Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/slab.h>
  20#include <linux/blkdev.h>
  21#include <linux/writeback.h>
  22#include <linux/pagevec.h>
 
  23#include "ctree.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "extent_io.h"
  27#include "disk-io.h"
  28#include "compression.h"
 
 
 
  29
  30static struct kmem_cache *btrfs_ordered_extent_cache;
  31
  32static u64 entry_end(struct btrfs_ordered_extent *entry)
  33{
  34	if (entry->file_offset + entry->len < entry->file_offset)
  35		return (u64)-1;
  36	return entry->file_offset + entry->len;
  37}
  38
  39/* returns NULL if the insertion worked, or it returns the node it did find
  40 * in the tree
  41 */
  42static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  43				   struct rb_node *node)
  44{
  45	struct rb_node **p = &root->rb_node;
  46	struct rb_node *parent = NULL;
  47	struct btrfs_ordered_extent *entry;
  48
  49	while (*p) {
  50		parent = *p;
  51		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  52
  53		if (file_offset < entry->file_offset)
  54			p = &(*p)->rb_left;
  55		else if (file_offset >= entry_end(entry))
  56			p = &(*p)->rb_right;
  57		else
  58			return parent;
  59	}
  60
  61	rb_link_node(node, parent, p);
  62	rb_insert_color(node, root);
  63	return NULL;
  64}
  65
  66static void ordered_data_tree_panic(struct inode *inode, int errno,
  67					       u64 offset)
  68{
  69	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  70	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  71		    "%llu", offset);
  72}
  73
  74/*
  75 * look for a given offset in the tree, and if it can't be found return the
  76 * first lesser offset
  77 */
  78static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  79				     struct rb_node **prev_ret)
  80{
  81	struct rb_node *n = root->rb_node;
  82	struct rb_node *prev = NULL;
  83	struct rb_node *test;
  84	struct btrfs_ordered_extent *entry;
  85	struct btrfs_ordered_extent *prev_entry = NULL;
  86
  87	while (n) {
  88		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  89		prev = n;
  90		prev_entry = entry;
  91
  92		if (file_offset < entry->file_offset)
  93			n = n->rb_left;
  94		else if (file_offset >= entry_end(entry))
  95			n = n->rb_right;
  96		else
  97			return n;
  98	}
  99	if (!prev_ret)
 100		return NULL;
 101
 102	while (prev && file_offset >= entry_end(prev_entry)) {
 103		test = rb_next(prev);
 104		if (!test)
 105			break;
 106		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 107				      rb_node);
 108		if (file_offset < entry_end(prev_entry))
 109			break;
 110
 111		prev = test;
 112	}
 113	if (prev)
 114		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 115				      rb_node);
 116	while (prev && file_offset < entry_end(prev_entry)) {
 117		test = rb_prev(prev);
 118		if (!test)
 119			break;
 120		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 121				      rb_node);
 122		prev = test;
 123	}
 124	*prev_ret = prev;
 125	return NULL;
 126}
 127
 128/*
 129 * helper to check if a given offset is inside a given entry
 130 */
 131static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
 132{
 133	if (file_offset < entry->file_offset ||
 134	    entry->file_offset + entry->len <= file_offset)
 135		return 0;
 136	return 1;
 137}
 138
 139static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 140			  u64 len)
 141{
 142	if (file_offset + len <= entry->file_offset ||
 143	    entry->file_offset + entry->len <= file_offset)
 144		return 0;
 145	return 1;
 146}
 147
 148/*
 149 * look find the first ordered struct that has this offset, otherwise
 150 * the first one less than this offset
 151 */
 152static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 153					  u64 file_offset)
 154{
 155	struct rb_root *root = &tree->tree;
 156	struct rb_node *prev = NULL;
 157	struct rb_node *ret;
 158	struct btrfs_ordered_extent *entry;
 159
 160	if (tree->last) {
 161		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 162				 rb_node);
 163		if (offset_in_entry(entry, file_offset))
 164			return tree->last;
 165	}
 166	ret = __tree_search(root, file_offset, &prev);
 167	if (!ret)
 168		ret = prev;
 169	if (ret)
 170		tree->last = ret;
 171	return ret;
 172}
 173
 174/* allocate and add a new ordered_extent into the per-inode tree.
 175 * file_offset is the logical offset in the file
 176 *
 177 * start is the disk block number of an extent already reserved in the
 178 * extent allocation tree
 179 *
 180 * len is the length of the extent
 181 *
 182 * The tree is given a single reference on the ordered extent that was
 183 * inserted.
 184 */
 185static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 186				      u64 start, u64 len, u64 disk_len,
 187				      int type, int dio, int compress_type)
 188{
 189	struct btrfs_root *root = BTRFS_I(inode)->root;
 190	struct btrfs_ordered_inode_tree *tree;
 
 
 191	struct rb_node *node;
 192	struct btrfs_ordered_extent *entry;
 
 193
 194	tree = &BTRFS_I(inode)->ordered_tree;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 196	if (!entry)
 197		return -ENOMEM;
 198
 199	entry->file_offset = file_offset;
 200	entry->start = start;
 201	entry->len = len;
 202	entry->disk_len = disk_len;
 203	entry->bytes_left = len;
 204	entry->inode = igrab(inode);
 205	entry->compress_type = compress_type;
 206	entry->truncated_len = (u64)-1;
 207	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
 208		set_bit(type, &entry->flags);
 
 
 
 
 
 
 
 
 
 209
 210	if (dio)
 211		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 212
 213	/* one ref for the tree */
 214	atomic_set(&entry->refs, 1);
 215	init_waitqueue_head(&entry->wait);
 216	INIT_LIST_HEAD(&entry->list);
 
 217	INIT_LIST_HEAD(&entry->root_extent_list);
 218	INIT_LIST_HEAD(&entry->work_list);
 219	init_completion(&entry->completion);
 220	INIT_LIST_HEAD(&entry->log_list);
 221	INIT_LIST_HEAD(&entry->trans_list);
 222
 223	trace_btrfs_ordered_extent_add(inode, entry);
 224
 225	spin_lock_irq(&tree->lock);
 226	node = tree_insert(&tree->tree, file_offset,
 227			   &entry->rb_node);
 228	if (node)
 229		ordered_data_tree_panic(inode, -EEXIST, file_offset);
 
 
 230	spin_unlock_irq(&tree->lock);
 231
 232	spin_lock(&root->ordered_extent_lock);
 233	list_add_tail(&entry->root_extent_list,
 234		      &root->ordered_extents);
 235	root->nr_ordered_extents++;
 236	if (root->nr_ordered_extents == 1) {
 237		spin_lock(&root->fs_info->ordered_root_lock);
 238		BUG_ON(!list_empty(&root->ordered_root));
 239		list_add_tail(&root->ordered_root,
 240			      &root->fs_info->ordered_roots);
 241		spin_unlock(&root->fs_info->ordered_root_lock);
 242	}
 243	spin_unlock(&root->ordered_extent_lock);
 244
 
 
 
 
 
 
 
 
 
 245	return 0;
 246}
 247
 248int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
 249			     u64 start, u64 len, u64 disk_len, int type)
 250{
 251	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 252					  disk_len, type, 0,
 
 
 
 
 253					  BTRFS_COMPRESS_NONE);
 254}
 255
 256int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
 257				 u64 start, u64 len, u64 disk_len, int type)
 258{
 259	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 260					  disk_len, type, 1,
 
 
 
 
 261					  BTRFS_COMPRESS_NONE);
 262}
 263
 264int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
 265				      u64 start, u64 len, u64 disk_len,
 266				      int type, int compress_type)
 267{
 268	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
 269					  disk_len, type, 0,
 
 
 270					  compress_type);
 271}
 272
 273/*
 274 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 275 * when an ordered extent is finished.  If the list covers more than one
 276 * ordered extent, it is split across multiples.
 277 */
 278void btrfs_add_ordered_sum(struct inode *inode,
 279			   struct btrfs_ordered_extent *entry,
 280			   struct btrfs_ordered_sum *sum)
 281{
 282	struct btrfs_ordered_inode_tree *tree;
 283
 284	tree = &BTRFS_I(inode)->ordered_tree;
 285	spin_lock_irq(&tree->lock);
 286	list_add_tail(&sum->list, &entry->list);
 287	spin_unlock_irq(&tree->lock);
 288}
 289
 290/*
 291 * this is used to account for finished IO across a given range
 292 * of the file.  The IO may span ordered extents.  If
 293 * a given ordered_extent is completely done, 1 is returned, otherwise
 294 * 0.
 295 *
 296 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 297 * to make sure this function only returns 1 once for a given ordered extent.
 
