1809			TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
1810						   ~(TCPHDR_FIN|TCPHDR_PSH);
1811			if (!skb_shinfo(skb)->nr_frags) {
1812				skb_pull(skb, copy);
1813				if (skb->ip_summed != CHECKSUM_PARTIAL)
1814					skb->csum = csum_partial(skb->data,
1815								 skb->len, 0);
1816			} else {
1817				__pskb_trim_head(skb, copy);
1818				tcp_set_skb_tso_segs(sk, skb, mss_now);
1819			}
1820			TCP_SKB_CB(skb)->seq += copy;
1821		}
1822
1823		len += copy;
1824
1825		if (len >= probe_size)
1826			break;
1827	}
1828	tcp_init_tso_segs(sk, nskb, nskb->len);
1829
1830	/* We're ready to send.  If this fails, the probe will
1831	 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1832	TCP_SKB_CB(nskb)->when = tcp_time_stamp;
1833	if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
1834		/* Decrement cwnd here because we are sending
1835		 * effectively two packets. */
1836		tp->snd_cwnd--;
1837		tcp_event_new_data_sent(sk, nskb);
1838
1839		icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
1840		tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
1841		tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
1842
1843		return 1;
1844	}
1845
1846	return -1;
1847}
1848
1849/* This routine writes packets to the network.  It advances the
1850 * send_head.  This happens as incoming acks open up the remote
1851 * window for us.
1852 *
1853 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1854 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1855 * account rare use of URG, this is not a big flaw.
1856 *
1857 * Send at most one packet when push_one > 0. Temporarily ignore
1858 * cwnd limit to force at most one packet out when push_one == 2.
1859
1860 * Returns true, if no segments are in flight and we have queued segments,
1861 * but cannot send anything now because of SWS or another problem.
1862 */
1863static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
1864			   int push_one, gfp_t gfp)
1865{
1866	struct tcp_sock *tp = tcp_sk(sk);
1867	struct sk_buff *skb;
1868	unsigned int tso_segs, sent_pkts;
1869	int cwnd_quota;
1870	int result;
 
 
1871
1872	sent_pkts = 0;
1873
1874	if (!push_one) {
1875		/* Do MTU probing. */
1876		result = tcp_mtu_probe(sk);
1877		if (!result) {
1878			return false;
1879		} else if (result > 0) {
1880			sent_pkts = 1;
1881		}
1882	}
1883
 
1884	while ((skb = tcp_send_head(sk))) {
1885		unsigned int limit;
1886
1887		tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
1888		BUG_ON(!tso_segs);
1889
1890		if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE)
 
 
1891			goto repair; /* Skip network transmission */
 
1892
1893		cwnd_quota = tcp_cwnd_test(tp, skb);
1894		if (!cwnd_quota) {
1895			if (push_one == 2)
1896				/* Force out a loss probe pkt. */
1897				cwnd_quota = 1;
1898			else
1899				break;
1900		}
1901
1902		if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
1903			break;
1904
1905		if (tso_segs == 1) {
1906			if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
1907						     (tcp_skb_is_last(sk, skb) ?
1908						      nonagle : TCP_NAGLE_PUSH))))
1909				break;
1910		} else {
1911			if (!push_one && tcp_tso_should_defer(sk, skb))
 
 
1912				break;
1913		}
1914
 
 
 
 
 
 
 
 
 
 
 
 
1915		/* TCP Small Queues :
1916		 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
1917		 * This allows for :
1918		 *  - better RTT estimation and ACK scheduling
1919		 *  - faster recovery
1920		 *  - high rates
1921		 * Alas, some drivers / subsystems require a fair amount
1922		 * of queued bytes to ensure line rate.
1923		 * One example is wifi aggregation (802.11 AMPDU)
1924		 */
1925		limit = max_t(unsigned int, sysctl_tcp_limit_output_bytes,
1926			      sk->sk_pacing_rate >> 10);
1927
1928		if (atomic_read(&sk->sk_wmem_alloc) > limit) {
1929			set_bit(TSQ_THROTTLED, &tp->tsq_flags);
1930			/* It is possible TX completion already happened
1931			 * before we set TSQ_THROTTLED, so we must
1932			 * test again the condition.
1933			 * We abuse smp_mb__after_clear_bit() because
1934			 * there is no smp_mb__after_set_bit() yet
1935			 */
1936			smp_mb__after_clear_bit();
1937			if (atomic_read(&sk->sk_wmem_alloc) > limit)
1938				break;
1939		}
1940
1941		limit = mss_now;
1942		if (tso_segs > 1 && !tcp_urg_mode(tp))
1943			limit = tcp_mss_split_point(sk, skb, mss_now,
1944						    min_t(unsigned int,
1945							  cwnd_quota,
1946							  sk->sk_gso_max_segs),
1947						    nonagle);
1948
1949		if (skb->len > limit &&
1950		    unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
1951			break;
1952
1953		TCP_SKB_CB(skb)->when = tcp_time_stamp;
1954
1955		if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
1956			break;
1957
1958repair:
1959		/* Advance the send_head.  This one is sent out.
1960		 * This call will increment packets_out.
1961		 */
1962		tcp_event_new_data_sent(sk, skb);
1963
1964		tcp_minshall_update(tp, mss_now, skb);
1965		sent_pkts += tcp_skb_pcount(skb);
1966
1967		if (push_one)
1968			break;
1969	}
1970
1971	if (likely(sent_pkts)) {
1972		if (tcp_in_cwnd_reduction(sk))
1973			tp->prr_out += sent_pkts;
1974
1975		/* Send one loss probe per tail loss episode. */
1976		if (push_one != 2)
1977			tcp_schedule_loss_probe(sk);
1978		tcp_cwnd_validate(sk);
 
1979		return false;
1980	}
1981	return (push_one == 2) || (!tp->packets_out && tcp_send_head(sk));
1982}
1983
1984bool tcp_schedule_loss_probe(struct sock *sk)
1985{
1986	struct inet_connection_sock *icsk = inet_csk(sk);
1987	struct tcp_sock *tp = tcp_sk(sk);
1988	u32 timeout, tlp_time_stamp, rto_time_stamp;
1989	u32 rtt = usecs_to_jiffies(tp->srtt_us >> 3);
1990
1991	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS))
1992		return false;
1993	/* No consecutive loss probes. */
1994	if (WARN_ON(icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)) {
1995		tcp_rearm_rto(sk);
1996		return false;
1997	}
1998	/* Don't do any loss probe on a Fast Open connection before 3WHS
1999	 * finishes.
2000	 */
2001	if (sk->sk_state == TCP_SYN_RECV)
2002		return false;
2003
2004	/* TLP is only scheduled when next timer event is RTO. */
2005	if (icsk->icsk_pending != ICSK_TIME_RETRANS)
2006		return false;
2007
2008	/* Schedule a loss probe in 2*RTT for SACK capable connections
2009	 * in Open state, that are either limited by cwnd or application.
2010	 */
2011	if (sysctl_tcp_early_retrans < 3 || !tp->srtt_us || !tp->packets_out ||
2012	    !tcp_is_sack(tp) || inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
2013		return false;
2014
2015	if ((tp->snd_cwnd > tcp_packets_in_flight(tp)) &&
2016	     tcp_send_head(sk))
2017		return false;
2018
2019	/* Probe timeout is at least 1.5*rtt + TCP_DELACK_MAX to account
2020	 * for delayed ack when there's one outstanding packet.
 
