Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/slab.h>
  29#include <linux/migrate.h>
  30#include <linux/ratelimit.h>
  31#include <linux/uuid.h>
  32#include <linux/semaphore.h>
 
 
 
  33#include <asm/unaligned.h>
 
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "hash.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "locking.h"
  42#include "tree-log.h"
  43#include "free-space-cache.h"
  44#include "free-space-tree.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
  48#include "dev-replace.h"
  49#include "raid56.h"
  50#include "sysfs.h"
  51#include "qgroup.h"
  52#include "compression.h"
  53
  54#ifdef CONFIG_X86
  55#include <asm/cpufeature.h>
  56#endif
 
 
 
 
 
 
 
 
 
 
 
 
  57
  58#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  59				 BTRFS_HEADER_FLAG_RELOC |\
  60				 BTRFS_SUPER_FLAG_ERROR |\
  61				 BTRFS_SUPER_FLAG_SEEDING |\
  62				 BTRFS_SUPER_FLAG_METADUMP)
  63
  64static const struct extent_io_ops btree_extent_io_ops;
  65static void end_workqueue_fn(struct btrfs_work *work);
  66static void free_fs_root(struct btrfs_root *root);
  67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  68				    int read_only);
  69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  71				      struct btrfs_root *root);
  72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  73static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  74					struct extent_io_tree *dirty_pages,
  75					int mark);
  76static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  77				       struct extent_io_tree *pinned_extents);
  78static int btrfs_cleanup_transaction(struct btrfs_root *root);
  79static void btrfs_error_commit_super(struct btrfs_root *root);
  80
  81/*
  82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  83 * is complete.  This is used during reads to verify checksums, and it is used
  84 * by writes to insert metadata for new file extents after IO is complete.
  85 */
  86struct btrfs_end_io_wq {
  87	struct bio *bio;
  88	bio_end_io_t *end_io;
  89	void *private;
  90	struct btrfs_fs_info *info;
  91	int error;
  92	enum btrfs_wq_endio_type metadata;
  93	struct list_head list;
  94	struct btrfs_work work;
  95};
  96
  97static struct kmem_cache *btrfs_end_io_wq_cache;
  98
  99int __init btrfs_end_io_wq_init(void)
 100{
 101	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
 102					sizeof(struct btrfs_end_io_wq),
 103					0,
 104					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
 105					NULL);
 106	if (!btrfs_end_io_wq_cache)
 107		return -ENOMEM;
 108	return 0;
 109}
 110
 111void btrfs_end_io_wq_exit(void)
 112{
 113	kmem_cache_destroy(btrfs_end_io_wq_cache);
 
 114}
 115
 116/*
 117 * async submit bios are used to offload expensive checksumming
 118 * onto the worker threads.  They checksum file and metadata bios
 119 * just before they are sent down the IO stack.
 120 */
 121struct async_submit_bio {
 122	struct inode *inode;
 123	struct bio *bio;
 124	struct list_head list;
 125	extent_submit_bio_hook_t *submit_bio_start;
 126	extent_submit_bio_hook_t *submit_bio_done;
 127	int rw;
 128	int mirror_num;
 129	unsigned long bio_flags;
 130	/*
 131	 * bio_offset is optional, can be used if the pages in the bio
 132	 * can't tell us where in the file the bio should go
 133	 */
 134	u64 bio_offset;
 135	struct btrfs_work work;
 136	int error;
 137};
 138
 139/*
 140 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 141 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 142 * the level the eb occupies in the tree.
 143 *
 144 * Different roots are used for different purposes and may nest inside each
 145 * other and they require separate keysets.  As lockdep keys should be
 146 * static, assign keysets according to the purpose of the root as indicated
 147 * by btrfs_root->objectid.  This ensures that all special purpose roots
 148 * have separate keysets.
 149 *
 150 * Lock-nesting across peer nodes is always done with the immediate parent
 151 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 152 * subclass to avoid triggering lockdep warning in such cases.
 153 *
 154 * The key is set by the readpage_end_io_hook after the buffer has passed
 155 * csum validation but before the pages are unlocked.  It is also set by
 156 * btrfs_init_new_buffer on freshly allocated blocks.
 157 *
 158 * We also add a check to make sure the highest level of the tree is the
 159 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 160 * needs update as well.
 161 */
 162#ifdef CONFIG_DEBUG_LOCK_ALLOC
 163# if BTRFS_MAX_LEVEL != 8
 164#  error
 165# endif
 166
 167static struct btrfs_lockdep_keyset {
 168	u64			id;		/* root objectid */
 169	const char		*name_stem;	/* lock name stem */
 170	char			names[BTRFS_MAX_LEVEL + 1][20];
 171	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 172} btrfs_lockdep_keysets[] = {
 173	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 174	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 175	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 176	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 177	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 178	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 179	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 180	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 181	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 182	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 183	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 184	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 185	{ .id = 0,				.name_stem = "tree"	},
 186};
 187
 188void __init btrfs_init_lockdep(void)
 189{
 190	int i, j;
 191
 192	/* initialize lockdep class names */
 193	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 194		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 195
 196		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 197			snprintf(ks->names[j], sizeof(ks->names[j]),
 198				 "btrfs-%s-%02d", ks->name_stem, j);
 199	}
 200}
 201
 202void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 203				    int level)
 204{
 205	struct btrfs_lockdep_keyset *ks;
 206
 207	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 208
 209	/* find the matching keyset, id 0 is the default entry */
 210	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 211		if (ks->id == objectid)
 212			break;
 213
 214	lockdep_set_class_and_name(&eb->lock,
 215				   &ks->keys[level], ks->names[level]);
 216}
 217
 218#endif
 219
 220/*
 221 * extents on the btree inode are pretty simple, there's one extent
 222 * that covers the entire device
 223 */
 224static struct extent_map *btree_get_extent(struct inode *inode,
 225		struct page *page, size_t pg_offset, u64 start, u64 len,
 226		int create)
 227{
 228	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 229	struct extent_map *em;
 230	int ret;
 231
 232	read_lock(&em_tree->lock);
 233	em = lookup_extent_mapping(em_tree, start, len);
 234	if (em) {
 235		em->bdev =
 236			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 237		read_unlock(&em_tree->lock);
 238		goto out;
 239	}
 240	read_unlock(&em_tree->lock);
 241
 242	em = alloc_extent_map();
 243	if (!em) {
 244		em = ERR_PTR(-ENOMEM);
 245		goto out;
 246	}
 247	em->start = 0;
 248	em->len = (u64)-1;
 249	em->block_len = (u64)-1;
 250	em->block_start = 0;
 251	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 252
 253	write_lock(&em_tree->lock);
 254	ret = add_extent_mapping(em_tree, em, 0);
 255	if (ret == -EEXIST) {
 256		free_extent_map(em);
 257		em = lookup_extent_mapping(em_tree, start, len);
 258		if (!em)
 259			em = ERR_PTR(-EIO);
 260	} else if (ret) {
 261		free_extent_map(em);
 262		em = ERR_PTR(ret);
 263	}
 264	write_unlock(&em_tree->lock);
 265
 266out:
 267	return em;
 268}
 269
 270u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 271{
 272	return btrfs_crc32c(seed, data, len);
 273}
 274
 275void btrfs_csum_final(u32 crc, char *result)
 276{
 277	put_unaligned_le32(~crc, result);
 278}
 279
 280/*
 281 * compute the csum for a btree block, and either verify it or write it
 282 * into the csum field of the block.
 283 */
 284static int csum_tree_block(struct btrfs_fs_info *fs_info,
 285			   struct extent_buffer *buf,
 286			   int verify)
 287{
 288	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 289	char *result = NULL;
 290	unsigned long len;
 291	unsigned long cur_len;
 292	unsigned long offset = BTRFS_CSUM_SIZE;
 293	char *kaddr;
 294	unsigned long map_start;
 295	unsigned long map_len;
 296	int err;
 297	u32 crc = ~(u32)0;
 298	unsigned long inline_result;
 299
 300	len = buf->len - offset;
 301	while (len > 0) {
 302		err = map_private_extent_buffer(buf, offset, 32,
 303					&kaddr, &map_start, &map_len);
 304		if (err)
 305			return err;
 306		cur_len = min(len, map_len - (offset - map_start));
 307		crc = btrfs_csum_data(kaddr + offset - map_start,
 308				      crc, cur_len);
 309		len -= cur_len;
 310		offset += cur_len;
 311	}
 312	if (csum_size > sizeof(inline_result)) {
 313		result = kzalloc(csum_size, GFP_NOFS);
 314		if (!result)
 315			return -ENOMEM;
 316	} else {
 317		result = (char *)&inline_result;
 
 
 318	}
 319
 320	btrfs_csum_final(crc, result);
 
 321
 322	if (verify) {
 323		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 324			u32 val;
 325			u32 found = 0;
 326			memcpy(&found, result, csum_size);
 327
 328			read_extent_buffer(buf, &val, 0, csum_size);
 329			btrfs_warn_rl(fs_info,
 330				"%s checksum verify failed on %llu wanted %X found %X "
 331				"level %d",
 332				fs_info->sb->s_id, buf->start,
 333				val, found, btrfs_header_level(buf));
 334			if (result != (char *)&inline_result)
 335				kfree(result);
 336			return -EUCLEAN;
 337		}
 338	} else {
 339		write_extent_buffer(buf, result, 0, csum_size);
 340	}
 341	if (result != (char *)&inline_result)
 342		kfree(result);
 343	return 0;
 344}
 345
 346/*
 347 * we can't consider a given block up to date unless the transid of the
 348 * block matches the transid in the parent node's pointer.  This is how we
 349 * detect blocks that either didn't get written at all or got written
 350 * in the wrong place.
 351 */
 352static int verify_parent_transid(struct extent_io_tree *io_tree,
 353				 struct extent_buffer *eb, u64 parent_transid,
 354				 int atomic)
 355{
 356	struct extent_state *cached_state = NULL;
 357	int ret;
 358	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 359
 360	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 361		return 0;
 362
 363	if (atomic)
 364		return -EAGAIN;
 365
 366	if (need_lock) {
 367		btrfs_tree_read_lock(eb);
 368		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 
 
 
 
 
 369	}
 
 
 370
 371	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 372			 &cached_state);
 373	if (extent_buffer_uptodate(eb) &&
 374	    btrfs_header_generation(eb) == parent_transid) {
 375		ret = 0;
 376		goto out;
 
 
 
 
 377	}
 378	btrfs_err_rl(eb->fs_info,
 379		"parent transid verify failed on %llu wanted %llu found %llu",
 380			eb->start,
 381			parent_transid, btrfs_header_generation(eb));
 382	ret = 1;
 383
 384	/*
 385	 * Things reading via commit roots that don't have normal protection,
 386	 * like send, can have a really old block in cache that may point at a
 387	 * block that has been free'd and re-allocated.  So don't clear uptodate
 388	 * if we find an eb that is under IO (dirty/writeback) because we could
 389	 * end up reading in the stale data and then writing it back out and
 390	 * making everybody very sad.
 391	 */
 392	if (!extent_buffer_under_io(eb))
 393		clear_extent_buffer_uptodate(eb);
 394out:
 395	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 396			     &cached_state, GFP_NOFS);
 397	if (need_lock)
 398		btrfs_tree_read_unlock_blocking(eb);
 399	return ret;
 400}
 401
 402/*
 403 * Return 0 if the superblock checksum type matches the checksum value of that
 404 * algorithm. Pass the raw disk superblock data.
 405 */
 406static int btrfs_check_super_csum(char *raw_disk_sb)
 
 407{
 408	struct btrfs_super_block *disk_sb =
 409		(struct btrfs_super_block *)raw_disk_sb;
 410	u16 csum_type = btrfs_super_csum_type(disk_sb);
 411	int ret = 0;
 412
 413	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 414		u32 crc = ~(u32)0;
 415		const int csum_size = sizeof(crc);
 416		char result[csum_size];
 417
 418		/*
 419		 * The super_block structure does not span the whole
 420		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 421		 * is filled with zeros and is included in the checkum.
 422		 */
 423		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 424				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 425		btrfs_csum_final(crc, result);
 426
 427		if (memcmp(raw_disk_sb, result, csum_size))
 428			ret = 1;
 429	}
 
 
 
 
 
 
 
 
 
 
 
 430
 431	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 432		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
 433				csum_type);
 434		ret = 1;
 
 
 
 
 
 
 
 
 435	}
 436
 437	return ret;
 438}
 439
 440/*
 441 * helper to read a given tree block, doing retries as required when
 442 * the checksums don't match and we have alternate mirrors to try.
 
 
 
 443 */
 444static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 445					  struct extent_buffer *eb,
 446					  u64 start, u64 parent_transid)
 447{
 448	struct extent_io_tree *io_tree;
 449	int failed = 0;
 450	int ret;
 451	int num_copies = 0;
 452	int mirror_num = 0;
 453	int failed_mirror = 0;
 454
 455	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 456	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 457	while (1) {
 458		ret = read_extent_buffer_pages(io_tree, eb, start,
 459					       WAIT_COMPLETE,
 460					       btree_get_extent, mirror_num);
 461		if (!ret) {
 462			if (!verify_parent_transid(io_tree, eb,
 463						   parent_transid, 0))
 464				break;
 465			else
 466				ret = -EIO;
 467		}
 468
 469		/*
 470		 * This buffer's crc is fine, but its contents are corrupted, so
 471		 * there is no reason to read the other copies, they won't be
 472		 * any less wrong.
 473		 */
 474		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 475			break;
 476
 477		num_copies = btrfs_num_copies(root->fs_info,
 478					      eb->start, eb->len);
 479		if (num_copies == 1)
 480			break;
 481
 482		if (!failed_mirror) {
 483			failed = 1;
 484			failed_mirror = eb->read_mirror;
 485		}
 486
 487		mirror_num++;
 488		if (mirror_num == failed_mirror)
 489			mirror_num++;
 490
 491		if (mirror_num > num_copies)
 492			break;
 493	}
 494
 495	if (failed && !ret && failed_mirror)
 496		repair_eb_io_failure(root, eb, failed_mirror);
 497
 498	return ret;
 499}
 500
 501/*
 502 * checksum a dirty tree block before IO.  This has extra checks to make sure
 503 * we only fill in the checksum field in the first page of a multi-page block
 504 */
 505
 506static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 507{
 508	u64 start = page_offset(page);
 509	u64 found_start;
 510	struct extent_buffer *eb;
 511
 512	eb = (struct extent_buffer *)page->private;
 513	if (page != eb->pages[0])
 514		return 0;
 515
 516	found_start = btrfs_header_bytenr(eb);
 517	/*
 518	 * Please do not consolidate these warnings into a single if.
 519	 * It is useful to know what went wrong.
 520	 */
 521	if (WARN_ON(found_start != start))
 522		return -EUCLEAN;
 523	if (WARN_ON(!PageUptodate(page)))
 524		return -EUCLEAN;
 525
 526	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
 527			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528
 529	return csum_tree_block(fs_info, eb, 0);
 530}
 
 
 531
 532static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 533				 struct extent_buffer *eb)
 534{
 535	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 536	u8 fsid[BTRFS_UUID_SIZE];
 537	int ret = 1;
 538
 539	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 540	while (fs_devices) {
 541		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 542			ret = 0;
 543			break;
 544		}
 545		fs_devices = fs_devices->seed;
 
 
 
 
 546	}
 547	return ret;
 548}
 549
 550#define CORRUPT(reason, eb, root, slot)				\
 551	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
 552		   "root=%llu, slot=%d", reason,			\
 553	       btrfs_header_bytenr(eb),	root->objectid, slot)
 
 
 
 
 
 
 
 
 
 
 554
 555static noinline int check_leaf(struct btrfs_root *root,
 556			       struct extent_buffer *leaf)
 557{
 558	struct btrfs_key key;
 559	struct btrfs_key leaf_key;
 560	u32 nritems = btrfs_header_nritems(leaf);
 561	int slot;
 562
 563	if (nritems == 0)
 564		return 0;
 565
 566	/* Check the 0 item */
 567	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 568	    BTRFS_LEAF_DATA_SIZE(root)) {
 569		CORRUPT("invalid item offset size pair", leaf, root, 0);
 570		return -EIO;
 571	}
 572
 573	/*
 574	 * Check to make sure each items keys are in the correct order and their
 575	 * offsets make sense.  We only have to loop through nritems-1 because
 576	 * we check the current slot against the next slot, which verifies the
 577	 * next slot's offset+size makes sense and that the current's slot
 578	 * offset is correct.
 579	 */
 580	for (slot = 0; slot < nritems - 1; slot++) {
 581		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 582		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 583
 584		/* Make sure the keys are in the right order */
 585		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 586			CORRUPT("bad key order", leaf, root, slot);
 587			return -EIO;
 588		}
 589
 590		/*
 591		 * Make sure the offset and ends are right, remember that the
 592		 * item data starts at the end of the leaf and grows towards the
 593		 * front.
 594		 */
 595		if (btrfs_item_offset_nr(leaf, slot) !=
 596			btrfs_item_end_nr(leaf, slot + 1)) {
 597			CORRUPT("slot offset bad", leaf, root, slot);
 598			return -EIO;
 599		}
 600
 601		/*
 602		 * Check to make sure that we don't point outside of the leaf,
 603		 * just incase all the items are consistent to eachother, but
 604		 * all point outside of the leaf.
 605		 */
 606		if (btrfs_item_end_nr(leaf, slot) >
 607		    BTRFS_LEAF_DATA_SIZE(root)) {
 608			CORRUPT("slot end outside of leaf", leaf, root, slot);
 609			return -EIO;
 610		}
 611	}
 612
 613	return 0;
 614}
 615
 616static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 617				      u64 phy_offset, struct page *page,
 618				      u64 start, u64 end, int mirror)
 619{
 
 620	u64 found_start;
 621	int found_level;
 622	struct extent_buffer *eb;
 623	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 624	struct btrfs_fs_info *fs_info = root->fs_info;
 625	int ret = 0;
 626	int reads_done;
 627
 628	if (!page->private)
 629		goto out;
 630
 631	eb = (struct extent_buffer *)page->private;
 632
 633	/* the pending IO might have been the only thing that kept this buffer
 634	 * in memory.  Make sure we have a ref for all this other checks
 635	 */
 636	extent_buffer_get(eb);
 637
 638	reads_done = atomic_dec_and_test(&eb->io_pages);
 639	if (!reads_done)
 640		goto err;
 641
 642	eb->read_mirror = mirror;
 643	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 644		ret = -EIO;
 645		goto err;
 646	}
 647
 648	found_start = btrfs_header_bytenr(eb);
 649	if (found_start != eb->start) {
 650		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
 651			     found_start, eb->start);
 
 652		ret = -EIO;
 653		goto err;
 654	}
 655	if (check_tree_block_fsid(fs_info, eb)) {
 656		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 657			     eb->start);
 658		ret = -EIO;
 659		goto err;
 660	}
 661	found_level = btrfs_header_level(eb);
 662	if (found_level >= BTRFS_MAX_LEVEL) {
 663		btrfs_err(fs_info, "bad tree block level %d",
 664			  (int)btrfs_header_level(eb));
 
 665		ret = -EIO;
 666		goto err;
 667	}
 668
 669	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 670				       eb, found_level);
 671
 672	ret = csum_tree_block(fs_info, eb, 1);
 673	if (ret)
 674		goto err;
 
 
 
 
 
 
 
 
 675
 676	/*
 677	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 678	 * that we don't try and read the other copies of this block, just
 679	 * return -EIO.
 680	 */
 681	if (found_level == 0 && check_leaf(root, eb)) {
 682		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 683		ret = -EIO;
 
 684	}
 685
 686	if (!ret)
 687		set_extent_buffer_uptodate(eb);
 688err:
 689	if (reads_done &&
 690	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 691		btree_readahead_hook(fs_info, eb, eb->start, ret);
 692
 693	if (ret) {
 694		/*
 695		 * our io error hook is going to dec the io pages
 696		 * again, we have to make sure it has something
 697		 * to decrement
 698		 */
 699		atomic_inc(&eb->io_pages);
 700		clear_extent_buffer_uptodate(eb);
 701	}
 702	free_extent_buffer(eb);
 703out:
 704	return ret;
 705}
 706
 707static int btree_io_failed_hook(struct page *page, int failed_mirror)
 708{
 709	struct extent_buffer *eb;
 710
 711	eb = (struct extent_buffer *)page->private;
 712	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 713	eb->read_mirror = failed_mirror;
 714	atomic_dec(&eb->io_pages);
 715	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 716		btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
 717	return -EIO;	/* we fixed nothing */
 718}
 719
 720static void end_workqueue_bio(struct bio *bio)
 721{
 722	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 723	struct btrfs_fs_info *fs_info;
 724	struct btrfs_workqueue *wq;
 725	btrfs_work_func_t func;
 726
 727	fs_info = end_io_wq->info;
 728	end_io_wq->error = bio->bi_error;
 729
 730	if (bio->bi_rw & REQ_WRITE) {
 731		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 732			wq = fs_info->endio_meta_write_workers;
 733			func = btrfs_endio_meta_write_helper;
 734		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 735			wq = fs_info->endio_freespace_worker;
 736			func = btrfs_freespace_write_helper;
 737		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 738			wq = fs_info->endio_raid56_workers;
 739			func = btrfs_endio_raid56_helper;
 740		} else {
 741			wq = fs_info->endio_write_workers;
 742			func = btrfs_endio_write_helper;
 743		}
 744	} else {
 745		if (unlikely(end_io_wq->metadata ==
 746			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 747			wq = fs_info->endio_repair_workers;
 748			func = btrfs_endio_repair_helper;
 749		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 750			wq = fs_info->endio_raid56_workers;
 751			func = btrfs_endio_raid56_helper;
 752		} else if (end_io_wq->metadata) {
 753			wq = fs_info->endio_meta_workers;
 754			func = btrfs_endio_meta_helper;
 755		} else {
 756			wq = fs_info->endio_workers;
 757			func = btrfs_endio_helper;
 758		}
 759	}
 760
 761	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 762	btrfs_queue_work(wq, &end_io_wq->work);
 763}
 764
 765int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 766			enum btrfs_wq_endio_type metadata)
 767{
 768	struct btrfs_end_io_wq *end_io_wq;
 769
 770	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 771	if (!end_io_wq)
 772		return -ENOMEM;
 773
 774	end_io_wq->private = bio->bi_private;
 775	end_io_wq->end_io = bio->bi_end_io;
 776	end_io_wq->info = info;
 777	end_io_wq->error = 0;
 778	end_io_wq->bio = bio;
 779	end_io_wq->metadata = metadata;
 780
 781	bio->bi_private = end_io_wq;
 782	bio->bi_end_io = end_workqueue_bio;
 783	return 0;
 784}
 785
 786unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 787{
 788	unsigned long limit = min_t(unsigned long,
 789				    info->thread_pool_size,
 790				    info->fs_devices->open_devices);
 791	return 256 * limit;
 792}
 793
 794static void run_one_async_start(struct btrfs_work *work)
 795{
 796	struct async_submit_bio *async;
 797	int ret;
 798
 799	async = container_of(work, struct  async_submit_bio, work);
 800	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 801				      async->mirror_num, async->bio_flags,
 802				      async->bio_offset);
 803	if (ret)
 804		async->error = ret;
 805}
 806
 807static void run_one_async_done(struct btrfs_work *work)
 808{
 809	struct btrfs_fs_info *fs_info;
 810	struct async_submit_bio *async;
 811	int limit;
 812
 813	async = container_of(work, struct  async_submit_bio, work);
 814	fs_info = BTRFS_I(async->inode)->root->fs_info;
 815
 816	limit = btrfs_async_submit_limit(fs_info);
 817	limit = limit * 2 / 3;
 818
 819	/*
 820	 * atomic_dec_return implies a barrier for waitqueue_active
 821	 */
 822	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 823	    waitqueue_active(&fs_info->async_submit_wait))
 824		wake_up(&fs_info->async_submit_wait);
 825
 826	/* If an error occurred we just want to clean up the bio and move on */
 827	if (async->error) {
 828		async->bio->bi_error = async->error;
 829		bio_endio(async->bio);
 830		return;
 831	}
 832
 833	async->submit_bio_done(async->inode, async->rw, async->bio,
 834			       async->mirror_num, async->bio_flags,
 835			       async->bio_offset);
 836}
 837
 838static void run_one_async_free(struct btrfs_work *work)
 839{
 840	struct async_submit_bio *async;
 841
 842	async = container_of(work, struct  async_submit_bio, work);
 843	kfree(async);
 844}
 845
 846int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 847			int rw, struct bio *bio, int mirror_num,
 848			unsigned long bio_flags,
 849			u64 bio_offset,
 850			extent_submit_bio_hook_t *submit_bio_start,
 851			extent_submit_bio_hook_t *submit_bio_done)
 852{
 853	struct async_submit_bio *async;
 854
 855	async = kmalloc(sizeof(*async), GFP_NOFS);
 856	if (!async)
 857		return -ENOMEM;
 858
 859	async->inode = inode;
 860	async->rw = rw;
 861	async->bio = bio;
 862	async->mirror_num = mirror_num;
 863	async->submit_bio_start = submit_bio_start;
 864	async->submit_bio_done = submit_bio_done;
 865
 866	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 867			run_one_async_done, run_one_async_free);
 868
 869	async->bio_flags = bio_flags;
 870	async->bio_offset = bio_offset;
 871
 872	async->error = 0;
 873
 874	atomic_inc(&fs_info->nr_async_submits);
 875
 876	if (rw & REQ_SYNC)
 877		btrfs_set_work_high_priority(&async->work);
 878
 879	btrfs_queue_work(fs_info->workers, &async->work);
 880
 881	while (atomic_read(&fs_info->async_submit_draining) &&
 882	      atomic_read(&fs_info->nr_async_submits)) {
 883		wait_event(fs_info->async_submit_wait,
 884			   (atomic_read(&fs_info->nr_async_submits) == 0));
 885	}
 886
 887	return 0;
 888}
 889
 890static int btree_csum_one_bio(struct bio *bio)
 891{
 892	struct bio_vec *bvec;
 893	struct btrfs_root *root;
 894	int i, ret = 0;
 895
 896	bio_for_each_segment_all(bvec, bio, i) {
 897		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 898		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 899		if (ret)
 900			break;
 901	}
 902
 903	return ret;
 904}
 905
 906static int __btree_submit_bio_start(struct inode *inode, int rw,
 907				    struct bio *bio, int mirror_num,
 908				    unsigned long bio_flags,
 909				    u64 bio_offset)
 910{
 911	/*
 912	 * when we're called for a write, we're already in the async
 913	 * submission context.  Just jump into btrfs_map_bio
 914	 */
 915	return btree_csum_one_bio(bio);
 916}
 917
 918static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 919				 int mirror_num, unsigned long bio_flags,
 920				 u64 bio_offset)
 921{
 922	int ret;
 923
 924	/*
 925	 * when we're called for a write, we're already in the async
 926	 * submission context.  Just jump into btrfs_map_bio
 927	 */
 928	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 929	if (ret) {
 930		bio->bi_error = ret;
 931		bio_endio(bio);
 932	}
 933	return ret;
 934}
 935
 936static int check_async_write(struct inode *inode, unsigned long bio_flags)
 937{
 938	if (bio_flags & EXTENT_BIO_TREE_LOG)
 939		return 0;
 940#ifdef CONFIG_X86
 941	if (static_cpu_has(X86_FEATURE_XMM4_2))
 942		return 0;
 943#endif
 944	return 1;
 945}
 946
 947static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 948				 int mirror_num, unsigned long bio_flags,
 949				 u64 bio_offset)
 950{
 951	int async = check_async_write(inode, bio_flags);
 952	int ret;
 953
 954	if (!(rw & REQ_WRITE)) {
 955		/*
 956		 * called for a read, do the setup so that checksum validation
 957		 * can happen in the async kernel threads
 958		 */
 959		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 960					  bio, BTRFS_WQ_ENDIO_METADATA);
 961		if (ret)
 962			goto out_w_error;
 963		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 964				    mirror_num, 0);
 965	} else if (!async) {
 966		ret = btree_csum_one_bio(bio);
 967		if (ret)
 968			goto out_w_error;
 969		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 970				    mirror_num, 0);
 971	} else {
 972		/*
 973		 * kthread helpers are used to submit writes so that
 974		 * checksumming can happen in parallel across all CPUs
 975		 */
 976		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 977					  inode, rw, bio, mirror_num, 0,
 978					  bio_offset,
 979					  __btree_submit_bio_start,
 980					  __btree_submit_bio_done);
 981	}
 982
 983	if (ret)
 984		goto out_w_error;
 985	return 0;
 986
 987out_w_error:
 988	bio->bi_error = ret;
 989	bio_endio(bio);
 990	return ret;
 991}
 992
 993#ifdef CONFIG_MIGRATION
 994static int btree_migratepage(struct address_space *mapping,
 995			struct page *newpage, struct page *page,
 996			enum migrate_mode mode)
 997{
 998	/*
 999	 * we can't safely write a btree page from here,
1000	 * we haven't done the locking hook
1001	 */
1002	if (PageDirty(page))
1003		return -EAGAIN;
1004	/*
1005	 * Buffers may be managed in a filesystem specific way.
1006	 * We must have no buffers or drop them.
1007	 */
1008	if (page_has_private(page) &&
1009	    !try_to_release_page(page, GFP_KERNEL))
1010		return -EAGAIN;
1011	return migrate_page(mapping, newpage, page, mode);
1012}
 
 
1013#endif
1014
1015
1016static int btree_writepages(struct address_space *mapping,
1017			    struct writeback_control *wbc)
1018{
1019	struct btrfs_fs_info *fs_info;
1020	int ret;
1021
1022	if (wbc->sync_mode == WB_SYNC_NONE) {
 
1023
1024		if (wbc->for_kupdate)
1025			return 0;
1026
1027		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1028		/* this is a bit racy, but that's ok */
1029		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1030					     BTRFS_DIRTY_METADATA_THRESH);
 
1031		if (ret < 0)
1032			return 0;
1033	}
1034	return btree_write_cache_pages(mapping, wbc);
1035}
1036
1037static int btree_readpage(struct file *file, struct page *page)
1038{
1039	struct extent_io_tree *tree;
1040	tree = &BTRFS_I(page->mapping->host)->io_tree;
1041	return extent_read_full_page(tree, page, btree_get_extent, 0);
1042}
1043
1044static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1045{
1046	if (PageWriteback(page) || PageDirty(page))
1047		return 0;
1048
1049	return try_release_extent_buffer(page);
1050}
1051
1052static void btree_invalidatepage(struct page *page, unsigned int offset,
1053				 unsigned int length)
1054{
1055	struct extent_io_tree *tree;
1056	tree = &BTRFS_I(page->mapping->host)->io_tree;
1057	extent_invalidatepage(tree, page, offset);
1058	btree_releasepage(page, GFP_NOFS);
1059	if (PagePrivate(page)) {
1060		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1061			   "page private not zero on page %llu",
1062			   (unsigned long long)page_offset(page));
1063		ClearPagePrivate(page);
1064		set_page_private(page, 0);
1065		put_page(page);
1066	}
1067}
1068
1069static int btree_set_page_dirty(struct page *page)
1070{
1071#ifdef DEBUG
 
 
 
 
 
 
1072	struct extent_buffer *eb;
 
 
1073
1074	BUG_ON(!PagePrivate(page));
1075	eb = (struct extent_buffer *)page->private;
1076	BUG_ON(!eb);
1077	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1078	BUG_ON(!atomic_read(&eb->refs));
1079	btrfs_assert_tree_locked(eb);
1080#endif
1081	return __set_page_dirty_nobuffers(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082}
 
 
 
1083
1084static const struct address_space_operations btree_aops = {
1085	.readpage	= btree_readpage,
1086	.writepages	= btree_writepages,
1087	.releasepage	= btree_releasepage,
1088	.invalidatepage = btree_invalidatepage,
1089#ifdef CONFIG_MIGRATION
1090	.migratepage	= btree_migratepage,
1091#endif
1092	.set_page_dirty = btree_set_page_dirty,
1093};
1094
1095void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1096{
1097	struct extent_buffer *buf = NULL;
1098	struct inode *btree_inode = root->fs_info->btree_inode;
1099
1100	buf = btrfs_find_create_tree_block(root, bytenr);
1101	if (!buf)
1102		return;
1103	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1104				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1105	free_extent_buffer(buf);
1106}
1107
1108int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1109			 int mirror_num, struct extent_buffer **eb)
 
 
 
 
 
 
 
1110{
1111	struct extent_buffer *buf = NULL;
1112	struct inode *btree_inode = root->fs_info->btree_inode;
1113	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1114	int ret;
1115
1116	buf = btrfs_find_create_tree_block(root, bytenr);
1117	if (!buf)
1118		return 0;
1119
1120	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
 
 
 
1121
1122	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1123				       btree_get_extent, mirror_num);
1124	if (ret) {
1125		free_extent_buffer(buf);
1126		return ret;
1127	}
1128
1129	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1130		free_extent_buffer(buf);
1131		return -EIO;
1132	} else if (extent_buffer_uptodate(buf)) {
1133		*eb = buf;
1134	} else {
1135		free_extent_buffer(buf);
1136	}
1137	return 0;
1138}
1139
1140struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1141					    u64 bytenr)
1142{
1143	return find_extent_buffer(fs_info, bytenr);
1144}
1145
1146struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1147						 u64 bytenr)
1148{
1149	if (btrfs_test_is_dummy_root(root))
1150		return alloc_test_extent_buffer(root->fs_info, bytenr);
1151	return alloc_extent_buffer(root->fs_info, bytenr);
1152}
1153
1154
1155int btrfs_write_tree_block(struct extent_buffer *buf)
1156{
1157	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1158					buf->start + buf->len - 1);
1159}
1160
1161int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1162{
1163	return filemap_fdatawait_range(buf->pages[0]->mapping,
1164				       buf->start, buf->start + buf->len - 1);
1165}
1166
1167struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1168				      u64 parent_transid)
1169{
1170	struct extent_buffer *buf = NULL;
1171	int ret;
1172
1173	buf = btrfs_find_create_tree_block(root, bytenr);
1174	if (!buf)
1175		return ERR_PTR(-ENOMEM);
1176
1177	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1178	if (ret) {
1179		free_extent_buffer(buf);
1180		return ERR_PTR(ret);
1181	}
1182	return buf;
1183
1184}
1185
1186void clean_tree_block(struct btrfs_trans_handle *trans,
1187		      struct btrfs_fs_info *fs_info,
1188		      struct extent_buffer *buf)
1189{
1190	if (btrfs_header_generation(buf) ==
1191	    fs_info->running_transaction->transid) {
1192		btrfs_assert_tree_locked(buf);
1193
1194		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1195			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1196					     -buf->len,
1197					     fs_info->dirty_metadata_batch);
1198			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1199			btrfs_set_lock_blocking(buf);
1200			clear_extent_buffer_dirty(buf);
1201		}
1202	}
1203}
1204
1205static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1206{
1207	struct btrfs_subvolume_writers *writers;
1208	int ret;
1209
1210	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1211	if (!writers)
1212		return ERR_PTR(-ENOMEM);
1213
1214	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1215	if (ret < 0) {
1216		kfree(writers);
1217		return ERR_PTR(ret);
1218	}
1219
1220	init_waitqueue_head(&writers->wait);
1221	return writers;
1222}
1223
1224static void
1225btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1226{
1227	percpu_counter_destroy(&writers->counter);
1228	kfree(writers);
1229}
1230
1231static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1232			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1233			 u64 objectid)
1234{
 
 
 
 
 
 
 
1235	root->node = NULL;
1236	root->commit_root = NULL;
1237	root->sectorsize = sectorsize;
1238	root->nodesize = nodesize;
1239	root->stripesize = stripesize;
1240	root->state = 0;
1241	root->orphan_cleanup_state = 0;
1242
1243	root->objectid = objectid;
1244	root->last_trans = 0;
1245	root->highest_objectid = 0;
1246	root->nr_delalloc_inodes = 0;
1247	root->nr_ordered_extents = 0;
1248	root->name = NULL;
1249	root->inode_tree = RB_ROOT;
1250	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1251	root->block_rsv = NULL;
1252	root->orphan_block_rsv = NULL;
 
1253
1254	INIT_LIST_HEAD(&root->dirty_list);
1255	INIT_LIST_HEAD(&root->root_list);
1256	INIT_LIST_HEAD(&root->delalloc_inodes);
1257	INIT_LIST_HEAD(&root->delalloc_root);
1258	INIT_LIST_HEAD(&root->ordered_extents);
1259	INIT_LIST_HEAD(&root->ordered_root);
1260	INIT_LIST_HEAD(&root->logged_list[0]);
1261	INIT_LIST_HEAD(&root->logged_list[1]);
1262	spin_lock_init(&root->orphan_lock);
1263	spin_lock_init(&root->inode_lock);
1264	spin_lock_init(&root->delalloc_lock);
1265	spin_lock_init(&root->ordered_extent_lock);
1266	spin_lock_init(&root->accounting_lock);
1267	spin_lock_init(&root->log_extents_lock[0]);
1268	spin_lock_init(&root->log_extents_lock[1]);
1269	mutex_init(&root->objectid_mutex);
1270	mutex_init(&root->log_mutex);
1271	mutex_init(&root->ordered_extent_mutex);
1272	mutex_init(&root->delalloc_mutex);
 