 
 
 
 
 
 298 *
 299 * file_offset is updated to one byte past the range that is recorded as
 300 * complete.  This allows you to walk forward in the file.
 301 */
 302int btrfs_dec_test_first_ordered_pending(struct inode *inode,
 303				   struct btrfs_ordered_extent **cached,
 304				   u64 *file_offset, u64 io_size, int uptodate)
 305{
 306	struct btrfs_ordered_inode_tree *tree;
 
 
 
 307	struct rb_node *node;
 308	struct btrfs_ordered_extent *entry = NULL;
 309	int ret;
 310	unsigned long flags;
 311	u64 dec_end;
 312	u64 dec_start;
 313	u64 to_dec;
 
 
 
 
 
 
 
 314
 315	tree = &BTRFS_I(inode)->ordered_tree;
 316	spin_lock_irqsave(&tree->lock, flags);
 317	node = tree_search(tree, *file_offset);
 318	if (!node) {
 319		ret = 1;
 320		goto out;
 321	}
 322
 323	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 324	if (!offset_in_entry(entry, *file_offset)) {
 325		ret = 1;
 326		goto out;
 327	}
 328
 329	dec_start = max(*file_offset, entry->file_offset);
 330	dec_end = min(*file_offset + io_size, entry->file_offset +
 331		      entry->len);
 332	*file_offset = dec_end;
 333	if (dec_start > dec_end) {
 334		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 335			"bad ordering dec_start %llu end %llu", dec_start, dec_end);
 336	}
 337	to_dec = dec_end - dec_start;
 338	if (to_dec > entry->bytes_left) {
 339		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 340			"bad ordered accounting left %llu size %llu",
 341			entry->bytes_left, to_dec);
 342	}
 343	entry->bytes_left -= to_dec;
 344	if (!uptodate)
 345		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 346
 347	if (entry->bytes_left == 0) {
 348		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 
 
 349		/*
 350		 * Implicit memory barrier after test_and_set_bit
 
 
 351		 */
 352		if (waitqueue_active(&entry->wait))
 353			wake_up(&entry->wait);
 354	} else {
 355		ret = 1;
 356	}
 357out:
 358	if (!ret && cached && entry) {
 359		*cached = entry;
 360		atomic_inc(&entry->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361	}
 362	spin_unlock_irqrestore(&tree->lock, flags);
 363	return ret == 0;
 364}
 365
 366/*
 367 * this is used to account for finished IO across a given range
 368 * of the file.  The IO should not span ordered extents.  If
 369 * a given ordered_extent is completely done, 1 is returned, otherwise
 370 * 0.
 
 
 
 
 
 
 
 
 
 371 *
 372 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
 373 * to make sure this function only returns 1 once for a given ordered extent.
 374 */
 375int btrfs_dec_test_ordered_pending(struct inode *inode,
 376				   struct btrfs_ordered_extent **cached,
 377				   u64 file_offset, u64 io_size, int uptodate)
 378{
 379	struct btrfs_ordered_inode_tree *tree;
 380	struct rb_node *node;
 381	struct btrfs_ordered_extent *entry = NULL;
 382	unsigned long flags;
 383	int ret;
 384
 385	tree = &BTRFS_I(inode)->ordered_tree;
 386	spin_lock_irqsave(&tree->lock, flags);
 387	if (cached && *cached) {
 388		entry = *cached;
 389		goto have_entry;
 390	}
 391
 392	node = tree_search(tree, file_offset);
 393	if (!node) {
 394		ret = 1;
 395		goto out;
 396	}
 397
 398	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 399have_entry:
 400	if (!offset_in_entry(entry, file_offset)) {
 401		ret = 1;
 402		goto out;
 403	}
 404
 405	if (io_size > entry->bytes_left) {
 406		btrfs_crit(BTRFS_I(inode)->root->fs_info,
 407			   "bad ordered accounting left %llu size %llu",
 408		       entry->bytes_left, io_size);
 409	}
 410	entry->bytes_left -= io_size;
 411	if (!uptodate)
 412		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 413
 414	if (entry->bytes_left == 0) {
 415		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 416		/*
 417		 * Implicit memory barrier after test_and_set_bit
 
 418		 */
 419		if (waitqueue_active(&entry->wait))
 420			wake_up(&entry->wait);
 421	} else {
 422		ret = 1;
 423	}
 424out:
 425	if (!ret && cached && entry) {
 426		*cached = entry;
 427		atomic_inc(&entry->refs);
 428	}
 429	spin_unlock_irqrestore(&tree->lock, flags);
 430	return ret == 0;
 431}
 432
 433/* Needs to either be called under a log transaction or the log_mutex */
 434void btrfs_get_logged_extents(struct inode *inode,
 435			      struct list_head *logged_list,
 436			      const loff_t start,
 437			      const loff_t end)
 438{
 439	struct btrfs_ordered_inode_tree *tree;
 440	struct btrfs_ordered_extent *ordered;
 441	struct rb_node *n;
 442	struct rb_node *prev;
 443
 444	tree = &BTRFS_I(inode)->ordered_tree;
 445	spin_lock_irq(&tree->lock);
 446	n = __tree_search(&tree->tree, end, &prev);
 447	if (!n)
 448		n = prev;
 449	for (; n; n = rb_prev(n)) {
 450		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 451		if (ordered->file_offset > end)
 452			continue;
 453		if (entry_end(ordered) <= start)
 454			break;
 455		if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 456			continue;
 457		list_add(&ordered->log_list, logged_list);
 458		atomic_inc(&ordered->refs);
 459	}
 460	spin_unlock_irq(&tree->lock);
 461}
 462
 463void btrfs_put_logged_extents(struct list_head *logged_list)
 464{
 465	struct btrfs_ordered_extent *ordered;
 466
 467	while (!list_empty(logged_list)) {
 468		ordered = list_first_entry(logged_list,
 469					   struct btrfs_ordered_extent,
 470					   log_list);
 471		list_del_init(&ordered->log_list);
 472		btrfs_put_ordered_extent(ordered);
 473	}
 474}
 475
 476void btrfs_submit_logged_extents(struct list_head *logged_list,
 477				 struct btrfs_root *log)
 478{
 479	int index = log->log_transid % 2;
 480
 481	spin_lock_irq(&log->log_extents_lock[index]);
 482	list_splice_tail(logged_list, &log->logged_list[index]);
 483	spin_unlock_irq(&log->log_extents_lock[index]);
 484}
 485
 486void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
 487			       struct btrfs_root *log, u64 transid)
 488{
 489	struct btrfs_ordered_extent *ordered;
 490	int index = transid % 2;
 491
 492	spin_lock_irq(&log->log_extents_lock[index]);
 493	while (!list_empty(&log->logged_list[index])) {
 494		struct inode *inode;
 495		ordered = list_first_entry(&log->logged_list[index],
 496					   struct btrfs_ordered_extent,
 497					   log_list);
 498		list_del_init(&ordered->log_list);
 499		inode = ordered->inode;
 500		spin_unlock_irq(&log->log_extents_lock[index]);
 501
 502		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
 503		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
 504			u64 start = ordered->file_offset;
 505			u64 end = ordered->file_offset + ordered->len - 1;
 506
 507			WARN_ON(!inode);
 508			filemap_fdatawrite_range(inode->i_mapping, start, end);
 509		}
 510		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
 511						   &ordered->flags));
 512
 513		/*
 514		 * In order to keep us from losing our ordered extent
 515		 * information when committing the transaction we have to make
 516		 * sure that any logged extents are completed when we go to
 517		 * commit the transaction.  To do this we simply increase the
 518		 * current transactions pending_ordered counter and decrement it
 519		 * when the ordered extent completes.
 520		 */
 521		if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
 522			struct btrfs_ordered_inode_tree *tree;
 523
 524			tree = &BTRFS_I(inode)->ordered_tree;
 525			spin_lock_irq(&tree->lock);
 526			if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
 527				set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
 528				atomic_inc(&trans->transaction->pending_ordered);
 529			}
 530			spin_unlock_irq(&tree->lock);
 531		}
 532		btrfs_put_ordered_extent(ordered);
 533		spin_lock_irq(&log->log_extents_lock[index]);
 534	}
 535	spin_unlock_irq(&log->log_extents_lock[index]);
 536}
 537
 538void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
 539{
 540	struct btrfs_ordered_extent *ordered;
 541	int index = transid % 2;
 542
 543	spin_lock_irq(&log->log_extents_lock[index]);
 544	while (!list_empty(&log->logged_list[index])) {
 545		ordered = list_first_entry(&log->logged_list[index],
 546					   struct btrfs_ordered_extent,
 547					   log_list);
 548		list_del_init(&ordered->log_list);
 549		spin_unlock_irq(&log->log_extents_lock[index]);
 550		btrfs_put_ordered_extent(ordered);
 551		spin_lock_irq(&log->log_extents_lock[index]);
 552	}
 553	spin_unlock_irq(&log->log_extents_lock[index]);
 554}
 555
 556/*
 557 * used to drop a reference on an ordered extent.  This will free
 558 * the extent if the last reference is dropped
 559 */
 560void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 561{
 562	struct list_head *cur;
 563	struct btrfs_ordered_sum *sum;
 564
 565	trace_btrfs_ordered_extent_put(entry->inode, entry);
 566
 567	if (atomic_dec_and_test(&entry->refs)) {
 568		ASSERT(list_empty(&entry->log_list));
 569		ASSERT(list_empty(&entry->trans_list));
 570		ASSERT(list_empty(&entry->root_extent_list));
 