2021	 */
2022	timeout = rtt << 1;
2023	if (tp->packets_out == 1)
2024		timeout = max_t(u32, timeout,
2025				(rtt + (rtt >> 1) + TCP_DELACK_MAX));
2026	timeout = max_t(u32, timeout, msecs_to_jiffies(10));
2027
2028	/* If RTO is shorter, just schedule TLP in its place. */
2029	tlp_time_stamp = tcp_time_stamp + timeout;
2030	rto_time_stamp = (u32)inet_csk(sk)->icsk_timeout;
2031	if ((s32)(tlp_time_stamp - rto_time_stamp) > 0) {
2032		s32 delta = rto_time_stamp - tcp_time_stamp;
2033		if (delta > 0)
2034			timeout = delta;
2035	}
2036
2037	inet_csk_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout,
2038				  TCP_RTO_MAX);
2039	return true;
2040}
2041
2042/* When probe timeout (PTO) fires, send a new segment if one exists, else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2043 * retransmit the last segment.
2044 */
2045void tcp_send_loss_probe(struct sock *sk)
2046{
2047	struct tcp_sock *tp = tcp_sk(sk);
2048	struct sk_buff *skb;
2049	int pcount;
2050	int mss = tcp_current_mss(sk);
2051	int err = -1;
2052
2053	if (tcp_send_head(sk) != NULL) {
2054		err = tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2055		goto rearm_timer;
 
 
 
 
 
 
 
 
 
2056	}
2057
2058	/* At most one outstanding TLP retransmission. */
2059	if (tp->tlp_high_seq)
2060		goto rearm_timer;
2061
2062	/* Retransmit last segment. */
2063	skb = tcp_write_queue_tail(sk);
2064	if (WARN_ON(!skb))
2065		goto rearm_timer;
2066
 
 
 
2067	pcount = tcp_skb_pcount(skb);
2068	if (WARN_ON(!pcount))
2069		goto rearm_timer;
2070
2071	if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2072		if (unlikely(tcp_fragment(sk, skb, (pcount - 1) * mss, mss)))
 
2073			goto rearm_timer;
2074		skb = tcp_write_queue_tail(sk);
2075	}
2076
2077	if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2078		goto rearm_timer;
2079
2080	/* Probe with zero data doesn't trigger fast recovery. */
2081	if (skb->len > 0)
2082		err = __tcp_retransmit_skb(sk, skb);
2083
2084	/* Record snd_nxt for loss detection. */
2085	if (likely(!err))
2086		tp->tlp_high_seq = tp->snd_nxt;
2087
 
 
 
