Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/slab.h>
  20#include <linux/blkdev.h>
  21#include <linux/writeback.h>
  22#include <linux/pagevec.h>
 
 
  23#include "ctree.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "extent_io.h"
  27#include "disk-io.h"
  28#include "compression.h"
 
 
 
 
  29
  30static struct kmem_cache *btrfs_ordered_extent_cache;
  31
  32static u64 entry_end(struct btrfs_ordered_extent *entry)
  33{
  34	if (entry->file_offset + entry->len < entry->file_offset)
  35		return (u64)-1;
  36	return entry->file_offset + entry->len;
  37}
  38
  39/* returns NULL if the insertion worked, or it returns the node it did find
  40 * in the tree
  41 */
  42static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  43				   struct rb_node *node)
  44{
  45	struct rb_node **p = &root->rb_node;
  46	struct rb_node *parent = NULL;
  47	struct btrfs_ordered_extent *entry;
  48
  49	while (*p) {
  50		parent = *p;
  51		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  52
  53		if (file_offset < entry->file_offset)
  54			p = &(*p)->rb_left;
  55		else if (file_offset >= entry_end(entry))
  56			p = &(*p)->rb_right;
  57		else
  58			return parent;
  59	}
  60
  61	rb_link_node(node, parent, p);
  62	rb_insert_color(node, root);
  63	return NULL;
  64}
  65
  66static void ordered_data_tree_panic(struct inode *inode, int errno,
  67					       u64 offset)
  68{
  69	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  70	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  71		    "%llu", offset);
  72}
  73
  74/*
  75 * look for a given offset in the tree, and if it can't be found return the
  76 * first lesser offset
  77 */
  78static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  79				     struct rb_node **prev_ret)
  80{
  81	struct rb_node *n = root->rb_node;
  82	struct rb_node *prev = NULL;
  83	struct rb_node *test;
  84	struct btrfs_ordered_extent *entry;
  85	struct btrfs_ordered_extent *prev_entry = NULL;
  86
  87	while (n) {
  88		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  89		prev = n;
  90		prev_entry = entry;
  91
  92		if (file_offset < entry->file_offset)
  93			n = n->rb_left;
  94		else if (file_offset >= entry_end(entry))
  95			n = n->rb_right;
  96		else
  97			return n;
  98	}
  99	if (!prev_ret)
 100		return NULL;
 101
 102	while (prev && file_offset >= entry_end(prev_entry)) {
 103		test = rb_next(prev);
 104		if (!test)
 105			break;
 106		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 107				      rb_node);
 108		if (file_offset < entry_end(prev_entry))
 109			break;
 110
 111		prev = test;
 112	}
 113	if (prev)
 114		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 115				      rb_node);
 116	while (prev && file_offset < entry_end(prev_entry)) {
 117		test = rb_prev(prev);
 118		if (!test)
 119			break;
 120		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 121				      rb_node);
 122		prev = test;
 123	}
 124	*prev_ret = prev;
 125	return NULL;
 126}
 127
 128/*
 129 * helper to check if a given offset is inside a given entry
 130 */
 131static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 132{
 133	if (file_offset < entry->file_offset ||
 134	    entry->file_offset + entry->len <= file_offset)
 135		return 0;
 136	return 1;
 137}
 138
 139static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 140			  u64 len)
 141{
 142	if (file_offset + len <= entry->file_offset ||
 143	    entry->file_offset + entry->len <= file_offset)
 144		return 0;
 145	return 1;
 146}
 147
 148/*
 149 * look find the first ordered struct that has this offset, otherwise
 150 * the first one less than this offset
 151 */
 152static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 153					  u64 file_offset)
 154{
 155	struct rb_root *root = &tree->tree;
 156	struct rb_node *prev = NULL;
 157	struct rb_node *ret;
 158	struct btrfs_ordered_extent *entry;
 159
 160	if (tree->last) {
 161		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 162				 rb_node);
 163		if (offset_in_entry(entry, file_offset))
 164			return tree->last;
 165	}
 166	ret = __tree_search(root, file_offset, &prev);
 167	if (!ret)
 168		ret = prev;
 169	if (ret)
 170		tree->last = ret;
 171	return ret;
 172}
 173
 174/* allocate and add a new ordered_extent into the per-inode tree.
 175 * file_offset is the logical offset in the file
 176 *
 177 * start is the disk block number of an extent already reserved in the
 178 * extent allocation tree
 179 *
 180 * len is the length of the extent
 181 *
 182 * The tree is given a single reference on the ordered extent that was
 183 * inserted.
 184 */
 185static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 186				      u64 start, u64 len, u64 disk_len,
 187				      int type, int dio, int compress_type)
 188{
 189	struct btrfs_root *root = BTRFS_I(inode)->root;
 190	struct btrfs_ordered_inode_tree *tree;
 191	struct rb_node *node;
 192	struct btrfs_ordered_extent *entry;
 
 
 193
 194	tree = &BTRFS_I(inode)->ordered_tree;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 196	if (!entry)
 197		return -ENOMEM;
 198
 199	entry->file_offset = file_offset;
 200	entry->start = start;
 201	entry->len = len;
 202	entry->disk_len = disk_len;
 203	entry->bytes_left = len;
 204	entry->inode = igrab(inode);
 
 
 205	entry->compress_type = compress_type;
 206	entry->truncated_len = (u64)-1;
 207	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 208		set_bit(type, &entry->flags);
 209
 210	if (dio)
 211		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 212
 213	/* one ref for the tree */
 214	atomic_set(&entry->refs, 1);
 215	init_waitqueue_head(&entry->wait);
 216	INIT_LIST_HEAD(&entry->list);
 
 217	INIT_LIST_HEAD(&entry->root_extent_list);
 218	INIT_LIST_HEAD(&entry->work_list);
 
 219	init_completion(&entry->completion);
 220	INIT_LIST_HEAD(&entry->log_list);
 221	INIT_LIST_HEAD(&entry->trans_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222
 223	trace_btrfs_ordered_extent_add(inode, entry);
 224
 225	spin_lock_irq(&tree->lock);
 226	node = tree_insert(&tree->tree, file_offset,
 
 
 
 
 
 
 227			   &entry->rb_node);
 228	if (node)
 229		ordered_data_tree_panic(inode, -EEXIST, file_offset);
 230	spin_unlock_irq(&tree->lock);
 
 
 231
 232	spin_lock(&root->ordered_extent_lock);
 233	list_add_tail(&entry->root_extent_list,
 234		      &root->ordered_extents);
 235	root->nr_ordered_extents++;
 236	if (root->nr_ordered_extents == 1) {
 237		spin_lock(&root->fs_info->ordered_root_lock);
 238		BUG_ON(!list_empty(&root->ordered_root));
 239		list_add_tail(&root->ordered_root,
 240			      &root->fs_info->ordered_roots);
 241		spin_unlock(&root->fs_info->ordered_root_lock);
 242	}
 243	spin_unlock(&root->ordered_extent_lock);
 244
 245	return 0;
 246}
 247
 248int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 249			     u64 start, u64 len, u64 disk_len, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250{
 251	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 252					  disk_len, type, 0,
 253					  BTRFS_COMPRESS_NONE);
 254}
 255
 256int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 257				 u64 start, u64 len, u64 disk_len, int type)
 258{
 259	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 260					  disk_len, type, 1,
 261					  BTRFS_COMPRESS_NONE);
 262}
 263
 264int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 265				      u64 start, u64 len, u64 disk_len,
 266				      int type, int compress_type)
 267{
 268	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 269					  disk_len, type, 0,
 270					  compress_type);
 271}
 272
 273/*
 274 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 275 * when an ordered extent is finished.  If the list covers more than one
 276 * ordered extent, it is split across multiples.
 277 */
 278void btrfs_add_ordered_sum(struct inode *inode,
 279			   struct btrfs_ordered_extent *entry,
 280			   struct btrfs_ordered_sum *sum)
 281{
 282	struct btrfs_ordered_inode_tree *tree;
 283
 284	tree = &BTRFS_I(inode)->ordered_tree;
 285	spin_lock_irq(&tree->lock);
 286	list_add_tail(&sum->list, &entry->list);
 287	spin_unlock_irq(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 288}
 289
 290/*
 291 * this is used to account for finished IO across a given range
 292 * of the file.  The IO may span ordered extents.  If
 293 * a given ordered_extent is completely done, 1 is returned, otherwise
 294 * 0.
 295 *
 296 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 297 * to make sure this function only returns 1 once for a given ordered extent.
 