 571		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 572		if (entry->inode)
 573			btrfs_add_delayed_iput(entry->inode);
 574		while (!list_empty(&entry->list)) {
 575			cur = entry->list.next;
 576			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 577			list_del(&sum->list);
 578			kfree(sum);
 579		}
 580		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 581	}
 582}
 583
 584/*
 585 * remove an ordered extent from the tree.  No references are dropped
 586 * and waiters are woken up.
 587 */
 588void btrfs_remove_ordered_extent(struct inode *inode,
 589				 struct btrfs_ordered_extent *entry)
 590{
 591	struct btrfs_ordered_inode_tree *tree;
 592	struct btrfs_root *root = BTRFS_I(inode)->root;
 
 593	struct rb_node *node;
 594	bool dec_pending_ordered = false;
 
 
 
 
 
 
 
 
 595
 596	tree = &BTRFS_I(inode)->ordered_tree;
 
 
 
 597	spin_lock_irq(&tree->lock);
 598	node = &entry->rb_node;
 599	rb_erase(node, &tree->tree);
 600	RB_CLEAR_NODE(node);
 601	if (tree->last == node)
 602		tree->last = NULL;
 603	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 604	if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
 605		dec_pending_ordered = true;
 606	spin_unlock_irq(&tree->lock);
 607
 608	/*
 609	 * The current running transaction is waiting on us, we need to let it
 610	 * know that we're complete and wake it up.
 611	 */
 612	if (dec_pending_ordered) {
 613		struct btrfs_transaction *trans;
 614
 615		/*
 616		 * The checks for trans are just a formality, it should be set,
 617		 * but if it isn't we don't want to deref/assert under the spin
 618		 * lock, so be nice and check if trans is set, but ASSERT() so
 619		 * if it isn't set a developer will notice.
 620		 */
 621		spin_lock(&root->fs_info->trans_lock);
 622		trans = root->fs_info->running_transaction;
 623		if (trans)
 624			atomic_inc(&trans->use_count);
 625		spin_unlock(&root->fs_info->trans_lock);
 626
 627		ASSERT(trans);
 628		if (trans) {
 629			if (atomic_dec_and_test(&trans->pending_ordered))
 630				wake_up(&trans->pending_wait);
 631			btrfs_put_transaction(trans);
 632		}
 633	}
 634
 635	spin_lock(&root->ordered_extent_lock);
 636	list_del_init(&entry->root_extent_list);
 637	root->nr_ordered_extents--;
 638
 639	trace_btrfs_ordered_extent_remove(inode, entry);
 640
 641	if (!root->nr_ordered_extents) {
 642		spin_lock(&root->fs_info->ordered_root_lock);
 643		BUG_ON(list_empty(&root->ordered_root));
 644		list_del_init(&root->ordered_root);
 645		spin_unlock(&root->fs_info->ordered_root_lock);
 646	}
 647	spin_unlock(&root->ordered_extent_lock);
 648	wake_up(&entry->wait);
 649}
 650
 651static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 652{
 653	struct btrfs_ordered_extent *ordered;
 654
 655	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 656	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
 657	complete(&ordered->completion);
 658}
 659
 660/*
 661 * wait for all the ordered extents in a root.  This is done when balancing
 662 * space between drives.
 663 */
 664int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
 
 665{
 666	struct list_head splice, works;
 
 
 
 667	struct btrfs_ordered_extent *ordered, *next;
 668	int count = 0;
 669
 670	INIT_LIST_HEAD(&splice);
 671	INIT_LIST_HEAD(&works);
 672
 673	mutex_lock(&root->ordered_extent_mutex);
 674	spin_lock(&root->ordered_extent_lock);
 675	list_splice_init(&root->ordered_extents, &splice);
 676	while (!list_empty(&splice) && nr) {
 677		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 678					   root_extent_list);
 
 
 
 
 
 
 
 
 679		list_move_tail(&ordered->root_extent_list,
 680			       &root->ordered_extents);
 681		atomic_inc(&ordered->refs);
 682		spin_unlock(&root->ordered_extent_lock);
 683
 684		btrfs_init_work(&ordered->flush_work,
 685				btrfs_flush_delalloc_helper,
 686				btrfs_run_ordered_extent_work, NULL, NULL);
 687		list_add_tail(&ordered->work_list, &works);
 688		btrfs_queue_work(root->fs_info->flush_workers,
 689				 &ordered->flush_work);
 690
 691		cond_resched();
 692		spin_lock(&root->ordered_extent_lock);
 693		if (nr != -1)
 694			nr--;
 695		count++;
 696	}
 
 697	list_splice_tail(&splice, &root->ordered_extents);
 698	spin_unlock(&root->ordered_extent_lock);
 699
 700	list_for_each_entry_safe(ordered, next, &works, work_list) {
 701		list_del_init(&ordered->work_list);
 702		wait_for_completion(&ordered->completion);
 703		btrfs_put_ordered_extent(ordered);
 704		cond_resched();
 705	}
 706	mutex_unlock(&root->ordered_extent_mutex);
 707
 708	return count;
 709}
 710
 711void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
 
 712{
 713	struct btrfs_root *root;
 714	struct list_head splice;
 715	int done;
 716
 717	INIT_LIST_HEAD(&splice);
 718
 719	mutex_lock(&fs_info->ordered_operations_mutex);
 720	spin_lock(&fs_info->ordered_root_lock);
 721	list_splice_init(&fs_info->ordered_roots, &splice);
 722	while (!list_empty(&splice) && nr) {
 723		root = list_first_entry(&splice, struct btrfs_root,
 724					ordered_root);
 725		root = btrfs_grab_fs_root(root);
 726		BUG_ON(!root);
 727		list_move_tail(&root->ordered_root,
 728			       &fs_info->ordered_roots);
 729		spin_unlock(&fs_info->ordered_root_lock);
 730
 731		done = btrfs_wait_ordered_extents(root, nr);
 732		btrfs_put_fs_root(root);
 
 733
 734		spin_lock(&fs_info->ordered_root_lock);
 735		if (nr != -1) {
 736			nr -= done;
 737			WARN_ON(nr < 0);
 738		}
 739	}
 740	list_splice_tail(&splice, &fs_info->ordered_roots);
 741	spin_unlock(&fs_info->ordered_root_lock);
 742	mutex_unlock(&fs_info->ordered_operations_mutex);
 743}
 744
 745/*
 746 * Used to start IO or wait for a given ordered extent to finish.
 747 *
 748 * If wait is one, this effectively waits on page writeback for all the pages
 749 * in the extent, and it waits on the io completion code to insert
 750 * metadata into the btree corresponding to the extent
 751 */
 752void btrfs_start_ordered_extent(struct inode *inode,
 753				       struct btrfs_ordered_extent *entry,
 754				       int wait)
 755{
 756	u64 start = entry->file_offset;
 757	u64 end = start + entry->len - 1;
 
 758
 759	trace_btrfs_ordered_extent_start(inode, entry);
 760
 761	/*
 762	 * pages in the range can be dirty, clean or writeback.  We
 763	 * start IO on any dirty ones so the wait doesn't stall waiting
 764	 * for the flusher thread to find them
 765	 */
 766	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 767		filemap_fdatawrite_range(inode->i_mapping, start, end);
 768	if (wait) {
 769		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 770						 &entry->flags));
 771	}
 772}
 773
 774/*
 775 * Used to wait on ordered extents across a large range of bytes.
 776 */
 777int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 778{
 779	int ret = 0;
 780	int ret_wb = 0;
 781	u64 end;
 782	u64 orig_end;
 783	struct btrfs_ordered_extent *ordered;
 784
 785	if (start + len < start) {
 786		orig_end = INT_LIMIT(loff_t);
 787	} else {
 788		orig_end = start + len - 1;
 789		if (orig_end > INT_LIMIT(loff_t))
 790			orig_end = INT_LIMIT(loff_t);
 791	}
 792
 793	/* start IO across the range first to instantiate any delalloc
 794	 * extents
 795	 */
 796	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 797	if (ret)
 798		return ret;
 799
 800	/*
 801	 * If we have a writeback error don't return immediately. Wait first
 802	 * for any ordered extents that haven't completed yet. This is to make
 803	 * sure no one can dirty the same page ranges and call writepages()
 804	 * before the ordered extents complete - to avoid failures (-EEXIST)
 805	 * when adding the new ordered extents to the ordered tree.
 806	 */
 807	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 808
 809	end = orig_end;
 810	while (1) {
 811		ordered = btrfs_lookup_first_ordered_extent(inode, end);
 812		if (!ordered)
 813			break;
 814		if (ordered->file_offset > orig_end) {
 815			btrfs_put_ordered_extent(ordered);
 816			break;
 817		}
 818		if (ordered->file_offset + ordered->len <= start) {
 819			btrfs_put_ordered_extent(ordered);
 820			break;
 821		}
 822		btrfs_start_ordered_extent(inode, ordered, 1);
 823		end = ordered->file_offset;
 
 
 
 
 
 824		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 825			ret = -EIO;
 826		btrfs_put_ordered_extent(ordered);
 827		if (ret || end == 0 || end == start)
 828			break;
 829		end--;
 830	}
 831	return ret_wb ? ret_wb : ret;
 832}
 833
 834/*
 835 * find an ordered extent corresponding to file_offset.  return NULL if
 836 * nothing is found, otherwise take a reference on the extent and return it
 837 */
 838struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
 839							 u64 file_offset)
 840{
 841	struct btrfs_ordered_inode_tree *tree;
 842	struct rb_node *node;
 843	struct btrfs_ordered_extent *entry = NULL;
 