 
2088rearm_timer:
2089	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2090				  inet_csk(sk)->icsk_rto,
2091				  TCP_RTO_MAX);
2092
2093	if (likely(!err))
2094		NET_INC_STATS_BH(sock_net(sk),
2095				 LINUX_MIB_TCPLOSSPROBES);
2096}
2097
2098/* Push out any pending frames which were held back due to
2099 * TCP_CORK or attempt at coalescing tiny packets.
2100 * The socket must be locked by the caller.
2101 */
2102void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2103			       int nonagle)
2104{
2105	/* If we are closed, the bytes will have to remain here.
2106	 * In time closedown will finish, we empty the write queue and
2107	 * all will be happy.
2108	 */
2109	if (unlikely(sk->sk_state == TCP_CLOSE))
2110		return;
2111
2112	if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2113			   sk_gfp_atomic(sk, GFP_ATOMIC)))
2114		tcp_check_probe_timer(sk);
2115}
2116
2117/* Send _single_ skb sitting at the send head. This function requires
2118 * true push pending frames to setup probe timer etc.
2119 */
2120void tcp_push_one(struct sock *sk, unsigned int mss_now)
2121{
2122	struct sk_buff *skb = tcp_send_head(sk);
2123
2124	BUG_ON(!skb || skb->len < mss_now);
2125
2126	tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2127}
2128
2129/* This function returns the amount that we can raise the
2130 * usable window based on the following constraints
2131 *
2132 * 1. The window can never be shrunk once it is offered (RFC 793)
2133 * 2. We limit memory per socket
2134 *
2135 * RFC 1122:
2136 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2137 *  RECV.NEXT + RCV.WIN fixed until:
2138 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2139 *
2140 * i.e. don't raise the right edge of the window until you can raise
2141 * it at least MSS bytes.
2142 *
2143 * Unfortunately, the recommended algorithm breaks header prediction,
2144 * since header prediction assumes th->window stays fixed.
2145 *
2146 * Strictly speaking, keeping th->window fixed violates the receiver
2147 * side SWS prevention criteria. The problem is that under this rule
2148 * a stream of single byte packets will cause the right side of the
2149 * window to always advance by a single byte.
2150 *
2151 * Of course, if the sender implements sender side SWS prevention
2152 * then this will not be a problem.
2153 *
2154 * BSD seems to make the following compromise:
2155 *
2156 *	If the free space is less than the 1/4 of the maximum
2157 *	space available and the free space is less than 1/2 mss,
2158 *	then set the window to 0.
2159 *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2160 *	Otherwise, just prevent the window from shrinking
2161 *	and from being larger than the largest representable value.
2162 *
2163 * This prevents incremental opening of the window in the regime
2164 * where TCP is limited by the speed of the reader side taking
2165 * data out of the TCP receive queue. It does nothing about
2166 * those cases where the window is constrained on the sender side
2167 * because the pipeline is full.
2168 *
2169 * BSD also seems to "accidentally" limit itself to windows that are a
2170 * multiple of MSS, at least until the free space gets quite small.
2171 * This would appear to be a side effect of the mbuf implementation.
2172 * Combining these two algorithms results in the observed behavior
2173 * of having a fixed window size at almost all times.
2174 *
2175 * Below we obtain similar behavior by forcing the offered window to
2176 * a multiple of the mss when it is feasible to do so.
2177 *
2178 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2179 * Regular options like TIMESTAMP are taken into account.
2180 */
2181u32 __tcp_select_window(struct sock *sk)
2182{
2183	struct inet_connection_sock *icsk = inet_csk(sk);
2184	struct tcp_sock *tp = tcp_sk(sk);
2185	/* MSS for the peer's data.  Previous versions used mss_clamp
2186	 * here.  I don't know if the value based on our guesses
2187	 * of peer's MSS is better for the performance.  It's more correct
2188	 * but may be worse for the performance because of rcv_mss
2189	 * fluctuations.  --SAW  1998/11/1
2190	 */
2191	int mss = icsk->icsk_ack.rcv_mss;
2192	int free_space = tcp_space(sk);
2193	int allowed_space = tcp_full_space(sk);
2194	int full_space = min_t(int, tp->window_clamp, allowed_space);
2195	int window;
2196
2197	if (mss > full_space)
2198		mss = full_space;
2199
2200	if (free_space < (full_space >> 1)) {
2201		icsk->icsk_ack.quick = 0;
2202
2203		if (sk_under_memory_pressure(sk))
2204			tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2205					       4U * tp->advmss);
2206
2207		/* free_space might become our new window, make sure we don't
2208		 * increase it due to wscale.
2209		 */
2210		free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2211
2212		/* if free space is less than mss estimate, or is below 1/16th
2213		 * of the maximum allowed, try to move to zero-window, else
2214		 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2215		 * new incoming data is dropped due to memory limits.
2216		 * With large window, mss test triggers way too late in order
2217		 * to announce zero window in time before rmem limit kicks in.
2218		 */
2219		if (free_space < (allowed_space >> 4) || free_space < mss)
2220			return 0;
2221	}
2222
2223	if (free_space > tp->rcv_ssthresh)
2224		free_space = tp->rcv_ssthresh;
2225
2226	/* Don't do rounding if we are using window scaling, since the
2227	 * scaled window will not line up with the MSS boundary anyway.
2228	 */
2229	window = tp->rcv_wnd;
2230	if (tp->rx_opt.rcv_wscale) {
2231		window = free_space;
2232
2233		/* Advertise enough space so that it won't get scaled away.
2234		 * Import case: prevent zero window announcement if
2235		 * 1<<rcv_wscale > mss.
2236		 */
2237		if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
2238			window = (((window >> tp->rx_opt.rcv_wscale) + 1)
2239				  << tp->rx_opt.rcv_wscale);
2240	} else {
2241		/* Get the largest window that is a nice multiple of mss.
2242		 * Window clamp already applied above.
2243		 * If our current window offering is within 1 mss of the
2244		 * free space we just keep it. This prevents the divide
2245		 * and multiply from happening most of the time.
2246		 * We also don't do any window rounding when the free space
2247		 * is too small.
2248		 */
2249		if (window <= free_space - mss || window > free_space)
2250			window = (free_space / mss) * mss;
2251		else if (mss == full_space &&
2252			 free_space > window + (full_space >> 1))
2253			window = free_space;
2254	}
2255
2256	return window;
2257}
2258
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2259/* Collapses two adjacent SKB's during retransmission. */
2260static void tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
2261{
2262	struct tcp_sock *tp = tcp_sk(sk);
2263	struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
2264	int skb_size, next_skb_size;
2265
2266	skb_size = skb->len;
2267	next_skb_size = next_skb->len;
2268
2269	BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
2270
2271	tcp_highest_sack_combine(sk, next_skb, skb);
2272
2273	tcp_unlink_write_queue(next_skb, sk);
2274
2275	skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
2276				  next_skb_size);
2277
2278	if (next_skb->ip_summed == CHECKSUM_PARTIAL)
2279		skb->ip_summed = CHECKSUM_PARTIAL;
2280
2281	if (skb->ip_summed != CHECKSUM_PARTIAL)
2282		skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);
2283
2284	/* Update sequence range on original skb. */
2285	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
2286
2287	/* Merge over control information. This moves PSH/FIN etc. over */
2288	TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
2289
2290	/* All done, get rid of second SKB and account for it so
2291	 * packet counting does not break.
2292	 */
2293	TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
2294
2295	/* changed transmit queue under us so clear hints */
2296	tcp_clear_retrans_hints_partial(tp);
2297	if (next_skb == tp->retransmit_skb_hint)
2298		tp->retransmit_skb_hint = skb;
2299
2300	tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
2301
 
 
2302	sk_wmem_free_skb(sk, next_skb);
2303}
2304
2305/* Check if coalescing SKBs is legal. */
2306static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
2307{
2308	if (tcp_skb_pcount(skb) > 1)
2309		return false;
2310	/* TODO: SACK collapsing could be used to remove this condition */
2311	if (skb_shinfo(skb)->nr_frags != 0)
2312		return false;
2313	if (skb_cloned(skb))
2314		return false;
2315	if (skb == tcp_send_head(sk))
2316		return false;
2317	/* Some heurestics for collapsing over SACK'd could be invented */
2318	if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2319		return false;
2320
2321	return true;
2322}
2323
2324/* Collapse packets in the retransmit queue to make to create
2325 * less packets on the wire. This is only done on retransmission.
2326 */
2327static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
2328				     int space)
2329{
2330	struct tcp_sock *tp = tcp_sk(sk);
2331	struct sk_buff *skb = to, *tmp;
2332	bool first = true;
2333
2334	if (!sysctl_tcp_retrans_collapse)
2335		return;
2336	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2337		return;
2338
2339	tcp_for_write_queue_from_safe(skb, tmp, sk) {
2340		if (!tcp_can_collapse(sk, skb))
2341			break;
2342
2343		space -= skb->len;
2344
2345		if (first) {
2346			first = false;
2347			continue;
2348		}
2349
2350		if (space < 0)
2351			break;
2352		/* Punt if not enough space exists in the first SKB for
2353		 * the data in the second
2354		 */
2355		if (skb->len > skb_availroom(to))
2356			break;
2357
2358		if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
2359			break;
2360
2361		tcp_collapse_retrans(sk, to);
2362	}
2363}
2364
2365/* This retransmits one SKB.  Policy decisions and retransmit queue
2366 * state updates are done by the caller.  Returns non-zero if an
2367 * error occurred which prevented the send.
2368 */
2369int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2370{
2371	struct tcp_sock *tp = tcp_sk(sk);
2372	struct inet_connection_sock *icsk = inet_csk(sk);
2373	unsigned int cur_mss;
2374	int err;
2375
2376	/* Inconslusive MTU probe */
2377	if (icsk->icsk_mtup.probe_size) {
2378		icsk->icsk_mtup.probe_size = 0;
2379	}
2380
2381	/* Do not sent more than we queued. 1/4 is reserved for possible
2382	 * copying overhead: fragmentation, tunneling, mangling etc.
2383	 */
2384	if (atomic_read(&sk->sk_wmem_alloc) >
2385	    min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
2386		return -EAGAIN;
2387
 