 
 
 
 298 *
 299 * file_offset is updated to one byte past the range that is recorded as
 300 * complete.  This allows you to walk forward in the file.
 301 */
 302int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 303				   struct btrfs_ordered_extent **cached,
 304				   u64 *file_offset, u64 io_size, int uptodate)
 305{
 306	struct btrfs_ordered_inode_tree *tree;
 307	struct rb_node *node;
 308	struct btrfs_ordered_extent *entry = NULL;
 309	int ret;
 310	unsigned long flags;
 311	u64 dec_end;
 312	u64 dec_start;
 313	u64 to_dec;
 314
 315	tree = &BTRFS_I(inode)->ordered_tree;
 316	spin_lock_irqsave(&tree->lock, flags);
 317	node = tree_search(tree, *file_offset);
 318	if (!node) {
 319		ret = 1;
 320		goto out;
 321	}
 322
 323	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 324	if (!offset_in_entry(entry, *file_offset)) {
 325		ret = 1;
 326		goto out;
 327	}
 
 
 
 
 328
 329	dec_start = max(*file_offset, entry->file_offset);
 330	dec_end = min(*file_offset + io_size, entry->file_offset +
 331		      entry->len);
 332	*file_offset = dec_end;
 333	if (dec_start > dec_end) {
 334		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 335			"bad ordering dec_start %llu end %llu", dec_start, dec_end);
 336	}
 337	to_dec = dec_end - dec_start;
 338	if (to_dec > entry->bytes_left) {
 339		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 340			"bad ordered accounting left %llu size %llu",
 341			entry->bytes_left, to_dec);
 342	}
 343	entry->bytes_left -= to_dec;
 344	if (!uptodate)
 345		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 346
 347	if (entry->bytes_left == 0) {
 348		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 349		/*
 350		 * Implicit memory barrier after test_and_set_bit
 
 
 351		 */
 352		if (waitqueue_active(&entry->wait))
 353			wake_up(&entry->wait);
 354	} else {
 355		ret = 1;
 356	}
 357out:
 358	if (!ret && cached && entry) {
 359		*cached = entry;
 360		atomic_inc(&entry->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361	}
 362	spin_unlock_irqrestore(&tree->lock, flags);
 363	return ret == 0;
 364}
 365
 366/*
 367 * this is used to account for finished IO across a given range
 368 * of the file.  The IO should not span ordered extents.  If
 369 * a given ordered_extent is completely done, 1 is returned, otherwise
 370 * 0.
 
 
 
 
 
 
 
 
 371 *
 372 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 373 * to make sure this function only returns 1 once for a given ordered extent.
 374 */
 375int btrfs_dec_test_ordered_pending(struct inode *inode,
 376				   struct btrfs_ordered_extent **cached,
 377				   u64 file_offset, u64 io_size, int uptodate)
 378{
 379	struct btrfs_ordered_inode_tree *tree;
 380	struct rb_node *node;
 381	struct btrfs_ordered_extent *entry = NULL;
 382	unsigned long flags;
 383	int ret;
 384
 385	tree = &BTRFS_I(inode)->ordered_tree;
 386	spin_lock_irqsave(&tree->lock, flags);
 387	if (cached && *cached) {
 388		entry = *cached;
 389		goto have_entry;
 390	}
 391
 392	node = tree_search(tree, file_offset);
 393	if (!node) {
 394		ret = 1;
 395		goto out;
 396	}
 397
 398	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 399have_entry:
 400	if (!offset_in_entry(entry, file_offset)) {
 401		ret = 1;
 402		goto out;
 403	}
 404
 405	if (io_size > entry->bytes_left) {
 406		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 407			   "bad ordered accounting left %llu size %llu",
 408		       entry->bytes_left, io_size);
 409	}
 410	entry->bytes_left -= io_size;
 411	if (!uptodate)
 412		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 413
 414	if (entry->bytes_left == 0) {
 415		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 416		/*
 417		 * Implicit memory barrier after test_and_set_bit
 
 418		 */
 419		if (waitqueue_active(&entry->wait))
 420			wake_up(&entry->wait);
 421	} else {
 422		ret = 1;
 423	}
 424out:
 425	if (!ret && cached && entry) {
 426		*cached = entry;
 427		atomic_inc(&entry->refs);
 428	}
 429	spin_unlock_irqrestore(&tree->lock, flags);
 430	return ret == 0;
 431}
 432
 433/* Needs to either be called under a log transaction or the log_mutex */
 434void btrfs_get_logged_extents(struct inode *inode,
 435			      struct list_head *logged_list,
 436			      const loff_t start,
 437			      const loff_t end)
 438{
 439	struct btrfs_ordered_inode_tree *tree;
 440	struct btrfs_ordered_extent *ordered;
 441	struct rb_node *n;
 442	struct rb_node *prev;
 443
 444	tree = &BTRFS_I(inode)->ordered_tree;
 445	spin_lock_irq(&tree->lock);
 446	n = __tree_search(&tree->tree, end, &prev);
 447	if (!n)
 448		n = prev;
 449	for (; n; n = rb_prev(n)) {
 450		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 451		if (ordered->file_offset > end)
 452			continue;
 453		if (entry_end(ordered) <= start)
 454			break;
 455		if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 456			continue;
 457		list_add(&ordered->log_list, logged_list);
 458		atomic_inc(&ordered->refs);
 459	}
 460	spin_unlock_irq(&tree->lock);
 461}
 462
 463void btrfs_put_logged_extents(struct list_head *logged_list)
 464{
 465	struct btrfs_ordered_extent *ordered;
 466
 467	while (!list_empty(logged_list)) {
 468		ordered = list_first_entry(logged_list,
 469					   struct btrfs_ordered_extent,
 470					   log_list);
 471		list_del_init(&ordered->log_list);
 472		btrfs_put_ordered_extent(ordered);
 473	}
 474}
 475
 476void btrfs_submit_logged_extents(struct list_head *logged_list,
 477				 struct btrfs_root *log)
 478{
 479	int index = log->log_transid % 2;
 480
 481	spin_lock_irq(&log->log_extents_lock[index]);
 482	list_splice_tail(logged_list, &log->logged_list[index]);
 483	spin_unlock_irq(&log->log_extents_lock[index]);
 484}
 485
 486void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
 487			       struct btrfs_root *log, u64 transid)
 488{
 489	struct btrfs_ordered_extent *ordered;
 490	int index = transid % 2;
 491
 492	spin_lock_irq(&log->log_extents_lock[index]);
 493	while (!list_empty(&log->logged_list[index])) {
 494		struct inode *inode;
 495		ordered = list_first_entry(&log->logged_list[index],
 496					   struct btrfs_ordered_extent,
 497					   log_list);
 498		list_del_init(&ordered->log_list);
 499		inode = ordered->inode;
 500		spin_unlock_irq(&log->log_extents_lock[index]);
 501
 502		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
 503		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
 504			u64 start = ordered->file_offset;
 505			u64 end = ordered->file_offset + ordered->len - 1;
 506
 507			WARN_ON(!inode);
 508			filemap_fdatawrite_range(inode->i_mapping, start, end);
 509		}
 510		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
 511						   &ordered->flags));
 512
 513		/*
 514		 * In order to keep us from losing our ordered extent
 515		 * information when committing the transaction we have to make
 516		 * sure that any logged extents are completed when we go to
 517		 * commit the transaction.  To do this we simply increase the
 518		 * current transactions pending_ordered counter and decrement it
 519		 * when the ordered extent completes.
 520		 */
 521		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
 522			struct btrfs_ordered_inode_tree *tree;
 523
 524			tree = &BTRFS_I(inode)->ordered_tree;
 525			spin_lock_irq(&tree->lock);
 526			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
 527				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
 528				atomic_inc(&trans->transaction->pending_ordered);
 529			}
 530			spin_unlock_irq(&tree->lock);
 531		}
 532		btrfs_put_ordered_extent(ordered);
 533		spin_lock_irq(&log->log_extents_lock[index]);
 534	}
 535	spin_unlock_irq(&log->log_extents_lock[index]);
 536}
 537
 538void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
 539{
 540	struct btrfs_ordered_extent *ordered;
 541	int index = transid % 2;
 542
 543	spin_lock_irq(&log->log_extents_lock[index]);
 544	while (!list_empty(&log->logged_list[index])) {
 545		ordered = list_first_entry(&log->logged_list[index],
 546					   struct btrfs_ordered_extent,
 547					   log_list);
 548		list_del_init(&ordered->log_list);
 549		spin_unlock_irq(&log->log_extents_lock[index]);
 550		btrfs_put_ordered_extent(ordered);
 551		spin_lock_irq(&log->log_extents_lock[index]);
 552	}
 553	spin_unlock_irq(&log->log_extents_lock[index]);
 554}
 555
 556/*
 557 * used to drop a reference on an ordered extent.  This will free
 558 * the extent if the last reference is dropped
 559 */
 560void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 561{
 562	struct list_head *cur;
 563	struct btrfs_ordered_sum *sum;
 564
 565	trace_btrfs_ordered_extent_put(entry->inode, entry);
 566
 567	if (atomic_dec_and_test(&entry->refs)) {
 568		ASSERT(list_empty(&entry->log_list));
 569		ASSERT(list_empty(&entry->trans_list));
 570		ASSERT(list_empty(&entry->root_extent_list));
 
 571		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 572		if (entry->inode)
 573			btrfs_add_delayed_iput(entry->inode);
 574		while (!list_empty(&entry->list)) {
 575			cur = entry->list.next;
 576			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 577			list_del(&sum->list);
 578			kfree(sum);
 579		}
 580		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 581	}
 582}
 583
 584/*
 585 * remove an ordered extent from the tree.  No references are dropped
 586 * and waiters are woken up.
 587 */
 588void btrfs_remove_ordered_extent(struct inode *inode,
 589				 struct btrfs_ordered_extent *entry)
 590{
 591	struct btrfs_ordered_inode_tree *tree;
 592	struct btrfs_root *root = BTRFS_I(inode)->root;
 593	struct rb_node *node;
 594	bool dec_pending_ordered = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595
 596	tree = &BTRFS_I(inode)->ordered_tree;
 597	spin_lock_irq(&tree->lock);
 