 844
 845	tree = &BTRFS_I(inode)->ordered_tree;
 846	spin_lock_irq(&tree->lock);
 847	node = tree_search(tree, file_offset);
 848	if (!node)
 849		goto out;
 850
 851	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 852	if (!offset_in_entry(entry, file_offset))
 853		entry = NULL;
 854	if (entry)
 855		atomic_inc(&entry->refs);
 856out:
 857	spin_unlock_irq(&tree->lock);
 858	return entry;
 859}
 860
 861/* Since the DIO code tries to lock a wide area we need to look for any ordered
 862 * extents that exist in the range, rather than just the start of the range.
 863 */
 864struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
 865							u64 file_offset,
 866							u64 len)
 867{
 868	struct btrfs_ordered_inode_tree *tree;
 869	struct rb_node *node;
 870	struct btrfs_ordered_extent *entry = NULL;
 871
 872	tree = &BTRFS_I(inode)->ordered_tree;
 873	spin_lock_irq(&tree->lock);
 874	node = tree_search(tree, file_offset);
 875	if (!node) {
 876		node = tree_search(tree, file_offset + len);
 877		if (!node)
 878			goto out;
 879	}
 880
 881	while (1) {
 882		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 883		if (range_overlaps(entry, file_offset, len))
 884			break;
 885
 886		if (entry->file_offset >= file_offset + len) {
 887			entry = NULL;
 888			break;
 889		}
 890		entry = NULL;
 891		node = rb_next(node);
 892		if (!node)
 893			break;
 894	}
 895out:
 896	if (entry)
 897		atomic_inc(&entry->refs);
 898	spin_unlock_irq(&tree->lock);
 899	return entry;
 900}
 901
 902bool btrfs_have_ordered_extents_in_range(struct inode *inode,
 903					 u64 file_offset,
 904					 u64 len)
 905{
 906	struct btrfs_ordered_extent *oe;
 907
 908	oe = btrfs_lookup_ordered_range(inode, file_offset, len);
 909	if (oe) {
 910		btrfs_put_ordered_extent(oe);
 911		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912	}
 913	return false;
 914}
 915
 916/*
 917 * lookup and return any extent before 'file_offset'.  NULL is returned
 918 * if none is found
 919 */
 920struct btrfs_ordered_extent *
 921btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
 922{
 923	struct btrfs_ordered_inode_tree *tree;
 924	struct rb_node *node;
 925	struct btrfs_ordered_extent *entry = NULL;
 926
 927	tree = &BTRFS_I(inode)->ordered_tree;
 928	spin_lock_irq(&tree->lock);
 929	node = tree_search(tree, file_offset);
 930	if (!node)
 931		goto out;
 932
 933	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 934	atomic_inc(&entry->refs);
 935out:
 936	spin_unlock_irq(&tree->lock);
 937	return entry;
 938}
 939
 940/*
 941 * After an extent is done, call this to conditionally update the on disk
 942 * i_size.  i_size is updated to cover any fully written part of the file.
 
 
 
 
 
 943 */
 944int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
 945				struct btrfs_ordered_extent *ordered)
 946{
 947	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
 948	u64 disk_i_size;
 949	u64 new_i_size;
 950	u64 i_size = i_size_read(inode);
 951	struct rb_node *node;
 952	struct rb_node *prev = NULL;
 953	struct btrfs_ordered_extent *test;
 954	int ret = 1;
 
 955
 956	spin_lock_irq(&tree->lock);
 957	if (ordered) {
 958		offset = entry_end(ordered);
 959		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
 960			offset = min(offset,
 961				     ordered->file_offset +
 962				     ordered->truncated_len);
 963	} else {
 964		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
 965	}
 966	disk_i_size = BTRFS_I(inode)->disk_i_size;
 967
 968	/* truncate file */
 969	if (disk_i_size > i_size) {
 970		BTRFS_I(inode)->disk_i_size = i_size;
 971		ret = 0;
 972		goto out;
 973	}
 974
 975	/*
 976	 * if the disk i_size is already at the inode->i_size, or
 977	 * this ordered extent is inside the disk i_size, we're done
 
 
 978	 */
 979	if (disk_i_size == i_size)
 980		goto out;
 981
 982	/*
 983	 * We still need to update disk_i_size if outstanding_isize is greater
 984	 * than disk_i_size.
 985	 */
 986	if (offset <= disk_i_size &&
 987	    (!ordered || ordered->outstanding_isize <= disk_i_size))
 
 
 
 
 
 
 
 
 988		goto out;
 
 989
 990	/*
 991	 * walk backward from this ordered extent to disk_i_size.
 992	 * if we find an ordered extent then we can't update disk i_size
 993	 * yet
 994	 */
 995	if (ordered) {
 996		node = rb_prev(&ordered->rb_node);
 997	} else {
 998		prev = tree_search(tree, offset);
 999		/*
1000		 * we insert file extents without involving ordered struct,
1001		 * so there should be no ordered struct cover this offset
1002		 */
1003		if (prev) {
1004			test = rb_entry(prev, struct btrfs_ordered_extent,
1005					rb_node);
1006			BUG_ON(offset_in_entry(test, offset));
1007		}
1008		node = prev;
 
1009	}
1010	for (; node; node = rb_prev(node)) {
1011		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 
 
 
 
 
 
1012
1013		/* We treat this entry as if it doesn't exist */
1014		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1015			continue;
1016		if (test->file_offset + test->len <= disk_i_size)
1017			break;
1018		if (test->file_offset >= i_size)
1019			break;
1020		if (entry_end(test) > disk_i_size) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1021			/*
1022			 * we don't update disk_i_size now, so record this
1023			 * undealt i_size. Or we will not know the real
1024			 * i_size.
1025			 */
1026			if (test->outstanding_isize < offset)
1027				test->outstanding_isize = offset;
1028			if (ordered &&
1029			    ordered->outstanding_isize >
1030			    test->outstanding_isize)
1031				test->outstanding_isize =
1032						ordered->outstanding_isize;
1033			goto out;
1034		}
 
 
 
1035	}
1036	new_i_size = min_t(u64, offset, i_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037
1038	/*
1039	 * Some ordered extents may completed before the current one, and
1040	 * we hold the real i_size in ->outstanding_isize.
1041	 */
1042	if (ordered && ordered->outstanding_isize > new_i_size)
1043		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1044	BTRFS_I(inode)->disk_i_size = new_i_size;
1045	ret = 0;
1046out:
1047	/*
1048	 * We need to do this because we can't remove ordered extents until
1049	 * after the i_disk_size has been updated and then the inode has been
1050	 * updated to reflect the change, so we need to tell anybody who finds
1051	 * this ordered extent that we've already done all the real work, we
1052	 * just haven't completed all the other work.
1053	 */
1054	if (ordered)
1055		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1056	spin_unlock_irq(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
1057	return ret;
1058}
1059
1060/*
1061 * search the ordered extents for one corresponding to 'offset' and
1062 * try to find a checksum.  This is used because we allow pages to
1063 * be reclaimed before their checksum is actually put into the btree
1064 */
1065int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1066			   u32 *sum, int len)
1067{
1068	struct btrfs_ordered_sum *ordered_sum;
1069	struct btrfs_ordered_extent *ordered;
1070	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1071	unsigned long num_sectors;
1072	unsigned long i;
1073	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1074	int index = 0;
1075
1076	ordered = btrfs_lookup_ordered_extent(inode, offset);
1077	if (!ordered)
1078		return 0;
1079
1080	spin_lock_irq(&tree->lock);
1081	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1082		if (disk_bytenr >= ordered_sum->bytenr &&
1083		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1084			i = (disk_bytenr - ordered_sum->bytenr) >>
1085			    inode->i_sb->s_blocksize_bits;
1086			num_sectors = ordered_sum->len >>
1087				      inode->i_sb->s_blocksize_bits;
1088			num_sectors = min_t(int, len - index, num_sectors - i);
1089			memcpy(sum + index, ordered_sum->sums + i,
1090			       num_sectors);
1091
1092			index += (int)num_sectors;
1093			if (index == len)
1094				goto out;
1095			disk_bytenr += num_sectors * sectorsize;
1096		}
1097	}
1098out:
 
 
1099	spin_unlock_irq(&tree->lock);
1100	btrfs_put_ordered_extent(ordered);
1101	return index;
 
 
 
 
 