 
 
2388	if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
2389		if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
2390			BUG();
2391		if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2392			return -ENOMEM;
2393	}
2394
2395	if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
2396		return -EHOSTUNREACH; /* Routing failure or similar. */
2397
2398	cur_mss = tcp_current_mss(sk);
2399
2400	/* If receiver has shrunk his window, and skb is out of
2401	 * new window, do not retransmit it. The exception is the
2402	 * case, when window is shrunk to zero. In this case
2403	 * our retransmit serves as a zero window probe.
2404	 */
2405	if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp)) &&
2406	    TCP_SKB_CB(skb)->seq != tp->snd_una)
2407		return -EAGAIN;
2408
2409	if (skb->len > cur_mss) {
2410		if (tcp_fragment(sk, skb, cur_mss, cur_mss))
2411			return -ENOMEM; /* We'll try again later. */
2412	} else {
2413		int oldpcount = tcp_skb_pcount(skb);
2414
2415		if (unlikely(oldpcount > 1)) {
2416			if (skb_unclone(skb, GFP_ATOMIC))
2417				return -ENOMEM;
2418			tcp_init_tso_segs(sk, skb, cur_mss);
2419			tcp_adjust_pcount(sk, skb, oldpcount - tcp_skb_pcount(skb));
2420		}
2421	}
2422
 
 
 
 
2423	tcp_retrans_try_collapse(sk, skb, cur_mss);
2424
2425	/* Make a copy, if the first transmission SKB clone we made
2426	 * is still in somebody's hands, else make a clone.
2427	 */
2428	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2429
2430	/* make sure skb->data is aligned on arches that require it
2431	 * and check if ack-trimming & collapsing extended the headroom
2432	 * beyond what csum_start can cover.
2433	 */
2434	if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
2435		     skb_headroom(skb) >= 0xFFFF)) {
2436		struct sk_buff *nskb = __pskb_copy(skb, MAX_TCP_HEADER,
2437						   GFP_ATOMIC);
 
 
2438		err = nskb ? tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC) :
2439			     -ENOBUFS;
2440	} else {
2441		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2442	}
2443
2444	if (likely(!err)) {
2445		TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
2446		/* Update global TCP statistics. */
2447		TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
2448		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
2449			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
2450		tp->total_retrans++;
2451	}
2452	return err;
2453}
2454
2455int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
2456{
2457	struct tcp_sock *tp = tcp_sk(sk);
2458	int err = __tcp_retransmit_skb(sk, skb);
2459
2460	if (err == 0) {
2461#if FASTRETRANS_DEBUG > 0
2462		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2463			net_dbg_ratelimited("retrans_out leaked\n");
2464		}
2465#endif
2466		if (!tp->retrans_out)
2467			tp->lost_retrans_low = tp->snd_nxt;
2468		TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
2469		tp->retrans_out += tcp_skb_pcount(skb);
2470
2471		/* Save stamp of the first retransmit. */
2472		if (!tp->retrans_stamp)
2473			tp->retrans_stamp = TCP_SKB_CB(skb)->when;
2474
2475		tp->undo_retrans += tcp_skb_pcount(skb);
2476
2477		/* snd_nxt is stored to detect loss of retransmitted segment,
2478		 * see tcp_input.c tcp_sacktag_write_queue().
2479		 */
2480		TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
2481	} else {
2482		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL);
2483	}
 
 
 
 
2484	return err;
2485}
2486
2487/* Check if we forward retransmits are possible in the current
2488 * window/congestion state.
2489 */
2490static bool tcp_can_forward_retransmit(struct sock *sk)
2491{
2492	const struct inet_connection_sock *icsk = inet_csk(sk);
2493	const struct tcp_sock *tp = tcp_sk(sk);
2494
2495	/* Forward retransmissions are possible only during Recovery. */
2496	if (icsk->icsk_ca_state != TCP_CA_Recovery)
2497		return false;
2498
2499	/* No forward retransmissions in Reno are possible. */
2500	if (tcp_is_reno(tp))
2501		return false;
2502
2503	/* Yeah, we have to make difficult choice between forward transmission
2504	 * and retransmission... Both ways have their merits...
2505	 *
2506	 * For now we do not retransmit anything, while we have some new
2507	 * segments to send. In the other cases, follow rule 3 for
2508	 * NextSeg() specified in RFC3517.
2509	 */
2510
2511	if (tcp_may_send_now(sk))
2512		return false;
2513
2514	return true;
2515}
2516
2517/* This gets called after a retransmit timeout, and the initially
2518 * retransmitted data is acknowledged.  It tries to continue
2519 * resending the rest of the retransmit queue, until either
2520 * we've sent it all or the congestion window limit is reached.
2521 * If doing SACK, the first ACK which comes back for a timeout
2522 * based retransmit packet might feed us FACK information again.
2523 * If so, we use it to avoid unnecessarily retransmissions.
2524 */
2525void tcp_xmit_retransmit_queue(struct sock *sk)
2526{
2527	const struct inet_connection_sock *icsk = inet_csk(sk);
2528	struct tcp_sock *tp = tcp_sk(sk);
2529	struct sk_buff *skb;
2530	struct sk_buff *hole = NULL;
2531	u32 last_lost;
2532	int mib_idx;
2533	int fwd_rexmitting = 0;
2534
2535	if (!tp->packets_out)
2536		return;
2537
2538	if (!tp->lost_out)
2539		tp->retransmit_high = tp->snd_una;
2540
2541	if (tp->retransmit_skb_hint) {
2542		skb = tp->retransmit_skb_hint;
2543		last_lost = TCP_SKB_CB(skb)->end_seq;
2544		if (after(last_lost, tp->retransmit_high))
2545			last_lost = tp->retransmit_high;
2546	} else {
2547		skb = tcp_write_queue_head(sk);
2548		last_lost = tp->snd_una;
2549	}
2550
2551	tcp_for_write_queue_from(skb, sk) {
2552		__u8 sacked = TCP_SKB_CB(skb)->sacked;
2553
2554		if (skb == tcp_send_head(sk))
2555			break;
2556		/* we could do better than to assign each time */
2557		if (hole == NULL)
2558			tp->retransmit_skb_hint = skb;
2559
2560		/* Assume this retransmit will generate
2561		 * only one packet for congestion window
2562		 * calculation purposes.  This works because
2563		 * tcp_retransmit_skb() will chop up the
2564		 * packet to be MSS sized and all the
2565		 * packet counting works out.
2566		 */
2567		if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
2568			return;
2569
2570		if (fwd_rexmitting) {
2571begin_fwd:
2572			if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
2573				break;
2574			mib_idx = LINUX_MIB_TCPFORWARDRETRANS;
2575
2576		} else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
2577			tp->retransmit_high = last_lost;
2578			if (!tcp_can_forward_retransmit(sk))
2579				break;
2580			/* Backtrack if necessary to non-L'ed skb */
2581			if (hole != NULL) {
2582				skb = hole;
2583				hole = NULL;
2584			}
2585			fwd_rexmitting = 1;
2586			goto begin_fwd;
2587
2588		} else if (!(sacked & TCPCB_LOST)) {
2589			if (hole == NULL && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
2590				hole = skb;
2591			continue;
2592
2593		} else {
2594			last_lost = TCP_SKB_CB(skb)->end_seq;
2595			if (icsk->icsk_ca_state != TCP_CA_Loss)
2596				mib_idx = LINUX_MIB_TCPFASTRETRANS;
2597			else
2598				mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
2599		}
2600
2601		if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
2602			continue;
2603
2604		if (tcp_retransmit_skb(sk, skb))
2605			return;
2606
2607		NET_INC_STATS_BH(sock_net(sk), mib_idx);
2608
2609		if (tcp_in_cwnd_reduction(sk))
2610			tp->prr_out += tcp_skb_pcount(skb);
2611
2612		if (skb == tcp_write_queue_head(sk))
2613			inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2614						  inet_csk(sk)->icsk_rto,
2615						  TCP_RTO_MAX);
2616	}
2617}
2618
2619/* Send a fin.  The caller locks the socket for us.  This cannot be
2620 * allowed to fail queueing a FIN frame under any circumstances.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2621 */
2622void tcp_send_fin(struct sock *sk)
2623{
 
