Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Block multiqueue core code
   3 *
   4 * Copyright (C) 2013-2014 Jens Axboe
   5 * Copyright (C) 2013-2014 Christoph Hellwig
   6 */
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/backing-dev.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
 
  12#include <linux/kmemleak.h>
  13#include <linux/mm.h>
  14#include <linux/init.h>
  15#include <linux/slab.h>
  16#include <linux/workqueue.h>
  17#include <linux/smp.h>
 
  18#include <linux/llist.h>
  19#include <linux/list_sort.h>
  20#include <linux/cpu.h>
  21#include <linux/cache.h>
  22#include <linux/sched/sysctl.h>
 
  23#include <linux/delay.h>
  24#include <linux/crash_dump.h>
 
 
 
  25
  26#include <trace/events/block.h>
  27
  28#include <linux/blk-mq.h>
  29#include "blk.h"
  30#include "blk-mq.h"
  31#include "blk-mq-tag.h"
  32
  33static DEFINE_MUTEX(all_q_mutex);
  34static LIST_HEAD(all_q_list);
  35
  36static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
 
 
 
 
 
 
 
 
 
 
  37
  38/*
  39 * Check if any of the ctx's have pending work in this hardware queue
 
  40 */
  41static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  42{
  43	unsigned int i;
  44
  45	for (i = 0; i < hctx->ctx_map.size; i++)
  46		if (hctx->ctx_map.map[i].word)
  47			return true;
  48
  49	return false;
  50}
  51
  52static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
  53					      struct blk_mq_ctx *ctx)
  54{
  55	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
  56}
  57
  58#define CTX_TO_BIT(hctx, ctx)	\
  59	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
  60
  61/*
  62 * Mark this ctx as having pending work in this hardware queue
  63 */
  64static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  65				     struct blk_mq_ctx *ctx)
  66{
  67	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
  68
  69	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
  70		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
  71}
  72
  73static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  74				      struct blk_mq_ctx *ctx)
  75{
  76	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
  77
  78	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
  79}
  80
  81void blk_mq_freeze_queue_start(struct request_queue *q)
 
 
 
 
 
  82{
  83	int freeze_depth;
 
 
 
 
 
  84
  85	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
  86	if (freeze_depth == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87		percpu_ref_kill(&q->q_usage_counter);
  88		blk_mq_run_hw_queues(q, false);
 
 
 
 
  89	}
  90}
  91EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
  92
  93static void blk_mq_freeze_queue_wait(struct request_queue *q)
  94{
  95	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
  96}
 
 
 
 
 
 
 
 
 
 
  97
  98/*
  99 * Guarantee no request is in use, so we can change any data structure of
 100 * the queue afterward.
 101 */
 102void blk_freeze_queue(struct request_queue *q)
 103{
 104	/*
 105	 * In the !blk_mq case we are only calling this to kill the
 106	 * q_usage_counter, otherwise this increases the freeze depth
 107	 * and waits for it to return to zero.  For this reason there is
 108	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 109	 * exported to drivers as the only user for unfreeze is blk_mq.
 110	 */
 111	blk_mq_freeze_queue_start(q);
 112	blk_mq_freeze_queue_wait(q);
 113}
 114
 115void blk_mq_freeze_queue(struct request_queue *q)
 116{
 117	/*
 118	 * ...just an alias to keep freeze and unfreeze actions balanced
 119	 * in the blk_mq_* namespace
 120	 */
 121	blk_freeze_queue(q);
 122}
 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 124
 125void blk_mq_unfreeze_queue(struct request_queue *q)
 126{
 127	int freeze_depth;
 128
 129	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
 130	WARN_ON_ONCE(freeze_depth < 0);
 131	if (!freeze_depth) {
 132		percpu_ref_reinit(&q->q_usage_counter);
 
 133		wake_up_all(&q->mq_freeze_wq);
 134	}
 
 
 
 
 
 
 135}
 136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138void blk_mq_wake_waiters(struct request_queue *q)
 139{
 140	struct blk_mq_hw_ctx *hctx;
 141	unsigned int i;
 142
 143	queue_for_each_hw_ctx(q, hctx, i)
 144		if (blk_mq_hw_queue_mapped(hctx))
 145			blk_mq_tag_wakeup_all(hctx->tags, true);
 
 146
 147	/*
 148	 * If we are called because the queue has now been marked as
 149	 * dying, we need to ensure that processes currently waiting on
 150	 * the queue are notified as well.
 151	 */
 152	wake_up_all(&q->mq_freeze_wq);
 
 
 
 
 
 
 
 
 153}
 
 154
 155bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 
 156{
 157	return blk_mq_has_free_tags(hctx->tags);
 
 
 
 
 
 
 
 
 
 
 158}
 159EXPORT_SYMBOL(blk_mq_can_queue);
 160
 161static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
 162			       struct request *rq, unsigned int rw_flags)
 163{
 164	if (blk_queue_io_stat(q))
 165		rw_flags |= REQ_IO_STAT;
 
 
 166
 167	INIT_LIST_HEAD(&rq->queuelist);
 168	/* csd/requeue_work/fifo_time is initialized before use */
 169	rq->q = q;
 170	rq->mq_ctx = ctx;
 171	rq->cmd_flags |= rw_flags;
 172	/* do not touch atomic flags, it needs atomic ops against the timer */
 173	rq->cpu = -1;
 174	INIT_HLIST_NODE(&rq->hash);
 175	RB_CLEAR_NODE(&rq->rb_node);
 176	rq->rq_disk = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 177	rq->part = NULL;
 178	rq->start_time = jiffies;
 179#ifdef CONFIG_BLK_CGROUP
 180	rq->rl = NULL;
 181	set_start_time_ns(rq);
 182	rq->io_start_time_ns = 0;
 183#endif
 184	rq->nr_phys_segments = 0;
 185#if defined(CONFIG_BLK_DEV_INTEGRITY)
 186	rq->nr_integrity_segments = 0;
 187#endif
 188	rq->special = NULL;
 
 
 
 
 189	/* tag was already set */
 190	rq->errors = 0;
 
 191
 192	rq->cmd = rq->__cmd;
 
 193
 194	rq->extra_len = 0;
 195	rq->sense_len = 0;
 196	rq->resid_len = 0;
 197	rq->sense = NULL;
 198
 199	INIT_LIST_HEAD(&rq->timeout_list);
 200	rq->timeout = 0;
 
 201
 202	rq->end_io = NULL;
 203	rq->end_io_data = NULL;
 204	rq->next_rq = NULL;
 205
 206	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207}
 208
 209static struct request *
 210__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
 211{
 
 
 212	struct request *rq;
 213	unsigned int tag;
 214
 215	tag = blk_mq_get_tag(data);
 216	if (tag != BLK_MQ_TAG_FAIL) {
 217		rq = data->hctx->tags->rqs[tag];
 
 
 
 218
 219		if (blk_mq_tag_busy(data->hctx)) {
 220			rq->cmd_flags = REQ_MQ_INFLIGHT;
 221			atomic_inc(&data->hctx->nr_active);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222		}
 
 223
 224		rq->tag = tag;
 225		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
 226		return rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227	}
 228
 229	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230}
 231
 232struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
 233		unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234{
 235	struct blk_mq_ctx *ctx;
 236	struct blk_mq_hw_ctx *hctx;
 237	struct request *rq;
 238	struct blk_mq_alloc_data alloc_data;
 239	int ret;
 240
 241	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
 242	if (ret)
 243		return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244
 245	ctx = blk_mq_get_ctx(q);
 246	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 247	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
 248
 249	rq = __blk_mq_alloc_request(&alloc_data, rw);
 250	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
 251		__blk_mq_run_hw_queue(hctx);
 252		blk_mq_put_ctx(ctx);
 253
 254		ctx = blk_mq_get_ctx(q);
 255		hctx = q->mq_ops->map_queue(q, ctx->cpu);
 256		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
 257		rq =  __blk_mq_alloc_request(&alloc_data, rw);
 258		ctx = alloc_data.ctx;
 259	}
 260	blk_mq_put_ctx(ctx);
 
 
 
 
 
 
 
 
 
 
 
 261	if (!rq) {
 262		blk_queue_exit(q);
 263		return ERR_PTR(-EWOULDBLOCK);
 264	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265	return rq;
 
 
 
 266}
 267EXPORT_SYMBOL(blk_mq_alloc_request);
 268
 269static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
 270				  struct blk_mq_ctx *ctx, struct request *rq)
 271{
 272	const int tag = rq->tag;
 273	struct request_queue *q = rq->q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274
 275	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
 276		atomic_dec(&hctx->nr_active);
 277	rq->cmd_flags = 0;
 278
 279	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 280	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281	blk_queue_exit(q);
 
 282}
 
 283
 284void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
 285{
 286	struct blk_mq_ctx *ctx = rq->mq_ctx;
 287
 288	ctx->rq_completed[rq_is_sync(rq)]++;
 289	__blk_mq_free_request(hctx, ctx, rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290
 
 
 
 
 
 
 
 
 
 
 
 
 291}
 292EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
 293
 294void blk_mq_free_request(struct request *rq)
 295{
 296	struct blk_mq_hw_ctx *hctx;
 297	struct request_queue *q = rq->q;
 298
 299	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
 300	blk_mq_free_hctx_request(hctx, rq);
 
 
 
 
 
 
 
 
 301}
 302EXPORT_SYMBOL_GPL(blk_mq_free_request);
 303
 304inline void __blk_mq_end_request(struct request *rq, int error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305{
 306	blk_account_io_done(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307
 308	if (rq->end_io) {
 309		rq->end_io(rq, error);
 
 
 310	} else {
 311		if (unlikely(blk_bidi_rq(rq)))
 312			blk_mq_free_request(rq->next_rq);
 313		blk_mq_free_request(rq);
 314	}
 315}
 316EXPORT_SYMBOL(__blk_mq_end_request);
 317
 318void blk_mq_end_request(struct request *rq, int error)
 319{
 320	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 321		BUG();
 322	__blk_mq_end_request(rq, error);
 323}
 324EXPORT_SYMBOL(blk_mq_end_request);
 325
 326static void __blk_mq_complete_request_remote(void *data)
 
 
 
 327{
 328	struct request *rq = data;
 
 
 329
 330	rq->q->softirq_done_fn(rq);
 
 331}
 332
 333static void blk_mq_ipi_complete_request(struct request *rq)
 334{
 335	struct blk_mq_ctx *ctx = rq->mq_ctx;
 336	bool shared = false;
 337	int cpu;
 
 338
 339	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
 340		rq->q->softirq_done_fn(rq);
 341		return;
 342	}
 343
 344	cpu = get_cpu();
 345	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
 346		shared = cpus_share_cache(cpu, ctx->cpu);
 347
 348	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
 349		rq->csd.func = __blk_mq_complete_request_remote;
 350		rq->csd.info = rq;
 351		rq->csd.flags = 0;
 352		smp_call_function_single_async(ctx->cpu, &rq->csd);
 353	} else {
 354		rq->q->softirq_done_fn(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355	}
 356	put_cpu();
 
 
 357}
 
 358
 359static void __blk_mq_complete_request(struct request *rq)
 360{
 361	struct request_queue *q = rq->q;
 
 362
 363	if (!q->softirq_done_fn)
 364		blk_mq_end_request(rq, rq->errors);
 365	else
 366		blk_mq_ipi_complete_request(rq);
 367}
 368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369/**
 370 * blk_mq_complete_request - end I/O on a request
 371 * @rq:		the request being processed
 372 *
 373 * Description:
 374 *	Ends all I/O on a request. It does not handle partial completions.
 375 *	The actual completion happens out-of-order, through a IPI handler.
 376 **/
 377void blk_mq_complete_request(struct request *rq, int error)
 378{
 379	struct request_queue *q = rq->q;
 380
 381	if (unlikely(blk_should_fake_timeout(q)))
 382		return;
 383	if (!blk_mark_rq_complete(rq)) {
 384		rq->errors = error;
 385		__blk_mq_complete_request(rq);
 386	}
 387}
 388EXPORT_SYMBOL(blk_mq_complete_request);
 389
 390int blk_mq_request_started(struct request *rq)
 391{
 392	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 393}
 394EXPORT_SYMBOL_GPL(blk_mq_request_started);
 395
 
 
 396void blk_mq_start_request(struct request *rq)
 397{
 398	struct request_queue *q = rq->q;
 399
 400	trace_block_rq_issue(q, rq);
 
 
 
 
 
 
 
 
 401
 402	rq->resid_len = blk_rq_bytes(rq);
 403	if (unlikely(blk_bidi_rq(rq)))
 404		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
 405
 406	blk_add_timer(rq);
 
 
 407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408	/*
 409	 * Ensure that ->deadline is visible before set the started
 410	 * flag and clear the completed flag.
 411	 */
 412	smp_mb__before_atomic();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413
 414	/*
 415	 * Mark us as started and clear complete. Complete might have been
 416	 * set if requeue raced with timeout, which then marked it as
 417	 * complete. So be sure to clear complete again when we start
 418	 * the request, otherwise we'll ignore the completion event.
 419	 */
 420	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
 421		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 422	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
 423		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 424
 425	if (q->dma_drain_size && blk_rq_bytes(rq)) {
 426		/*
 427		 * Make sure space for the drain appears.  We know we can do
 428		 * this because max_hw_segments has been adjusted to be one
 429		 * fewer than the device can handle.
 430		 */
 431		rq->nr_phys_segments++;
 432	}
 
 
 
 433}
 434EXPORT_SYMBOL(blk_mq_start_request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436static void __blk_mq_requeue_request(struct request *rq)
 437{
 438	struct request_queue *q = rq->q;
 439
 440	trace_block_rq_requeue(q, rq);
 441
 442	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
 443		if (q->dma_drain_size && blk_rq_bytes(rq))
 444			rq->nr_phys_segments--;
 
 
 
 445	}
 446}
 447
 448void blk_mq_requeue_request(struct request *rq)
 449{
 
 
 
 450	__blk_mq_requeue_request(rq);
 451
 452	BUG_ON(blk_queued_rq(rq));
 453	blk_mq_add_to_requeue_list(rq, true);
 
 
 
 
 
 
 
 454}
 455EXPORT_SYMBOL(blk_mq_requeue_request);
 456
 457static void blk_mq_requeue_work(struct work_struct *work)
 458{
 459	struct request_queue *q =
 460		container_of(work, struct request_queue, requeue_work);
 461	LIST_HEAD(rq_list);
 462	struct request *rq, *next;
 463	unsigned long flags;
 464
 465	spin_lock_irqsave(&q->requeue_lock, flags);
 466	list_splice_init(&q->requeue_list, &rq_list);
 467	spin_unlock_irqrestore(&q->requeue_lock, flags);
 468
 469	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 470		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
 471			continue;
 472
 473		rq->cmd_flags &= ~REQ_SOFTBARRIER;
 474		list_del_init(&rq->queuelist);
 475		blk_mq_insert_request(rq, true, false, false);
 476	}
 477
 478	while (!list_empty(&rq_list)) {
 479		rq = list_entry(rq_list.next, struct request, queuelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 480		list_del_init(&rq->queuelist);
 481		blk_mq_insert_request(rq, false, false, false);
 482	}
 483
 484	/*
 485	 * Use the start variant of queue running here, so that running
 486	 * the requeue work will kick stopped queues.
 487	 */
 488	blk_mq_start_hw_queues(q);
 489}
 490
 491void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
 492{
 493	struct request_queue *q = rq->q;
 494	unsigned long flags;
 495
 496	/*
 497	 * We abuse this flag that is otherwise used by the I/O scheduler to
 498	 * request head insertation from the workqueue.
 499	 */
 500	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
 501
 502	spin_lock_irqsave(&q->requeue_lock, flags);
 503	if (at_head) {
 504		rq->cmd_flags |= REQ_SOFTBARRIER;
 505		list_add(&rq->queuelist, &q->requeue_list);
 506	} else {
 507		list_add_tail(&rq->queuelist, &q->requeue_list);
 508	}
 509	spin_unlock_irqrestore(&q->requeue_lock, flags);
 510}
 511EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
 512
 513void blk_mq_cancel_requeue_work(struct request_queue *q)
 
 514{
 515	cancel_work_sync(&q->requeue_work);
 
 516}
 517EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
 518
 519void blk_mq_kick_requeue_list(struct request_queue *q)
 520{
 521	kblockd_schedule_work(&q->requeue_work);
 522}
 523EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 524
 525void blk_mq_abort_requeue_list(struct request_queue *q)
 526{
 527	unsigned long flags;
 528	LIST_HEAD(rq_list);
 
 
 
 
 
 
 
 
 
 
 
 
 529
 530	spin_lock_irqsave(&q->requeue_lock, flags);
 531	list_splice_init(&q->requeue_list, &rq_list);
 532	spin_unlock_irqrestore(&q->requeue_lock, flags);
 533
 534	while (!list_empty(&rq_list)) {
 535		struct request *rq;
 536
 537		rq = list_first_entry(&rq_list, struct request, queuelist);
 538		list_del_init(&rq->queuelist);
 539		rq->errors = -EIO;
 540		blk_mq_end_request(rq, rq->errors);
 541	}
 
 542}
 543EXPORT_SYMBOL(blk_mq_abort_requeue_list);
 544
 545struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 546{
 547	if (tag < tags->nr_tags)
 548		return tags->rqs[tag];
 
 549
 550	return NULL;
 
 
 
 
 
 
 551}
 552EXPORT_SYMBOL(blk_mq_tag_to_rq);
 553
 554struct blk_mq_timeout_data {
 
 555	unsigned long next;
 556	unsigned int next_set;
 557};
 558
 559void blk_mq_rq_timed_out(struct request *req, bool reserved)
 560{
 561	struct blk_mq_ops *ops = req->q->mq_ops;
 562	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
 563
 564	/*
 565	 * We know that complete is set at this point. If STARTED isn't set
 566	 * anymore, then the request isn't active and the "timeout" should
 567	 * just be ignored. This can happen due to the bitflag ordering.
 568	 * Timeout first checks if STARTED is set, and if it is, assumes
 569	 * the request is active. But if we race with completion, then
 570	 * we both flags will get cleared. So check here again, and ignore
 571	 * a timeout event with a request that isn't active.
 572	 */
 573	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
 574		return;
 575
 576	if (ops->timeout)
 577		ret = ops->timeout(req, reserved);
 
 578
 579	switch (ret) {
 580	case BLK_EH_HANDLED:
 581		__blk_mq_complete_request(req);
 582		break;
 583	case BLK_EH_RESET_TIMER:
 584		blk_add_timer(req);
 585		blk_clear_rq_complete(req);
 586		break;
 587	case BLK_EH_NOT_HANDLED:
 588		break;
 589	default:
 590		printk(KERN_ERR "block: bad eh return: %d\n", ret);
 591		break;
 
 592	}
 593}
 594
 595static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 596		struct request *rq, void *priv, bool reserved)
 597{
 598	struct blk_mq_timeout_data *data = priv;
 599
 600	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
 601		/*
 602		 * If a request wasn't started before the queue was
 603		 * marked dying, kill it here or it'll go unnoticed.
 604		 */
 605		if (unlikely(blk_queue_dying(rq->q))) {
 606			rq->errors = -EIO;
 607			blk_mq_end_request(rq, rq->errors);
 608		}
 609		return;
 610	}
 
 
 611
 612	if (time_after_eq(jiffies, rq->deadline)) {
 613		if (!blk_mark_rq_complete(rq))
 614			blk_mq_rq_timed_out(rq, reserved);
 615	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
 616		data->next = rq->deadline;
 617		data->next_set = 1;
 618	}
 619}
 620
 621static void blk_mq_timeout_work(struct work_struct *work)
 622{
 623	struct request_queue *q =
 624		container_of(work, struct request_queue, timeout_work);
 625	struct blk_mq_timeout_data data = {
 626		.next		= 0,
 627		.next_set	= 0,
 628	};
 629	int i;
 
 630
 631	if (blk_queue_enter(q, true))
 
 
 
 
 
 
 
 
 
 
 
 
 
 632		return;
 633
 634	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
 
 
 
 
 
 
 
 
 
 635
 636	if (data.next_set) {
 637		data.next = blk_rq_timeout(round_jiffies_up(data.next));
 638		mod_timer(&q->timeout, data.next);
 639	} else {
 640		struct blk_mq_hw_ctx *hctx;
 641
 
 
 
 
 
 
 
 
 
 642		queue_for_each_hw_ctx(q, hctx, i) {
 643			/* the hctx may be unmapped, so check it here */
 644			if (blk_mq_hw_queue_mapped(hctx))
 645				blk_mq_tag_idle(hctx);
 646		}
 647	}
 648	blk_queue_exit(q);
 649}
 650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651/*
 652 * Reverse check our software queue for entries that we could potentially
 653 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 654 * too much time checking for merges.
 655 */
 656static bool blk_mq_attempt_merge(struct request_queue *q,
 657				 struct blk_mq_ctx *ctx, struct bio *bio)
 658{
 659	struct request *rq;
 660	int checked = 8;
 
 
 661
 662	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
 663		int el_ret;
 
 664
 665		if (!checked--)
 666			break;
 
 
 667
 668		if (!blk_rq_merge_ok(rq, bio))
 669			continue;
 
 
 
 
 
 670
 671		el_ret = blk_try_merge(rq, bio);
 672		if (el_ret == ELEVATOR_BACK_MERGE) {
 673			if (bio_attempt_back_merge(q, rq, bio)) {
 674				ctx->rq_merged++;
 675				return true;
 676			}
 677			break;
 678		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
 679			if (bio_attempt_front_merge(q, rq, bio)) {
 680				ctx->rq_merged++;
 681				return true;
 682			}
 683			break;
 684		}
 685	}
 
 686
 687	return false;
 688}
 689
 690/*
 691 * Process software queues that have been marked busy, splicing them
 692 * to the for-dispatch
 693 */
 694static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 695{
 696	struct blk_mq_ctx *ctx;
 697	int i;
 
 
 
 698
 699	for (i = 0; i < hctx->ctx_map.size; i++) {
 700		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
 701		unsigned int off, bit;
 702
 703		if (!bm->word)
 704			continue;
 705
 706		bit = 0;
 707		off = i * hctx->ctx_map.bits_per_word;
 708		do {
 709			bit = find_next_bit(&bm->word, bm->depth, bit);
 710			if (bit >= bm->depth)
 711				break;
 712
 713			ctx = hctx->ctxs[bit + off];
 714			clear_bit(bit, &bm->word);
 715			spin_lock(&ctx->lock);
 716			list_splice_tail_init(&ctx->rq_list, list);
 717			spin_unlock(&ctx->lock);
 718
 719			bit++;
 720		} while (1);
 
 
 
 
 721	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722}
 723
 724/*
 725 * Run this hardware queue, pulling any software queues mapped to it in.
 726 * Note that this function currently has various problems around ordering
 727 * of IO. In particular, we'd like FIFO behaviour on handling existing
 728 * items on the hctx->dispatch list. Ignore that for now.
 729 */
 730static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
 
 731{
 732	struct request_queue *q = hctx->queue;
 733	struct request *rq;
 734	LIST_HEAD(rq_list);
 735	LIST_HEAD(driver_list);
 736	struct list_head *dptr;
 737	int queued;
 
 
 
 
 
 
 
 
 
 
 
 
 
 738
 739	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
 
 
 740
 741	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
 742		return;
 
 
 
 743
 744	hctx->run++;
 
 
 
 
 
 
 
 
 
 
 745
 746	/*
 747	 * Touch any software queue that has pending entries.
 
 
 
 
 
 
 
 
 
 
 
 748	 */
 749	flush_busy_ctxs(hctx, &rq_list);
 750
 751	/*
 752	 * If we have previous entries on our dispatch list, grab them
 753	 * and stuff them at the front for more fair dispatch.
 