 
 598	node = &entry->rb_node;
 599	rb_erase(node, &tree->tree);
 600	RB_CLEAR_NODE(node);
 601	if (tree->last == node)
 602		tree->last = NULL;
 603	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 604	if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
 605		dec_pending_ordered = true;
 606	spin_unlock_irq(&tree->lock);
 607
 608	/*
 609	 * The current running transaction is waiting on us, we need to let it
 610	 * know that we're complete and wake it up.
 611	 */
 612	if (dec_pending_ordered) {
 613		struct btrfs_transaction *trans;
 614
 615		/*
 616		 * The checks for trans are just a formality, it should be set,
 617		 * but if it isn't we don't want to deref/assert under the spin
 618		 * lock, so be nice and check if trans is set, but ASSERT() so
 619		 * if it isn't set a developer will notice.
 620		 */
 621		spin_lock(&root->fs_info->trans_lock);
 622		trans = root->fs_info->running_transaction;
 623		if (trans)
 624			atomic_inc(&trans->use_count);
 625		spin_unlock(&root->fs_info->trans_lock);
 626
 627		ASSERT(trans);
 628		if (trans) {
 629			if (atomic_dec_and_test(&trans->pending_ordered))
 630				wake_up(&trans->pending_wait);
 631			btrfs_put_transaction(trans);
 632		}
 633	}
 634
 
 
 635	spin_lock(&root->ordered_extent_lock);
 636	list_del_init(&entry->root_extent_list);
 637	root->nr_ordered_extents--;
 638
 639	trace_btrfs_ordered_extent_remove(inode, entry);
 640
 641	if (!root->nr_ordered_extents) {
 642		spin_lock(&root->fs_info->ordered_root_lock);
 643		BUG_ON(list_empty(&root->ordered_root));
 644		list_del_init(&root->ordered_root);
 645		spin_unlock(&root->fs_info->ordered_root_lock);
 646	}
 647	spin_unlock(&root->ordered_extent_lock);
 648	wake_up(&entry->wait);
 
 
 649}
 650
 651static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 652{
 653	struct btrfs_ordered_extent *ordered;
 654
 655	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 656	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 657	complete(&ordered->completion);
 658}
 659
 660/*
 661 * wait for all the ordered extents in a root.  This is done when balancing
 662 * space between drives.
 663 */
 664int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
 
 665{
 666	struct list_head splice, works;
 
 
 
 667	struct btrfs_ordered_extent *ordered, *next;
 668	int count = 0;
 669
 670	INIT_LIST_HEAD(&splice);
 671	INIT_LIST_HEAD(&works);
 672
 673	mutex_lock(&root->ordered_extent_mutex);
 674	spin_lock(&root->ordered_extent_lock);
 675	list_splice_init(&root->ordered_extents, &splice);
 676	while (!list_empty(&splice) && nr) {
 677		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 678					   root_extent_list);
 
 
 
 
 
 
 
 
 679		list_move_tail(&ordered->root_extent_list,
 680			       &root->ordered_extents);
 681		atomic_inc(&ordered->refs);
 682		spin_unlock(&root->ordered_extent_lock);
 683
 684		btrfs_init_work(&ordered->flush_work,
 685				btrfs_flush_delalloc_helper,
 686				btrfs_run_ordered_extent_work, NULL, NULL);
 687		list_add_tail(&ordered->work_list, &works);
 688		btrfs_queue_work(root->fs_info->flush_workers,
 689				 &ordered->flush_work);
 690
 691		cond_resched();
 692		spin_lock(&root->ordered_extent_lock);
 693		if (nr != -1)
 694			nr--;
 695		count++;
 696	}
 
 697	list_splice_tail(&splice, &root->ordered_extents);
 698	spin_unlock(&root->ordered_extent_lock);
 699
 700	list_for_each_entry_safe(ordered, next, &works, work_list) {
 701		list_del_init(&ordered->work_list);
 702		wait_for_completion(&ordered->completion);
 703		btrfs_put_ordered_extent(ordered);
 704		cond_resched();
 705	}
 706	mutex_unlock(&root->ordered_extent_mutex);
 707
 708	return count;
 709}
 710
 711void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
 
 712{
 713	struct btrfs_root *root;
 714	struct list_head splice;
 715	int done;
 716
 717	INIT_LIST_HEAD(&splice);
 718
 719	mutex_lock(&fs_info->ordered_operations_mutex);
 720	spin_lock(&fs_info->ordered_root_lock);
 721	list_splice_init(&fs_info->ordered_roots, &splice);
 722	while (!list_empty(&splice) && nr) {
 723		root = list_first_entry(&splice, struct btrfs_root,
 724					ordered_root);
 725		root = btrfs_grab_fs_root(root);
 726		BUG_ON(!root);
 727		list_move_tail(&root->ordered_root,
 728			       &fs_info->ordered_roots);
 729		spin_unlock(&fs_info->ordered_root_lock);
 730
 731		done = btrfs_wait_ordered_extents(root, nr);
 732		btrfs_put_fs_root(root);
 
 733
 734		spin_lock(&fs_info->ordered_root_lock);
 735		if (nr != -1) {
 736			nr -= done;
 737			WARN_ON(nr < 0);
 738		}
 739	}
 740	list_splice_tail(&splice, &fs_info->ordered_roots);
 741	spin_unlock(&fs_info->ordered_root_lock);
 742	mutex_unlock(&fs_info->ordered_operations_mutex);
 743}
 744
 745/*
 746 * Used to start IO or wait for a given ordered extent to finish.
 747 *
 748 * If wait is one, this effectively waits on page writeback for all the pages
 749 * in the extent, and it waits on the io completion code to insert
 750 * metadata into the btree corresponding to the extent
 751 */
 752void btrfs_start_ordered_extent(struct inode *inode,
 753				       struct btrfs_ordered_extent *entry,
 754				       int wait)
 755{
 756	u64 start = entry->file_offset;
 757	u64 end = start + entry->len - 1;
 
 
 758
 759	trace_btrfs_ordered_extent_start(inode, entry);
 760
 761	/*
 
 
 
 
 
 
 762	 * pages in the range can be dirty, clean or writeback.  We
 763	 * start IO on any dirty ones so the wait doesn't stall waiting
 764	 * for the flusher thread to find them
 765	 */
 766	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 767		filemap_fdatawrite_range(inode->i_mapping, start, end);
 768	if (wait) {
 769		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 770						 &entry->flags));
 771	}
 772}
 773
 774/*
 775 * Used to wait on ordered extents across a large range of bytes.
 776 */
 777int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 778{
 779	int ret = 0;
 780	int ret_wb = 0;
 781	u64 end;
 782	u64 orig_end;
 783	struct btrfs_ordered_extent *ordered;
 784
 785	if (start + len < start) {
 786		orig_end = INT_LIMIT(loff_t);
 787	} else {
 788		orig_end = start + len - 1;
 789		if (orig_end > INT_LIMIT(loff_t))
 790			orig_end = INT_LIMIT(loff_t);
 791	}
 792
 793	/* start IO across the range first to instantiate any delalloc
 794	 * extents
 795	 */
 796	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 797	if (ret)
 798		return ret;
 799
 800	/*
 801	 * If we have a writeback error don't return immediately. Wait first
 802	 * for any ordered extents that haven't completed yet. This is to make
 803	 * sure no one can dirty the same page ranges and call writepages()
 804	 * before the ordered extents complete - to avoid failures (-EEXIST)
 805	 * when adding the new ordered extents to the ordered tree.
 806	 */
 807	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 808
 809	end = orig_end;
 810	while (1) {
 811		ordered = btrfs_lookup_first_ordered_extent(inode, end);
 812		if (!ordered)
 813			break;
 814		if (ordered->file_offset > orig_end) {
 815			btrfs_put_ordered_extent(ordered);
 816			break;
 817		}
 818		if (ordered->file_offset + ordered->len <= start) {
 819			btrfs_put_ordered_extent(ordered);
 820			break;
 821		}
 822		btrfs_start_ordered_extent(inode, ordered, 1);
 823		end = ordered->file_offset;
 
 
 
 
 
 824		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 825			ret = -EIO;
 826		btrfs_put_ordered_extent(ordered);
 827		if (ret || end == 0 || end == start)
 828			break;
 829		end--;
 830	}
 831	return ret_wb ? ret_wb : ret;
 832}
 833
 834/*
 835 * find an ordered extent corresponding to file_offset.  return NULL if
 836 * nothing is found, otherwise take a reference on the extent and return it
 837 */
 838struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 839							 u64 file_offset)
 840{
 841	struct btrfs_ordered_inode_tree *tree;
 842	struct rb_node *node;
 843	struct btrfs_ordered_extent *entry = NULL;
 
 844
 845	tree = &BTRFS_I(inode)->ordered_tree;
 846	spin_lock_irq(&tree->lock);
 847	node = tree_search(tree, file_offset);
 848	if (!node)
 849		goto out;
 850
 851	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 852	if (!offset_in_entry(entry, file_offset))
 853		entry = NULL;
 854	if (entry)
 855		atomic_inc(&entry->refs);
 