2624	struct tcp_sock *tp = tcp_sk(sk);
2625	struct sk_buff *skb = tcp_write_queue_tail(sk);
2626	int mss_now;
2627
2628	/* Optimization, tack on the FIN if we have a queue of
2629	 * unsent frames.  But be careful about outgoing SACKS
2630	 * and IP options.
2631	 */
2632	mss_now = tcp_current_mss(sk);
2633
2634	if (tcp_send_head(sk) != NULL) {
2635		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_FIN;
2636		TCP_SKB_CB(skb)->end_seq++;
2637		tp->write_seq++;
 
 
 
 
 
 
 
 
 
 
2638	} else {
2639		/* Socket is locked, keep trying until memory is available. */
2640		for (;;) {
2641			skb = alloc_skb_fclone(MAX_TCP_HEADER,
2642					       sk->sk_allocation);
2643			if (skb)
2644				break;
2645			yield();
2646		}
2647
2648		/* Reserve space for headers and prepare control bits. */
2649		skb_reserve(skb, MAX_TCP_HEADER);
 
2650		/* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2651		tcp_init_nondata_skb(skb, tp->write_seq,
2652				     TCPHDR_ACK | TCPHDR_FIN);
2653		tcp_queue_skb(sk, skb);
2654	}
2655	__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
2656}
2657
2658/* We get here when a process closes a file descriptor (either due to
2659 * an explicit close() or as a byproduct of exit()'ing) and there
2660 * was unread data in the receive queue.  This behavior is recommended
2661 * by RFC 2525, section 2.17.  -DaveM
2662 */
2663void tcp_send_active_reset(struct sock *sk, gfp_t priority)
2664{
2665	struct sk_buff *skb;
2666
2667	/* NOTE: No TCP options attached and we never retransmit this. */
2668	skb = alloc_skb(MAX_TCP_HEADER, priority);
2669	if (!skb) {
2670		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2671		return;
2672	}
2673
2674	/* Reserve space for headers and prepare control bits. */
2675	skb_reserve(skb, MAX_TCP_HEADER);
2676	tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
2677			     TCPHDR_ACK | TCPHDR_RST);
 
2678	/* Send it off. */
2679	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2680	if (tcp_transmit_skb(sk, skb, 0, priority))
2681		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
2682
2683	TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
2684}
2685
2686/* Send a crossed SYN-ACK during socket establishment.
2687 * WARNING: This routine must only be called when we have already sent
2688 * a SYN packet that crossed the incoming SYN that caused this routine
2689 * to get called. If this assumption fails then the initial rcv_wnd
2690 * and rcv_wscale values will not be correct.
2691 */
2692int tcp_send_synack(struct sock *sk)
2693{
2694	struct sk_buff *skb;
2695
2696	skb = tcp_write_queue_head(sk);
2697	if (skb == NULL || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2698		pr_debug("%s: wrong queue state\n", __func__);
2699		return -EFAULT;
2700	}
2701	if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
2702		if (skb_cloned(skb)) {
2703			struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
2704			if (nskb == NULL)
2705				return -ENOMEM;
2706			tcp_unlink_write_queue(skb, sk);
2707			skb_header_release(nskb);
2708			__tcp_add_write_queue_head(sk, nskb);
2709			sk_wmem_free_skb(sk, skb);
2710			sk->sk_wmem_queued += nskb->truesize;
2711			sk_mem_charge(sk, nskb->truesize);
2712			skb = nskb;
2713		}
2714
2715		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
2716		TCP_ECN_send_synack(tcp_sk(sk), skb);
2717	}
2718	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2719	return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
2720}
2721
2722/**
2723 * tcp_make_synack - Prepare a SYN-ACK.
2724 * sk: listener socket
2725 * dst: dst entry attached to the SYNACK
2726 * req: request_sock pointer
2727 *
2728 * Allocate one skb and build a SYNACK packet.
2729 * @dst is consumed : Caller should not use it again.
2730 */
2731struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
2732				struct request_sock *req,
2733				struct tcp_fastopen_cookie *foc)
 
2734{
 
 
 
2735	struct tcp_out_options opts;
2736	struct inet_request_sock *ireq = inet_rsk(req);
2737	struct tcp_sock *tp = tcp_sk(sk);
2738	struct tcphdr *th;
2739	struct sk_buff *skb;
2740	struct tcp_md5sig_key *md5;
2741	int tcp_header_size;
 