 754	 */
 755	if (!list_empty_careful(&hctx->dispatch)) {
 756		spin_lock(&hctx->lock);
 757		if (!list_empty(&hctx->dispatch))
 758			list_splice_init(&hctx->dispatch, &rq_list);
 759		spin_unlock(&hctx->lock);
 760	}
 761
 762	/*
 763	 * Start off with dptr being NULL, so we start the first request
 764	 * immediately, even if we have more pending.
 765	 */
 766	dptr = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 767
 768	/*
 769	 * Now process all the entries, sending them to the driver.
 770	 */
 771	queued = 0;
 772	while (!list_empty(&rq_list)) {
 773		struct blk_mq_queue_data bd;
 774		int ret;
 775
 776		rq = list_first_entry(&rq_list, struct request, queuelist);
 
 
 
 
 
 
 777		list_del_init(&rq->queuelist);
 778
 779		bd.rq = rq;
 780		bd.list = dptr;
 781		bd.last = list_empty(&rq_list);
 782
 
 
 
 
 
 
 783		ret = q->mq_ops->queue_rq(hctx, &bd);
 784		switch (ret) {
 785		case BLK_MQ_RQ_QUEUE_OK:
 786			queued++;
 787			continue;
 788		case BLK_MQ_RQ_QUEUE_BUSY:
 789			list_add(&rq->queuelist, &rq_list);
 790			__blk_mq_requeue_request(rq);
 791			break;
 792		default:
 793			pr_err("blk-mq: bad return on queue: %d\n", ret);
 794		case BLK_MQ_RQ_QUEUE_ERROR:
 795			rq->errors = -EIO;
 796			blk_mq_end_request(rq, rq->errors);
 
 
 
 
 
 
 
 
 
 797			break;
 
 
 798		}
 
 
 
 
 799
 800		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
 801			break;
 802
 803		/*
 804		 * We've done the first request. If we have more than 1
 805		 * left in the list, set dptr to defer issue.
 806		 */
 807		if (!dptr && rq_list.next != rq_list.prev)
 808			dptr = &driver_list;
 809	}
 810
 811	if (!queued)
 812		hctx->dispatched[0]++;
 813	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
 814		hctx->dispatched[ilog2(queued) + 1]++;
 815
 816	/*
 817	 * Any items that need requeuing? Stuff them into hctx->dispatch,
 818	 * that is where we will continue on next queue run.
 819	 */
 820	if (!list_empty(&rq_list)) {
 
 
 
 
 
 
 
 
 
 821		spin_lock(&hctx->lock);
 822		list_splice(&rq_list, &hctx->dispatch);
 823		spin_unlock(&hctx->lock);
 
 
 
 
 
 
 
 
 
 
 824		/*
 825		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
 826		 * it's possible the queue is stopped and restarted again
 827		 * before this. Queue restart will dispatch requests. And since
 828		 * requests in rq_list aren't added into hctx->dispatch yet,
 829		 * the requests in rq_list might get lost.
 830		 *
 831		 * blk_mq_run_hw_queue() already checks the STOPPED bit
 832		 **/
 833		blk_mq_run_hw_queue(hctx, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834	}
 
 
 
 
 
 
 
 
 
 
 
 
 835}
 836
 837/*
 838 * It'd be great if the workqueue API had a way to pass
 839 * in a mask and had some smarts for more clever placement.
 840 * For now we just round-robin here, switching for every
 841 * BLK_MQ_CPU_WORK_BATCH queued items.
 842 */
 843static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
 844{
 
 
 
 845	if (hctx->queue->nr_hw_queues == 1)
 846		return WORK_CPU_UNBOUND;
 847
 848	if (--hctx->next_cpu_batch <= 0) {
 849		int cpu = hctx->next_cpu, next_cpu;
 850
 851		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
 852		if (next_cpu >= nr_cpu_ids)
 853			next_cpu = cpumask_first(hctx->cpumask);
 854
 855		hctx->next_cpu = next_cpu;
 856		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
 
 857
 858		return cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859	}
 860
 861	return hctx->next_cpu;
 
 862}
 863
 864void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
 
 
 
 
 
 
 
 865{
 866	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
 867	    !blk_mq_hw_queue_mapped(hctx)))
 868		return;
 
 
 
 
 869
 870	if (!async) {
 871		int cpu = get_cpu();
 872		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
 873			__blk_mq_run_hw_queue(hctx);
 874			put_cpu();
 875			return;
 876		}
 
 
 
 
 
 
 
 
 
 
 877
 878		put_cpu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879	}
 880
 881	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
 882			&hctx->run_work, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883}
 884
 
 
 
 
 
 885void blk_mq_run_hw_queues(struct request_queue *q, bool async)
 886{
 887	struct blk_mq_hw_ctx *hctx;
 888	int i;
 889
 
 
 
 890	queue_for_each_hw_ctx(q, hctx, i) {
 891		if ((!blk_mq_hctx_has_pending(hctx) &&
 892		    list_empty_careful(&hctx->dispatch)) ||
 893		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
 894			continue;
 895
 896		blk_mq_run_hw_queue(hctx, async);
 
 
 
 
 
 
 897	}
 898}
 899EXPORT_SYMBOL(blk_mq_run_hw_queues);
 900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
 902{
 903	cancel_delayed_work(&hctx->run_work);
 904	cancel_delayed_work(&hctx->delay_work);
 905	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
 906}
 907EXPORT_SYMBOL(blk_mq_stop_hw_queue);
 908
 
 
 
 
 
 
 
 
 
 909void blk_mq_stop_hw_queues(struct request_queue *q)
 910{
 911	struct blk_mq_hw_ctx *hctx;
 912	int i;
 913
 914	queue_for_each_hw_ctx(q, hctx, i)
 915		blk_mq_stop_hw_queue(hctx);
 916}
 917EXPORT_SYMBOL(blk_mq_stop_hw_queues);
 918
 919void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
 920{
 921	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 922
 923	blk_mq_run_hw_queue(hctx, false);
 924}
 925EXPORT_SYMBOL(blk_mq_start_hw_queue);
 926
 927void blk_mq_start_hw_queues(struct request_queue *q)
 928{
 929	struct blk_mq_hw_ctx *hctx;
 930	int i;
 931
 932	queue_for_each_hw_ctx(q, hctx, i)
 933		blk_mq_start_hw_queue(hctx);
 934}
 935EXPORT_SYMBOL(blk_mq_start_hw_queues);
 936
 937void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
 938{
 939	struct blk_mq_hw_ctx *hctx;
 940	int i;
 941
 942	queue_for_each_hw_ctx(q, hctx, i) {
 943		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
 944			continue;
 945
 946		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 947		blk_mq_run_hw_queue(hctx, async);
 948	}
 949}
 950EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
 951
 952static void blk_mq_run_work_fn(struct work_struct *work)
 953{
 954	struct blk_mq_hw_ctx *hctx;
 
 955
 956	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
 957
 958	__blk_mq_run_hw_queue(hctx);
 959}
 
 960
 961static void blk_mq_delay_work_fn(struct work_struct *work)
 962{
 963	struct blk_mq_hw_ctx *hctx;
 
 964
 965	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
 966
 967	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
 968		__blk_mq_run_hw_queue(hctx);
 969}
 970
 971void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
 
 
 
 
 
 
 
 
 972{
 973	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
 974		return;
 975
 976	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
 977			&hctx->delay_work, msecs_to_jiffies(msecs));
 
 
 
 
 978}
 979EXPORT_SYMBOL(blk_mq_delay_queue);
 980
 981static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
 982					    struct blk_mq_ctx *ctx,
 983					    struct request *rq,
 984					    bool at_head)
 985{
 986	trace_block_rq_insert(hctx->queue, rq);
 
 987
 988	if (at_head)
 989		list_add(&rq->queuelist, &ctx->rq_list);
 990	else
 991		list_add_tail(&rq->queuelist, &ctx->rq_list);
 992}
 
 
 
 
 
 993
 994static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
 995				    struct request *rq, bool at_head)
 996{
 997	struct blk_mq_ctx *ctx = rq->mq_ctx;
 
 
 
 
 
 
 998
 999	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
 
1000	blk_mq_hctx_mark_pending(hctx, ctx);
 
 
 
1001}
1002
1003void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1004		bool async)
1005{
1006	struct request_queue *q = rq->q;
1007	struct blk_mq_hw_ctx *hctx;
1008	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1009
1010	current_ctx = blk_mq_get_ctx(q);
1011	if (!cpu_online(ctx->cpu))
1012		rq->mq_ctx = ctx = current_ctx;
1013
1014	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016	spin_lock(&ctx->lock);
1017	__blk_mq_insert_request(hctx, rq, at_head);
1018	spin_unlock(&ctx->lock);
1019
1020	if (run_queue)
1021		blk_mq_run_hw_queue(hctx, async);
 
 
1022
1023	blk_mq_put_ctx(current_ctx);
 
 
 
 
 
 
 
 
1024}
1025
1026static void blk_mq_insert_requests(struct request_queue *q,
1027				     struct blk_mq_ctx *ctx,
1028				     struct list_head *list,
1029				     int depth,
1030				     bool from_schedule)
1031
1032{
1033	struct blk_mq_hw_ctx *hctx;
1034	struct blk_mq_ctx *current_ctx;
1035
1036	trace_block_unplug(q, depth, !from_schedule);
 
1037
1038	current_ctx = blk_mq_get_ctx(q);
 
 
1039
1040	if (!cpu_online(ctx->cpu))
1041		ctx = current_ctx;
1042	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
1043
1044	/*
1045	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1046	 * offline now
 
1047	 */
1048	spin_lock(&ctx->lock);
1049	while (!list_empty(list)) {
1050		struct request *rq;
 
 
 
 
 
 
 
 
 
 
 
1051
1052		rq = list_first_entry(list, struct request, queuelist);
1053		list_del_init(&rq->queuelist);
1054		rq->mq_ctx = ctx;
1055		__blk_mq_insert_req_list(hctx, ctx, rq, false);
 
 
 
 
 
 
 
 
 
 
1056	}
1057	blk_mq_hctx_mark_pending(hctx, ctx);
1058	spin_unlock(&ctx->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059
1060	blk_mq_run_hw_queue(hctx, from_schedule);
1061	blk_mq_put_ctx(current_ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062}
1063
1064static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1065{
1066	struct request *rqa = container_of(a, struct request, queuelist);
1067	struct request *rqb = container_of(b, struct request, queuelist);
 
 
 
 
1068
1069	return !(rqa->mq_ctx < rqb->mq_ctx ||
1070		 (rqa->mq_ctx == rqb->mq_ctx &&
1071		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1072}
1073
1074void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1075{
1076	struct blk_mq_ctx *this_ctx;
1077	struct request_queue *this_q;
1078	struct request *rq;
1079	LIST_HEAD(list);
1080	LIST_HEAD(ctx_list);
1081	unsigned int depth;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082
1083	list_splice_init(&plug->mq_list, &list);
 
 
 
1084
1085	list_sort(NULL, &list, plug_ctx_cmp);
 
 
 
 
 
 
1086
1087	this_q = NULL;
1088	this_ctx = NULL;
1089	depth = 0;
 
 
 
 
 
 
1090
1091	while (!list_empty(&list)) {
1092		rq = list_entry_rq(list.next);
1093		list_del_init(&rq->queuelist);
1094		BUG_ON(!rq->q);
1095		if (rq->mq_ctx != this_ctx) {
1096			if (this_ctx) {
1097				blk_mq_insert_requests(this_q, this_ctx,
1098							&ctx_list, depth,
1099							from_schedule);
1100			}
1101
 
 
1102			this_ctx = rq->mq_ctx;
1103			this_q = rq->q;
1104			depth = 0;
 
 
 
1105		}
1106
1107		depth++;
1108		list_add_tail(&rq->queuelist, &ctx_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1109	}
 
 
 
 
 
 
1110
1111	/*
1112	 * If 'this_ctx' is set, we know we have entries to complete
1113	 * on 'ctx_list'. Do those.
 
 
 
1114	 */
1115	if (this_ctx) {
1116		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1117				       from_schedule);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118	}
 
 
 
 
1119}
1120
1121static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
 
1122{
1123	init_request_from_bio(rq, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124
1125	if (blk_do_io_stat(rq))
1126		blk_account_io_start(rq, 1);
 
1127}
1128
1129static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
 
1130{
1131	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1132		!blk_queue_nomerges(hctx->queue);
 
 
 
 
 
1133}
1134
1135static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1136					 struct blk_mq_ctx *ctx,
1137					 struct request *rq, struct bio *bio)
1138{
1139	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1140		blk_mq_bio_to_request(rq, bio);
1141		spin_lock(&ctx->lock);
1142insert_rq:
1143		__blk_mq_insert_request(hctx, rq, false);
1144		spin_unlock(&ctx->lock);
1145		return false;
1146	} else {
1147		struct request_queue *q = hctx->queue;
1148
1149		spin_lock(&ctx->lock);
1150		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1151			blk_mq_bio_to_request(rq, bio);
1152			goto insert_rq;
1153		}
1154
1155		spin_unlock(&ctx->lock);
1156		__blk_mq_free_request(hctx, ctx, rq);
1157		return true;
 
1158	}
1159}
1160
1161struct blk_map_ctx {
1162	struct blk_mq_hw_ctx *hctx;
1163	struct blk_mq_ctx *ctx;
1164};
 
 
 
 
1165
1166static struct request *blk_mq_map_request(struct request_queue *q,
1167					  struct bio *bio,
1168					  struct blk_map_ctx *data)
 
 
1169{
1170	struct blk_mq_hw_ctx *hctx;
1171	struct blk_mq_ctx *ctx;
1172	struct request *rq;
1173	int rw = bio_data_dir(bio);
1174	struct blk_mq_alloc_data alloc_data;
1175
1176	blk_queue_enter_live(q);
1177	ctx = blk_mq_get_ctx(q);
1178	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1179
1180	if (rw_is_sync(bio->bi_rw))
1181		rw |= REQ_SYNC;
1182
1183	trace_block_getrq(q, bio, rw);
1184	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1185	rq = __blk_mq_alloc_request(&alloc_data, rw);
1186	if (unlikely(!rq)) {
1187		__blk_mq_run_hw_queue(hctx);
1188		blk_mq_put_ctx(ctx);
1189		trace_block_sleeprq(q, bio, rw);
1190
1191		ctx = blk_mq_get_ctx(q);
1192		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1193		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1194		rq = __blk_mq_alloc_request(&alloc_data, rw);
1195		ctx = alloc_data.ctx;
1196		hctx = alloc_data.hctx;
1197	}
1198
1199	hctx->queued++;
1200	data->hctx = hctx;
1201	data->ctx = ctx;
1202	return rq;
1203}
1204
1205static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
 
1206{
1207	int ret;
1208	struct request_queue *q = rq->q;
1209	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1210			rq->mq_ctx->cpu);
1211	struct blk_mq_queue_data bd = {
1212		.rq = rq,
1213		.list = NULL,
1214		.last = 1
1215	};
1216	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1217
1218	/*
1219	 * For OK queue, we are done. For error, kill it. Any other
1220	 * error (busy), just add it to our list as we previously
1221	 * would have done
1222	 */
1223	ret = q->mq_ops->queue_rq(hctx, &bd);
1224	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1225		*cookie = new_cookie;
1226		return 0;
1227	}
1228
1229	__blk_mq_requeue_request(rq);
1230
1231	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1232		*cookie = BLK_QC_T_NONE;
1233		rq->errors = -EIO;
1234		blk_mq_end_request(rq, rq->errors);
1235		return 0;
1236	}
1237
1238	return -1;
1239}
1240
1241/*
1242 * Multiple hardware queue variant. This will not use per-process plugs,
1243 * but will attempt to bypass the hctx queueing if we can go straight to
1244 * hardware for SYNC IO.
1245 */
1246static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1247{
1248	const int is_sync = rw_is_sync(bio->bi_rw);
1249	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1250	struct blk_map_ctx data;
 
 
 
 
 
 
 
 
 
 
1251	struct request *rq;
1252	unsigned int request_count = 0;
1253	struct blk_plug *plug;
1254	struct request *same_queue_rq = NULL;
1255	blk_qc_t cookie;
1256
1257	blk_queue_bounce(q, &bio);
1258
1259	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1260		bio_io_error(bio);
1261		return BLK_QC_T_NONE;
 
 
 
 
 
 
 
1262	}
1263
1264	blk_queue_split(q, &bio, q->bio_split);
 
 
 
 
 
 
1265
1266	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1267		if (blk_attempt_plug_merge(q, bio, &request_count,
1268					   &same_queue_rq))
1269			return BLK_QC_T_NONE;
1270	} else
1271		request_count = blk_plug_queued_count(q);
1272
1273	rq = blk_mq_map_request(q, bio, &data);
1274	if (unlikely(!rq))
1275		return BLK_QC_T_NONE;
 
 
 
 
1276
1277	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1278
1279	if (unlikely(is_flush_fua)) {
1280		blk_mq_bio_to_request(rq, bio);
1281		blk_insert_flush(rq);
1282		goto run_queue;
1283	}
1284
1285	plug = current->plug;
1286	/*
1287	 * If the driver supports defer issued based on 'last', then
1288	 * queue it up like normal since we can potentially save some
1289	 * CPU this way.
1290	 */
1291	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1292	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1293		struct request *old_rq = NULL;
1294
1295		blk_mq_bio_to_request(rq, bio);
 
 
 
 
 
 
1296
1297		/*
1298		 * We do limited pluging. If the bio can be merged, do that.
1299		 * Otherwise the existing request in the plug list will be
1300		 * issued. So the plug list will have one request at most
1301		 */
1302		if (plug) {
1303			/*
1304			 * The plug list might get flushed before this. If that
1305			 * happens, same_queue_rq is invalid and plug list is
1306			 * empty
1307			 */
1308			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1309				old_rq = same_queue_rq;
1310				list_del_init(&old_rq->queuelist);
1311			}
1312			list_add_tail(&rq->queuelist, &plug->mq_list);
1313		} else /* is_sync */
1314			old_rq = rq;
1315		blk_mq_put_ctx(data.ctx);
1316		if (!old_rq)
1317			goto done;
1318		if (!blk_mq_direct_issue_request(old_rq, &cookie))
1319			goto done;
1320		blk_mq_insert_request(old_rq, false, true, true);
1321		goto done;
1322	}
1323
1324	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1325		/*
1326		 * For a SYNC request, send it to the hardware immediately. For
1327		 * an ASYNC request, just ensure that we run it later on. The
1328		 * latter allows for merging opportunities and more efficient
1329		 * dispatching.
1330		 */
1331run_queue:
1332		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1333	}
1334	blk_mq_put_ctx(data.ctx);
1335done:
1336	return cookie;
 
 
 
 
 
 
1337}
1338
1339/*
1340 * Single hardware queue variant. This will attempt to use any per-process
1341 * plug for merging and IO deferral.
 
1342 */
1343static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1344{
1345	const int is_sync = rw_is_sync(bio->bi_rw);
1346	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1347	struct blk_plug *plug;
1348	unsigned int request_count = 0;
1349	struct blk_map_ctx data;
1350	struct request *rq;
1351	blk_qc_t cookie;
1352
1353	blk_queue_bounce(q, &bio);
 
 
 
 
 
 
 
 
 
 
 
 
1354
1355	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1356		bio_io_error(bio);
1357		return BLK_QC_T_NONE;
1358	}
1359
1360	blk_queue_split(q, &bio, q->bio_split);
1361
1362	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1363	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1364		return BLK_QC_T_NONE;
 
 
 
 
 
1365
1366	rq = blk_mq_map_request(q, bio, &data);
1367	if (unlikely(!rq))
1368		return BLK_QC_T_NONE;
1369
1370	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
 
 
1371
1372	if (unlikely(is_flush_fua)) {
1373		blk_mq_bio_to_request(rq, bio);
1374		blk_insert_flush(rq);
1375		goto run_queue;
1376	}
1377
1378	/*
1379	 * A task plug currently exists. Since this is completely lockless,
1380	 * utilize that to temporarily store requests until the task is
1381	 * either done or scheduled away.
1382	 */
1383	plug = current->plug;
1384	if (plug) {
1385		blk_mq_bio_to_request(rq, bio);
1386		if (!request_count)
1387			trace_block_plug(q);
 
 
1388
1389		blk_mq_put_ctx(data.ctx);
 
 
 
 
 
 
 
 
 
1390
1391		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1392			blk_flush_plug_list(plug, false);
1393			trace_block_plug(q);
1394		}
1395
1396		list_add_tail(&rq->queuelist, &plug->mq_list);
1397		return cookie;
1398	}
 
 
1399
1400	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1401		/*
1402		 * For a SYNC request, send it to the hardware immediately. For
1403		 * an ASYNC request, just ensure that we run it later on. The
1404		 * latter allows for merging opportunities and more efficient
1405		 * dispatching.
1406		 */
1407run_queue:
1408		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409	}
1410
1411	blk_mq_put_ctx(data.ctx);
1412	return cookie;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1413}
 
 
1414
1415/*
1416 * Default mapping to a software queue, since we use one per CPU.
 
1417 */
1418struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1419{
1420	return q->queue_hw_ctx[q->mq_map[cpu]];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421}
1422EXPORT_SYMBOL(blk_mq_map_queue);
1423
1424static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1425		struct blk_mq_tags *tags, unsigned int hctx_idx)
1426{
 
1427	struct page *page;
1428
1429	if (tags->rqs && set->ops->exit_request) {
 
 
 
 
 
 
 
 
1430		int i;
1431
1432		for (i = 0; i < tags->nr_tags; i++) {
1433			if (!tags->rqs[i])
 
 
1434				continue;
1435			set->ops->exit_request(set->driver_data, tags->rqs[i],
1436						hctx_idx, i);
1437			tags->rqs[i] = NULL;
1438		}
1439	}
1440
 
 
1441	while (!list_empty(&tags->page_list)) {
1442		page = list_first_entry(&tags->page_list, struct page, lru);
1443		list_del_init(&page->lru);
1444		/*
1445		 * Remove kmemleak object previously allocated in
1446		 * blk_mq_init_rq_map().
1447		 */
1448		kmemleak_free(page_address(page));
1449		__free_pages(page, page->private);
1450	}
 
1451
 
 
1452	kfree(tags->rqs);
 
 
 
1453
1454	blk_mq_free_tags(tags);
1455}
1456
1457static size_t order_to_size(unsigned int order)
 
1458{
1459	return (size_t)PAGE_SIZE << order;
 
 
 
 
 
 
 
 
 
 
 
 
 
1460}
1461
1462static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1463		unsigned int hctx_idx)
1464{
 
 
 
 
 
 
 
 
 
 
 
1465	struct blk_mq_tags *tags;
1466	unsigned int i, j, entries_per_page, max_order = 4;
1467	size_t rq_size, left;
1468
1469	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1470				set->numa_node,
 
 
1471				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1472	if (!tags)
1473		return NULL;
1474
1475	INIT_LIST_HEAD(&tags->page_list);
 
 
 
 
 
 
 
 
 
 
1476
1477	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1478				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1479				 set->numa_node);
1480	if (!tags->rqs) {
1481		blk_mq_free_tags(tags);
1482		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
1483	}
1484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485	/*
1486	 * rq_size is the size of the request plus driver payload, rounded
1487	 * to the cacheline size
1488	 */
1489	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1490				cache_line_size());
1491	left = rq_size * set->queue_depth;
1492
1493	for (i = 0; i < set->queue_depth; ) {
1494		int this_order = max_order;
1495		struct page *page;
1496		int to_do;
1497		void *p;
1498
1499		while (left < order_to_size(this_order - 1) && this_order)
1500			this_order--;
1501
1502		do {
1503			page = alloc_pages_node(set->numa_node,
1504				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1505				this_order);
1506			if (page)
1507				break;
1508			if (!this_order--)
1509				break;
1510			if (order_to_size(this_order) < rq_size)
1511				break;
1512		} while (1);
1513
1514		if (!page)
1515			goto fail;
1516
1517		page->private = this_order;
1518		list_add_tail(&page->lru, &tags->page_list);
1519
1520		p = page_address(page);
1521		/*
1522		 * Allow kmemleak to scan these pages as they contain pointers
1523		 * to additional allocations like via ops->init_request().
1524		 */
1525		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1526		entries_per_page = order_to_size(this_order) / rq_size;
1527		to_do = min(entries_per_page, set->queue_depth - i);
1528		left -= to_do * rq_size;
1529		for (j = 0; j < to_do; j++) {
1530			tags->rqs[i] = p;
1531			if (set->ops->init_request) {
1532				if (set->ops->init_request(set->driver_data,
1533						tags->rqs[i], hctx_idx, i,
1534						set->numa_node)) {
1535					tags->rqs[i] = NULL;
1536					goto fail;
1537				}
1538			}
1539
1540			p += rq_size;
1541			i++;
1542		}
1543	}
1544	return tags;
1545
1546fail:
1547	blk_mq_free_rq_map(set, tags, hctx_idx);
1548	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549}
1550
1551static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1552{
1553	kfree(bitmap->map);
 
 
 
 
 
 
 
1554}
1555
1556static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
 
1557{
1558	unsigned int bpw = 8, total, num_maps, i;
 
 
 
 
 
1559
1560	bitmap->bits_per_word = bpw;
 
 
 
1561
1562	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1563	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1564					GFP_KERNEL, node);
1565	if (!bitmap->map)
1566		return -ENOMEM;
 
 
 
 
 
 
 
 
1567
1568	total = nr_cpu_ids;
1569	for (i = 0; i < num_maps; i++) {
1570		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1571		total -= bitmap->map[i].depth;
 
 
 
 
 
1572	}
1573
1574	return 0;
1575}
1576
1577static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1578{
1579	struct request_queue *q = hctx->queue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1580	struct blk_mq_ctx *ctx;
1581	LIST_HEAD(tmp);
 
1582
1583	/*
1584	 * Move ctx entries to new CPU, if this one is going away.
1585	 */
1586	ctx = __blk_mq_get_ctx(q, cpu);
 
 
1587
1588	spin_lock(&ctx->lock);
1589	if (!list_empty(&ctx->rq_list)) {
1590		list_splice_init(&ctx->rq_list, &tmp);
1591		blk_mq_hctx_clear_pending(hctx, ctx);
1592	}
1593	spin_unlock(&ctx->lock);
1594
1595	if (list_empty(&tmp))
1596		return NOTIFY_OK;
1597
1598	ctx = blk_mq_get_ctx(q);
1599	spin_lock(&ctx->lock);
1600
1601	while (!list_empty(&tmp)) {
1602		struct request *rq;
1603
1604		rq = list_first_entry(&tmp, struct request, queuelist);
1605		rq->mq_ctx = ctx;
1606		list_move_tail(&rq->queuelist, &ctx->rq_list);
1607	}
1608
1609	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1610	blk_mq_hctx_mark_pending(hctx, ctx);
1611
1612	spin_unlock(&ctx->lock);
 
 
1613
1614	blk_mq_run_hw_queue(hctx, true);
1615	blk_mq_put_ctx(ctx);
1616	return NOTIFY_OK;
1617}
1618
1619static int blk_mq_hctx_notify(void *data, unsigned long action,
1620			      unsigned int cpu)
1621{
1622	struct blk_mq_hw_ctx *hctx = data;
 
 
 
 
 
1623
1624	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1625		return blk_mq_hctx_cpu_offline(hctx, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1626
1627	/*
1628	 * In case of CPU online, tags may be reallocated
1629	 * in blk_mq_map_swqueue() after mapping is updated.
 