1273	init_waitqueue_head(&root->log_writer_wait);
1274	init_waitqueue_head(&root->log_commit_wait[0]);
1275	init_waitqueue_head(&root->log_commit_wait[1]);
1276	INIT_LIST_HEAD(&root->log_ctxs[0]);
1277	INIT_LIST_HEAD(&root->log_ctxs[1]);
1278	atomic_set(&root->log_commit[0], 0);
1279	atomic_set(&root->log_commit[1], 0);
1280	atomic_set(&root->log_writers, 0);
1281	atomic_set(&root->log_batch, 0);
1282	atomic_set(&root->orphan_inodes, 0);
1283	atomic_set(&root->refs, 1);
1284	atomic_set(&root->will_be_snapshoted, 0);
1285	atomic_set(&root->qgroup_meta_rsv, 0);
1286	root->log_transid = 0;
1287	root->log_transid_committed = -1;
1288	root->last_log_commit = 0;
1289	if (fs_info)
1290		extent_io_tree_init(&root->dirty_log_pages,
1291				     fs_info->btree_inode->i_mapping);
1292
1293	memset(&root->root_key, 0, sizeof(root->root_key));
1294	memset(&root->root_item, 0, sizeof(root->root_item));
1295	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1296	if (fs_info)
1297		root->defrag_trans_start = fs_info->generation;
1298	else
1299		root->defrag_trans_start = 0;
1300	root->root_key.objectid = objectid;
1301	root->anon_dev = 0;
 
 
 
 
 
 
1302
1303	spin_lock_init(&root->root_item_lock);
 
 
 
 
 
 
 
1304}
1305
1306static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1307		gfp_t flags)
1308{
1309	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1310	if (root)
1311		root->fs_info = fs_info;
1312	return root;
1313}
1314
1315#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1316/* Should only be used by the testing infrastructure */
1317struct btrfs_root *btrfs_alloc_dummy_root(void)
1318{
1319	struct btrfs_root *root;
1320
1321	root = btrfs_alloc_root(NULL, GFP_KERNEL);
 
 
 
1322	if (!root)
1323		return ERR_PTR(-ENOMEM);
1324	__setup_root(4096, 4096, 4096, root, NULL, 1);
1325	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1326	root->alloc_bytenr = 0;
1327
1328	return root;
1329}
1330#endif
1331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1332struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1333				     struct btrfs_fs_info *fs_info,
1334				     u64 objectid)
1335{
 
1336	struct extent_buffer *leaf;
1337	struct btrfs_root *tree_root = fs_info->tree_root;
1338	struct btrfs_root *root;
1339	struct btrfs_key key;
 
1340	int ret = 0;
1341	uuid_le uuid;
1342
1343	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
 
 
 
 
 
1344	if (!root)
1345		return ERR_PTR(-ENOMEM);
1346
1347	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1348		tree_root->stripesize, root, fs_info, objectid);
1349	root->root_key.objectid = objectid;
1350	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1351	root->root_key.offset = 0;
1352
1353	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
 
1354	if (IS_ERR(leaf)) {
1355		ret = PTR_ERR(leaf);
1356		leaf = NULL;
1357		goto fail;
1358	}
1359
1360	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1361	btrfs_set_header_bytenr(leaf, leaf->start);
1362	btrfs_set_header_generation(leaf, trans->transid);
1363	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1364	btrfs_set_header_owner(leaf, objectid);
1365	root->node = leaf;
1366
1367	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1368			    BTRFS_FSID_SIZE);
1369	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1370			    btrfs_header_chunk_tree_uuid(leaf),
1371			    BTRFS_UUID_SIZE);
1372	btrfs_mark_buffer_dirty(leaf);
1373
1374	root->commit_root = btrfs_root_node(root);
1375	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1376
1377	root->root_item.flags = 0;
1378	root->root_item.byte_limit = 0;
1379	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1380	btrfs_set_root_generation(&root->root_item, trans->transid);
1381	btrfs_set_root_level(&root->root_item, 0);
1382	btrfs_set_root_refs(&root->root_item, 1);
1383	btrfs_set_root_used(&root->root_item, leaf->len);
1384	btrfs_set_root_last_snapshot(&root->root_item, 0);
1385	btrfs_set_root_dirid(&root->root_item, 0);
1386	uuid_le_gen(&uuid);
1387	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1388	root->root_item.drop_level = 0;
 
 
 
 
1389
1390	key.objectid = objectid;
1391	key.type = BTRFS_ROOT_ITEM_KEY;
1392	key.offset = 0;
1393	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1394	if (ret)
1395		goto fail;
1396
1397	btrfs_tree_unlock(leaf);
1398
1399	return root;
1400
1401fail:
1402	if (leaf) {
1403		btrfs_tree_unlock(leaf);
1404		free_extent_buffer(root->commit_root);
1405		free_extent_buffer(leaf);
1406	}
1407	kfree(root);
1408
1409	return ERR_PTR(ret);
1410}
1411
1412static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1413					 struct btrfs_fs_info *fs_info)
1414{
1415	struct btrfs_root *root;
1416	struct btrfs_root *tree_root = fs_info->tree_root;
1417	struct extent_buffer *leaf;
1418
1419	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1420	if (!root)
1421		return ERR_PTR(-ENOMEM);
1422
1423	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1424		     tree_root->stripesize, root, fs_info,
1425		     BTRFS_TREE_LOG_OBJECTID);
1426
1427	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1428	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1429	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1430
 
 
 
 
 
 
 
 
1431	/*
1432	 * DON'T set REF_COWS for log trees
 
 
 
1433	 *
1434	 * log trees do not get reference counted because they go away
1435	 * before a real commit is actually done.  They do store pointers
1436	 * to file data extents, and those reference counts still get
1437	 * updated (along with back refs to the log tree).
1438	 */
1439
1440	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1441			NULL, 0, 0, 0);
1442	if (IS_ERR(leaf)) {
1443		kfree(root);
1444		return ERR_CAST(leaf);
1445	}
1446
1447	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1448	btrfs_set_header_bytenr(leaf, leaf->start);
1449	btrfs_set_header_generation(leaf, trans->transid);
1450	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1451	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1452	root->node = leaf;
1453
1454	write_extent_buffer(root->node, root->fs_info->fsid,
1455			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1456	btrfs_mark_buffer_dirty(root->node);
1457	btrfs_tree_unlock(root->node);
1458	return root;
 
1459}
1460
1461int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1462			     struct btrfs_fs_info *fs_info)
1463{
1464	struct btrfs_root *log_root;
1465
1466	log_root = alloc_log_tree(trans, fs_info);
1467	if (IS_ERR(log_root))
1468		return PTR_ERR(log_root);
 
 
 
 
 
 
 
 
 
 
1469	WARN_ON(fs_info->log_root_tree);
1470	fs_info->log_root_tree = log_root;
1471	return 0;
1472}
1473
1474int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1475		       struct btrfs_root *root)
1476{
 
1477	struct btrfs_root *log_root;
1478	struct btrfs_inode_item *inode_item;
 
1479
1480	log_root = alloc_log_tree(trans, root->fs_info);
1481	if (IS_ERR(log_root))
1482		return PTR_ERR(log_root);
1483
 
 
 
 
 
 
1484	log_root->last_trans = trans->transid;
1485	log_root->root_key.offset = root->root_key.objectid;
1486
1487	inode_item = &log_root->root_item.inode;
1488	btrfs_set_stack_inode_generation(inode_item, 1);
1489	btrfs_set_stack_inode_size(inode_item, 3);
1490	btrfs_set_stack_inode_nlink(inode_item, 1);
1491	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
 
1492	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1493
1494	btrfs_set_root_node(&log_root->root_item, log_root->node);
1495
1496	WARN_ON(root->log_root);
1497	root->log_root = log_root;
1498	root->log_transid = 0;
1499	root->log_transid_committed = -1;
1500	root->last_log_commit = 0;
1501	return 0;
1502}
1503
1504static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1505					       struct btrfs_key *key)
 
1506{
1507	struct btrfs_root *root;
 
1508	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1509	struct btrfs_path *path;
1510	u64 generation;
1511	int ret;
 
1512
1513	path = btrfs_alloc_path();
1514	if (!path)
1515		return ERR_PTR(-ENOMEM);
1516
1517	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1518	if (!root) {
1519		ret = -ENOMEM;
1520		goto alloc_fail;
1521	}
1522
1523	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1524		tree_root->stripesize, root, fs_info, key->objectid);
1525
1526	ret = btrfs_find_root(tree_root, key, path,
1527			      &root->root_item, &root->root_key);
1528	if (ret) {
1529		if (ret > 0)
1530			ret = -ENOENT;
1531		goto find_fail;
1532	}
1533
1534	generation = btrfs_root_generation(&root->root_item);
1535	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1536				     generation);
 
 
 
 
1537	if (IS_ERR(root->node)) {
1538		ret = PTR_ERR(root->node);
1539		goto find_fail;
1540	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
 
 
1541		ret = -EIO;
1542		free_extent_buffer(root->node);
1543		goto find_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544	}
1545	root->commit_root = btrfs_root_node(root);
1546out:
1547	btrfs_free_path(path);
1548	return root;
1549
1550find_fail:
1551	kfree(root);
1552alloc_fail:
1553	root = ERR_PTR(ret);
1554	goto out;
1555}
1556
1557struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1558				      struct btrfs_key *location)
1559{
1560	struct btrfs_root *root;
 
1561
1562	root = btrfs_read_tree_root(tree_root, location);
1563	if (IS_ERR(root))
1564		return root;
1565
1566	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1567		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1568		btrfs_check_and_init_root_item(&root->root_item);
1569	}
1570
1571	return root;
1572}
1573
1574int btrfs_init_fs_root(struct btrfs_root *root)
 
 
 
 
 
1575{
1576	int ret;
1577	struct btrfs_subvolume_writers *writers;
1578
1579	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1580	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1581					GFP_NOFS);
1582	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1583		ret = -ENOMEM;
1584		goto fail;
1585	}
1586
1587	writers = btrfs_alloc_subvolume_writers();
1588	if (IS_ERR(writers)) {
1589		ret = PTR_ERR(writers);
1590		goto fail;
 
1591	}
1592	root->subv_writers = writers;
1593
1594	btrfs_init_free_ino_ctl(root);
1595	spin_lock_init(&root->ino_cache_lock);
1596	init_waitqueue_head(&root->ino_cache_wait);
1597
1598	ret = get_anon_bdev(&root->anon_dev);
1599	if (ret)
1600		goto free_writers;
 
 
 
 
 
 
 
 
 
 
 
1601
1602	mutex_lock(&root->objectid_mutex);
1603	ret = btrfs_find_highest_objectid(root,
1604					&root->highest_objectid);
1605	if (ret) {
1606		mutex_unlock(&root->objectid_mutex);
1607		goto free_root_dev;
1608	}
1609
1610	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1611
1612	mutex_unlock(&root->objectid_mutex);
1613
1614	return 0;
1615
1616free_root_dev:
1617	free_anon_bdev(root->anon_dev);
1618free_writers:
1619	btrfs_free_subvolume_writers(root->subv_writers);
1620fail:
1621	kfree(root->free_ino_ctl);
1622	kfree(root->free_ino_pinned);
1623	return ret;
1624}
1625
1626static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1627					       u64 root_id)
1628{
1629	struct btrfs_root *root;
1630
1631	spin_lock(&fs_info->fs_roots_radix_lock);
1632	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1633				 (unsigned long)root_id);
 
1634	spin_unlock(&fs_info->fs_roots_radix_lock);
1635	return root;
1636}
1637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1639			 struct btrfs_root *root)
1640{
1641	int ret;
1642
1643	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1644	if (ret)
1645		return ret;
1646
1647	spin_lock(&fs_info->fs_roots_radix_lock);
1648	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1649				(unsigned long)root->root_key.objectid,
1650				root);
1651	if (ret == 0)
 
1652		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
 
1653	spin_unlock(&fs_info->fs_roots_radix_lock);
1654	radix_tree_preload_end();
1655
1656	return ret;
1657}
1658
1659struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1660				     struct btrfs_key *location,
1661				     bool check_ref)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662{
1663	struct btrfs_root *root;
1664	struct btrfs_path *path;
1665	struct btrfs_key key;
1666	int ret;
1667
1668	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1669		return fs_info->tree_root;
1670	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1671		return fs_info->extent_root;
1672	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1673		return fs_info->chunk_root;
1674	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1675		return fs_info->dev_root;
1676	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1677		return fs_info->csum_root;
1678	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1679		return fs_info->quota_root ? fs_info->quota_root :
1680					     ERR_PTR(-ENOENT);
1681	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1682		return fs_info->uuid_root ? fs_info->uuid_root :
1683					    ERR_PTR(-ENOENT);
1684	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1685		return fs_info->free_space_root ? fs_info->free_space_root :
1686						  ERR_PTR(-ENOENT);
1687again:
1688	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1689	if (root) {
1690		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
 
 
 
 
 
 
 
 
 
 
 
 
1691			return ERR_PTR(-ENOENT);
 
1692		return root;
1693	}
1694
1695	root = btrfs_read_fs_root(fs_info->tree_root, location);
 
 
 
1696	if (IS_ERR(root))
1697		return root;
1698
1699	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1700		ret = -ENOENT;
1701		goto fail;
1702	}
1703
1704	ret = btrfs_init_fs_root(root);
1705	if (ret)
1706		goto fail;
1707
1708	path = btrfs_alloc_path();
1709	if (!path) {
1710		ret = -ENOMEM;
1711		goto fail;
1712	}
1713	key.objectid = BTRFS_ORPHAN_OBJECTID;
1714	key.type = BTRFS_ORPHAN_ITEM_KEY;
1715	key.offset = location->objectid;
1716
1717	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1718	btrfs_free_path(path);
1719	if (ret < 0)
1720		goto fail;
1721	if (ret == 0)
1722		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1723
1724	ret = btrfs_insert_fs_root(fs_info, root);
1725	if (ret) {
1726		if (ret == -EEXIST) {
1727			free_fs_root(root);
1728			goto again;
1729		}
1730		goto fail;
1731	}
1732	return root;
1733fail:
1734	free_fs_root(root);
 
 
 
 
 
 
 
 
1735	return ERR_PTR(ret);
1736}
1737
1738static int btrfs_congested_fn(void *congested_data, int bdi_bits)
 
 
 
 
 
 
 
 
1739{
1740	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1741	int ret = 0;
1742	struct btrfs_device *device;
1743	struct backing_dev_info *bdi;
1744
1745	rcu_read_lock();
1746	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1747		if (!device->bdev)
1748			continue;
1749		bdi = blk_get_backing_dev_info(device->bdev);
1750		if (bdi_congested(bdi, bdi_bits)) {
1751			ret = 1;
1752			break;
1753		}
1754	}
1755	rcu_read_unlock();
1756	return ret;
1757}
1758
1759static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
 
 
 
 
 
 
 
 
 
1760{
1761	int err;
1762
1763	err = bdi_setup_and_register(bdi, "btrfs");
1764	if (err)
1765		return err;
1766
1767	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1768	bdi->congested_fn	= btrfs_congested_fn;
1769	bdi->congested_data	= info;
1770	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1771	return 0;
1772}
1773
1774/*
1775 * called by the kthread helper functions to finally call the bio end_io
1776 * functions.  This is where read checksum verification actually happens
 
 
 
 
 
 
 
 
 
 
 
1777 */
1778static void end_workqueue_fn(struct btrfs_work *work)
 
 
1779{
1780	struct bio *bio;
1781	struct btrfs_end_io_wq *end_io_wq;
 
 
1782
1783	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1784	bio = end_io_wq->bio;
 
 
 
 
 
 
 
1785
1786	bio->bi_error = end_io_wq->error;
1787	bio->bi_private = end_io_wq->private;
1788	bio->bi_end_io = end_io_wq->end_io;
1789	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1790	bio_endio(bio);
 
 
 
 
 
 
1791}
1792
1793static int cleaner_kthread(void *arg)
1794{
1795	struct btrfs_root *root = arg;
1796	int again;
1797	struct btrfs_trans_handle *trans;
1798
1799	do {
1800		again = 0;
1801
 
 
1802		/* Make the cleaner go to sleep early. */
1803		if (btrfs_need_cleaner_sleep(root))
1804			goto sleep;
1805
1806		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
 
 
 
 
 
 
 
1807			goto sleep;
1808
1809		/*
1810		 * Avoid the problem that we change the status of the fs
1811		 * during the above check and trylock.
1812		 */
1813		if (btrfs_need_cleaner_sleep(root)) {
1814			mutex_unlock(&root->fs_info->cleaner_mutex);
1815			goto sleep;
1816		}
1817
1818		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1819		btrfs_run_delayed_iputs(root);
1820		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
 
1821
1822		again = btrfs_clean_one_deleted_snapshot(root);
1823		mutex_unlock(&root->fs_info->cleaner_mutex);
1824
1825		/*
1826		 * The defragger has dealt with the R/O remount and umount,
1827		 * needn't do anything special here.
1828		 */
1829		btrfs_run_defrag_inodes(root->fs_info);
1830
1831		/*
1832		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1833		 * with relocation (btrfs_relocate_chunk) and relocation
1834		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1835		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1836		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1837		 * unused block groups.
1838		 */
1839		btrfs_delete_unused_bgs(root->fs_info);
 
 
 
 
 
 
 
1840sleep:
 
 
 
 
 
1841		if (!again) {
1842			set_current_state(TASK_INTERRUPTIBLE);
1843			if (!kthread_should_stop())
1844				schedule();
1845			__set_current_state(TASK_RUNNING);
1846		}
1847	} while (!kthread_should_stop());
1848
1849	/*
1850	 * Transaction kthread is stopped before us and wakes us up.
1851	 * However we might have started a new transaction and COWed some
1852	 * tree blocks when deleting unused block groups for example. So
1853	 * make sure we commit the transaction we started to have a clean
1854	 * shutdown when evicting the btree inode - if it has dirty pages
1855	 * when we do the final iput() on it, eviction will trigger a
1856	 * writeback for it which will fail with null pointer dereferences
1857	 * since work queues and other resources were already released and
1858	 * destroyed by the time the iput/eviction/writeback is made.
1859	 */
1860	trans = btrfs_attach_transaction(root);
1861	if (IS_ERR(trans)) {
1862		if (PTR_ERR(trans) != -ENOENT)
1863			btrfs_err(root->fs_info,
1864				  "cleaner transaction attach returned %ld",
1865				  PTR_ERR(trans));
1866	} else {
1867		int ret;
1868
1869		ret = btrfs_commit_transaction(trans, root);
1870		if (ret)
1871			btrfs_err(root->fs_info,
1872				  "cleaner open transaction commit returned %d",
1873				  ret);
1874	}
1875
1876	return 0;
1877}
1878
1879static int transaction_kthread(void *arg)
1880{
1881	struct btrfs_root *root = arg;
 
1882	struct btrfs_trans_handle *trans;
1883	struct btrfs_transaction *cur;
1884	u64 transid;
1885	unsigned long now;
1886	unsigned long delay;
1887	bool cannot_commit;
1888
1889	do {
1890		cannot_commit = false;
1891		delay = HZ * root->fs_info->commit_interval;
1892		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1893
1894		spin_lock(&root->fs_info->trans_lock);
1895		cur = root->fs_info->running_transaction;
1896		if (!cur) {
1897			spin_unlock(&root->fs_info->trans_lock);
1898			goto sleep;
1899		}
1900
1901		now = get_seconds();
1902		if (cur->state < TRANS_STATE_BLOCKED &&
1903		    (now < cur->start_time ||
1904		     now - cur->start_time < root->fs_info->commit_interval)) {
1905			spin_unlock(&root->fs_info->trans_lock);
1906			delay = HZ * 5;
 
 
1907			goto sleep;
1908		}
1909		transid = cur->transid;
1910		spin_unlock(&root->fs_info->trans_lock);
1911
1912		/* If the file system is aborted, this will always fail. */
1913		trans = btrfs_attach_transaction(root);
1914		if (IS_ERR(trans)) {
1915			if (PTR_ERR(trans) != -ENOENT)
1916				cannot_commit = true;
1917			goto sleep;
1918		}
1919		if (transid == trans->transid) {
1920			btrfs_commit_transaction(trans, root);
1921		} else {
1922			btrfs_end_transaction(trans, root);
1923		}
1924sleep:
1925		wake_up_process(root->fs_info->cleaner_kthread);
1926		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1927
1928		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1929				      &root->fs_info->fs_state)))
1930			btrfs_cleanup_transaction(root);
1931		set_current_state(TASK_INTERRUPTIBLE);
1932		if (!kthread_should_stop() &&
1933				(!btrfs_transaction_blocked(root->fs_info) ||
1934				 cannot_commit))
1935			schedule_timeout(delay);
1936		__set_current_state(TASK_RUNNING);
1937	} while (!kthread_should_stop());
1938	return 0;
1939}
1940
1941/*
1942 * this will find the highest generation in the array of
1943 * root backups.  The index of the highest array is returned,
1944 * or -1 if we can't find anything.
1945 *
1946 * We check to make sure the array is valid by comparing the
1947 * generation of the latest  root in the array with the generation
1948 * in the super block.  If they don't match we pitch it.
1949 */
1950static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1951{
 
1952	u64 cur;
1953	int newest_index = -1;
1954	struct btrfs_root_backup *root_backup;
1955	int i;
1956
1957	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1958		root_backup = info->super_copy->super_roots + i;
1959		cur = btrfs_backup_tree_root_gen(root_backup);
1960		if (cur == newest_gen)
1961			newest_index = i;
1962	}
1963
1964	/* check to see if we actually wrapped around */
1965	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1966		root_backup = info->super_copy->super_roots;
1967		cur = btrfs_backup_tree_root_gen(root_backup);
1968		if (cur == newest_gen)
1969			newest_index = 0;
1970	}
1971	return newest_index;
1972}
1973
1974
1975/*
1976 * find the oldest backup so we know where to store new entries
1977 * in the backup array.  This will set the backup_root_index
1978 * field in the fs_info struct
1979 */
1980static void find_oldest_super_backup(struct btrfs_fs_info *info,
1981				     u64 newest_gen)
1982{
1983	int newest_index = -1;
1984
1985	newest_index = find_newest_super_backup(info, newest_gen);
1986	/* if there was garbage in there, just move along */
1987	if (newest_index == -1) {
1988		info->backup_root_index = 0;
1989	} else {
1990		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1991	}
1992}
1993
1994/*
1995 * copy all the root pointers into the super backup array.
1996 * this will bump the backup pointer by one when it is
1997 * done
1998 */
1999static void backup_super_roots(struct btrfs_fs_info *info)
2000{
2001	int next_backup;
2002	struct btrfs_root_backup *root_backup;
2003	int last_backup;
2004
2005	next_backup = info->backup_root_index;
2006	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2007		BTRFS_NUM_BACKUP_ROOTS;
2008
2009	/*
2010	 * just overwrite the last backup if we're at the same generation
2011	 * this happens only at umount
2012	 */
2013	root_backup = info->super_for_commit->super_roots + last_backup;
2014	if (btrfs_backup_tree_root_gen(root_backup) ==
2015	    btrfs_header_generation(info->tree_root->node))
2016		next_backup = last_backup;
2017
2018	root_backup = info->super_for_commit->super_roots + next_backup;
2019
2020	/*
2021	 * make sure all of our padding and empty slots get zero filled
2022	 * regardless of which ones we use today
2023	 */
2024	memset(root_backup, 0, sizeof(*root_backup));
2025
2026	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2027
2028	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2029	btrfs_set_backup_tree_root_gen(root_backup,
2030			       btrfs_header_generation(info->tree_root->node));
2031
2032	btrfs_set_backup_tree_root_level(root_backup,
2033			       btrfs_header_level(info->tree_root->node));
2034
2035	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2036	btrfs_set_backup_chunk_root_gen(root_backup,
2037			       btrfs_header_generation(info->chunk_root->node));
2038	btrfs_set_backup_chunk_root_level(root_backup,
2039			       btrfs_header_level(info->chunk_root->node));
2040
2041	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2042	btrfs_set_backup_extent_root_gen(root_backup,
2043			       btrfs_header_generation(info->extent_root->node));
2044	btrfs_set_backup_extent_root_level(root_backup,
2045			       btrfs_header_level(info->extent_root->node));
 
 
 
 
 
 
 
 
 
 
 
 
2046
2047	/*
2048	 * we might commit during log recovery, which happens before we set
2049	 * the fs_root.  Make sure it is valid before we fill it in.
2050	 */
2051	if (info->fs_root && info->fs_root->node) {
2052		btrfs_set_backup_fs_root(root_backup,
2053					 info->fs_root->node->start);
2054		btrfs_set_backup_fs_root_gen(root_backup,
2055			       btrfs_header_generation(info->fs_root->node));
2056		btrfs_set_backup_fs_root_level(root_backup,
2057			       btrfs_header_level(info->fs_root->node));
2058	}
2059
2060	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2061	btrfs_set_backup_dev_root_gen(root_backup,
2062			       btrfs_header_generation(info->dev_root->node));
2063	btrfs_set_backup_dev_root_level(root_backup,
2064				       btrfs_header_level(info->dev_root->node));
2065
2066	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2067	btrfs_set_backup_csum_root_gen(root_backup,
2068			       btrfs_header_generation(info->csum_root->node));
2069	btrfs_set_backup_csum_root_level(root_backup,
2070			       btrfs_header_level(info->csum_root->node));
2071
2072	btrfs_set_backup_total_bytes(root_backup,
2073			     btrfs_super_total_bytes(info->super_copy));
2074	btrfs_set_backup_bytes_used(root_backup,
2075			     btrfs_super_bytes_used(info->super_copy));
2076	btrfs_set_backup_num_devices(root_backup,
2077			     btrfs_super_num_devices(info->super_copy));
2078
2079	/*
2080	 * if we don't copy this out to the super_copy, it won't get remembered
2081	 * for the next commit
2082	 */
2083	memcpy(&info->super_copy->super_roots,
2084	       &info->super_for_commit->super_roots,
2085	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2086}
2087
2088/*
2089 * this copies info out of the root backup array and back into
2090 * the in-memory super block.  It is meant to help iterate through
2091 * the array, so you send it the number of backups you've already
2092 * tried and the last backup index you used.
 
2093 *
2094 * this returns -1 when it has tried all the backups
2095 */
2096static noinline int next_root_backup(struct btrfs_fs_info *info,
2097				     struct btrfs_super_block *super,
2098				     int *num_backups_tried, int *backup_index)
2099{
 
 
2100	struct btrfs_root_backup *root_backup;
2101	int newest = *backup_index;
2102
2103	if (*num_backups_tried == 0) {
2104		u64 gen = btrfs_super_generation(super);
 
2105
2106		newest = find_newest_super_backup(info, gen);
2107		if (newest == -1)
2108			return -1;
2109
2110		*backup_index = newest;
2111		*num_backups_tried = 1;
2112	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2113		/* we've tried all the backups, all done */
2114		return -1;
2115	} else {
2116		/* jump to the next oldest backup */
2117		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2118			BTRFS_NUM_BACKUP_ROOTS;
2119		*backup_index = newest;
2120		*num_backups_tried += 1;
2121	}
2122	root_backup = super->super_roots + newest;
 
2123
2124	btrfs_set_super_generation(super,
2125				   btrfs_backup_tree_root_gen(root_backup));
2126	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2127	btrfs_set_super_root_level(super,
2128				   btrfs_backup_tree_root_level(root_backup));
2129	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2130
2131	/*
2132	 * fixme: the total bytes and num_devices need to match or we should
2133	 * need a fsck
2134	 */
2135	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2136	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2137	return 0;
 
2138}
2139
2140/* helper to cleanup workers */
2141static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2142{
2143	btrfs_destroy_workqueue(fs_info->fixup_workers);
2144	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2145	btrfs_destroy_workqueue(fs_info->workers);
2146	btrfs_destroy_workqueue(fs_info->endio_workers);
2147	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2148	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2149	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2150	btrfs_destroy_workqueue(fs_info->rmw_workers);
2151	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2152	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2153	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2154	btrfs_destroy_workqueue(fs_info->submit_workers);
2155	btrfs_destroy_workqueue(fs_info->delayed_workers);
2156	btrfs_destroy_workqueue(fs_info->caching_workers);
2157	btrfs_destroy_workqueue(fs_info->readahead_workers);
2158	btrfs_destroy_workqueue(fs_info->flush_workers);
2159	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2160	btrfs_destroy_workqueue(fs_info->extent_workers);
 
 
 
 
 
 
 
 
2161}
2162
2163static void free_root_extent_buffers(struct btrfs_root *root)
2164{
2165	if (root) {
2166		free_extent_buffer(root->node);
2167		free_extent_buffer(root->commit_root);
2168		root->node = NULL;
2169		root->commit_root = NULL;
2170	}
2171}
2172
 
 
 
 
 
 
 
 
 
 
2173/* helper to cleanup tree roots */
2174static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2175{
2176	free_root_extent_buffers(info->tree_root);
2177
 
2178	free_root_extent_buffers(info->dev_root);
2179	free_root_extent_buffers(info->extent_root);
2180	free_root_extent_buffers(info->csum_root);
2181	free_root_extent_buffers(info->quota_root);
2182	free_root_extent_buffers(info->uuid_root);
2183	if (chunk_root)
 
 
 
 
2184		free_root_extent_buffers(info->chunk_root);
2185	free_root_extent_buffers(info->free_space_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186}
2187
2188void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2189{
2190	int ret;
2191	struct btrfs_root *gang[8];
2192	int i;
2193
2194	while (!list_empty(&fs_info->dead_roots)) {
2195		gang[0] = list_entry(fs_info->dead_roots.next,
2196				     struct btrfs_root, root_list);
2197		list_del(&gang[0]->root_list);
2198
2199		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2200			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2201		} else {
2202			free_extent_buffer(gang[0]->node);
2203			free_extent_buffer(gang[0]->commit_root);
2204			btrfs_put_fs_root(gang[0]);
2205		}
2206	}
2207
2208	while (1) {
2209		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2210					     (void **)gang, 0,
2211					     ARRAY_SIZE(gang));
2212		if (!ret)
2213			break;
2214		for (i = 0; i < ret; i++)
2215			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2216	}
2217
2218	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2219		btrfs_free_log_root_tree(NULL, fs_info);
2220		btrfs_destroy_pinned_extent(fs_info->tree_root,
2221					    fs_info->pinned_extents);
2222	}
2223}
2224
2225static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2226{
2227	mutex_init(&fs_info->scrub_lock);
2228	atomic_set(&fs_info->scrubs_running, 0);
2229	atomic_set(&fs_info->scrub_pause_req, 0);
2230	atomic_set(&fs_info->scrubs_paused, 0);
2231	atomic_set(&fs_info->scrub_cancel_req, 0);
2232	init_waitqueue_head(&fs_info->scrub_pause_wait);
2233	fs_info->scrub_workers_refcnt = 0;
2234}
2235
2236static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2237{
2238	spin_lock_init(&fs_info->balance_lock);
2239	mutex_init(&fs_info->balance_mutex);
2240	atomic_set(&fs_info->balance_running, 0);
2241	atomic_set(&fs_info->balance_pause_req, 0);
2242	atomic_set(&fs_info->balance_cancel_req, 0);
2243	fs_info->balance_ctl = NULL;
2244	init_waitqueue_head(&fs_info->balance_wait_q);
 
2245}
2246
2247static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2248				   struct btrfs_root *tree_root)
2249{
2250	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2251	set_nlink(fs_info->btree_inode, 1);
 
 
 
 
 
 
 
 
 
2252	/*
2253	 * we set the i_size on the btree inode to the max possible int.
2254	 * the real end of the address space is determined by all of
2255	 * the devices in the system
2256	 */
2257	fs_info->btree_inode->i_size = OFFSET_MAX;
2258	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2259
2260	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2261	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2262			     fs_info->btree_inode->i_mapping);
2263	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2264	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2265
2266	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2267
2268	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2269	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2270	       sizeof(struct btrfs_key));
2271	set_bit(BTRFS_INODE_DUMMY,
2272		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2273	btrfs_insert_inode_hash(fs_info->btree_inode);
2274}
2275
2276static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2277{
2278	fs_info->dev_replace.lock_owner = 0;
2279	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2280	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2281	rwlock_init(&fs_info->dev_replace.lock);
2282	atomic_set(&fs_info->dev_replace.read_locks, 0);
2283	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2284	init_waitqueue_head(&fs_info->replace_wait);
2285	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2286}
2287
2288static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2289{
2290	spin_lock_init(&fs_info->qgroup_lock);
2291	mutex_init(&fs_info->qgroup_ioctl_lock);
2292	fs_info->qgroup_tree = RB_ROOT;
2293	fs_info->qgroup_op_tree = RB_ROOT;
2294	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2295	fs_info->qgroup_seq = 1;
2296	fs_info->quota_enabled = 0;
2297	fs_info->pending_quota_state = 0;
2298	fs_info->qgroup_ulist = NULL;
 
 
2299	mutex_init(&fs_info->qgroup_rescan_lock);
2300}
2301
2302static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2303		struct btrfs_fs_devices *fs_devices)
2304{
2305	int max_active = fs_info->thread_pool_size;
2306	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
 
2307
2308	fs_info->workers =
2309		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2310				      max_active, 16);
2311
2312	fs_info->delalloc_workers =
2313		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
 
2314
2315	fs_info->flush_workers =
2316		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
 
2317
2318	fs_info->caching_workers =
2319		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2320
2321	/*
2322	 * a higher idle thresh on the submit workers makes it much more
2323	 * likely that bios will be send down in a sane order to the
2324	 * devices
2325	 */
2326	fs_info->submit_workers =
2327		btrfs_alloc_workqueue("submit", flags,
2328				      min_t(u64, fs_devices->num_devices,
2329					    max_active), 64);
2330
2331	fs_info->fixup_workers =
2332		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2333
2334	/*
2335	 * endios are largely parallel and should have a very
2336	 * low idle thresh
2337	 */
2338	fs_info->endio_workers =
2339		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2340	fs_info->endio_meta_workers =
2341		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2342	fs_info->endio_meta_write_workers =
2343		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2344	fs_info->endio_raid56_workers =
2345		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2346	fs_info->endio_repair_workers =
2347		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2348	fs_info->rmw_workers =
2349		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2350	fs_info->endio_write_workers =
2351		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
 
 
 
2352	fs_info->endio_freespace_worker =
2353		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
 
2354	fs_info->delayed_workers =
2355		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2356	fs_info->readahead_workers =
2357		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2358	fs_info->qgroup_rescan_workers =
2359		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2360	fs_info->extent_workers =
2361		btrfs_alloc_workqueue("extent-refs", flags,
2362				      min_t(u64, fs_devices->num_devices,
2363					    max_active), 8);
2364
2365	if (!(fs_info->workers && fs_info->delalloc_workers &&
2366	      fs_info->submit_workers && fs_info->flush_workers &&
2367	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2368	      fs_info->endio_meta_write_workers &&
2369	      fs_info->endio_repair_workers &&
2370	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2371	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2372	      fs_info->caching_workers && fs_info->readahead_workers &&
2373	      fs_info->fixup_workers && fs_info->delayed_workers &&
2374	      fs_info->extent_workers &&
2375	      fs_info->qgroup_rescan_workers)) {
2376		return -ENOMEM;
2377	}
2378
2379	return 0;
2380}
2381
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2382static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2383			    struct btrfs_fs_devices *fs_devices)
2384{
2385	int ret;
2386	struct btrfs_root *tree_root = fs_info->tree_root;
2387	struct btrfs_root *log_tree_root;
2388	struct btrfs_super_block *disk_super = fs_info->super_copy;
2389	u64 bytenr = btrfs_super_log_root(disk_super);
 
2390
2391	if (fs_devices->rw_devices == 0) {
2392		btrfs_warn(fs_info, "log replay required on RO media");
2393		return -EIO;
2394	}
2395
2396	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
2397	if (!log_tree_root)
2398		return -ENOMEM;
2399
2400	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2401			tree_root->stripesize, log_tree_root, fs_info,
2402			BTRFS_TREE_LOG_OBJECTID);
2403
2404	log_tree_root->node = read_tree_block(tree_root, bytenr,
2405			fs_info->generation + 1);
2406	if (IS_ERR(log_tree_root->node)) {
2407		btrfs_warn(fs_info, "failed to read log tree");
2408		ret = PTR_ERR(log_tree_root->node);
2409		kfree(log_tree_root);
 