 
2742	int mss;
2743
2744	skb = sock_wmalloc(sk, MAX_TCP_HEADER, 1, GFP_ATOMIC);
2745	if (unlikely(!skb)) {
2746		dst_release(dst);
2747		return NULL;
2748	}
2749	/* Reserve space for headers. */
2750	skb_reserve(skb, MAX_TCP_HEADER);
2751
 
 
 
 
 
 
 
 
 
2752	skb_dst_set(skb, dst);
2753	security_skb_owned_by(skb, sk);
2754
2755	mss = dst_metric_advmss(dst);
2756	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
2757		mss = tp->rx_opt.user_mss;
2758
2759	if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
2760		__u8 rcv_wscale;
2761		/* Set this up on the first call only */
2762		req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
2763
2764		/* limit the window selection if the user enforce a smaller rx buffer */
2765		if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2766		    (req->window_clamp > tcp_full_space(sk) || req->window_clamp == 0))
2767			req->window_clamp = tcp_full_space(sk);
2768
2769		/* tcp_full_space because it is guaranteed to be the first packet */
2770		tcp_select_initial_window(tcp_full_space(sk),
2771			mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
2772			&req->rcv_wnd,
2773			&req->window_clamp,
2774			ireq->wscale_ok,
2775			&rcv_wscale,
2776			dst_metric(dst, RTAX_INITRWND));
2777		ireq->rcv_wscale = rcv_wscale;
2778	}
2779
2780	memset(&opts, 0, sizeof(opts));
2781#ifdef CONFIG_SYN_COOKIES
2782	if (unlikely(req->cookie_ts))
2783		TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
2784	else
2785#endif
2786	TCP_SKB_CB(skb)->when = tcp_time_stamp;
2787	tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, &md5,
2788					     foc) + sizeof(*th);
 
 
 
 
 
 
2789
2790	skb_push(skb, tcp_header_size);
2791	skb_reset_transport_header(skb);
2792
2793	th = tcp_hdr(skb);
2794	memset(th, 0, sizeof(struct tcphdr));
2795	th->syn = 1;
2796	th->ack = 1;
2797	TCP_ECN_make_synack(req, th);
2798	th->source = htons(ireq->ir_num);
2799	th->dest = ireq->ir_rmt_port;
2800	/* Setting of flags are superfluous here for callers (and ECE is
2801	 * not even correctly set)
2802	 */
2803	tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
2804			     TCPHDR_SYN | TCPHDR_ACK);
2805
2806	th->seq = htonl(TCP_SKB_CB(skb)->seq);
2807	/* XXX data is queued and acked as is. No buffer/window check */
2808	th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
2809
2810	/* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2811	th->window = htons(min(req->rcv_wnd, 65535U));
2812	tcp_options_write((__be32 *)(th + 1), tp, &opts);
2813	th->doff = (tcp_header_size >> 2);
2814	TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_OUTSEGS);
2815
2816#ifdef CONFIG_TCP_MD5SIG
2817	/* Okay, we have all we need - do the md5 hash if needed */
2818	if (md5) {
2819		tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
2820					       md5, NULL, req, skb);
2821	}
2822#endif
2823
 
 
2824	return skb;
2825}
2826EXPORT_SYMBOL(tcp_make_synack);
2827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2828/* Do all connect socket setups that can be done AF independent. */
2829static void tcp_connect_init(struct sock *sk)
2830{
2831	const struct dst_entry *dst = __sk_dst_get(sk);
2832	struct tcp_sock *tp = tcp_sk(sk);
2833	__u8 rcv_wscale;
2834
2835	/* We'll fix this up when we get a response from the other end.
2836	 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2837	 */
2838	tp->tcp_header_len = sizeof(struct tcphdr) +
2839		(sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);
2840
2841#ifdef CONFIG_TCP_MD5SIG
2842	if (tp->af_specific->md5_lookup(sk, sk) != NULL)
2843		tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
2844#endif
2845
2846	/* If user gave his TCP_MAXSEG, record it to clamp */
2847	if (tp->rx_opt.user_mss)
2848		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2849	tp->max_window = 0;
2850	tcp_mtup_init(sk);
2851	tcp_sync_mss(sk, dst_mtu(dst));
2852
 
 
2853	if (!tp->window_clamp)
2854		tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
2855	tp->advmss = dst_metric_advmss(dst);
2856	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
2857		tp->advmss = tp->rx_opt.user_mss;
2858
2859	tcp_initialize_rcv_mss(sk);
2860
2861	/* limit the window selection if the user enforce a smaller rx buffer */
2862	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
2863	    (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
2864		tp->window_clamp = tcp_full_space(sk);
2865
2866	tcp_select_initial_window(tcp_full_space(sk),
2867				  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
2868				  &tp->rcv_wnd,
2869				  &tp->window_clamp,
2870				  sysctl_tcp_window_scaling,
2871				  &rcv_wscale,
2872				  dst_metric(dst, RTAX_INITRWND));
2873
2874	tp->rx_opt.rcv_wscale = rcv_wscale;
2875	tp->rcv_ssthresh = tp->rcv_wnd;
2876
2877	sk->sk_err = 0;
2878	sock_reset_flag(sk, SOCK_DONE);
2879	tp->snd_wnd = 0;
2880	tcp_init_wl(tp, 0);
2881	tp->snd_una = tp->write_seq;
2882	tp->snd_sml = tp->write_seq;
2883	tp->snd_up = tp->write_seq;
2884	tp->snd_nxt = tp->write_seq;
2885
2886	if (likely(!tp->repair))
2887		tp->rcv_nxt = 0;
2888	else
2889		tp->rcv_tstamp = tcp_time_stamp;
2890	tp->rcv_wup = tp->rcv_nxt;
2891	tp->copied_seq = tp->rcv_nxt;
2892
2893	inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
2894	inet_csk(sk)->icsk_retransmits = 0;
2895	tcp_clear_retrans(tp);
2896}
2897
2898static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
2899{
2900	struct tcp_sock *tp = tcp_sk(sk);
2901	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2902
2903	tcb->end_seq += skb->len;
2904	skb_header_release(skb);
2905	__tcp_add_write_queue_tail(sk, skb);
2906	sk->sk_wmem_queued += skb->truesize;
2907	sk_mem_charge(sk, skb->truesize);
2908	tp->write_seq = tcb->end_seq;
2909	tp->packets_out += tcp_skb_pcount(skb);
2910}
2911
2912/* Build and send a SYN with data and (cached) Fast Open cookie. However,
2913 * queue a data-only packet after the regular SYN, such that regular SYNs
2914 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
2915 * only the SYN sequence, the data are retransmitted in the first ACK.
2916 * If cookie is not cached or other error occurs, falls back to send a
2917 * regular SYN with Fast Open cookie request option.
2918 */
2919static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
2920{
2921	struct tcp_sock *tp = tcp_sk(sk);
2922	struct tcp_fastopen_request *fo = tp->fastopen_req;
2923	int syn_loss = 0, space, i, err = 0, iovlen = fo->data->msg_iovlen;
2924	struct sk_buff *syn_data = NULL, *data;
2925	unsigned long last_syn_loss = 0;
 