 
1630	 */
1631
1632	return NOTIFY_OK;
1633}
1634
1635/* hctx->ctxs will be freed in queue's release handler */
1636static void blk_mq_exit_hctx(struct request_queue *q,
1637		struct blk_mq_tag_set *set,
1638		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1639{
1640	unsigned flush_start_tag = set->queue_depth;
1641
1642	blk_mq_tag_idle(hctx);
 
1643
 
 
 
1644	if (set->ops->exit_request)
1645		set->ops->exit_request(set->driver_data,
1646				       hctx->fq->flush_rq, hctx_idx,
1647				       flush_start_tag + hctx_idx);
1648
1649	if (set->ops->exit_hctx)
1650		set->ops->exit_hctx(hctx, hctx_idx);
1651
1652	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1653	blk_free_flush_queue(hctx->fq);
1654	blk_mq_free_bitmap(&hctx->ctx_map);
 
 
 
 
1655}
1656
1657static void blk_mq_exit_hw_queues(struct request_queue *q,
1658		struct blk_mq_tag_set *set, int nr_queue)
1659{
1660	struct blk_mq_hw_ctx *hctx;
1661	unsigned int i;
1662
1663	queue_for_each_hw_ctx(q, hctx, i) {
1664		if (i == nr_queue)
1665			break;
1666		blk_mq_exit_hctx(q, set, hctx, i);
1667	}
1668}
1669
1670static void blk_mq_free_hw_queues(struct request_queue *q,
1671		struct blk_mq_tag_set *set)
 
1672{
1673	struct blk_mq_hw_ctx *hctx;
1674	unsigned int i;
1675
1676	queue_for_each_hw_ctx(q, hctx, i)
1677		free_cpumask_var(hctx->cpumask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1678}
1679
1680static int blk_mq_init_hctx(struct request_queue *q,
1681		struct blk_mq_tag_set *set,
1682		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1683{
1684	int node;
1685	unsigned flush_start_tag = set->queue_depth;
 
 
 
 
1686
1687	node = hctx->numa_node;
 
 
 
1688	if (node == NUMA_NO_NODE)
1689		node = hctx->numa_node = set->numa_node;
 
1690
1691	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1692	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1693	spin_lock_init(&hctx->lock);
1694	INIT_LIST_HEAD(&hctx->dispatch);
1695	hctx->queue = q;
1696	hctx->queue_num = hctx_idx;
1697	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1698
1699	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1700					blk_mq_hctx_notify, hctx);
1701	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1702
1703	hctx->tags = set->tags[hctx_idx];
1704
1705	/*
1706	 * Allocate space for all possible cpus to avoid allocation at
1707	 * runtime
1708	 */
1709	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1710					GFP_KERNEL, node);
1711	if (!hctx->ctxs)
1712		goto unregister_cpu_notifier;
1713
1714	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
 
1715		goto free_ctxs;
1716
1717	hctx->nr_ctx = 0;
1718
1719	if (set->ops->init_hctx &&
1720	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1721		goto free_bitmap;
1722
1723	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1724	if (!hctx->fq)
1725		goto exit_hctx;
1726
1727	if (set->ops->init_request &&
1728	    set->ops->init_request(set->driver_data,
1729				   hctx->fq->flush_rq, hctx_idx,
1730				   flush_start_tag + hctx_idx, node))
1731		goto free_fq;
1732
1733	return 0;
1734
1735 free_fq:
1736	kfree(hctx->fq);
1737 exit_hctx:
1738	if (set->ops->exit_hctx)
1739		set->ops->exit_hctx(hctx, hctx_idx);
1740 free_bitmap:
1741	blk_mq_free_bitmap(&hctx->ctx_map);
1742 free_ctxs:
1743	kfree(hctx->ctxs);
1744 unregister_cpu_notifier:
1745	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1746
1747	return -1;
 
 
1748}
1749
1750static void blk_mq_init_cpu_queues(struct request_queue *q,
1751				   unsigned int nr_hw_queues)
1752{
1753	unsigned int i;
 
1754
1755	for_each_possible_cpu(i) {
1756		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1757		struct blk_mq_hw_ctx *hctx;
 
1758
1759		memset(__ctx, 0, sizeof(*__ctx));
1760		__ctx->cpu = i;
1761		spin_lock_init(&__ctx->lock);
1762		INIT_LIST_HEAD(&__ctx->rq_list);
1763		__ctx->queue = q;
1764
1765		/* If the cpu isn't online, the cpu is mapped to first hctx */
1766		if (!cpu_online(i))
1767			continue;
1768
1769		hctx = q->mq_ops->map_queue(q, i);
1770
1771		/*
1772		 * Set local node, IFF we have more than one hw queue. If
1773		 * not, we remain on the home node of the device
1774		 */
1775		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1776			hctx->numa_node = local_memory_node(cpu_to_node(i));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777	}
1778}
1779
1780static void blk_mq_map_swqueue(struct request_queue *q,
1781			       const struct cpumask *online_mask)
1782{
1783	unsigned int i;
 
 
 
 
 
 
 
 
 
1784	struct blk_mq_hw_ctx *hctx;
1785	struct blk_mq_ctx *ctx;
1786	struct blk_mq_tag_set *set = q->tag_set;
1787
1788	/*
1789	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1790	 */
1791	mutex_lock(&q->sysfs_lock);
1792
1793	queue_for_each_hw_ctx(q, hctx, i) {
1794		cpumask_clear(hctx->cpumask);
1795		hctx->nr_ctx = 0;
 
1796	}
1797
1798	/*
1799	 * Map software to hardware queues
 
 
1800	 */
1801	for_each_possible_cpu(i) {
1802		/* If the cpu isn't online, the cpu is mapped to first hctx */
1803		if (!cpumask_test_cpu(i, online_mask))
1804			continue;
1805
1806		ctx = per_cpu_ptr(q->queue_ctx, i);
1807		hctx = q->mq_ops->map_queue(q, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808
1809		cpumask_set_cpu(i, hctx->cpumask);
1810		ctx->index_hw = hctx->nr_ctx;
1811		hctx->ctxs[hctx->nr_ctx++] = ctx;
1812	}
 
 
 
 
 
1813
1814	mutex_unlock(&q->sysfs_lock);
 
 
 
1815
1816	queue_for_each_hw_ctx(q, hctx, i) {
1817		struct blk_mq_ctxmap *map = &hctx->ctx_map;
 
 
 
 
 
 
 
 
 
1818
 
1819		/*
1820		 * If no software queues are mapped to this hardware queue,
1821		 * disable it and free the request entries.
1822		 */
1823		if (!hctx->nr_ctx) {
1824			if (set->tags[i]) {
1825				blk_mq_free_rq_map(set, set->tags[i], i);
1826				set->tags[i] = NULL;
1827			}
 
 
 
1828			hctx->tags = NULL;
1829			continue;
1830		}
1831
1832		/* unmapped hw queue can be remapped after CPU topo changed */
1833		if (!set->tags[i])
1834			set->tags[i] = blk_mq_init_rq_map(set, i);
1835		hctx->tags = set->tags[i];
1836		WARN_ON(!hctx->tags);
1837
1838		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1839		/*
1840		 * Set the map size to the number of mapped software queues.
1841		 * This is more accurate and more efficient than looping
1842		 * over all possibly mapped software queues.
1843		 */
1844		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1845
1846		/*
1847		 * Initialize batch roundrobin counts
1848		 */
1849		hctx->next_cpu = cpumask_first(hctx->cpumask);
1850		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1851	}
1852}
1853
 
 
 
 
1854static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1855{
1856	struct blk_mq_hw_ctx *hctx;
1857	int i;
1858
1859	queue_for_each_hw_ctx(q, hctx, i) {
1860		if (shared)
1861			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1862		else
1863			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
 
 
1864	}
1865}
1866
1867static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
 
1868{
1869	struct request_queue *q;
1870
 
 
1871	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1872		blk_mq_freeze_queue(q);
1873		queue_set_hctx_shared(q, shared);
1874		blk_mq_unfreeze_queue(q);
1875	}
1876}
1877
1878static void blk_mq_del_queue_tag_set(struct request_queue *q)
1879{
1880	struct blk_mq_tag_set *set = q->tag_set;
1881
1882	mutex_lock(&set->tag_list_lock);
1883	list_del_init(&q->tag_set_list);
1884	if (list_is_singular(&set->tag_list)) {
1885		/* just transitioned to unshared */
1886		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1887		/* update existing queue */
1888		blk_mq_update_tag_set_depth(set, false);
1889	}
1890	mutex_unlock(&set->tag_list_lock);
 
1891}
1892
1893static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1894				     struct request_queue *q)
1895{
1896	q->tag_set = set;
1897
1898	mutex_lock(&set->tag_list_lock);
1899
1900	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1901	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1902		set->flags |= BLK_MQ_F_TAG_SHARED;
 
 
 
1903		/* update existing queue */
1904		blk_mq_update_tag_set_depth(set, true);
1905	}
1906	if (set->flags & BLK_MQ_F_TAG_SHARED)
1907		queue_set_hctx_shared(q, true);
1908	list_add_tail(&q->tag_set_list, &set->tag_list);
1909
1910	mutex_unlock(&set->tag_list_lock);
1911}
1912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1913/*
1914 * It is the actual release handler for mq, but we do it from
1915 * request queue's release handler for avoiding use-after-free
1916 * and headache because q->mq_kobj shouldn't have been introduced,
1917 * but we can't group ctx/kctx kobj without it.
1918 */
1919void blk_mq_release(struct request_queue *q)
1920{
1921	struct blk_mq_hw_ctx *hctx;
1922	unsigned int i;
1923
1924	/* hctx kobj stays in hctx */
1925	queue_for_each_hw_ctx(q, hctx, i) {
1926		if (!hctx)
1927			continue;
1928		kfree(hctx->ctxs);
1929		kfree(hctx);
1930	}
1931
1932	kfree(q->mq_map);
1933	q->mq_map = NULL;
 
 
 
1934
1935	kfree(q->queue_hw_ctx);
1936
1937	/* ctx kobj stays in queue_ctx */
1938	free_percpu(q->queue_ctx);
 
 
 
1939}
1940
1941struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
 
1942{
1943	struct request_queue *uninit_q, *q;
1944
1945	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1946	if (!uninit_q)
1947		return ERR_PTR(-ENOMEM);
1948
1949	q = blk_mq_init_allocated_queue(set, uninit_q);
1950	if (IS_ERR(q))
1951		blk_cleanup_queue(uninit_q);
1952
 
 
 
 
 
1953	return q;
1954}
1955EXPORT_SYMBOL(blk_mq_init_queue);
1956
1957static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1958						struct request_queue *q)
 
 
 
 
 
 
 
 
 
1959{
1960	int i, j;
1961	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1962
1963	blk_mq_sysfs_unregister(q);
1964	for (i = 0; i < set->nr_hw_queues; i++) {
1965		int node;
1966
1967		if (hctxs[i])
1968			continue;
 
1969
1970		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1971		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1972					GFP_KERNEL, node);
1973		if (!hctxs[i])
1974			break;
 
 
 
 
 
 
 
1975
1976		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1977						node)) {
1978			kfree(hctxs[i]);
1979			hctxs[i] = NULL;
1980			break;
1981		}
1982
1983		atomic_set(&hctxs[i]->nr_active, 0);
1984		hctxs[i]->numa_node = node;
1985		hctxs[i]->queue_num = i;
1986
1987		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1988			free_cpumask_var(hctxs[i]->cpumask);
1989			kfree(hctxs[i]);
1990			hctxs[i] = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991			break;
1992		}
1993		blk_mq_hctx_kobj_init(hctxs[i]);
1994	}
1995	for (j = i; j < q->nr_hw_queues; j++) {
1996		struct blk_mq_hw_ctx *hctx = hctxs[j];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997
1998		if (hctx) {
1999			if (hctx->tags) {
2000				blk_mq_free_rq_map(set, hctx->tags, j);
2001				set->tags[j] = NULL;
2002			}
2003			blk_mq_exit_hctx(q, set, hctx, j);
2004			free_cpumask_var(hctx->cpumask);
2005			kobject_put(&hctx->kobj);
2006			kfree(hctx->ctxs);
2007			kfree(hctx);
2008			hctxs[j] = NULL;
2009
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2010		}
2011	}
2012	q->nr_hw_queues = i;
2013	blk_mq_sysfs_register(q);
 
 
 
 
 
 
 
 
 
 
 
 
2014}
2015
2016struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2017						  struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
2018{
2019	/* mark the queue as mq asap */
2020	q->mq_ops = set->ops;
2021
2022	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2023	if (!q->queue_ctx)
2024		return ERR_PTR(-ENOMEM);
 
 
 
 
 
2025
2026	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2027						GFP_KERNEL, set->numa_node);
2028	if (!q->queue_hw_ctx)
2029		goto err_percpu;
2030
2031	q->mq_map = blk_mq_make_queue_map(set);
2032	if (!q->mq_map)
2033		goto err_map;
2034
2035	blk_mq_realloc_hw_ctxs(set, q);
2036	if (!q->nr_hw_queues)
2037		goto err_hctxs;
2038
2039	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2040	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2041
2042	q->nr_queues = nr_cpu_ids;
2043
2044	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
 
2045
2046	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2047		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2048
2049	q->sg_reserved_size = INT_MAX;
2050
2051	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2052	INIT_LIST_HEAD(&q->requeue_list);
2053	spin_lock_init(&q->requeue_lock);
2054
2055	if (q->nr_hw_queues > 1)
2056		blk_queue_make_request(q, blk_mq_make_request);
2057	else
2058		blk_queue_make_request(q, blk_sq_make_request);
2059
2060	/*
2061	 * Do this after blk_queue_make_request() overrides it...
2062	 */
2063	q->nr_requests = set->queue_depth;
2064
2065	if (set->ops->complete)
2066		blk_queue_softirq_done(q, set->ops->complete);
2067
2068	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2069
2070	get_online_cpus();
2071	mutex_lock(&all_q_mutex);
2072
2073	list_add_tail(&q->all_q_node, &all_q_list);
2074	blk_mq_add_queue_tag_set(set, q);
2075	blk_mq_map_swqueue(q, cpu_online_mask);
2076
2077	mutex_unlock(&all_q_mutex);
2078	put_online_cpus();
2079
2080	return q;
2081
2082err_hctxs:
2083	kfree(q->mq_map);
2084err_map:
2085	kfree(q->queue_hw_ctx);
2086err_percpu:
2087	free_percpu(q->queue_ctx);
2088	return ERR_PTR(-ENOMEM);
2089}
2090EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2091
2092void blk_mq_free_queue(struct request_queue *q)
 
2093{
2094	struct blk_mq_tag_set	*set = q->tag_set;
2095
2096	mutex_lock(&all_q_mutex);
2097	list_del_init(&q->all_q_node);
2098	mutex_unlock(&all_q_mutex);
2099
2100	blk_mq_del_queue_tag_set(q);
2101
 
2102	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2103	blk_mq_free_hw_queues(q, set);
2104}
2105
2106/* Basically redo blk_mq_init_queue with queue frozen */
2107static void blk_mq_queue_reinit(struct request_queue *q,
2108				const struct cpumask *online_mask)
2109{
2110	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2111
2112	blk_mq_sysfs_unregister(q);
2113
2114	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2115
2116	/*
2117	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2118	 * we should change hctx numa_node according to new topology (this
2119	 * involves free and re-allocate memory, worthy doing?)
2120	 */
2121
2122	blk_mq_map_swqueue(q, online_mask);
2123
2124	blk_mq_sysfs_register(q);
2125}
2126
2127static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2128				      unsigned long action, void *hcpu)
2129{
2130	struct request_queue *q;
2131	int cpu = (unsigned long)hcpu;
2132	/*
2133	 * New online cpumask which is going to be set in this hotplug event.
2134	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2135	 * one-by-one and dynamically allocating this could result in a failure.
2136	 */
2137	static struct cpumask online_new;
2138
2139	/*
2140	 * Before hotadded cpu starts handling requests, new mappings must
2141	 * be established.  Otherwise, these requests in hw queue might
2142	 * never be dispatched.
2143	 *
2144	 * For example, there is a single hw queue (hctx) and two CPU queues
2145	 * (ctx0 for CPU0, and ctx1 for CPU1).
2146	 *
2147	 * Now CPU1 is just onlined and a request is inserted into
2148	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2149	 * still zero.
2150	 *
2151	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2152	 * set in pending bitmap and tries to retrieve requests in
2153	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2154	 * so the request in ctx1->rq_list is ignored.
2155	 */
2156	switch (action & ~CPU_TASKS_FROZEN) {
2157	case CPU_DEAD:
2158	case CPU_UP_CANCELED:
2159		cpumask_copy(&online_new, cpu_online_mask);
2160		break;
2161	case CPU_UP_PREPARE:
2162		cpumask_copy(&online_new, cpu_online_mask);
2163		cpumask_set_cpu(cpu, &online_new);
2164		break;
2165	default:
2166		return NOTIFY_OK;
2167	}
2168
2169	mutex_lock(&all_q_mutex);
2170
2171	/*
2172	 * We need to freeze and reinit all existing queues.  Freezing
2173	 * involves synchronous wait for an RCU grace period and doing it
2174	 * one by one may take a long time.  Start freezing all queues in
2175	 * one swoop and then wait for the completions so that freezing can
2176	 * take place in parallel.
2177	 */
2178	list_for_each_entry(q, &all_q_list, all_q_node)
2179		blk_mq_freeze_queue_start(q);
2180	list_for_each_entry(q, &all_q_list, all_q_node) {
2181		blk_mq_freeze_queue_wait(q);
2182
2183		/*
2184		 * timeout handler can't touch hw queue during the
2185		 * reinitialization
2186		 */
2187		del_timer_sync(&q->timeout);
2188	}
2189
2190	list_for_each_entry(q, &all_q_list, all_q_node)
2191		blk_mq_queue_reinit(q, &online_new);
2192
2193	list_for_each_entry(q, &all_q_list, all_q_node)
2194		blk_mq_unfreeze_queue(q);
2195
2196	mutex_unlock(&all_q_mutex);
2197	return NOTIFY_OK;
2198}
2199
2200static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2201{
2202	int i;
2203
 
 
 
 
 
 
 
 
2204	for (i = 0; i < set->nr_hw_queues; i++) {
2205		set->tags[i] = blk_mq_init_rq_map(set, i);
2206		if (!set->tags[i])
2207			goto out_unwind;
 
2208	}
2209
2210	return 0;
2211
2212out_unwind:
2213	while (--i >= 0)
2214		blk_mq_free_rq_map(set, set->tags[i], i);
 
 
 
 
 
2215
2216	return -ENOMEM;
2217}
2218
2219/*
2220 * Allocate the request maps associated with this tag_set. Note that this
2221 * may reduce the depth asked for, if memory is tight. set->queue_depth
2222 * will be updated to reflect the allocated depth.
2223 */
2224static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2225{
2226	unsigned int depth;
2227	int err;
2228
2229	depth = set->queue_depth;
2230	do {
2231		err = __blk_mq_alloc_rq_maps(set);
2232		if (!err)
2233			break;
2234
2235		set->queue_depth >>= 1;
2236		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2237			err = -ENOMEM;
2238			break;
2239		}
2240	} while (set->queue_depth);
2241
2242	if (!set->queue_depth || err) {
2243		pr_err("blk-mq: failed to allocate request map\n");
2244		return -ENOMEM;
2245	}
2246
2247	if (depth != set->queue_depth)
2248		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2249						depth, set->queue_depth);
2250
2251	return 0;
2252}
2253
2254struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2255{
2256	return tags->cpumask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2257}
2258EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2259
2260/*
2261 * Alloc a tag set to be associated with one or more request queues.
2262 * May fail with EINVAL for various error conditions. May adjust the
2263 * requested depth down, if if it too large. In that case, the set
2264 * value will be stored in set->queue_depth.
2265 */
2266int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2267{
 
 
2268	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2269
2270	if (!set->nr_hw_queues)
2271		return -EINVAL;
2272	if (!set->queue_depth)
2273		return -EINVAL;
2274	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2275		return -EINVAL;
2276
2277	if (!set->ops->queue_rq || !set->ops->map_queue)
 
 
 
2278		return -EINVAL;
2279
2280	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2281		pr_info("blk-mq: reduced tag depth to %u\n",
2282			BLK_MQ_MAX_DEPTH);
2283		set->queue_depth = BLK_MQ_MAX_DEPTH;
2284	}
2285
 
 
 
 
 
2286	/*
2287	 * If a crashdump is active, then we are potentially in a very
2288	 * memory constrained environment. Limit us to 1 queue and
2289	 * 64 tags to prevent using too much memory.
2290	 */
2291	if (is_kdump_kernel()) {
2292		set->nr_hw_queues = 1;
2293		set->queue_depth = min(64U, set->queue_depth);
2294	}
2295	/*
2296	 * There is no use for more h/w queues than cpus.
 
2297	 */
2298	if (set->nr_hw_queues > nr_cpu_ids)
2299		set->nr_hw_queues = nr_cpu_ids;
2300
2301	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2302				 GFP_KERNEL, set->numa_node);
 
 
 
 
 
 
 
 
 
 
 
2303	if (!set->tags)
2304		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
2305
2306	if (blk_mq_alloc_rq_maps(set))
2307		goto enomem;
 
2308
2309	mutex_init(&set->tag_list_lock);
2310	INIT_LIST_HEAD(&set->tag_list);
2311
2312	return 0;
2313enomem:
 
 
 
 
 
2314	kfree(set->tags);
2315	set->tags = NULL;
2316	return -ENOMEM;
 
 
 
 
 
 
2317}
2318EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2320void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2321{
2322	int i;
 
 
 
2323
2324	for (i = 0; i < nr_cpu_ids; i++) {
2325		if (set->tags[i])
2326			blk_mq_free_rq_map(set, set->tags[i], i);
 
 
 
 
 
2327	}
2328
2329	kfree(set->tags);
2330	set->tags = NULL;
 
 
 
 
2331}
2332EXPORT_SYMBOL(blk_mq_free_tag_set);
2333
2334int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2335{
2336	struct blk_mq_tag_set *set = q->tag_set;
2337	struct blk_mq_hw_ctx *hctx;
2338	int i, ret;
 
2339
2340	if (!set || nr > set->queue_depth)
2341		return -EINVAL;
2342
 
 
 
 
 
 
2343	ret = 0;
2344	queue_for_each_hw_ctx(q, hctx, i) {
2345		if (!hctx->tags)
2346			continue;
2347		ret = blk_mq_tag_update_depth(hctx->tags, nr);
 
 
 
 
 
 
 
 
 
 
2348		if (ret)
2349			break;
 
 
2350	}
2351
2352	if (!ret)
2353		q->nr_requests = nr;
 
 
 
 
 
 
 
 
 
 
2354
2355	return ret;
2356}
2357
2358void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359{
2360	struct request_queue *q;
 
 
 
 
 
2361
2362	if (nr_hw_queues > nr_cpu_ids)
2363		nr_hw_queues = nr_cpu_ids;
2364	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
 
 
2365		return;
2366
2367	list_for_each_entry(q, &set->tag_list, tag_set_list)
2368		blk_mq_freeze_queue(q);
 
 
 
 
 
 
 
 
2369
2370	set->nr_hw_queues = nr_hw_queues;
 
 
 
 
 
 
 
 
 
2371	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2372		blk_mq_realloc_hw_ctxs(set, q);
 
 
 
 
 
 
 
 
2373
2374		if (q->nr_hw_queues > 1)
2375			blk_queue_make_request(q, blk_mq_make_request);
2376		else
2377			blk_queue_make_request(q, blk_sq_make_request);
 
2378
2379		blk_mq_queue_reinit(q, cpu_online_mask);
 
 
 
2380	}
2381
 
 
 
 
2382	list_for_each_entry(q, &set->tag_list, tag_set_list)
2383		blk_mq_unfreeze_queue(q);
 
 
 
 
 
 
 
 
 
 
 
2384}
2385EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2386
2387void blk_mq_disable_hotplug(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2388{
2389	mutex_lock(&all_q_mutex);
2390}
 
2391
2392void blk_mq_enable_hotplug(void)
2393{
2394	mutex_unlock(&all_q_mutex);
 
 
 
 
 
 
2395}
2396
2397static int __init blk_mq_init(void)
2398{
2399	blk_mq_cpu_init();
2400
2401	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2403	return 0;
2404}
2405subsys_initcall(blk_mq_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/blk-integrity.h>
  14#include <linux/kmemleak.h>
  15#include <linux/mm.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/workqueue.h>
  19#include <linux/smp.h>
  20#include <linux/interrupt.h>
  21#include <linux/llist.h>
 
  22#include <linux/cpu.h>
  23#include <linux/cache.h>
  24#include <linux/sched/topology.h>
  25#include <linux/sched/signal.h>
  26#include <linux/delay.h>
  27#include <linux/crash_dump.h>
  28#include <linux/prefetch.h>
  29#include <linux/blk-crypto.h>
  30#include <linux/part_stat.h>
  31
  32#include <trace/events/block.h>
  33
  34#include <linux/t10-pi.h>
  35#include "blk.h"
  36#include "blk-mq.h"
  37#include "blk-mq-debugfs.h"
  38#include "blk-pm.h"
  39#include "blk-stat.h"
  40#include "blk-mq-sched.h"
  41#include "blk-rq-qos.h"
  42
  43static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
  44static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
  45
  46static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
  47static void blk_mq_request_bypass_insert(struct request *rq,
  48		blk_insert_t flags);
  49static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
  50		struct list_head *list);
  51static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
  52			 struct io_comp_batch *iob, unsigned int flags);
  53
  54/*
  55 * Check if any of the ctx, dispatch list or elevator
  56 * have pending work in this hardware queue.
  57 */
  58static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  59{
  60	return !list_empty_careful(&hctx->dispatch) ||
  61		sbitmap_any_bit_set(&hctx->ctx_map) ||
  62			blk_mq_sched_has_work(hctx);
 
 
 
 
 
 
 
 
 
 
  63}
  64
 
 
 