 
 856out:
 857	spin_unlock_irq(&tree->lock);
 858	return entry;
 859}
 860
 861/* Since the DIO code tries to lock a wide area we need to look for any ordered
 862 * extents that exist in the range, rather than just the start of the range.
 863 */
 864struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
 865							u64 file_offset,
 866							u64 len)
 867{
 868	struct btrfs_ordered_inode_tree *tree;
 869	struct rb_node *node;
 870	struct btrfs_ordered_extent *entry = NULL;
 871
 872	tree = &BTRFS_I(inode)->ordered_tree;
 873	spin_lock_irq(&tree->lock);
 874	node = tree_search(tree, file_offset);
 875	if (!node) {
 876		node = tree_search(tree, file_offset + len);
 877		if (!node)
 878			goto out;
 879	}
 880
 881	while (1) {
 882		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 883		if (range_overlaps(entry, file_offset, len))
 884			break;
 885
 886		if (entry->file_offset >= file_offset + len) {
 887			entry = NULL;
 888			break;
 889		}
 890		entry = NULL;
 891		node = rb_next(node);
 892		if (!node)
 893			break;
 894	}
 895out:
 896	if (entry)
 897		atomic_inc(&entry->refs);
 898	spin_unlock_irq(&tree->lock);
 
 
 899	return entry;
 900}
 901
 902bool btrfs_have_ordered_extents_in_range(struct inode *inode,
 903					 u64 file_offset,
 904					 u64 len)
 905{
 906	struct btrfs_ordered_extent *oe;
 907
 908	oe = btrfs_lookup_ordered_range(inode, file_offset, len);
 909	if (oe) {
 910		btrfs_put_ordered_extent(oe);
 911		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912	}
 913	return false;
 914}
 915
 916/*
 917 * lookup and return any extent before 'file_offset'.  NULL is returned
 918 * if none is found
 919 */
 920struct btrfs_ordered_extent *
 921btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 922{
 923	struct btrfs_ordered_inode_tree *tree;
 924	struct rb_node *node;
 925	struct btrfs_ordered_extent *entry = NULL;
 926
 927	tree = &BTRFS_I(inode)->ordered_tree;
 928	spin_lock_irq(&tree->lock);
 929	node = tree_search(tree, file_offset);
 930	if (!node)
 931		goto out;
 932
 933	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 934	atomic_inc(&entry->refs);
 
 935out:
 936	spin_unlock_irq(&tree->lock);
 937	return entry;
 938}
 939
 940/*
 941 * After an extent is done, call this to conditionally update the on disk
 942 * i_size.  i_size is updated to cover any fully written part of the file.
 
 
 
 
 
 943 */
 944int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 945				struct btrfs_ordered_extent *ordered)
 946{
 947	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 948	u64 disk_i_size;
 949	u64 new_i_size;
 950	u64 i_size = i_size_read(inode);
 951	struct rb_node *node;
 952	struct rb_node *prev = NULL;
 953	struct btrfs_ordered_extent *test;
 954	int ret = 1;
 955
 956	spin_lock_irq(&tree->lock);
 957	if (ordered) {
 958		offset = entry_end(ordered);
 959		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 960			offset = min(offset,
 961				     ordered->file_offset +
 962				     ordered->truncated_len);
 963	} else {
 964		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
 965	}
 966	disk_i_size = BTRFS_I(inode)->disk_i_size;
 967
 968	/* truncate file */
 969	if (disk_i_size > i_size) {
 970		BTRFS_I(inode)->disk_i_size = i_size;
 971		ret = 0;
 972		goto out;
 973	}
 974
 
 
 975	/*
 976	 * if the disk i_size is already at the inode->i_size, or
 977	 * this ordered extent is inside the disk i_size, we're done
 
 
 978	 */
 979	if (disk_i_size == i_size)
 980		goto out;
 981
 982	/*
 983	 * We still need to update disk_i_size if outstanding_isize is greater
 984	 * than disk_i_size.
 985	 */
 986	if (offset <= disk_i_size &&
 987	    (!ordered || ordered->outstanding_isize <= disk_i_size))
 
 
 
 
 
 
 
 
 988		goto out;
 
 989
 990	/*
 991	 * walk backward from this ordered extent to disk_i_size.
 992	 * if we find an ordered extent then we can't update disk i_size
 993	 * yet
 994	 */
 995	if (ordered) {
 996		node = rb_prev(&ordered->rb_node);
 997	} else {
 998		prev = tree_search(tree, offset);
 999		/*
1000		 * we insert file extents without involving ordered struct,
1001		 * so there should be no ordered struct cover this offset
1002		 */
1003		if (prev) {
1004			test = rb_entry(prev, struct btrfs_ordered_extent,
1005					rb_node);
1006			BUG_ON(offset_in_entry(test, offset));
1007		}
1008		node = prev;
 
 
 
 
 
 
 
 
1009	}
1010	for (; node; node = rb_prev(node)) {
1011		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1012
1013		/* We treat this entry as if it doesn't exist */
1014		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1015			continue;
1016		if (test->file_offset + test->len <= disk_i_size)
1017			break;
1018		if (test->file_offset >= i_size)
1019			break;
1020		if (entry_end(test) > disk_i_size) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1021			/*
1022			 * we don't update disk_i_size now, so record this
1023			 * undealt i_size. Or we will not know the real
1024			 * i_size.
1025			 */
1026			if (test->outstanding_isize < offset)
1027				test->outstanding_isize = offset;
1028			if (ordered &&
1029			    ordered->outstanding_isize >
1030			    test->outstanding_isize)
1031				test->outstanding_isize =
1032						ordered->outstanding_isize;
1033			goto out;
1034		}
 
 
 
1035	}
1036	new_i_size = min_t(u64, offset, i_size);
1037
1038	/*
1039	 * Some ordered extents may completed before the current one, and
1040	 * we hold the real i_size in ->outstanding_isize.
1041	 */
1042	if (ordered && ordered->outstanding_isize > new_i_size)
1043		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1044	BTRFS_I(inode)->disk_i_size = new_i_size;
1045	ret = 0;
1046out:
1047	/*
1048	 * We need to do this because we can't remove ordered extents until
1049	 * after the i_disk_size has been updated and then the inode has been
1050	 * updated to reflect the change, so we need to tell anybody who finds
1051	 * this ordered extent that we've already done all the real work, we
1052	 * just haven't completed all the other work.
1053	 */
1054	if (ordered)
1055		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1056	spin_unlock_irq(&tree->lock);
1057	return ret;
1058}
1059
1060/*
1061 * search the ordered extents for one corresponding to 'offset' and
1062 * try to find a checksum.  This is used because we allow pages to
1063 * be reclaimed before their checksum is actually put into the btree
 
 
1064 */
1065int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1066			   u32 *sum, int len)
1067{
1068	struct btrfs_ordered_sum *ordered_sum;
1069	struct btrfs_ordered_extent *ordered;
1070	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1071	unsigned long num_sectors;
1072	unsigned long i;
1073	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1074	int index = 0;
1075
1076	ordered = btrfs_lookup_ordered_extent(inode, offset);
 
 
 
1077	if (!ordered)
1078		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079
1080	spin_lock_irq(&tree->lock);
1081	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1082		if (disk_bytenr >= ordered_sum->bytenr &&
1083		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1084			i = (disk_bytenr - ordered_sum->bytenr) >>
1085			    inode->i_sb->s_blocksize_bits;
1086			num_sectors = ordered_sum->len >>
1087				      inode->i_sb->s_blocksize_bits;
1088			num_sectors = min_t(int, len - index, num_sectors - i);
1089			memcpy(sum + index, ordered_sum->sums + i,
1090			       num_sectors);
1091
1092			index += (int)num_sectors;
1093			if (index == len)
1094				goto out;
1095			disk_bytenr += num_sectors * sectorsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1096		}
1097	}
1098out:
1099	spin_unlock_irq(&tree->lock);
1100	btrfs_put_ordered_extent(ordered);
1101	return index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1102}
1103
1104int __init ordered_data_init(void)
1105{
1106	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1107				     sizeof(struct btrfs_ordered_extent), 0,
1108				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1109				     NULL);
1110	if (!btrfs_ordered_extent_cache)
1111		return -ENOMEM;
1112
1113	return 0;
1114}
1115
1116void ordered_data_exit(void)
1117{
1118	kmem_cache_destroy(btrfs_ordered_extent_cache);
1119}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/sched/mm.h>
  10#include "messages.h"
  11#include "misc.h"
  12#include "ctree.h"
  13#include "transaction.h"
  14#include "btrfs_inode.h"
  15#include "extent_io.h"
  16#include "disk-io.h"
  17#include "compression.h"
  18#include "delalloc-space.h"
  19#include "qgroup.h"
  20#include "subpage.h"
  21#include "file.h"
  22
  23static struct kmem_cache *btrfs_ordered_extent_cache;
  24
  25static u64 entry_end(struct btrfs_ordered_extent *entry)
  26{
  27	if (entry->file_offset + entry->num_bytes < entry->file_offset)
  28		return (u64)-1;
  29	return entry->file_offset + entry->num_bytes;
  30}
  31
  32/* returns NULL if the insertion worked, or it returns the node it did find
  33 * in the tree
  34 */
  35static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  36				   struct rb_node *node)
  37{
  38	struct rb_node **p = &root->rb_node;
  39	struct rb_node *parent = NULL;
  40	struct btrfs_ordered_extent *entry;
  41
  42	while (*p) {
  43		parent = *p;
  44		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  45
  46		if (file_offset < entry->file_offset)
  47			p = &(*p)->rb_left;
  48		else if (file_offset >= entry_end(entry))
  49			p = &(*p)->rb_right;
  50		else
  51			return parent;
  52	}
  53
  54	rb_link_node(node, parent, p);
  55	rb_insert_color(node, root);
  56	return NULL;
  57}
  58
 