2926
2927	tp->rx_opt.mss_clamp = tp->advmss;  /* If MSS is not cached */
2928	tcp_fastopen_cache_get(sk, &tp->rx_opt.mss_clamp, &fo->cookie,
2929			       &syn_loss, &last_syn_loss);
2930	/* Recurring FO SYN losses: revert to regular handshake temporarily */
2931	if (syn_loss > 1 &&
2932	    time_before(jiffies, last_syn_loss + (60*HZ << syn_loss))) {
2933		fo->cookie.len = -1;
2934		goto fallback;
2935	}
2936
2937	if (sysctl_tcp_fastopen & TFO_CLIENT_NO_COOKIE)
2938		fo->cookie.len = -1;
2939	else if (fo->cookie.len <= 0)
2940		goto fallback;
2941
2942	/* MSS for SYN-data is based on cached MSS and bounded by PMTU and
2943	 * user-MSS. Reserve maximum option space for middleboxes that add
2944	 * private TCP options. The cost is reduced data space in SYN :(
2945	 */
2946	if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->rx_opt.mss_clamp)
2947		tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
2948	space = __tcp_mtu_to_mss(sk, inet_csk(sk)->icsk_pmtu_cookie) -
2949		MAX_TCP_OPTION_SPACE;
2950
2951	space = min_t(size_t, space, fo->size);
2952
2953	/* limit to order-0 allocations */
2954	space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
2955
2956	syn_data = skb_copy_expand(syn, MAX_TCP_HEADER, space,
2957				   sk->sk_allocation);
2958	if (syn_data == NULL)
2959		goto fallback;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2960
2961	for (i = 0; i < iovlen && syn_data->len < space; ++i) {
2962		struct iovec *iov = &fo->data->msg_iov[i];
2963		unsigned char __user *from = iov->iov_base;
2964		int len = iov->iov_len;
2965
2966		if (syn_data->len + len > space)
2967			len = space - syn_data->len;
2968		else if (i + 1 == iovlen)
2969			/* No more data pending in inet_wait_for_connect() */
2970			fo->data = NULL;
2971
2972		if (skb_add_data(syn_data, from, len))
2973			goto fallback;
2974	}
2975
2976	/* Queue a data-only packet after the regular SYN for retransmission */
2977	data = pskb_copy(syn_data, sk->sk_allocation);
2978	if (data == NULL)
2979		goto fallback;
2980	TCP_SKB_CB(data)->seq++;
2981	TCP_SKB_CB(data)->tcp_flags &= ~TCPHDR_SYN;
2982	TCP_SKB_CB(data)->tcp_flags = (TCPHDR_ACK|TCPHDR_PSH);
2983	tcp_connect_queue_skb(sk, data);
2984	fo->copied = data->len;
2985
2986	/* syn_data is about to be sent, we need to take current time stamps
2987	 * for the packets that are in write queue : SYN packet and DATA
 
 
2988	 */
2989	skb_mstamp_get(&syn->skb_mstamp);
2990	data->skb_mstamp = syn->skb_mstamp;
2991
2992	if (tcp_transmit_skb(sk, syn_data, 0, sk->sk_allocation) == 0) {
2993		tp->syn_data = (fo->copied > 0);
2994		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
2995		goto done;
2996	}
2997	syn_data = NULL;
2998
2999fallback:
3000	/* Send a regular SYN with Fast Open cookie request option */
3001	if (fo->cookie.len > 0)
3002		fo->cookie.len = 0;
3003	err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3004	if (err)
3005		tp->syn_fastopen = 0;
3006	kfree_skb(syn_data);
3007done:
3008	fo->cookie.len = -1;  /* Exclude Fast Open option for SYN retries */
3009	return err;
3010}
3011
3012/* Build a SYN and send it off. */
3013int tcp_connect(struct sock *sk)
3014{
3015	struct tcp_sock *tp = tcp_sk(sk);
3016	struct sk_buff *buff;
3017	int err;
3018
3019	tcp_connect_init(sk);
3020
3021	if (unlikely(tp->repair)) {
3022		tcp_finish_connect(sk, NULL);
3023		return 0;
3024	}
3025
3026	buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
3027	if (unlikely(buff == NULL))
3028		return -ENOBUFS;
3029
3030	/* Reserve space for headers. */
3031	skb_reserve(buff, MAX_TCP_HEADER);
3032
3033	tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3034	tp->retrans_stamp = TCP_SKB_CB(buff)->when = tcp_time_stamp;
3035	tcp_connect_queue_skb(sk, buff);
3036	TCP_ECN_send_syn(sk, buff);
3037
3038	/* Send off SYN; include data in Fast Open. */
3039	err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3040	      tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3041	if (err == -ECONNREFUSED)
3042		return err;
3043
3044	/* We change tp->snd_nxt after the tcp_transmit_skb() call
3045	 * in order to make this packet get counted in tcpOutSegs.
3046	 */
3047	tp->snd_nxt = tp->write_seq;
3048	tp->pushed_seq = tp->write_seq;
3049	TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3050
3051	/* Timer for repeating the SYN until an answer. */
3052	inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3053				  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3054	return 0;
3055}
3056EXPORT_SYMBOL(tcp_connect);
3057
3058/* Send out a delayed ack, the caller does the policy checking
3059 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
3060 * for details.
3061 */
3062void tcp_send_delayed_ack(struct sock *sk)
3063{
3064	struct inet_connection_sock *icsk = inet_csk(sk);
3065	int ato = icsk->icsk_ack.ato;
3066	unsigned long timeout;
3067
 