 
1102}
1103
1104int __init ordered_data_init(void)
1105{
1106	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1107				     sizeof(struct btrfs_ordered_extent), 0,
1108				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1109				     NULL);
1110	if (!btrfs_ordered_extent_cache)
1111		return -ENOMEM;
1112
1113	return 0;
1114}
1115
1116void ordered_data_exit(void)
1117{
1118	kmem_cache_destroy(btrfs_ordered_extent_cache);
1119}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "ctree.h"
  12#include "transaction.h"
  13#include "btrfs_inode.h"
  14#include "extent_io.h"
  15#include "disk-io.h"
  16#include "compression.h"
  17#include "delalloc-space.h"
  18#include "qgroup.h"
  19#include "subpage.h"
  20
  21static struct kmem_cache *btrfs_ordered_extent_cache;
  22
  23static u64 entry_end(struct btrfs_ordered_extent *entry)
  24{
  25	if (entry->file_offset + entry->num_bytes < entry->file_offset)
  26		return (u64)-1;
  27	return entry->file_offset + entry->num_bytes;
  28}
  29
  30/* returns NULL if the insertion worked, or it returns the node it did find
  31 * in the tree
  32 */
  33static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  34				   struct rb_node *node)
  35{
  36	struct rb_node **p = &root->rb_node;
  37	struct rb_node *parent = NULL;
  38	struct btrfs_ordered_extent *entry;
  39
  40	while (*p) {
  41		parent = *p;
  42		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  43
  44		if (file_offset < entry->file_offset)
  45			p = &(*p)->rb_left;
  46		else if (file_offset >= entry_end(entry))
  47			p = &(*p)->rb_right;
  48		else
  49			return parent;
  50	}
  51
  52	rb_link_node(node, parent, p);
  53	rb_insert_color(node, root);
  54	return NULL;
  55}
  56
 
 
 
 
 
 
 
 
  57/*
  58 * look for a given offset in the tree, and if it can't be found return the
  59 * first lesser offset
  60 */
  61static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  62				     struct rb_node **prev_ret)
  63{
  64	struct rb_node *n = root->rb_node;
  65	struct rb_node *prev = NULL;
  66	struct rb_node *test;
  67	struct btrfs_ordered_extent *entry;
  68	struct btrfs_ordered_extent *prev_entry = NULL;
  69
  70	while (n) {
  71		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  72		prev = n;
  73		prev_entry = entry;
  74
  75		if (file_offset < entry->file_offset)
  76			n = n->rb_left;
  77		else if (file_offset >= entry_end(entry))
  78			n = n->rb_right;
  79		else
  80			return n;
  81	}
  82	if (!prev_ret)
  83		return NULL;
  84
  85	while (prev && file_offset >= entry_end(prev_entry)) {
  86		test = rb_next(prev);
  87		if (!test)
  88			break;
  89		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  90				      rb_node);
  91		if (file_offset < entry_end(prev_entry))
  92			break;
  93
  94		prev = test;
  95	}
  96	if (prev)
  97		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  98				      rb_node);
  99	while (prev && file_offset < entry_end(prev_entry)) {
 100		test = rb_prev(prev);
 101		if (!test)
 102			break;
 103		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 104				      rb_node);
 105		prev = test;
 106	}
 107	*prev_ret = prev;
 108	return NULL;
 109}
 110
 
 
 
 
 
 
 
 
 
 
 
 111static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 112			  u64 len)
 113{
 114	if (file_offset + len <= entry->file_offset ||
 115	    entry->file_offset + entry->num_bytes <= file_offset)
 116		return 0;
 117	return 1;
 118}
 119
 120/*
 121 * look find the first ordered struct that has this offset, otherwise
 122 * the first one less than this offset
 123 */
 124static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
 125					  u64 file_offset)
 126{
 127	struct rb_root *root = &tree->tree;
 128	struct rb_node *prev = NULL;
 129	struct rb_node *ret;
 130	struct btrfs_ordered_extent *entry;
 131
 132	if (tree->last) {
 133		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
 134				 rb_node);
 135		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
 136			return tree->last;
 137	}
 138	ret = __tree_search(root, file_offset, &prev);
 139	if (!ret)
 140		ret = prev;
 141	if (ret)
 142		tree->last = ret;
 143	return ret;
 144}
 145
 146/*
 147 * Allocate and add a new ordered_extent into the per-inode tree.
 
 
 
 
 
 148 *
 149 * The tree is given a single reference on the ordered extent that was
 150 * inserted.
 151 */
 152static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
 153				      u64 disk_bytenr, u64 num_bytes,
 154				      u64 disk_num_bytes, int type, int dio,
 155				      int compress_type)
 156{
 157	struct btrfs_root *root = inode->root;
 158	struct btrfs_fs_info *fs_info = root->fs_info;
 159	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 160	struct rb_node *node;
 161	struct btrfs_ordered_extent *entry;
 162	int ret;
 163
 164	if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
 165		/* For nocow write, we can release the qgroup rsv right now */
 166		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
 167		if (ret < 0)
 168			return ret;
 169		ret = 0;
 170	} else {
 171		/*
 172		 * The ordered extent has reserved qgroup space, release now
 173		 * and pass the reserved number for qgroup_record to free.
 174		 */
 175		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
 176		if (ret < 0)
 177			return ret;
 178	}
 179	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 180	if (!entry)
 181		return -ENOMEM;
 182
 183	entry->file_offset = file_offset;
 184	entry->disk_bytenr = disk_bytenr;
 185	entry->num_bytes = num_bytes;
 186	entry->disk_num_bytes = disk_num_bytes;
 187	entry->bytes_left = num_bytes;
 188	entry->inode = igrab(&inode->vfs_inode);
 189	entry->compress_type = compress_type;
 190	entry->truncated_len = (u64)-1;
 191	entry->qgroup_rsv = ret;
 192	entry->physical = (u64)-1;
 193
 194	ASSERT(type == BTRFS_ORDERED_REGULAR ||
 195	       type == BTRFS_ORDERED_NOCOW ||
 196	       type == BTRFS_ORDERED_PREALLOC ||
 197	       type == BTRFS_ORDERED_COMPRESSED);
 198	set_bit(type, &entry->flags);
 199
 200	percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
 201				 fs_info->delalloc_batch);
 202
 203	if (dio)
 204		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
 205
 206	/* one ref for the tree */
 207	refcount_set(&entry->refs, 1);
 208	init_waitqueue_head(&entry->wait);
 209	INIT_LIST_HEAD(&entry->list);
 210	INIT_LIST_HEAD(&entry->log_list);
 211	INIT_LIST_HEAD(&entry->root_extent_list);
 212	INIT_LIST_HEAD(&entry->work_list);
 213	init_completion(&entry->completion);
 
 
 214
 215	trace_btrfs_ordered_extent_add(inode, entry);
 216
 217	spin_lock_irq(&tree->lock);
 218	node = tree_insert(&tree->tree, file_offset,
 219			   &entry->rb_node);
 220	if (node)
 221		btrfs_panic(fs_info, -EEXIST,
 222				"inconsistency in ordered tree at offset %llu",
 223				file_offset);
 224	spin_unlock_irq(&tree->lock);
 225
 226	spin_lock(&root->ordered_extent_lock);
 227	list_add_tail(&entry->root_extent_list,
 228		      &root->ordered_extents);
 229	root->nr_ordered_extents++;
 230	if (root->nr_ordered_extents == 1) {
 231		spin_lock(&fs_info->ordered_root_lock);
 232		BUG_ON(!list_empty(&root->ordered_root));
 233		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 234		spin_unlock(&fs_info->ordered_root_lock);
 
 235	}
 236	spin_unlock(&root->ordered_extent_lock);
 237
 238	/*
 239	 * We don't need the count_max_extents here, we can assume that all of
 240	 * that work has been done at higher layers, so this is truly the
 241	 * smallest the extent is going to get.
 242	 */
 243	spin_lock(&inode->lock);
 244	btrfs_mod_outstanding_extents(inode, 1);
 245	spin_unlock(&inode->lock);
 246
 247	return 0;
 248}
 249
 250int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
 251			     u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
 252			     int type)
 253{
 254	ASSERT(type == BTRFS_ORDERED_REGULAR ||
 255	       type == BTRFS_ORDERED_NOCOW ||
 256	       type == BTRFS_ORDERED_PREALLOC);
 257	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
 258					  num_bytes, disk_num_bytes, type, 0,
 259					  BTRFS_COMPRESS_NONE);
 260}
 261
 262int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
 263				 u64 disk_bytenr, u64 num_bytes,
 264				 u64 disk_num_bytes, int type)
 265{
 266	ASSERT(type == BTRFS_ORDERED_REGULAR ||
 267	       type == BTRFS_ORDERED_NOCOW ||
 268	       type == BTRFS_ORDERED_PREALLOC);
 269	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
 270					  num_bytes, disk_num_bytes, type, 1,
 271					  BTRFS_COMPRESS_NONE);
 272}
 273
 274int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
 275				      u64 disk_bytenr, u64 num_bytes,
 276				      u64 disk_num_bytes, int compress_type)
 277{
 278	ASSERT(compress_type != BTRFS_COMPRESS_NONE);
 279	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
 280					  num_bytes, disk_num_bytes,
 281					  BTRFS_ORDERED_COMPRESSED, 0,
 282					  compress_type);
 283}
 284
 285/*
 286 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 287 * when an ordered extent is finished.  If the list covers more than one
 288 * ordered extent, it is split across multiples.
 289 */
 290void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 
 291			   struct btrfs_ordered_sum *sum)
 292{
 293	struct btrfs_ordered_inode_tree *tree;
 294
 295	tree = &BTRFS_I(entry->inode)->ordered_tree;
 296	spin_lock_irq(&tree->lock);
 297	list_add_tail(&sum->list, &entry->list);
 298	spin_unlock_irq(&tree->lock);
 299}
 300
 301/*
 302 * Mark all ordered extents io inside the specified range finished.
 