2410		return ret;
2411	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
 
2412		btrfs_err(fs_info, "failed to read log tree");
2413		free_extent_buffer(log_tree_root->node);
2414		kfree(log_tree_root);
2415		return -EIO;
2416	}
 
2417	/* returns with log_tree_root freed on success */
2418	ret = btrfs_recover_log_trees(log_tree_root);
2419	if (ret) {
2420		btrfs_std_error(tree_root->fs_info, ret,
2421			    "Failed to recover log tree");
2422		free_extent_buffer(log_tree_root->node);
2423		kfree(log_tree_root);
2424		return ret;
2425	}
2426
2427	if (fs_info->sb->s_flags & MS_RDONLY) {
2428		ret = btrfs_commit_super(tree_root);
2429		if (ret)
2430			return ret;
2431	}
2432
2433	return 0;
2434}
2435
2436static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2437			    struct btrfs_root *tree_root)
 
2438{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2439	struct btrfs_root *root;
2440	struct btrfs_key location;
2441	int ret;
2442
2443	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
 
 
 
 
 
2444	location.type = BTRFS_ROOT_ITEM_KEY;
2445	location.offset = 0;
2446
2447	root = btrfs_read_tree_root(tree_root, &location);
2448	if (IS_ERR(root))
2449		return PTR_ERR(root);
2450	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2451	fs_info->extent_root = root;
 
 
 
 
 
 
 
 
2452
2453	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2454	root = btrfs_read_tree_root(tree_root, &location);
2455	if (IS_ERR(root))
2456		return PTR_ERR(root);
2457	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2458	fs_info->dev_root = root;
2459	btrfs_init_devices_late(fs_info);
 
 
 
 
 
 
 
 
2460
2461	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2462	root = btrfs_read_tree_root(tree_root, &location);
2463	if (IS_ERR(root))
2464		return PTR_ERR(root);
2465	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2466	fs_info->csum_root = root;
 
 
 
 
 
 
 
 
 
2467
2468	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2469	root = btrfs_read_tree_root(tree_root, &location);
2470	if (!IS_ERR(root)) {
2471		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2472		fs_info->quota_enabled = 1;
2473		fs_info->pending_quota_state = 1;
2474		fs_info->quota_root = root;
2475	}
2476
2477	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2478	root = btrfs_read_tree_root(tree_root, &location);
2479	if (IS_ERR(root)) {
2480		ret = PTR_ERR(root);
2481		if (ret != -ENOENT)
2482			return ret;
 
 
2483	} else {
2484		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2485		fs_info->uuid_root = root;
2486	}
2487
2488	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2489		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2490		root = btrfs_read_tree_root(tree_root, &location);
2491		if (IS_ERR(root))
2492			return PTR_ERR(root);
2493		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2494		fs_info->free_space_root = root;
 
 
 
 
 
2495	}
2496
2497	return 0;
 
 
 
 
2498}
2499
2500int open_ctree(struct super_block *sb,
2501	       struct btrfs_fs_devices *fs_devices,
2502	       char *options)
 
 
 
 
 
 
 
 
 
2503{
2504	u32 sectorsize;
2505	u32 nodesize;
2506	u32 stripesize;
2507	u64 generation;
2508	u64 features;
2509	struct btrfs_key location;
2510	struct buffer_head *bh;
2511	struct btrfs_super_block *disk_super;
2512	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2513	struct btrfs_root *tree_root;
2514	struct btrfs_root *chunk_root;
2515	int ret;
2516	int err = -EINVAL;
2517	int num_backups_tried = 0;
2518	int backup_index = 0;
2519	int max_active;
2520
2521	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2522	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2523	if (!tree_root || !chunk_root) {
2524		err = -ENOMEM;
2525		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2526	}
2527
2528	ret = init_srcu_struct(&fs_info->subvol_srcu);
2529	if (ret) {
2530		err = ret;
2531		goto fail;
 
 
 
 
2532	}
2533
2534	ret = setup_bdi(fs_info, &fs_info->bdi);
2535	if (ret) {
2536		err = ret;
2537		goto fail_srcu;
 
 
 
 
 
 
 
 
 
2538	}
2539
2540	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2541	if (ret) {
2542		err = ret;
2543		goto fail_bdi;
 
 
 
 
 
2544	}
2545	fs_info->dirty_metadata_batch = PAGE_SIZE *
2546					(1 + ilog2(nr_cpu_ids));
2547
2548	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2549	if (ret) {
2550		err = ret;
2551		goto fail_dirty_metadata_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552	}
2553
2554	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2555	if (ret) {
2556		err = ret;
2557		goto fail_delalloc_bytes;
2558	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2559
2560	fs_info->btree_inode = new_inode(sb);
2561	if (!fs_info->btree_inode) {
2562		err = -ENOMEM;
2563		goto fail_bio_counter;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2564	}
2565
2566	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
 
2567
 
 
2568	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2569	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2570	INIT_LIST_HEAD(&fs_info->trans_list);
2571	INIT_LIST_HEAD(&fs_info->dead_roots);
2572	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2573	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2574	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2575	spin_lock_init(&fs_info->delalloc_root_lock);
2576	spin_lock_init(&fs_info->trans_lock);
2577	spin_lock_init(&fs_info->fs_roots_radix_lock);
2578	spin_lock_init(&fs_info->delayed_iput_lock);
2579	spin_lock_init(&fs_info->defrag_inodes_lock);
2580	spin_lock_init(&fs_info->free_chunk_lock);
2581	spin_lock_init(&fs_info->tree_mod_seq_lock);
2582	spin_lock_init(&fs_info->super_lock);
2583	spin_lock_init(&fs_info->qgroup_op_lock);
2584	spin_lock_init(&fs_info->buffer_lock);
2585	spin_lock_init(&fs_info->unused_bgs_lock);
 
 
 
2586	rwlock_init(&fs_info->tree_mod_log_lock);
 
2587	mutex_init(&fs_info->unused_bg_unpin_mutex);
2588	mutex_init(&fs_info->delete_unused_bgs_mutex);
2589	mutex_init(&fs_info->reloc_mutex);
2590	mutex_init(&fs_info->delalloc_root_mutex);
2591	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
 
2592	seqlock_init(&fs_info->profiles_lock);
2593
 
 
 
 
 
 
 
 
 
 
 
 
 
2594	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2595	INIT_LIST_HEAD(&fs_info->space_info);
2596	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2597	INIT_LIST_HEAD(&fs_info->unused_bgs);
2598	btrfs_mapping_init(&fs_info->mapping_tree);
 
 
 
 
 
 
 
 
2599	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2600			     BTRFS_BLOCK_RSV_GLOBAL);
2601	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2602			     BTRFS_BLOCK_RSV_DELALLOC);
2603	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2604	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2605	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2606	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2607			     BTRFS_BLOCK_RSV_DELOPS);
2608	atomic_set(&fs_info->nr_async_submits, 0);
 
 
2609	atomic_set(&fs_info->async_delalloc_pages, 0);
2610	atomic_set(&fs_info->async_submit_draining, 0);
2611	atomic_set(&fs_info->nr_async_bios, 0);
2612	atomic_set(&fs_info->defrag_running, 0);
2613	atomic_set(&fs_info->qgroup_op_seq, 0);
2614	atomic_set(&fs_info->reada_works_cnt, 0);
2615	atomic64_set(&fs_info->tree_mod_seq, 0);
2616	fs_info->sb = sb;
2617	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2618	fs_info->metadata_ratio = 0;
2619	fs_info->defrag_inodes = RB_ROOT;
2620	fs_info->free_chunk_space = 0;
2621	fs_info->tree_mod_log = RB_ROOT;
2622	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2623	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2624	/* readahead state */
2625	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2626	spin_lock_init(&fs_info->reada_lock);
2627
2628	fs_info->thread_pool_size = min_t(unsigned long,
2629					  num_online_cpus() + 2, 8);
2630
2631	INIT_LIST_HEAD(&fs_info->ordered_roots);
2632	spin_lock_init(&fs_info->ordered_root_lock);
2633	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2634					GFP_KERNEL);
2635	if (!fs_info->delayed_root) {
2636		err = -ENOMEM;
2637		goto fail_iput;
2638	}
2639	btrfs_init_delayed_root(fs_info->delayed_root);
2640
2641	btrfs_init_scrub(fs_info);
2642#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2643	fs_info->check_integrity_print_mask = 0;
2644#endif
2645	btrfs_init_balance(fs_info);
2646	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2647
2648	sb->s_blocksize = 4096;
2649	sb->s_blocksize_bits = blksize_bits(4096);
2650	sb->s_bdi = &fs_info->bdi;
2651
2652	btrfs_init_btree_inode(fs_info, tree_root);
2653
2654	spin_lock_init(&fs_info->block_group_cache_lock);
2655	fs_info->block_group_cache_tree = RB_ROOT;
2656	fs_info->first_logical_byte = (u64)-1;
2657
2658	extent_io_tree_init(&fs_info->freed_extents[0],
2659			     fs_info->btree_inode->i_mapping);
2660	extent_io_tree_init(&fs_info->freed_extents[1],
2661			     fs_info->btree_inode->i_mapping);
2662	fs_info->pinned_extents = &fs_info->freed_extents[0];
2663	fs_info->do_barriers = 1;
2664
 
 
2665
2666	mutex_init(&fs_info->ordered_operations_mutex);
2667	mutex_init(&fs_info->tree_log_mutex);
2668	mutex_init(&fs_info->chunk_mutex);
2669	mutex_init(&fs_info->transaction_kthread_mutex);
2670	mutex_init(&fs_info->cleaner_mutex);
2671	mutex_init(&fs_info->volume_mutex);
2672	mutex_init(&fs_info->ro_block_group_mutex);
2673	init_rwsem(&fs_info->commit_root_sem);
2674	init_rwsem(&fs_info->cleanup_work_sem);
2675	init_rwsem(&fs_info->subvol_sem);
2676	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2677
2678	btrfs_init_dev_replace_locks(fs_info);
2679	btrfs_init_qgroup(fs_info);
 
2680
2681	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2682	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2683
2684	init_waitqueue_head(&fs_info->transaction_throttle);
2685	init_waitqueue_head(&fs_info->transaction_wait);
2686	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2687	init_waitqueue_head(&fs_info->async_submit_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2688
2689	INIT_LIST_HEAD(&fs_info->pinned_chunks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2690
2691	ret = btrfs_alloc_stripe_hash_table(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2692	if (ret) {
2693		err = ret;
2694		goto fail_alloc;
2695	}
2696
2697	__setup_root(4096, 4096, 4096, tree_root,
2698		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2699
2700	invalidate_bdev(fs_devices->latest_bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2701
2702	/*
2703	 * Read super block and check the signature bytes only
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2704	 */
2705	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2706	if (IS_ERR(bh)) {
2707		err = PTR_ERR(bh);
2708		goto fail_alloc;
 
 
2709	}
2710
2711	/*
2712	 * We want to check superblock checksum, the type is stored inside.
2713	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2714	 */
2715	if (btrfs_check_super_csum(bh->b_data)) {
2716		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2717		err = -EINVAL;
2718		brelse(bh);
2719		goto fail_alloc;
2720	}
2721
 
2722	/*
2723	 * super_copy is zeroed at allocation time and we never touch the
2724	 * following bytes up to INFO_SIZE, the checksum is calculated from
2725	 * the whole block of INFO_SIZE
2726	 */
2727	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2728	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2729	       sizeof(*fs_info->super_for_commit));
2730	brelse(bh);
 
 
 
 
2731
2732	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2733
2734	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2735	if (ret) {
2736		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2737		err = -EINVAL;
2738		goto fail_alloc;
2739	}
2740
2741	disk_super = fs_info->super_copy;
2742	if (!btrfs_super_root(disk_super))
2743		goto fail_alloc;
2744
2745	/* check FS state, whether FS is broken. */
2746	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2747		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2748
2749	/*
2750	 * run through our array of backup supers and setup
2751	 * our ring pointer to the oldest one
2752	 */
2753	generation = btrfs_super_generation(disk_super);
2754	find_oldest_super_backup(fs_info, generation);
 
 
 
 
2755
2756	/*
2757	 * In the long term, we'll store the compression type in the super
2758	 * block, and it'll be used for per file compression control.
 
2759	 */
2760	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
 
 
 
 
 
 
2761
2762	ret = btrfs_parse_options(tree_root, options, sb->s_flags);
2763	if (ret) {
2764		err = ret;
 
2765		goto fail_alloc;
2766	}
2767
2768	features = btrfs_super_incompat_flags(disk_super) &
2769		~BTRFS_FEATURE_INCOMPAT_SUPP;
2770	if (features) {
2771		printk(KERN_ERR "BTRFS: couldn't mount because of "
2772		       "unsupported optional features (%Lx).\n",
2773		       features);
2774		err = -EINVAL;
2775		goto fail_alloc;
2776	}
2777
2778	features = btrfs_super_incompat_flags(disk_super);
2779	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2780	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2781		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2782
2783	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2784		printk(KERN_INFO "BTRFS: has skinny extents\n");
2785
2786	/*
2787	 * flag our filesystem as having big metadata blocks if
2788	 * they are bigger than the page size
2789	 */
2790	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2791		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2792			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2793		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2794	}
2795
 
2796	nodesize = btrfs_super_nodesize(disk_super);
2797	sectorsize = btrfs_super_sectorsize(disk_super);
2798	stripesize = btrfs_super_stripesize(disk_super);
2799	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2800	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2801
 
 
 
 
 
 
2802	/*
2803	 * mixed block groups end up with duplicate but slightly offset
2804	 * extent buffers for the same range.  It leads to corruptions
2805	 */
2806	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2807	    (sectorsize != nodesize)) {
2808		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2809				"are not allowed for mixed block groups on %s\n",
2810				sb->s_id);
2811		goto fail_alloc;
2812	}
2813
 
 
 
 
2814	/*
2815	 * Needn't use the lock because there is no other task which will
2816	 * update the flag.
2817	 */
2818	btrfs_set_super_incompat_flags(disk_super, features);
2819
2820	features = btrfs_super_compat_ro_flags(disk_super) &
2821		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2822	if (!(sb->s_flags & MS_RDONLY) && features) {
2823		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2824		       "unsupported option features (%Lx).\n",
2825		       features);
2826		err = -EINVAL;
2827		goto fail_alloc;
2828	}
2829
2830	max_active = fs_info->thread_pool_size;
 
 
 
 
 
 
 
 
 
 
2831
2832	ret = btrfs_init_workqueues(fs_info, fs_devices);
2833	if (ret) {
2834		err = ret;
2835		goto fail_sb_buffer;
2836	}
2837
2838	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2839	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2840				    SZ_4M / PAGE_SIZE);
2841
2842	tree_root->nodesize = nodesize;
2843	tree_root->sectorsize = sectorsize;
2844	tree_root->stripesize = stripesize;
2845
 
2846	sb->s_blocksize = sectorsize;
2847	sb->s_blocksize_bits = blksize_bits(sectorsize);
 
2848
2849	mutex_lock(&fs_info->chunk_mutex);
2850	ret = btrfs_read_sys_array(tree_root);
2851	mutex_unlock(&fs_info->chunk_mutex);
2852	if (ret) {
2853		printk(KERN_ERR "BTRFS: failed to read the system "
2854		       "array on %s\n", sb->s_id);
2855		goto fail_sb_buffer;
2856	}
2857
2858	generation = btrfs_super_chunk_root_generation(disk_super);
2859
2860	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2861		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2862
2863	chunk_root->node = read_tree_block(chunk_root,
2864					   btrfs_super_chunk_root(disk_super),
2865					   generation);
2866	if (IS_ERR(chunk_root->node) ||
2867	    !extent_buffer_uptodate(chunk_root->node)) {
2868		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2869		       sb->s_id);
2870		if (!IS_ERR(chunk_root->node))
2871			free_extent_buffer(chunk_root->node);
2872		chunk_root->node = NULL;
2873		goto fail_tree_roots;
2874	}
2875	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2876	chunk_root->commit_root = btrfs_root_node(chunk_root);
2877
2878	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2879	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
 
2880
2881	ret = btrfs_read_chunk_tree(chunk_root);
2882	if (ret) {
2883		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2884		       sb->s_id);
2885		goto fail_tree_roots;
2886	}
2887
2888	/*
2889	 * keep the device that is marked to be the target device for the
2890	 * dev_replace procedure
2891	 */
2892	btrfs_close_extra_devices(fs_devices, 0);
2893
2894	if (!fs_devices->latest_bdev) {
2895		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2896		       sb->s_id);
 
 
2897		goto fail_tree_roots;
2898	}
2899
2900retry_root_backup:
2901	generation = btrfs_super_generation(disk_super);
 
2902
2903	tree_root->node = read_tree_block(tree_root,
2904					  btrfs_super_root(disk_super),
2905					  generation);
2906	if (IS_ERR(tree_root->node) ||
2907	    !extent_buffer_uptodate(tree_root->node)) {
2908		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2909		       sb->s_id);
2910		if (!IS_ERR(tree_root->node))
2911			free_extent_buffer(tree_root->node);
2912		tree_root->node = NULL;
2913		goto recovery_tree_root;
2914	}
2915
2916	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2917	tree_root->commit_root = btrfs_root_node(tree_root);
2918	btrfs_set_root_refs(&tree_root->root_item, 1);
2919
2920	mutex_lock(&tree_root->objectid_mutex);
2921	ret = btrfs_find_highest_objectid(tree_root,
2922					&tree_root->highest_objectid);
2923	if (ret) {
2924		mutex_unlock(&tree_root->objectid_mutex);
2925		goto recovery_tree_root;
 
2926	}
2927
2928	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2929
2930	mutex_unlock(&tree_root->objectid_mutex);
2931
2932	ret = btrfs_read_roots(fs_info, tree_root);
2933	if (ret)
2934		goto recovery_tree_root;
2935
2936	fs_info->generation = generation;
2937	fs_info->last_trans_committed = generation;
 
2938
 
 
 
 
 
 
 
2939	ret = btrfs_recover_balance(fs_info);
2940	if (ret) {
2941		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2942		goto fail_block_groups;
2943	}
2944
2945	ret = btrfs_init_dev_stats(fs_info);
2946	if (ret) {
2947		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2948		       ret);
2949		goto fail_block_groups;
2950	}
2951
2952	ret = btrfs_init_dev_replace(fs_info);
2953	if (ret) {
2954		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2955		goto fail_block_groups;
2956	}
2957
2958	btrfs_close_extra_devices(fs_devices, 1);
2959
2960	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2961	if (ret) {
2962		pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
 
2963		goto fail_block_groups;
2964	}
2965
2966	ret = btrfs_sysfs_add_device(fs_devices);
2967	if (ret) {
2968		pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2969		goto fail_fsdev_sysfs;
 
2970	}
2971
2972	ret = btrfs_sysfs_add_mounted(fs_info);
2973	if (ret) {
2974		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2975		goto fail_fsdev_sysfs;
2976	}
2977
2978	ret = btrfs_init_space_info(fs_info);
2979	if (ret) {
2980		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2981		goto fail_sysfs;
2982	}
2983
2984	ret = btrfs_read_block_groups(fs_info->extent_root);
2985	if (ret) {
2986		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2987		goto fail_sysfs;
2988	}
2989	fs_info->num_tolerated_disk_barrier_failures =
2990		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2991	if (fs_info->fs_devices->missing_devices >
2992	     fs_info->num_tolerated_disk_barrier_failures &&
2993	    !(sb->s_flags & MS_RDONLY)) {
2994		pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2995			fs_info->fs_devices->missing_devices,
2996			fs_info->num_tolerated_disk_barrier_failures);
 
 
2997		goto fail_sysfs;
2998	}
2999
3000	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3001					       "btrfs-cleaner");
3002	if (IS_ERR(fs_info->cleaner_kthread))
 
3003		goto fail_sysfs;
 
3004
3005	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3006						   tree_root,
3007						   "btrfs-transaction");
3008	if (IS_ERR(fs_info->transaction_kthread))
 
3009		goto fail_cleaner;
3010
3011	if (!btrfs_test_opt(tree_root, SSD) &&
3012	    !btrfs_test_opt(tree_root, NOSSD) &&
3013	    !fs_info->fs_devices->rotating) {
3014		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
3015		       "mode\n");
3016		btrfs_set_opt(fs_info->mount_opt, SSD);
3017	}
3018
3019	/*
3020	 * Mount does not set all options immediatelly, we can do it now and do
3021	 * not have to wait for transaction commit
3022	 */
3023	btrfs_apply_pending_changes(fs_info);
3024
3025#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3026	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3027		ret = btrfsic_mount(tree_root, fs_devices,
3028				    btrfs_test_opt(tree_root,
3029					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3030				    1 : 0,
3031				    fs_info->check_integrity_print_mask);
3032		if (ret)
3033			printk(KERN_WARNING "BTRFS: failed to initialize"
3034			       " integrity check module %s\n", sb->s_id);
3035	}
3036#endif
3037	ret = btrfs_read_qgroup_config(fs_info);
3038	if (ret)
3039		goto fail_trans_kthread;
3040
 
 
 
3041	/* do not make disk changes in broken FS or nologreplay is given */
3042	if (btrfs_super_log_root(disk_super) != 0 &&
3043	    !btrfs_test_opt(tree_root, NOLOGREPLAY)) {
 
3044		ret = btrfs_replay_log(fs_info, fs_devices);
3045		if (ret) {
3046			err = ret;
3047			goto fail_qgroup;
3048		}
3049	}
3050
3051	ret = btrfs_find_orphan_roots(tree_root);
3052	if (ret)
3053		goto fail_qgroup;
3054
3055	if (!(sb->s_flags & MS_RDONLY)) {
3056		ret = btrfs_cleanup_fs_roots(fs_info);
3057		if (ret)
3058			goto fail_qgroup;
3059
3060		mutex_lock(&fs_info->cleaner_mutex);
3061		ret = btrfs_recover_relocation(tree_root);
3062		mutex_unlock(&fs_info->cleaner_mutex);
3063		if (ret < 0) {
3064			printk(KERN_WARNING
3065			       "BTRFS: failed to recover relocation\n");
3066			err = -EINVAL;
3067			goto fail_qgroup;
3068		}
3069	}
3070
3071	location.objectid = BTRFS_FS_TREE_OBJECTID;
3072	location.type = BTRFS_ROOT_ITEM_KEY;
3073	location.offset = 0;
3074
3075	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3076	if (IS_ERR(fs_info->fs_root)) {
3077		err = PTR_ERR(fs_info->fs_root);
 
 
3078		goto fail_qgroup;
3079	}
3080
3081	if (sb->s_flags & MS_RDONLY)
3082		return 0;
3083
3084	if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3085	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3086		pr_info("BTRFS: creating free space tree\n");
3087		ret = btrfs_create_free_space_tree(fs_info);
3088		if (ret) {
3089			pr_warn("BTRFS: failed to create free space tree %d\n",
3090				ret);
3091			close_ctree(tree_root);
3092			return ret;
3093		}
3094	}
3095
3096	down_read(&fs_info->cleanup_work_sem);
3097	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3098	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3099		up_read(&fs_info->cleanup_work_sem);
3100		close_ctree(tree_root);
3101		return ret;
3102	}
3103	up_read(&fs_info->cleanup_work_sem);
3104
3105	ret = btrfs_resume_balance_async(fs_info);
3106	if (ret) {
3107		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3108		close_ctree(tree_root);
3109		return ret;
3110	}
3111
3112	ret = btrfs_resume_dev_replace_async(fs_info);
3113	if (ret) {
3114		pr_warn("BTRFS: failed to resume dev_replace\n");
3115		close_ctree(tree_root);
3116		return ret;
3117	}
 
3118
3119	btrfs_qgroup_rescan_resume(fs_info);
3120
3121	if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3122	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3123		pr_info("BTRFS: clearing free space tree\n");
3124		ret = btrfs_clear_free_space_tree(fs_info);
3125		if (ret) {
3126			pr_warn("BTRFS: failed to clear free space tree %d\n",
3127				ret);
3128			close_ctree(tree_root);
3129			return ret;
3130		}
3131	}
3132
3133	if (!fs_info->uuid_root) {
3134		pr_info("BTRFS: creating UUID tree\n");
3135		ret = btrfs_create_uuid_tree(fs_info);
3136		if (ret) {
3137			pr_warn("BTRFS: failed to create the UUID tree %d\n",
3138				ret);
3139			close_ctree(tree_root);
3140			return ret;
3141		}
3142	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3143		   fs_info->generation !=
3144				btrfs_super_uuid_tree_generation(disk_super)) {
3145		pr_info("BTRFS: checking UUID tree\n");
3146		ret = btrfs_check_uuid_tree(fs_info);
3147		if (ret) {
3148			pr_warn("BTRFS: failed to check the UUID tree %d\n",
3149				ret);
3150			close_ctree(tree_root);
3151			return ret;
3152		}
3153	} else {
3154		fs_info->update_uuid_tree_gen = 1;
3155	}
3156
3157	fs_info->open = 1;
3158
3159	/*
3160	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3161	 * no need to keep the flag
3162	 */
3163	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3164
3165	return 0;
3166
3167fail_qgroup:
3168	btrfs_free_qgroup_config(fs_info);
3169fail_trans_kthread:
3170	kthread_stop(fs_info->transaction_kthread);
3171	btrfs_cleanup_transaction(fs_info->tree_root);
3172	btrfs_free_fs_roots(fs_info);
3173fail_cleaner:
3174	kthread_stop(fs_info->cleaner_kthread);
3175
3176	/*
3177	 * make sure we're done with the btree inode before we stop our
3178	 * kthreads
3179	 */
3180	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3181
3182fail_sysfs:
3183	btrfs_sysfs_remove_mounted(fs_info);
3184
3185fail_fsdev_sysfs:
3186	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3187
3188fail_block_groups:
3189	btrfs_put_block_group_cache(fs_info);
3190	btrfs_free_block_groups(fs_info);
3191
3192fail_tree_roots:
3193	free_root_pointers(fs_info, 1);
 
 
3194	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3195
3196fail_sb_buffer:
3197	btrfs_stop_all_workers(fs_info);
 
3198fail_alloc:
3199fail_iput:
3200	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3201
3202	iput(fs_info->btree_inode);
3203fail_bio_counter:
3204	percpu_counter_destroy(&fs_info->bio_counter);
3205fail_delalloc_bytes:
3206	percpu_counter_destroy(&fs_info->delalloc_bytes);
3207fail_dirty_metadata_bytes:
3208	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3209fail_bdi:
3210	bdi_destroy(&fs_info->bdi);
3211fail_srcu:
3212	cleanup_srcu_struct(&fs_info->subvol_srcu);
3213fail:
3214	btrfs_free_stripe_hash_table(fs_info);
3215	btrfs_close_devices(fs_info->fs_devices);
3216	return err;
 
 
 
3217
3218recovery_tree_root:
3219	if (!btrfs_test_opt(tree_root, USEBACKUPROOT))
3220		goto fail_tree_roots;
 
 
 
3221
3222	free_root_pointers(fs_info, 0);
 
3223
3224	/* don't use the log in recovery mode, it won't be valid */
3225	btrfs_set_super_log_root(disk_super, 0);
 
 
 
 
 
 
 
 
 
 
3226
3227	/* we can't trust the free space cache either */
3228	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
 
3229
3230	ret = next_root_backup(fs_info, fs_info->super_copy,
3231			       &num_backups_tried, &backup_index);
3232	if (ret == -1)
3233		goto fail_block_groups;
3234	goto retry_root_backup;
3235}
3236
3237static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 
3238{
3239	if (uptodate) {
3240		set_buffer_uptodate(bh);
3241	} else {
3242		struct btrfs_device *device = (struct btrfs_device *)
3243			bh->b_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3244
3245		btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3246				"lost page write due to IO error on %s",
3247					  rcu_str_deref(device->name));
3248		/* note, we dont' set_buffer_write_io_error because we have
3249		 * our own ways of dealing with the IO errors
3250		 */
3251		clear_buffer_uptodate(bh);
3252		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
 
3253	}
3254	unlock_buffer(bh);
3255	put_bh(bh);
3256}
3257
3258int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3259			struct buffer_head **bh_ret)
3260{
3261	struct buffer_head *bh;
3262	struct btrfs_super_block *super;
3263	u64 bytenr;
3264
3265	bytenr = btrfs_sb_offset(copy_num);
3266	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3267		return -EINVAL;
3268
3269	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3270	/*
3271	 * If we fail to read from the underlying devices, as of now
3272	 * the best option we have is to mark it EIO.
3273	 */
3274	if (!bh)
3275		return -EIO;
3276
3277	super = (struct btrfs_super_block *)bh->b_data;
3278	if (btrfs_super_bytenr(super) != bytenr ||
3279		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3280		brelse(bh);
3281		return -EINVAL;
3282	}
3283
3284	*bh_ret = bh;
3285	return 0;
3286}
3287
3288
3289struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3290{
3291	struct buffer_head *bh;
3292	struct buffer_head *latest = NULL;
3293	struct btrfs_super_block *super;
3294	int i;
3295	u64 transid = 0;
3296	int ret = -EINVAL;
3297
3298	/* we would like to check all the supers, but that would make
3299	 * a btrfs mount succeed after a mkfs from a different FS.
3300	 * So, we need to add a special mount option to scan for
3301	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3302	 */
3303	for (i = 0; i < 1; i++) {
3304		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3305		if (ret)
3306			continue;
3307
3308		super = (struct btrfs_super_block *)bh->b_data;
3309
3310		if (!latest || btrfs_super_generation(super) > transid) {
3311			brelse(latest);
3312			latest = bh;
 
 
3313			transid = btrfs_super_generation(super);
3314		} else {
3315			brelse(bh);
3316		}
3317	}
3318
3319	if (!latest)
3320		return ERR_PTR(ret);
3321
3322	return latest;
3323}
3324
3325/*
3326 * this should be called twice, once with wait == 0 and
3327 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3328 * we write are pinned.
3329 *
3330 * They are released when wait == 1 is done.
3331 * max_mirrors must be the same for both runs, and it indicates how
3332 * many supers on this one device should be written.
3333 *
3334 * max_mirrors == 0 means to write them all.
3335 */
3336static int write_dev_supers(struct btrfs_device *device,
3337			    struct btrfs_super_block *sb,
3338			    int do_barriers, int wait, int max_mirrors)
3339{
3340	struct buffer_head *bh;
 
 
3341	int i;
3342	int ret;
3343	int errors = 0;
3344	u32 crc;
3345	u64 bytenr;
3346
3347	if (max_mirrors == 0)
3348		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3349
 
 
3350	for (i = 0; i < max_mirrors; i++) {
3351		bytenr = btrfs_sb_offset(i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3352		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3353		    device->commit_total_bytes)
3354			break;
3355
3356		if (wait) {
3357			bh = __find_get_block(device->bdev, bytenr / 4096,
3358					      BTRFS_SUPER_INFO_SIZE);
3359			if (!bh) {
3360				errors++;
3361				continue;
3362			}
3363			wait_on_buffer(bh);
3364			if (!buffer_uptodate(bh))
3365				errors++;
3366
3367			/* drop our reference */
3368			brelse(bh);
3369
3370			/* drop the reference from the wait == 0 run */
3371			brelse(bh);
 
 
 
 
 
 
3372			continue;
3373		} else {
3374			btrfs_set_super_bytenr(sb, bytenr);
3375
3376			crc = ~(u32)0;
3377			crc = btrfs_csum_data((char *)sb +
3378					      BTRFS_CSUM_SIZE, crc,
3379					      BTRFS_SUPER_INFO_SIZE -
3380					      BTRFS_CSUM_SIZE);
3381			btrfs_csum_final(crc, sb->csum);
3382
3383			/*
3384			 * one reference for us, and we leave it for the
3385			 * caller
3386			 */
3387			bh = __getblk(device->bdev, bytenr / 4096,
3388				      BTRFS_SUPER_INFO_SIZE);
3389			if (!bh) {
3390				btrfs_err(device->dev_root->fs_info,
3391				    "couldn't get super buffer head for bytenr %llu",
3392				    bytenr);
3393				errors++;
3394				continue;
3395			}
3396
3397			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
3398
3399			/* one reference for submit_bh */
3400			get_bh(bh);
 
 
 
 
 
 
3401
3402			set_buffer_uptodate(bh);
3403			lock_buffer(bh);
3404			bh->b_end_io = btrfs_end_buffer_write_sync;
3405			bh->b_private = device;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3406		}
 
 
 
3407
3408		/*
3409		 * we fua the first super.  The others we allow
3410		 * to go down lazy.
3411		 */
3412		if (i == 0)
3413			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3414		else
3415			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3416		if (ret)
 
 
3417			errors++;
 
 
 
 
 
 
 
 
 
3418	}
 
 
 
 
 
 
 
 
3419	return errors < i ? 0 : -1;
3420}
3421
3422/*
3423 * endio for the write_dev_flush, this will wake anyone waiting
3424 * for the barrier when it is done
3425 */
3426static void btrfs_end_empty_barrier(struct bio *bio)
3427{
3428	if (bio->bi_private)
3429		complete(bio->bi_private);
3430	bio_put(bio);
3431}
3432
3433/*
3434 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3435 * sent down.  With wait == 1, it waits for the previous flush.
3436 *
3437 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3438 * capable
3439 */
3440static int write_dev_flush(struct btrfs_device *device, int wait)
3441{
3442	struct bio *bio;
3443	int ret = 0;
3444
3445	if (device->nobarriers)
3446		return 0;
3447
3448	if (wait) {
3449		bio = device->flush_bio;
3450		if (!bio)
3451			return 0;
 
 
 
 
3452
3453		wait_for_completion(&device->flush_wait);
 
 
 
 
 
 
3454
3455		if (bio->bi_error) {
3456			ret = bio->bi_error;
3457			btrfs_dev_stat_inc_and_print(device,
3458				BTRFS_DEV_STAT_FLUSH_ERRS);
3459		}
3460
3461		/* drop the reference from the wait == 0 run */
3462		bio_put(bio);
3463		device->flush_bio = NULL;
3464
3465		return ret;
 
 
 
3466	}
3467
3468	/*
3469	 * one reference for us, and we leave it for the
3470	 * caller
3471	 */
3472	device->flush_bio = NULL;
3473	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3474	if (!bio)
3475		return -ENOMEM;
3476
3477	bio->bi_end_io = btrfs_end_empty_barrier;
3478	bio->bi_bdev = device->bdev;
3479	init_completion(&device->flush_wait);
3480	bio->bi_private = &device->flush_wait;
3481	device->flush_bio = bio;
3482
3483	bio_get(bio);
3484	btrfsic_submit_bio(WRITE_FLUSH, bio);
3485
3486	return 0;
3487}
3488
3489/*
3490 * send an empty flush down to each device in parallel,
3491 * then wait for them
3492 */
3493static int barrier_all_devices(struct btrfs_fs_info *info)
3494{
3495	struct list_head *head;
3496	struct btrfs_device *dev;
3497	int errors_send = 0;
3498	int errors_wait = 0;
3499	int ret;
3500
 
3501	/* send down all the barriers */
3502	head = &info->fs_devices->devices;
3503	list_for_each_entry_rcu(dev, head, dev_list) {
3504		if (dev->missing)
3505			continue;
3506		if (!dev->bdev) {
3507			errors_send++;
3508			continue;
3509		}
3510		if (!dev->in_fs_metadata || !dev->writeable)
3511			continue;
3512
3513		ret = write_dev_flush(dev, 0);
3514		if (ret)
3515			errors_send++;
3516	}
3517
3518	/* wait for all the barriers */
3519	list_for_each_entry_rcu(dev, head, dev_list) {
3520		if (dev->missing)
3521			continue;
3522		if (!dev->bdev) {
3523			errors_wait++;
3524			continue;
3525		}
3526		if (!dev->in_fs_metadata || !dev->writeable)
 
3527			continue;
3528
3529		ret = write_dev_flush(dev, 1);
3530		if (ret)
3531			errors_wait++;
3532	}
3533	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3534	    errors_wait > info->num_tolerated_disk_barrier_failures)
 
 
 
 
3535		return -EIO;
 