  65/*
  66 * Mark this ctx as having pending work in this hardware queue
  67 */
  68static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  69				     struct blk_mq_ctx *ctx)
  70{
  71	const int bit = ctx->index_hw[hctx->type];
  72
  73	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
  74		sbitmap_set_bit(&hctx->ctx_map, bit);
  75}
  76
  77static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  78				      struct blk_mq_ctx *ctx)
  79{
  80	const int bit = ctx->index_hw[hctx->type];
  81
  82	sbitmap_clear_bit(&hctx->ctx_map, bit);
  83}
  84
  85struct mq_inflight {
  86	struct block_device *part;
  87	unsigned int inflight[2];
  88};
  89
  90static bool blk_mq_check_inflight(struct request *rq, void *priv)
  91{
  92	struct mq_inflight *mi = priv;
  93
  94	if (rq->part && blk_do_io_stat(rq) &&
  95	    (!mi->part->bd_partno || rq->part == mi->part) &&
  96	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
  97		mi->inflight[rq_data_dir(rq)]++;
  98
  99	return true;
 100}
 101
 102unsigned int blk_mq_in_flight(struct request_queue *q,
 103		struct block_device *part)
 104{
 105	struct mq_inflight mi = { .part = part };
 106
 107	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 108
 109	return mi.inflight[0] + mi.inflight[1];
 110}
 111
 112void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
 113		unsigned int inflight[2])
 114{
 115	struct mq_inflight mi = { .part = part };
 116
 117	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 118	inflight[0] = mi.inflight[0];
 119	inflight[1] = mi.inflight[1];
 120}
 121
 122void blk_freeze_queue_start(struct request_queue *q)
 123{
 124	mutex_lock(&q->mq_freeze_lock);
 125	if (++q->mq_freeze_depth == 1) {
 126		percpu_ref_kill(&q->q_usage_counter);
 127		mutex_unlock(&q->mq_freeze_lock);
 128		if (queue_is_mq(q))
 129			blk_mq_run_hw_queues(q, false);
 130	} else {
 131		mutex_unlock(&q->mq_freeze_lock);
 132	}
 133}
 134EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 135
 136void blk_mq_freeze_queue_wait(struct request_queue *q)
 137{
 138	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 139}
 140EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 141
 142int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 143				     unsigned long timeout)
 144{
 145	return wait_event_timeout(q->mq_freeze_wq,
 146					percpu_ref_is_zero(&q->q_usage_counter),
 147					timeout);
 148}
 149EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 150
 151/*
 152 * Guarantee no request is in use, so we can change any data structure of
 153 * the queue afterward.
 154 */
 155void blk_freeze_queue(struct request_queue *q)
 156{
 157	/*
 158	 * In the !blk_mq case we are only calling this to kill the
 159	 * q_usage_counter, otherwise this increases the freeze depth
 160	 * and waits for it to return to zero.  For this reason there is
 161	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 162	 * exported to drivers as the only user for unfreeze is blk_mq.
 163	 */
 164	blk_freeze_queue_start(q);
 165	blk_mq_freeze_queue_wait(q);
 166}
 167
 168void blk_mq_freeze_queue(struct request_queue *q)
 169{
 170	/*
 171	 * ...just an alias to keep freeze and unfreeze actions balanced
 172	 * in the blk_mq_* namespace
 173	 */
 174	blk_freeze_queue(q);
 175}
 176EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 177
 178void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
 179{
 180	mutex_lock(&q->mq_freeze_lock);
 181	if (force_atomic)
 182		q->q_usage_counter.data->force_atomic = true;
 183	q->mq_freeze_depth--;
 184	WARN_ON_ONCE(q->mq_freeze_depth < 0);
 185	if (!q->mq_freeze_depth) {
 186		percpu_ref_resurrect(&q->q_usage_counter);
 187		wake_up_all(&q->mq_freeze_wq);
 188	}
 189	mutex_unlock(&q->mq_freeze_lock);
 190}
 191
 192void blk_mq_unfreeze_queue(struct request_queue *q)
 193{
 194	__blk_mq_unfreeze_queue(q, false);
 195}
 196EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 197
 198/*
 199 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 200 * mpt3sas driver such that this function can be removed.
 201 */
 202void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 203{
 204	unsigned long flags;
 205
 206	spin_lock_irqsave(&q->queue_lock, flags);
 207	if (!q->quiesce_depth++)
 208		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 209	spin_unlock_irqrestore(&q->queue_lock, flags);
 210}
 211EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 212
 213/**
 214 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
 215 * @set: tag_set to wait on
 216 *
 217 * Note: it is driver's responsibility for making sure that quiesce has
 218 * been started on or more of the request_queues of the tag_set.  This
 219 * function only waits for the quiesce on those request_queues that had
 220 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
 221 */
 222void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
 223{
 224	if (set->flags & BLK_MQ_F_BLOCKING)
 225		synchronize_srcu(set->srcu);
 226	else
 227		synchronize_rcu();
 228}
 229EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
 230
 231/**
 232 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 233 * @q: request queue.
 234 *
 235 * Note: this function does not prevent that the struct request end_io()
 236 * callback function is invoked. Once this function is returned, we make
 237 * sure no dispatch can happen until the queue is unquiesced via
 238 * blk_mq_unquiesce_queue().
 239 */
 240void blk_mq_quiesce_queue(struct request_queue *q)
 241{
 242	blk_mq_quiesce_queue_nowait(q);
 243	/* nothing to wait for non-mq queues */
 244	if (queue_is_mq(q))
 245		blk_mq_wait_quiesce_done(q->tag_set);
 246}
 247EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 248
 249/*
 250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 251 * @q: request queue.
 252 *
 253 * This function recovers queue into the state before quiescing
 254 * which is done by blk_mq_quiesce_queue.
 255 */
 256void blk_mq_unquiesce_queue(struct request_queue *q)
 257{
 258	unsigned long flags;
 259	bool run_queue = false;
 260
 261	spin_lock_irqsave(&q->queue_lock, flags);
 262	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
 263		;
 264	} else if (!--q->quiesce_depth) {
 265		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 266		run_queue = true;
 267	}
 268	spin_unlock_irqrestore(&q->queue_lock, flags);
 269
 270	/* dispatch requests which are inserted during quiescing */
 271	if (run_queue)
 272		blk_mq_run_hw_queues(q, true);
 273}
 274EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 275
 276void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
 277{
 278	struct request_queue *q;
 279
 280	mutex_lock(&set->tag_list_lock);
 281	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 282		if (!blk_queue_skip_tagset_quiesce(q))
 283			blk_mq_quiesce_queue_nowait(q);
 284	}
 285	blk_mq_wait_quiesce_done(set);
 286	mutex_unlock(&set->tag_list_lock);
 287}
 288EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
 289
 290void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
 291{
 292	struct request_queue *q;
 293
 294	mutex_lock(&set->tag_list_lock);
 295	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 296		if (!blk_queue_skip_tagset_quiesce(q))
 297			blk_mq_unquiesce_queue(q);
 298	}
 299	mutex_unlock(&set->tag_list_lock);
 300}
 301EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
 302
 303void blk_mq_wake_waiters(struct request_queue *q)
 304{
 305	struct blk_mq_hw_ctx *hctx;
 306	unsigned long i;
 307
 308	queue_for_each_hw_ctx(q, hctx, i)
 309		if (blk_mq_hw_queue_mapped(hctx))
 310			blk_mq_tag_wakeup_all(hctx->tags, true);
 311}
 312
 313void blk_rq_init(struct request_queue *q, struct request *rq)
 314{
 315	memset(rq, 0, sizeof(*rq));
 316
 317	INIT_LIST_HEAD(&rq->queuelist);
 318	rq->q = q;
 319	rq->__sector = (sector_t) -1;
 320	INIT_HLIST_NODE(&rq->hash);
 321	RB_CLEAR_NODE(&rq->rb_node);
 322	rq->tag = BLK_MQ_NO_TAG;
 323	rq->internal_tag = BLK_MQ_NO_TAG;
 324	rq->start_time_ns = blk_time_get_ns();
 325	rq->part = NULL;
 326	blk_crypto_rq_set_defaults(rq);
 327}
 328EXPORT_SYMBOL(blk_rq_init);
 329
 330/* Set start and alloc time when the allocated request is actually used */
 331static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
 332{
 333	if (blk_mq_need_time_stamp(rq))
 334		rq->start_time_ns = blk_time_get_ns();
 335	else
 336		rq->start_time_ns = 0;
 337
 338#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 339	if (blk_queue_rq_alloc_time(rq->q))
 340		rq->alloc_time_ns = alloc_time_ns ?: rq->start_time_ns;
 341	else
 342		rq->alloc_time_ns = 0;
 343#endif
 344}
 
 345
 346static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 347		struct blk_mq_tags *tags, unsigned int tag)
 348{
 349	struct blk_mq_ctx *ctx = data->ctx;
 350	struct blk_mq_hw_ctx *hctx = data->hctx;
 351	struct request_queue *q = data->q;
 352	struct request *rq = tags->static_rqs[tag];
 353
 
 
 354	rq->q = q;
 355	rq->mq_ctx = ctx;
 356	rq->mq_hctx = hctx;
 357	rq->cmd_flags = data->cmd_flags;
 358
 359	if (data->flags & BLK_MQ_REQ_PM)
 360		data->rq_flags |= RQF_PM;
 361	if (blk_queue_io_stat(q))
 362		data->rq_flags |= RQF_IO_STAT;
 363	rq->rq_flags = data->rq_flags;
 364
 365	if (data->rq_flags & RQF_SCHED_TAGS) {
 366		rq->tag = BLK_MQ_NO_TAG;
 367		rq->internal_tag = tag;
 368	} else {
 369		rq->tag = tag;
 370		rq->internal_tag = BLK_MQ_NO_TAG;
 371	}
 372	rq->timeout = 0;
 373
 374	rq->part = NULL;
 
 
 
 
 375	rq->io_start_time_ns = 0;
 376	rq->stats_sectors = 0;
 377	rq->nr_phys_segments = 0;
 378#if defined(CONFIG_BLK_DEV_INTEGRITY)
 379	rq->nr_integrity_segments = 0;
 380#endif
 381	rq->end_io = NULL;
 382	rq->end_io_data = NULL;
 383
 384	blk_crypto_rq_set_defaults(rq);
 385	INIT_LIST_HEAD(&rq->queuelist);
 386	/* tag was already set */
 387	WRITE_ONCE(rq->deadline, 0);
 388	req_ref_set(rq, 1);
 389
 390	if (rq->rq_flags & RQF_USE_SCHED) {
 391		struct elevator_queue *e = data->q->elevator;
 392
 393		INIT_HLIST_NODE(&rq->hash);
 394		RB_CLEAR_NODE(&rq->rb_node);
 
 
 395
 396		if (e->type->ops.prepare_request)
 397			e->type->ops.prepare_request(rq);
 398	}
 399
 400	return rq;
 401}
 
 402
 403static inline struct request *
 404__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
 405{
 406	unsigned int tag, tag_offset;
 407	struct blk_mq_tags *tags;
 408	struct request *rq;
 409	unsigned long tag_mask;
 410	int i, nr = 0;
 411
 412	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
 413	if (unlikely(!tag_mask))
 414		return NULL;
 415
 416	tags = blk_mq_tags_from_data(data);
 417	for (i = 0; tag_mask; i++) {
 418		if (!(tag_mask & (1UL << i)))
 419			continue;
 420		tag = tag_offset + i;
 421		prefetch(tags->static_rqs[tag]);
 422		tag_mask &= ~(1UL << i);
 423		rq = blk_mq_rq_ctx_init(data, tags, tag);
 424		rq_list_add(data->cached_rq, rq);
 425		nr++;
 426	}
 427	if (!(data->rq_flags & RQF_SCHED_TAGS))
 428		blk_mq_add_active_requests(data->hctx, nr);
 429	/* caller already holds a reference, add for remainder */
 430	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
 431	data->nr_tags -= nr;
 432
 433	return rq_list_pop(data->cached_rq);
 434}
 435
 436static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
 
 437{
 438	struct request_queue *q = data->q;
 439	u64 alloc_time_ns = 0;
 440	struct request *rq;
 441	unsigned int tag;
 442
 443	/* alloc_time includes depth and tag waits */
 444	if (blk_queue_rq_alloc_time(q))
 445		alloc_time_ns = blk_time_get_ns();
 446
 447	if (data->cmd_flags & REQ_NOWAIT)
 448		data->flags |= BLK_MQ_REQ_NOWAIT;
 449
 450	if (q->elevator) {
 451		/*
 452		 * All requests use scheduler tags when an I/O scheduler is
 453		 * enabled for the queue.
 454		 */
 455		data->rq_flags |= RQF_SCHED_TAGS;
 456
 457		/*
 458		 * Flush/passthrough requests are special and go directly to the
 459		 * dispatch list.
 460		 */
 461		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
 462		    !blk_op_is_passthrough(data->cmd_flags)) {
 463			struct elevator_mq_ops *ops = &q->elevator->type->ops;
 464
 465			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
 466
 467			data->rq_flags |= RQF_USE_SCHED;
 468			if (ops->limit_depth)
 469				ops->limit_depth(data->cmd_flags, data);
 470		}
 471	}
 472
 473retry:
 474	data->ctx = blk_mq_get_ctx(q);
 475	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
 476	if (!(data->rq_flags & RQF_SCHED_TAGS))
 477		blk_mq_tag_busy(data->hctx);
 478
 479	if (data->flags & BLK_MQ_REQ_RESERVED)
 480		data->rq_flags |= RQF_RESV;
 481
 482	/*
 483	 * Try batched alloc if we want more than 1 tag.
 484	 */
 485	if (data->nr_tags > 1) {
 486		rq = __blk_mq_alloc_requests_batch(data);
 487		if (rq) {
 488			blk_mq_rq_time_init(rq, alloc_time_ns);
 489			return rq;
 490		}
 491		data->nr_tags = 1;
 492	}
 493
 494	/*
 495	 * Waiting allocations only fail because of an inactive hctx.  In that
 496	 * case just retry the hctx assignment and tag allocation as CPU hotplug
 497	 * should have migrated us to an online CPU by now.
 498	 */
 499	tag = blk_mq_get_tag(data);
 500	if (tag == BLK_MQ_NO_TAG) {
 501		if (data->flags & BLK_MQ_REQ_NOWAIT)
 502			return NULL;
 503		/*
 504		 * Give up the CPU and sleep for a random short time to
 505		 * ensure that thread using a realtime scheduling class
 506		 * are migrated off the CPU, and thus off the hctx that
 507		 * is going away.
 508		 */
 509		msleep(3);
 510		goto retry;
 511	}
 512
 513	if (!(data->rq_flags & RQF_SCHED_TAGS))
 514		blk_mq_inc_active_requests(data->hctx);
 515	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
 516	blk_mq_rq_time_init(rq, alloc_time_ns);
 517	return rq;
 518}
 519
 520static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
 521					    struct blk_plug *plug,
 522					    blk_opf_t opf,
 523					    blk_mq_req_flags_t flags)
 524{
 525	struct blk_mq_alloc_data data = {
 526		.q		= q,
 527		.flags		= flags,
 528		.cmd_flags	= opf,
 529		.nr_tags	= plug->nr_ios,
 530		.cached_rq	= &plug->cached_rq,
 531	};
 532	struct request *rq;
 533
 534	if (blk_queue_enter(q, flags))
 535		return NULL;
 536
 537	plug->nr_ios = 1;
 538
 539	rq = __blk_mq_alloc_requests(&data);
 540	if (unlikely(!rq))
 541		blk_queue_exit(q);
 542	return rq;
 543}
 544
 545static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
 546						   blk_opf_t opf,
 547						   blk_mq_req_flags_t flags)
 548{
 549	struct blk_plug *plug = current->plug;
 
 550	struct request *rq;
 
 
 551
 552	if (!plug)
 553		return NULL;
 554
 555	if (rq_list_empty(plug->cached_rq)) {
 556		if (plug->nr_ios == 1)
 557			return NULL;
 558		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
 559		if (!rq)
 560			return NULL;
 561	} else {
 562		rq = rq_list_peek(&plug->cached_rq);
 563		if (!rq || rq->q != q)
 564			return NULL;
 565
 566		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
 567			return NULL;
 568		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
 569			return NULL;
 570
 571		plug->cached_rq = rq_list_next(rq);
 572		blk_mq_rq_time_init(rq, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 573	}
 574
 575	rq->cmd_flags = opf;
 576	INIT_LIST_HEAD(&rq->queuelist);
 577	return rq;
 578}
 579
 580struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
 581		blk_mq_req_flags_t flags)
 582{
 583	struct request *rq;
 584
 585	rq = blk_mq_alloc_cached_request(q, opf, flags);
 586	if (!rq) {
 587		struct blk_mq_alloc_data data = {
 588			.q		= q,
 589			.flags		= flags,
 590			.cmd_flags	= opf,
 591			.nr_tags	= 1,
 592		};
 593		int ret;
 594
 595		ret = blk_queue_enter(q, flags);
 596		if (ret)
 597			return ERR_PTR(ret);
 598
 599		rq = __blk_mq_alloc_requests(&data);
 600		if (!rq)
 601			goto out_queue_exit;
 602	}
 603	rq->__data_len = 0;
 604	rq->__sector = (sector_t) -1;
 605	rq->bio = rq->biotail = NULL;
 606	return rq;
 607out_queue_exit:
 608	blk_queue_exit(q);
 609	return ERR_PTR(-EWOULDBLOCK);
 610}
 611EXPORT_SYMBOL(blk_mq_alloc_request);
 612
 613struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 614	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 615{
 616	struct blk_mq_alloc_data data = {
 617		.q		= q,
 618		.flags		= flags,
 619		.cmd_flags	= opf,
 620		.nr_tags	= 1,
 621	};
 622	u64 alloc_time_ns = 0;
 623	struct request *rq;
 624	unsigned int cpu;
 625	unsigned int tag;
 626	int ret;
 627
 628	/* alloc_time includes depth and tag waits */
 629	if (blk_queue_rq_alloc_time(q))
 630		alloc_time_ns = blk_time_get_ns();
 631
 632	/*
 633	 * If the tag allocator sleeps we could get an allocation for a
 634	 * different hardware context.  No need to complicate the low level
 635	 * allocator for this for the rare use case of a command tied to
 636	 * a specific queue.
 637	 */
 638	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
 639	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
 640		return ERR_PTR(-EINVAL);
 641
 642	if (hctx_idx >= q->nr_hw_queues)
 643		return ERR_PTR(-EIO);
 
 644
 645	ret = blk_queue_enter(q, flags);
 646	if (ret)
 647		return ERR_PTR(ret);
 648
 649	/*
 650	 * Check if the hardware context is actually mapped to anything.
 651	 * If not tell the caller that it should skip this queue.
 652	 */
 653	ret = -EXDEV;
 654	data.hctx = xa_load(&q->hctx_table, hctx_idx);
 655	if (!blk_mq_hw_queue_mapped(data.hctx))
 656		goto out_queue_exit;
 657	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
 658	if (cpu >= nr_cpu_ids)
 659		goto out_queue_exit;
 660	data.ctx = __blk_mq_get_ctx(q, cpu);
 661
 662	if (q->elevator)
 663		data.rq_flags |= RQF_SCHED_TAGS;
 664	else
 665		blk_mq_tag_busy(data.hctx);
 666
 667	if (flags & BLK_MQ_REQ_RESERVED)
 668		data.rq_flags |= RQF_RESV;
 669
 670	ret = -EWOULDBLOCK;
 671	tag = blk_mq_get_tag(&data);
 672	if (tag == BLK_MQ_NO_TAG)
 673		goto out_queue_exit;
 674	if (!(data.rq_flags & RQF_SCHED_TAGS))
 675		blk_mq_inc_active_requests(data.hctx);
 676	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
 677	blk_mq_rq_time_init(rq, alloc_time_ns);
 678	rq->__data_len = 0;
 679	rq->__sector = (sector_t) -1;
 680	rq->bio = rq->biotail = NULL;
 681	return rq;
 682
 683out_queue_exit:
 684	blk_queue_exit(q);
 685	return ERR_PTR(ret);
 686}
 687EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 688
 689static void blk_mq_finish_request(struct request *rq)
 690{
 691	struct request_queue *q = rq->q;
 692
 693	if (rq->rq_flags & RQF_USE_SCHED) {
 694		q->elevator->type->ops.finish_request(rq);
 695		/*
 696		 * For postflush request that may need to be
 697		 * completed twice, we should clear this flag
 698		 * to avoid double finish_request() on the rq.
 699		 */
 700		rq->rq_flags &= ~RQF_USE_SCHED;
 701	}
 702}
 703
 704static void __blk_mq_free_request(struct request *rq)
 705{
 706	struct request_queue *q = rq->q;
 707	struct blk_mq_ctx *ctx = rq->mq_ctx;
 708	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 709	const int sched_tag = rq->internal_tag;
 710
 711	blk_crypto_free_request(rq);
 712	blk_pm_mark_last_busy(rq);
 713	rq->mq_hctx = NULL;
 714
 715	if (rq->tag != BLK_MQ_NO_TAG) {
 716		blk_mq_dec_active_requests(hctx);
 717		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
 718	}
 719	if (sched_tag != BLK_MQ_NO_TAG)
 720		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
 721	blk_mq_sched_restart(hctx);
 722	blk_queue_exit(q);
 723}
 
 724
 725void blk_mq_free_request(struct request *rq)
 726{
 
 727	struct request_queue *q = rq->q;
 728
 729	blk_mq_finish_request(rq);
 730
 731	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 732		laptop_io_completion(q->disk->bdi);
 733
 734	rq_qos_done(q, rq);
 735
 736	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 737	if (req_ref_put_and_test(rq))
 738		__blk_mq_free_request(rq);
 739}
 740EXPORT_SYMBOL_GPL(blk_mq_free_request);
 741
 742void blk_mq_free_plug_rqs(struct blk_plug *plug)
 743{
 744	struct request *rq;
 745
 746	while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
 747		blk_mq_free_request(rq);
 748}
 749
 750void blk_dump_rq_flags(struct request *rq, char *msg)
 751{
 752	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 753		rq->q->disk ? rq->q->disk->disk_name : "?",
 754		(__force unsigned long long) rq->cmd_flags);
 755
 756	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 757	       (unsigned long long)blk_rq_pos(rq),
 758	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 759	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 760	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 761}
 762EXPORT_SYMBOL(blk_dump_rq_flags);
 763
 764static void req_bio_endio(struct request *rq, struct bio *bio,
 765			  unsigned int nbytes, blk_status_t error)
 766{
 767	if (unlikely(error)) {
 768		bio->bi_status = error;
 769	} else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
 770		/*
 771		 * Partial zone append completions cannot be supported as the
 772		 * BIO fragments may end up not being written sequentially.
 773		 */
 774		if (bio->bi_iter.bi_size != nbytes)
 775			bio->bi_status = BLK_STS_IOERR;
 776		else
 777			bio->bi_iter.bi_sector = rq->__sector;
 778	}
 779
 780	bio_advance(bio, nbytes);
 781
 782	if (unlikely(rq->rq_flags & RQF_QUIET))
 783		bio_set_flag(bio, BIO_QUIET);
 784	/* don't actually finish bio if it's part of flush sequence */
 785	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
 786		bio_endio(bio);
 787}
 788
 789static void blk_account_io_completion(struct request *req, unsigned int bytes)
 790{
 791	if (req->part && blk_do_io_stat(req)) {
 792		const int sgrp = op_stat_group(req_op(req));
 793
 794		part_stat_lock();
 795		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
 796		part_stat_unlock();
 797	}
 798}
 799
 800static void blk_print_req_error(struct request *req, blk_status_t status)
 801{
 802	printk_ratelimited(KERN_ERR
 803		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
 804		"phys_seg %u prio class %u\n",
 805		blk_status_to_str(status),
 806		req->q->disk ? req->q->disk->disk_name : "?",
 807		blk_rq_pos(req), (__force u32)req_op(req),
 808		blk_op_str(req_op(req)),
 809		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
 810		req->nr_phys_segments,
 811		IOPRIO_PRIO_CLASS(req->ioprio));
 812}
 813
 814/*
 815 * Fully end IO on a request. Does not support partial completions, or
 816 * errors.
 817 */
 818static void blk_complete_request(struct request *req)
 819{
 820	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
 821	int total_bytes = blk_rq_bytes(req);
 822	struct bio *bio = req->bio;
 823
 824	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
 825
 826	if (!bio)
 827		return;
 828
 829#ifdef CONFIG_BLK_DEV_INTEGRITY
 830	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
 831		req->q->integrity.profile->complete_fn(req, total_bytes);
 832#endif
 833
 834	/*
 835	 * Upper layers may call blk_crypto_evict_key() anytime after the last
 836	 * bio_endio().  Therefore, the keyslot must be released before that.
 837	 */
 838	blk_crypto_rq_put_keyslot(req);
 839
 840	blk_account_io_completion(req, total_bytes);
 841
 842	do {
 843		struct bio *next = bio->bi_next;
 844
 845		/* Completion has already been traced */
 846		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 847
 848		if (req_op(req) == REQ_OP_ZONE_APPEND)
 849			bio->bi_iter.bi_sector = req->__sector;
 850
 851		if (!is_flush)
 852			bio_endio(bio);
 853		bio = next;
 854	} while (bio);
 855
 856	/*
 857	 * Reset counters so that the request stacking driver
 858	 * can find how many bytes remain in the request
 859	 * later.
 860	 */
 861	if (!req->end_io) {
 862		req->bio = NULL;
 863		req->__data_len = 0;
 864	}
 865}
 866
 867/**
 868 * blk_update_request - Complete multiple bytes without completing the request
 869 * @req:      the request being processed
 870 * @error:    block status code
 871 * @nr_bytes: number of bytes to complete for @req
 872 *
 873 * Description:
 874 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 875 *     the request structure even if @req doesn't have leftover.
 876 *     If @req has leftover, sets it up for the next range of segments.
 877 *
 878 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 879 *     %false return from this function.
 880 *
 881 * Note:
 882 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 883 *      except in the consistency check at the end of this function.
 884 *
 885 * Return:
 886 *     %false - this request doesn't have any more data
 887 *     %true  - this request has more data
 888 **/
 889bool blk_update_request(struct request *req, blk_status_t error,
 890		unsigned int nr_bytes)
 891{
 892	int total_bytes;
 893
 894	trace_block_rq_complete(req, error, nr_bytes);
 895
 896	if (!req->bio)
 897		return false;
 898
 899#ifdef CONFIG_BLK_DEV_INTEGRITY
 900	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
 901	    error == BLK_STS_OK)
 902		req->q->integrity.profile->complete_fn(req, nr_bytes);
 903#endif
 904
 905	/*
 906	 * Upper layers may call blk_crypto_evict_key() anytime after the last
 907	 * bio_endio().  Therefore, the keyslot must be released before that.
 908	 */
 909	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
 910		__blk_crypto_rq_put_keyslot(req);
 911
 912	if (unlikely(error && !blk_rq_is_passthrough(req) &&
 913		     !(req->rq_flags & RQF_QUIET)) &&
 914		     !test_bit(GD_DEAD, &req->q->disk->state)) {
 915		blk_print_req_error(req, error);
 916		trace_block_rq_error(req, error, nr_bytes);
 917	}
 918
 919	blk_account_io_completion(req, nr_bytes);
 920
 921	total_bytes = 0;
 922	while (req->bio) {
 923		struct bio *bio = req->bio;
 924		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
 925
 926		if (bio_bytes == bio->bi_iter.bi_size)
 927			req->bio = bio->bi_next;
 928
 929		/* Completion has already been traced */
 930		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 931		req_bio_endio(req, bio, bio_bytes, error);
 932
 933		total_bytes += bio_bytes;
 934		nr_bytes -= bio_bytes;
 935
 936		if (!nr_bytes)
 937			break;
 938	}
 939
 940	/*
 941	 * completely done
 942	 */
 943	if (!req->bio) {
 944		/*
 945		 * Reset counters so that the request stacking driver
 946		 * can find how many bytes remain in the request
 947		 * later.
 948		 */
 949		req->__data_len = 0;
 950		return false;
 951	}
 952
 953	req->__data_len -= total_bytes;
 954
 955	/* update sector only for requests with clear definition of sector */
 956	if (!blk_rq_is_passthrough(req))
 957		req->__sector += total_bytes >> 9;
 958
 959	/* mixed attributes always follow the first bio */
 960	if (req->rq_flags & RQF_MIXED_MERGE) {
 961		req->cmd_flags &= ~REQ_FAILFAST_MASK;
 962		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
 963	}
 964
 965	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
 966		/*
 967		 * If total number of sectors is less than the first segment
 968		 * size, something has gone terribly wrong.
 969		 */
 970		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
 971			blk_dump_rq_flags(req, "request botched");
 972			req->__data_len = blk_rq_cur_bytes(req);
 973		}
 974
 975		/* recalculate the number of segments */
 976		req->nr_phys_segments = blk_recalc_rq_segments(req);
 977	}
 978
 979	return true;
 980}
 981EXPORT_SYMBOL_GPL(blk_update_request);
 982
 983static inline void blk_account_io_done(struct request *req, u64 now)
 984{
 985	trace_block_io_done(req);
 986
 987	/*
 988	 * Account IO completion.  flush_rq isn't accounted as a
 989	 * normal IO on queueing nor completion.  Accounting the
 990	 * containing request is enough.
 991	 */
 992	if (blk_do_io_stat(req) && req->part &&
 993	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
 994		const int sgrp = op_stat_group(req_op(req));
 995
 996		part_stat_lock();
 997		update_io_ticks(req->part, jiffies, true);
 998		part_stat_inc(req->part, ios[sgrp]);
 999		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1000		part_stat_local_dec(req->part,
1001				    in_flight[op_is_write(req_op(req))]);
1002		part_stat_unlock();
1003	}
1004}
1005
1006static inline void blk_account_io_start(struct request *req)
1007{
1008	trace_block_io_start(req);
1009
1010	if (blk_do_io_stat(req)) {
1011		/*
1012		 * All non-passthrough requests are created from a bio with one
1013		 * exception: when a flush command that is part of a flush sequence
1014		 * generated by the state machine in blk-flush.c is cloned onto the
1015		 * lower device by dm-multipath we can get here without a bio.
1016		 */
1017		if (req->bio)
1018			req->part = req->bio->bi_bdev;
1019		else
1020			req->part = req->q->disk->part0;
1021
1022		part_stat_lock();
1023		update_io_ticks(req->part, jiffies, false);
1024		part_stat_local_inc(req->part,
1025				    in_flight[op_is_write(req_op(req))]);
1026		part_stat_unlock();
1027	}
1028}
1029
1030static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1031{
1032	if (rq->rq_flags & RQF_STATS)
1033		blk_stat_add(rq, now);
1034
1035	blk_mq_sched_completed_request(rq, now);
1036	blk_account_io_done(rq, now);
1037}
1038
1039inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1040{
1041	if (blk_mq_need_time_stamp(rq))
1042		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1043
1044	blk_mq_finish_request(rq);
1045
1046	if (rq->end_io) {
1047		rq_qos_done(rq->q, rq);
1048		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1049			blk_mq_free_request(rq);
1050	} else {
 