 
 
 303 *
 304 * @page:	 The invovled page for the opeartion.
 305 *		 For uncompressed buffered IO, the page status also needs to be
 306 *		 updated to indicate whether the pending ordered io is finished.
 307 *		 Can be NULL for direct IO and compressed write.
 308 *		 For these cases, callers are ensured they won't execute the
 309 *		 endio function twice.
 310 * @finish_func: The function to be executed when all the IO of an ordered
 311 *		 extent are finished.
 312 *
 313 * This function is called for endio, thus the range must have ordered
 314 * extent(s) coveri it.
 315 */
 316void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
 317				struct page *page, u64 file_offset,
 318				u64 num_bytes, btrfs_func_t finish_func,
 319				bool uptodate)
 320{
 321	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 322	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 323	struct btrfs_workqueue *wq;
 324	struct rb_node *node;
 325	struct btrfs_ordered_extent *entry = NULL;
 
 326	unsigned long flags;
 327	u64 cur = file_offset;
 328
 329	if (btrfs_is_free_space_inode(inode))
 330		wq = fs_info->endio_freespace_worker;
 331	else
 332		wq = fs_info->endio_write_workers;
 333
 334	if (page)
 335		ASSERT(page->mapping && page_offset(page) <= file_offset &&
 336		       file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
 337
 
 338	spin_lock_irqsave(&tree->lock, flags);
 339	while (cur < file_offset + num_bytes) {
 340		u64 entry_end;
 341		u64 end;
 342		u32 len;
 
 343
 344		node = tree_search(tree, cur);
 345		/* No ordered extents at all */
 346		if (!node)
 347			break;
 
 348
 349		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 350		entry_end = entry->file_offset + entry->num_bytes;
 351		/*
 352		 * |<-- OE --->|  |
 353		 *		  cur
 354		 * Go to next OE.
 355		 */
 356		if (cur >= entry_end) {
 357			node = rb_next(node);
 358			/* No more ordered extents, exit */
 359			if (!node)
 360				break;
 361			entry = rb_entry(node, struct btrfs_ordered_extent,
 362					 rb_node);
 
 
 
 363
 364			/* Go to next ordered extent and continue */
 365			cur = entry->file_offset;
 366			continue;
 367		}
 368		/*
 369		 * |	|<--- OE --->|
 370		 * cur
 371		 * Go to the start of OE.
 372		 */
 373		if (cur < entry->file_offset) {
 374			cur = entry->file_offset;
 375			continue;
 376		}
 377
 378		/*
 379		 * Now we are definitely inside one ordered extent.
 380		 *
 381		 * |<--- OE --->|
 382		 *	|
 383		 *	cur
 384		 */
 385		end = min(entry->file_offset + entry->num_bytes,
 386			  file_offset + num_bytes) - 1;
 387		ASSERT(end + 1 - cur < U32_MAX);
 388		len = end + 1 - cur;
 389
 390		if (page) {
 391			/*
 392			 * Ordered (Private2) bit indicates whether we still
 393			 * have pending io unfinished for the ordered extent.
 394			 *
 395			 * If there's no such bit, we need to skip to next range.
 396			 */
 397			if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
 398				cur += len;
 399				continue;
 400			}
 401			btrfs_page_clear_ordered(fs_info, page, cur, len);
 402		}
 403
 404		/* Now we're fine to update the accounting */
 405		if (unlikely(len > entry->bytes_left)) {
 406			WARN_ON(1);
 407			btrfs_crit(fs_info,
 408"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
 409				   inode->root->root_key.objectid,
 410				   btrfs_ino(inode),
 411				   entry->file_offset,
 412				   entry->num_bytes,
 413				   len, entry->bytes_left);
 414			entry->bytes_left = 0;
 415		} else {
 416			entry->bytes_left -= len;
 417		}
 418
 419		if (!uptodate)
 420			set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 421
 422		/*
 423		 * All the IO of the ordered extent is finished, we need to queue
 424		 * the finish_func to be executed.
 425		 */
 426		if (entry->bytes_left == 0) {
 427			set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 428			cond_wake_up(&entry->wait);
 429			refcount_inc(&entry->refs);
 430			spin_unlock_irqrestore(&tree->lock, flags);
 431			btrfs_init_work(&entry->work, finish_func, NULL, NULL);
 432			btrfs_queue_work(wq, &entry->work);
 433			spin_lock_irqsave(&tree->lock, flags);
 434		}
 435		cur += len;
 436	}
 437	spin_unlock_irqrestore(&tree->lock, flags);
 
 438}
 439
 440/*
 441 * Finish IO for one ordered extent across a given range.  The range can only
 442 * contain one ordered extent.
 443 *
 444 * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
 445 *               search and use the ordered extent directly.
 446 * 		 Will be also used to store the finished ordered extent.
 447 * @file_offset: File offset for the finished IO
 448 * @io_size:	 Length of the finish IO range
 449 * @uptodate:	 If the IO finishes without problem
 450 *
 451 * Return true if the ordered extent is finished in the range, and update
 452 * @cached.
 453 * Return false otherwise.
 454 *
 455 * NOTE: The range can NOT cross multiple ordered extents.
 456 * Thus caller should ensure the range doesn't cross ordered extents.
 457 */
 458bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
 459				    struct btrfs_ordered_extent **cached,
 460				    u64 file_offset, u64 io_size, int uptodate)
 461{
 462	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 463	struct rb_node *node;
 464	struct btrfs_ordered_extent *entry = NULL;
 465	unsigned long flags;
 466	bool finished = false;
 467
 
 468	spin_lock_irqsave(&tree->lock, flags);
 469	if (cached && *cached) {
 470		entry = *cached;
 471		goto have_entry;
 472	}
 473
 474	node = tree_search(tree, file_offset);
 475	if (!node)
 
 476		goto out;
 
 477
 478	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 479have_entry:
 480	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 
 481		goto out;
 
 482
 483	if (io_size > entry->bytes_left)
 484		btrfs_crit(inode->root->fs_info,
 485			   "bad ordered accounting left %llu size %llu",
 486		       entry->bytes_left, io_size);
 487
 488	entry->bytes_left -= io_size;
 489	if (!uptodate)
 490		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
 491
 492	if (entry->bytes_left == 0) {
 
 493		/*
 494		 * Ensure only one caller can set the flag and finished_ret
 495		 * accordingly
 496		 */
 497		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 498		/* test_and_set_bit implies a barrier */
 499		cond_wake_up_nomb(&entry->wait);
 
 500	}
 501out:
 502	if (finished && cached && entry) {
 503		*cached = entry;
 504		refcount_inc(&entry->refs);
 505	}
 506	spin_unlock_irqrestore(&tree->lock, flags);
 507	return finished;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508}
 509
 510/*
 511 * used to drop a reference on an ordered extent.  This will free
 512 * the extent if the last reference is dropped
 513 */
 514void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 515{
 516	struct list_head *cur;
 517	struct btrfs_ordered_sum *sum;
 518
 519	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
 520
 521	if (refcount_dec_and_test(&entry->refs)) {
 
 
 522		ASSERT(list_empty(&entry->root_extent_list));
 523		ASSERT(list_empty(&entry->log_list));
 524		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 525		if (entry->inode)
 526			btrfs_add_delayed_iput(entry->inode);
 527		while (!list_empty(&entry->list)) {
 528			cur = entry->list.next;
 529			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 530			list_del(&sum->list);
 531			kvfree(sum);
 532		}
 533		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 534	}
 535}
 536
 537/*
 538 * remove an ordered extent from the tree.  No references are dropped
 539 * and waiters are woken up.
 540 */
 541void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
 542				 struct btrfs_ordered_extent *entry)
 543{
 544	struct btrfs_ordered_inode_tree *tree;
 545	struct btrfs_root *root = btrfs_inode->root;
 546	struct btrfs_fs_info *fs_info = root->fs_info;
 547	struct rb_node *node;
 548	bool pending;
 549
 550	/* This is paired with btrfs_add_ordered_extent. */
 551	spin_lock(&btrfs_inode->lock);
 552	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 553	spin_unlock(&btrfs_inode->lock);
 554	if (root != fs_info->tree_root)
 555		btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
 556						false);
 557
 558	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
 559				 fs_info->delalloc_batch);
 560
 561	tree = &btrfs_inode->ordered_tree;
 562	spin_lock_irq(&tree->lock);
 563	node = &entry->rb_node;
 564	rb_erase(node, &tree->tree);
 565	RB_CLEAR_NODE(node);
 566	if (tree->last == node)
 567		tree->last = NULL;
 568	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 569	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
 