3536	return 0;
3537}
3538
3539int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3540{
3541	int raid_type;
3542	int min_tolerated = INT_MAX;
3543
3544	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3545	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3546		min_tolerated = min(min_tolerated,
3547				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3548				    tolerated_failures);
3549
3550	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3551		if (raid_type == BTRFS_RAID_SINGLE)
3552			continue;
3553		if (!(flags & btrfs_raid_group[raid_type]))
3554			continue;
3555		min_tolerated = min(min_tolerated,
3556				    btrfs_raid_array[raid_type].
3557				    tolerated_failures);
3558	}
3559
3560	if (min_tolerated == INT_MAX) {
3561		pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3562		min_tolerated = 0;
3563	}
3564
3565	return min_tolerated;
3566}
3567
3568int btrfs_calc_num_tolerated_disk_barrier_failures(
3569	struct btrfs_fs_info *fs_info)
3570{
3571	struct btrfs_ioctl_space_info space;
3572	struct btrfs_space_info *sinfo;
3573	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3574		       BTRFS_BLOCK_GROUP_SYSTEM,
3575		       BTRFS_BLOCK_GROUP_METADATA,
3576		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3577	int i;
3578	int c;
3579	int num_tolerated_disk_barrier_failures =
3580		(int)fs_info->fs_devices->num_devices;
3581
3582	for (i = 0; i < ARRAY_SIZE(types); i++) {
3583		struct btrfs_space_info *tmp;
3584
3585		sinfo = NULL;
3586		rcu_read_lock();
3587		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3588			if (tmp->flags == types[i]) {
3589				sinfo = tmp;
3590				break;
3591			}
3592		}
3593		rcu_read_unlock();
3594
3595		if (!sinfo)
3596			continue;
3597
3598		down_read(&sinfo->groups_sem);
3599		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3600			u64 flags;
3601
3602			if (list_empty(&sinfo->block_groups[c]))
3603				continue;
3604
3605			btrfs_get_block_group_info(&sinfo->block_groups[c],
3606						   &space);
3607			if (space.total_bytes == 0 || space.used_bytes == 0)
3608				continue;
3609			flags = space.flags;
3610
3611			num_tolerated_disk_barrier_failures = min(
3612				num_tolerated_disk_barrier_failures,
3613				btrfs_get_num_tolerated_disk_barrier_failures(
3614					flags));
3615		}
3616		up_read(&sinfo->groups_sem);
3617	}
3618
3619	return num_tolerated_disk_barrier_failures;
3620}
3621
3622static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3623{
3624	struct list_head *head;
3625	struct btrfs_device *dev;
3626	struct btrfs_super_block *sb;
3627	struct btrfs_dev_item *dev_item;
3628	int ret;
3629	int do_barriers;
3630	int max_errors;
3631	int total_errors = 0;
3632	u64 flags;
3633
3634	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3635	backup_super_roots(root->fs_info);
 
 
 
 
 
 
 
3636
3637	sb = root->fs_info->super_for_commit;
3638	dev_item = &sb->dev_item;
3639
3640	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3641	head = &root->fs_info->fs_devices->devices;
3642	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3643
3644	if (do_barriers) {
3645		ret = barrier_all_devices(root->fs_info);
3646		if (ret) {
3647			mutex_unlock(
3648				&root->fs_info->fs_devices->device_list_mutex);
3649			btrfs_std_error(root->fs_info, ret,
3650				    "errors while submitting device barriers.");
3651			return ret;
3652		}
3653	}
3654
3655	list_for_each_entry_rcu(dev, head, dev_list) {
3656		if (!dev->bdev) {
3657			total_errors++;
3658			continue;
3659		}
3660		if (!dev->in_fs_metadata || !dev->writeable)
 
3661			continue;
3662
3663		btrfs_set_stack_device_generation(dev_item, 0);
3664		btrfs_set_stack_device_type(dev_item, dev->type);
3665		btrfs_set_stack_device_id(dev_item, dev->devid);
3666		btrfs_set_stack_device_total_bytes(dev_item,
3667						   dev->commit_total_bytes);
3668		btrfs_set_stack_device_bytes_used(dev_item,
3669						  dev->commit_bytes_used);
3670		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3671		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3672		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3673		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3674		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
 
3675
3676		flags = btrfs_super_flags(sb);
3677		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3678
3679		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
 
 
 
 
 
 
 
 
3680		if (ret)
3681			total_errors++;
3682	}
3683	if (total_errors > max_errors) {
3684		btrfs_err(root->fs_info, "%d errors while writing supers",
3685		       total_errors);
3686		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3687
3688		/* FUA is masked off if unsupported and can't be the reason */
3689		btrfs_std_error(root->fs_info, -EIO,
3690			    "%d errors while writing supers", total_errors);
 
3691		return -EIO;
3692	}
3693
3694	total_errors = 0;
3695	list_for_each_entry_rcu(dev, head, dev_list) {
3696		if (!dev->bdev)
3697			continue;
3698		if (!dev->in_fs_metadata || !dev->writeable)
 
3699			continue;
3700
3701		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3702		if (ret)
3703			total_errors++;
3704	}
3705	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3706	if (total_errors > max_errors) {
3707		btrfs_std_error(root->fs_info, -EIO,
3708			    "%d errors while writing supers", total_errors);
 
3709		return -EIO;
3710	}
3711	return 0;
3712}
3713
3714int write_ctree_super(struct btrfs_trans_handle *trans,
3715		      struct btrfs_root *root, int max_mirrors)
3716{
3717	return write_all_supers(root, max_mirrors);
3718}
3719
3720/* Drop a fs root from the radix tree and free it. */
3721void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3722				  struct btrfs_root *root)
3723{
 
 
3724	spin_lock(&fs_info->fs_roots_radix_lock);
3725	radix_tree_delete(&fs_info->fs_roots_radix,
3726			  (unsigned long)root->root_key.objectid);
 
 
3727	spin_unlock(&fs_info->fs_roots_radix_lock);
3728
3729	if (btrfs_root_refs(&root->root_item) == 0)
3730		synchronize_srcu(&fs_info->subvol_srcu);
3731
3732	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3733		btrfs_free_log(NULL, root);
3734
3735	if (root->free_ino_pinned)
3736		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3737	if (root->free_ino_ctl)
3738		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3739	free_fs_root(root);
3740}
3741
3742static void free_fs_root(struct btrfs_root *root)
3743{
3744	iput(root->ino_cache_inode);
3745	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3746	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3747	root->orphan_block_rsv = NULL;
3748	if (root->anon_dev)
3749		free_anon_bdev(root->anon_dev);
3750	if (root->subv_writers)
3751		btrfs_free_subvolume_writers(root->subv_writers);
3752	free_extent_buffer(root->node);
3753	free_extent_buffer(root->commit_root);
3754	kfree(root->free_ino_ctl);
3755	kfree(root->free_ino_pinned);
3756	kfree(root->name);
3757	btrfs_put_fs_root(root);
3758}
3759
3760void btrfs_free_fs_root(struct btrfs_root *root)
3761{
3762	free_fs_root(root);
3763}
3764
3765int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3766{
3767	u64 root_objectid = 0;
3768	struct btrfs_root *gang[8];
3769	int i = 0;
3770	int err = 0;
3771	unsigned int ret = 0;
3772	int index;
3773
3774	while (1) {
3775		index = srcu_read_lock(&fs_info->subvol_srcu);
3776		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3777					     (void **)gang, root_objectid,
3778					     ARRAY_SIZE(gang));
3779		if (!ret) {
3780			srcu_read_unlock(&fs_info->subvol_srcu, index);
3781			break;
3782		}
3783		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3784
3785		for (i = 0; i < ret; i++) {
3786			/* Avoid to grab roots in dead_roots */
3787			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3788				gang[i] = NULL;
3789				continue;
3790			}
3791			/* grab all the search result for later use */
3792			gang[i] = btrfs_grab_fs_root(gang[i]);
3793		}
3794		srcu_read_unlock(&fs_info->subvol_srcu, index);
3795
3796		for (i = 0; i < ret; i++) {
3797			if (!gang[i])
3798				continue;
3799			root_objectid = gang[i]->root_key.objectid;
3800			err = btrfs_orphan_cleanup(gang[i]);
3801			if (err)
3802				break;
3803			btrfs_put_fs_root(gang[i]);
3804		}
3805		root_objectid++;
3806	}
3807
3808	/* release the uncleaned roots due to error */
3809	for (; i < ret; i++) {
3810		if (gang[i])
3811			btrfs_put_fs_root(gang[i]);
3812	}
3813	return err;
3814}
3815
3816int btrfs_commit_super(struct btrfs_root *root)
3817{
 
3818	struct btrfs_trans_handle *trans;
3819
3820	mutex_lock(&root->fs_info->cleaner_mutex);
3821	btrfs_run_delayed_iputs(root);
3822	mutex_unlock(&root->fs_info->cleaner_mutex);
3823	wake_up_process(root->fs_info->cleaner_kthread);
3824
3825	/* wait until ongoing cleanup work done */
3826	down_write(&root->fs_info->cleanup_work_sem);
3827	up_write(&root->fs_info->cleanup_work_sem);
3828
3829	trans = btrfs_join_transaction(root);
3830	if (IS_ERR(trans))
3831		return PTR_ERR(trans);
3832	return btrfs_commit_transaction(trans, root);
3833}
3834
3835void close_ctree(struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3836{
3837	struct btrfs_fs_info *fs_info = root->fs_info;
3838	int ret;
3839
3840	fs_info->closing = 1;
3841	smp_mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3842
3843	/* wait for the qgroup rescan worker to stop */
3844	btrfs_qgroup_wait_for_completion(fs_info);
3845
3846	/* wait for the uuid_scan task to finish */
3847	down(&fs_info->uuid_tree_rescan_sem);
3848	/* avoid complains from lockdep et al., set sem back to initial state */
3849	up(&fs_info->uuid_tree_rescan_sem);
3850
3851	/* pause restriper - we want to resume on mount */
3852	btrfs_pause_balance(fs_info);
3853
3854	btrfs_dev_replace_suspend_for_unmount(fs_info);
3855
3856	btrfs_scrub_cancel(fs_info);
3857
3858	/* wait for any defraggers to finish */
3859	wait_event(fs_info->transaction_wait,
3860		   (atomic_read(&fs_info->defrag_running) == 0));
3861
3862	/* clear out the rbtree of defraggable inodes */
3863	btrfs_cleanup_defrag_inodes(fs_info);
3864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3865	cancel_work_sync(&fs_info->async_reclaim_work);
 
 
3866
3867	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
 
 
 
3868		/*
3869		 * If the cleaner thread is stopped and there are
3870		 * block groups queued for removal, the deletion will be
3871		 * skipped when we quit the cleaner thread.
3872		 */
3873		btrfs_delete_unused_bgs(root->fs_info);
3874
3875		ret = btrfs_commit_super(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
3876		if (ret)
3877			btrfs_err(fs_info, "commit super ret %d", ret);
3878	}
3879
3880	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3881		btrfs_error_commit_super(root);
3882
3883	kthread_stop(fs_info->transaction_kthread);
3884	kthread_stop(fs_info->cleaner_kthread);
3885
3886	fs_info->closing = 2;
3887	smp_mb();
 
 
 
 
 
3888
3889	btrfs_free_qgroup_config(fs_info);
 
3890
3891	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3892		btrfs_info(fs_info, "at unmount delalloc count %lld",
3893		       percpu_counter_sum(&fs_info->delalloc_bytes));
3894	}
3895
 
 
 
 
3896	btrfs_sysfs_remove_mounted(fs_info);
3897	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3898
3899	btrfs_free_fs_roots(fs_info);
3900
3901	btrfs_put_block_group_cache(fs_info);
3902
3903	btrfs_free_block_groups(fs_info);
3904
3905	/*
3906	 * we must make sure there is not any read request to
3907	 * submit after we stopping all workers.
3908	 */
3909	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3910	btrfs_stop_all_workers(fs_info);
3911
3912	fs_info->open = 0;
3913	free_root_pointers(fs_info, 1);
3914
3915	iput(fs_info->btree_inode);
3916
3917#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3918	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3919		btrfsic_unmount(root, fs_info->fs_devices);
3920#endif
3921
3922	btrfs_close_devices(fs_info->fs_devices);
3923	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3924
3925	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3926	percpu_counter_destroy(&fs_info->delalloc_bytes);
3927	percpu_counter_destroy(&fs_info->bio_counter);
3928	bdi_destroy(&fs_info->bdi);
3929	cleanup_srcu_struct(&fs_info->subvol_srcu);
3930
3931	btrfs_free_stripe_hash_table(fs_info);
3932
3933	__btrfs_free_block_rsv(root->orphan_block_rsv);
3934	root->orphan_block_rsv = NULL;
3935
3936	lock_chunks(root);
3937	while (!list_empty(&fs_info->pinned_chunks)) {
3938		struct extent_map *em;
3939
3940		em = list_first_entry(&fs_info->pinned_chunks,
3941				      struct extent_map, list);
3942		list_del_init(&em->list);
3943		free_extent_map(em);
3944	}
3945	unlock_chunks(root);
3946}
3947
3948int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3949			  int atomic)
3950{
3951	int ret;
3952	struct inode *btree_inode = buf->pages[0]->mapping->host;
 
 
 
3953
3954	ret = extent_buffer_uptodate(buf);
3955	if (!ret)
3956		return ret;
3957
3958	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3959				    parent_transid, atomic);
3960	if (ret == -EAGAIN)
3961		return ret;
3962	return !ret;
3963}
3964
3965void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
 
3966{
3967	struct btrfs_root *root;
3968	u64 transid = btrfs_header_generation(buf);
3969	int was_dirty;
3970
3971#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3972	/*
3973	 * This is a fast path so only do this check if we have sanity tests
3974	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3975	 * outside of the sanity tests.
3976	 */
3977	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3978		return;
3979#endif
3980	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3981	btrfs_assert_tree_locked(buf);
3982	if (transid != root->fs_info->generation)
3983		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3984		       "found %llu running %llu\n",
3985			buf->start, transid, root->fs_info->generation);
3986	was_dirty = set_extent_buffer_dirty(buf);
3987	if (!was_dirty)
3988		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3989				     buf->len,
3990				     root->fs_info->dirty_metadata_batch);
3991#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3992	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3993		btrfs_print_leaf(root, buf);
3994		ASSERT(0);
3995	}
3996#endif
3997}
3998
3999static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4000					int flush_delayed)
4001{
4002	/*
4003	 * looks as though older kernels can get into trouble with
4004	 * this code, they end up stuck in balance_dirty_pages forever
4005	 */
4006	int ret;
4007
4008	if (current->flags & PF_MEMALLOC)
4009		return;
4010
4011	if (flush_delayed)
4012		btrfs_balance_delayed_items(root);
4013
4014	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4015				     BTRFS_DIRTY_METADATA_THRESH);
 
4016	if (ret > 0) {
4017		balance_dirty_pages_ratelimited(
4018				   root->fs_info->btree_inode->i_mapping);
4019	}
4020}
4021
4022void btrfs_btree_balance_dirty(struct btrfs_root *root)
4023{
4024	__btrfs_btree_balance_dirty(root, 1);
4025}
4026
4027void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4028{
4029	__btrfs_btree_balance_dirty(root, 0);
4030}
4031
4032int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4033{
4034	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4035	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
4036}
4037
4038static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4039			      int read_only)
4040{
4041	struct btrfs_super_block *sb = fs_info->super_copy;
4042	u64 nodesize = btrfs_super_nodesize(sb);
4043	u64 sectorsize = btrfs_super_sectorsize(sb);
4044	int ret = 0;
4045
4046	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4047		printk(KERN_ERR "BTRFS: no valid FS found\n");
4048		ret = -EINVAL;
4049	}
4050	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4051		printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
4052				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4053	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4054		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4055				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4056		ret = -EINVAL;
4057	}
4058	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4059		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4060				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4061		ret = -EINVAL;
4062	}
4063	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4064		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4065				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4066		ret = -EINVAL;
4067	}
4068
4069	/*
4070	 * Check sectorsize and nodesize first, other check will need it.
4071	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4072	 */
4073	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4074	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4075		printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
4076		ret = -EINVAL;
4077	}
4078	/* Only PAGE SIZE is supported yet */
4079	if (sectorsize != PAGE_SIZE) {
4080		printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
4081				sectorsize, PAGE_SIZE);
4082		ret = -EINVAL;
4083	}
4084	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4085	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4086		printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
4087		ret = -EINVAL;
4088	}
4089	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4090		printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
4091				le32_to_cpu(sb->__unused_leafsize),
4092				nodesize);
4093		ret = -EINVAL;
4094	}
4095
4096	/* Root alignment check */
4097	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4098		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
4099				btrfs_super_root(sb));
4100		ret = -EINVAL;
4101	}
4102	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4103		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4104				btrfs_super_chunk_root(sb));
4105		ret = -EINVAL;
4106	}
4107	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4108		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
4109				btrfs_super_log_root(sb));
4110		ret = -EINVAL;
4111	}
4112
4113	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4114		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4115				fs_info->fsid, sb->dev_item.fsid);
4116		ret = -EINVAL;
4117	}
4118
4119	/*
4120	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4121	 * done later
4122	 */
4123	if (btrfs_super_num_devices(sb) > (1UL << 31))
4124		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
4125				btrfs_super_num_devices(sb));
4126	if (btrfs_super_num_devices(sb) == 0) {
4127		printk(KERN_ERR "BTRFS: number of devices is 0\n");
4128		ret = -EINVAL;
4129	}
4130
4131	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4132		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
4133				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4134		ret = -EINVAL;
4135	}
4136
4137	/*
4138	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4139	 * and one chunk
4140	 */
4141	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4142		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4143				btrfs_super_sys_array_size(sb),
4144				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4145		ret = -EINVAL;
4146	}
4147	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4148			+ sizeof(struct btrfs_chunk)) {
4149		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4150				btrfs_super_sys_array_size(sb),
4151				sizeof(struct btrfs_disk_key)
4152				+ sizeof(struct btrfs_chunk));
4153		ret = -EINVAL;
4154	}
4155
4156	/*
4157	 * The generation is a global counter, we'll trust it more than the others
4158	 * but it's still possible that it's the one that's wrong.
4159	 */
4160	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4161		printk(KERN_WARNING
4162			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4163			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4164	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4165	    && btrfs_super_cache_generation(sb) != (u64)-1)
4166		printk(KERN_WARNING
4167			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4168			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4169
4170	return ret;
 
4171}
4172
4173static void btrfs_error_commit_super(struct btrfs_root *root)
4174{
4175	mutex_lock(&root->fs_info->cleaner_mutex);
4176	btrfs_run_delayed_iputs(root);
4177	mutex_unlock(&root->fs_info->cleaner_mutex);
4178
4179	down_write(&root->fs_info->cleanup_work_sem);
4180	up_write(&root->fs_info->cleanup_work_sem);
 
 
 
4181
4182	/* cleanup FS via transaction */
4183	btrfs_cleanup_transaction(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4184}
4185
4186static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4187{
4188	struct btrfs_ordered_extent *ordered;
4189
4190	spin_lock(&root->ordered_extent_lock);
4191	/*
4192	 * This will just short circuit the ordered completion stuff which will
4193	 * make sure the ordered extent gets properly cleaned up.
4194	 */
4195	list_for_each_entry(ordered, &root->ordered_extents,
4196			    root_extent_list)
4197		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4198	spin_unlock(&root->ordered_extent_lock);
4199}
4200
4201static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4202{
4203	struct btrfs_root *root;
4204	struct list_head splice;
4205
4206	INIT_LIST_HEAD(&splice);
4207
4208	spin_lock(&fs_info->ordered_root_lock);
4209	list_splice_init(&fs_info->ordered_roots, &splice);
4210	while (!list_empty(&splice)) {
4211		root = list_first_entry(&splice, struct btrfs_root,
4212					ordered_root);
4213		list_move_tail(&root->ordered_root,
4214			       &fs_info->ordered_roots);
4215
4216		spin_unlock(&fs_info->ordered_root_lock);
4217		btrfs_destroy_ordered_extents(root);
4218
4219		cond_resched();
4220		spin_lock(&fs_info->ordered_root_lock);
4221	}
4222	spin_unlock(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
4223}
4224
4225static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4226				      struct btrfs_root *root)
4227{
4228	struct rb_node *node;
4229	struct btrfs_delayed_ref_root *delayed_refs;
4230	struct btrfs_delayed_ref_node *ref;
4231	int ret = 0;
4232
4233	delayed_refs = &trans->delayed_refs;
4234
4235	spin_lock(&delayed_refs->lock);
4236	if (atomic_read(&delayed_refs->num_entries) == 0) {
4237		spin_unlock(&delayed_refs->lock);
4238		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4239		return ret;
4240	}
4241
4242	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4243		struct btrfs_delayed_ref_head *head;
4244		struct btrfs_delayed_ref_node *tmp;
4245		bool pin_bytes = false;
4246
4247		head = rb_entry(node, struct btrfs_delayed_ref_head,
4248				href_node);
4249		if (!mutex_trylock(&head->mutex)) {
4250			atomic_inc(&head->node.refs);
4251			spin_unlock(&delayed_refs->lock);
4252
4253			mutex_lock(&head->mutex);
4254			mutex_unlock(&head->mutex);
4255			btrfs_put_delayed_ref(&head->node);
4256			spin_lock(&delayed_refs->lock);
4257			continue;
4258		}
4259		spin_lock(&head->lock);
4260		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4261						 list) {
4262			ref->in_tree = 0;
4263			list_del(&ref->list);
 
 
 
4264			atomic_dec(&delayed_refs->num_entries);
4265			btrfs_put_delayed_ref(ref);
 
4266		}
4267		if (head->must_insert_reserved)
4268			pin_bytes = true;
4269		btrfs_free_delayed_extent_op(head->extent_op);
4270		delayed_refs->num_heads--;
4271		if (head->processing == 0)
4272			delayed_refs->num_heads_ready--;
4273		atomic_dec(&delayed_refs->num_entries);
4274		head->node.in_tree = 0;
4275		rb_erase(&head->href_node, &delayed_refs->href_root);
4276		spin_unlock(&head->lock);
4277		spin_unlock(&delayed_refs->lock);
4278		mutex_unlock(&head->mutex);
4279
4280		if (pin_bytes)
4281			btrfs_pin_extent(root, head->node.bytenr,
4282					 head->node.num_bytes, 1);
4283		btrfs_put_delayed_ref(&head->node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4284		cond_resched();
4285		spin_lock(&delayed_refs->lock);
4286	}
 
4287
4288	spin_unlock(&delayed_refs->lock);
4289
4290	return ret;
4291}
4292
4293static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4294{
4295	struct btrfs_inode *btrfs_inode;
4296	struct list_head splice;
4297
4298	INIT_LIST_HEAD(&splice);
4299
4300	spin_lock(&root->delalloc_lock);
4301	list_splice_init(&root->delalloc_inodes, &splice);
4302
4303	while (!list_empty(&splice)) {
 
4304		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4305					       delalloc_inodes);
4306
4307		list_del_init(&btrfs_inode->delalloc_inodes);
4308		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4309			  &btrfs_inode->runtime_flags);
4310		spin_unlock(&root->delalloc_lock);
4311
4312		btrfs_invalidate_inodes(btrfs_inode->root);
4313
 
 
 
 
 
 
 
 
 
 
 
4314		spin_lock(&root->delalloc_lock);
4315	}
4316
4317	spin_unlock(&root->delalloc_lock);
4318}
4319
4320static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4321{
4322	struct btrfs_root *root;
4323	struct list_head splice;
4324
4325	INIT_LIST_HEAD(&splice);
4326
4327	spin_lock(&fs_info->delalloc_root_lock);
4328	list_splice_init(&fs_info->delalloc_roots, &splice);
4329	while (!list_empty(&splice)) {
4330		root = list_first_entry(&splice, struct btrfs_root,
4331					 delalloc_root);
4332		list_del_init(&root->delalloc_root);
4333		root = btrfs_grab_fs_root(root);
4334		BUG_ON(!root);
4335		spin_unlock(&fs_info->delalloc_root_lock);
4336
4337		btrfs_destroy_delalloc_inodes(root);
4338		btrfs_put_fs_root(root);
4339
4340		spin_lock(&fs_info->delalloc_root_lock);
4341	}
4342	spin_unlock(&fs_info->delalloc_root_lock);
4343}
4344
4345static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4346					struct extent_io_tree *dirty_pages,
4347					int mark)
4348{
4349	int ret;
4350	struct extent_buffer *eb;
4351	u64 start = 0;
4352	u64 end;
4353
4354	while (1) {
4355		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4356					    mark, NULL);
4357		if (ret)
4358			break;
4359
4360		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4361		while (start <= end) {
4362			eb = btrfs_find_tree_block(root->fs_info, start);
4363			start += root->nodesize;
4364			if (!eb)
4365				continue;
 
 
4366			wait_on_extent_buffer_writeback(eb);
 
 
4367
4368			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4369					       &eb->bflags))
4370				clear_extent_buffer_dirty(eb);
4371			free_extent_buffer_stale(eb);
4372		}
4373	}
4374
4375	return ret;
4376}
4377
4378static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4379				       struct extent_io_tree *pinned_extents)
4380{
4381	struct extent_io_tree *unpin;
4382	u64 start;
4383	u64 end;
4384	int ret;
4385	bool loop = true;
4386
4387	unpin = pinned_extents;
4388again:
4389	while (1) {
4390		ret = find_first_extent_bit(unpin, 0, &start, &end,
4391					    EXTENT_DIRTY, NULL);
4392		if (ret)
 
 
 
 
 
 
 
 
 
4393			break;
 
4394
4395		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4396		btrfs_error_unpin_extent_range(root, start, end);
 
 
4397		cond_resched();
4398	}
 
4399
4400	if (loop) {
4401		if (unpin == &root->fs_info->freed_extents[0])
4402			unpin = &root->fs_info->freed_extents[1];
4403		else
4404			unpin = &root->fs_info->freed_extents[0];
4405		loop = false;
4406		goto again;
 
 
 
 
 
 
 
 
4407	}
 
 
 
4408
4409	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4410}
4411
4412void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4413				   struct btrfs_root *root)
4414{
4415	btrfs_destroy_delayed_refs(cur_trans, root);
 
 
 
 
 
 
 
 
 
 
 
4416
4417	cur_trans->state = TRANS_STATE_COMMIT_START;
4418	wake_up(&root->fs_info->transaction_blocked_wait);
4419
4420	cur_trans->state = TRANS_STATE_UNBLOCKED;
4421	wake_up(&root->fs_info->transaction_wait);
4422
4423	btrfs_destroy_delayed_inodes(root);
4424	btrfs_assert_delayed_root_empty(root);
4425
4426	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4427				     EXTENT_DIRTY);
4428	btrfs_destroy_pinned_extent(root,
4429				    root->fs_info->pinned_extents);
 
4430
4431	cur_trans->state =TRANS_STATE_COMPLETED;
4432	wake_up(&cur_trans->commit_wait);
4433
4434	/*
4435	memset(cur_trans, 0, sizeof(*cur_trans));
4436	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4437	*/
4438}
4439
4440static int btrfs_cleanup_transaction(struct btrfs_root *root)
4441{
4442	struct btrfs_transaction *t;
4443
4444	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4445
4446	spin_lock(&root->fs_info->trans_lock);
4447	while (!list_empty(&root->fs_info->trans_list)) {
4448		t = list_first_entry(&root->fs_info->trans_list,
4449				     struct btrfs_transaction, list);
4450		if (t->state >= TRANS_STATE_COMMIT_START) {
4451			atomic_inc(&t->use_count);
4452			spin_unlock(&root->fs_info->trans_lock);
4453			btrfs_wait_for_commit(root, t->transid);
4454			btrfs_put_transaction(t);
4455			spin_lock(&root->fs_info->trans_lock);
4456			continue;
4457		}
4458		if (t == root->fs_info->running_transaction) {
4459			t->state = TRANS_STATE_COMMIT_DOING;
4460			spin_unlock(&root->fs_info->trans_lock);
4461			/*
4462			 * We wait for 0 num_writers since we don't hold a trans
4463			 * handle open currently for this transaction.
4464			 */
4465			wait_event(t->writer_wait,
4466				   atomic_read(&t->num_writers) == 0);
4467		} else {
4468			spin_unlock(&root->fs_info->trans_lock);
4469		}
4470		btrfs_cleanup_one_transaction(t, root);
4471
4472		spin_lock(&root->fs_info->trans_lock);
4473		if (t == root->fs_info->running_transaction)
4474			root->fs_info->running_transaction = NULL;
4475		list_del_init(&t->list);
4476		spin_unlock(&root->fs_info->trans_lock);
4477
4478		btrfs_put_transaction(t);
4479		trace_btrfs_transaction_commit(root);
4480		spin_lock(&root->fs_info->trans_lock);
4481	}
4482	spin_unlock(&root->fs_info->trans_lock);
4483	btrfs_destroy_all_ordered_extents(root->fs_info);
4484	btrfs_destroy_delayed_inodes(root);
4485	btrfs_assert_delayed_root_empty(root);
4486	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4487	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4488	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4489
4490	return 0;
4491}
4492
4493static const struct extent_io_ops btree_extent_io_ops = {
4494	.readpage_end_io_hook = btree_readpage_end_io_hook,
4495	.readpage_io_failed_hook = btree_io_failed_hook,
4496	.submit_bio_hook = btree_submit_bio_hook,
4497	/* note we're sharing with inode.c for the merge bio hook */
4498	.merge_bio_hook = btrfs_merge_bio_hook,
4499};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
 
 
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
 
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <asm/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
 
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "bio.h"
  27#include "print-tree.h"
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
 
 
 
  32#include "dev-replace.h"
  33#include "raid56.h"
  34#include "sysfs.h"
  35#include "qgroup.h"
  36#include "compression.h"
  37#include "tree-checker.h"
  38#include "ref-verify.h"
  39#include "block-group.h"
  40#include "discard.h"
  41#include "space-info.h"
  42#include "zoned.h"
  43#include "subpage.h"
  44#include "fs.h"
  45#include "accessors.h"
  46#include "extent-tree.h"
  47#include "root-tree.h"
  48#include "defrag.h"
  49#include "uuid-tree.h"
  50#include "relocation.h"
  51#include "scrub.h"
  52#include "super.h"
  53
  54#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  55				 BTRFS_HEADER_FLAG_RELOC |\
  56				 BTRFS_SUPER_FLAG_ERROR |\
  57				 BTRFS_SUPER_FLAG_SEEDING |\
  58				 BTRFS_SUPER_FLAG_METADUMP |\
  59				 BTRFS_SUPER_FLAG_METADUMP_V2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  62static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
  65{
  66	if (fs_info->csum_shash)
  67		crypto_free_shash(fs_info->csum_shash);
  68}
  69
  70/*
  71 * Compute the csum of a btree block and store the result to provided buffer.
 
 
  72 */
  73static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74{
  75	struct btrfs_fs_info *fs_info = buf->fs_info;
  76	int num_pages;
  77	u32 first_page_part;
  78	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
  79	char *kaddr;
  80	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82	shash->tfm = fs_info->csum_shash;
  83	crypto_shash_init(shash);
 
 
  84
  85	if (buf->addr) {
  86		/* Pages are contiguous, handle them as a big one. */
  87		kaddr = buf->addr;
  88		first_page_part = fs_info->nodesize;
  89		num_pages = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90	} else {
  91		kaddr = folio_address(buf->folios[0]);
  92		first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
  93		num_pages = num_extent_pages(buf);
  94	}
  95
  96	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
  97			    first_page_part - BTRFS_CSUM_SIZE);
  98
  99	/*
 100	 * Multiple single-page folios case would reach here.
 101	 *
 102	 * nodesize <= PAGE_SIZE and large folio all handled by above
 103	 * crypto_shash_update() already.
 104	 */
 105	for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
 106		kaddr = folio_address(buf->folios[i]);
 107		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 108	}
 109	memset(result, 0, BTRFS_CSUM_SIZE);
 110	crypto_shash_final(shash, result);
 
 111}
 112
 113/*
 114 * we can't consider a given block up to date unless the transid of the
 115 * block matches the transid in the parent node's pointer.  This is how we
 116 * detect blocks that either didn't get written at all or got written
 117 * in the wrong place.
 118 */
 119int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
 
 
 120{
 121	if (!extent_buffer_uptodate(eb))
 122		return 0;
 
 123
 124	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 125		return 1;
 126
 127	if (atomic)
 128		return -EAGAIN;
 129
 130	if (!extent_buffer_uptodate(eb) ||
 131	    btrfs_header_generation(eb) != parent_transid) {
 132		btrfs_err_rl(eb->fs_info,
 133"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 134			eb->start, eb->read_mirror,
 135			parent_transid, btrfs_header_generation(eb));
 136		clear_extent_buffer_uptodate(eb);
 137		return 0;
 138	}
 139	return 1;
 140}
 141
 142static bool btrfs_supported_super_csum(u16 csum_type)
 143{
 144	switch (csum_type) {
 145	case BTRFS_CSUM_TYPE_CRC32:
 146	case BTRFS_CSUM_TYPE_XXHASH:
 147	case BTRFS_CSUM_TYPE_SHA256:
 148	case BTRFS_CSUM_TYPE_BLAKE2:
 149		return true;
 150	default:
 151		return false;
 152	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 153}
 154
 155/*
 156 * Return 0 if the superblock checksum type matches the checksum value of that
 157 * algorithm. Pass the raw disk superblock data.
 158 */
 159int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 160			   const struct btrfs_super_block *disk_sb)
 161{
 162	char result[BTRFS_CSUM_SIZE];
 163	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
 
 164
 165	shash->tfm = fs_info->csum_shash;
 
 
 
 166
 167	/*
 168	 * The super_block structure does not span the whole
 169	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 170	 * filled with zeros and is included in the checksum.
 171	 */
 172	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
 173			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 174
 175	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
 176		return 1;
 177
 178	return 0;
 179}
 180
 181static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
 182				      int mirror_num)
 183{
 184	struct btrfs_fs_info *fs_info = eb->fs_info;
 185	int num_folios = num_extent_folios(eb);
 186	int ret = 0;
 187
 188	if (sb_rdonly(fs_info->sb))
 189		return -EROFS;
 190
 191	for (int i = 0; i < num_folios; i++) {
 192		struct folio *folio = eb->folios[i];
 193		u64 start = max_t(u64, eb->start, folio_pos(folio));
 194		u64 end = min_t(u64, eb->start + eb->len,
 195				folio_pos(folio) + eb->folio_size);
 196		u32 len = end - start;
 197
 198		ret = btrfs_repair_io_failure(fs_info, 0, start, len,
 199					      start, folio, offset_in_folio(folio, start),
 200					      mirror_num);
 201		if (ret)
 202			break;
 203	}
 204
 205	return ret;
 206}
 207
 208/*
 209 * helper to read a given tree block, doing retries as required when
 210 * the checksums don't match and we have alternate mirrors to try.
 211 *
 212 * @check:		expected tree parentness check, see the comments of the
 213 *			structure for details.
 214 */
 215int btrfs_read_extent_buffer(struct extent_buffer *eb,
 216			     struct btrfs_tree_parent_check *check)
 
 217{
 218	struct btrfs_fs_info *fs_info = eb->fs_info;
 219	int failed = 0;
 220	int ret;
 221	int num_copies = 0;
 222	int mirror_num = 0;
 223	int failed_mirror = 0;
 224
 225	ASSERT(check);
 
 
 
 
 
 
 
 
 
 
 
 
 226
 227	while (1) {
 228		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 229		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
 230		if (!ret)
 
 
 231			break;
 232
 233		num_copies = btrfs_num_copies(fs_info,
 234					      eb->start, eb->len);
 235		if (num_copies == 1)
 236			break;
 237
 238		if (!failed_mirror) {
 239			failed = 1;
 240			failed_mirror = eb->read_mirror;
 241		}
 242
 243		mirror_num++;
 244		if (mirror_num == failed_mirror)
 245			mirror_num++;
 246
 247		if (mirror_num > num_copies)
 248			break;
 249	}
 250
 251	if (failed && !ret && failed_mirror)
 252		btrfs_repair_eb_io_failure(eb, failed_mirror);
 253
 254	return ret;
 255}
 256
 257/*
 258 * Checksum a dirty tree block before IO.
 