 
1051		blk_mq_free_request(rq);
1052	}
1053}
1054EXPORT_SYMBOL(__blk_mq_end_request);
1055
1056void blk_mq_end_request(struct request *rq, blk_status_t error)
1057{
1058	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1059		BUG();
1060	__blk_mq_end_request(rq, error);
1061}
1062EXPORT_SYMBOL(blk_mq_end_request);
1063
1064#define TAG_COMP_BATCH		32
1065
1066static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1067					  int *tag_array, int nr_tags)
1068{
1069	struct request_queue *q = hctx->queue;
1070
1071	blk_mq_sub_active_requests(hctx, nr_tags);
1072
1073	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1074	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1075}
1076
1077void blk_mq_end_request_batch(struct io_comp_batch *iob)
1078{
1079	int tags[TAG_COMP_BATCH], nr_tags = 0;
1080	struct blk_mq_hw_ctx *cur_hctx = NULL;
1081	struct request *rq;
1082	u64 now = 0;
1083
1084	if (iob->need_ts)
1085		now = blk_time_get_ns();
 
 
1086
1087	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1088		prefetch(rq->bio);
1089		prefetch(rq->rq_next);
1090
1091		blk_complete_request(rq);
1092		if (iob->need_ts)
1093			__blk_mq_end_request_acct(rq, now);
1094
1095		blk_mq_finish_request(rq);
1096
1097		rq_qos_done(rq->q, rq);
1098
1099		/*
1100		 * If end_io handler returns NONE, then it still has
1101		 * ownership of the request.
1102		 */
1103		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1104			continue;
1105
1106		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1107		if (!req_ref_put_and_test(rq))
1108			continue;
1109
1110		blk_crypto_free_request(rq);
1111		blk_pm_mark_last_busy(rq);
1112
1113		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1114			if (cur_hctx)
1115				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1116			nr_tags = 0;
1117			cur_hctx = rq->mq_hctx;
1118		}
1119		tags[nr_tags++] = rq->tag;
1120	}
1121
1122	if (nr_tags)
1123		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1124}
1125EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1126
1127static void blk_complete_reqs(struct llist_head *list)
1128{
1129	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1130	struct request *rq, *next;
1131
1132	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1133		rq->q->mq_ops->complete(rq);
 
 
1134}
1135
1136static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1137{
1138	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1139}
1140
1141static int blk_softirq_cpu_dead(unsigned int cpu)
1142{
1143	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1144	return 0;
1145}
1146
1147static void __blk_mq_complete_request_remote(void *data)
1148{
1149	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1150}
1151
1152static inline bool blk_mq_complete_need_ipi(struct request *rq)
1153{
1154	int cpu = raw_smp_processor_id();
1155
1156	if (!IS_ENABLED(CONFIG_SMP) ||
1157	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1158		return false;
1159	/*
1160	 * With force threaded interrupts enabled, raising softirq from an SMP
1161	 * function call will always result in waking the ksoftirqd thread.
1162	 * This is probably worse than completing the request on a different
1163	 * cache domain.
1164	 */
1165	if (force_irqthreads())
1166		return false;
1167
1168	/* same CPU or cache domain and capacity?  Complete locally */
1169	if (cpu == rq->mq_ctx->cpu ||
1170	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1171	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1172	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1173		return false;
1174
1175	/* don't try to IPI to an offline CPU */
1176	return cpu_online(rq->mq_ctx->cpu);
1177}
1178
1179static void blk_mq_complete_send_ipi(struct request *rq)
1180{
1181	unsigned int cpu;
1182
1183	cpu = rq->mq_ctx->cpu;
1184	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1185		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1186}
1187
1188static void blk_mq_raise_softirq(struct request *rq)
1189{
1190	struct llist_head *list;
1191
1192	preempt_disable();
1193	list = this_cpu_ptr(&blk_cpu_done);
1194	if (llist_add(&rq->ipi_list, list))
1195		raise_softirq(BLOCK_SOFTIRQ);
1196	preempt_enable();
1197}
1198
1199bool blk_mq_complete_request_remote(struct request *rq)
1200{
1201	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1202
1203	/*
1204	 * For request which hctx has only one ctx mapping,
1205	 * or a polled request, always complete locally,
1206	 * it's pointless to redirect the completion.
1207	 */
1208	if ((rq->mq_hctx->nr_ctx == 1 &&
1209	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1210	     rq->cmd_flags & REQ_POLLED)
1211		return false;
1212
1213	if (blk_mq_complete_need_ipi(rq)) {
1214		blk_mq_complete_send_ipi(rq);
1215		return true;
1216	}
1217
1218	if (rq->q->nr_hw_queues == 1) {
1219		blk_mq_raise_softirq(rq);
1220		return true;
1221	}
1222	return false;
1223}
1224EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1225
1226/**
1227 * blk_mq_complete_request - end I/O on a request
1228 * @rq:		the request being processed
1229 *
1230 * Description:
1231 *	Complete a request by scheduling the ->complete_rq operation.
 
1232 **/
1233void blk_mq_complete_request(struct request *rq)
1234{
1235	if (!blk_mq_complete_request_remote(rq))
1236		rq->q->mq_ops->complete(rq);
 
 
 
 
 
 
1237}
1238EXPORT_SYMBOL(blk_mq_complete_request);
1239
1240/**
1241 * blk_mq_start_request - Start processing a request
1242 * @rq: Pointer to request to be started
1243 *
1244 * Function used by device drivers to notify the block layer that a request
1245 * is going to be processed now, so blk layer can do proper initializations
1246 * such as starting the timeout timer.
1247 */
1248void blk_mq_start_request(struct request *rq)
1249{
1250	struct request_queue *q = rq->q;
1251
1252	trace_block_rq_issue(rq);
1253
1254	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1255	    !blk_rq_is_passthrough(rq)) {
1256		rq->io_start_time_ns = blk_time_get_ns();
1257		rq->stats_sectors = blk_rq_sectors(rq);
1258		rq->rq_flags |= RQF_STATS;
1259		rq_qos_issue(q, rq);
1260	}
1261
1262	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
 
 
1263
1264	blk_add_timer(rq);
1265	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1266	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1267
1268#ifdef CONFIG_BLK_DEV_INTEGRITY
1269	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1270		q->integrity.profile->prepare_fn(rq);
1271#endif
1272	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1273	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1274}
1275EXPORT_SYMBOL(blk_mq_start_request);
1276
1277/*
1278 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1279 * queues. This is important for md arrays to benefit from merging
1280 * requests.
1281 */
1282static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1283{
1284	if (plug->multiple_queues)
1285		return BLK_MAX_REQUEST_COUNT * 2;
1286	return BLK_MAX_REQUEST_COUNT;
1287}
1288
1289static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1290{
1291	struct request *last = rq_list_peek(&plug->mq_list);
1292
1293	if (!plug->rq_count) {
1294		trace_block_plug(rq->q);
1295	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1296		   (!blk_queue_nomerges(rq->q) &&
1297		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1298		blk_mq_flush_plug_list(plug, false);
1299		last = NULL;
1300		trace_block_plug(rq->q);
1301	}
1302
1303	if (!plug->multiple_queues && last && last->q != rq->q)
1304		plug->multiple_queues = true;
1305	/*
1306	 * Any request allocated from sched tags can't be issued to
1307	 * ->queue_rqs() directly
1308	 */
1309	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1310		plug->has_elevator = true;
1311	rq->rq_next = NULL;
1312	rq_list_add(&plug->mq_list, rq);
1313	plug->rq_count++;
1314}
1315
1316/**
1317 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1318 * @rq:		request to insert
1319 * @at_head:    insert request at head or tail of queue
1320 *
1321 * Description:
1322 *    Insert a fully prepared request at the back of the I/O scheduler queue
1323 *    for execution.  Don't wait for completion.
1324 *
1325 * Note:
1326 *    This function will invoke @done directly if the queue is dead.
1327 */
1328void blk_execute_rq_nowait(struct request *rq, bool at_head)
1329{
1330	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1331
1332	WARN_ON(irqs_disabled());
1333	WARN_ON(!blk_rq_is_passthrough(rq));
1334
1335	blk_account_io_start(rq);
1336
1337	/*
1338	 * As plugging can be enabled for passthrough requests on a zoned
1339	 * device, directly accessing the plug instead of using blk_mq_plug()
1340	 * should not have any consequences.
 
1341	 */
1342	if (current->plug && !at_head) {
1343		blk_add_rq_to_plug(current->plug, rq);
1344		return;
 
 
 
 
 
 
 
 
 
1345	}
1346
1347	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1348	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1349}
1350EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1351
1352struct blk_rq_wait {
1353	struct completion done;
1354	blk_status_t ret;
1355};
1356
1357static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1358{
1359	struct blk_rq_wait *wait = rq->end_io_data;
1360
1361	wait->ret = ret;
1362	complete(&wait->done);
1363	return RQ_END_IO_NONE;
1364}
1365
1366bool blk_rq_is_poll(struct request *rq)
1367{
1368	if (!rq->mq_hctx)
1369		return false;
1370	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1371		return false;
1372	return true;
1373}
1374EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1375
1376static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1377{
1378	do {
1379		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1380		cond_resched();
1381	} while (!completion_done(wait));
1382}
1383
1384/**
1385 * blk_execute_rq - insert a request into queue for execution
1386 * @rq:		request to insert
1387 * @at_head:    insert request at head or tail of queue
1388 *
1389 * Description:
1390 *    Insert a fully prepared request at the back of the I/O scheduler queue
1391 *    for execution and wait for completion.
1392 * Return: The blk_status_t result provided to blk_mq_end_request().
1393 */
1394blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1395{
1396	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1397	struct blk_rq_wait wait = {
1398		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1399	};
1400
1401	WARN_ON(irqs_disabled());
1402	WARN_ON(!blk_rq_is_passthrough(rq));
1403
1404	rq->end_io_data = &wait;
1405	rq->end_io = blk_end_sync_rq;
1406
1407	blk_account_io_start(rq);
1408	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1409	blk_mq_run_hw_queue(hctx, false);
1410
1411	if (blk_rq_is_poll(rq))
1412		blk_rq_poll_completion(rq, &wait.done);
1413	else
1414		blk_wait_io(&wait.done);
1415
1416	return wait.ret;
1417}
1418EXPORT_SYMBOL(blk_execute_rq);
1419
1420static void __blk_mq_requeue_request(struct request *rq)
1421{
1422	struct request_queue *q = rq->q;
1423
1424	blk_mq_put_driver_tag(rq);
1425
1426	trace_block_rq_requeue(rq);
1427	rq_qos_requeue(q, rq);
1428
1429	if (blk_mq_request_started(rq)) {
1430		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1431		rq->rq_flags &= ~RQF_TIMED_OUT;
1432	}
1433}
1434
1435void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1436{
1437	struct request_queue *q = rq->q;
1438	unsigned long flags;
1439
1440	__blk_mq_requeue_request(rq);
1441
1442	/* this request will be re-inserted to io scheduler queue */
1443	blk_mq_sched_requeue_request(rq);
1444
1445	spin_lock_irqsave(&q->requeue_lock, flags);
1446	list_add_tail(&rq->queuelist, &q->requeue_list);
1447	spin_unlock_irqrestore(&q->requeue_lock, flags);
1448
1449	if (kick_requeue_list)
1450		blk_mq_kick_requeue_list(q);
1451}
1452EXPORT_SYMBOL(blk_mq_requeue_request);
1453
1454static void blk_mq_requeue_work(struct work_struct *work)
1455{
1456	struct request_queue *q =
1457		container_of(work, struct request_queue, requeue_work.work);
1458	LIST_HEAD(rq_list);
1459	LIST_HEAD(flush_list);
1460	struct request *rq;
1461
1462	spin_lock_irq(&q->requeue_lock);
1463	list_splice_init(&q->requeue_list, &rq_list);
1464	list_splice_init(&q->flush_list, &flush_list);
1465	spin_unlock_irq(&q->requeue_lock);
 
 
 
 
 
 
 
 
1466
1467	while (!list_empty(&rq_list)) {
1468		rq = list_entry(rq_list.next, struct request, queuelist);
1469		/*
1470		 * If RQF_DONTPREP ist set, the request has been started by the
1471		 * driver already and might have driver-specific data allocated
1472		 * already.  Insert it into the hctx dispatch list to avoid
1473		 * block layer merges for the request.
1474		 */
1475		if (rq->rq_flags & RQF_DONTPREP) {
1476			list_del_init(&rq->queuelist);
1477			blk_mq_request_bypass_insert(rq, 0);
1478		} else {
1479			list_del_init(&rq->queuelist);
1480			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1481		}
1482	}
1483
1484	while (!list_empty(&flush_list)) {
1485		rq = list_entry(flush_list.next, struct request, queuelist);
1486		list_del_init(&rq->queuelist);
1487		blk_mq_insert_request(rq, 0);
1488	}
1489
1490	blk_mq_run_hw_queues(q, false);
 
 
 
 
1491}
1492
1493void blk_mq_kick_requeue_list(struct request_queue *q)
1494{
1495	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496}
1497EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1498
1499void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1500				    unsigned long msecs)
1501{
1502	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1503				    msecs_to_jiffies(msecs));
1504}
1505EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1506
1507static bool blk_is_flush_data_rq(struct request *rq)
1508{
1509	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1510}
 
1511
1512static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1513{
1514	/*
1515	 * If we find a request that isn't idle we know the queue is busy
1516	 * as it's checked in the iter.
1517	 * Return false to stop the iteration.
1518	 *
1519	 * In case of queue quiesce, if one flush data request is completed,
1520	 * don't count it as inflight given the flush sequence is suspended,
1521	 * and the original flush data request is invisible to driver, just
1522	 * like other pending requests because of quiesce
1523	 */
1524	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1525				blk_is_flush_data_rq(rq) &&
1526				blk_mq_request_completed(rq))) {
1527		bool *busy = priv;
1528
1529		*busy = true;
1530		return false;
1531	}
1532
1533	return true;
1534}
1535
1536bool blk_mq_queue_inflight(struct request_queue *q)
1537{
1538	bool busy = false;
1539
1540	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1541	return busy;
1542}
1543EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1544
1545static void blk_mq_rq_timed_out(struct request *req)
1546{
1547	req->rq_flags |= RQF_TIMED_OUT;
1548	if (req->q->mq_ops->timeout) {
1549		enum blk_eh_timer_return ret;
1550
1551		ret = req->q->mq_ops->timeout(req);
1552		if (ret == BLK_EH_DONE)
1553			return;
1554		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1555	}
1556
1557	blk_add_timer(req);
1558}
 
1559
1560struct blk_expired_data {
1561	bool has_timedout_rq;
1562	unsigned long next;
1563	unsigned long timeout_start;
1564};
1565
1566static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1567{
1568	unsigned long deadline;
 
1569
1570	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1571		return false;
1572	if (rq->rq_flags & RQF_TIMED_OUT)
1573		return false;
 
 
 
 
 
 
 
1574
1575	deadline = READ_ONCE(rq->deadline);
1576	if (time_after_eq(expired->timeout_start, deadline))
1577		return true;
1578
1579	if (expired->next == 0)
1580		expired->next = deadline;
1581	else if (time_after(expired->next, deadline))
1582		expired->next = deadline;
1583	return false;
1584}
1585
1586void blk_mq_put_rq_ref(struct request *rq)
1587{
1588	if (is_flush_rq(rq)) {
1589		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1590			blk_mq_free_request(rq);
1591	} else if (req_ref_put_and_test(rq)) {
1592		__blk_mq_free_request(rq);
1593	}
1594}
1595
1596static bool blk_mq_check_expired(struct request *rq, void *priv)
 
1597{
1598	struct blk_expired_data *expired = priv;
1599
1600	/*
1601	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1602	 * be reallocated underneath the timeout handler's processing, then
1603	 * the expire check is reliable. If the request is not expired, then
1604	 * it was completed and reallocated as a new request after returning
1605	 * from blk_mq_check_expired().
1606	 */
1607	if (blk_mq_req_expired(rq, expired)) {
1608		expired->has_timedout_rq = true;
1609		return false;
1610	}
1611	return true;
1612}
1613
1614static bool blk_mq_handle_expired(struct request *rq, void *priv)
1615{
1616	struct blk_expired_data *expired = priv;
1617
1618	if (blk_mq_req_expired(rq, expired))
1619		blk_mq_rq_timed_out(rq);
1620	return true;
1621}
1622
1623static void blk_mq_timeout_work(struct work_struct *work)
1624{
1625	struct request_queue *q =
1626		container_of(work, struct request_queue, timeout_work);
1627	struct blk_expired_data expired = {
1628		.timeout_start = jiffies,
 
1629	};
1630	struct blk_mq_hw_ctx *hctx;
1631	unsigned long i;
1632
1633	/* A deadlock might occur if a request is stuck requiring a
1634	 * timeout at the same time a queue freeze is waiting
1635	 * completion, since the timeout code would not be able to
1636	 * acquire the queue reference here.
1637	 *
1638	 * That's why we don't use blk_queue_enter here; instead, we use
1639	 * percpu_ref_tryget directly, because we need to be able to
1640	 * obtain a reference even in the short window between the queue
1641	 * starting to freeze, by dropping the first reference in
1642	 * blk_freeze_queue_start, and the moment the last request is
1643	 * consumed, marked by the instant q_usage_counter reaches
1644	 * zero.
1645	 */
1646	if (!percpu_ref_tryget(&q->q_usage_counter))
1647		return;
1648
1649	/* check if there is any timed-out request */
1650	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1651	if (expired.has_timedout_rq) {
1652		/*
1653		 * Before walking tags, we must ensure any submit started
1654		 * before the current time has finished. Since the submit
1655		 * uses srcu or rcu, wait for a synchronization point to
1656		 * ensure all running submits have finished
1657		 */
1658		blk_mq_wait_quiesce_done(q->tag_set);
1659
1660		expired.next = 0;
1661		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1662	}
 
 
1663
1664	if (expired.next != 0) {
1665		mod_timer(&q->timeout, expired.next);
1666	} else {
1667		/*
1668		 * Request timeouts are handled as a forward rolling timer. If
1669		 * we end up here it means that no requests are pending and
1670		 * also that no request has been pending for a while. Mark
1671		 * each hctx as idle.
1672		 */
1673		queue_for_each_hw_ctx(q, hctx, i) {
1674			/* the hctx may be unmapped, so check it here */
1675			if (blk_mq_hw_queue_mapped(hctx))
1676				blk_mq_tag_idle(hctx);
1677		}
1678	}
1679	blk_queue_exit(q);
1680}
1681
1682struct flush_busy_ctx_data {
1683	struct blk_mq_hw_ctx *hctx;
1684	struct list_head *list;
1685};
1686
1687static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1688{
1689	struct flush_busy_ctx_data *flush_data = data;
1690	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1691	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1692	enum hctx_type type = hctx->type;
1693
1694	spin_lock(&ctx->lock);
1695	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1696	sbitmap_clear_bit(sb, bitnr);
1697	spin_unlock(&ctx->lock);
1698	return true;
1699}
1700
1701/*
1702 * Process software queues that have been marked busy, splicing them
1703 * to the for-dispatch
 
1704 */
1705void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 
1706{
1707	struct flush_busy_ctx_data data = {
1708		.hctx = hctx,
1709		.list = list,
1710	};
1711
1712	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1713}
1714EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1715
1716struct dispatch_rq_data {
1717	struct blk_mq_hw_ctx *hctx;
1718	struct request *rq;
1719};
1720
1721static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1722		void *data)
1723{
1724	struct dispatch_rq_data *dispatch_data = data;
1725	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1726	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1727	enum hctx_type type = hctx->type;
1728
1729	spin_lock(&ctx->lock);
1730	if (!list_empty(&ctx->rq_lists[type])) {
1731		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1732		list_del_init(&dispatch_data->rq->queuelist);
1733		if (list_empty(&ctx->rq_lists[type]))
1734			sbitmap_clear_bit(sb, bitnr);
 
 
 
 
 
 
 
 
1735	}
1736	spin_unlock(&ctx->lock);
1737
1738	return !dispatch_data->rq;
1739}
1740
1741struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1742					struct blk_mq_ctx *start)
 
 
 
1743{
1744	unsigned off = start ? start->index_hw[hctx->type] : 0;
1745	struct dispatch_rq_data data = {
1746		.hctx = hctx,
1747		.rq   = NULL,
1748	};
1749
1750	__sbitmap_for_each_set(&hctx->ctx_map, off,
1751			       dispatch_rq_from_ctx, &data);
 
1752
1753	return data.rq;
1754}
1755
1756bool __blk_mq_alloc_driver_tag(struct request *rq)
1757{
1758	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1759	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1760	int tag;
 
1761
1762	blk_mq_tag_busy(rq->mq_hctx);
 
 
 