 
 
 
 
 
 
 
  59/*
  60 * look for a given offset in the tree, and if it can't be found return the
  61 * first lesser offset
  62 */
  63static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  64				     struct rb_node **prev_ret)
  65{
  66	struct rb_node *n = root->rb_node;
  67	struct rb_node *prev = NULL;
  68	struct rb_node *test;
  69	struct btrfs_ordered_extent *entry;
  70	struct btrfs_ordered_extent *prev_entry = NULL;
  71
  72	while (n) {
  73		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  74		prev = n;
  75		prev_entry = entry;
  76
  77		if (file_offset < entry->file_offset)
  78			n = n->rb_left;
  79		else if (file_offset >= entry_end(entry))
  80			n = n->rb_right;
  81		else
  82			return n;
  83	}
  84	if (!prev_ret)
  85		return NULL;
  86
  87	while (prev && file_offset >= entry_end(prev_entry)) {
  88		test = rb_next(prev);
  89		if (!test)
  90			break;
  91		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  92				      rb_node);
  93		if (file_offset < entry_end(prev_entry))
  94			break;
  95
  96		prev = test;
  97	}
  98	if (prev)
  99		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 100				      rb_node);
 101	while (prev && file_offset < entry_end(prev_entry)) {
 102		test = rb_prev(prev);
 103		if (!test)
 104			break;
 105		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 106				      rb_node);
 107		prev = test;
 108	}
 109	*prev_ret = prev;
 110	return NULL;
 111}
 112
 
 
 
 
 
 
 
 
 
 
 
 113static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 114			  u64 len)
 115{
 116	if (file_offset + len <= entry->file_offset ||
 117	    entry->file_offset + entry->num_bytes <= file_offset)
 118		return 0;
 119	return 1;
 120}
 121
 122/*
 123 * look find the first ordered struct that has this offset, otherwise
 124 * the first one less than this offset
 125 */
 126static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
 127						  u64 file_offset)
 128{
 
 129	struct rb_node *prev = NULL;
 130	struct rb_node *ret;
 131	struct btrfs_ordered_extent *entry;
 132
 133	if (inode->ordered_tree_last) {
 134		entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
 135				 rb_node);
 136		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
 137			return inode->ordered_tree_last;
 138	}
 139	ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
 140	if (!ret)
 141		ret = prev;
 142	if (ret)
 143		inode->ordered_tree_last = ret;
 144	return ret;
 145}
 146
 147static struct btrfs_ordered_extent *alloc_ordered_extent(
 148			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
 149			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
 150			u64 offset, unsigned long flags, int compress_type)
 
 
 
 
 
 
 
 
 
 
 151{
 
 
 
 152	struct btrfs_ordered_extent *entry;
 153	int ret;
 154	u64 qgroup_rsv = 0;
 155
 156	if (flags &
 157	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
 158		/* For nocow write, we can release the qgroup rsv right now */
 159		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
 160		if (ret < 0)
 161			return ERR_PTR(ret);
 162	} else {
 163		/*
 164		 * The ordered extent has reserved qgroup space, release now
 165		 * and pass the reserved number for qgroup_record to free.
 166		 */
 167		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
 168		if (ret < 0)
 169			return ERR_PTR(ret);
 170	}
 171	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 172	if (!entry)
 173		return ERR_PTR(-ENOMEM);
 174
 175	entry->file_offset = file_offset;
 176	entry->num_bytes = num_bytes;
 177	entry->ram_bytes = ram_bytes;
 178	entry->disk_bytenr = disk_bytenr;
 179	entry->disk_num_bytes = disk_num_bytes;
 180	entry->offset = offset;
 181	entry->bytes_left = num_bytes;
 182	entry->inode = igrab(&inode->vfs_inode);
 183	entry->compress_type = compress_type;
 184	entry->truncated_len = (u64)-1;
 185	entry->qgroup_rsv = qgroup_rsv;
 186	entry->flags = flags;
 187	refcount_set(&entry->refs, 1);
 
 
 
 
 
 188	init_waitqueue_head(&entry->wait);
 189	INIT_LIST_HEAD(&entry->list);
 190	INIT_LIST_HEAD(&entry->log_list);
 191	INIT_LIST_HEAD(&entry->root_extent_list);
 192	INIT_LIST_HEAD(&entry->work_list);
 193	INIT_LIST_HEAD(&entry->bioc_list);
 194	init_completion(&entry->completion);
 195
 196	/*
 197	 * We don't need the count_max_extents here, we can assume that all of
 198	 * that work has been done at higher layers, so this is truly the
 199	 * smallest the extent is going to get.
 200	 */
 201	spin_lock(&inode->lock);
 202	btrfs_mod_outstanding_extents(inode, 1);
 203	spin_unlock(&inode->lock);
 204
 205	return entry;
 206}
 207
 208static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
 209{
 210	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 211	struct btrfs_root *root = inode->root;
 212	struct btrfs_fs_info *fs_info = root->fs_info;
 213	struct rb_node *node;
 214
 215	trace_btrfs_ordered_extent_add(inode, entry);
 216
 217	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
 218				 fs_info->delalloc_batch);
 219
 220	/* One ref for the tree. */
 221	refcount_inc(&entry->refs);
 222
 223	spin_lock_irq(&inode->ordered_tree_lock);
 224	node = tree_insert(&inode->ordered_tree, entry->file_offset,
 225			   &entry->rb_node);
 226	if (node)
 227		btrfs_panic(fs_info, -EEXIST,
 228				"inconsistency in ordered tree at offset %llu",
 229				entry->file_offset);
 230	spin_unlock_irq(&inode->ordered_tree_lock);
 231
 232	spin_lock(&root->ordered_extent_lock);
 233	list_add_tail(&entry->root_extent_list,
 234		      &root->ordered_extents);
 235	root->nr_ordered_extents++;
 236	if (root->nr_ordered_extents == 1) {
 237		spin_lock(&fs_info->ordered_root_lock);
 238		BUG_ON(!list_empty(&root->ordered_root));
 239		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 240		spin_unlock(&fs_info->ordered_root_lock);
 
 241	}
 242	spin_unlock(&root->ordered_extent_lock);
 
 
 243}
 244
 245/*
 246 * Add an ordered extent to the per-inode tree.
 247 *
 248 * @inode:           Inode that this extent is for.
 249 * @file_offset:     Logical offset in file where the extent starts.
 250 * @num_bytes:       Logical length of extent in file.
 251 * @ram_bytes:       Full length of unencoded data.
 252 * @disk_bytenr:     Offset of extent on disk.
 253 * @disk_num_bytes:  Size of extent on disk.
 254 * @offset:          Offset into unencoded data where file data starts.
 255 * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
 256 * @compress_type:   Compression algorithm used for data.
 257 *
 258 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
 259 * tree is given a single reference on the ordered extent that was inserted, and
 260 * the returned pointer is given a second reference.
 261 *
 262 * Return: the new ordered extent or error pointer.
 263 */
 264struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
 265			struct btrfs_inode *inode, u64 file_offset,
 266			u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
 267			u64 disk_num_bytes, u64 offset, unsigned long flags,
 268			int compress_type)
 269{
 270	struct btrfs_ordered_extent *entry;
 
 
 
 271
 272	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
 
 
 
 
 
 
 273
 274	entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
 275				     disk_bytenr, disk_num_bytes, offset, flags,
 276				     compress_type);
 277	if (!IS_ERR(entry))
 278		insert_ordered_extent(entry);
 279	return entry;
 
 280}
 281
 282/*
 283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 284 * when an ordered extent is finished.  If the list covers more than one
 285 * ordered extent, it is split across multiples.
 286 */
 287void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 
 288			   struct btrfs_ordered_sum *sum)
 289{
 290	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 291
 292	spin_lock_irq(&inode->ordered_tree_lock);
 
 293	list_add_tail(&sum->list, &entry->list);
 294	spin_unlock_irq(&inode->ordered_tree_lock);
 295}
 296
 297static void finish_ordered_fn(struct btrfs_work *work)
 298{
 299	struct btrfs_ordered_extent *ordered_extent;
 300
 301	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
 302	btrfs_finish_ordered_io(ordered_extent);
 303}
 304
 305static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
 306				      struct page *page, u64 file_offset,
 307				      u64 len, bool uptodate)
 308{
 309	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 310	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 311
 312	lockdep_assert_held(&inode->ordered_tree_lock);
 313
 314	if (page) {
 315		ASSERT(page->mapping);
 316		ASSERT(page_offset(page) <= file_offset);
 317		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
 318
 319		/*
 320		 * Ordered (Private2) bit indicates whether we still have
 321		 * pending io unfinished for the ordered extent.
 322		 *
 323		 * If there's no such bit, we need to skip to next range.
 324		 */
 325		if (!btrfs_folio_test_ordered(fs_info, page_folio(page),
 326					      file_offset, len))
 327			return false;
 328		btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len);
 329	}
 330
 331	/* Now we're fine to update the accounting. */
 332	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
 333		btrfs_crit(fs_info,
 334"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
 335			   inode->root->root_key.objectid, btrfs_ino(inode),
 336			   ordered->file_offset, ordered->num_bytes,
 337			   len, ordered->bytes_left);
 338		ordered->bytes_left = 0;
 339	} else {
 340		ordered->bytes_left -= len;
 341	}
 342
 343	if (!uptodate)
 344		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
 345
 346	if (ordered->bytes_left)
 347		return false;
 348
 349	/*
 350	 * All the IO of the ordered extent is finished, we need to queue
 351	 * the finish_func to be executed.
 352	 */
 353	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
 354	cond_wake_up(&ordered->wait);
 355	refcount_inc(&ordered->refs);
 356	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
 357	return true;
 358}
 359
 360static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
 361{
 362	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 363	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 364	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
 365		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
 366
 367	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
 368	btrfs_queue_work(wq, &ordered->work);
 369}
 370
 371bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
 372				 struct page *page, u64 file_offset, u64 len,
 373				 bool uptodate)
 374{
 375	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 376	unsigned long flags;
 377	bool ret;
 378
 379	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
 380
 381	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 382	ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
 383	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 384
 385	if (ret)
 386		btrfs_queue_ordered_fn(ordered);
 387	return ret;
 388}
 389
 390/*
 391 * Mark all ordered extents io inside the specified range finished.
 