 259 */
 260blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
 
 261{
 262	struct extent_buffer *eb = bbio->private;
 263	struct btrfs_fs_info *fs_info = eb->fs_info;
 264	u64 found_start = btrfs_header_bytenr(eb);
 265	u64 last_trans;
 266	u8 result[BTRFS_CSUM_SIZE];
 267	int ret;
 
 
 
 
 
 
 
 
 
 
 
 268
 269	/* Btree blocks are always contiguous on disk. */
 270	if (WARN_ON_ONCE(bbio->file_offset != eb->start))
 271		return BLK_STS_IOERR;
 272	if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
 273		return BLK_STS_IOERR;
 274
 275	/*
 276	 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
 277	 * checksum it but zero-out its content. This is done to preserve
 278	 * ordering of I/O without unnecessarily writing out data.
 279	 */
 280	if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
 281		memzero_extent_buffer(eb, 0, eb->len);
 282		return BLK_STS_OK;
 283	}
 284
 285	if (WARN_ON_ONCE(found_start != eb->start))
 286		return BLK_STS_IOERR;
 287	if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
 288					       eb->start, eb->len)))
 289		return BLK_STS_IOERR;
 290
 291	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 292				    offsetof(struct btrfs_header, fsid),
 293				    BTRFS_FSID_SIZE) == 0);
 294	csum_tree_block(eb, result);
 295
 296	if (btrfs_header_level(eb))
 297		ret = btrfs_check_node(eb);
 298	else
 299		ret = btrfs_check_leaf(eb);
 300
 301	if (ret < 0)
 302		goto error;
 
 
 
 
 303
 304	/*
 305	 * Also check the generation, the eb reached here must be newer than
 306	 * last committed. Or something seriously wrong happened.
 307	 */
 308	last_trans = btrfs_get_last_trans_committed(fs_info);
 309	if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
 310		ret = -EUCLEAN;
 311		btrfs_err(fs_info,
 312			"block=%llu bad generation, have %llu expect > %llu",
 313			  eb->start, btrfs_header_generation(eb), last_trans);
 314		goto error;
 315	}
 316	write_extent_buffer(eb, result, 0, fs_info->csum_size);
 317	return BLK_STS_OK;
 318
 319error:
 320	btrfs_print_tree(eb, 0);
 321	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
 322		  eb->start);
 323	/*
 324	 * Be noisy if this is an extent buffer from a log tree. We don't abort
 325	 * a transaction in case there's a bad log tree extent buffer, we just
 326	 * fallback to a transaction commit. Still we want to know when there is
 327	 * a bad log tree extent buffer, as that may signal a bug somewhere.
 328	 */
 329	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
 330		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
 331	return errno_to_blk_status(ret);
 332}
 333
 334static bool check_tree_block_fsid(struct extent_buffer *eb)
 
 335{
 336	struct btrfs_fs_info *fs_info = eb->fs_info;
 337	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 338	u8 fsid[BTRFS_FSID_SIZE];
 
 339
 340	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 341			   BTRFS_FSID_SIZE);
 
 
 
 
 
 
 
 342
 343	/*
 344	 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
 345	 * This is then overwritten by metadata_uuid if it is present in the
 346	 * device_list_add(). The same true for a seed device as well. So use of
 347	 * fs_devices::metadata_uuid is appropriate here.
 348	 */
 349	if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
 350		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351
 352	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
 353		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
 354			return false;
 
 
 
 
 
 
 
 
 355
 356	return true;
 357}
 358
 359/* Do basic extent buffer checks at read time */
 360int btrfs_validate_extent_buffer(struct extent_buffer *eb,
 361				 struct btrfs_tree_parent_check *check)
 362{
 363	struct btrfs_fs_info *fs_info = eb->fs_info;
 364	u64 found_start;
 365	const u32 csum_size = fs_info->csum_size;
 366	u8 found_level;
 367	u8 result[BTRFS_CSUM_SIZE];
 368	const u8 *header_csum;
 369	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 370
 371	ASSERT(check);
 
 
 
 
 
 
 
 
 372
 373	found_start = btrfs_header_bytenr(eb);
 374	if (found_start != eb->start) {
 375		btrfs_err_rl(fs_info,
 376			"bad tree block start, mirror %u want %llu have %llu",
 377			     eb->read_mirror, eb->start, found_start);
 378		ret = -EIO;
 379		goto out;
 380	}
 381	if (check_tree_block_fsid(eb)) {
 382		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
 383			     eb->start, eb->read_mirror);
 384		ret = -EIO;
 385		goto out;
 386	}
 387	found_level = btrfs_header_level(eb);
 388	if (found_level >= BTRFS_MAX_LEVEL) {
 389		btrfs_err(fs_info,
 390			"bad tree block level, mirror %u level %d on logical %llu",
 391			eb->read_mirror, btrfs_header_level(eb), eb->start);
 392		ret = -EIO;
 393		goto out;
 394	}
 395
 396	csum_tree_block(eb, result);
 397	header_csum = folio_address(eb->folios[0]) +
 398		get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
 399
 400	if (memcmp(result, header_csum, csum_size) != 0) {
 401		btrfs_warn_rl(fs_info,
 402"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
 403			      eb->start, eb->read_mirror,
 404			      CSUM_FMT_VALUE(csum_size, header_csum),
 405			      CSUM_FMT_VALUE(csum_size, result),
 406			      btrfs_header_level(eb));
 407		ret = -EUCLEAN;
 408		goto out;
 409	}
 410
 411	if (found_level != check->level) {
 412		btrfs_err(fs_info,
 413		"level verify failed on logical %llu mirror %u wanted %u found %u",
 414			  eb->start, eb->read_mirror, check->level, found_level);
 
 
 
 415		ret = -EIO;
 416		goto out;
 417	}
 418	if (unlikely(check->transid &&
 419		     btrfs_header_generation(eb) != check->transid)) {
 420		btrfs_err_rl(eb->fs_info,
 421"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 422				eb->start, eb->read_mirror, check->transid,
 423				btrfs_header_generation(eb));
 424		ret = -EIO;
 425		goto out;
 
 
 
 
 
 
 
 
 426	}
 427	if (check->has_first_key) {
 428		struct btrfs_key *expect_key = &check->first_key;
 429		struct btrfs_key found_key;
 
 430
 431		if (found_level)
 432			btrfs_node_key_to_cpu(eb, &found_key, 0);
 433		else
 434			btrfs_item_key_to_cpu(eb, &found_key, 0);
 435		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
 436			btrfs_err(fs_info,
 437"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 438				  eb->start, check->transid,
 439				  expect_key->objectid,
 440				  expect_key->type, expect_key->offset,
 441				  found_key.objectid, found_key.type,
 442				  found_key.offset);
 443			ret = -EUCLEAN;
 444			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445		}
 446	}
 447	if (check->owner_root) {
 448		ret = btrfs_check_eb_owner(eb, check->owner_root);
 449		if (ret < 0)
 450			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451	}
 452
 
 
 
 
 
 
 
 
 453	/*
 454	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 455	 * that we don't try and read the other copies of this block, just
 456	 * return -EIO.
 
 
 
 
 
 
 
 
 
 
 
 
 457	 */
 458	if (found_level == 0 && btrfs_check_leaf(eb)) {
 459		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 460		ret = -EIO;
 
 461	}
 
 
 462
 463	if (found_level > 0 && btrfs_check_node(eb))
 464		ret = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 465
 466	if (ret)
 467		btrfs_err(fs_info,
 468		"read time tree block corruption detected on logical %llu mirror %u",
 469			  eb->start, eb->read_mirror);
 470out:
 
 
 471	return ret;
 472}
 473
 474#ifdef CONFIG_MIGRATION
 475static int btree_migrate_folio(struct address_space *mapping,
 476		struct folio *dst, struct folio *src, enum migrate_mode mode)
 
 477{
 478	/*
 479	 * we can't safely write a btree page from here,
 480	 * we haven't done the locking hook
 481	 */
 482	if (folio_test_dirty(src))
 483		return -EAGAIN;
 484	/*
 485	 * Buffers may be managed in a filesystem specific way.
 486	 * We must have no buffers or drop them.
 487	 */
 488	if (folio_get_private(src) &&
 489	    !filemap_release_folio(src, GFP_KERNEL))
 490		return -EAGAIN;
 491	return migrate_folio(mapping, dst, src, mode);
 492}
 493#else
 494#define btree_migrate_folio NULL
 495#endif
 496
 
 497static int btree_writepages(struct address_space *mapping,
 498			    struct writeback_control *wbc)
 499{
 
 500	int ret;
 501
 502	if (wbc->sync_mode == WB_SYNC_NONE) {
 503		struct btrfs_fs_info *fs_info;
 504
 505		if (wbc->for_kupdate)
 506			return 0;
 507
 508		fs_info = inode_to_fs_info(mapping->host);
 509		/* this is a bit racy, but that's ok */
 510		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 511					     BTRFS_DIRTY_METADATA_THRESH,
 512					     fs_info->dirty_metadata_batch);
 513		if (ret < 0)
 514			return 0;
 515	}
 516	return btree_write_cache_pages(mapping, wbc);
 517}
 518
 519static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
 520{
 521	if (folio_test_writeback(folio) || folio_test_dirty(folio))
 522		return false;
 
 
 
 
 
 
 
 523
 524	return try_release_extent_buffer(&folio->page);
 525}
 526
 527static void btree_invalidate_folio(struct folio *folio, size_t offset,
 528				 size_t length)
 529{
 530	struct extent_io_tree *tree;
 531
 532	tree = &folio_to_inode(folio)->io_tree;
 533	extent_invalidate_folio(tree, folio, offset);
 534	btree_release_folio(folio, GFP_NOFS);
 535	if (folio_get_private(folio)) {
 536		btrfs_warn(folio_to_fs_info(folio),
 537			   "folio private not zero on folio %llu",
 538			   (unsigned long long)folio_pos(folio));
 539		folio_detach_private(folio);
 
 540	}
 541}
 542
 
 
 543#ifdef DEBUG
 544static bool btree_dirty_folio(struct address_space *mapping,
 545		struct folio *folio)
 546{
 547	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 548	struct btrfs_subpage_info *spi = fs_info->subpage_info;
 549	struct btrfs_subpage *subpage;
 550	struct extent_buffer *eb;
 551	int cur_bit = 0;
 552	u64 page_start = folio_pos(folio);
 553
 554	if (fs_info->sectorsize == PAGE_SIZE) {
 555		eb = folio_get_private(folio);
 556		BUG_ON(!eb);
 557		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 558		BUG_ON(!atomic_read(&eb->refs));
 559		btrfs_assert_tree_write_locked(eb);
 560		return filemap_dirty_folio(mapping, folio);
 561	}
 562
 563	ASSERT(spi);
 564	subpage = folio_get_private(folio);
 565
 566	for (cur_bit = spi->dirty_offset;
 567	     cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
 568	     cur_bit++) {
 569		unsigned long flags;
 570		u64 cur;
 571
 572		spin_lock_irqsave(&subpage->lock, flags);
 573		if (!test_bit(cur_bit, subpage->bitmaps)) {
 574			spin_unlock_irqrestore(&subpage->lock, flags);
 575			continue;
 576		}
 577		spin_unlock_irqrestore(&subpage->lock, flags);
 578		cur = page_start + cur_bit * fs_info->sectorsize;
 579
 580		eb = find_extent_buffer(fs_info, cur);
 581		ASSERT(eb);
 582		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 583		ASSERT(atomic_read(&eb->refs));
 584		btrfs_assert_tree_write_locked(eb);
 585		free_extent_buffer(eb);
 586
 587		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
 588	}
 589	return filemap_dirty_folio(mapping, folio);
 590}
 591#else
 592#define btree_dirty_folio filemap_dirty_folio
 593#endif
 594
 595static const struct address_space_operations btree_aops = {
 
 596	.writepages	= btree_writepages,
 597	.release_folio	= btree_release_folio,
 598	.invalidate_folio = btree_invalidate_folio,
 599	.migrate_folio	= btree_migrate_folio,
 600	.dirty_folio	= btree_dirty_folio,
 
 
 601};
 602
 603struct extent_buffer *btrfs_find_create_tree_block(
 604						struct btrfs_fs_info *fs_info,
 605						u64 bytenr, u64 owner_root,
 606						int level)
 607{
 608	if (btrfs_is_testing(fs_info))
 609		return alloc_test_extent_buffer(fs_info, bytenr);
 610	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
 
 
 
 611}
 612
 613/*
 614 * Read tree block at logical address @bytenr and do variant basic but critical
 615 * verification.
 616 *
 617 * @check:		expected tree parentness check, see comments of the
 618 *			structure for details.
 619 */
 620struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
 621				      struct btrfs_tree_parent_check *check)
 622{
 623	struct extent_buffer *buf = NULL;
 
 
 624	int ret;
 625
 626	ASSERT(check);
 
 
 627
 628	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
 629					   check->level);
 630	if (IS_ERR(buf))
 631		return buf;
 632
 633	ret = btrfs_read_extent_buffer(buf, check);
 
 634	if (ret) {
 635		free_extent_buffer_stale(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636		return ERR_PTR(ret);
 637	}
 638	if (btrfs_check_eb_owner(buf, check->owner_root)) {
 639		free_extent_buffer_stale(buf);
 640		return ERR_PTR(-EUCLEAN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641	}
 642	return buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643
 
 
 
 
 
 644}
 645
 646static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
 
 647			 u64 objectid)
 648{
 649	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
 650
 651	memset(&root->root_key, 0, sizeof(root->root_key));
 652	memset(&root->root_item, 0, sizeof(root->root_item));
 653	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
 654	root->fs_info = fs_info;
 655	root->root_key.objectid = objectid;
 656	root->node = NULL;
 657	root->commit_root = NULL;
 
 
 
 658	root->state = 0;
 659	RB_CLEAR_NODE(&root->rb_node);
 660
 
 661	root->last_trans = 0;
 662	root->free_objectid = 0;
 663	root->nr_delalloc_inodes = 0;
 664	root->nr_ordered_extents = 0;
 
 665	root->inode_tree = RB_ROOT;
 666	/* GFP flags are compatible with XA_FLAGS_*. */
 667	xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
 668
 669	btrfs_init_root_block_rsv(root);
 670
 671	INIT_LIST_HEAD(&root->dirty_list);
 672	INIT_LIST_HEAD(&root->root_list);
 673	INIT_LIST_HEAD(&root->delalloc_inodes);
 674	INIT_LIST_HEAD(&root->delalloc_root);
 675	INIT_LIST_HEAD(&root->ordered_extents);
 676	INIT_LIST_HEAD(&root->ordered_root);
 677	INIT_LIST_HEAD(&root->reloc_dirty_list);
 
 
 678	spin_lock_init(&root->inode_lock);
 679	spin_lock_init(&root->delalloc_lock);
 680	spin_lock_init(&root->ordered_extent_lock);
 681	spin_lock_init(&root->accounting_lock);
 682	spin_lock_init(&root->qgroup_meta_rsv_lock);
 
 683	mutex_init(&root->objectid_mutex);
 684	mutex_init(&root->log_mutex);
 685	mutex_init(&root->ordered_extent_mutex);
 686	mutex_init(&root->delalloc_mutex);
 687	init_waitqueue_head(&root->qgroup_flush_wait);
 688	init_waitqueue_head(&root->log_writer_wait);
 689	init_waitqueue_head(&root->log_commit_wait[0]);
 690	init_waitqueue_head(&root->log_commit_wait[1]);
 691	INIT_LIST_HEAD(&root->log_ctxs[0]);
 692	INIT_LIST_HEAD(&root->log_ctxs[1]);
 693	atomic_set(&root->log_commit[0], 0);
 694	atomic_set(&root->log_commit[1], 0);
 695	atomic_set(&root->log_writers, 0);
 696	atomic_set(&root->log_batch, 0);
 697	refcount_set(&root->refs, 1);
 698	atomic_set(&root->snapshot_force_cow, 0);
 699	atomic_set(&root->nr_swapfiles, 0);
 700	btrfs_set_root_log_transid(root, 0);
 
 701	root->log_transid_committed = -1;
 702	btrfs_set_root_last_log_commit(root, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 703	root->anon_dev = 0;
 704	if (!dummy) {
 705		extent_io_tree_init(fs_info, &root->dirty_log_pages,
 706				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
 707		extent_io_tree_init(fs_info, &root->log_csum_range,
 708				    IO_TREE_LOG_CSUM_RANGE);
 709	}
 710
 711	spin_lock_init(&root->root_item_lock);
 712	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
 713#ifdef CONFIG_BTRFS_DEBUG
 714	INIT_LIST_HEAD(&root->leak_list);
 715	spin_lock(&fs_info->fs_roots_radix_lock);
 716	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
 717	spin_unlock(&fs_info->fs_roots_radix_lock);
 718#endif
 719}
 720
 721static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
 722					   u64 objectid, gfp_t flags)
 723{
 724	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
 725	if (root)
 726		__setup_root(root, fs_info, objectid);
 727	return root;
 728}
 729
 730#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
 731/* Should only be used by the testing infrastructure */
 732struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
 733{
 734	struct btrfs_root *root;
 735
 736	if (!fs_info)
 737		return ERR_PTR(-EINVAL);
 738
 739	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
 740	if (!root)
 741		return ERR_PTR(-ENOMEM);
 742
 743	/* We don't use the stripesize in selftest, set it as sectorsize */
 744	root->alloc_bytenr = 0;
 745
 746	return root;
 747}
 748#endif
 749
 750static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
 751{
 752	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
 753	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
 754
 755	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
 756}
 757
 758static int global_root_key_cmp(const void *k, const struct rb_node *node)
 759{
 760	const struct btrfs_key *key = k;
 761	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
 762
 763	return btrfs_comp_cpu_keys(key, &root->root_key);
 764}
 765
 766int btrfs_global_root_insert(struct btrfs_root *root)
 767{
 768	struct btrfs_fs_info *fs_info = root->fs_info;
 769	struct rb_node *tmp;
 770	int ret = 0;
 771
 772	write_lock(&fs_info->global_root_lock);
 773	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
 774	write_unlock(&fs_info->global_root_lock);
 775
 776	if (tmp) {
 777		ret = -EEXIST;
 778		btrfs_warn(fs_info, "global root %llu %llu already exists",
 779				root->root_key.objectid, root->root_key.offset);
 780	}
 781	return ret;
 782}
 783
 784void btrfs_global_root_delete(struct btrfs_root *root)
 785{
 786	struct btrfs_fs_info *fs_info = root->fs_info;
 787
 788	write_lock(&fs_info->global_root_lock);
 789	rb_erase(&root->rb_node, &fs_info->global_root_tree);
 790	write_unlock(&fs_info->global_root_lock);
 791}
 792
 793struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
 794				     struct btrfs_key *key)
 795{
 796	struct rb_node *node;
 797	struct btrfs_root *root = NULL;
 798
 799	read_lock(&fs_info->global_root_lock);
 800	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
 801	if (node)
 802		root = container_of(node, struct btrfs_root, rb_node);
 803	read_unlock(&fs_info->global_root_lock);
 804
 805	return root;
 806}
 807
 808static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
 809{
 810	struct btrfs_block_group *block_group;
 811	u64 ret;
 812
 813	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
 814		return 0;
 815
 816	if (bytenr)
 817		block_group = btrfs_lookup_block_group(fs_info, bytenr);
 818	else
 819		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
 820	ASSERT(block_group);
 821	if (!block_group)
 822		return 0;
 823	ret = block_group->global_root_id;
 824	btrfs_put_block_group(block_group);
 825
 826	return ret;
 827}
 828
 829struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 830{
 831	struct btrfs_key key = {
 832		.objectid = BTRFS_CSUM_TREE_OBJECTID,
 833		.type = BTRFS_ROOT_ITEM_KEY,
 834		.offset = btrfs_global_root_id(fs_info, bytenr),
 835	};
 836
 837	return btrfs_global_root(fs_info, &key);
 838}
 839
 840struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
 841{
 842	struct btrfs_key key = {
 843		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
 844		.type = BTRFS_ROOT_ITEM_KEY,
 845		.offset = btrfs_global_root_id(fs_info, bytenr),
 846	};
 847
 848	return btrfs_global_root(fs_info, &key);
 849}
 850
 851struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
 852{
 853	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
 854		return fs_info->block_group_root;
 855	return btrfs_extent_root(fs_info, 0);
 856}
 857
 858struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
 
 859				     u64 objectid)
 860{
 861	struct btrfs_fs_info *fs_info = trans->fs_info;
 862	struct extent_buffer *leaf;
 863	struct btrfs_root *tree_root = fs_info->tree_root;
 864	struct btrfs_root *root;
 865	struct btrfs_key key;
 866	unsigned int nofs_flag;
 867	int ret = 0;
 
 868
 869	/*
 870	 * We're holding a transaction handle, so use a NOFS memory allocation
 871	 * context to avoid deadlock if reclaim happens.
 872	 */
 873	nofs_flag = memalloc_nofs_save();
 874	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
 875	memalloc_nofs_restore(nofs_flag);
 876	if (!root)
 877		return ERR_PTR(-ENOMEM);
 878
 
 
 879	root->root_key.objectid = objectid;
 880	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
 881	root->root_key.offset = 0;
 882
 883	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 884				      0, BTRFS_NESTING_NORMAL);
 885	if (IS_ERR(leaf)) {
 886		ret = PTR_ERR(leaf);
 887		leaf = NULL;
 888		goto fail;
 889	}
 890
 
 
 
 
 
 891	root->node = leaf;
 892	btrfs_mark_buffer_dirty(trans, leaf);
 
 
 
 
 
 
 893
 894	root->commit_root = btrfs_root_node(root);
 895	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 896
 897	btrfs_set_root_flags(&root->root_item, 0);
 898	btrfs_set_root_limit(&root->root_item, 0);
 899	btrfs_set_root_bytenr(&root->root_item, leaf->start);
 900	btrfs_set_root_generation(&root->root_item, trans->transid);
 901	btrfs_set_root_level(&root->root_item, 0);
 902	btrfs_set_root_refs(&root->root_item, 1);
 903	btrfs_set_root_used(&root->root_item, leaf->len);
 904	btrfs_set_root_last_snapshot(&root->root_item, 0);
 905	btrfs_set_root_dirid(&root->root_item, 0);
 906	if (is_fstree(objectid))
 907		generate_random_guid(root->root_item.uuid);
 908	else
 909		export_guid(root->root_item.uuid, &guid_null);
 910	btrfs_set_root_drop_level(&root->root_item, 0);
 911
 912	btrfs_tree_unlock(leaf);
 913
 914	key.objectid = objectid;
 915	key.type = BTRFS_ROOT_ITEM_KEY;
 916	key.offset = 0;
 917	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
 918	if (ret)
 919		goto fail;
 920
 
 
 921	return root;
 922
 923fail:
 924	btrfs_put_root(root);
 
 
 
 
 
 925
 926	return ERR_PTR(ret);
 927}
 928
 929static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
 930					 struct btrfs_fs_info *fs_info)
 931{
 932	struct btrfs_root *root;
 
 
 933
 934	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
 935	if (!root)
 936		return ERR_PTR(-ENOMEM);
 937
 
 
 
 
 938	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
 939	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
 940	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
 941
 942	return root;
 943}
 944
 945int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
 946			      struct btrfs_root *root)
 947{
 948	struct extent_buffer *leaf;
 949
 950	/*
 951	 * DON'T set SHAREABLE bit for log trees.
 952	 *
 953	 * Log trees are not exposed to user space thus can't be snapshotted,
 954	 * and they go away before a real commit is actually done.
 955	 *
 956	 * They do store pointers to file data extents, and those reference
 957	 * counts still get updated (along with back refs to the log tree).
 
 
 958	 */
 959
 960	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
 961			NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
 962	if (IS_ERR(leaf))
 963		return PTR_ERR(leaf);
 
 
 964
 
 
 
 
 
 965	root->node = leaf;
 966
 967	btrfs_mark_buffer_dirty(trans, root->node);
 
 
 968	btrfs_tree_unlock(root->node);
 969
 970	return 0;
 971}
 972
 973int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
 974			     struct btrfs_fs_info *fs_info)
 975{
 976	struct btrfs_root *log_root;
 977
 978	log_root = alloc_log_tree(trans, fs_info);
 979	if (IS_ERR(log_root))
 980		return PTR_ERR(log_root);
 981
 982	if (!btrfs_is_zoned(fs_info)) {
 983		int ret = btrfs_alloc_log_tree_node(trans, log_root);
 984
 985		if (ret) {
 986			btrfs_put_root(log_root);
 987			return ret;
 988		}
 989	}
 990
 991	WARN_ON(fs_info->log_root_tree);
 992	fs_info->log_root_tree = log_root;
 993	return 0;
 994}
 995
 996int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
 997		       struct btrfs_root *root)
 998{
 999	struct btrfs_fs_info *fs_info = root->fs_info;
1000	struct btrfs_root *log_root;
1001	struct btrfs_inode_item *inode_item;
1002	int ret;
1003
1004	log_root = alloc_log_tree(trans, fs_info);
1005	if (IS_ERR(log_root))
1006		return PTR_ERR(log_root);
1007
1008	ret = btrfs_alloc_log_tree_node(trans, log_root);
1009	if (ret) {
1010		btrfs_put_root(log_root);
1011		return ret;
1012	}
1013
1014	log_root->last_trans = trans->transid;
1015	log_root->root_key.offset = root->root_key.objectid;
1016
1017	inode_item = &log_root->root_item.inode;
1018	btrfs_set_stack_inode_generation(inode_item, 1);
1019	btrfs_set_stack_inode_size(inode_item, 3);
1020	btrfs_set_stack_inode_nlink(inode_item, 1);
1021	btrfs_set_stack_inode_nbytes(inode_item,
1022				     fs_info->nodesize);
1023	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1024
1025	btrfs_set_root_node(&log_root->root_item, log_root->node);
1026
1027	WARN_ON(root->log_root);
1028	root->log_root = log_root;
1029	btrfs_set_root_log_transid(root, 0);
1030	root->log_transid_committed = -1;
1031	btrfs_set_root_last_log_commit(root, 0);
1032	return 0;
1033}
1034
1035static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1036					      struct btrfs_path *path,
1037					      struct btrfs_key *key)
1038{
1039	struct btrfs_root *root;
1040	struct btrfs_tree_parent_check check = { 0 };
1041	struct btrfs_fs_info *fs_info = tree_root->fs_info;
 
1042	u64 generation;
1043	int ret;
1044	int level;
1045
1046	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1047	if (!root)
1048		return ERR_PTR(-ENOMEM);
1049
 
 
 
 
 
 
 
 
 
1050	ret = btrfs_find_root(tree_root, key, path,
1051			      &root->root_item, &root->root_key);
1052	if (ret) {
1053		if (ret > 0)
1054			ret = -ENOENT;
1055		goto fail;
1056	}
1057
1058	generation = btrfs_root_generation(&root->root_item);
1059	level = btrfs_root_level(&root->root_item);
1060	check.level = level;
1061	check.transid = generation;
1062	check.owner_root = key->objectid;
1063	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1064				     &check);
1065	if (IS_ERR(root->node)) {
1066		ret = PTR_ERR(root->node);
1067		root->node = NULL;
1068		goto fail;
1069	}
1070	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1071		ret = -EIO;
1072		goto fail;
1073	}
1074
1075	/*
1076	 * For real fs, and not log/reloc trees, root owner must
1077	 * match its root node owner
1078	 */
1079	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1080	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1081	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1082	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1083		btrfs_crit(fs_info,
1084"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1085			   root->root_key.objectid, root->node->start,
1086			   btrfs_header_owner(root->node),
1087			   root->root_key.objectid);
1088		ret = -EUCLEAN;
1089		goto fail;
1090	}
1091	root->commit_root = btrfs_root_node(root);
 
 
1092	return root;
1093fail:
1094	btrfs_put_root(root);
1095	return ERR_PTR(ret);
 
 
 
1096}
1097
1098struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1099					struct btrfs_key *key)
1100{
1101	struct btrfs_root *root;
1102	struct btrfs_path *path;
1103
1104	path = btrfs_alloc_path();
1105	if (!path)
1106		return ERR_PTR(-ENOMEM);
1107	root = read_tree_root_path(tree_root, path, key);
1108	btrfs_free_path(path);
 
 
 
1109
1110	return root;
1111}
1112
1113/*
1114 * Initialize subvolume root in-memory structure
1115 *
1116 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1117 */
1118static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1119{
1120	int ret;
 
1121
1122	btrfs_drew_lock_init(&root->snapshot_lock);
 
 
 
 
 
 
1123
1124	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1125	    !btrfs_is_data_reloc_root(root) &&
1126	    is_fstree(root->root_key.objectid)) {
1127		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1128		btrfs_check_and_init_root_item(&root->root_item);
1129	}
 
 
 
 
 
1130
1131	/*
1132	 * Don't assign anonymous block device to roots that are not exposed to
1133	 * userspace, the id pool is limited to 1M
1134	 */
1135	if (is_fstree(root->root_key.objectid) &&
1136	    btrfs_root_refs(&root->root_item) > 0) {
1137		if (!anon_dev) {
1138			ret = get_anon_bdev(&root->anon_dev);
1139			if (ret)
1140				goto fail;
1141		} else {
1142			root->anon_dev = anon_dev;
1143		}
1144	}
1145
1146	mutex_lock(&root->objectid_mutex);
1147	ret = btrfs_init_root_free_objectid(root);
 
1148	if (ret) {
1149		mutex_unlock(&root->objectid_mutex);
1150		goto fail;
1151	}
1152
1153	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1154
1155	mutex_unlock(&root->objectid_mutex);
1156
1157	return 0;
 
 
 
 
 
1158fail:
1159	/* The caller is responsible to call btrfs_free_fs_root */
 
1160	return ret;
1161}
1162
1163static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1164					       u64 root_id)
1165{
1166	struct btrfs_root *root;
1167
1168	spin_lock(&fs_info->fs_roots_radix_lock);
1169	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1170				 (unsigned long)root_id);
1171	root = btrfs_grab_root(root);
1172	spin_unlock(&fs_info->fs_roots_radix_lock);
1173	return root;
1174}
1175
1176static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1177						u64 objectid)
1178{
1179	struct btrfs_key key = {
1180		.objectid = objectid,
1181		.type = BTRFS_ROOT_ITEM_KEY,
1182		.offset = 0,
1183	};
1184
1185	switch (objectid) {
1186	case BTRFS_ROOT_TREE_OBJECTID:
1187		return btrfs_grab_root(fs_info->tree_root);
1188	case BTRFS_EXTENT_TREE_OBJECTID:
1189		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1190	case BTRFS_CHUNK_TREE_OBJECTID:
1191		return btrfs_grab_root(fs_info->chunk_root);
1192	case BTRFS_DEV_TREE_OBJECTID:
1193		return btrfs_grab_root(fs_info->dev_root);
1194	case BTRFS_CSUM_TREE_OBJECTID:
1195		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1196	case BTRFS_QUOTA_TREE_OBJECTID:
1197		return btrfs_grab_root(fs_info->quota_root);
1198	case BTRFS_UUID_TREE_OBJECTID:
1199		return btrfs_grab_root(fs_info->uuid_root);
1200	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
1201		return btrfs_grab_root(fs_info->block_group_root);
1202	case BTRFS_FREE_SPACE_TREE_OBJECTID:
1203		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1204	case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1205		return btrfs_grab_root(fs_info->stripe_root);
1206	default:
1207		return NULL;
1208	}
1209}
1210
1211int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1212			 struct btrfs_root *root)
1213{
1214	int ret;
1215
1216	ret = radix_tree_preload(GFP_NOFS);
1217	if (ret)
1218		return ret;
1219
1220	spin_lock(&fs_info->fs_roots_radix_lock);
1221	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1222				(unsigned long)root->root_key.objectid,
1223				root);
1224	if (ret == 0) {
1225		btrfs_grab_root(root);
1226		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1227	}
1228	spin_unlock(&fs_info->fs_roots_radix_lock);
1229	radix_tree_preload_end();
1230
1231	return ret;
1232}
1233
1234void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1235{
1236#ifdef CONFIG_BTRFS_DEBUG
1237	struct btrfs_root *root;
1238
1239	while (!list_empty(&fs_info->allocated_roots)) {
1240		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1241
1242		root = list_first_entry(&fs_info->allocated_roots,
1243					struct btrfs_root, leak_list);
1244		btrfs_err(fs_info, "leaked root %s refcount %d",
1245			  btrfs_root_name(&root->root_key, buf),
1246			  refcount_read(&root->refs));
1247		WARN_ON_ONCE(1);
1248		while (refcount_read(&root->refs) > 1)
1249			btrfs_put_root(root);
1250		btrfs_put_root(root);
1251	}
1252#endif
1253}
1254
1255static void free_global_roots(struct btrfs_fs_info *fs_info)
1256{
1257	struct btrfs_root *root;
1258	struct rb_node *node;
1259
1260	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1261		root = rb_entry(node, struct btrfs_root, rb_node);
1262		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1263		btrfs_put_root(root);
1264	}
1265}
1266
1267void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1268{
1269	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1270	percpu_counter_destroy(&fs_info->delalloc_bytes);
1271	percpu_counter_destroy(&fs_info->ordered_bytes);
1272	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1273	btrfs_free_csum_hash(fs_info);
1274	btrfs_free_stripe_hash_table(fs_info);
1275	btrfs_free_ref_cache(fs_info);
1276	kfree(fs_info->balance_ctl);
1277	kfree(fs_info->delayed_root);
1278	free_global_roots(fs_info);
1279	btrfs_put_root(fs_info->tree_root);
1280	btrfs_put_root(fs_info->chunk_root);
1281	btrfs_put_root(fs_info->dev_root);
1282	btrfs_put_root(fs_info->quota_root);
1283	btrfs_put_root(fs_info->uuid_root);
1284	btrfs_put_root(fs_info->fs_root);
1285	btrfs_put_root(fs_info->data_reloc_root);
1286	btrfs_put_root(fs_info->block_group_root);
1287	btrfs_put_root(fs_info->stripe_root);
1288	btrfs_check_leaked_roots(fs_info);
1289	btrfs_extent_buffer_leak_debug_check(fs_info);
1290	kfree(fs_info->super_copy);
1291	kfree(fs_info->super_for_commit);
1292	kfree(fs_info->subpage_info);
1293	kvfree(fs_info);
1294}
1295
1296
1297/*
1298 * Get an in-memory reference of a root structure.
1299 *
1300 * For essential trees like root/extent tree, we grab it from fs_info directly.
1301 * For subvolume trees, we check the cached filesystem roots first. If not
1302 * found, then read it from disk and add it to cached fs roots.
1303 *
1304 * Caller should release the root by calling btrfs_put_root() after the usage.
1305 *
1306 * NOTE: Reloc and log trees can't be read by this function as they share the
1307 *	 same root objectid.
1308 *
1309 * @objectid:	root id
1310 * @anon_dev:	preallocated anonymous block device number for new roots,
1311 *		pass NULL for a new allocation.
1312 * @check_ref:	whether to check root item references, If true, return -ENOENT
1313 *		for orphan roots
1314 */
1315static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1316					     u64 objectid, dev_t *anon_dev,
1317					     bool check_ref)
1318{
1319	struct btrfs_root *root;
1320	struct btrfs_path *path;
1321	struct btrfs_key key;
1322	int ret;
1323
1324	root = btrfs_get_global_root(fs_info, objectid);
1325	if (root)
1326		return root;
1327
1328	/*
1329	 * If we're called for non-subvolume trees, and above function didn't
1330	 * find one, do not try to read it from disk.
1331	 *
1332	 * This is namely for free-space-tree and quota tree, which can change
1333	 * at runtime and should only be grabbed from fs_info.
1334	 */
1335	if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1336		return ERR_PTR(-ENOENT);
 
 
 
 
 
 
1337again:
1338	root = btrfs_lookup_fs_root(fs_info, objectid);
1339	if (root) {
1340		/*
1341		 * Some other caller may have read out the newly inserted
1342		 * subvolume already (for things like backref walk etc).  Not
1343		 * that common but still possible.  In that case, we just need
1344		 * to free the anon_dev.
1345		 */
1346		if (unlikely(anon_dev && *anon_dev)) {
1347			free_anon_bdev(*anon_dev);
1348			*anon_dev = 0;
1349		}
1350
1351		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1352			btrfs_put_root(root);
1353			return ERR_PTR(-ENOENT);
1354		}
1355		return root;
1356	}
1357
1358	key.objectid = objectid;
1359	key.type = BTRFS_ROOT_ITEM_KEY;
1360	key.offset = (u64)-1;
1361	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1362	if (IS_ERR(root))
1363		return root;
1364
1365	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1366		ret = -ENOENT;
1367		goto fail;
1368	}
1369
1370	ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
1371	if (ret)
1372		goto fail;
1373
1374	path = btrfs_alloc_path();
1375	if (!path) {
1376		ret = -ENOMEM;
1377		goto fail;
1378	}
1379	key.objectid = BTRFS_ORPHAN_OBJECTID;
1380	key.type = BTRFS_ORPHAN_ITEM_KEY;
1381	key.offset = objectid;
1382
1383	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1384	btrfs_free_path(path);
1385	if (ret < 0)
1386		goto fail;
1387	if (ret == 0)
1388		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1389
1390	ret = btrfs_insert_fs_root(fs_info, root);
1391	if (ret) {
1392		if (ret == -EEXIST) {
1393			btrfs_put_root(root);
1394			goto again;
1395		}
1396		goto fail;
1397	}
1398	return root;
1399fail:
1400	/*
1401	 * If our caller provided us an anonymous device, then it's his
1402	 * responsibility to free it in case we fail. So we have to set our
1403	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1404	 * and once again by our caller.
1405	 */
1406	if (anon_dev && *anon_dev)
1407		root->anon_dev = 0;
1408	btrfs_put_root(root);
1409	return ERR_PTR(ret);
1410}
1411
1412/*
1413 * Get in-memory reference of a root structure
1414 *
1415 * @objectid:	tree objectid
1416 * @check_ref:	if set, verify that the tree exists and the item has at least
1417 *		one reference
1418 */
1419struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1420				     u64 objectid, bool check_ref)
1421{
1422	return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423}
1424
1425/*
1426 * Get in-memory reference of a root structure, created as new, optionally pass
1427 * the anonymous block device id
1428 *
1429 * @objectid:	tree objectid
1430 * @anon_dev:	if NULL, allocate a new anonymous block device or use the
1431 *		parameter value if not NULL
1432 */
1433struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1434					 u64 objectid, dev_t *anon_dev)
1435{
1436	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
 