 
1763
1764	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1765		bt = &rq->mq_hctx->tags->breserved_tags;
1766		tag_offset = 0;
1767	} else {
1768		if (!hctx_may_queue(rq->mq_hctx, bt))
1769			return false;
1770	}
1771
1772	tag = __sbitmap_queue_get(bt);
1773	if (tag == BLK_MQ_NO_TAG)
1774		return false;
1775
1776	rq->tag = tag + tag_offset;
1777	blk_mq_inc_active_requests(rq->mq_hctx);
1778	return true;
1779}
1780
1781static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1782				int flags, void *key)
1783{
1784	struct blk_mq_hw_ctx *hctx;
1785
1786	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1787
1788	spin_lock(&hctx->dispatch_wait_lock);
1789	if (!list_empty(&wait->entry)) {
1790		struct sbitmap_queue *sbq;
1791
1792		list_del_init(&wait->entry);
1793		sbq = &hctx->tags->bitmap_tags;
1794		atomic_dec(&sbq->ws_active);
1795	}
1796	spin_unlock(&hctx->dispatch_wait_lock);
1797
1798	blk_mq_run_hw_queue(hctx, true);
1799	return 1;
1800}
1801
1802/*
1803 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1804 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1805 * restart. For both cases, take care to check the condition again after
1806 * marking us as waiting.
1807 */
1808static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1809				 struct request *rq)
1810{
1811	struct sbitmap_queue *sbq;
1812	struct wait_queue_head *wq;
1813	wait_queue_entry_t *wait;
1814	bool ret;
1815
1816	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1817	    !(blk_mq_is_shared_tags(hctx->flags))) {
1818		blk_mq_sched_mark_restart_hctx(hctx);
1819
1820		/*
1821		 * It's possible that a tag was freed in the window between the
1822		 * allocation failure and adding the hardware queue to the wait
1823		 * queue.
1824		 *
1825		 * Don't clear RESTART here, someone else could have set it.
1826		 * At most this will cost an extra queue run.
1827		 */
1828		return blk_mq_get_driver_tag(rq);
1829	}
1830
1831	wait = &hctx->dispatch_wait;
1832	if (!list_empty_careful(&wait->entry))
1833		return false;
1834
1835	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1836		sbq = &hctx->tags->breserved_tags;
1837	else
1838		sbq = &hctx->tags->bitmap_tags;
1839	wq = &bt_wait_ptr(sbq, hctx)->wait;
1840
1841	spin_lock_irq(&wq->lock);
1842	spin_lock(&hctx->dispatch_wait_lock);
1843	if (!list_empty(&wait->entry)) {
1844		spin_unlock(&hctx->dispatch_wait_lock);
1845		spin_unlock_irq(&wq->lock);
1846		return false;
1847	}
1848
1849	atomic_inc(&sbq->ws_active);
1850	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1851	__add_wait_queue(wq, wait);
1852
1853	/*
1854	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1855	 * not imply barrier in case of failure.
1856	 *
1857	 * Order adding us to wait queue and allocating driver tag.
1858	 *
1859	 * The pair is the one implied in sbitmap_queue_wake_up() which
1860	 * orders clearing sbitmap tag bits and waitqueue_active() in
1861	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1862	 *
1863	 * Otherwise, re-order of adding wait queue and getting driver tag
1864	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1865	 * the waitqueue_active() may not observe us in wait queue.
1866	 */
1867	smp_mb();
1868
1869	/*
1870	 * It's possible that a tag was freed in the window between the
1871	 * allocation failure and adding the hardware queue to the wait
1872	 * queue.
1873	 */
1874	ret = blk_mq_get_driver_tag(rq);
1875	if (!ret) {
1876		spin_unlock(&hctx->dispatch_wait_lock);
1877		spin_unlock_irq(&wq->lock);
1878		return false;
1879	}
1880
1881	/*
1882	 * We got a tag, remove ourselves from the wait queue to ensure
1883	 * someone else gets the wakeup.
1884	 */
1885	list_del_init(&wait->entry);
1886	atomic_dec(&sbq->ws_active);
1887	spin_unlock(&hctx->dispatch_wait_lock);
1888	spin_unlock_irq(&wq->lock);
1889
1890	return true;
1891}
1892
1893#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1894#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1895/*
1896 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1897 * - EWMA is one simple way to compute running average value
1898 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1899 * - take 4 as factor for avoiding to get too small(0) result, and this
1900 *   factor doesn't matter because EWMA decreases exponentially
1901 */
1902static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1903{
1904	unsigned int ewma;
1905
1906	ewma = hctx->dispatch_busy;
1907
1908	if (!ewma && !busy)
1909		return;
1910
1911	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1912	if (busy)
1913		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1914	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1915
1916	hctx->dispatch_busy = ewma;
1917}
1918
1919#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1920
1921static void blk_mq_handle_dev_resource(struct request *rq,
1922				       struct list_head *list)
1923{
1924	list_add(&rq->queuelist, list);
1925	__blk_mq_requeue_request(rq);
1926}
1927
1928static void blk_mq_handle_zone_resource(struct request *rq,
1929					struct list_head *zone_list)
1930{
1931	/*
1932	 * If we end up here it is because we cannot dispatch a request to a
1933	 * specific zone due to LLD level zone-write locking or other zone
1934	 * related resource not being available. In this case, set the request
1935	 * aside in zone_list for retrying it later.
1936	 */
1937	list_add(&rq->queuelist, zone_list);
1938	__blk_mq_requeue_request(rq);
1939}
1940
1941enum prep_dispatch {
1942	PREP_DISPATCH_OK,
1943	PREP_DISPATCH_NO_TAG,
1944	PREP_DISPATCH_NO_BUDGET,
1945};
1946
1947static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1948						  bool need_budget)
1949{
1950	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1951	int budget_token = -1;
1952
1953	if (need_budget) {
1954		budget_token = blk_mq_get_dispatch_budget(rq->q);
1955		if (budget_token < 0) {
1956			blk_mq_put_driver_tag(rq);
1957			return PREP_DISPATCH_NO_BUDGET;
1958		}
1959		blk_mq_set_rq_budget_token(rq, budget_token);
1960	}
1961
1962	if (!blk_mq_get_driver_tag(rq)) {
1963		/*
1964		 * The initial allocation attempt failed, so we need to
1965		 * rerun the hardware queue when a tag is freed. The
1966		 * waitqueue takes care of that. If the queue is run
1967		 * before we add this entry back on the dispatch list,
1968		 * we'll re-run it below.
1969		 */
1970		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1971			/*
1972			 * All budgets not got from this function will be put
1973			 * together during handling partial dispatch
1974			 */
1975			if (need_budget)
1976				blk_mq_put_dispatch_budget(rq->q, budget_token);
1977			return PREP_DISPATCH_NO_TAG;
1978		}
1979	}
1980
1981	return PREP_DISPATCH_OK;
1982}
1983
1984/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1985static void blk_mq_release_budgets(struct request_queue *q,
1986		struct list_head *list)
1987{
1988	struct request *rq;
1989
1990	list_for_each_entry(rq, list, queuelist) {
1991		int budget_token = blk_mq_get_rq_budget_token(rq);
1992
1993		if (budget_token >= 0)
1994			blk_mq_put_dispatch_budget(q, budget_token);
1995	}
1996}
1997
1998/*
1999 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2000 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2001 * details)
2002 * Attention, we should explicitly call this in unusual cases:
2003 *  1) did not queue everything initially scheduled to queue
2004 *  2) the last attempt to queue a request failed
2005 */
2006static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2007			      bool from_schedule)
2008{
2009	if (hctx->queue->mq_ops->commit_rqs && queued) {
2010		trace_block_unplug(hctx->queue, queued, !from_schedule);
2011		hctx->queue->mq_ops->commit_rqs(hctx);
2012	}
2013}
2014
2015/*
2016 * Returns true if we did some work AND can potentially do more.
2017 */
2018bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2019			     unsigned int nr_budgets)
2020{
2021	enum prep_dispatch prep;
2022	struct request_queue *q = hctx->queue;
2023	struct request *rq;
2024	int queued;
2025	blk_status_t ret = BLK_STS_OK;
2026	LIST_HEAD(zone_list);
2027	bool needs_resource = false;
2028
2029	if (list_empty(list))
2030		return false;
2031
2032	/*
2033	 * Now process all the entries, sending them to the driver.
2034	 */
2035	queued = 0;
2036	do {
2037		struct blk_mq_queue_data bd;
 
2038
2039		rq = list_first_entry(list, struct request, queuelist);
2040
2041		WARN_ON_ONCE(hctx != rq->mq_hctx);
2042		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2043		if (prep != PREP_DISPATCH_OK)
2044			break;
2045
2046		list_del_init(&rq->queuelist);
2047
2048		bd.rq = rq;
2049		bd.last = list_empty(list);
 
2050
2051		/*
2052		 * once the request is queued to lld, no need to cover the
2053		 * budget any more
2054		 */
2055		if (nr_budgets)
2056			nr_budgets--;
2057		ret = q->mq_ops->queue_rq(hctx, &bd);
2058		switch (ret) {
2059		case BLK_STS_OK:
2060			queued++;
 
 
 
 
2061			break;
2062		case BLK_STS_RESOURCE:
2063			needs_resource = true;
2064			fallthrough;
2065		case BLK_STS_DEV_RESOURCE:
2066			blk_mq_handle_dev_resource(rq, list);
2067			goto out;
2068		case BLK_STS_ZONE_RESOURCE:
2069			/*
2070			 * Move the request to zone_list and keep going through
2071			 * the dispatch list to find more requests the drive can
2072			 * accept.
2073			 */
2074			blk_mq_handle_zone_resource(rq, &zone_list);
2075			needs_resource = true;
2076			break;
2077		default:
2078			blk_mq_end_request(rq, ret);
2079		}
2080	} while (!list_empty(list));
2081out:
2082	if (!list_empty(&zone_list))
2083		list_splice_tail_init(&zone_list, list);
2084
2085	/* If we didn't flush the entire list, we could have told the driver
2086	 * there was more coming, but that turned out to be a lie.
2087	 */
2088	if (!list_empty(list) || ret != BLK_STS_OK)
2089		blk_mq_commit_rqs(hctx, queued, false);
 
 
 
 
 
 
 
 
 
 
2090
2091	/*
2092	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2093	 * that is where we will continue on next queue run.
2094	 */
2095	if (!list_empty(list)) {
2096		bool needs_restart;
2097		/* For non-shared tags, the RESTART check will suffice */
2098		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2099			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2100			blk_mq_is_shared_tags(hctx->flags));
2101
2102		if (nr_budgets)
2103			blk_mq_release_budgets(q, list);
2104
2105		spin_lock(&hctx->lock);
2106		list_splice_tail_init(list, &hctx->dispatch);
2107		spin_unlock(&hctx->lock);
2108
2109		/*
2110		 * Order adding requests to hctx->dispatch and checking
2111		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2112		 * in blk_mq_sched_restart(). Avoid restart code path to
2113		 * miss the new added requests to hctx->dispatch, meantime
2114		 * SCHED_RESTART is observed here.
2115		 */
2116		smp_mb();
2117
2118		/*
2119		 * If SCHED_RESTART was set by the caller of this function and
2120		 * it is no longer set that means that it was cleared by another
2121		 * thread and hence that a queue rerun is needed.
 
 
2122		 *
2123		 * If 'no_tag' is set, that means that we failed getting
2124		 * a driver tag with an I/O scheduler attached. If our dispatch
2125		 * waitqueue is no longer active, ensure that we run the queue
2126		 * AFTER adding our entries back to the list.
2127		 *
2128		 * If no I/O scheduler has been configured it is possible that
2129		 * the hardware queue got stopped and restarted before requests
2130		 * were pushed back onto the dispatch list. Rerun the queue to
2131		 * avoid starvation. Notes:
2132		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2133		 *   been stopped before rerunning a queue.
2134		 * - Some but not all block drivers stop a queue before
2135		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2136		 *   and dm-rq.
2137		 *
2138		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2139		 * bit is set, run queue after a delay to avoid IO stalls
2140		 * that could otherwise occur if the queue is idle.  We'll do
2141		 * similar if we couldn't get budget or couldn't lock a zone
2142		 * and SCHED_RESTART is set.
2143		 */
2144		needs_restart = blk_mq_sched_needs_restart(hctx);
2145		if (prep == PREP_DISPATCH_NO_BUDGET)
2146			needs_resource = true;
2147		if (!needs_restart ||
2148		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2149			blk_mq_run_hw_queue(hctx, true);
2150		else if (needs_resource)
2151			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2152
2153		blk_mq_update_dispatch_busy(hctx, true);
2154		return false;
2155	}
2156
2157	blk_mq_update_dispatch_busy(hctx, false);
2158	return true;
2159}
2160
2161static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2162{
2163	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2164
2165	if (cpu >= nr_cpu_ids)
2166		cpu = cpumask_first(hctx->cpumask);
2167	return cpu;
2168}
2169
2170/*
2171 * It'd be great if the workqueue API had a way to pass
2172 * in a mask and had some smarts for more clever placement.
2173 * For now we just round-robin here, switching for every
2174 * BLK_MQ_CPU_WORK_BATCH queued items.
2175 */
2176static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2177{
2178	bool tried = false;
2179	int next_cpu = hctx->next_cpu;
2180
2181	if (hctx->queue->nr_hw_queues == 1)
2182		return WORK_CPU_UNBOUND;
2183
2184	if (--hctx->next_cpu_batch <= 0) {
2185select_cpu:
2186		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2187				cpu_online_mask);
2188		if (next_cpu >= nr_cpu_ids)
2189			next_cpu = blk_mq_first_mapped_cpu(hctx);
 
 
2190		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2191	}
2192
2193	/*
2194	 * Do unbound schedule if we can't find a online CPU for this hctx,
2195	 * and it should only happen in the path of handling CPU DEAD.
2196	 */
2197	if (!cpu_online(next_cpu)) {
2198		if (!tried) {
2199			tried = true;
2200			goto select_cpu;
2201		}
2202
2203		/*
2204		 * Make sure to re-select CPU next time once after CPUs
2205		 * in hctx->cpumask become online again.
2206		 */
2207		hctx->next_cpu = next_cpu;
2208		hctx->next_cpu_batch = 1;
2209		return WORK_CPU_UNBOUND;
2210	}
2211
2212	hctx->next_cpu = next_cpu;
2213	return next_cpu;
2214}
2215
2216/**
2217 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2218 * @hctx: Pointer to the hardware queue to run.
2219 * @msecs: Milliseconds of delay to wait before running the queue.
2220 *
2221 * Run a hardware queue asynchronously with a delay of @msecs.
2222 */
2223void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2224{
2225	if (unlikely(blk_mq_hctx_stopped(hctx)))
 
2226		return;
2227	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2228				    msecs_to_jiffies(msecs));
2229}
2230EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2231
2232/**
2233 * blk_mq_run_hw_queue - Start to run a hardware queue.
2234 * @hctx: Pointer to the hardware queue to run.
2235 * @async: If we want to run the queue asynchronously.
2236 *
2237 * Check if the request queue is not in a quiesced state and if there are
2238 * pending requests to be sent. If this is true, run the queue to send requests
2239 * to hardware.
2240 */
2241void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2242{
2243	bool need_run;
2244
2245	/*
2246	 * We can't run the queue inline with interrupts disabled.
2247	 */
2248	WARN_ON_ONCE(!async && in_interrupt());
2249
2250	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2251
2252	/*
2253	 * When queue is quiesced, we may be switching io scheduler, or
2254	 * updating nr_hw_queues, or other things, and we can't run queue
2255	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2256	 *
2257	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2258	 * quiesced.
2259	 */
2260	__blk_mq_run_dispatch_ops(hctx->queue, false,
2261		need_run = !blk_queue_quiesced(hctx->queue) &&
2262		blk_mq_hctx_has_pending(hctx));
2263
2264	if (!need_run)
2265		return;
2266
2267	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2268		blk_mq_delay_run_hw_queue(hctx, 0);
2269		return;
2270	}
2271
2272	blk_mq_run_dispatch_ops(hctx->queue,
2273				blk_mq_sched_dispatch_requests(hctx));
2274}
2275EXPORT_SYMBOL(blk_mq_run_hw_queue);
2276
2277/*
2278 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2279 * scheduler.
2280 */
2281static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2282{
2283	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2284	/*
2285	 * If the IO scheduler does not respect hardware queues when
2286	 * dispatching, we just don't bother with multiple HW queues and
2287	 * dispatch from hctx for the current CPU since running multiple queues
2288	 * just causes lock contention inside the scheduler and pointless cache
2289	 * bouncing.
2290	 */
2291	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2292
2293	if (!blk_mq_hctx_stopped(hctx))
2294		return hctx;
2295	return NULL;
2296}
2297
2298/**
2299 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2300 * @q: Pointer to the request queue to run.
2301 * @async: If we want to run the queue asynchronously.
2302 */
2303void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2304{
2305	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2306	unsigned long i;
2307
2308	sq_hctx = NULL;
2309	if (blk_queue_sq_sched(q))
2310		sq_hctx = blk_mq_get_sq_hctx(q);
2311	queue_for_each_hw_ctx(q, hctx, i) {
2312		if (blk_mq_hctx_stopped(hctx))
 
 
2313			continue;
2314		/*
2315		 * Dispatch from this hctx either if there's no hctx preferred
2316		 * by IO scheduler or if it has requests that bypass the
2317		 * scheduler.
2318		 */
2319		if (!sq_hctx || sq_hctx == hctx ||
2320		    !list_empty_careful(&hctx->dispatch))
2321			blk_mq_run_hw_queue(hctx, async);
2322	}
2323}
2324EXPORT_SYMBOL(blk_mq_run_hw_queues);
2325
2326/**
2327 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2328 * @q: Pointer to the request queue to run.
2329 * @msecs: Milliseconds of delay to wait before running the queues.
2330 */
2331void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2332{
2333	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2334	unsigned long i;
2335
2336	sq_hctx = NULL;
2337	if (blk_queue_sq_sched(q))
2338		sq_hctx = blk_mq_get_sq_hctx(q);
2339	queue_for_each_hw_ctx(q, hctx, i) {
2340		if (blk_mq_hctx_stopped(hctx))
2341			continue;
2342		/*
2343		 * If there is already a run_work pending, leave the
2344		 * pending delay untouched. Otherwise, a hctx can stall
2345		 * if another hctx is re-delaying the other's work
2346		 * before the work executes.
2347		 */
2348		if (delayed_work_pending(&hctx->run_work))
2349			continue;
2350		/*
2351		 * Dispatch from this hctx either if there's no hctx preferred
2352		 * by IO scheduler or if it has requests that bypass the
2353		 * scheduler.
2354		 */
2355		if (!sq_hctx || sq_hctx == hctx ||
2356		    !list_empty_careful(&hctx->dispatch))
2357			blk_mq_delay_run_hw_queue(hctx, msecs);
2358	}
2359}
2360EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2361
2362/*
2363 * This function is often used for pausing .queue_rq() by driver when
2364 * there isn't enough resource or some conditions aren't satisfied, and
2365 * BLK_STS_RESOURCE is usually returned.
2366 *
2367 * We do not guarantee that dispatch can be drained or blocked
2368 * after blk_mq_stop_hw_queue() returns. Please use
2369 * blk_mq_quiesce_queue() for that requirement.
2370 */
2371void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2372{
2373	cancel_delayed_work(&hctx->run_work);
2374
2375	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2376}
2377EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2378
2379/*
2380 * This function is often used for pausing .queue_rq() by driver when
2381 * there isn't enough resource or some conditions aren't satisfied, and
2382 * BLK_STS_RESOURCE is usually returned.
2383 *
2384 * We do not guarantee that dispatch can be drained or blocked
2385 * after blk_mq_stop_hw_queues() returns. Please use
2386 * blk_mq_quiesce_queue() for that requirement.
2387 */
2388void blk_mq_stop_hw_queues(struct request_queue *q)
2389{
2390	struct blk_mq_hw_ctx *hctx;
2391	unsigned long i;
2392
2393	queue_for_each_hw_ctx(q, hctx, i)
2394		blk_mq_stop_hw_queue(hctx);
2395}
2396EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2397
2398void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2399{
2400	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2401
2402	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2403}
2404EXPORT_SYMBOL(blk_mq_start_hw_queue);
2405
2406void blk_mq_start_hw_queues(struct request_queue *q)
2407{
2408	struct blk_mq_hw_ctx *hctx;
2409	unsigned long i;
2410
2411	queue_for_each_hw_ctx(q, hctx, i)
2412		blk_mq_start_hw_queue(hctx);
2413}
2414EXPORT_SYMBOL(blk_mq_start_hw_queues);
2415
2416void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2417{
2418	if (!blk_mq_hctx_stopped(hctx))
2419		return;
 
 
 
 
2420
2421	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2422	blk_mq_run_hw_queue(hctx, async);
 
2423}
2424EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2425
2426void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2427{
2428	struct blk_mq_hw_ctx *hctx;
2429	unsigned long i;
2430
2431	queue_for_each_hw_ctx(q, hctx, i)
2432		blk_mq_start_stopped_hw_queue(hctx, async ||
2433					(hctx->flags & BLK_MQ_F_BLOCKING));
2434}
2435EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2436
2437static void blk_mq_run_work_fn(struct work_struct *work)
2438{
2439	struct blk_mq_hw_ctx *hctx =
2440		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2441
2442	blk_mq_run_dispatch_ops(hctx->queue,
2443				blk_mq_sched_dispatch_requests(hctx));
 
 
2444}
2445
2446/**
2447 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2448 * @rq: Pointer to request to be inserted.
2449 * @flags: BLK_MQ_INSERT_*
2450 *
2451 * Should only be used carefully, when the caller knows we want to
2452 * bypass a potential IO scheduler on the target device.
2453 */
2454static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2455{
2456	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 
2457
2458	spin_lock(&hctx->lock);
2459	if (flags & BLK_MQ_INSERT_AT_HEAD)
2460		list_add(&rq->queuelist, &hctx->dispatch);
2461	else
2462		list_add_tail(&rq->queuelist, &hctx->dispatch);
2463	spin_unlock(&hctx->lock);
2464}
 
2465
2466static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2467		struct blk_mq_ctx *ctx, struct list_head *list,
2468		bool run_queue_async)
 
2469{
2470	struct request *rq;
2471	enum hctx_type type = hctx->type;
2472
2473	/*
2474	 * Try to issue requests directly if the hw queue isn't busy to save an
2475	 * extra enqueue & dequeue to the sw queue.
2476	 */
2477	if (!hctx->dispatch_busy && !run_queue_async) {
2478		blk_mq_run_dispatch_ops(hctx->queue,
2479			blk_mq_try_issue_list_directly(hctx, list));
2480		if (list_empty(list))
2481			goto out;
2482	}
2483
2484	/*
2485	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2486	 * offline now
2487	 */
2488	list_for_each_entry(rq, list, queuelist) {
2489		BUG_ON(rq->mq_ctx != ctx);
2490		trace_block_rq_insert(rq);
2491		if (rq->cmd_flags & REQ_NOWAIT)
2492			run_queue_async = true;
2493	}
2494
2495	spin_lock(&ctx->lock);
2496	list_splice_tail_init(list, &ctx->rq_lists[type]);
2497	blk_mq_hctx_mark_pending(hctx, ctx);
2498	spin_unlock(&ctx->lock);
2499out:
2500	blk_mq_run_hw_queue(hctx, run_queue_async);
2501}
2502
2503static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
 
2504{
2505	struct request_queue *q = rq->q;
2506	struct blk_mq_ctx *ctx = rq->mq_ctx;
2507	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 
 
 
 
2508
2509	if (blk_rq_is_passthrough(rq)) {
2510		/*
2511		 * Passthrough request have to be added to hctx->dispatch
2512		 * directly.  The device may be in a situation where it can't
2513		 * handle FS request, and always returns BLK_STS_RESOURCE for
2514		 * them, which gets them added to hctx->dispatch.
2515		 *
2516		 * If a passthrough request is required to unblock the queues,
2517		 * and it is added to the scheduler queue, there is no chance to
2518		 * dispatch it given we prioritize requests in hctx->dispatch.
2519		 */
2520		blk_mq_request_bypass_insert(rq, flags);
2521	} else if (req_op(rq) == REQ_OP_FLUSH) {
2522		/*
2523		 * Firstly normal IO request is inserted to scheduler queue or
2524		 * sw queue, meantime we add flush request to dispatch queue(
2525		 * hctx->dispatch) directly and there is at most one in-flight
2526		 * flush request for each hw queue, so it doesn't matter to add
2527		 * flush request to tail or front of the dispatch queue.
2528		 *
2529		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2530		 * command, and queueing it will fail when there is any
2531		 * in-flight normal IO request(NCQ command). When adding flush
2532		 * rq to the front of hctx->dispatch, it is easier to introduce
2533		 * extra time to flush rq's latency because of S_SCHED_RESTART
2534		 * compared with adding to the tail of dispatch queue, then
2535		 * chance of flush merge is increased, and less flush requests
2536		 * will be issued to controller. It is observed that ~10% time
2537		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2538		 * drive when adding flush rq to the front of hctx->dispatch.
2539		 *
2540		 * Simply queue flush rq to the front of hctx->dispatch so that
2541		 * intensive flush workloads can benefit in case of NCQ HW.
2542		 */
2543		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2544	} else if (q->elevator) {
2545		LIST_HEAD(list);
2546
2547		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
 
 
2548
2549		list_add(&rq->queuelist, &list);
2550		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2551	} else {
2552		trace_block_rq_insert(rq);
2553
2554		spin_lock(&ctx->lock);
2555		if (flags & BLK_MQ_INSERT_AT_HEAD)
2556			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2557		else
2558			list_add_tail(&rq->queuelist,
2559				      &ctx->rq_lists[hctx->type]);
2560		blk_mq_hctx_mark_pending(hctx, ctx);
2561		spin_unlock(&ctx->lock);
2562	}
2563}
2564
2565static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2566		unsigned int nr_segs)
 
 
 
 
2567{
2568	int err;
 
2569
2570	if (bio->bi_opf & REQ_RAHEAD)
2571		rq->cmd_flags |= REQ_FAILFAST_MASK;
2572
2573	rq->__sector = bio->bi_iter.bi_sector;
2574	rq->write_hint = bio->bi_write_hint;
2575	blk_rq_bio_prep(rq, bio, nr_segs);
2576
2577	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2578	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2579	WARN_ON_ONCE(err);
2580
2581	blk_account_io_start(rq);
2582}
2583
2584static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2585					    struct request *rq, bool last)
2586{
2587	struct request_queue *q = rq->q;
2588	struct blk_mq_queue_data bd = {
2589		.rq = rq,
2590		.last = last,
2591	};
2592	blk_status_t ret;
2593
2594	/*
2595	 * For OK queue, we are done. For error, caller may kill it.
2596	 * Any other error (busy), just add it to our list as we
2597	 * previously would have done.
2598	 */
2599	ret = q->mq_ops->queue_rq(hctx, &bd);
2600	switch (ret) {
2601	case BLK_STS_OK:
2602		blk_mq_update_dispatch_busy(hctx, false);
2603		break;
2604	case BLK_STS_RESOURCE:
2605	case BLK_STS_DEV_RESOURCE:
2606		blk_mq_update_dispatch_busy(hctx, true);
2607		__blk_mq_requeue_request(rq);
2608		break;
2609	default:
2610		blk_mq_update_dispatch_busy(hctx, false);
2611		break;
2612	}
2613
2614	return ret;
2615}
2616
2617static bool blk_mq_get_budget_and_tag(struct request *rq)
2618{
2619	int budget_token;
2620
2621	budget_token = blk_mq_get_dispatch_budget(rq->q);
2622	if (budget_token < 0)
2623		return false;
2624	blk_mq_set_rq_budget_token(rq, budget_token);
2625	if (!blk_mq_get_driver_tag(rq)) {
2626		blk_mq_put_dispatch_budget(rq->q, budget_token);
2627		return false;
2628	}
2629	return true;
2630}
2631
2632/**
2633 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2634 * @hctx: Pointer of the associated hardware queue.
2635 * @rq: Pointer to request to be sent.
2636 *
2637 * If the device has enough resources to accept a new request now, send the
2638 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2639 * we can try send it another time in the future. Requests inserted at this
2640 * queue have higher priority.
2641 */
2642static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2643		struct request *rq)
2644{
2645	blk_status_t ret;
2646
2647	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2648		blk_mq_insert_request(rq, 0);
2649		return;
2650	}
2651
2652	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2653		blk_mq_insert_request(rq, 0);
2654		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2655		return;
2656	}
2657
2658	ret = __blk_mq_issue_directly(hctx, rq, true);
2659	switch (ret) {
2660	case BLK_STS_OK:
2661		break;
2662	case BLK_STS_RESOURCE:
2663	case BLK_STS_DEV_RESOURCE:
2664		blk_mq_request_bypass_insert(rq, 0);
2665		blk_mq_run_hw_queue(hctx, false);
2666		break;
2667	default:
2668		blk_mq_end_request(rq, ret);
2669		break;
2670	}
2671}
2672
2673static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2674{
2675	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2676
2677	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2678		blk_mq_insert_request(rq, 0);
2679		return BLK_STS_OK;
2680	}
2681
2682	if (!blk_mq_get_budget_and_tag(rq))
2683		return BLK_STS_RESOURCE;
2684	return __blk_mq_issue_directly(hctx, rq, last);
2685}
2686
2687static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2688{
2689	struct blk_mq_hw_ctx *hctx = NULL;
 