 
 
 392 *
 393 * @page:	 The involved page for the operation.
 394 *		 For uncompressed buffered IO, the page status also needs to be
 395 *		 updated to indicate whether the pending ordered io is finished.
 396 *		 Can be NULL for direct IO and compressed write.
 397 *		 For these cases, callers are ensured they won't execute the
 398 *		 endio function twice.
 399 *
 400 * This function is called for endio, thus the range must have ordered
 401 * extent(s) covering it.
 402 */
 403void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
 404				    struct page *page, u64 file_offset,
 405				    u64 num_bytes, bool uptodate)
 406{
 
 407	struct rb_node *node;
 408	struct btrfs_ordered_extent *entry = NULL;
 
 409	unsigned long flags;
 410	u64 cur = file_offset;
 
 
 
 
 
 
 
 
 
 
 411
 412	trace_btrfs_writepage_end_io_hook(inode, file_offset,
 413					  file_offset + num_bytes - 1,
 414					  uptodate);
 415
 416	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 417	while (cur < file_offset + num_bytes) {
 418		u64 entry_end;
 419		u64 end;
 420		u32 len;
 421
 422		node = ordered_tree_search(inode, cur);
 423		/* No ordered extents at all */
 424		if (!node)
 425			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 426
 427		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 428		entry_end = entry->file_offset + entry->num_bytes;
 429		/*
 430		 * |<-- OE --->|  |
 431		 *		  cur
 432		 * Go to next OE.
 433		 */
 434		if (cur >= entry_end) {
 435			node = rb_next(node);
 436			/* No more ordered extents, exit */
 437			if (!node)
 438				break;
 439			entry = rb_entry(node, struct btrfs_ordered_extent,
 440					 rb_node);
 441
 442			/* Go to next ordered extent and continue */
 443			cur = entry->file_offset;
 444			continue;
 445		}
 446		/*
 447		 * |	|<--- OE --->|
 448		 * cur
 449		 * Go to the start of OE.
 450		 */
 451		if (cur < entry->file_offset) {
 452			cur = entry->file_offset;
 453			continue;
 454		}
 455
 456		/*
 457		 * Now we are definitely inside one ordered extent.
 458		 *
 459		 * |<--- OE --->|
 460		 *	|
 461		 *	cur
 462		 */
 463		end = min(entry->file_offset + entry->num_bytes,
 464			  file_offset + num_bytes) - 1;
 465		ASSERT(end + 1 - cur < U32_MAX);
 466		len = end + 1 - cur;
 467
 468		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
 469			spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 470			btrfs_queue_ordered_fn(entry);
 471			spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 472		}
 473		cur += len;
 474	}
 475	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 
 476}
 477
 478/*
 479 * Finish IO for one ordered extent across a given range.  The range can only
 480 * contain one ordered extent.
 481 *
 482 * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
 483 *               search and use the ordered extent directly.
 484 * 		 Will be also used to store the finished ordered extent.
 485 * @file_offset: File offset for the finished IO
 486 * @io_size:	 Length of the finish IO range
 487 *
 488 * Return true if the ordered extent is finished in the range, and update
 489 * @cached.
 490 * Return false otherwise.
 491 *
 492 * NOTE: The range can NOT cross multiple ordered extents.
 493 * Thus caller should ensure the range doesn't cross ordered extents.
 494 */
 495bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
 496				    struct btrfs_ordered_extent **cached,
 497				    u64 file_offset, u64 io_size)
 498{
 
 499	struct rb_node *node;
 500	struct btrfs_ordered_extent *entry = NULL;
 501	unsigned long flags;
 502	bool finished = false;
 503
 504	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 
 505	if (cached && *cached) {
 506		entry = *cached;
 507		goto have_entry;
 508	}
 509
 510	node = ordered_tree_search(inode, file_offset);
 511	if (!node)
 
 512		goto out;
 
 513
 514	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 515have_entry:
 516	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 
 517		goto out;
 
 518
 519	if (io_size > entry->bytes_left)
 520		btrfs_crit(inode->root->fs_info,
 521			   "bad ordered accounting left %llu size %llu",
 522		       entry->bytes_left, io_size);
 523
 524	entry->bytes_left -= io_size;
 
 
 525
 526	if (entry->bytes_left == 0) {
 
 527		/*
 528		 * Ensure only one caller can set the flag and finished_ret
 529		 * accordingly
 530		 */
 531		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 532		/* test_and_set_bit implies a barrier */
 533		cond_wake_up_nomb(&entry->wait);
 
 534	}
 535out:
 536	if (finished && cached && entry) {
 537		*cached = entry;
 538		refcount_inc(&entry->refs);
 539		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 540	}
 541	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 542	return finished;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 543}
 544
 545/*
 546 * used to drop a reference on an ordered extent.  This will free
 547 * the extent if the last reference is dropped
 548 */
 549void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 550{
 551	struct list_head *cur;
 552	struct btrfs_ordered_sum *sum;
 553
 554	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
 555
 556	if (refcount_dec_and_test(&entry->refs)) {
 
 
 557		ASSERT(list_empty(&entry->root_extent_list));
 558		ASSERT(list_empty(&entry->log_list));
 559		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 560		if (entry->inode)
 561			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
 562		while (!list_empty(&entry->list)) {
 563			cur = entry->list.next;
 564			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 565			list_del(&sum->list);
 566			kvfree(sum);
 567		}
 568		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 569	}
 570}
 571
 572/*
 573 * remove an ordered extent from the tree.  No references are dropped
 574 * and waiters are woken up.
 575 */
 576void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
 577				 struct btrfs_ordered_extent *entry)
 578{
 579	struct btrfs_root *root = btrfs_inode->root;
 580	struct btrfs_fs_info *fs_info = root->fs_info;
 581	struct rb_node *node;
 582	bool pending;
 583	bool freespace_inode;
 584
 585	/*
 586	 * If this is a free space inode the thread has not acquired the ordered
 587	 * extents lockdep map.
 588	 */
 589	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
 590
 591	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
 592	/* This is paired with btrfs_alloc_ordered_extent. */
 593	spin_lock(&btrfs_inode->lock);
 594	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 595	spin_unlock(&btrfs_inode->lock);
 596	if (root != fs_info->tree_root) {
 597		u64 release;
 598
 599		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
 600			release = entry->disk_num_bytes;
 601		else
 602			release = entry->num_bytes;
 603		btrfs_delalloc_release_metadata(btrfs_inode, release,
 604						test_bit(BTRFS_ORDERED_IOERR,
 605							 &entry->flags));
 606	}
 607
 608	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
 609				 fs_info->delalloc_batch);
 610
 611	spin_lock_irq(&btrfs_inode->ordered_tree_lock);
 612	node = &entry->rb_node;
 613	rb_erase(node, &btrfs_inode->ordered_tree);
 614	RB_CLEAR_NODE(node);
 615	if (btrfs_inode->ordered_tree_last == node)
 616		btrfs_inode->ordered_tree_last = NULL;
 617	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 618	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
 619	spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
 
 620
 621	/*
 622	 * The current running transaction is waiting on us, we need to let it
 623	 * know that we're complete and wake it up.
 624	 */
 625	if (pending) {
 626		struct btrfs_transaction *trans;
 627
 628		/*
 629		 * The checks for trans are just a formality, it should be set,
 630		 * but if it isn't we don't want to deref/assert under the spin
 631		 * lock, so be nice and check if trans is set, but ASSERT() so
 632		 * if it isn't set a developer will notice.
 633		 */
 634		spin_lock(&fs_info->trans_lock);
 635		trans = fs_info->running_transaction;
 636		if (trans)
 637			refcount_inc(&trans->use_count);
 638		spin_unlock(&fs_info->trans_lock);
 639
 640		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
 641		if (trans) {
 642			if (atomic_dec_and_test(&trans->pending_ordered))
 643				wake_up(&trans->pending_wait);
 644			btrfs_put_transaction(trans);
 645		}
 646	}
 647
 648	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
 649
 650	spin_lock(&root->ordered_extent_lock);
 651	list_del_init(&entry->root_extent_list);
 652	root->nr_ordered_extents--;
 653
 654	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
 655
 656	if (!root->nr_ordered_extents) {
 657		spin_lock(&fs_info->ordered_root_lock);
 658		BUG_ON(list_empty(&root->ordered_root));
 659		list_del_init(&root->ordered_root);
 660		spin_unlock(&fs_info->ordered_root_lock);
 661	}
 662	spin_unlock(&root->ordered_extent_lock);
 663	wake_up(&entry->wait);
 664	if (!freespace_inode)
 665		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
 666}
 667
 668static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 669{
 670	struct btrfs_ordered_extent *ordered;
 671
 672	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 673	btrfs_start_ordered_extent(ordered);
 674	complete(&ordered->completion);
 675}
 676
 677/*
 678 * wait for all the ordered extents in a root.  This is done when balancing
 679 * space between drives.
 680 */
 681u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 682			       const u64 range_start, const u64 range_len)
 683{
 684	struct btrfs_fs_info *fs_info = root->fs_info;
 685	LIST_HEAD(splice);
 686	LIST_HEAD(skipped);
 687	LIST_HEAD(works);
 688	struct btrfs_ordered_extent *ordered, *next;
 689	u64 count = 0;
 690	const u64 range_end = range_start + range_len;
 