 
 
 
 
 
 
 
 
 
1437}
1438
1439/*
1440 * Return a root for the given objectid.
1441 *
1442 * @fs_info:	the fs_info
1443 * @objectid:	the objectid we need to lookup
1444 *
1445 * This is exclusively used for backref walking, and exists specifically because
1446 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1447 * creation time, which means we may have to read the tree_root in order to look
1448 * up a fs root that is not in memory.  If the root is not in memory we will
1449 * read the tree root commit root and look up the fs root from there.  This is a
1450 * temporary root, it will not be inserted into the radix tree as it doesn't
1451 * have the most uptodate information, it'll simply be discarded once the
1452 * backref code is finished using the root.
1453 */
1454struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1455						 struct btrfs_path *path,
1456						 u64 objectid)
1457{
1458	struct btrfs_root *root;
1459	struct btrfs_key key;
1460
1461	ASSERT(path->search_commit_root && path->skip_locking);
1462
1463	/*
1464	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1465	 * since this is called via the backref walking code we won't be looking
1466	 * up a root that doesn't exist, unless there's corruption.  So if root
1467	 * != NULL just return it.
1468	 */
1469	root = btrfs_get_global_root(fs_info, objectid);
1470	if (root)
1471		return root;
1472
1473	root = btrfs_lookup_fs_root(fs_info, objectid);
1474	if (root)
1475		return root;
1476
1477	key.objectid = objectid;
1478	key.type = BTRFS_ROOT_ITEM_KEY;
1479	key.offset = (u64)-1;
1480	root = read_tree_root_path(fs_info->tree_root, path, &key);
1481	btrfs_release_path(path);
1482
1483	return root;
1484}
1485
1486static int cleaner_kthread(void *arg)
1487{
1488	struct btrfs_fs_info *fs_info = arg;
1489	int again;
 
1490
1491	while (1) {
1492		again = 0;
1493
1494		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1495
1496		/* Make the cleaner go to sleep early. */
1497		if (btrfs_need_cleaner_sleep(fs_info))
1498			goto sleep;
1499
1500		/*
1501		 * Do not do anything if we might cause open_ctree() to block
1502		 * before we have finished mounting the filesystem.
1503		 */
1504		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1505			goto sleep;
1506
1507		if (!mutex_trylock(&fs_info->cleaner_mutex))
1508			goto sleep;
1509
1510		/*
1511		 * Avoid the problem that we change the status of the fs
1512		 * during the above check and trylock.
1513		 */
1514		if (btrfs_need_cleaner_sleep(fs_info)) {
1515			mutex_unlock(&fs_info->cleaner_mutex);
1516			goto sleep;
1517		}
1518
1519		if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1520			btrfs_sysfs_feature_update(fs_info);
1521
1522		btrfs_run_delayed_iputs(fs_info);
1523
1524		again = btrfs_clean_one_deleted_snapshot(fs_info);
1525		mutex_unlock(&fs_info->cleaner_mutex);
1526
1527		/*
1528		 * The defragger has dealt with the R/O remount and umount,
1529		 * needn't do anything special here.
1530		 */
1531		btrfs_run_defrag_inodes(fs_info);
1532
1533		/*
1534		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1535		 * with relocation (btrfs_relocate_chunk) and relocation
1536		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1537		 * after acquiring fs_info->reclaim_bgs_lock. So we
1538		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1539		 * unused block groups.
1540		 */
1541		btrfs_delete_unused_bgs(fs_info);
1542
1543		/*
1544		 * Reclaim block groups in the reclaim_bgs list after we deleted
1545		 * all unused block_groups. This possibly gives us some more free
1546		 * space.
1547		 */
1548		btrfs_reclaim_bgs(fs_info);
1549sleep:
1550		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1551		if (kthread_should_park())
1552			kthread_parkme();
1553		if (kthread_should_stop())
1554			return 0;
1555		if (!again) {
1556			set_current_state(TASK_INTERRUPTIBLE);
1557			schedule();
 
1558			__set_current_state(TASK_RUNNING);
1559		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1560	}
 
 
1561}
1562
1563static int transaction_kthread(void *arg)
1564{
1565	struct btrfs_root *root = arg;
1566	struct btrfs_fs_info *fs_info = root->fs_info;
1567	struct btrfs_trans_handle *trans;
1568	struct btrfs_transaction *cur;
1569	u64 transid;
1570	time64_t delta;
1571	unsigned long delay;
1572	bool cannot_commit;
1573
1574	do {
1575		cannot_commit = false;
1576		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1577		mutex_lock(&fs_info->transaction_kthread_mutex);
1578
1579		spin_lock(&fs_info->trans_lock);
1580		cur = fs_info->running_transaction;
1581		if (!cur) {
1582			spin_unlock(&fs_info->trans_lock);
1583			goto sleep;
1584		}
1585
1586		delta = ktime_get_seconds() - cur->start_time;
1587		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1588		    cur->state < TRANS_STATE_COMMIT_PREP &&
1589		    delta < fs_info->commit_interval) {
1590			spin_unlock(&fs_info->trans_lock);
1591			delay -= msecs_to_jiffies((delta - 1) * 1000);
1592			delay = min(delay,
1593				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1594			goto sleep;
1595		}
1596		transid = cur->transid;
1597		spin_unlock(&fs_info->trans_lock);
1598
1599		/* If the file system is aborted, this will always fail. */
1600		trans = btrfs_attach_transaction(root);
1601		if (IS_ERR(trans)) {
1602			if (PTR_ERR(trans) != -ENOENT)
1603				cannot_commit = true;
1604			goto sleep;
1605		}
1606		if (transid == trans->transid) {
1607			btrfs_commit_transaction(trans);
1608		} else {
1609			btrfs_end_transaction(trans);
1610		}
1611sleep:
1612		wake_up_process(fs_info->cleaner_kthread);
1613		mutex_unlock(&fs_info->transaction_kthread_mutex);
1614
1615		if (BTRFS_FS_ERROR(fs_info))
1616			btrfs_cleanup_transaction(fs_info);
 
 
1617		if (!kthread_should_stop() &&
1618				(!btrfs_transaction_blocked(fs_info) ||
1619				 cannot_commit))
1620			schedule_timeout_interruptible(delay);
 
1621	} while (!kthread_should_stop());
1622	return 0;
1623}
1624
1625/*
1626 * This will find the highest generation in the array of root backups.  The
1627 * index of the highest array is returned, or -EINVAL if we can't find
1628 * anything.
1629 *
1630 * We check to make sure the array is valid by comparing the
1631 * generation of the latest  root in the array with the generation
1632 * in the super block.  If they don't match we pitch it.
1633 */
1634static int find_newest_super_backup(struct btrfs_fs_info *info)
1635{
1636	const u64 newest_gen = btrfs_super_generation(info->super_copy);
1637	u64 cur;
 
1638	struct btrfs_root_backup *root_backup;
1639	int i;
1640
1641	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1642		root_backup = info->super_copy->super_roots + i;
1643		cur = btrfs_backup_tree_root_gen(root_backup);
1644		if (cur == newest_gen)
1645			return i;
1646	}
1647
1648	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1649}
1650
1651/*
1652 * copy all the root pointers into the super backup array.
1653 * this will bump the backup pointer by one when it is
1654 * done
1655 */
1656static void backup_super_roots(struct btrfs_fs_info *info)
1657{
1658	const int next_backup = info->backup_root_index;
1659	struct btrfs_root_backup *root_backup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660
1661	root_backup = info->super_for_commit->super_roots + next_backup;
1662
1663	/*
1664	 * make sure all of our padding and empty slots get zero filled
1665	 * regardless of which ones we use today
1666	 */
1667	memset(root_backup, 0, sizeof(*root_backup));
1668
1669	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1670
1671	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1672	btrfs_set_backup_tree_root_gen(root_backup,
1673			       btrfs_header_generation(info->tree_root->node));
1674
1675	btrfs_set_backup_tree_root_level(root_backup,
1676			       btrfs_header_level(info->tree_root->node));
1677
1678	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1679	btrfs_set_backup_chunk_root_gen(root_backup,
1680			       btrfs_header_generation(info->chunk_root->node));
1681	btrfs_set_backup_chunk_root_level(root_backup,
1682			       btrfs_header_level(info->chunk_root->node));
1683
1684	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
1685		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
1686		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
1687
1688		btrfs_set_backup_extent_root(root_backup,
1689					     extent_root->node->start);
1690		btrfs_set_backup_extent_root_gen(root_backup,
1691				btrfs_header_generation(extent_root->node));
1692		btrfs_set_backup_extent_root_level(root_backup,
1693					btrfs_header_level(extent_root->node));
1694
1695		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1696		btrfs_set_backup_csum_root_gen(root_backup,
1697					       btrfs_header_generation(csum_root->node));
1698		btrfs_set_backup_csum_root_level(root_backup,
1699						 btrfs_header_level(csum_root->node));
1700	}
1701
1702	/*
1703	 * we might commit during log recovery, which happens before we set
1704	 * the fs_root.  Make sure it is valid before we fill it in.
1705	 */
1706	if (info->fs_root && info->fs_root->node) {
1707		btrfs_set_backup_fs_root(root_backup,
1708					 info->fs_root->node->start);
1709		btrfs_set_backup_fs_root_gen(root_backup,
1710			       btrfs_header_generation(info->fs_root->node));
1711		btrfs_set_backup_fs_root_level(root_backup,
1712			       btrfs_header_level(info->fs_root->node));
1713	}
1714
1715	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1716	btrfs_set_backup_dev_root_gen(root_backup,
1717			       btrfs_header_generation(info->dev_root->node));
1718	btrfs_set_backup_dev_root_level(root_backup,
1719				       btrfs_header_level(info->dev_root->node));
1720
 
 
 
 
 
 
1721	btrfs_set_backup_total_bytes(root_backup,
1722			     btrfs_super_total_bytes(info->super_copy));
1723	btrfs_set_backup_bytes_used(root_backup,
1724			     btrfs_super_bytes_used(info->super_copy));
1725	btrfs_set_backup_num_devices(root_backup,
1726			     btrfs_super_num_devices(info->super_copy));
1727
1728	/*
1729	 * if we don't copy this out to the super_copy, it won't get remembered
1730	 * for the next commit
1731	 */
1732	memcpy(&info->super_copy->super_roots,
1733	       &info->super_for_commit->super_roots,
1734	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1735}
1736
1737/*
1738 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1739 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
1740 *
1741 * @fs_info:  filesystem whose backup roots need to be read
1742 * @priority: priority of backup root required
1743 *
1744 * Returns backup root index on success and -EINVAL otherwise.
1745 */
1746static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
 
 
1747{
1748	int backup_index = find_newest_super_backup(fs_info);
1749	struct btrfs_super_block *super = fs_info->super_copy;
1750	struct btrfs_root_backup *root_backup;
 
1751
1752	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1753		if (priority == 0)
1754			return backup_index;
1755
1756		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1757		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
 
 
 
 
 
 
 
1758	} else {
1759		return -EINVAL;
 
 
 
 
1760	}
1761
1762	root_backup = super->super_roots + backup_index;
1763
1764	btrfs_set_super_generation(super,
1765				   btrfs_backup_tree_root_gen(root_backup));
1766	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1767	btrfs_set_super_root_level(super,
1768				   btrfs_backup_tree_root_level(root_backup));
1769	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1770
1771	/*
1772	 * Fixme: the total bytes and num_devices need to match or we should
1773	 * need a fsck
1774	 */
1775	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1776	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1777
1778	return backup_index;
1779}
1780
1781/* helper to cleanup workers */
1782static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1783{
1784	btrfs_destroy_workqueue(fs_info->fixup_workers);
1785	btrfs_destroy_workqueue(fs_info->delalloc_workers);
1786	btrfs_destroy_workqueue(fs_info->workers);
1787	if (fs_info->endio_workers)
1788		destroy_workqueue(fs_info->endio_workers);
1789	if (fs_info->rmw_workers)
1790		destroy_workqueue(fs_info->rmw_workers);
1791	if (fs_info->compressed_write_workers)
1792		destroy_workqueue(fs_info->compressed_write_workers);
1793	btrfs_destroy_workqueue(fs_info->endio_write_workers);
1794	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
 
1795	btrfs_destroy_workqueue(fs_info->delayed_workers);
1796	btrfs_destroy_workqueue(fs_info->caching_workers);
 
1797	btrfs_destroy_workqueue(fs_info->flush_workers);
1798	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
1799	if (fs_info->discard_ctl.discard_workers)
1800		destroy_workqueue(fs_info->discard_ctl.discard_workers);
1801	/*
1802	 * Now that all other work queues are destroyed, we can safely destroy
1803	 * the queues used for metadata I/O, since tasks from those other work
1804	 * queues can do metadata I/O operations.
1805	 */
1806	if (fs_info->endio_meta_workers)
1807		destroy_workqueue(fs_info->endio_meta_workers);
1808}
1809
1810static void free_root_extent_buffers(struct btrfs_root *root)
1811{
1812	if (root) {
1813		free_extent_buffer(root->node);
1814		free_extent_buffer(root->commit_root);
1815		root->node = NULL;
1816		root->commit_root = NULL;
1817	}
1818}
1819
1820static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1821{
1822	struct btrfs_root *root, *tmp;
1823
1824	rbtree_postorder_for_each_entry_safe(root, tmp,
1825					     &fs_info->global_root_tree,
1826					     rb_node)
1827		free_root_extent_buffers(root);
1828}
1829
1830/* helper to cleanup tree roots */
1831static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
1832{
1833	free_root_extent_buffers(info->tree_root);
1834
1835	free_global_root_pointers(info);
1836	free_root_extent_buffers(info->dev_root);
 
 
1837	free_root_extent_buffers(info->quota_root);
1838	free_root_extent_buffers(info->uuid_root);
1839	free_root_extent_buffers(info->fs_root);
1840	free_root_extent_buffers(info->data_reloc_root);
1841	free_root_extent_buffers(info->block_group_root);
1842	free_root_extent_buffers(info->stripe_root);
1843	if (free_chunk_root)
1844		free_root_extent_buffers(info->chunk_root);
1845}
1846
1847void btrfs_put_root(struct btrfs_root *root)
1848{
1849	if (!root)
1850		return;
1851
1852	if (refcount_dec_and_test(&root->refs)) {
1853		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1854		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
1855		if (root->anon_dev)
1856			free_anon_bdev(root->anon_dev);
1857		free_root_extent_buffers(root);
1858#ifdef CONFIG_BTRFS_DEBUG
1859		spin_lock(&root->fs_info->fs_roots_radix_lock);
1860		list_del_init(&root->leak_list);
1861		spin_unlock(&root->fs_info->fs_roots_radix_lock);
1862#endif
1863		kfree(root);
1864	}
1865}
1866
1867void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
1868{
1869	int ret;
1870	struct btrfs_root *gang[8];
1871	int i;
1872
1873	while (!list_empty(&fs_info->dead_roots)) {
1874		gang[0] = list_entry(fs_info->dead_roots.next,
1875				     struct btrfs_root, root_list);
1876		list_del(&gang[0]->root_list);
1877
1878		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1879			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1880		btrfs_put_root(gang[0]);
 
 
 
 
1881	}
1882
1883	while (1) {
1884		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1885					     (void **)gang, 0,
1886					     ARRAY_SIZE(gang));
1887		if (!ret)
1888			break;
1889		for (i = 0; i < ret; i++)
1890			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
1891	}
 
 
 
 
 
 
1892}
1893
1894static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1895{
1896	mutex_init(&fs_info->scrub_lock);
1897	atomic_set(&fs_info->scrubs_running, 0);
1898	atomic_set(&fs_info->scrub_pause_req, 0);
1899	atomic_set(&fs_info->scrubs_paused, 0);
1900	atomic_set(&fs_info->scrub_cancel_req, 0);
1901	init_waitqueue_head(&fs_info->scrub_pause_wait);
1902	refcount_set(&fs_info->scrub_workers_refcnt, 0);
1903}
1904
1905static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1906{
1907	spin_lock_init(&fs_info->balance_lock);
1908	mutex_init(&fs_info->balance_mutex);
 
1909	atomic_set(&fs_info->balance_pause_req, 0);
1910	atomic_set(&fs_info->balance_cancel_req, 0);
1911	fs_info->balance_ctl = NULL;
1912	init_waitqueue_head(&fs_info->balance_wait_q);
1913	atomic_set(&fs_info->reloc_cancel_req, 0);
1914}
1915
1916static int btrfs_init_btree_inode(struct super_block *sb)
 
1917{
1918	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1919	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1920					      fs_info->tree_root);
1921	struct inode *inode;
1922
1923	inode = new_inode(sb);
1924	if (!inode)
1925		return -ENOMEM;
1926
1927	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1928	set_nlink(inode, 1);
1929	/*
1930	 * we set the i_size on the btree inode to the max possible int.
1931	 * the real end of the address space is determined by all of
1932	 * the devices in the system
1933	 */
1934	inode->i_size = OFFSET_MAX;
1935	inode->i_mapping->a_ops = &btree_aops;
1936	mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
1937
1938	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
1939	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
1940			    IO_TREE_BTREE_INODE_IO);
1941	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
1942
1943	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
1944	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1945	BTRFS_I(inode)->location.type = 0;
1946	BTRFS_I(inode)->location.offset = 0;
1947	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
1948	__insert_inode_hash(inode, hash);
1949	fs_info->btree_inode = inode;
1950
1951	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1952}
1953
1954static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1955{
 
 
1956	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
1957	init_rwsem(&fs_info->dev_replace.rwsem);
1958	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
 
 
 
1959}
1960
1961static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1962{
1963	spin_lock_init(&fs_info->qgroup_lock);
1964	mutex_init(&fs_info->qgroup_ioctl_lock);
1965	fs_info->qgroup_tree = RB_ROOT;
 
1966	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1967	fs_info->qgroup_seq = 1;
 
 
1968	fs_info->qgroup_ulist = NULL;
1969	fs_info->qgroup_rescan_running = false;
1970	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
1971	mutex_init(&fs_info->qgroup_rescan_lock);
1972}
1973
1974static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
 
1975{
1976	u32 max_active = fs_info->thread_pool_size;
1977	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
1978	unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
1979
1980	fs_info->workers =
1981		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
 
1982
1983	fs_info->delalloc_workers =
1984		btrfs_alloc_workqueue(fs_info, "delalloc",
1985				      flags, max_active, 2);
1986
1987	fs_info->flush_workers =
1988		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1989				      flags, max_active, 0);
1990
1991	fs_info->caching_workers =
1992		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
 
 
 
 
 
 
 
 
 
 
1993
1994	fs_info->fixup_workers =
1995		btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
1996
 
 
 
 
1997	fs_info->endio_workers =
1998		alloc_workqueue("btrfs-endio", flags, max_active);
1999	fs_info->endio_meta_workers =
2000		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2001	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
 
 
 
 
 
 
 
2002	fs_info->endio_write_workers =
2003		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2004				      max_active, 2);
2005	fs_info->compressed_write_workers =
2006		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2007	fs_info->endio_freespace_worker =
2008		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2009				      max_active, 0);
2010	fs_info->delayed_workers =
2011		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2012				      max_active, 0);
 
2013	fs_info->qgroup_rescan_workers =
2014		btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2015					      ordered_flags);
2016	fs_info->discard_ctl.discard_workers =
2017		alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
 
2018
2019	if (!(fs_info->workers &&
2020	      fs_info->delalloc_workers && fs_info->flush_workers &&
2021	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2022	      fs_info->compressed_write_workers &&
2023	      fs_info->endio_write_workers &&
 
2024	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2025	      fs_info->caching_workers && fs_info->fixup_workers &&
2026	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2027	      fs_info->discard_ctl.discard_workers)) {
 
2028		return -ENOMEM;
2029	}
2030
2031	return 0;
2032}
2033
2034static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2035{
2036	struct crypto_shash *csum_shash;
2037	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2038
2039	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2040
2041	if (IS_ERR(csum_shash)) {
2042		btrfs_err(fs_info, "error allocating %s hash for checksum",
2043			  csum_driver);
2044		return PTR_ERR(csum_shash);
2045	}
2046
2047	fs_info->csum_shash = csum_shash;
2048
2049	/*
2050	 * Check if the checksum implementation is a fast accelerated one.
2051	 * As-is this is a bit of a hack and should be replaced once the csum
2052	 * implementations provide that information themselves.
2053	 */
2054	switch (csum_type) {
2055	case BTRFS_CSUM_TYPE_CRC32:
2056		if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2057			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2058		break;
2059	case BTRFS_CSUM_TYPE_XXHASH:
2060		set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2061		break;
2062	default:
2063		break;
2064	}
2065
2066	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2067			btrfs_super_csum_name(csum_type),
2068			crypto_shash_driver_name(csum_shash));
2069	return 0;
2070}
2071
2072static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2073			    struct btrfs_fs_devices *fs_devices)
2074{
2075	int ret;
2076	struct btrfs_tree_parent_check check = { 0 };
2077	struct btrfs_root *log_tree_root;
2078	struct btrfs_super_block *disk_super = fs_info->super_copy;
2079	u64 bytenr = btrfs_super_log_root(disk_super);
2080	int level = btrfs_super_log_root_level(disk_super);
2081
2082	if (fs_devices->rw_devices == 0) {
2083		btrfs_warn(fs_info, "log replay required on RO media");
2084		return -EIO;
2085	}
2086
2087	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2088					 GFP_KERNEL);
2089	if (!log_tree_root)
2090		return -ENOMEM;
2091
2092	check.level = level;
2093	check.transid = fs_info->generation + 1;
2094	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2095	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
 
 
2096	if (IS_ERR(log_tree_root->node)) {
2097		btrfs_warn(fs_info, "failed to read log tree");
2098		ret = PTR_ERR(log_tree_root->node);
2099		log_tree_root->node = NULL;
2100		btrfs_put_root(log_tree_root);
2101		return ret;
2102	}
2103	if (!extent_buffer_uptodate(log_tree_root->node)) {
2104		btrfs_err(fs_info, "failed to read log tree");
2105		btrfs_put_root(log_tree_root);
 
2106		return -EIO;
2107	}
2108
2109	/* returns with log_tree_root freed on success */
2110	ret = btrfs_recover_log_trees(log_tree_root);
2111	if (ret) {
2112		btrfs_handle_fs_error(fs_info, ret,
2113				      "Failed to recover log tree");
2114		btrfs_put_root(log_tree_root);
 
2115		return ret;
2116	}
2117
2118	if (sb_rdonly(fs_info->sb)) {
2119		ret = btrfs_commit_super(fs_info);
2120		if (ret)
2121			return ret;
2122	}
2123
2124	return 0;
2125}
2126
2127static int load_global_roots_objectid(struct btrfs_root *tree_root,
2128				      struct btrfs_path *path, u64 objectid,
2129				      const char *name)
2130{
2131	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2132	struct btrfs_root *root;
2133	u64 max_global_id = 0;
2134	int ret;
2135	struct btrfs_key key = {
2136		.objectid = objectid,
2137		.type = BTRFS_ROOT_ITEM_KEY,
2138		.offset = 0,
2139	};
2140	bool found = false;
2141
2142	/* If we have IGNOREDATACSUMS skip loading these roots. */
2143	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2144	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2145		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2146		return 0;
2147	}
2148
2149	while (1) {
2150		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2151		if (ret < 0)
2152			break;
2153
2154		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2155			ret = btrfs_next_leaf(tree_root, path);
2156			if (ret) {
2157				if (ret > 0)
2158					ret = 0;
2159				break;
2160			}
2161		}
2162		ret = 0;
2163
2164		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2165		if (key.objectid != objectid)
2166			break;
2167		btrfs_release_path(path);
2168
2169		/*
2170		 * Just worry about this for extent tree, it'll be the same for
2171		 * everybody.
2172		 */
2173		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2174			max_global_id = max(max_global_id, key.offset);
2175
2176		found = true;
2177		root = read_tree_root_path(tree_root, path, &key);
2178		if (IS_ERR(root)) {
2179			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2180				ret = PTR_ERR(root);
2181			break;
2182		}
2183		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2184		ret = btrfs_global_root_insert(root);
2185		if (ret) {
2186			btrfs_put_root(root);
2187			break;
2188		}
2189		key.offset++;
2190	}
2191	btrfs_release_path(path);
2192
2193	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2194		fs_info->nr_global_roots = max_global_id + 1;
2195
2196	if (!found || ret) {
2197		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2198			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2199
2200		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2201			ret = ret ? ret : -ENOENT;
2202		else
2203			ret = 0;
2204		btrfs_err(fs_info, "failed to load root %s", name);
2205	}
2206	return ret;
2207}
2208
2209static int load_global_roots(struct btrfs_root *tree_root)
2210{
2211	struct btrfs_path *path;
2212	int ret = 0;
2213
2214	path = btrfs_alloc_path();
2215	if (!path)
2216		return -ENOMEM;
2217
2218	ret = load_global_roots_objectid(tree_root, path,
2219					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2220	if (ret)
2221		goto out;
2222	ret = load_global_roots_objectid(tree_root, path,
2223					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2224	if (ret)
2225		goto out;
2226	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2227		goto out;
2228	ret = load_global_roots_objectid(tree_root, path,
2229					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2230					 "free space");
2231out:
2232	btrfs_free_path(path);
2233	return ret;
2234}
2235
2236static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2237{
2238	struct btrfs_root *tree_root = fs_info->tree_root;
2239	struct btrfs_root *root;
2240	struct btrfs_key location;
2241	int ret;
2242
2243	ASSERT(fs_info->tree_root);
2244
2245	ret = load_global_roots(tree_root);
2246	if (ret)
2247		return ret;
2248
2249	location.type = BTRFS_ROOT_ITEM_KEY;
2250	location.offset = 0;
2251
2252	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2253		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2254		root = btrfs_read_tree_root(tree_root, &location);
2255		if (IS_ERR(root)) {
2256			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2257				ret = PTR_ERR(root);
2258				goto out;
2259			}
2260		} else {
2261			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2262			fs_info->block_group_root = root;
2263		}
2264	}
2265
2266	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2267	root = btrfs_read_tree_root(tree_root, &location);
2268	if (IS_ERR(root)) {
2269		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2270			ret = PTR_ERR(root);
2271			goto out;
2272		}
2273	} else {
2274		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2275		fs_info->dev_root = root;
2276	}
2277	/* Initialize fs_info for all devices in any case */
2278	ret = btrfs_init_devices_late(fs_info);
2279	if (ret)
2280		goto out;
2281
2282	/*
2283	 * This tree can share blocks with some other fs tree during relocation
2284	 * and we need a proper setup by btrfs_get_fs_root
2285	 */
2286	root = btrfs_get_fs_root(tree_root->fs_info,
2287				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2288	if (IS_ERR(root)) {
2289		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2290			ret = PTR_ERR(root);
2291			goto out;
2292		}
2293	} else {
2294		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2295		fs_info->data_reloc_root = root;
2296	}
2297
2298	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2299	root = btrfs_read_tree_root(tree_root, &location);
2300	if (!IS_ERR(root)) {
2301		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
 
 
2302		fs_info->quota_root = root;
2303	}
2304
2305	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2306	root = btrfs_read_tree_root(tree_root, &location);
2307	if (IS_ERR(root)) {
2308		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2309			ret = PTR_ERR(root);
2310			if (ret != -ENOENT)
2311				goto out;
2312		}
2313	} else {
2314		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2315		fs_info->uuid_root = root;
2316	}
2317
2318	if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2319		location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2320		root = btrfs_read_tree_root(tree_root, &location);
2321		if (IS_ERR(root)) {
2322			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2323				ret = PTR_ERR(root);
2324				goto out;
2325			}
2326		} else {
2327			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2328			fs_info->stripe_root = root;
2329		}
2330	}
2331
2332	return 0;
2333out:
2334	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2335		   location.objectid, ret);
2336	return ret;
2337}
2338
2339/*
2340 * Real super block validation
2341 * NOTE: super csum type and incompat features will not be checked here.
2342 *
2343 * @sb:		super block to check
2344 * @mirror_num:	the super block number to check its bytenr:
2345 * 		0	the primary (1st) sb
2346 * 		1, 2	2nd and 3rd backup copy
2347 * 	       -1	skip bytenr check
2348 */
2349int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2350			 struct btrfs_super_block *sb, int mirror_num)
2351{
2352	u64 nodesize = btrfs_super_nodesize(sb);
2353	u64 sectorsize = btrfs_super_sectorsize(sb);
2354	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2355
2356	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2357		btrfs_err(fs_info, "no valid FS found");
2358		ret = -EINVAL;
2359	}
2360	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2361		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2362				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2363		ret = -EINVAL;
2364	}
2365	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2366		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2367				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2368		ret = -EINVAL;
2369	}
2370	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2371		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2372				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2373		ret = -EINVAL;
2374	}
2375	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2376		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2377				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2378		ret = -EINVAL;
2379	}
2380
2381	/*
2382	 * Check sectorsize and nodesize first, other check will need it.
2383	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2384	 */
2385	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2386	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2387		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2388		ret = -EINVAL;
2389	}
2390
2391	/*
2392	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2393	 *
2394	 * We can support 16K sectorsize with 64K page size without problem,
2395	 * but such sectorsize/pagesize combination doesn't make much sense.
2396	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2397	 * beginning.
2398	 */
2399	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2400		btrfs_err(fs_info,
2401			"sectorsize %llu not yet supported for page size %lu",
2402			sectorsize, PAGE_SIZE);
2403		ret = -EINVAL;
2404	}
2405
2406	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2407	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2408		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2409		ret = -EINVAL;
2410	}
2411	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2412		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2413			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2414		ret = -EINVAL;
2415	}
 
 
2416
2417	/* Root alignment check */
2418	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2419		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2420			   btrfs_super_root(sb));
2421		ret = -EINVAL;
2422	}
2423	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2424		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2425			   btrfs_super_chunk_root(sb));
2426		ret = -EINVAL;
2427	}
2428	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2429		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2430			   btrfs_super_log_root(sb));
2431		ret = -EINVAL;
2432	}
2433
2434	if (!fs_info->fs_devices->temp_fsid &&
2435	    memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
2436		btrfs_err(fs_info,
2437		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2438			  sb->fsid, fs_info->fs_devices->fsid);
2439		ret = -EINVAL;
2440	}
2441
2442	if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2443		   BTRFS_FSID_SIZE) != 0) {
2444		btrfs_err(fs_info,
2445"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2446			  btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
2447		ret = -EINVAL;
2448	}
2449
2450	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2451		   BTRFS_FSID_SIZE) != 0) {
2452		btrfs_err(fs_info,
2453			"dev_item UUID does not match metadata fsid: %pU != %pU",
2454			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2455		ret = -EINVAL;
2456	}
2457
2458	/*
2459	 * Artificial requirement for block-group-tree to force newer features
2460	 * (free-space-tree, no-holes) so the test matrix is smaller.
2461	 */
2462	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2463	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2464	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2465		btrfs_err(fs_info,
2466		"block-group-tree feature requires fres-space-tree and no-holes");
2467		ret = -EINVAL;
2468	}
2469
2470	/*
2471	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2472	 * done later
2473	 */
2474	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2475		btrfs_err(fs_info, "bytes_used is too small %llu",
2476			  btrfs_super_bytes_used(sb));
2477		ret = -EINVAL;
2478	}
2479	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2480		btrfs_err(fs_info, "invalid stripesize %u",
2481			  btrfs_super_stripesize(sb));
2482		ret = -EINVAL;
2483	}
2484	if (btrfs_super_num_devices(sb) > (1UL << 31))
2485		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2486			   btrfs_super_num_devices(sb));
2487	if (btrfs_super_num_devices(sb) == 0) {
2488		btrfs_err(fs_info, "number of devices is 0");
2489		ret = -EINVAL;
2490	}
2491
2492	if (mirror_num >= 0 &&
2493	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2494		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2495			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2496		ret = -EINVAL;
2497	}
2498
2499	/*
2500	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2501	 * and one chunk
2502	 */
2503	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2504		btrfs_err(fs_info, "system chunk array too big %u > %u",
2505			  btrfs_super_sys_array_size(sb),
2506			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2507		ret = -EINVAL;
2508	}
2509	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2510			+ sizeof(struct btrfs_chunk)) {
2511		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2512			  btrfs_super_sys_array_size(sb),
2513			  sizeof(struct btrfs_disk_key)
2514			  + sizeof(struct btrfs_chunk));
2515		ret = -EINVAL;
2516	}
2517
2518	/*
2519	 * The generation is a global counter, we'll trust it more than the others
2520	 * but it's still possible that it's the one that's wrong.
2521	 */
2522	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2523		btrfs_warn(fs_info,
2524			"suspicious: generation < chunk_root_generation: %llu < %llu",
2525			btrfs_super_generation(sb),
2526			btrfs_super_chunk_root_generation(sb));
2527	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2528	    && btrfs_super_cache_generation(sb) != (u64)-1)
2529		btrfs_warn(fs_info,
2530			"suspicious: generation < cache_generation: %llu < %llu",
2531			btrfs_super_generation(sb),
2532			btrfs_super_cache_generation(sb));
2533
2534	return ret;
2535}
2536
2537/*
2538 * Validation of super block at mount time.
2539 * Some checks already done early at mount time, like csum type and incompat
2540 * flags will be skipped.
2541 */
2542static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2543{
2544	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2545}
2546
2547/*
2548 * Validation of super block at write time.
2549 * Some checks like bytenr check will be skipped as their values will be
2550 * overwritten soon.
2551 * Extra checks like csum type and incompat flags will be done here.
2552 */
2553static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2554				      struct btrfs_super_block *sb)
2555{
2556	int ret;
2557
2558	ret = btrfs_validate_super(fs_info, sb, -1);
2559	if (ret < 0)
2560		goto out;
2561	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2562		ret = -EUCLEAN;
2563		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2564			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2565		goto out;
2566	}
2567	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2568		ret = -EUCLEAN;
2569		btrfs_err(fs_info,
2570		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2571			  btrfs_super_incompat_flags(sb),
2572			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2573		goto out;
2574	}
2575out:
2576	if (ret < 0)
2577		btrfs_err(fs_info,
2578		"super block corruption detected before writing it to disk");
2579	return ret;
2580}
2581
2582static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2583{
2584	struct btrfs_tree_parent_check check = {
2585		.level = level,
2586		.transid = gen,
2587		.owner_root = root->root_key.objectid
2588	};
2589	int ret = 0;
2590
2591	root->node = read_tree_block(root->fs_info, bytenr, &check);
2592	if (IS_ERR(root->node)) {
2593		ret = PTR_ERR(root->node);
2594		root->node = NULL;
2595		return ret;
2596	}
2597	if (!extent_buffer_uptodate(root->node)) {
2598		free_extent_buffer(root->node);
2599		root->node = NULL;
2600		return -EIO;
2601	}
2602
2603	btrfs_set_root_node(&root->root_item, root->node);
2604	root->commit_root = btrfs_root_node(root);
2605	btrfs_set_root_refs(&root->root_item, 1);
2606	return ret;
2607}
2608
2609static int load_important_roots(struct btrfs_fs_info *fs_info)
2610{
2611	struct btrfs_super_block *sb = fs_info->super_copy;
2612	u64 gen, bytenr;
2613	int level, ret;
2614
2615	bytenr = btrfs_super_root(sb);
2616	gen = btrfs_super_generation(sb);
2617	level = btrfs_super_root_level(sb);
2618	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2619	if (ret) {
2620		btrfs_warn(fs_info, "couldn't read tree root");
2621		return ret;
2622	}
2623	return 0;
2624}
2625
2626static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2627{
2628	int backup_index = find_newest_super_backup(fs_info);
2629	struct btrfs_super_block *sb = fs_info->super_copy;
2630	struct btrfs_root *tree_root = fs_info->tree_root;
2631	bool handle_error = false;
2632	int ret = 0;
2633	int i;
2634
2635	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2636		if (handle_error) {
2637			if (!IS_ERR(tree_root->node))
2638				free_extent_buffer(tree_root->node);
2639			tree_root->node = NULL;
2640
2641			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2642				break;
2643
2644			free_root_pointers(fs_info, 0);
2645
2646			/*
2647			 * Don't use the log in recovery mode, it won't be
2648			 * valid
2649			 */
2650			btrfs_set_super_log_root(sb, 0);
2651
2652			btrfs_warn(fs_info, "try to load backup roots slot %d", i);
2653			ret = read_backup_root(fs_info, i);
2654			backup_index = ret;
2655			if (ret < 0)
2656				return ret;
2657		}
2658
2659		ret = load_important_roots(fs_info);
2660		if (ret) {
2661			handle_error = true;
2662			continue;
2663		}
2664
2665		/*
2666		 * No need to hold btrfs_root::objectid_mutex since the fs
2667		 * hasn't been fully initialised and we are the only user
2668		 */
2669		ret = btrfs_init_root_free_objectid(tree_root);
2670		if (ret < 0) {
2671			handle_error = true;
2672			continue;
2673		}
2674
2675		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2676
2677		ret = btrfs_read_roots(fs_info);
2678		if (ret < 0) {
2679			handle_error = true;
2680			continue;
2681		}
2682
2683		/* All successful */
2684		fs_info->generation = btrfs_header_generation(tree_root->node);
2685		btrfs_set_last_trans_committed(fs_info, fs_info->generation);
2686		fs_info->last_reloc_trans = 0;
2687
2688		/* Always begin writing backup roots after the one being used */
2689		if (backup_index < 0) {
2690			fs_info->backup_root_index = 0;
2691		} else {
2692			fs_info->backup_root_index = backup_index + 1;
2693			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2694		}
2695		break;
2696	}
2697
2698	return ret;
2699}
2700
2701void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2702{
2703	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2704	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2705	INIT_LIST_HEAD(&fs_info->trans_list);
2706	INIT_LIST_HEAD(&fs_info->dead_roots);
2707	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2708	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2709	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2710	spin_lock_init(&fs_info->delalloc_root_lock);
2711	spin_lock_init(&fs_info->trans_lock);
2712	spin_lock_init(&fs_info->fs_roots_radix_lock);
2713	spin_lock_init(&fs_info->delayed_iput_lock);
2714	spin_lock_init(&fs_info->defrag_inodes_lock);
 