 570	spin_unlock_irq(&tree->lock);
 571
 572	/*
 573	 * The current running transaction is waiting on us, we need to let it
 574	 * know that we're complete and wake it up.
 575	 */
 576	if (pending) {
 577		struct btrfs_transaction *trans;
 578
 579		/*
 580		 * The checks for trans are just a formality, it should be set,
 581		 * but if it isn't we don't want to deref/assert under the spin
 582		 * lock, so be nice and check if trans is set, but ASSERT() so
 583		 * if it isn't set a developer will notice.
 584		 */
 585		spin_lock(&fs_info->trans_lock);
 586		trans = fs_info->running_transaction;
 587		if (trans)
 588			refcount_inc(&trans->use_count);
 589		spin_unlock(&fs_info->trans_lock);
 590
 591		ASSERT(trans);
 592		if (trans) {
 593			if (atomic_dec_and_test(&trans->pending_ordered))
 594				wake_up(&trans->pending_wait);
 595			btrfs_put_transaction(trans);
 596		}
 597	}
 598
 599	spin_lock(&root->ordered_extent_lock);
 600	list_del_init(&entry->root_extent_list);
 601	root->nr_ordered_extents--;
 602
 603	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
 604
 605	if (!root->nr_ordered_extents) {
 606		spin_lock(&fs_info->ordered_root_lock);
 607		BUG_ON(list_empty(&root->ordered_root));
 608		list_del_init(&root->ordered_root);
 609		spin_unlock(&fs_info->ordered_root_lock);
 610	}
 611	spin_unlock(&root->ordered_extent_lock);
 612	wake_up(&entry->wait);
 613}
 614
 615static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 616{
 617	struct btrfs_ordered_extent *ordered;
 618
 619	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 620	btrfs_start_ordered_extent(ordered, 1);
 621	complete(&ordered->completion);
 622}
 623
 624/*
 625 * wait for all the ordered extents in a root.  This is done when balancing
 626 * space between drives.
 627 */
 628u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 629			       const u64 range_start, const u64 range_len)
 630{
 631	struct btrfs_fs_info *fs_info = root->fs_info;
 632	LIST_HEAD(splice);
 633	LIST_HEAD(skipped);
 634	LIST_HEAD(works);
 635	struct btrfs_ordered_extent *ordered, *next;
 636	u64 count = 0;
 637	const u64 range_end = range_start + range_len;
 
 
 638
 639	mutex_lock(&root->ordered_extent_mutex);
 640	spin_lock(&root->ordered_extent_lock);
 641	list_splice_init(&root->ordered_extents, &splice);
 642	while (!list_empty(&splice) && nr) {
 643		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 644					   root_extent_list);
 645
 646		if (range_end <= ordered->disk_bytenr ||
 647		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
 648			list_move_tail(&ordered->root_extent_list, &skipped);
 649			cond_resched_lock(&root->ordered_extent_lock);
 650			continue;
 651		}
 652
 653		list_move_tail(&ordered->root_extent_list,
 654			       &root->ordered_extents);
 655		refcount_inc(&ordered->refs);
 656		spin_unlock(&root->ordered_extent_lock);
 657
 658		btrfs_init_work(&ordered->flush_work,
 
 659				btrfs_run_ordered_extent_work, NULL, NULL);
 660		list_add_tail(&ordered->work_list, &works);
 661		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 
 662
 663		cond_resched();
 664		spin_lock(&root->ordered_extent_lock);
 665		if (nr != U64_MAX)
 666			nr--;
 667		count++;
 668	}
 669	list_splice_tail(&skipped, &root->ordered_extents);
 670	list_splice_tail(&splice, &root->ordered_extents);
 671	spin_unlock(&root->ordered_extent_lock);
 672
 673	list_for_each_entry_safe(ordered, next, &works, work_list) {
 674		list_del_init(&ordered->work_list);
 675		wait_for_completion(&ordered->completion);
 676		btrfs_put_ordered_extent(ordered);
 677		cond_resched();
 678	}
 679	mutex_unlock(&root->ordered_extent_mutex);
 680
 681	return count;
 682}
 683
 684void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 685			     const u64 range_start, const u64 range_len)
 686{
 687	struct btrfs_root *root;
 688	struct list_head splice;
 689	u64 done;
 690
 691	INIT_LIST_HEAD(&splice);
 692
 693	mutex_lock(&fs_info->ordered_operations_mutex);
 694	spin_lock(&fs_info->ordered_root_lock);
 695	list_splice_init(&fs_info->ordered_roots, &splice);
 696	while (!list_empty(&splice) && nr) {
 697		root = list_first_entry(&splice, struct btrfs_root,
 698					ordered_root);
 699		root = btrfs_grab_root(root);
 700		BUG_ON(!root);
 701		list_move_tail(&root->ordered_root,
 702			       &fs_info->ordered_roots);
 703		spin_unlock(&fs_info->ordered_root_lock);
 704
 705		done = btrfs_wait_ordered_extents(root, nr,
 706						  range_start, range_len);
 707		btrfs_put_root(root);
 708
 709		spin_lock(&fs_info->ordered_root_lock);
 710		if (nr != U64_MAX) {
 711			nr -= done;
 
 712		}
 713	}
 714	list_splice_tail(&splice, &fs_info->ordered_roots);
 715	spin_unlock(&fs_info->ordered_root_lock);
 716	mutex_unlock(&fs_info->ordered_operations_mutex);
 717}
 718
 719/*
 720 * Used to start IO or wait for a given ordered extent to finish.
 721 *
 722 * If wait is one, this effectively waits on page writeback for all the pages
 723 * in the extent, and it waits on the io completion code to insert
 724 * metadata into the btree corresponding to the extent
 725 */
 726void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
 
 
 727{
 728	u64 start = entry->file_offset;
 729	u64 end = start + entry->num_bytes - 1;
 730	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 731
 732	trace_btrfs_ordered_extent_start(inode, entry);
 733
 734	/*
 735	 * pages in the range can be dirty, clean or writeback.  We
 736	 * start IO on any dirty ones so the wait doesn't stall waiting
 737	 * for the flusher thread to find them
 738	 */
 739	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 740		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
 741	if (wait) {
 742		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
 743						 &entry->flags));
 744	}
 745}
 746
 747/*
 748 * Used to wait on ordered extents across a large range of bytes.
 749 */
 750int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 751{
 752	int ret = 0;
 753	int ret_wb = 0;
 754	u64 end;
 755	u64 orig_end;
 756	struct btrfs_ordered_extent *ordered;
 757
 758	if (start + len < start) {
 759		orig_end = INT_LIMIT(loff_t);
 760	} else {
 761		orig_end = start + len - 1;
 762		if (orig_end > INT_LIMIT(loff_t))
 763			orig_end = INT_LIMIT(loff_t);
 764	}
 765
 766	/* start IO across the range first to instantiate any delalloc
 767	 * extents
 768	 */
 769	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 770	if (ret)
 771		return ret;
 772
 773	/*
 774	 * If we have a writeback error don't return immediately. Wait first
 775	 * for any ordered extents that haven't completed yet. This is to make
 776	 * sure no one can dirty the same page ranges and call writepages()
 777	 * before the ordered extents complete - to avoid failures (-EEXIST)
 778	 * when adding the new ordered extents to the ordered tree.
 779	 */
 780	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 781
 782	end = orig_end;
 783	while (1) {
 784		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
 785		if (!ordered)
 786			break;
 787		if (ordered->file_offset > orig_end) {
 788			btrfs_put_ordered_extent(ordered);
 789			break;
 790		}
 791		if (ordered->file_offset + ordered->num_bytes <= start) {
 792			btrfs_put_ordered_extent(ordered);
 793			break;
 794		}
 795		btrfs_start_ordered_extent(ordered, 1);
 796		end = ordered->file_offset;
 797		/*
 798		 * If the ordered extent had an error save the error but don't
 799		 * exit without waiting first for all other ordered extents in
 800		 * the range to complete.
 801		 */
 802		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 803			ret = -EIO;
 804		btrfs_put_ordered_extent(ordered);
 805		if (end == 0 || end == start)
 806			break;
 807		end--;
 808	}
 809	return ret_wb ? ret_wb : ret;
 810}
 811
 812/*
 813 * find an ordered extent corresponding to file_offset.  return NULL if
 814 * nothing is found, otherwise take a reference on the extent and return it
 815 */
 816struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
 817							 u64 file_offset)
 818{
 819	struct btrfs_ordered_inode_tree *tree;
 820	struct rb_node *node;
 821	struct btrfs_ordered_extent *entry = NULL;
 822	unsigned long flags;
 823
 824	tree = &inode->ordered_tree;
 825	spin_lock_irqsave(&tree->lock, flags);
 826	node = tree_search(tree, file_offset);
 827	if (!node)
 828		goto out;
 829
 830	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 831	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 832		entry = NULL;
 833	if (entry)
 834		refcount_inc(&entry->refs);
 835out:
 836	spin_unlock_irqrestore(&tree->lock, flags);
 837	return entry;
 838}
 839
 840/* Since the DIO code tries to lock a wide area we need to look for any ordered
 841 * extents that exist in the range, rather than just the start of the range.
 842 */
 843struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 844		struct btrfs_inode *inode, u64 file_offset, u64 len)
 