 
3068	if (ato > TCP_DELACK_MIN) {
3069		const struct tcp_sock *tp = tcp_sk(sk);
3070		int max_ato = HZ / 2;
3071
3072		if (icsk->icsk_ack.pingpong ||
3073		    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3074			max_ato = TCP_DELACK_MAX;
3075
3076		/* Slow path, intersegment interval is "high". */
3077
3078		/* If some rtt estimate is known, use it to bound delayed ack.
3079		 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3080		 * directly.
3081		 */
3082		if (tp->srtt_us) {
3083			int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3084					TCP_DELACK_MIN);
3085
3086			if (rtt < max_ato)
3087				max_ato = rtt;
3088		}
3089
3090		ato = min(ato, max_ato);
3091	}
3092
3093	/* Stay within the limit we were given */
3094	timeout = jiffies + ato;
3095
3096	/* Use new timeout only if there wasn't a older one earlier. */
3097	if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3098		/* If delack timer was blocked or is about to expire,
3099		 * send ACK now.
3100		 */
3101		if (icsk->icsk_ack.blocked ||
3102		    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3103			tcp_send_ack(sk);
3104			return;
3105		}
3106
3107		if (!time_before(timeout, icsk->icsk_ack.timeout))
3108			timeout = icsk->icsk_ack.timeout;
3109	}
3110	icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3111	icsk->icsk_ack.timeout = timeout;
3112	sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3113}
3114
3115/* This routine sends an ack and also updates the window. */
3116void tcp_send_ack(struct sock *sk)
3117{
3118	struct sk_buff *buff;
3119
3120	/* If we have been reset, we may not send again. */
3121	if (sk->sk_state == TCP_CLOSE)
3122		return;
3123
 
 
3124	/* We are not putting this on the write queue, so
3125	 * tcp_transmit_skb() will set the ownership to this
3126	 * sock.
3127	 */
3128	buff = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3129	if (buff == NULL) {
 
3130		inet_csk_schedule_ack(sk);
3131		inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
3132		inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
3133					  TCP_DELACK_MAX, TCP_RTO_MAX);
3134		return;
3135	}
3136
3137	/* Reserve space for headers and prepare control bits. */
3138	skb_reserve(buff, MAX_TCP_HEADER);
3139	tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3140
 
 
 
 
 
 
 
 
3141	/* Send it off, this clears delayed acks for us. */
3142	TCP_SKB_CB(buff)->when = tcp_time_stamp;
3143	tcp_transmit_skb(sk, buff, 0, sk_gfp_atomic(sk, GFP_ATOMIC));
3144}
 
3145
3146/* This routine sends a packet with an out of date sequence
3147 * number. It assumes the other end will try to ack it.
3148 *
3149 * Question: what should we make while urgent mode?
3150 * 4.4BSD forces sending single byte of data. We cannot send
3151 * out of window data, because we have SND.NXT==SND.MAX...
3152 *
3153 * Current solution: to send TWO zero-length segments in urgent mode:
3154 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
3155 * out-of-date with SND.UNA-1 to probe window.
3156 */
3157static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
3158{
3159	struct tcp_sock *tp = tcp_sk(sk);
3160	struct sk_buff *skb;
3161
3162	/* We don't queue it, tcp_transmit_skb() sets ownership. */
3163	skb = alloc_skb(MAX_TCP_HEADER, sk_gfp_atomic(sk, GFP_ATOMIC));
3164	if (skb == NULL)
 
3165		return -1;
3166
3167	/* Reserve space for headers and set control bits. */
3168	skb_reserve(skb, MAX_TCP_HEADER);
3169	/* Use a previous sequence.  This should cause the other
3170	 * end to send an ack.  Don't queue or clone SKB, just
3171	 * send it.
3172	 */
3173	tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
3174	TCP_SKB_CB(skb)->when = tcp_time_stamp;
3175	return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
 
3176}
3177
3178void tcp_send_window_probe(struct sock *sk)
3179{
3180	if (sk->sk_state == TCP_ESTABLISHED) {
3181		tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
3182		tcp_xmit_probe_skb(sk, 0);
3183	}
3184}
3185
3186/* Initiate keepalive or window probe from timer. */
3187int tcp_write_wakeup(struct sock *sk)
3188{
3189	struct tcp_sock *tp = tcp_sk(sk);
3190	struct sk_buff *skb;
3191
3192	if (sk->sk_state == TCP_CLOSE)
3193		return -1;
3194
3195	if ((skb = tcp_send_head(sk)) != NULL &&
3196	    before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
3197		int err;
3198		unsigned int mss = tcp_current_mss(sk);
3199		unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3200
3201		if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
3202			tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
3203
3204		/* We are probing the opening of a window
3205		 * but the window size is != 0
3206		 * must have been a result SWS avoidance ( sender )
3207		 */
3208		if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
3209		    skb->len > mss) {
3210			seg_size = min(seg_size, mss);
3211			TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3212			if (tcp_fragment(sk, skb, seg_size, mss))
3213				return -1;
3214		} else if (!tcp_skb_pcount(skb))
3215			tcp_set_skb_tso_segs(sk, skb, mss);
3216
3217		TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
3218		TCP_SKB_CB(skb)->when = tcp_time_stamp;
3219		err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3220		if (!err)
3221			tcp_event_new_data_sent(sk, skb);
3222		return err;
3223	} else {
3224		if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
3225			tcp_xmit_probe_skb(sk, 1);
3226		return tcp_xmit_probe_skb(sk, 0);
3227	}
3228}
3229
3230/* A window probe timeout has occurred.  If window is not closed send
3231 * a partial packet else a zero probe.
3232 */
3233void tcp_send_probe0(struct sock *sk)
3234{
3235	struct inet_connection_sock *icsk = inet_csk(sk);
3236	struct tcp_sock *tp = tcp_sk(sk);
 
 
3237	int err;
3238
3239	err = tcp_write_wakeup(sk);
3240
3241	if (tp->packets_out || !tcp_send_head(sk)) {
3242		/* Cancel probe timer, if it is not required. */
3243		icsk->icsk_probes_out = 0;
3244		icsk->icsk_backoff = 0;
3245		return;
3246	}
3247
3248	if (err <= 0) {
3249		if (icsk->icsk_backoff < sysctl_tcp_retries2)
3250			icsk->icsk_backoff++;
3251		icsk->icsk_probes_out++;
3252		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3253					  min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3254					  TCP_RTO_MAX);
3255	} else {
3256		/* If packet was not sent due to local congestion,
3257		 * do not backoff and do not remember icsk_probes_out.
3258		 * Let local senders to fight for local resources.
3259		 *
3260		 * Use accumulated backoff yet.
3261		 */
3262		if (!icsk->icsk_probes_out)
3263			icsk->icsk_probes_out = 1;
3264		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3265					  min(icsk->icsk_rto << icsk->icsk_backoff,
3266					      TCP_RESOURCE_PROBE_INTERVAL),
3267					  TCP_RTO_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3268	}
 
3269}