 
2715	spin_lock_init(&fs_info->super_lock);
 
2716	spin_lock_init(&fs_info->buffer_lock);
2717	spin_lock_init(&fs_info->unused_bgs_lock);
2718	spin_lock_init(&fs_info->treelog_bg_lock);
2719	spin_lock_init(&fs_info->zone_active_bgs_lock);
2720	spin_lock_init(&fs_info->relocation_bg_lock);
2721	rwlock_init(&fs_info->tree_mod_log_lock);
2722	rwlock_init(&fs_info->global_root_lock);
2723	mutex_init(&fs_info->unused_bg_unpin_mutex);
2724	mutex_init(&fs_info->reclaim_bgs_lock);
2725	mutex_init(&fs_info->reloc_mutex);
2726	mutex_init(&fs_info->delalloc_root_mutex);
2727	mutex_init(&fs_info->zoned_meta_io_lock);
2728	mutex_init(&fs_info->zoned_data_reloc_io_lock);
2729	seqlock_init(&fs_info->profiles_lock);
2730
2731	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
2732	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
2733	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
2734	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
2735	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2736				     BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2737	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2738				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2739	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2740				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2741	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2742				     BTRFS_LOCKDEP_TRANS_COMPLETED);
2743
2744	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2745	INIT_LIST_HEAD(&fs_info->space_info);
2746	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2747	INIT_LIST_HEAD(&fs_info->unused_bgs);
2748	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2749	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
2750#ifdef CONFIG_BTRFS_DEBUG
2751	INIT_LIST_HEAD(&fs_info->allocated_roots);
2752	INIT_LIST_HEAD(&fs_info->allocated_ebs);
2753	spin_lock_init(&fs_info->eb_leak_lock);
2754#endif
2755	fs_info->mapping_tree = RB_ROOT_CACHED;
2756	rwlock_init(&fs_info->mapping_tree_lock);
2757	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2758			     BTRFS_BLOCK_RSV_GLOBAL);
 
 
2759	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2760	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2761	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2762	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2763			     BTRFS_BLOCK_RSV_DELOPS);
2764	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2765			     BTRFS_BLOCK_RSV_DELREFS);
2766
2767	atomic_set(&fs_info->async_delalloc_pages, 0);
 
 
2768	atomic_set(&fs_info->defrag_running, 0);
2769	atomic_set(&fs_info->nr_delayed_iputs, 0);
 
2770	atomic64_set(&fs_info->tree_mod_seq, 0);
2771	fs_info->global_root_tree = RB_ROOT;
2772	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2773	fs_info->metadata_ratio = 0;
2774	fs_info->defrag_inodes = RB_ROOT;
2775	atomic64_set(&fs_info->free_chunk_space, 0);
2776	fs_info->tree_mod_log = RB_ROOT;
2777	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2778	btrfs_init_ref_verify(fs_info);
 
 
 
2779
2780	fs_info->thread_pool_size = min_t(unsigned long,
2781					  num_online_cpus() + 2, 8);
2782
2783	INIT_LIST_HEAD(&fs_info->ordered_roots);
2784	spin_lock_init(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
2785
2786	btrfs_init_scrub(fs_info);
 
 
 
2787	btrfs_init_balance(fs_info);
2788	btrfs_init_async_reclaim_work(fs_info);
2789
2790	rwlock_init(&fs_info->block_group_cache_lock);
2791	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2792
2793	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2794			    IO_TREE_FS_EXCLUDED_EXTENTS);
2795
2796	mutex_init(&fs_info->ordered_operations_mutex);
2797	mutex_init(&fs_info->tree_log_mutex);
2798	mutex_init(&fs_info->chunk_mutex);
2799	mutex_init(&fs_info->transaction_kthread_mutex);
2800	mutex_init(&fs_info->cleaner_mutex);
 
2801	mutex_init(&fs_info->ro_block_group_mutex);
2802	init_rwsem(&fs_info->commit_root_sem);
2803	init_rwsem(&fs_info->cleanup_work_sem);
2804	init_rwsem(&fs_info->subvol_sem);
2805	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2806
2807	btrfs_init_dev_replace_locks(fs_info);
2808	btrfs_init_qgroup(fs_info);
2809	btrfs_discard_init(fs_info);
2810
2811	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2812	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2813
2814	init_waitqueue_head(&fs_info->transaction_throttle);
2815	init_waitqueue_head(&fs_info->transaction_wait);
2816	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2817	init_waitqueue_head(&fs_info->async_submit_wait);
2818	init_waitqueue_head(&fs_info->delayed_iputs_wait);
2819
2820	/* Usable values until the real ones are cached from the superblock */
2821	fs_info->nodesize = 4096;
2822	fs_info->sectorsize = 4096;
2823	fs_info->sectorsize_bits = ilog2(4096);
2824	fs_info->stripesize = 4096;
2825
2826	/* Default compress algorithm when user does -o compress */
2827	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2828
2829	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2830
2831	spin_lock_init(&fs_info->swapfile_pins_lock);
2832	fs_info->swapfile_pins = RB_ROOT;
2833
2834	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2835	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2836}
2837
2838static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2839{
2840	int ret;
2841
2842	fs_info->sb = sb;
2843	/* Temporary fixed values for block size until we read the superblock. */
2844	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2845	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2846
2847	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2848	if (ret)
2849		return ret;
2850
2851	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2852	if (ret)
2853		return ret;
2854
2855	fs_info->dirty_metadata_batch = PAGE_SIZE *
2856					(1 + ilog2(nr_cpu_ids));
2857
2858	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2859	if (ret)
2860		return ret;
2861
2862	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2863			GFP_KERNEL);
2864	if (ret)
2865		return ret;
2866
2867	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2868					GFP_KERNEL);
2869	if (!fs_info->delayed_root)
2870		return -ENOMEM;
2871	btrfs_init_delayed_root(fs_info->delayed_root);
2872
2873	if (sb_rdonly(sb))
2874		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2875
2876	return btrfs_alloc_stripe_hash_table(fs_info);
2877}
2878
2879static int btrfs_uuid_rescan_kthread(void *data)
2880{
2881	struct btrfs_fs_info *fs_info = data;
2882	int ret;
2883
2884	/*
2885	 * 1st step is to iterate through the existing UUID tree and
2886	 * to delete all entries that contain outdated data.
2887	 * 2nd step is to add all missing entries to the UUID tree.
2888	 */
2889	ret = btrfs_uuid_tree_iterate(fs_info);
2890	if (ret < 0) {
2891		if (ret != -EINTR)
2892			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2893				   ret);
2894		up(&fs_info->uuid_tree_rescan_sem);
2895		return ret;
2896	}
2897	return btrfs_uuid_scan_kthread(data);
2898}
2899
2900static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2901{
2902	struct task_struct *task;
2903
2904	down(&fs_info->uuid_tree_rescan_sem);
2905	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2906	if (IS_ERR(task)) {
2907		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
2908		btrfs_warn(fs_info, "failed to start uuid_rescan task");
2909		up(&fs_info->uuid_tree_rescan_sem);
2910		return PTR_ERR(task);
2911	}
2912
2913	return 0;
2914}
2915
2916static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2917{
2918	u64 root_objectid = 0;
2919	struct btrfs_root *gang[8];
2920	int i = 0;
2921	int err = 0;
2922	unsigned int ret = 0;
2923
2924	while (1) {
2925		spin_lock(&fs_info->fs_roots_radix_lock);
2926		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2927					     (void **)gang, root_objectid,
2928					     ARRAY_SIZE(gang));
2929		if (!ret) {
2930			spin_unlock(&fs_info->fs_roots_radix_lock);
2931			break;
2932		}
2933		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2934
2935		for (i = 0; i < ret; i++) {
2936			/* Avoid to grab roots in dead_roots. */
2937			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2938				gang[i] = NULL;
2939				continue;
2940			}
2941			/* Grab all the search result for later use. */
2942			gang[i] = btrfs_grab_root(gang[i]);
2943		}
2944		spin_unlock(&fs_info->fs_roots_radix_lock);
2945
2946		for (i = 0; i < ret; i++) {
2947			if (!gang[i])
2948				continue;
2949			root_objectid = gang[i]->root_key.objectid;
2950			err = btrfs_orphan_cleanup(gang[i]);
2951			if (err)
2952				goto out;
2953			btrfs_put_root(gang[i]);
2954		}
2955		root_objectid++;
2956	}
2957out:
2958	/* Release the uncleaned roots due to error. */
2959	for (; i < ret; i++) {
2960		if (gang[i])
2961			btrfs_put_root(gang[i]);
2962	}
2963	return err;
2964}
2965
2966/*
2967 * Mounting logic specific to read-write file systems. Shared by open_ctree
2968 * and btrfs_remount when remounting from read-only to read-write.
2969 */
2970int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2971{
2972	int ret;
2973	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2974	bool rebuild_free_space_tree = false;
2975
2976	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2977	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2978		if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2979			btrfs_warn(fs_info,
2980				   "'clear_cache' option is ignored with extent tree v2");
2981		else
2982			rebuild_free_space_tree = true;
2983	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2984		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2985		btrfs_warn(fs_info, "free space tree is invalid");
2986		rebuild_free_space_tree = true;
2987	}
2988
2989	if (rebuild_free_space_tree) {
2990		btrfs_info(fs_info, "rebuilding free space tree");
2991		ret = btrfs_rebuild_free_space_tree(fs_info);
2992		if (ret) {
2993			btrfs_warn(fs_info,
2994				   "failed to rebuild free space tree: %d", ret);
2995			goto out;
2996		}
2997	}
2998
2999	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3000	    !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3001		btrfs_info(fs_info, "disabling free space tree");
3002		ret = btrfs_delete_free_space_tree(fs_info);
3003		if (ret) {
3004			btrfs_warn(fs_info,
3005				   "failed to disable free space tree: %d", ret);
3006			goto out;
3007		}
3008	}
3009
3010	/*
3011	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3012	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3013	 * them into the fs_info->fs_roots_radix tree. This must be done before
3014	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3015	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3016	 * item before the root's tree is deleted - this means that if we unmount
3017	 * or crash before the deletion completes, on the next mount we will not
3018	 * delete what remains of the tree because the orphan item does not
3019	 * exists anymore, which is what tells us we have a pending deletion.
3020	 */
3021	ret = btrfs_find_orphan_roots(fs_info);
3022	if (ret)
3023		goto out;
3024
3025	ret = btrfs_cleanup_fs_roots(fs_info);
3026	if (ret)
3027		goto out;
3028
3029	down_read(&fs_info->cleanup_work_sem);
3030	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3031	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3032		up_read(&fs_info->cleanup_work_sem);
3033		goto out;
3034	}
3035	up_read(&fs_info->cleanup_work_sem);
3036
3037	mutex_lock(&fs_info->cleaner_mutex);
3038	ret = btrfs_recover_relocation(fs_info);
3039	mutex_unlock(&fs_info->cleaner_mutex);
3040	if (ret < 0) {
3041		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3042		goto out;
3043	}
3044
3045	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3046	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3047		btrfs_info(fs_info, "creating free space tree");
3048		ret = btrfs_create_free_space_tree(fs_info);
3049		if (ret) {
3050			btrfs_warn(fs_info,
3051				"failed to create free space tree: %d", ret);
3052			goto out;
3053		}
3054	}
3055
3056	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3057		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3058		if (ret)
3059			goto out;
3060	}
3061
3062	ret = btrfs_resume_balance_async(fs_info);
3063	if (ret)
3064		goto out;
3065
3066	ret = btrfs_resume_dev_replace_async(fs_info);
3067	if (ret) {
3068		btrfs_warn(fs_info, "failed to resume dev_replace");
3069		goto out;
3070	}
3071
3072	btrfs_qgroup_rescan_resume(fs_info);
 
3073
3074	if (!fs_info->uuid_root) {
3075		btrfs_info(fs_info, "creating UUID tree");
3076		ret = btrfs_create_uuid_tree(fs_info);
3077		if (ret) {
3078			btrfs_warn(fs_info,
3079				   "failed to create the UUID tree %d", ret);
3080			goto out;
3081		}
3082	}
3083
3084out:
3085	return ret;
3086}
3087
3088/*
3089 * Do various sanity and dependency checks of different features.
3090 *
3091 * @is_rw_mount:	If the mount is read-write.
3092 *
3093 * This is the place for less strict checks (like for subpage or artificial
3094 * feature dependencies).
3095 *
3096 * For strict checks or possible corruption detection, see
3097 * btrfs_validate_super().
3098 *
3099 * This should be called after btrfs_parse_options(), as some mount options
3100 * (space cache related) can modify on-disk format like free space tree and
3101 * screw up certain feature dependencies.
3102 */
3103int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3104{
3105	struct btrfs_super_block *disk_super = fs_info->super_copy;
3106	u64 incompat = btrfs_super_incompat_flags(disk_super);
3107	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3108	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3109
3110	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3111		btrfs_err(fs_info,
3112		"cannot mount because of unknown incompat features (0x%llx)",
3113		    incompat);
3114		return -EINVAL;
3115	}
3116
3117	/* Runtime limitation for mixed block groups. */
3118	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3119	    (fs_info->sectorsize != fs_info->nodesize)) {
3120		btrfs_err(fs_info,
3121"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3122			fs_info->nodesize, fs_info->sectorsize);
3123		return -EINVAL;
3124	}
3125
3126	/* Mixed backref is an always-enabled feature. */
3127	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3128
3129	/* Set compression related flags just in case. */
3130	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3131		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3132	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3133		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3134
3135	/*
3136	 * An ancient flag, which should really be marked deprecated.
3137	 * Such runtime limitation doesn't really need a incompat flag.
3138	 */
3139	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3140		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3141
3142	if (compat_ro_unsupp && is_rw_mount) {
3143		btrfs_err(fs_info,
3144	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3145		       compat_ro);
3146		return -EINVAL;
3147	}
3148
3149	/*
3150	 * We have unsupported RO compat features, although RO mounted, we
3151	 * should not cause any metadata writes, including log replay.
3152	 * Or we could screw up whatever the new feature requires.
3153	 */
3154	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3155	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3156		btrfs_err(fs_info,
3157"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3158			  compat_ro);
3159		return -EINVAL;
3160	}
3161
3162	/*
3163	 * Artificial limitations for block group tree, to force
3164	 * block-group-tree to rely on no-holes and free-space-tree.
3165	 */
3166	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3167	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3168	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3169		btrfs_err(fs_info,
3170"block-group-tree feature requires no-holes and free-space-tree features");
3171		return -EINVAL;
3172	}
3173
3174	/*
3175	 * Subpage runtime limitation on v1 cache.
3176	 *
3177	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3178	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3179	 * going to be deprecated anyway.
3180	 */
3181	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3182		btrfs_warn(fs_info,
3183	"v1 space cache is not supported for page size %lu with sectorsize %u",
3184			   PAGE_SIZE, fs_info->sectorsize);
3185		return -EINVAL;
3186	}
3187
3188	/* This can be called by remount, we need to protect the super block. */
3189	spin_lock(&fs_info->super_lock);
3190	btrfs_set_super_incompat_flags(disk_super, incompat);
3191	spin_unlock(&fs_info->super_lock);
3192
3193	return 0;
3194}
3195
3196int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3197		      char *options)
3198{
3199	u32 sectorsize;
3200	u32 nodesize;
3201	u32 stripesize;
3202	u64 generation;
3203	u16 csum_type;
3204	struct btrfs_super_block *disk_super;
3205	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3206	struct btrfs_root *tree_root;
3207	struct btrfs_root *chunk_root;
3208	int ret;
3209	int level;
3210
3211	ret = init_mount_fs_info(fs_info, sb);
3212	if (ret)
3213		goto fail;
3214
3215	/* These need to be init'ed before we start creating inodes and such. */
3216	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3217				     GFP_KERNEL);
3218	fs_info->tree_root = tree_root;
3219	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3220				      GFP_KERNEL);
3221	fs_info->chunk_root = chunk_root;
3222	if (!tree_root || !chunk_root) {
3223		ret = -ENOMEM;
3224		goto fail;
3225	}
3226
3227	ret = btrfs_init_btree_inode(sb);
3228	if (ret)
3229		goto fail;
3230
3231	invalidate_bdev(fs_devices->latest_dev->bdev);
3232
3233	/*
3234	 * Read super block and check the signature bytes only
3235	 */
3236	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3237	if (IS_ERR(disk_super)) {
3238		ret = PTR_ERR(disk_super);
 
3239		goto fail_alloc;
3240	}
3241
3242	btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
3243	/*
3244	 * Verify the type first, if that or the checksum value are
3245	 * corrupted, we'll find out
 
3246	 */
3247	csum_type = btrfs_super_csum_type(disk_super);
3248	if (!btrfs_supported_super_csum(csum_type)) {
3249		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3250			  csum_type);
3251		ret = -EINVAL;
3252		btrfs_release_disk_super(disk_super);
3253		goto fail_alloc;
3254	}
3255
3256	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3257
3258	ret = btrfs_init_csum_hash(fs_info, csum_type);
3259	if (ret) {
3260		btrfs_release_disk_super(disk_super);
 
3261		goto fail_alloc;
3262	}
3263
 
 
 
 
 
 
 
 
3264	/*
3265	 * We want to check superblock checksum, the type is stored inside.
3266	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3267	 */
3268	if (btrfs_check_super_csum(fs_info, disk_super)) {
3269		btrfs_err(fs_info, "superblock checksum mismatch");
3270		ret = -EINVAL;
3271		btrfs_release_disk_super(disk_super);
3272		goto fail_alloc;
3273	}
3274
3275	/*
3276	 * super_copy is zeroed at allocation time and we never touch the
3277	 * following bytes up to INFO_SIZE, the checksum is calculated from
3278	 * the whole block of INFO_SIZE
3279	 */
3280	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3281	btrfs_release_disk_super(disk_super);
3282
3283	disk_super = fs_info->super_copy;
3284
3285	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3286	       sizeof(*fs_info->super_for_commit));
3287
3288	ret = btrfs_validate_mount_super(fs_info);
3289	if (ret) {
3290		btrfs_err(fs_info, "superblock contains fatal errors");
3291		ret = -EINVAL;
3292		goto fail_alloc;
3293	}
3294
3295	if (!btrfs_super_root(disk_super)) {
3296		btrfs_err(fs_info, "invalid superblock tree root bytenr");
3297		ret = -EINVAL;
 
 
 
 
3298		goto fail_alloc;
3299	}
3300
3301	/* check FS state, whether FS is broken. */
3302	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3303		WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3304
3305	/* Set up fs_info before parsing mount options */
3306	nodesize = btrfs_super_nodesize(disk_super);
3307	sectorsize = btrfs_super_sectorsize(disk_super);
3308	stripesize = sectorsize;
3309	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3310	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3311
3312	fs_info->nodesize = nodesize;
3313	fs_info->sectorsize = sectorsize;
3314	fs_info->sectorsize_bits = ilog2(sectorsize);
3315	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3316	fs_info->stripesize = stripesize;
3317
3318	/*
3319	 * Handle the space caching options appropriately now that we have the
3320	 * super block loaded and validated.
3321	 */
3322	btrfs_set_free_space_cache_settings(fs_info);
3323
3324	if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3325		ret = -EINVAL;
 
3326		goto fail_alloc;
3327	}
3328
3329	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3330	if (ret < 0)
3331		goto fail_alloc;
3332
3333	/*
3334	 * At this point our mount options are validated, if we set ->max_inline
3335	 * to something non-standard make sure we truncate it to sectorsize.
3336	 */
3337	fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3338
3339	if (sectorsize < PAGE_SIZE) {
3340		struct btrfs_subpage_info *subpage_info;
 
 
 
 
 
 
 
3341
3342		btrfs_warn(fs_info,
3343		"read-write for sector size %u with page size %lu is experimental",
3344			   sectorsize, PAGE_SIZE);
3345		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3346		if (!subpage_info) {
3347			ret = -ENOMEM;
3348			goto fail_alloc;
3349		}
3350		btrfs_init_subpage_info(subpage_info, sectorsize);
3351		fs_info->subpage_info = subpage_info;
3352	}
3353
3354	ret = btrfs_init_workqueues(fs_info);
3355	if (ret)
 
3356		goto fail_sb_buffer;
 
3357
3358	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3359	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
 
 
 
 
 
3360
3361	/* Update the values for the current filesystem. */
3362	sb->s_blocksize = sectorsize;
3363	sb->s_blocksize_bits = blksize_bits(sectorsize);
3364	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3365
3366	mutex_lock(&fs_info->chunk_mutex);
3367	ret = btrfs_read_sys_array(fs_info);
3368	mutex_unlock(&fs_info->chunk_mutex);
3369	if (ret) {
3370		btrfs_err(fs_info, "failed to read the system array: %d", ret);
 
3371		goto fail_sb_buffer;
3372	}
3373
3374	generation = btrfs_super_chunk_root_generation(disk_super);
3375	level = btrfs_super_chunk_root_level(disk_super);
3376	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3377			      generation, level);
3378	if (ret) {
3379		btrfs_err(fs_info, "failed to read chunk root");
 
 
 
 
 
 
 
 
 
3380		goto fail_tree_roots;
3381	}
 
 
3382
3383	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3384			   offsetof(struct btrfs_header, chunk_tree_uuid),
3385			   BTRFS_UUID_SIZE);
3386
3387	ret = btrfs_read_chunk_tree(fs_info);
3388	if (ret) {
3389		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
 
3390		goto fail_tree_roots;
3391	}
3392
3393	/*
3394	 * At this point we know all the devices that make this filesystem,
3395	 * including the seed devices but we don't know yet if the replace
3396	 * target is required. So free devices that are not part of this
3397	 * filesystem but skip the replace target device which is checked
3398	 * below in btrfs_init_dev_replace().
3399	 */
3400	btrfs_free_extra_devids(fs_devices);
3401	if (!fs_devices->latest_dev->bdev) {
3402		btrfs_err(fs_info, "failed to read devices");
3403		ret = -EIO;
3404		goto fail_tree_roots;
3405	}
3406
3407	ret = init_tree_roots(fs_info);
3408	if (ret)
3409		goto fail_tree_roots;
3410
3411	/*
3412	 * Get zone type information of zoned block devices. This will also
3413	 * handle emulation of a zoned filesystem if a regular device has the
3414	 * zoned incompat feature flag set.
3415	 */
3416	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3417	if (ret) {
3418		btrfs_err(fs_info,
3419			  "zoned: failed to read device zone info: %d", ret);
3420		goto fail_block_groups;
3421	}
3422
3423	/*
3424	 * If we have a uuid root and we're not being told to rescan we need to
3425	 * check the generation here so we can set the
3426	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3427	 * transaction during a balance or the log replay without updating the
3428	 * uuid generation, and then if we crash we would rescan the uuid tree,
3429	 * even though it was perfectly fine.
3430	 */
3431	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3432	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3433		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3434
3435	ret = btrfs_verify_dev_extents(fs_info);
3436	if (ret) {
3437		btrfs_err(fs_info,
3438			  "failed to verify dev extents against chunks: %d",
3439			  ret);
3440		goto fail_block_groups;
3441	}
3442	ret = btrfs_recover_balance(fs_info);
3443	if (ret) {
3444		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3445		goto fail_block_groups;
3446	}
3447
3448	ret = btrfs_init_dev_stats(fs_info);
3449	if (ret) {
3450		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
 
3451		goto fail_block_groups;
3452	}
3453
3454	ret = btrfs_init_dev_replace(fs_info);
3455	if (ret) {
3456		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3457		goto fail_block_groups;
3458	}
3459
3460	ret = btrfs_check_zoned_mode(fs_info);
 
 
3461	if (ret) {
3462		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3463			  ret);
3464		goto fail_block_groups;
3465	}
3466
3467	ret = btrfs_sysfs_add_fsid(fs_devices);
3468	if (ret) {
3469		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3470				ret);
3471		goto fail_block_groups;
3472	}
3473
3474	ret = btrfs_sysfs_add_mounted(fs_info);
3475	if (ret) {
3476		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3477		goto fail_fsdev_sysfs;
3478	}
3479
3480	ret = btrfs_init_space_info(fs_info);
3481	if (ret) {
3482		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3483		goto fail_sysfs;
3484	}
3485
3486	ret = btrfs_read_block_groups(fs_info);
3487	if (ret) {
3488		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3489		goto fail_sysfs;
3490	}
3491
3492	btrfs_free_zone_cache(fs_info);
3493
3494	btrfs_check_active_zone_reservation(fs_info);
3495
3496	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3497	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3498		btrfs_warn(fs_info,
3499		"writable mount is not allowed due to too many missing devices");
3500		ret = -EINVAL;
3501		goto fail_sysfs;
3502	}
3503
3504	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3505					       "btrfs-cleaner");
3506	if (IS_ERR(fs_info->cleaner_kthread)) {
3507		ret = PTR_ERR(fs_info->cleaner_kthread);
3508		goto fail_sysfs;
3509	}
3510
3511	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3512						   tree_root,
3513						   "btrfs-transaction");
3514	if (IS_ERR(fs_info->transaction_kthread)) {
3515		ret = PTR_ERR(fs_info->transaction_kthread);
3516		goto fail_cleaner;
 
 
 
 
 
 
 
3517	}
3518
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3519	ret = btrfs_read_qgroup_config(fs_info);
3520	if (ret)
3521		goto fail_trans_kthread;
3522
3523	if (btrfs_build_ref_tree(fs_info))
3524		btrfs_err(fs_info, "couldn't build ref tree");
3525
3526	/* do not make disk changes in broken FS or nologreplay is given */
3527	if (btrfs_super_log_root(disk_super) != 0 &&
3528	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3529		btrfs_info(fs_info, "start tree-log replay");
3530		ret = btrfs_replay_log(fs_info, fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
3531		if (ret)
3532			goto fail_qgroup;
 
 
 
 
 
 
 
 
 
 
3533	}
3534
3535	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
 
 
 
 
3536	if (IS_ERR(fs_info->fs_root)) {
3537		ret = PTR_ERR(fs_info->fs_root);
3538		btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
3539		fs_info->fs_root = NULL;
3540		goto fail_qgroup;
3541	}
3542
3543	if (sb_rdonly(sb))
3544		return 0;
3545
3546	ret = btrfs_start_pre_rw_mount(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3547	if (ret) {
3548		close_ctree(fs_info);
 
3549		return ret;
3550	}
3551	btrfs_discard_resume(fs_info);
3552
3553	if (fs_info->uuid_root &&
3554	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3555	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3556		btrfs_info(fs_info, "checking UUID tree");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3557		ret = btrfs_check_uuid_tree(fs_info);
3558		if (ret) {
3559			btrfs_warn(fs_info,
3560				"failed to check the UUID tree: %d", ret);
3561			close_ctree(fs_info);
3562			return ret;
3563		}
 
 
3564	}
3565
3566	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3567
3568	/* Kick the cleaner thread so it'll start deleting snapshots. */
3569	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3570		wake_up_process(fs_info->cleaner_kthread);
 
 
3571
3572	return 0;
3573
3574fail_qgroup:
3575	btrfs_free_qgroup_config(fs_info);
3576fail_trans_kthread:
3577	kthread_stop(fs_info->transaction_kthread);
3578	btrfs_cleanup_transaction(fs_info);
3579	btrfs_free_fs_roots(fs_info);
3580fail_cleaner:
3581	kthread_stop(fs_info->cleaner_kthread);
3582
3583	/*
3584	 * make sure we're done with the btree inode before we stop our
3585	 * kthreads
3586	 */
3587	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3588
3589fail_sysfs:
3590	btrfs_sysfs_remove_mounted(fs_info);
3591
3592fail_fsdev_sysfs:
3593	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3594
3595fail_block_groups:
3596	btrfs_put_block_group_cache(fs_info);
 
3597
3598fail_tree_roots:
3599	if (fs_info->data_reloc_root)
3600		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3601	free_root_pointers(fs_info, true);
3602	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3603
3604fail_sb_buffer:
3605	btrfs_stop_all_workers(fs_info);
3606	btrfs_free_block_groups(fs_info);
3607fail_alloc:
3608	btrfs_mapping_tree_free(fs_info);
 
3609
3610	iput(fs_info->btree_inode);
 
 
 
 
 
 
 
 
 
 
3611fail:
 
3612	btrfs_close_devices(fs_info->fs_devices);
3613	ASSERT(ret < 0);
3614	return ret;
3615}
3616ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3617
3618static void btrfs_end_super_write(struct bio *bio)
3619{
3620	struct btrfs_device *device = bio->bi_private;
3621	struct bio_vec *bvec;
3622	struct bvec_iter_all iter_all;
3623	struct page *page;
3624
3625	bio_for_each_segment_all(bvec, bio, iter_all) {
3626		page = bvec->bv_page;
3627
3628		if (bio->bi_status) {
3629			btrfs_warn_rl_in_rcu(device->fs_info,
3630				"lost page write due to IO error on %s (%d)",
3631				btrfs_dev_name(device),
3632				blk_status_to_errno(bio->bi_status));
3633			ClearPageUptodate(page);
3634			SetPageError(page);
3635			btrfs_dev_stat_inc_and_print(device,
3636						     BTRFS_DEV_STAT_WRITE_ERRS);
3637		} else {
3638			SetPageUptodate(page);
3639		}
3640
3641		put_page(page);
3642		unlock_page(page);
3643	}
3644
3645	bio_put(bio);
 
 
 
 
3646}
3647
3648struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3649						   int copy_num, bool drop_cache)
3650{
3651	struct btrfs_super_block *super;
3652	struct page *page;
3653	u64 bytenr, bytenr_orig;
3654	struct address_space *mapping = bdev->bd_inode->i_mapping;
3655	int ret;
3656
3657	bytenr_orig = btrfs_sb_offset(copy_num);
3658	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3659	if (ret == -ENOENT)
3660		return ERR_PTR(-EINVAL);
3661	else if (ret)
3662		return ERR_PTR(ret);
3663
3664	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
3665		return ERR_PTR(-EINVAL);
3666
3667	if (drop_cache) {
3668		/* This should only be called with the primary sb. */
3669		ASSERT(copy_num == 0);
3670
3671		/*
3672		 * Drop the page of the primary superblock, so later read will
3673		 * always read from the device.
 
 
3674		 */
3675		invalidate_inode_pages2_range(mapping,
3676				bytenr >> PAGE_SHIFT,
3677				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3678	}
 
 
 
3679
3680	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3681	if (IS_ERR(page))
3682		return ERR_CAST(page);
 
 
 
 
 
 
 
3683
3684	super = page_address(page);
3685	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3686		btrfs_release_disk_super(super);
3687		return ERR_PTR(-ENODATA);
3688	}
 
 
3689
3690	if (btrfs_super_bytenr(super) != bytenr_orig) {
3691		btrfs_release_disk_super(super);
3692		return ERR_PTR(-EINVAL);
 
 
3693	}
3694
3695	return super;
 
3696}
3697
3698
3699struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3700{
3701	struct btrfs_super_block *super, *latest = NULL;
 
 
3702	int i;
3703	u64 transid = 0;
 
3704
3705	/* we would like to check all the supers, but that would make
3706	 * a btrfs mount succeed after a mkfs from a different FS.
3707	 * So, we need to add a special mount option to scan for
3708	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3709	 */
3710	for (i = 0; i < 1; i++) {
3711		super = btrfs_read_dev_one_super(bdev, i, false);
3712		if (IS_ERR(super))
3713			continue;
3714
 
 
3715		if (!latest || btrfs_super_generation(super) > transid) {
3716			if (latest)
3717				btrfs_release_disk_super(super);
3718
3719			latest = super;
3720			transid = btrfs_super_generation(super);
 
 
3721		}
3722	}
3723
3724	return super;
 
 
 
3725}
3726
3727/*
3728 * Write superblock @sb to the @device. Do not wait for completion, all the
3729 * pages we use for writing are locked.
 
3730 *
3731 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3732 * the expected device size at commit time. Note that max_mirrors must be
3733 * same for write and wait phases.
3734 *
3735 * Return number of errors when page is not found or submission fails.
3736 */
3737static int write_dev_supers(struct btrfs_device *device,
3738			    struct btrfs_super_block *sb, int max_mirrors)
 
3739{
3740	struct btrfs_fs_info *fs_info = device->fs_info;
3741	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3742	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3743	int i;
 
3744	int errors = 0;
3745	int ret;
3746	u64 bytenr, bytenr_orig;
3747
3748	if (max_mirrors == 0)
3749		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3750
3751	shash->tfm = fs_info->csum_shash;
3752
3753	for (i = 0; i < max_mirrors; i++) {
3754		struct page *page;
3755		struct bio *bio;
3756		struct btrfs_super_block *disk_super;
3757
3758		bytenr_orig = btrfs_sb_offset(i);
3759		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3760		if (ret == -ENOENT) {
3761			continue;
3762		} else if (ret < 0) {
3763			btrfs_err(device->fs_info,
3764				"couldn't get super block location for mirror %d",
3765				i);
3766			errors++;
3767			continue;
3768		}
3769		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3770		    device->commit_total_bytes)
3771			break;
3772
3773		btrfs_set_super_bytenr(sb, bytenr_orig);
 
 
 
 
 
 
 
 
 
3774
3775		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3776				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3777				    sb->csum);
3778
3779		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3780					   GFP_NOFS);
3781		if (!page) {
3782			btrfs_err(device->fs_info,
3783			    "couldn't get super block page for bytenr %llu",
3784			    bytenr);
3785			errors++;
3786			continue;
3787		}
 
3788
3789		/* Bump the refcount for wait_dev_supers() */
3790		get_page(page);
 
 
 
 
3791
3792		disk_super = page_address(page);
3793		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
 
 
 
 
 
 
 
 
 
 
 
3794
3795		/*
3796		 * Directly use bios here instead of relying on the page cache
3797		 * to do I/O, so we don't lose the ability to do integrity
3798		 * checking.
3799		 */
3800		bio = bio_alloc(device->bdev, 1,
3801				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3802				GFP_NOFS);
3803		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3804		bio->bi_private = device;
3805		bio->bi_end_io = btrfs_end_super_write;
3806		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3807			       offset_in_page(bytenr));
3808
3809		/*
3810		 * We FUA only the first super block.  The others we allow to
3811		 * go down lazy and there's a short window where the on-disk
3812		 * copies might still contain the older version.
3813		 */
3814		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3815			bio->bi_opf |= REQ_FUA;
3816		submit_bio(bio);
3817
3818		if (btrfs_advance_sb_log(device, i))
3819			errors++;
3820	}
3821	return errors < i ? 0 : -1;
3822}
3823
3824/*
3825 * Wait for write completion of superblocks done by write_dev_supers,
3826 * @max_mirrors same for write and wait phases.
3827 *
3828 * Return number of errors when page is not found or not marked up to
3829 * date.
3830 */
3831static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3832{
3833	int i;
3834	int errors = 0;
3835	bool primary_failed = false;
3836	int ret;
3837	u64 bytenr;
3838
3839	if (max_mirrors == 0)
3840		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3841
3842	for (i = 0; i < max_mirrors; i++) {
3843		struct page *page;
3844
3845		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3846		if (ret == -ENOENT) {
3847			break;
3848		} else if (ret < 0) {
3849			errors++;
3850			if (i == 0)
3851				primary_failed = true;
3852			continue;
3853		}
3854		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3855		    device->commit_total_bytes)
3856			break;
3857
3858		page = find_get_page(device->bdev->bd_inode->i_mapping,
3859				     bytenr >> PAGE_SHIFT);
3860		if (!page) {
3861			errors++;
3862			if (i == 0)
3863				primary_failed = true;
3864			continue;
3865		}
3866		/* Page is submitted locked and unlocked once the IO completes */
3867		wait_on_page_locked(page);
3868		if (PageError(page)) {
3869			errors++;
3870			if (i == 0)
3871				primary_failed = true;
3872		}
3873
3874		/* Drop our reference */
3875		put_page(page);
3876
3877		/* Drop the reference from the writing run */
3878		put_page(page);
3879	}
3880
3881	/* log error, force error return */
3882	if (primary_failed) {
3883		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3884			  device->devid);
3885		return -1;
3886	}
3887
3888	return errors < i ? 0 : -1;
3889}
3890
3891/*
3892 * endio for the write_dev_flush, this will wake anyone waiting
3893 * for the barrier when it is done
3894 */
3895static void btrfs_end_empty_barrier(struct bio *bio)
3896{
3897	bio_uninit(bio);
3898	complete(bio->bi_private);
 
3899}
3900
3901/*
3902 * Submit a flush request to the device if it supports it. Error handling is
3903 * done in the waiting counterpart.
 