 
 691
 692	mutex_lock(&root->ordered_extent_mutex);
 693	spin_lock(&root->ordered_extent_lock);
 694	list_splice_init(&root->ordered_extents, &splice);
 695	while (!list_empty(&splice) && nr) {
 696		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 697					   root_extent_list);
 698
 699		if (range_end <= ordered->disk_bytenr ||
 700		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
 701			list_move_tail(&ordered->root_extent_list, &skipped);
 702			cond_resched_lock(&root->ordered_extent_lock);
 703			continue;
 704		}
 705
 706		list_move_tail(&ordered->root_extent_list,
 707			       &root->ordered_extents);
 708		refcount_inc(&ordered->refs);
 709		spin_unlock(&root->ordered_extent_lock);
 710
 711		btrfs_init_work(&ordered->flush_work,
 712				btrfs_run_ordered_extent_work, NULL);
 
 713		list_add_tail(&ordered->work_list, &works);
 714		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 
 715
 716		cond_resched();
 717		spin_lock(&root->ordered_extent_lock);
 718		if (nr != U64_MAX)
 719			nr--;
 720		count++;
 721	}
 722	list_splice_tail(&skipped, &root->ordered_extents);
 723	list_splice_tail(&splice, &root->ordered_extents);
 724	spin_unlock(&root->ordered_extent_lock);
 725
 726	list_for_each_entry_safe(ordered, next, &works, work_list) {
 727		list_del_init(&ordered->work_list);
 728		wait_for_completion(&ordered->completion);
 729		btrfs_put_ordered_extent(ordered);
 730		cond_resched();
 731	}
 732	mutex_unlock(&root->ordered_extent_mutex);
 733
 734	return count;
 735}
 736
 737void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 738			     const u64 range_start, const u64 range_len)
 739{
 740	struct btrfs_root *root;
 741	LIST_HEAD(splice);
 742	u64 done;
 
 
 743
 744	mutex_lock(&fs_info->ordered_operations_mutex);
 745	spin_lock(&fs_info->ordered_root_lock);
 746	list_splice_init(&fs_info->ordered_roots, &splice);
 747	while (!list_empty(&splice) && nr) {
 748		root = list_first_entry(&splice, struct btrfs_root,
 749					ordered_root);
 750		root = btrfs_grab_root(root);
 751		BUG_ON(!root);
 752		list_move_tail(&root->ordered_root,
 753			       &fs_info->ordered_roots);
 754		spin_unlock(&fs_info->ordered_root_lock);
 755
 756		done = btrfs_wait_ordered_extents(root, nr,
 757						  range_start, range_len);
 758		btrfs_put_root(root);
 759
 760		spin_lock(&fs_info->ordered_root_lock);
 761		if (nr != U64_MAX) {
 762			nr -= done;
 
 763		}
 764	}
 765	list_splice_tail(&splice, &fs_info->ordered_roots);
 766	spin_unlock(&fs_info->ordered_root_lock);
 767	mutex_unlock(&fs_info->ordered_operations_mutex);
 768}
 769
 770/*
 771 * Start IO and wait for a given ordered extent to finish.
 772 *
 773 * Wait on page writeback for all the pages in the extent and the IO completion
 774 * code to insert metadata into the btree corresponding to the extent.
 
 775 */
 776void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
 
 
 777{
 778	u64 start = entry->file_offset;
 779	u64 end = start + entry->num_bytes - 1;
 780	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 781	bool freespace_inode;
 782
 783	trace_btrfs_ordered_extent_start(inode, entry);
 784
 785	/*
 786	 * If this is a free space inode do not take the ordered extents lockdep
 787	 * map.
 788	 */
 789	freespace_inode = btrfs_is_free_space_inode(inode);
 790
 791	/*
 792	 * pages in the range can be dirty, clean or writeback.  We
 793	 * start IO on any dirty ones so the wait doesn't stall waiting
 794	 * for the flusher thread to find them
 795	 */
 796	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 797		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
 798
 799	if (!freespace_inode)
 800		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
 801	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
 802}
 803
 804/*
 805 * Used to wait on ordered extents across a large range of bytes.
 806 */
 807int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 808{
 809	int ret = 0;
 810	int ret_wb = 0;
 811	u64 end;
 812	u64 orig_end;
 813	struct btrfs_ordered_extent *ordered;
 814
 815	if (start + len < start) {
 816		orig_end = OFFSET_MAX;
 817	} else {
 818		orig_end = start + len - 1;
 819		if (orig_end > OFFSET_MAX)
 820			orig_end = OFFSET_MAX;
 821	}
 822
 823	/* start IO across the range first to instantiate any delalloc
 824	 * extents
 825	 */
 826	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 827	if (ret)
 828		return ret;
 829
 830	/*
 831	 * If we have a writeback error don't return immediately. Wait first
 832	 * for any ordered extents that haven't completed yet. This is to make
 833	 * sure no one can dirty the same page ranges and call writepages()
 834	 * before the ordered extents complete - to avoid failures (-EEXIST)
 835	 * when adding the new ordered extents to the ordered tree.
 836	 */
 837	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 838
 839	end = orig_end;
 840	while (1) {
 841		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
 842		if (!ordered)
 843			break;
 844		if (ordered->file_offset > orig_end) {
 845			btrfs_put_ordered_extent(ordered);
 846			break;
 847		}
 848		if (ordered->file_offset + ordered->num_bytes <= start) {
 849			btrfs_put_ordered_extent(ordered);
 850			break;
 851		}
 852		btrfs_start_ordered_extent(ordered);
 853		end = ordered->file_offset;
 854		/*
 855		 * If the ordered extent had an error save the error but don't
 856		 * exit without waiting first for all other ordered extents in
 857		 * the range to complete.
 858		 */
 859		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 860			ret = -EIO;
 861		btrfs_put_ordered_extent(ordered);
 862		if (end == 0 || end == start)
 863			break;
 864		end--;
 865	}
 866	return ret_wb ? ret_wb : ret;
 867}
 868
 869/*
 870 * find an ordered extent corresponding to file_offset.  return NULL if
 871 * nothing is found, otherwise take a reference on the extent and return it
 872 */
 873struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
 874							 u64 file_offset)
 875{
 
 876	struct rb_node *node;
 877	struct btrfs_ordered_extent *entry = NULL;
 878	unsigned long flags;
 879
 880	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 881	node = ordered_tree_search(inode, file_offset);
 
 882	if (!node)
 883		goto out;
 884
 885	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 886	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 887		entry = NULL;
 888	if (entry) {
 889		refcount_inc(&entry->refs);
 890		trace_btrfs_ordered_extent_lookup(inode, entry);
 891	}
 892out:
 893	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 894	return entry;
 895}
 896
 897/* Since the DIO code tries to lock a wide area we need to look for any ordered
 898 * extents that exist in the range, rather than just the start of the range.
 899 */
 900struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 901		struct btrfs_inode *inode, u64 file_offset, u64 len)
 
 902{
 
 903	struct rb_node *node;
 904	struct btrfs_ordered_extent *entry = NULL;
 905
 906	spin_lock_irq(&inode->ordered_tree_lock);
 907	node = ordered_tree_search(inode, file_offset);
 
 908	if (!node) {
 909		node = ordered_tree_search(inode, file_offset + len);
 910		if (!node)
 911			goto out;
 912	}
 913
 914	while (1) {
 915		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 916		if (range_overlaps(entry, file_offset, len))
 917			break;
 918
 919		if (entry->file_offset >= file_offset + len) {
 920			entry = NULL;
 921			break;
 922		}
 923		entry = NULL;
 924		node = rb_next(node);
 925		if (!node)
 926			break;
 927	}
 928out:
 929	if (entry) {
 930		refcount_inc(&entry->refs);
 931		trace_btrfs_ordered_extent_lookup_range(inode, entry);
 932	}
 933	spin_unlock_irq(&inode->ordered_tree_lock);
 934	return entry;
 935}
 936
 937/*
 938 * Adds all ordered extents to the given list. The list ends up sorted by the
 939 * file_offset of the ordered extents.
 940 */
 941void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
 942					   struct list_head *list)
 943{
 944	struct rb_node *n;
 945
 946	ASSERT(inode_is_locked(&inode->vfs_inode));
 947
 948	spin_lock_irq(&inode->ordered_tree_lock);
 949	for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
 950		struct btrfs_ordered_extent *ordered;
 951
 952		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 953
 954		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 955			continue;
 956
 957		ASSERT(list_empty(&ordered->log_list));
 958		list_add_tail(&ordered->log_list, list);
 959		refcount_inc(&ordered->refs);
 960		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
 961	}
 962	spin_unlock_irq(&inode->ordered_tree_lock);
 963}
 964
 965/*
 966 * lookup and return any extent before 'file_offset'.  NULL is returned
 967 * if none is found
 968 */
 969struct btrfs_ordered_extent *
 970btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
 971{
 