2690	struct request *rq;
2691	int queued = 0;
2692	blk_status_t ret = BLK_STS_OK;
2693
2694	while ((rq = rq_list_pop(&plug->mq_list))) {
2695		bool last = rq_list_empty(plug->mq_list);
2696
2697		if (hctx != rq->mq_hctx) {
2698			if (hctx) {
2699				blk_mq_commit_rqs(hctx, queued, false);
2700				queued = 0;
2701			}
2702			hctx = rq->mq_hctx;
2703		}
2704
2705		ret = blk_mq_request_issue_directly(rq, last);
2706		switch (ret) {
2707		case BLK_STS_OK:
2708			queued++;
2709			break;
2710		case BLK_STS_RESOURCE:
2711		case BLK_STS_DEV_RESOURCE:
2712			blk_mq_request_bypass_insert(rq, 0);
2713			blk_mq_run_hw_queue(hctx, false);
2714			goto out;
2715		default:
2716			blk_mq_end_request(rq, ret);
2717			break;
2718		}
2719	}
2720
2721out:
2722	if (ret != BLK_STS_OK)
2723		blk_mq_commit_rqs(hctx, queued, false);
2724}
2725
2726static void __blk_mq_flush_plug_list(struct request_queue *q,
2727				     struct blk_plug *plug)
2728{
2729	if (blk_queue_quiesced(q))
2730		return;
2731	q->mq_ops->queue_rqs(&plug->mq_list);
2732}
2733
2734static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2735{
2736	struct blk_mq_hw_ctx *this_hctx = NULL;
2737	struct blk_mq_ctx *this_ctx = NULL;
2738	struct request *requeue_list = NULL;
2739	struct request **requeue_lastp = &requeue_list;
2740	unsigned int depth = 0;
2741	bool is_passthrough = false;
2742	LIST_HEAD(list);
2743
2744	do {
2745		struct request *rq = rq_list_pop(&plug->mq_list);
 
 
 
 
 
 
 
 
2746
2747		if (!this_hctx) {
2748			this_hctx = rq->mq_hctx;
2749			this_ctx = rq->mq_ctx;
2750			is_passthrough = blk_rq_is_passthrough(rq);
2751		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2752			   is_passthrough != blk_rq_is_passthrough(rq)) {
2753			rq_list_add_tail(&requeue_lastp, rq);
2754			continue;
2755		}
2756		list_add(&rq->queuelist, &list);
2757		depth++;
2758	} while (!rq_list_empty(plug->mq_list));
2759
2760	plug->mq_list = requeue_list;
2761	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2762
2763	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2764	/* passthrough requests should never be issued to the I/O scheduler */
2765	if (is_passthrough) {
2766		spin_lock(&this_hctx->lock);
2767		list_splice_tail_init(&list, &this_hctx->dispatch);
2768		spin_unlock(&this_hctx->lock);
2769		blk_mq_run_hw_queue(this_hctx, from_sched);
2770	} else if (this_hctx->queue->elevator) {
2771		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2772				&list, 0);
2773		blk_mq_run_hw_queue(this_hctx, from_sched);
2774	} else {
2775		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2776	}
2777	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2778}
2779
2780void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2781{
2782	struct request *rq;
2783
2784	/*
2785	 * We may have been called recursively midway through handling
2786	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2787	 * To avoid mq_list changing under our feet, clear rq_count early and
2788	 * bail out specifically if rq_count is 0 rather than checking
2789	 * whether the mq_list is empty.
2790	 */
2791	if (plug->rq_count == 0)
2792		return;
2793	plug->rq_count = 0;
2794
2795	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2796		struct request_queue *q;
2797
2798		rq = rq_list_peek(&plug->mq_list);
2799		q = rq->q;
2800
2801		/*
2802		 * Peek first request and see if we have a ->queue_rqs() hook.
2803		 * If we do, we can dispatch the whole plug list in one go. We
2804		 * already know at this point that all requests belong to the
2805		 * same queue, caller must ensure that's the case.
2806		 */
2807		if (q->mq_ops->queue_rqs) {
2808			blk_mq_run_dispatch_ops(q,
2809				__blk_mq_flush_plug_list(q, plug));
2810			if (rq_list_empty(plug->mq_list))
2811				return;
2812		}
2813
2814		blk_mq_run_dispatch_ops(q,
2815				blk_mq_plug_issue_direct(plug));
2816		if (rq_list_empty(plug->mq_list))
2817			return;
2818	}
2819
2820	do {
2821		blk_mq_dispatch_plug_list(plug, from_schedule);
2822	} while (!rq_list_empty(plug->mq_list));
2823}
2824
2825static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2826		struct list_head *list)
2827{
2828	int queued = 0;
2829	blk_status_t ret = BLK_STS_OK;
2830
2831	while (!list_empty(list)) {
2832		struct request *rq = list_first_entry(list, struct request,
2833				queuelist);
2834
2835		list_del_init(&rq->queuelist);
2836		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2837		switch (ret) {
2838		case BLK_STS_OK:
2839			queued++;
2840			break;
2841		case BLK_STS_RESOURCE:
2842		case BLK_STS_DEV_RESOURCE:
2843			blk_mq_request_bypass_insert(rq, 0);
2844			if (list_empty(list))
2845				blk_mq_run_hw_queue(hctx, false);
2846			goto out;
2847		default:
2848			blk_mq_end_request(rq, ret);
2849			break;
2850		}
2851	}
2852
2853out:
2854	if (ret != BLK_STS_OK)
2855		blk_mq_commit_rqs(hctx, queued, false);
2856}
2857
2858static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2859				     struct bio *bio, unsigned int nr_segs)
2860{
2861	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2862		if (blk_attempt_plug_merge(q, bio, nr_segs))
2863			return true;
2864		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2865			return true;
2866	}
2867	return false;
2868}
2869
2870static struct request *blk_mq_get_new_requests(struct request_queue *q,
2871					       struct blk_plug *plug,
2872					       struct bio *bio,
2873					       unsigned int nsegs)
2874{
2875	struct blk_mq_alloc_data data = {
2876		.q		= q,
2877		.nr_tags	= 1,
2878		.cmd_flags	= bio->bi_opf,
2879	};
2880	struct request *rq;
 
 
2881
2882	rq_qos_throttle(q, bio);
 
 
 
 
2883
2884	if (plug) {
2885		data.nr_tags = plug->nr_ios;
2886		plug->nr_ios = 1;
2887		data.cached_rq = &plug->cached_rq;
2888	}
 
2889
2890	rq = __blk_mq_alloc_requests(&data);
2891	if (rq)
2892		return rq;
2893	rq_qos_cleanup(q, bio);
2894	if (bio->bi_opf & REQ_NOWAIT)
2895		bio_wouldblock_error(bio);
2896	return NULL;
2897}
2898
2899/*
2900 * Check if there is a suitable cached request and return it.
2901 */
2902static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2903		struct request_queue *q, blk_opf_t opf)
2904{
2905	enum hctx_type type = blk_mq_get_hctx_type(opf);
 
2906	struct request *rq;
 
 
2907
2908	if (!plug)
2909		return NULL;
2910	rq = rq_list_peek(&plug->cached_rq);
2911	if (!rq || rq->q != q)
2912		return NULL;
2913	if (type != rq->mq_hctx->type &&
2914	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
2915		return NULL;
2916	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
2917		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2918	return rq;
2919}
2920
2921static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
2922		struct bio *bio)
2923{
2924	WARN_ON_ONCE(rq_list_peek(&plug->cached_rq) != rq);
 
 
 
 
 
 
 
 
 
2925
2926	/*
2927	 * If any qos ->throttle() end up blocking, we will have flushed the
2928	 * plug and hence killed the cached_rq list as well. Pop this entry
2929	 * before we throttle.
2930	 */
2931	plug->cached_rq = rq_list_next(rq);
2932	rq_qos_throttle(rq->q, bio);
 
 
 
2933
2934	blk_mq_rq_time_init(rq, 0);
2935	rq->cmd_flags = bio->bi_opf;
2936	INIT_LIST_HEAD(&rq->queuelist);
 
 
 
 
 
 
 
2937}
2938
2939/**
2940 * blk_mq_submit_bio - Create and send a request to block device.
2941 * @bio: Bio pointer.
2942 *
2943 * Builds up a request structure from @q and @bio and send to the device. The
2944 * request may not be queued directly to hardware if:
2945 * * This request can be merged with another one
2946 * * We want to place request at plug queue for possible future merging
2947 * * There is an IO scheduler active at this queue
2948 *
2949 * It will not queue the request if there is an error with the bio, or at the
2950 * request creation.
2951 */
2952void blk_mq_submit_bio(struct bio *bio)
2953{
2954	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2955	struct blk_plug *plug = blk_mq_plug(bio);
2956	const int is_sync = op_is_sync(bio->bi_opf);
2957	struct blk_mq_hw_ctx *hctx;
2958	unsigned int nr_segs = 1;
2959	struct request *rq;
2960	blk_status_t ret;
 
 
 
2961
2962	bio = blk_queue_bounce(bio, q);
2963
2964	/*
2965	 * If the plug has a cached request for this queue, try use it.
2966	 *
2967	 * The cached request already holds a q_usage_counter reference and we
2968	 * don't have to acquire a new one if we use it.
2969	 */
2970	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
2971	if (!rq) {
2972		if (unlikely(bio_queue_enter(bio)))
2973			return;
2974	}
2975
2976	if (unlikely(bio_may_exceed_limits(bio, &q->limits))) {
2977		bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2978		if (!bio)
2979			goto queue_exit;
2980	}
2981	if (!bio_integrity_prep(bio))
2982		goto queue_exit;
2983
2984	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
2985		goto queue_exit;
 
 
 
 
2986
2987	if (!rq) {
2988		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2989		if (unlikely(!rq))
2990			goto queue_exit;
2991	} else {
2992		blk_mq_use_cached_rq(rq, plug, bio);
2993	}
2994
2995	trace_block_getrq(bio);
2996
2997	rq_qos_track(q, rq, bio);
 
 
 
 
2998
2999	blk_mq_bio_to_request(rq, bio, nr_segs);
 
 
 
 
 
 
 
 
3000
3001	ret = blk_crypto_rq_get_keyslot(rq);
3002	if (ret != BLK_STS_OK) {
3003		bio->bi_status = ret;
3004		bio_endio(bio);
3005		blk_mq_free_request(rq);
3006		return;
3007	}
3008
3009	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3010		return;
3011
3012	if (plug) {
3013		blk_add_rq_to_plug(plug, rq);
3014		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3015	}
3016
3017	hctx = rq->mq_hctx;
3018	if ((rq->rq_flags & RQF_USE_SCHED) ||
3019	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3020		blk_mq_insert_request(rq, 0);
3021		blk_mq_run_hw_queue(hctx, true);
3022	} else {
3023		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
 
 
3024	}
3025	return;
3026
3027queue_exit:
3028	/*
3029	 * Don't drop the queue reference if we were trying to use a cached
3030	 * request and thus didn't acquire one.
3031	 */
3032	if (!rq)
3033		blk_queue_exit(q);
3034}
3035
3036#ifdef CONFIG_BLK_MQ_STACKING
3037/**
3038 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3039 * @rq: the request being queued
3040 */
3041blk_status_t blk_insert_cloned_request(struct request *rq)
3042{
3043	struct request_queue *q = rq->q;
3044	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3045	unsigned int max_segments = blk_rq_get_max_segments(rq);
3046	blk_status_t ret;
 
 
 
3047
3048	if (blk_rq_sectors(rq) > max_sectors) {
3049		/*
3050		 * SCSI device does not have a good way to return if
3051		 * Write Same/Zero is actually supported. If a device rejects
3052		 * a non-read/write command (discard, write same,etc.) the
3053		 * low-level device driver will set the relevant queue limit to
3054		 * 0 to prevent blk-lib from issuing more of the offending
3055		 * operations. Commands queued prior to the queue limit being
3056		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3057		 * errors being propagated to upper layers.
3058		 */
3059		if (max_sectors == 0)
3060			return BLK_STS_NOTSUPP;
3061
3062		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3063			__func__, blk_rq_sectors(rq), max_sectors);
3064		return BLK_STS_IOERR;
3065	}
3066
3067	/*
3068	 * The queue settings related to segment counting may differ from the
3069	 * original queue.
3070	 */
3071	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3072	if (rq->nr_phys_segments > max_segments) {
3073		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3074			__func__, rq->nr_phys_segments, max_segments);
3075		return BLK_STS_IOERR;
3076	}
3077
3078	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3079		return BLK_STS_IOERR;
 
3080
3081	ret = blk_crypto_rq_get_keyslot(rq);
3082	if (ret != BLK_STS_OK)
3083		return ret;
3084
3085	blk_account_io_start(rq);
 
 
 
 
3086
3087	/*
3088	 * Since we have a scheduler attached on the top device,
3089	 * bypass a potential scheduler on the bottom device for
3090	 * insert.
3091	 */
3092	blk_mq_run_dispatch_ops(q,
3093			ret = blk_mq_request_issue_directly(rq, true));
3094	if (ret)
3095		blk_account_io_done(rq, blk_time_get_ns());
3096	return ret;
3097}
3098EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3099
3100/**
3101 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3102 * @rq: the clone request to be cleaned up
3103 *
3104 * Description:
3105 *     Free all bios in @rq for a cloned request.
3106 */
3107void blk_rq_unprep_clone(struct request *rq)
3108{
3109	struct bio *bio;
3110
3111	while ((bio = rq->bio) != NULL) {
3112		rq->bio = bio->bi_next;
 
 
3113
3114		bio_put(bio);
 
3115	}
3116}
3117EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3118
3119/**
3120 * blk_rq_prep_clone - Helper function to setup clone request
3121 * @rq: the request to be setup
3122 * @rq_src: original request to be cloned
3123 * @bs: bio_set that bios for clone are allocated from
3124 * @gfp_mask: memory allocation mask for bio
3125 * @bio_ctr: setup function to be called for each clone bio.
3126 *           Returns %0 for success, non %0 for failure.
3127 * @data: private data to be passed to @bio_ctr
3128 *
3129 * Description:
3130 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3131 *     Also, pages which the original bios are pointing to are not copied
3132 *     and the cloned bios just point same pages.
3133 *     So cloned bios must be completed before original bios, which means
3134 *     the caller must complete @rq before @rq_src.
3135 */
3136int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3137		      struct bio_set *bs, gfp_t gfp_mask,
3138		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3139		      void *data)
3140{
3141	struct bio *bio, *bio_src;
3142
3143	if (!bs)
3144		bs = &fs_bio_set;
3145
3146	__rq_for_each_bio(bio_src, rq_src) {
3147		bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3148				      bs);
3149		if (!bio)
3150			goto free_and_out;
3151
3152		if (bio_ctr && bio_ctr(bio, bio_src, data))
3153			goto free_and_out;
3154
3155		if (rq->bio) {
3156			rq->biotail->bi_next = bio;
3157			rq->biotail = bio;
3158		} else {
3159			rq->bio = rq->biotail = bio;
3160		}
3161		bio = NULL;
3162	}
3163
3164	/* Copy attributes of the original request to the clone request. */
3165	rq->__sector = blk_rq_pos(rq_src);
3166	rq->__data_len = blk_rq_bytes(rq_src);
3167	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3168		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3169		rq->special_vec = rq_src->special_vec;
3170	}
3171	rq->nr_phys_segments = rq_src->nr_phys_segments;
3172	rq->ioprio = rq_src->ioprio;
3173	rq->write_hint = rq_src->write_hint;
3174
3175	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3176		goto free_and_out;
3177
3178	return 0;
3179
3180free_and_out:
3181	if (bio)
3182		bio_put(bio);
3183	blk_rq_unprep_clone(rq);
3184
3185	return -ENOMEM;
3186}
3187EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3188#endif /* CONFIG_BLK_MQ_STACKING */
3189
3190/*
3191 * Steal bios from a request and add them to a bio list.
3192 * The request must not have been partially completed before.
3193 */
3194void blk_steal_bios(struct bio_list *list, struct request *rq)
3195{
3196	if (rq->bio) {
3197		if (list->tail)
3198			list->tail->bi_next = rq->bio;
3199		else
3200			list->head = rq->bio;
3201		list->tail = rq->biotail;
3202
3203		rq->bio = NULL;
3204		rq->biotail = NULL;
3205	}
3206
3207	rq->__data_len = 0;
3208}
3209EXPORT_SYMBOL_GPL(blk_steal_bios);
3210
3211static size_t order_to_size(unsigned int order)
3212{
3213	return (size_t)PAGE_SIZE << order;
3214}
3215
3216/* called before freeing request pool in @tags */
3217static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3218				    struct blk_mq_tags *tags)
3219{
3220	struct page *page;
3221	unsigned long flags;
3222
3223	/*
3224	 * There is no need to clear mapping if driver tags is not initialized
3225	 * or the mapping belongs to the driver tags.
3226	 */
3227	if (!drv_tags || drv_tags == tags)
3228		return;
3229
3230	list_for_each_entry(page, &tags->page_list, lru) {
3231		unsigned long start = (unsigned long)page_address(page);
3232		unsigned long end = start + order_to_size(page->private);
3233		int i;
3234
3235		for (i = 0; i < drv_tags->nr_tags; i++) {
3236			struct request *rq = drv_tags->rqs[i];
3237			unsigned long rq_addr = (unsigned long)rq;
3238
3239			if (rq_addr >= start && rq_addr < end) {
3240				WARN_ON_ONCE(req_ref_read(rq) != 0);
3241				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3242			}
3243		}
3244	}
3245
3246	/*
3247	 * Wait until all pending iteration is done.
3248	 *
3249	 * Request reference is cleared and it is guaranteed to be observed
3250	 * after the ->lock is released.
3251	 */
3252	spin_lock_irqsave(&drv_tags->lock, flags);
3253	spin_unlock_irqrestore(&drv_tags->lock, flags);
3254}
 
3255
3256void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3257		     unsigned int hctx_idx)
3258{
3259	struct blk_mq_tags *drv_tags;
3260	struct page *page;
3261
3262	if (list_empty(&tags->page_list))
3263		return;
3264
3265	if (blk_mq_is_shared_tags(set->flags))
3266		drv_tags = set->shared_tags;
3267	else
3268		drv_tags = set->tags[hctx_idx];
3269
3270	if (tags->static_rqs && set->ops->exit_request) {
3271		int i;
3272
3273		for (i = 0; i < tags->nr_tags; i++) {
3274			struct request *rq = tags->static_rqs[i];
3275
3276			if (!rq)
3277				continue;
3278			set->ops->exit_request(set, rq, hctx_idx);
3279			tags->static_rqs[i] = NULL;
 
3280		}
3281	}
3282
3283	blk_mq_clear_rq_mapping(drv_tags, tags);
3284
3285	while (!list_empty(&tags->page_list)) {
3286		page = list_first_entry(&tags->page_list, struct page, lru);
3287		list_del_init(&page->lru);
3288		/*
3289		 * Remove kmemleak object previously allocated in
3290		 * blk_mq_alloc_rqs().
3291		 */
3292		kmemleak_free(page_address(page));
3293		__free_pages(page, page->private);
3294	}
3295}
3296
3297void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3298{
3299	kfree(tags->rqs);
3300	tags->rqs = NULL;
3301	kfree(tags->static_rqs);
3302	tags->static_rqs = NULL;
3303
3304	blk_mq_free_tags(tags);
3305}
3306
3307static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3308		unsigned int hctx_idx)
3309{
3310	int i;
3311
3312	for (i = 0; i < set->nr_maps; i++) {
3313		unsigned int start = set->map[i].queue_offset;
3314		unsigned int end = start + set->map[i].nr_queues;
3315
3316		if (hctx_idx >= start && hctx_idx < end)
3317			break;
3318	}
3319
3320	if (i >= set->nr_maps)
3321		i = HCTX_TYPE_DEFAULT;
3322
3323	return i;
3324}
3325
3326static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3327		unsigned int hctx_idx)
3328{
3329	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3330
3331	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3332}
3333
3334static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3335					       unsigned int hctx_idx,
3336					       unsigned int nr_tags,
3337					       unsigned int reserved_tags)
3338{
3339	int node = blk_mq_get_hctx_node(set, hctx_idx);
3340	struct blk_mq_tags *tags;
 
 
3341
3342	if (node == NUMA_NO_NODE)
3343		node = set->numa_node;
3344
3345	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3346				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3347	if (!tags)
3348		return NULL;
3349
3350	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3351				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3352				 node);
3353	if (!tags->rqs)
3354		goto err_free_tags;
3355
3356	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3357					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3358					node);
3359	if (!tags->static_rqs)
3360		goto err_free_rqs;
3361
3362	return tags;
3363
3364err_free_rqs:
3365	kfree(tags->rqs);
3366err_free_tags:
3367	blk_mq_free_tags(tags);
3368	return NULL;
3369}
3370
3371static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3372			       unsigned int hctx_idx, int node)
3373{
3374	int ret;
3375
3376	if (set->ops->init_request) {
3377		ret = set->ops->init_request(set, rq, hctx_idx, node);
3378		if (ret)
3379			return ret;
3380	}
3381
3382	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3383	return 0;
3384}
3385
3386static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3387			    struct blk_mq_tags *tags,
3388			    unsigned int hctx_idx, unsigned int depth)
3389{
3390	unsigned int i, j, entries_per_page, max_order = 4;
3391	int node = blk_mq_get_hctx_node(set, hctx_idx);
3392	size_t rq_size, left;
3393
3394	if (node == NUMA_NO_NODE)
3395		node = set->numa_node;
3396
3397	INIT_LIST_HEAD(&tags->page_list);
3398
3399	/*
3400	 * rq_size is the size of the request plus driver payload, rounded
3401	 * to the cacheline size
3402	 */
3403	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3404				cache_line_size());
3405	left = rq_size * depth;
3406
3407	for (i = 0; i < depth; ) {
3408		int this_order = max_order;
3409		struct page *page;
3410		int to_do;
3411		void *p;
3412
3413		while (this_order && left < order_to_size(this_order - 1))
3414			this_order--;
3415
3416		do {
3417			page = alloc_pages_node(node,
3418				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3419				this_order);
3420			if (page)
3421				break;
3422			if (!this_order--)
3423				break;
3424			if (order_to_size(this_order) < rq_size)
3425				break;
3426		} while (1);
3427
3428		if (!page)
3429			goto fail;
3430
3431		page->private = this_order;
3432		list_add_tail(&page->lru, &tags->page_list);
3433
3434		p = page_address(page);
3435		/*
3436		 * Allow kmemleak to scan these pages as they contain pointers
3437		 * to additional allocations like via ops->init_request().
3438		 */
3439		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3440		entries_per_page = order_to_size(this_order) / rq_size;
3441		to_do = min(entries_per_page, depth - i);
3442		left -= to_do * rq_size;
3443		for (j = 0; j < to_do; j++) {
3444			struct request *rq = p;
3445
3446			tags->static_rqs[i] = rq;
3447			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3448				tags->static_rqs[i] = NULL;
3449				goto fail;
 
 
3450			}
3451
3452			p += rq_size;
3453			i++;
3454		}
3455	}
3456	return 0;
3457
3458fail:
3459	blk_mq_free_rqs(set, tags, hctx_idx);
3460	return -ENOMEM;
3461}
3462
3463struct rq_iter_data {
3464	struct blk_mq_hw_ctx *hctx;
3465	bool has_rq;
3466};
3467
3468static bool blk_mq_has_request(struct request *rq, void *data)
3469{
3470	struct rq_iter_data *iter_data = data;
3471
3472	if (rq->mq_hctx != iter_data->hctx)
3473		return true;
3474	iter_data->has_rq = true;
3475	return false;
3476}
3477
3478static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3479{
3480	struct blk_mq_tags *tags = hctx->sched_tags ?
3481			hctx->sched_tags : hctx->tags;
3482	struct rq_iter_data data = {
3483		.hctx	= hctx,
3484	};
3485
3486	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3487	return data.has_rq;
3488}
3489
3490static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3491		struct blk_mq_hw_ctx *hctx)
3492{
3493	if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3494		return false;
3495	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3496		return false;
3497	return true;
3498}
3499
3500static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3501{
3502	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3503			struct blk_mq_hw_ctx, cpuhp_online);
3504
3505	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3506	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
3507		return 0;
3508
3509	/*
3510	 * Prevent new request from being allocated on the current hctx.
3511	 *
3512	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3513	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3514	 * seen once we return from the tag allocator.
3515	 */
3516	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3517	smp_mb__after_atomic();
3518
3519	/*
3520	 * Try to grab a reference to the queue and wait for any outstanding
3521	 * requests.  If we could not grab a reference the queue has been
3522	 * frozen and there are no requests.
3523	 */
3524	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3525		while (blk_mq_hctx_has_requests(hctx))
3526			msleep(5);
3527		percpu_ref_put(&hctx->queue->q_usage_counter);
3528	}
3529
3530	return 0;
3531}
3532
3533static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3534{
3535	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3536			struct blk_mq_hw_ctx, cpuhp_online);
3537
3538	if (cpumask_test_cpu(cpu, hctx->cpumask))
3539		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3540	return 0;
3541}
3542
3543/*
3544 * 'cpu' is going away. splice any existing rq_list entries from this
3545 * software queue to the hw queue dispatch list, and ensure that it
3546 * gets run.
3547 */
3548static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3549{
3550	struct blk_mq_hw_ctx *hctx;
3551	struct blk_mq_ctx *ctx;
3552	LIST_HEAD(tmp);
3553	enum hctx_type type;
3554
3555	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3556	if (!cpumask_test_cpu(cpu, hctx->cpumask))
3557		return 0;
3558
3559	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3560	type = hctx->type;
3561
3562	spin_lock(&ctx->lock);
3563	if (!list_empty(&ctx->rq_lists[type])) {
3564		list_splice_init(&ctx->rq_lists[type], &tmp);
3565		blk_mq_hctx_clear_pending(hctx, ctx);
3566	}
3567	spin_unlock(&ctx->lock);
3568
3569	if (list_empty(&tmp))
3570		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3571
3572	spin_lock(&hctx->lock);
3573	list_splice_tail_init(&tmp, &hctx->dispatch);
3574	spin_unlock(&hctx->lock);
3575
3576	blk_mq_run_hw_queue(hctx, true);
3577	return 0;
 