 
 
3904 */
3905static void write_dev_flush(struct btrfs_device *device)
3906{
3907	struct bio *bio = &device->flush_bio;
 
3908
3909	device->last_flush_error = BLK_STS_OK;
 
3910
3911	bio_init(bio, device->bdev, NULL, 0,
3912		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
3913	bio->bi_end_io = btrfs_end_empty_barrier;
3914	init_completion(&device->flush_wait);
3915	bio->bi_private = &device->flush_wait;
3916	submit_bio(bio);
3917	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3918}
3919
3920/*
3921 * If the flush bio has been submitted by write_dev_flush, wait for it.
3922 * Return true for any error, and false otherwise.
3923 */
3924static bool wait_dev_flush(struct btrfs_device *device)
3925{
3926	struct bio *bio = &device->flush_bio;
3927
3928	if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3929		return false;
 
 
 
3930
3931	wait_for_completion_io(&device->flush_wait);
 
 
3932
3933	if (bio->bi_status) {
3934		device->last_flush_error = bio->bi_status;
3935		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
3936		return true;
3937	}
3938
3939	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3940}
3941
3942/*
3943 * send an empty flush down to each device in parallel,
3944 * then wait for them
3945 */
3946static int barrier_all_devices(struct btrfs_fs_info *info)
3947{
3948	struct list_head *head;
3949	struct btrfs_device *dev;
 
3950	int errors_wait = 0;
 
3951
3952	lockdep_assert_held(&info->fs_devices->device_list_mutex);
3953	/* send down all the barriers */
3954	head = &info->fs_devices->devices;
3955	list_for_each_entry(dev, head, dev_list) {
3956		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3957			continue;
3958		if (!dev->bdev)
 
3959			continue;
3960		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3961		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3962			continue;
3963
3964		write_dev_flush(dev);
 
 
3965	}
3966
3967	/* wait for all the barriers */
3968	list_for_each_entry(dev, head, dev_list) {
3969		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3970			continue;
3971		if (!dev->bdev) {
3972			errors_wait++;
3973			continue;
3974		}
3975		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3976		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3977			continue;
3978
3979		if (wait_dev_flush(dev))
 
3980			errors_wait++;
3981	}
3982
3983	/*
3984	 * Checks last_flush_error of disks in order to determine the device
3985	 * state.
3986	 */
3987	if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3988		return -EIO;
3989
3990	return 0;
3991}
3992
3993int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3994{
3995	int raid_type;
3996	int min_tolerated = INT_MAX;
3997
3998	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3999	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4000		min_tolerated = min_t(int, min_tolerated,
4001				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4002				    tolerated_failures);
4003
4004	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4005		if (raid_type == BTRFS_RAID_SINGLE)
4006			continue;
4007		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4008			continue;
4009		min_tolerated = min_t(int, min_tolerated,
4010				    btrfs_raid_array[raid_type].
4011				    tolerated_failures);
4012	}
4013
4014	if (min_tolerated == INT_MAX) {
4015		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4016		min_tolerated = 0;
4017	}
4018
4019	return min_tolerated;
4020}
4021
4022int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4023{
4024	struct list_head *head;
4025	struct btrfs_device *dev;
4026	struct btrfs_super_block *sb;
4027	struct btrfs_dev_item *dev_item;
4028	int ret;
4029	int do_barriers;
4030	int max_errors;
4031	int total_errors = 0;
4032	u64 flags;
4033
4034	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4035
4036	/*
4037	 * max_mirrors == 0 indicates we're from commit_transaction,
4038	 * not from fsync where the tree roots in fs_info have not
4039	 * been consistent on disk.
4040	 */
4041	if (max_mirrors == 0)
4042		backup_super_roots(fs_info);
4043
4044	sb = fs_info->super_for_commit;
4045	dev_item = &sb->dev_item;
4046
4047	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4048	head = &fs_info->fs_devices->devices;
4049	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4050
4051	if (do_barriers) {
4052		ret = barrier_all_devices(fs_info);
4053		if (ret) {
4054			mutex_unlock(
4055				&fs_info->fs_devices->device_list_mutex);
4056			btrfs_handle_fs_error(fs_info, ret,
4057					      "errors while submitting device barriers.");
4058			return ret;
4059		}
4060	}
4061
4062	list_for_each_entry(dev, head, dev_list) {
4063		if (!dev->bdev) {
4064			total_errors++;
4065			continue;
4066		}
4067		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4068		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4069			continue;
4070
4071		btrfs_set_stack_device_generation(dev_item, 0);
4072		btrfs_set_stack_device_type(dev_item, dev->type);
4073		btrfs_set_stack_device_id(dev_item, dev->devid);
4074		btrfs_set_stack_device_total_bytes(dev_item,
4075						   dev->commit_total_bytes);
4076		btrfs_set_stack_device_bytes_used(dev_item,
4077						  dev->commit_bytes_used);
4078		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4079		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4080		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4081		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4082		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4083		       BTRFS_FSID_SIZE);
4084
4085		flags = btrfs_super_flags(sb);
4086		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4087
4088		ret = btrfs_validate_write_super(fs_info, sb);
4089		if (ret < 0) {
4090			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4091			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4092				"unexpected superblock corruption detected");
4093			return -EUCLEAN;
4094		}
4095
4096		ret = write_dev_supers(dev, sb, max_mirrors);
4097		if (ret)
4098			total_errors++;
4099	}
4100	if (total_errors > max_errors) {
4101		btrfs_err(fs_info, "%d errors while writing supers",
4102			  total_errors);
4103		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4104
4105		/* FUA is masked off if unsupported and can't be the reason */
4106		btrfs_handle_fs_error(fs_info, -EIO,
4107				      "%d errors while writing supers",
4108				      total_errors);
4109		return -EIO;
4110	}
4111
4112	total_errors = 0;
4113	list_for_each_entry(dev, head, dev_list) {
4114		if (!dev->bdev)
4115			continue;
4116		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4117		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4118			continue;
4119
4120		ret = wait_dev_supers(dev, max_mirrors);
4121		if (ret)
4122			total_errors++;
4123	}
4124	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4125	if (total_errors > max_errors) {
4126		btrfs_handle_fs_error(fs_info, -EIO,
4127				      "%d errors while writing supers",
4128				      total_errors);
4129		return -EIO;
4130	}
4131	return 0;
4132}
4133
 
 
 
 
 
 
4134/* Drop a fs root from the radix tree and free it. */
4135void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4136				  struct btrfs_root *root)
4137{
4138	bool drop_ref = false;
4139
4140	spin_lock(&fs_info->fs_roots_radix_lock);
4141	radix_tree_delete(&fs_info->fs_roots_radix,
4142			  (unsigned long)root->root_key.objectid);
4143	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4144		drop_ref = true;
4145	spin_unlock(&fs_info->fs_roots_radix_lock);
4146
4147	if (BTRFS_FS_ERROR(fs_info)) {
4148		ASSERT(root->log_root == NULL);
4149		if (root->reloc_root) {
4150			btrfs_put_root(root->reloc_root);
4151			root->reloc_root = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4152		}
 
 
 
 
 
 
 
 
 
 
 
 
4153	}
4154
4155	if (drop_ref)
4156		btrfs_put_root(root);
 
 
 
 
4157}
4158
4159int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4160{
4161	struct btrfs_root *root = fs_info->tree_root;
4162	struct btrfs_trans_handle *trans;
4163
4164	mutex_lock(&fs_info->cleaner_mutex);
4165	btrfs_run_delayed_iputs(fs_info);
4166	mutex_unlock(&fs_info->cleaner_mutex);
4167	wake_up_process(fs_info->cleaner_kthread);
4168
4169	/* wait until ongoing cleanup work done */
4170	down_write(&fs_info->cleanup_work_sem);
4171	up_write(&fs_info->cleanup_work_sem);
4172
4173	trans = btrfs_join_transaction(root);
4174	if (IS_ERR(trans))
4175		return PTR_ERR(trans);
4176	return btrfs_commit_transaction(trans);
4177}
4178
4179static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4180{
4181	struct btrfs_transaction *trans;
4182	struct btrfs_transaction *tmp;
4183	bool found = false;
4184
4185	if (list_empty(&fs_info->trans_list))
4186		return;
4187
4188	/*
4189	 * This function is only called at the very end of close_ctree(),
4190	 * thus no other running transaction, no need to take trans_lock.
4191	 */
4192	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4193	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4194		struct extent_state *cached = NULL;
4195		u64 dirty_bytes = 0;
4196		u64 cur = 0;
4197		u64 found_start;
4198		u64 found_end;
4199
4200		found = true;
4201		while (find_first_extent_bit(&trans->dirty_pages, cur,
4202			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4203			dirty_bytes += found_end + 1 - found_start;
4204			cur = found_end + 1;
4205		}
4206		btrfs_warn(fs_info,
4207	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4208			   trans->transid, dirty_bytes);
4209		btrfs_cleanup_one_transaction(trans, fs_info);
4210
4211		if (trans == fs_info->running_transaction)
4212			fs_info->running_transaction = NULL;
4213		list_del_init(&trans->list);
4214
4215		btrfs_put_transaction(trans);
4216		trace_btrfs_transaction_commit(fs_info);
4217	}
4218	ASSERT(!found);
4219}
4220
4221void __cold close_ctree(struct btrfs_fs_info *fs_info)
4222{
 
4223	int ret;
4224
4225	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4226
4227	/*
4228	 * If we had UNFINISHED_DROPS we could still be processing them, so
4229	 * clear that bit and wake up relocation so it can stop.
4230	 * We must do this before stopping the block group reclaim task, because
4231	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4232	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4233	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4234	 * return 1.
4235	 */
4236	btrfs_wake_unfinished_drop(fs_info);
4237
4238	/*
4239	 * We may have the reclaim task running and relocating a data block group,
4240	 * in which case it may create delayed iputs. So stop it before we park
4241	 * the cleaner kthread otherwise we can get new delayed iputs after
4242	 * parking the cleaner, and that can make the async reclaim task to hang
4243	 * if it's waiting for delayed iputs to complete, since the cleaner is
4244	 * parked and can not run delayed iputs - this will make us hang when
4245	 * trying to stop the async reclaim task.
4246	 */
4247	cancel_work_sync(&fs_info->reclaim_bgs_work);
4248	/*
4249	 * We don't want the cleaner to start new transactions, add more delayed
4250	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4251	 * because that frees the task_struct, and the transaction kthread might
4252	 * still try to wake up the cleaner.
4253	 */
4254	kthread_park(fs_info->cleaner_kthread);
4255
4256	/* wait for the qgroup rescan worker to stop */
4257	btrfs_qgroup_wait_for_completion(fs_info, false);
4258
4259	/* wait for the uuid_scan task to finish */
4260	down(&fs_info->uuid_tree_rescan_sem);
4261	/* avoid complains from lockdep et al., set sem back to initial state */
4262	up(&fs_info->uuid_tree_rescan_sem);
4263
4264	/* pause restriper - we want to resume on mount */
4265	btrfs_pause_balance(fs_info);
4266
4267	btrfs_dev_replace_suspend_for_unmount(fs_info);
4268
4269	btrfs_scrub_cancel(fs_info);
4270
4271	/* wait for any defraggers to finish */
4272	wait_event(fs_info->transaction_wait,
4273		   (atomic_read(&fs_info->defrag_running) == 0));
4274
4275	/* clear out the rbtree of defraggable inodes */
4276	btrfs_cleanup_defrag_inodes(fs_info);
4277
4278	/*
4279	 * After we parked the cleaner kthread, ordered extents may have
4280	 * completed and created new delayed iputs. If one of the async reclaim
4281	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4282	 * can hang forever trying to stop it, because if a delayed iput is
4283	 * added after it ran btrfs_run_delayed_iputs() and before it called
4284	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4285	 * no one else to run iputs.
4286	 *
4287	 * So wait for all ongoing ordered extents to complete and then run
4288	 * delayed iputs. This works because once we reach this point no one
4289	 * can either create new ordered extents nor create delayed iputs
4290	 * through some other means.
4291	 *
4292	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4293	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4294	 * but the delayed iput for the respective inode is made only when doing
4295	 * the final btrfs_put_ordered_extent() (which must happen at
4296	 * btrfs_finish_ordered_io() when we are unmounting).
4297	 */
4298	btrfs_flush_workqueue(fs_info->endio_write_workers);
4299	/* Ordered extents for free space inodes. */
4300	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4301	btrfs_run_delayed_iputs(fs_info);
4302
4303	cancel_work_sync(&fs_info->async_reclaim_work);
4304	cancel_work_sync(&fs_info->async_data_reclaim_work);
4305	cancel_work_sync(&fs_info->preempt_reclaim_work);
4306
4307	/* Cancel or finish ongoing discard work */
4308	btrfs_discard_cleanup(fs_info);
4309
4310	if (!sb_rdonly(fs_info->sb)) {
4311		/*
4312		 * The cleaner kthread is stopped, so do one final pass over
4313		 * unused block groups.
 
4314		 */
4315		btrfs_delete_unused_bgs(fs_info);
4316
4317		/*
4318		 * There might be existing delayed inode workers still running
4319		 * and holding an empty delayed inode item. We must wait for
4320		 * them to complete first because they can create a transaction.
4321		 * This happens when someone calls btrfs_balance_delayed_items()
4322		 * and then a transaction commit runs the same delayed nodes
4323		 * before any delayed worker has done something with the nodes.
4324		 * We must wait for any worker here and not at transaction
4325		 * commit time since that could cause a deadlock.
4326		 * This is a very rare case.
4327		 */
4328		btrfs_flush_workqueue(fs_info->delayed_workers);
4329
4330		ret = btrfs_commit_super(fs_info);
4331		if (ret)
4332			btrfs_err(fs_info, "commit super ret %d", ret);
4333	}
4334
4335	if (BTRFS_FS_ERROR(fs_info))
4336		btrfs_error_commit_super(fs_info);
4337
4338	kthread_stop(fs_info->transaction_kthread);
4339	kthread_stop(fs_info->cleaner_kthread);
4340
4341	ASSERT(list_empty(&fs_info->delayed_iputs));
4342	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4343
4344	if (btrfs_check_quota_leak(fs_info)) {
4345		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4346		btrfs_err(fs_info, "qgroup reserved space leaked");
4347	}
4348
4349	btrfs_free_qgroup_config(fs_info);
4350	ASSERT(list_empty(&fs_info->delalloc_roots));
4351
4352	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4353		btrfs_info(fs_info, "at unmount delalloc count %lld",
4354		       percpu_counter_sum(&fs_info->delalloc_bytes));
4355	}
4356
4357	if (percpu_counter_sum(&fs_info->ordered_bytes))
4358		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4359			   percpu_counter_sum(&fs_info->ordered_bytes));
4360
4361	btrfs_sysfs_remove_mounted(fs_info);
4362	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4363
 
 
4364	btrfs_put_block_group_cache(fs_info);
4365
 
 
4366	/*
4367	 * we must make sure there is not any read request to
4368	 * submit after we stopping all workers.
4369	 */
4370	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4371	btrfs_stop_all_workers(fs_info);
4372
4373	/* We shouldn't have any transaction open at this point */
4374	warn_about_uncommitted_trans(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4375
4376	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4377	free_root_pointers(fs_info, true);
4378	btrfs_free_fs_roots(fs_info);
 
 
 
 
4379
4380	/*
4381	 * We must free the block groups after dropping the fs_roots as we could
4382	 * have had an IO error and have left over tree log blocks that aren't
4383	 * cleaned up until the fs roots are freed.  This makes the block group
4384	 * accounting appear to be wrong because there's pending reserved bytes,
4385	 * so make sure we do the block group cleanup afterwards.
4386	 */
4387	btrfs_free_block_groups(fs_info);
4388
4389	iput(fs_info->btree_inode);
 
 
4390
4391	btrfs_mapping_tree_free(fs_info);
4392	btrfs_close_devices(fs_info->fs_devices);
 
 
 
4393}
4394
4395void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4396			     struct extent_buffer *buf)
4397{
4398	struct btrfs_fs_info *fs_info = buf->fs_info;
4399	u64 transid = btrfs_header_generation(buf);
 
4400
4401#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4402	/*
4403	 * This is a fast path so only do this check if we have sanity tests
4404	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4405	 * outside of the sanity tests.
4406	 */
4407	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4408		return;
4409#endif
4410	/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4411	ASSERT(trans->transid == fs_info->generation);
4412	btrfs_assert_tree_write_locked(buf);
4413	if (unlikely(transid != fs_info->generation)) {
4414		btrfs_abort_transaction(trans, -EUCLEAN);
4415		btrfs_crit(fs_info,
4416"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4417			   buf->start, transid, fs_info->generation);
 
 
 
 
 
 
 
4418	}
4419	set_extent_buffer_dirty(buf);
4420}
4421
4422static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4423					int flush_delayed)
4424{
4425	/*
4426	 * looks as though older kernels can get into trouble with
4427	 * this code, they end up stuck in balance_dirty_pages forever
4428	 */
4429	int ret;
4430
4431	if (current->flags & PF_MEMALLOC)
4432		return;
4433
4434	if (flush_delayed)
4435		btrfs_balance_delayed_items(fs_info);
4436
4437	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4438				     BTRFS_DIRTY_METADATA_THRESH,
4439				     fs_info->dirty_metadata_batch);
4440	if (ret > 0) {
4441		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
 
4442	}
4443}
4444
4445void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
 
 
 
 
 
4446{
4447	__btrfs_btree_balance_dirty(fs_info, 1);
4448}
4449
4450void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4451{
4452	__btrfs_btree_balance_dirty(fs_info, 0);
 
4453}
4454
4455static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
 
4456{
4457	/* cleanup FS via transaction */
4458	btrfs_cleanup_transaction(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4459
4460	mutex_lock(&fs_info->cleaner_mutex);
4461	btrfs_run_delayed_iputs(fs_info);
4462	mutex_unlock(&fs_info->cleaner_mutex);
 
 
 
 
 
 
 
 
 
 
4463
4464	down_write(&fs_info->cleanup_work_sem);
4465	up_write(&fs_info->cleanup_work_sem);
4466}
4467
4468static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4469{
4470	struct btrfs_root *gang[8];
4471	u64 root_objectid = 0;
4472	int ret;
4473
4474	spin_lock(&fs_info->fs_roots_radix_lock);
4475	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4476					     (void **)gang, root_objectid,
4477					     ARRAY_SIZE(gang))) != 0) {
4478		int i;
4479
4480		for (i = 0; i < ret; i++)
4481			gang[i] = btrfs_grab_root(gang[i]);
4482		spin_unlock(&fs_info->fs_roots_radix_lock);
4483
4484		for (i = 0; i < ret; i++) {
4485			if (!gang[i])
4486				continue;
4487			root_objectid = gang[i]->root_key.objectid;
4488			btrfs_free_log(NULL, gang[i]);
4489			btrfs_put_root(gang[i]);
4490		}
4491		root_objectid++;
4492		spin_lock(&fs_info->fs_roots_radix_lock);
4493	}
4494	spin_unlock(&fs_info->fs_roots_radix_lock);
4495	btrfs_free_log_root_tree(NULL, fs_info);
4496}
4497
4498static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4499{
4500	struct btrfs_ordered_extent *ordered;
4501
4502	spin_lock(&root->ordered_extent_lock);
4503	/*
4504	 * This will just short circuit the ordered completion stuff which will
4505	 * make sure the ordered extent gets properly cleaned up.
4506	 */
4507	list_for_each_entry(ordered, &root->ordered_extents,
4508			    root_extent_list)
4509		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4510	spin_unlock(&root->ordered_extent_lock);
4511}
4512
4513static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4514{
4515	struct btrfs_root *root;
4516	LIST_HEAD(splice);
 
 
4517
4518	spin_lock(&fs_info->ordered_root_lock);
4519	list_splice_init(&fs_info->ordered_roots, &splice);
4520	while (!list_empty(&splice)) {
4521		root = list_first_entry(&splice, struct btrfs_root,
4522					ordered_root);
4523		list_move_tail(&root->ordered_root,
4524			       &fs_info->ordered_roots);
4525
4526		spin_unlock(&fs_info->ordered_root_lock);
4527		btrfs_destroy_ordered_extents(root);
4528
4529		cond_resched();
4530		spin_lock(&fs_info->ordered_root_lock);
4531	}
4532	spin_unlock(&fs_info->ordered_root_lock);
4533
4534	/*
4535	 * We need this here because if we've been flipped read-only we won't
4536	 * get sync() from the umount, so we need to make sure any ordered
4537	 * extents that haven't had their dirty pages IO start writeout yet
4538	 * actually get run and error out properly.
4539	 */
4540	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4541}
4542
4543static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4544				       struct btrfs_fs_info *fs_info)
4545{
4546	struct rb_node *node;
4547	struct btrfs_delayed_ref_root *delayed_refs;
4548	struct btrfs_delayed_ref_node *ref;
 
4549
4550	delayed_refs = &trans->delayed_refs;
4551
4552	spin_lock(&delayed_refs->lock);
4553	if (atomic_read(&delayed_refs->num_entries) == 0) {
4554		spin_unlock(&delayed_refs->lock);
4555		btrfs_debug(fs_info, "delayed_refs has NO entry");
4556		return;
4557	}
4558
4559	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4560		struct btrfs_delayed_ref_head *head;
4561		struct rb_node *n;
4562		bool pin_bytes = false;
4563
4564		head = rb_entry(node, struct btrfs_delayed_ref_head,
4565				href_node);
4566		if (btrfs_delayed_ref_lock(delayed_refs, head))
 
 
 
 
 
 
 
4567			continue;
4568
4569		spin_lock(&head->lock);
4570		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4571			ref = rb_entry(n, struct btrfs_delayed_ref_node,
4572				       ref_node);
4573			rb_erase_cached(&ref->ref_node, &head->ref_tree);
4574			RB_CLEAR_NODE(&ref->ref_node);
4575			if (!list_empty(&ref->add_list))
4576				list_del(&ref->add_list);
4577			atomic_dec(&delayed_refs->num_entries);
4578			btrfs_put_delayed_ref(ref);
4579			btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
4580		}
4581		if (head->must_insert_reserved)
4582			pin_bytes = true;
4583		btrfs_free_delayed_extent_op(head->extent_op);
4584		btrfs_delete_ref_head(delayed_refs, head);
 
 
 
 
 
4585		spin_unlock(&head->lock);
4586		spin_unlock(&delayed_refs->lock);
4587		mutex_unlock(&head->mutex);
4588
4589		if (pin_bytes) {
4590			struct btrfs_block_group *cache;
4591
4592			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4593			BUG_ON(!cache);
4594
4595			spin_lock(&cache->space_info->lock);
4596			spin_lock(&cache->lock);
4597			cache->pinned += head->num_bytes;
4598			btrfs_space_info_update_bytes_pinned(fs_info,
4599				cache->space_info, head->num_bytes);
4600			cache->reserved -= head->num_bytes;
4601			cache->space_info->bytes_reserved -= head->num_bytes;
4602			spin_unlock(&cache->lock);
4603			spin_unlock(&cache->space_info->lock);
4604
4605			btrfs_put_block_group(cache);
4606
4607			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4608				head->bytenr + head->num_bytes - 1);
4609		}
4610		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4611		btrfs_put_delayed_ref_head(head);
4612		cond_resched();
4613		spin_lock(&delayed_refs->lock);
4614	}
4615	btrfs_qgroup_destroy_extent_records(trans);
4616
4617	spin_unlock(&delayed_refs->lock);
 
 
4618}
4619
4620static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4621{
4622	struct btrfs_inode *btrfs_inode;
4623	LIST_HEAD(splice);
 
 
4624
4625	spin_lock(&root->delalloc_lock);
4626	list_splice_init(&root->delalloc_inodes, &splice);
4627
4628	while (!list_empty(&splice)) {
4629		struct inode *inode = NULL;
4630		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4631					       delalloc_inodes);
4632		btrfs_del_delalloc_inode(btrfs_inode);
 
 
 
4633		spin_unlock(&root->delalloc_lock);
4634
4635		/*
4636		 * Make sure we get a live inode and that it'll not disappear
4637		 * meanwhile.
4638		 */
4639		inode = igrab(&btrfs_inode->vfs_inode);
4640		if (inode) {
4641			unsigned int nofs_flag;
4642
4643			nofs_flag = memalloc_nofs_save();
4644			invalidate_inode_pages2(inode->i_mapping);
4645			memalloc_nofs_restore(nofs_flag);
4646			iput(inode);
4647		}
4648		spin_lock(&root->delalloc_lock);
4649	}
 
4650	spin_unlock(&root->delalloc_lock);
4651}
4652
4653static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4654{
4655	struct btrfs_root *root;
4656	LIST_HEAD(splice);
 
 
4657
4658	spin_lock(&fs_info->delalloc_root_lock);
4659	list_splice_init(&fs_info->delalloc_roots, &splice);
4660	while (!list_empty(&splice)) {
4661		root = list_first_entry(&splice, struct btrfs_root,
4662					 delalloc_root);
4663		root = btrfs_grab_root(root);
 
4664		BUG_ON(!root);
4665		spin_unlock(&fs_info->delalloc_root_lock);
4666
4667		btrfs_destroy_delalloc_inodes(root);
4668		btrfs_put_root(root);
4669
4670		spin_lock(&fs_info->delalloc_root_lock);
4671	}
4672	spin_unlock(&fs_info->delalloc_root_lock);
4673}
4674
4675static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4676					 struct extent_io_tree *dirty_pages,
4677					 int mark)
4678{
 
4679	struct extent_buffer *eb;
4680	u64 start = 0;
4681	u64 end;
4682
4683	while (find_first_extent_bit(dirty_pages, start, &start, &end,
4684				     mark, NULL)) {
4685		clear_extent_bits(dirty_pages, start, end, mark);
 
 
 
 
4686		while (start <= end) {
4687			eb = find_extent_buffer(fs_info, start);
4688			start += fs_info->nodesize;
4689			if (!eb)
4690				continue;
4691
4692			btrfs_tree_lock(eb);
4693			wait_on_extent_buffer_writeback(eb);
4694			btrfs_clear_buffer_dirty(NULL, eb);
4695			btrfs_tree_unlock(eb);
4696
 
 
 
4697			free_extent_buffer_stale(eb);
4698		}
4699	}
 
 
4700}
4701
4702static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4703					struct extent_io_tree *unpin)
4704{
 
4705	u64 start;
4706	u64 end;
 
 
4707
 
 
4708	while (1) {
4709		struct extent_state *cached_state = NULL;
4710
4711		/*
4712		 * The btrfs_finish_extent_commit() may get the same range as
4713		 * ours between find_first_extent_bit and clear_extent_dirty.
4714		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4715		 * the same extent range.
4716		 */
4717		mutex_lock(&fs_info->unused_bg_unpin_mutex);
4718		if (!find_first_extent_bit(unpin, 0, &start, &end,
4719					   EXTENT_DIRTY, &cached_state)) {
4720			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4721			break;
4722		}
4723
4724		clear_extent_dirty(unpin, start, end, &cached_state);
4725		free_extent_state(cached_state);
4726		btrfs_error_unpin_extent_range(fs_info, start, end);
4727		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4728		cond_resched();
4729	}
4730}
4731
4732static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4733{
4734	struct inode *inode;
4735
4736	inode = cache->io_ctl.inode;
4737	if (inode) {
4738		unsigned int nofs_flag;
4739
4740		nofs_flag = memalloc_nofs_save();
4741		invalidate_inode_pages2(inode->i_mapping);
4742		memalloc_nofs_restore(nofs_flag);
4743
4744		BTRFS_I(inode)->generation = 0;
4745		cache->io_ctl.inode = NULL;
4746		iput(inode);
4747	}
4748	ASSERT(cache->io_ctl.pages == NULL);
4749	btrfs_put_block_group(cache);
4750}
4751
4752void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4753			     struct btrfs_fs_info *fs_info)
4754{
4755	struct btrfs_block_group *cache;
4756
4757	spin_lock(&cur_trans->dirty_bgs_lock);
4758	while (!list_empty(&cur_trans->dirty_bgs)) {
4759		cache = list_first_entry(&cur_trans->dirty_bgs,
4760					 struct btrfs_block_group,
4761					 dirty_list);
4762
4763		if (!list_empty(&cache->io_list)) {
4764			spin_unlock(&cur_trans->dirty_bgs_lock);
4765			list_del_init(&cache->io_list);
4766			btrfs_cleanup_bg_io(cache);
4767			spin_lock(&cur_trans->dirty_bgs_lock);
4768		}
4769
4770		list_del_init(&cache->dirty_list);
4771		spin_lock(&cache->lock);
4772		cache->disk_cache_state = BTRFS_DC_ERROR;
4773		spin_unlock(&cache->lock);
4774
4775		spin_unlock(&cur_trans->dirty_bgs_lock);
4776		btrfs_put_block_group(cache);
4777		btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
4778		spin_lock(&cur_trans->dirty_bgs_lock);
4779	}
4780	spin_unlock(&cur_trans->dirty_bgs_lock);
4781
4782	/*
4783	 * Refer to the definition of io_bgs member for details why it's safe
4784	 * to use it without any locking
4785	 */
4786	while (!list_empty(&cur_trans->io_bgs)) {
4787		cache = list_first_entry(&cur_trans->io_bgs,
4788					 struct btrfs_block_group,
4789					 io_list);
4790
4791		list_del_init(&cache->io_list);
4792		spin_lock(&cache->lock);
4793		cache->disk_cache_state = BTRFS_DC_ERROR;
4794		spin_unlock(&cache->lock);
4795		btrfs_cleanup_bg_io(cache);
4796	}
4797}
4798
4799static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4800{
4801	struct btrfs_root *gang[8];
4802	int i;
4803	int ret;
4804
4805	spin_lock(&fs_info->fs_roots_radix_lock);
4806	while (1) {
4807		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4808						 (void **)gang, 0,
4809						 ARRAY_SIZE(gang),
4810						 BTRFS_ROOT_TRANS_TAG);
4811		if (ret == 0)
4812			break;
4813		for (i = 0; i < ret; i++) {
4814			struct btrfs_root *root = gang[i];
4815
4816			btrfs_qgroup_free_meta_all_pertrans(root);
4817			radix_tree_tag_clear(&fs_info->fs_roots_radix,
4818					(unsigned long)root->root_key.objectid,
4819					BTRFS_ROOT_TRANS_TAG);
4820		}
4821	}
4822	spin_unlock(&fs_info->fs_roots_radix_lock);
4823}
4824
4825void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4826				   struct btrfs_fs_info *fs_info)
4827{
4828	struct btrfs_device *dev, *tmp;
4829
4830	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4831	ASSERT(list_empty(&cur_trans->dirty_bgs));
4832	ASSERT(list_empty(&cur_trans->io_bgs));
4833
4834	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4835				 post_commit_list) {
4836		list_del_init(&dev->post_commit_list);
4837	}
4838
4839	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4840
4841	cur_trans->state = TRANS_STATE_COMMIT_START;
4842	wake_up(&fs_info->transaction_blocked_wait);
4843
4844	cur_trans->state = TRANS_STATE_UNBLOCKED;
4845	wake_up(&fs_info->transaction_wait);
4846
4847	btrfs_destroy_delayed_inodes(fs_info);
 
4848
4849	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4850				     EXTENT_DIRTY);
4851	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4852
4853	btrfs_free_all_qgroup_pertrans(fs_info);
4854
4855	cur_trans->state =TRANS_STATE_COMPLETED;
4856	wake_up(&cur_trans->commit_wait);
 
 
 
 
 
4857}
4858
4859static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4860{
4861	struct btrfs_transaction *t;
4862
4863	mutex_lock(&fs_info->transaction_kthread_mutex);
4864
4865	spin_lock(&fs_info->trans_lock);
4866	while (!list_empty(&fs_info->trans_list)) {
4867		t = list_first_entry(&fs_info->trans_list,
4868				     struct btrfs_transaction, list);
4869		if (t->state >= TRANS_STATE_COMMIT_PREP) {
4870			refcount_inc(&t->use_count);
4871			spin_unlock(&fs_info->trans_lock);
4872			btrfs_wait_for_commit(fs_info, t->transid);
4873			btrfs_put_transaction(t);
4874			spin_lock(&fs_info->trans_lock);
4875			continue;
4876		}
4877		if (t == fs_info->running_transaction) {
4878			t->state = TRANS_STATE_COMMIT_DOING;
4879			spin_unlock(&fs_info->trans_lock);
4880			/*
4881			 * We wait for 0 num_writers since we don't hold a trans
4882			 * handle open currently for this transaction.
4883			 */
4884			wait_event(t->writer_wait,
4885				   atomic_read(&t->num_writers) == 0);
4886		} else {
4887			spin_unlock(&fs_info->trans_lock);
4888		}
4889		btrfs_cleanup_one_transaction(t, fs_info);
4890
4891		spin_lock(&fs_info->trans_lock);
4892		if (t == fs_info->running_transaction)
4893			fs_info->running_transaction = NULL;
4894		list_del_init(&t->list);
4895		spin_unlock(&fs_info->trans_lock);
4896
4897		btrfs_put_transaction(t);
4898		trace_btrfs_transaction_commit(fs_info);
4899		spin_lock(&fs_info->trans_lock);
4900	}
4901	spin_unlock(&fs_info->trans_lock);
4902	btrfs_destroy_all_ordered_extents(fs_info);
4903	btrfs_destroy_delayed_inodes(fs_info);
4904	btrfs_assert_delayed_root_empty(fs_info);
4905	btrfs_destroy_all_delalloc_inodes(fs_info);
4906	btrfs_drop_all_logs(fs_info);
4907	mutex_unlock(&fs_info->transaction_kthread_mutex);
4908
4909	return 0;
4910}
4911
4912int btrfs_init_root_free_objectid(struct btrfs_root *root)
4913{
4914	struct btrfs_path *path;
4915	int ret;
4916	struct extent_buffer *l;
4917	struct btrfs_key search_key;
4918	struct btrfs_key found_key;
4919	int slot;
4920
4921	path = btrfs_alloc_path();
4922	if (!path)
4923		return -ENOMEM;
4924
4925	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4926	search_key.type = -1;
4927	search_key.offset = (u64)-1;
4928	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4929	if (ret < 0)
4930		goto error;
4931	if (ret == 0) {
4932		/*
4933		 * Key with offset -1 found, there would have to exist a root
4934		 * with such id, but this is out of valid range.
4935		 */
4936		ret = -EUCLEAN;
4937		goto error;
4938	}
4939	if (path->slots[0] > 0) {
4940		slot = path->slots[0] - 1;
4941		l = path->nodes[0];
4942		btrfs_item_key_to_cpu(l, &found_key, slot);
4943		root->free_objectid = max_t(u64, found_key.objectid + 1,
4944					    BTRFS_FIRST_FREE_OBJECTID);
4945	} else {
4946		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4947	}
4948	ret = 0;
4949error:
4950	btrfs_free_path(path);
4951	return ret;
4952}
4953
4954int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4955{
4956	int ret;
4957	mutex_lock(&root->objectid_mutex);
4958
4959	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4960		btrfs_warn(root->fs_info,
4961			   "the objectid of root %llu reaches its highest value",
4962			   root->root_key.objectid);
4963		ret = -ENOSPC;
4964		goto out;
4965	}
4966
4967	*objectid = root->free_objectid++;
4968	ret = 0;
4969out:
4970	mutex_unlock(&root->objectid_mutex);
4971	return ret;
4972}