 972	struct rb_node *node;
 973	struct btrfs_ordered_extent *entry = NULL;
 974
 975	spin_lock_irq(&inode->ordered_tree_lock);
 976	node = ordered_tree_search(inode, file_offset);
 
 977	if (!node)
 978		goto out;
 979
 980	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 981	refcount_inc(&entry->refs);
 982	trace_btrfs_ordered_extent_lookup_first(inode, entry);
 983out:
 984	spin_unlock_irq(&inode->ordered_tree_lock);
 985	return entry;
 986}
 987
 988/*
 989 * Lookup the first ordered extent that overlaps the range
 990 * [@file_offset, @file_offset + @len).
 991 *
 992 * The difference between this and btrfs_lookup_first_ordered_extent() is
 993 * that this one won't return any ordered extent that does not overlap the range.
 994 * And the difference against btrfs_lookup_ordered_extent() is, this function
 995 * ensures the first ordered extent gets returned.
 996 */
 997struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
 998			struct btrfs_inode *inode, u64 file_offset, u64 len)
 999{
 
 
 
 
1000	struct rb_node *node;
1001	struct rb_node *cur;
1002	struct rb_node *prev;
1003	struct rb_node *next;
1004	struct btrfs_ordered_extent *entry = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005
1006	spin_lock_irq(&inode->ordered_tree_lock);
1007	node = inode->ordered_tree.rb_node;
1008	/*
1009	 * Here we don't want to use tree_search() which will use tree->last
1010	 * and screw up the search order.
1011	 * And __tree_search() can't return the adjacent ordered extents
1012	 * either, thus here we do our own search.
1013	 */
1014	while (node) {
1015		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1016
1017		if (file_offset < entry->file_offset) {
1018			node = node->rb_left;
1019		} else if (file_offset >= entry_end(entry)) {
1020			node = node->rb_right;
1021		} else {
1022			/*
1023			 * Direct hit, got an ordered extent that starts at
1024			 * @file_offset
1025			 */
1026			goto out;
1027		}
1028	}
1029	if (!entry) {
1030		/* Empty tree */
1031		goto out;
1032	}
1033
1034	cur = &entry->rb_node;
1035	/* We got an entry around @file_offset, check adjacent entries */
1036	if (entry->file_offset < file_offset) {
1037		prev = cur;
1038		next = rb_next(cur);
 
 
1039	} else {
1040		prev = rb_prev(cur);
1041		next = cur;
1042	}
1043	if (prev) {
1044		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1045		if (range_overlaps(entry, file_offset, len))
1046			goto out;
1047	}
1048	if (next) {
1049		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1050		if (range_overlaps(entry, file_offset, len))
1051			goto out;
1052	}
1053	/* No ordered extent in the range */
1054	entry = NULL;
1055out:
1056	if (entry) {
1057		refcount_inc(&entry->refs);
1058		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1059	}
 
 
1060
1061	spin_unlock_irq(&inode->ordered_tree_lock);
1062	return entry;
1063}
1064
1065/*
1066 * Lock the passed range and ensures all pending ordered extents in it are run
1067 * to completion.
1068 *
1069 * @inode:        Inode whose ordered tree is to be searched
1070 * @start:        Beginning of range to flush
1071 * @end:          Last byte of range to lock
1072 * @cached_state: If passed, will return the extent state responsible for the
1073 *                locked range. It's the caller's responsibility to free the
1074 *                cached state.
1075 *
1076 * Always return with the given range locked, ensuring after it's called no
1077 * order extent can be pending.
1078 */
1079void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1080					u64 end,
1081					struct extent_state **cached_state)
1082{
1083	struct btrfs_ordered_extent *ordered;
1084	struct extent_state *cache = NULL;
1085	struct extent_state **cachedp = &cache;
1086
1087	if (cached_state)
1088		cachedp = cached_state;
1089
1090	while (1) {
1091		lock_extent(&inode->io_tree, start, end, cachedp);
1092		ordered = btrfs_lookup_ordered_range(inode, start,
1093						     end - start + 1);
1094		if (!ordered) {
1095			/*
1096			 * If no external cached_state has been passed then
1097			 * decrement the extra ref taken for cachedp since we
1098			 * aren't exposing it outside of this function
1099			 */
1100			if (!cached_state)
1101				refcount_dec(&cache->refs);
1102			break;
 
 
 
 
 
1103		}
1104		unlock_extent(&inode->io_tree, start, end, cachedp);
1105		btrfs_start_ordered_extent(ordered);
1106		btrfs_put_ordered_extent(ordered);
1107	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1108}
1109
1110/*
1111 * Lock the passed range and ensure all pending ordered extents in it are run
1112 * to completion in nowait mode.
1113 *
1114 * Return true if btrfs_lock_ordered_range does not return any extents,
1115 * otherwise false.
1116 */
1117bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1118				  struct extent_state **cached_state)
1119{
 
1120	struct btrfs_ordered_extent *ordered;
 
 
 
 
 
1121
1122	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1123		return false;
1124
1125	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1126	if (!ordered)
1127		return true;
1128
1129	btrfs_put_ordered_extent(ordered);
1130	unlock_extent(&inode->io_tree, start, end, cached_state);
1131
1132	return false;
1133}
1134
1135/* Split out a new ordered extent for this first @len bytes of @ordered. */
1136struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1137			struct btrfs_ordered_extent *ordered, u64 len)
1138{
1139	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1140	struct btrfs_root *root = inode->root;
1141	struct btrfs_fs_info *fs_info = root->fs_info;
1142	u64 file_offset = ordered->file_offset;
1143	u64 disk_bytenr = ordered->disk_bytenr;
1144	unsigned long flags = ordered->flags;
1145	struct btrfs_ordered_sum *sum, *tmpsum;
1146	struct btrfs_ordered_extent *new;
1147	struct rb_node *node;
1148	u64 offset = 0;
1149
1150	trace_btrfs_ordered_extent_split(inode, ordered);
1151
1152	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1153
1154	/*
1155	 * The entire bio must be covered by the ordered extent, but we can't
1156	 * reduce the original extent to a zero length either.
1157	 */
1158	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1159		return ERR_PTR(-EINVAL);
1160	/* We cannot split partially completed ordered extents. */
1161	if (ordered->bytes_left) {
1162		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1163		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1164			return ERR_PTR(-EINVAL);
1165	}
1166	/* We cannot split a compressed ordered extent. */
1167	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1168		return ERR_PTR(-EINVAL);
1169
1170	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1171				   len, 0, flags, ordered->compress_type);
1172	if (IS_ERR(new))
1173		return new;
1174
1175	/* One ref for the tree. */
1176	refcount_inc(&new->refs);
1177
1178	spin_lock_irq(&root->ordered_extent_lock);
1179	spin_lock(&inode->ordered_tree_lock);
1180	/* Remove from tree once */
1181	node = &ordered->rb_node;
1182	rb_erase(node, &inode->ordered_tree);
1183	RB_CLEAR_NODE(node);
1184	if (inode->ordered_tree_last == node)
1185		inode->ordered_tree_last = NULL;
1186
1187	ordered->file_offset += len;
1188	ordered->disk_bytenr += len;
1189	ordered->num_bytes -= len;
1190	ordered->disk_num_bytes -= len;
1191	ordered->ram_bytes -= len;
1192
1193	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1194		ASSERT(ordered->bytes_left == 0);
1195		new->bytes_left = 0;
1196	} else {
1197		ordered->bytes_left -= len;
1198	}
1199
1200	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1201		if (ordered->truncated_len > len) {
1202			ordered->truncated_len -= len;
1203		} else {
1204			new->truncated_len = ordered->truncated_len;
1205			ordered->truncated_len = 0;
1206		}
1207	}
1208
1209	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1210		if (offset == len)
1211			break;
1212		list_move_tail(&sum->list, &new->list);
1213		offset += sum->len;
1214	}
1215
1216	/* Re-insert the node */
1217	node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1218			   &ordered->rb_node);
1219	if (node)
1220		btrfs_panic(fs_info, -EEXIST,
1221			"zoned: inconsistency in ordered tree at offset %llu",
1222			ordered->file_offset);
1223
1224	node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1225	if (node)
1226		btrfs_panic(fs_info, -EEXIST,
1227			"zoned: inconsistency in ordered tree at offset %llu",
1228			new->file_offset);
1229	spin_unlock(&inode->ordered_tree_lock);
1230
1231	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1232	root->nr_ordered_extents++;
1233	spin_unlock_irq(&root->ordered_extent_lock);
1234	return new;
1235}
1236
1237int __init ordered_data_init(void)
1238{
1239	btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
 
 
 
1240	if (!btrfs_ordered_extent_cache)
1241		return -ENOMEM;
1242
1243	return 0;
1244}
1245
1246void __cold ordered_data_exit(void)
1247{
1248	kmem_cache_destroy(btrfs_ordered_extent_cache);
1249}