 845{
 846	struct btrfs_ordered_inode_tree *tree;
 847	struct rb_node *node;
 848	struct btrfs_ordered_extent *entry = NULL;
 849
 850	tree = &inode->ordered_tree;
 851	spin_lock_irq(&tree->lock);
 852	node = tree_search(tree, file_offset);
 853	if (!node) {
 854		node = tree_search(tree, file_offset + len);
 855		if (!node)
 856			goto out;
 857	}
 858
 859	while (1) {
 860		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 861		if (range_overlaps(entry, file_offset, len))
 862			break;
 863
 864		if (entry->file_offset >= file_offset + len) {
 865			entry = NULL;
 866			break;
 867		}
 868		entry = NULL;
 869		node = rb_next(node);
 870		if (!node)
 871			break;
 872	}
 873out:
 874	if (entry)
 875		refcount_inc(&entry->refs);
 876	spin_unlock_irq(&tree->lock);
 877	return entry;
 878}
 879
 880/*
 881 * Adds all ordered extents to the given list. The list ends up sorted by the
 882 * file_offset of the ordered extents.
 883 */
 884void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
 885					   struct list_head *list)
 886{
 887	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 888	struct rb_node *n;
 889
 890	ASSERT(inode_is_locked(&inode->vfs_inode));
 891
 892	spin_lock_irq(&tree->lock);
 893	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
 894		struct btrfs_ordered_extent *ordered;
 895
 896		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 897
 898		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 899			continue;
 900
 901		ASSERT(list_empty(&ordered->log_list));
 902		list_add_tail(&ordered->log_list, list);
 903		refcount_inc(&ordered->refs);
 904	}
 905	spin_unlock_irq(&tree->lock);
 906}
 907
 908/*
 909 * lookup and return any extent before 'file_offset'.  NULL is returned
 910 * if none is found
 911 */
 912struct btrfs_ordered_extent *
 913btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
 914{
 915	struct btrfs_ordered_inode_tree *tree;
 916	struct rb_node *node;
 917	struct btrfs_ordered_extent *entry = NULL;
 918
 919	tree = &inode->ordered_tree;
 920	spin_lock_irq(&tree->lock);
 921	node = tree_search(tree, file_offset);
 922	if (!node)
 923		goto out;
 924
 925	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 926	refcount_inc(&entry->refs);
 927out:
 928	spin_unlock_irq(&tree->lock);
 929	return entry;
 930}
 931
 932/*
 933 * Lookup the first ordered extent that overlaps the range
 934 * [@file_offset, @file_offset + @len).
 935 *
 936 * The difference between this and btrfs_lookup_first_ordered_extent() is
 937 * that this one won't return any ordered extent that does not overlap the range.
 938 * And the difference against btrfs_lookup_ordered_extent() is, this function
 939 * ensures the first ordered extent gets returned.
 940 */
 941struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
 942			struct btrfs_inode *inode, u64 file_offset, u64 len)
 943{
 944	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
 
 
 
 945	struct rb_node *node;
 946	struct rb_node *cur;
 947	struct rb_node *prev;
 948	struct rb_node *next;
 949	struct btrfs_ordered_extent *entry = NULL;
 950
 951	spin_lock_irq(&tree->lock);
 952	node = tree->tree.rb_node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953	/*
 954	 * Here we don't want to use tree_search() which will use tree->last
 955	 * and screw up the search order.
 956	 * And __tree_search() can't return the adjacent ordered extents
 957	 * either, thus here we do our own search.
 958	 */
 959	while (node) {
 960		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 961
 962		if (file_offset < entry->file_offset) {
 963			node = node->rb_left;
 964		} else if (file_offset >= entry_end(entry)) {
 965			node = node->rb_right;
 966		} else {
 967			/*
 968			 * Direct hit, got an ordered extent that starts at
 969			 * @file_offset
 970			 */
 971			goto out;
 972		}
 973	}
 974	if (!entry) {
 975		/* Empty tree */
 976		goto out;
 977	}
 978
 979	cur = &entry->rb_node;
 980	/* We got an entry around @file_offset, check adjacent entries */
 981	if (entry->file_offset < file_offset) {
 982		prev = cur;
 983		next = rb_next(cur);
 
 
 984	} else {
 985		prev = rb_prev(cur);
 986		next = cur;
 987	}
 988	if (prev) {
 989		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
 990		if (range_overlaps(entry, file_offset, len))
 991			goto out;
 992	}
 993	if (next) {
 994		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
 995		if (range_overlaps(entry, file_offset, len))
 996			goto out;
 997	}
 998	/* No ordered extent in the range */
 999	entry = NULL;
1000out:
1001	if (entry)
1002		refcount_inc(&entry->refs);
1003	spin_unlock_irq(&tree->lock);
1004	return entry;
1005}
1006
1007/*
1008 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1009 * ordered extents in it are run to completion.
1010 *
1011 * @inode:        Inode whose ordered tree is to be searched
1012 * @start:        Beginning of range to flush
1013 * @end:          Last byte of range to lock
1014 * @cached_state: If passed, will return the extent state responsible for the
1015 * locked range. It's the caller's responsibility to free the cached state.
1016 *
1017 * This function always returns with the given range locked, ensuring after it's
1018 * called no order extent can be pending.
1019 */
1020void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1021					u64 end,
1022					struct extent_state **cached_state)
1023{
1024	struct btrfs_ordered_extent *ordered;
1025	struct extent_state *cache = NULL;
1026	struct extent_state **cachedp = &cache;
1027
1028	if (cached_state)
1029		cachedp = cached_state;
1030
1031	while (1) {
1032		lock_extent_bits(&inode->io_tree, start, end, cachedp);
1033		ordered = btrfs_lookup_ordered_range(inode, start,
1034						     end - start + 1);
1035		if (!ordered) {
1036			/*
1037			 * If no external cached_state has been passed then
1038			 * decrement the extra ref taken for cachedp since we
1039			 * aren't exposing it outside of this function
1040			 */
1041			if (!cached_state)
1042				refcount_dec(&cache->refs);
1043			break;
 
 
 
 
 
1044		}
1045		unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1046		btrfs_start_ordered_extent(ordered, 1);
1047		btrfs_put_ordered_extent(ordered);
1048	}
1049}
1050
1051static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1052				u64 len)
1053{
1054	struct inode *inode = ordered->inode;
1055	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1056	u64 file_offset = ordered->file_offset + pos;
1057	u64 disk_bytenr = ordered->disk_bytenr + pos;
1058	u64 num_bytes = len;
1059	u64 disk_num_bytes = len;
1060	int type;
1061	unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
1062	int compress_type = ordered->compress_type;
1063	unsigned long weight;
1064	int ret;
1065
1066	weight = hweight_long(flags_masked);
1067	WARN_ON_ONCE(weight > 1);
1068	if (!weight)
1069		type = 0;
1070	else
1071		type = __ffs(flags_masked);
1072
1073	/*
1074	 * The splitting extent is already counted and will be added again
1075	 * in btrfs_add_ordered_extent_*(). Subtract num_bytes to avoid
1076	 * double counting.
 
 
 
 
 
 
 
 
 
 
 
1077	 */
1078	percpu_counter_add_batch(&fs_info->ordered_bytes, -num_bytes,
1079				 fs_info->delalloc_batch);
1080	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
1081		WARN_ON_ONCE(1);
1082		ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
1083				file_offset, disk_bytenr, num_bytes,
1084				disk_num_bytes, compress_type);
1085	} else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
1086		ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
1087				disk_bytenr, num_bytes, disk_num_bytes, type);
1088	} else {
1089		ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
1090				disk_bytenr, num_bytes, disk_num_bytes, type);
1091	}
1092
1093	return ret;
1094}
1095
1096int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1097				u64 post)
 
 
 
 
 
1098{
1099	struct inode *inode = ordered->inode;
 
1100	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1101	struct rb_node *node;
1102	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1103	int ret = 0;
 
 
 
 
 
1104
1105	spin_lock_irq(&tree->lock);
1106	/* Remove from tree once */
1107	node = &ordered->rb_node;
1108	rb_erase(node, &tree->tree);
1109	RB_CLEAR_NODE(node);
1110	if (tree->last == node)
1111		tree->last = NULL;
1112
1113	ordered->file_offset += pre;
1114	ordered->disk_bytenr += pre;
1115	ordered->num_bytes -= (pre + post);
1116	ordered->disk_num_bytes -= (pre + post);
1117	ordered->bytes_left -= (pre + post);
1118
1119	/* Re-insert the node */
1120	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1121	if (node)
1122		btrfs_panic(fs_info, -EEXIST,
1123			"zoned: inconsistency in ordered tree at offset %llu",
1124			    ordered->file_offset);
1125
1126	spin_unlock_irq(&tree->lock);
1127
1128	if (pre)
1129		ret = clone_ordered_extent(ordered, 0, pre);
1130	if (ret == 0 && post)
1131		ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1132					   post);
1133
1134	return ret;
1135}
1136
1137int __init ordered_data_init(void)
1138{
1139	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1140				     sizeof(struct btrfs_ordered_extent), 0,
1141				     SLAB_MEM_SPREAD,
1142				     NULL);
1143	if (!btrfs_ordered_extent_cache)
1144		return -ENOMEM;
1145
1146	return 0;
1147}
1148
1149void __cold ordered_data_exit(void)
1150{
1151	kmem_cache_destroy(btrfs_ordered_extent_cache);
1152}