3578}
3579
3580static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
 
3581{
3582	if (!(hctx->flags & BLK_MQ_F_STACKING))
3583		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3584						    &hctx->cpuhp_online);
3585	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3586					    &hctx->cpuhp_dead);
3587}
3588
3589/*
3590 * Before freeing hw queue, clearing the flush request reference in
3591 * tags->rqs[] for avoiding potential UAF.
3592 */
3593static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3594		unsigned int queue_depth, struct request *flush_rq)
3595{
3596	int i;
3597	unsigned long flags;
3598
3599	/* The hw queue may not be mapped yet */
3600	if (!tags)
3601		return;
3602
3603	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3604
3605	for (i = 0; i < queue_depth; i++)
3606		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3607
3608	/*
3609	 * Wait until all pending iteration is done.
3610	 *
3611	 * Request reference is cleared and it is guaranteed to be observed
3612	 * after the ->lock is released.
3613	 */
3614	spin_lock_irqsave(&tags->lock, flags);
3615	spin_unlock_irqrestore(&tags->lock, flags);
3616}
3617
3618/* hctx->ctxs will be freed in queue's release handler */
3619static void blk_mq_exit_hctx(struct request_queue *q,
3620		struct blk_mq_tag_set *set,
3621		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3622{
3623	struct request *flush_rq = hctx->fq->flush_rq;
3624
3625	if (blk_mq_hw_queue_mapped(hctx))
3626		blk_mq_tag_idle(hctx);
3627
3628	if (blk_queue_init_done(q))
3629		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3630				set->queue_depth, flush_rq);
3631	if (set->ops->exit_request)
3632		set->ops->exit_request(set, flush_rq, hctx_idx);
 
 
3633
3634	if (set->ops->exit_hctx)
3635		set->ops->exit_hctx(hctx, hctx_idx);
3636
3637	blk_mq_remove_cpuhp(hctx);
3638
3639	xa_erase(&q->hctx_table, hctx_idx);
3640
3641	spin_lock(&q->unused_hctx_lock);
3642	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3643	spin_unlock(&q->unused_hctx_lock);
3644}
3645
3646static void blk_mq_exit_hw_queues(struct request_queue *q,
3647		struct blk_mq_tag_set *set, int nr_queue)
3648{
3649	struct blk_mq_hw_ctx *hctx;
3650	unsigned long i;
3651
3652	queue_for_each_hw_ctx(q, hctx, i) {
3653		if (i == nr_queue)
3654			break;
3655		blk_mq_exit_hctx(q, set, hctx, i);
3656	}
3657}
3658
3659static int blk_mq_init_hctx(struct request_queue *q,
3660		struct blk_mq_tag_set *set,
3661		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3662{
3663	hctx->queue_num = hctx_idx;
 
3664
3665	if (!(hctx->flags & BLK_MQ_F_STACKING))
3666		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3667				&hctx->cpuhp_online);
3668	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3669
3670	hctx->tags = set->tags[hctx_idx];
3671
3672	if (set->ops->init_hctx &&
3673	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3674		goto unregister_cpu_notifier;
3675
3676	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3677				hctx->numa_node))
3678		goto exit_hctx;
3679
3680	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3681		goto exit_flush_rq;
3682
3683	return 0;
3684
3685 exit_flush_rq:
3686	if (set->ops->exit_request)
3687		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3688 exit_hctx:
3689	if (set->ops->exit_hctx)
3690		set->ops->exit_hctx(hctx, hctx_idx);
3691 unregister_cpu_notifier:
3692	blk_mq_remove_cpuhp(hctx);
3693	return -1;
3694}
3695
3696static struct blk_mq_hw_ctx *
3697blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3698		int node)
3699{
3700	struct blk_mq_hw_ctx *hctx;
3701	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3702
3703	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3704	if (!hctx)
3705		goto fail_alloc_hctx;
3706
3707	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3708		goto free_hctx;
3709
3710	atomic_set(&hctx->nr_active, 0);
3711	if (node == NUMA_NO_NODE)
3712		node = set->numa_node;
3713	hctx->numa_node = node;
3714
3715	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
 
3716	spin_lock_init(&hctx->lock);
3717	INIT_LIST_HEAD(&hctx->dispatch);
3718	hctx->queue = q;
3719	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
 
3720
3721	INIT_LIST_HEAD(&hctx->hctx_list);
 
 
 
 
3722
3723	/*
3724	 * Allocate space for all possible cpus to avoid allocation at
3725	 * runtime
3726	 */
3727	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3728			gfp, node);
3729	if (!hctx->ctxs)
3730		goto free_cpumask;
3731
3732	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3733				gfp, node, false, false))
3734		goto free_ctxs;
 
3735	hctx->nr_ctx = 0;
3736
3737	spin_lock_init(&hctx->dispatch_wait_lock);
3738	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3739	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3740
3741	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3742	if (!hctx->fq)
3743		goto free_bitmap;
3744
3745	blk_mq_hctx_kobj_init(hctx);
 
 
 
 
3746
3747	return hctx;
3748
 
 
 
 
 
3749 free_bitmap:
3750	sbitmap_free(&hctx->ctx_map);
3751 free_ctxs:
3752	kfree(hctx->ctxs);
3753 free_cpumask:
3754	free_cpumask_var(hctx->cpumask);
3755 free_hctx:
3756	kfree(hctx);
3757 fail_alloc_hctx:
3758	return NULL;
3759}
3760
3761static void blk_mq_init_cpu_queues(struct request_queue *q,
3762				   unsigned int nr_hw_queues)
3763{
3764	struct blk_mq_tag_set *set = q->tag_set;
3765	unsigned int i, j;
3766
3767	for_each_possible_cpu(i) {
3768		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3769		struct blk_mq_hw_ctx *hctx;
3770		int k;
3771
 
3772		__ctx->cpu = i;
3773		spin_lock_init(&__ctx->lock);
3774		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3775			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3776
3777		__ctx->queue = q;
 
 
 
 
3778
3779		/*
3780		 * Set local node, IFF we have more than one hw queue. If
3781		 * not, we remain on the home node of the device
3782		 */
3783		for (j = 0; j < set->nr_maps; j++) {
3784			hctx = blk_mq_map_queue_type(q, j, i);
3785			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3786				hctx->numa_node = cpu_to_node(i);
3787		}
3788	}
3789}
3790
3791struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3792					     unsigned int hctx_idx,
3793					     unsigned int depth)
3794{
3795	struct blk_mq_tags *tags;
3796	int ret;
3797
3798	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3799	if (!tags)
3800		return NULL;
3801
3802	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3803	if (ret) {
3804		blk_mq_free_rq_map(tags);
3805		return NULL;
3806	}
3807
3808	return tags;
3809}
3810
3811static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3812				       int hctx_idx)
3813{
3814	if (blk_mq_is_shared_tags(set->flags)) {
3815		set->tags[hctx_idx] = set->shared_tags;
3816
3817		return true;
3818	}
3819
3820	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3821						       set->queue_depth);
3822
3823	return set->tags[hctx_idx];
3824}
3825
3826void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3827			     struct blk_mq_tags *tags,
3828			     unsigned int hctx_idx)
3829{
3830	if (tags) {
3831		blk_mq_free_rqs(set, tags, hctx_idx);
3832		blk_mq_free_rq_map(tags);
3833	}
3834}
3835
3836static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3837				      unsigned int hctx_idx)
3838{
3839	if (!blk_mq_is_shared_tags(set->flags))
3840		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3841
3842	set->tags[hctx_idx] = NULL;
3843}
3844
3845static void blk_mq_map_swqueue(struct request_queue *q)
3846{
3847	unsigned int j, hctx_idx;
3848	unsigned long i;
3849	struct blk_mq_hw_ctx *hctx;
3850	struct blk_mq_ctx *ctx;
3851	struct blk_mq_tag_set *set = q->tag_set;
3852
 
 
 
 
 
3853	queue_for_each_hw_ctx(q, hctx, i) {
3854		cpumask_clear(hctx->cpumask);
3855		hctx->nr_ctx = 0;
3856		hctx->dispatch_from = NULL;
3857	}
3858
3859	/*
3860	 * Map software to hardware queues.
3861	 *
3862	 * If the cpu isn't present, the cpu is mapped to first hctx.
3863	 */
3864	for_each_possible_cpu(i) {
 
 
 
3865
3866		ctx = per_cpu_ptr(q->queue_ctx, i);
3867		for (j = 0; j < set->nr_maps; j++) {
3868			if (!set->map[j].nr_queues) {
3869				ctx->hctxs[j] = blk_mq_map_queue_type(q,
3870						HCTX_TYPE_DEFAULT, i);
3871				continue;
3872			}
3873			hctx_idx = set->map[j].mq_map[i];
3874			/* unmapped hw queue can be remapped after CPU topo changed */
3875			if (!set->tags[hctx_idx] &&
3876			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3877				/*
3878				 * If tags initialization fail for some hctx,
3879				 * that hctx won't be brought online.  In this
3880				 * case, remap the current ctx to hctx[0] which
3881				 * is guaranteed to always have tags allocated
3882				 */
3883				set->map[j].mq_map[i] = 0;
3884			}
3885
3886			hctx = blk_mq_map_queue_type(q, j, i);
3887			ctx->hctxs[j] = hctx;
3888			/*
3889			 * If the CPU is already set in the mask, then we've
3890			 * mapped this one already. This can happen if
3891			 * devices share queues across queue maps.
3892			 */
3893			if (cpumask_test_cpu(i, hctx->cpumask))
3894				continue;
3895
3896			cpumask_set_cpu(i, hctx->cpumask);
3897			hctx->type = j;
3898			ctx->index_hw[hctx->type] = hctx->nr_ctx;
3899			hctx->ctxs[hctx->nr_ctx++] = ctx;
3900
3901			/*
3902			 * If the nr_ctx type overflows, we have exceeded the
3903			 * amount of sw queues we can support.
3904			 */
3905			BUG_ON(!hctx->nr_ctx);
3906		}
3907
3908		for (; j < HCTX_MAX_TYPES; j++)
3909			ctx->hctxs[j] = blk_mq_map_queue_type(q,
3910					HCTX_TYPE_DEFAULT, i);
3911	}
3912
3913	queue_for_each_hw_ctx(q, hctx, i) {
3914		/*
3915		 * If no software queues are mapped to this hardware queue,
3916		 * disable it and free the request entries.
3917		 */
3918		if (!hctx->nr_ctx) {
3919			/* Never unmap queue 0.  We need it as a
3920			 * fallback in case of a new remap fails
3921			 * allocation
3922			 */
3923			if (i)
3924				__blk_mq_free_map_and_rqs(set, i);
3925
3926			hctx->tags = NULL;
3927			continue;
3928		}
3929
 
 
 
3930		hctx->tags = set->tags[i];
3931		WARN_ON(!hctx->tags);
3932
 
3933		/*
3934		 * Set the map size to the number of mapped software queues.
3935		 * This is more accurate and more efficient than looping
3936		 * over all possibly mapped software queues.
3937		 */
3938		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3939
3940		/*
3941		 * Initialize batch roundrobin counts
3942		 */
3943		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3944		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3945	}
3946}
3947
3948/*
3949 * Caller needs to ensure that we're either frozen/quiesced, or that
3950 * the queue isn't live yet.
3951 */
3952static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3953{
3954	struct blk_mq_hw_ctx *hctx;
3955	unsigned long i;
3956
3957	queue_for_each_hw_ctx(q, hctx, i) {
3958		if (shared) {
3959			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3960		} else {
3961			blk_mq_tag_idle(hctx);
3962			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3963		}
3964	}
3965}
3966
3967static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3968					 bool shared)
3969{
3970	struct request_queue *q;
3971
3972	lockdep_assert_held(&set->tag_list_lock);
3973
3974	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3975		blk_mq_freeze_queue(q);
3976		queue_set_hctx_shared(q, shared);
3977		blk_mq_unfreeze_queue(q);
3978	}
3979}
3980
3981static void blk_mq_del_queue_tag_set(struct request_queue *q)
3982{
3983	struct blk_mq_tag_set *set = q->tag_set;
3984
3985	mutex_lock(&set->tag_list_lock);
3986	list_del(&q->tag_set_list);
3987	if (list_is_singular(&set->tag_list)) {
3988		/* just transitioned to unshared */
3989		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3990		/* update existing queue */
3991		blk_mq_update_tag_set_shared(set, false);
3992	}
3993	mutex_unlock(&set->tag_list_lock);
3994	INIT_LIST_HEAD(&q->tag_set_list);
3995}
3996
3997static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3998				     struct request_queue *q)
3999{
 
 
4000	mutex_lock(&set->tag_list_lock);
4001
4002	/*
4003	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4004	 */
4005	if (!list_empty(&set->tag_list) &&
4006	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4007		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4008		/* update existing queue */
4009		blk_mq_update_tag_set_shared(set, true);
4010	}
4011	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4012		queue_set_hctx_shared(q, true);
4013	list_add_tail(&q->tag_set_list, &set->tag_list);
4014
4015	mutex_unlock(&set->tag_list_lock);
4016}
4017
4018/* All allocations will be freed in release handler of q->mq_kobj */
4019static int blk_mq_alloc_ctxs(struct request_queue *q)
4020{
4021	struct blk_mq_ctxs *ctxs;
4022	int cpu;
4023
4024	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4025	if (!ctxs)
4026		return -ENOMEM;
4027
4028	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4029	if (!ctxs->queue_ctx)
4030		goto fail;
4031
4032	for_each_possible_cpu(cpu) {
4033		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4034		ctx->ctxs = ctxs;
4035	}
4036
4037	q->mq_kobj = &ctxs->kobj;
4038	q->queue_ctx = ctxs->queue_ctx;
4039
4040	return 0;
4041 fail:
4042	kfree(ctxs);
4043	return -ENOMEM;
4044}
4045
4046/*
4047 * It is the actual release handler for mq, but we do it from
4048 * request queue's release handler for avoiding use-after-free
4049 * and headache because q->mq_kobj shouldn't have been introduced,
4050 * but we can't group ctx/kctx kobj without it.
4051 */
4052void blk_mq_release(struct request_queue *q)
4053{
4054	struct blk_mq_hw_ctx *hctx, *next;
4055	unsigned long i;
4056
4057	queue_for_each_hw_ctx(q, hctx, i)
4058		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
 
 
 
 
 
4059
4060	/* all hctx are in .unused_hctx_list now */
4061	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4062		list_del_init(&hctx->hctx_list);
4063		kobject_put(&hctx->kobj);
4064	}
4065
4066	xa_destroy(&q->hctx_table);
4067
4068	/*
4069	 * release .mq_kobj and sw queue's kobject now because
4070	 * both share lifetime with request queue.
4071	 */
4072	blk_mq_sysfs_deinit(q);
4073}
4074
4075struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4076		struct queue_limits *lim, void *queuedata)
4077{
4078	struct queue_limits default_lim = { };
4079	struct request_queue *q;
4080	int ret;
 
 
4081
4082	q = blk_alloc_queue(lim ? lim : &default_lim, set->numa_node);
4083	if (IS_ERR(q))
4084		return q;
4085	q->queuedata = queuedata;
4086	ret = blk_mq_init_allocated_queue(set, q);
4087	if (ret) {
4088		blk_put_queue(q);
4089		return ERR_PTR(ret);
4090	}
4091	return q;
4092}
4093EXPORT_SYMBOL(blk_mq_alloc_queue);
4094
4095/**
4096 * blk_mq_destroy_queue - shutdown a request queue
4097 * @q: request queue to shutdown
4098 *
4099 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4100 * requests will be failed with -ENODEV. The caller is responsible for dropping
4101 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4102 *
4103 * Context: can sleep
4104 */
4105void blk_mq_destroy_queue(struct request_queue *q)
4106{
4107	WARN_ON_ONCE(!queue_is_mq(q));
4108	WARN_ON_ONCE(blk_queue_registered(q));
4109
4110	might_sleep();
 
 
4111
4112	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4113	blk_queue_start_drain(q);
4114	blk_mq_freeze_queue_wait(q);
4115
4116	blk_sync_queue(q);
4117	blk_mq_cancel_work_sync(q);
4118	blk_mq_exit_queue(q);
4119}
4120EXPORT_SYMBOL(blk_mq_destroy_queue);
4121
4122struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4123		struct queue_limits *lim, void *queuedata,
4124		struct lock_class_key *lkclass)
4125{
4126	struct request_queue *q;
4127	struct gendisk *disk;
4128
4129	q = blk_mq_alloc_queue(set, lim, queuedata);
4130	if (IS_ERR(q))
4131		return ERR_CAST(q);
 
 
 
4132
4133	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4134	if (!disk) {
4135		blk_mq_destroy_queue(q);
4136		blk_put_queue(q);
4137		return ERR_PTR(-ENOMEM);
4138	}
4139	set_bit(GD_OWNS_QUEUE, &disk->state);
4140	return disk;
4141}
4142EXPORT_SYMBOL(__blk_mq_alloc_disk);
4143
4144struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4145		struct lock_class_key *lkclass)
4146{
4147	struct gendisk *disk;
4148
4149	if (!blk_get_queue(q))
4150		return NULL;
4151	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4152	if (!disk)
4153		blk_put_queue(q);
4154	return disk;
4155}
4156EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4157
4158static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4159		struct blk_mq_tag_set *set, struct request_queue *q,
4160		int hctx_idx, int node)
4161{
4162	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4163
4164	/* reuse dead hctx first */
4165	spin_lock(&q->unused_hctx_lock);
4166	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4167		if (tmp->numa_node == node) {
4168			hctx = tmp;
4169			break;
4170		}
 
4171	}
4172	if (hctx)
4173		list_del_init(&hctx->hctx_list);
4174	spin_unlock(&q->unused_hctx_lock);
4175
4176	if (!hctx)
4177		hctx = blk_mq_alloc_hctx(q, set, node);
4178	if (!hctx)
4179		goto fail;
4180
4181	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4182		goto free_hctx;
4183
4184	return hctx;
4185
4186 free_hctx:
4187	kobject_put(&hctx->kobj);
4188 fail:
4189	return NULL;
4190}
4191
4192static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4193						struct request_queue *q)
4194{
4195	struct blk_mq_hw_ctx *hctx;
4196	unsigned long i, j;
 
 
 
 
 
 
4197
4198	/* protect against switching io scheduler  */
4199	mutex_lock(&q->sysfs_lock);
4200	for (i = 0; i < set->nr_hw_queues; i++) {
4201		int old_node;
4202		int node = blk_mq_get_hctx_node(set, i);
4203		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4204
4205		if (old_hctx) {
4206			old_node = old_hctx->numa_node;
4207			blk_mq_exit_hctx(q, set, old_hctx, i);
4208		}
4209
4210		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4211			if (!old_hctx)
4212				break;
4213			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4214					node, old_node);
4215			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4216			WARN_ON_ONCE(!hctx);
4217		}
4218	}
4219	/*
4220	 * Increasing nr_hw_queues fails. Free the newly allocated
4221	 * hctxs and keep the previous q->nr_hw_queues.
4222	 */
4223	if (i != set->nr_hw_queues) {
4224		j = q->nr_hw_queues;
4225	} else {
4226		j = i;
4227		q->nr_hw_queues = set->nr_hw_queues;
4228	}
4229
4230	xa_for_each_start(&q->hctx_table, j, hctx, j)
4231		blk_mq_exit_hctx(q, set, hctx, j);
4232	mutex_unlock(&q->sysfs_lock);
4233}
4234
4235static void blk_mq_update_poll_flag(struct request_queue *q)
4236{
4237	struct blk_mq_tag_set *set = q->tag_set;
4238
4239	if (set->nr_maps > HCTX_TYPE_POLL &&
4240	    set->map[HCTX_TYPE_POLL].nr_queues)
4241		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4242	else
4243		blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4244}
4245
4246int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4247		struct request_queue *q)
4248{
4249	/* mark the queue as mq asap */
4250	q->mq_ops = set->ops;
4251
4252	if (blk_mq_alloc_ctxs(q))
4253		goto err_exit;
4254
4255	/* init q->mq_kobj and sw queues' kobjects */
4256	blk_mq_sysfs_init(q);
4257
4258	INIT_LIST_HEAD(&q->unused_hctx_list);
4259	spin_lock_init(&q->unused_hctx_lock);
4260
4261	xa_init(&q->hctx_table);
 
 
 
 
 
 
 
4262
4263	blk_mq_realloc_hw_ctxs(set, q);
4264	if (!q->nr_hw_queues)
4265		goto err_hctxs;
4266
4267	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4268	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4269
4270	q->tag_set = set;
4271
4272	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4273	blk_mq_update_poll_flag(q);
4274
4275	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4276	INIT_LIST_HEAD(&q->flush_list);
 
 
 
 
4277	INIT_LIST_HEAD(&q->requeue_list);
4278	spin_lock_init(&q->requeue_lock);
4279
 
 
 
 
 
 
 
 
4280	q->nr_requests = set->queue_depth;
4281
 
 
 
4282	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
 
 
 
 
 
4283	blk_mq_add_queue_tag_set(set, q);
4284	blk_mq_map_swqueue(q);
4285	return 0;
 
 
 
 
4286
4287err_hctxs:
4288	blk_mq_release(q);
4289err_exit:
4290	q->mq_ops = NULL;
4291	return -ENOMEM;
 
 
4292}
4293EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4294
4295/* tags can _not_ be used after returning from blk_mq_exit_queue */
4296void blk_mq_exit_queue(struct request_queue *q)
4297{
4298	struct blk_mq_tag_set *set = q->tag_set;
 
 
 
 
 
 
4299
4300	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4301	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4302	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4303	blk_mq_del_queue_tag_set(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4304}
4305
4306static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4307{
4308	int i;
4309
4310	if (blk_mq_is_shared_tags(set->flags)) {
4311		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4312						BLK_MQ_NO_HCTX_IDX,
4313						set->queue_depth);
4314		if (!set->shared_tags)
4315			return -ENOMEM;
4316	}
4317
4318	for (i = 0; i < set->nr_hw_queues; i++) {
4319		if (!__blk_mq_alloc_map_and_rqs(set, i))
 
4320			goto out_unwind;
4321		cond_resched();
4322	}
4323
4324	return 0;
4325
4326out_unwind:
4327	while (--i >= 0)
4328		__blk_mq_free_map_and_rqs(set, i);
4329
4330	if (blk_mq_is_shared_tags(set->flags)) {
4331		blk_mq_free_map_and_rqs(set, set->shared_tags,
4332					BLK_MQ_NO_HCTX_IDX);
4333	}
4334
4335	return -ENOMEM;
4336}
4337
4338/*
4339 * Allocate the request maps associated with this tag_set. Note that this
4340 * may reduce the depth asked for, if memory is tight. set->queue_depth
4341 * will be updated to reflect the allocated depth.
4342 */
4343static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4344{
4345	unsigned int depth;
4346	int err;
4347
4348	depth = set->queue_depth;
4349	do {
4350		err = __blk_mq_alloc_rq_maps(set);
4351		if (!err)
4352			break;
4353
4354		set->queue_depth >>= 1;
4355		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4356			err = -ENOMEM;
4357			break;
4358		}
4359	} while (set->queue_depth);
4360
4361	if (!set->queue_depth || err) {
4362		pr_err("blk-mq: failed to allocate request map\n");
4363		return -ENOMEM;
4364	}
4365
4366	if (depth != set->queue_depth)
4367		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4368						depth, set->queue_depth);
4369
4370	return 0;
4371}
4372
4373static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4374{
4375	/*
4376	 * blk_mq_map_queues() and multiple .map_queues() implementations
4377	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4378	 * number of hardware queues.
4379	 */
4380	if (set->nr_maps == 1)
4381		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4382
4383	if (set->ops->map_queues) {
4384		int i;
4385
4386		/*
4387		 * transport .map_queues is usually done in the following
4388		 * way:
4389		 *
4390		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4391		 * 	mask = get_cpu_mask(queue)
4392		 * 	for_each_cpu(cpu, mask)
4393		 * 		set->map[x].mq_map[cpu] = queue;
4394		 * }
4395		 *
4396		 * When we need to remap, the table has to be cleared for
4397		 * killing stale mapping since one CPU may not be mapped
4398		 * to any hw queue.
4399		 */
4400		for (i = 0; i < set->nr_maps; i++)
4401			blk_mq_clear_mq_map(&set->map[i]);
4402
4403		set->ops->map_queues(set);
4404	} else {
4405		BUG_ON(set->nr_maps > 1);
4406		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4407	}
4408}
4409
4410static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4411				       int new_nr_hw_queues)
4412{
4413	struct blk_mq_tags **new_tags;
4414	int i;
4415
4416	if (set->nr_hw_queues >= new_nr_hw_queues)
4417		goto done;
4418
4419	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4420				GFP_KERNEL, set->numa_node);
4421	if (!new_tags)
4422		return -ENOMEM;
4423
4424	if (set->tags)
4425		memcpy(new_tags, set->tags, set->nr_hw_queues *
4426		       sizeof(*set->tags));
4427	kfree(set->tags);
4428	set->tags = new_tags;
4429
4430	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4431		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4432			while (--i >= set->nr_hw_queues)
4433				__blk_mq_free_map_and_rqs(set, i);
4434			return -ENOMEM;
4435		}
4436		cond_resched();
4437	}
4438
4439done:
4440	set->nr_hw_queues = new_nr_hw_queues;
4441	return 0;
4442}
 
4443
4444/*
4445 * Alloc a tag set to be associated with one or more request queues.
4446 * May fail with EINVAL for various error conditions. May adjust the
4447 * requested depth down, if it's too large. In that case, the set
4448 * value will be stored in set->queue_depth.
4449 */
4450int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4451{
4452	int i, ret;
4453
4454	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4455
4456	if (!set->nr_hw_queues)
4457		return -EINVAL;
4458	if (!set->queue_depth)
4459		return -EINVAL;
4460	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4461		return -EINVAL;
4462
4463	if (!set->ops->queue_rq)
4464		return -EINVAL;
4465
4466	if (!set->ops->get_budget ^ !set->ops->put_budget)
4467		return -EINVAL;
4468
4469	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4470		pr_info("blk-mq: reduced tag depth to %u\n",
4471			BLK_MQ_MAX_DEPTH);
4472		set->queue_depth = BLK_MQ_MAX_DEPTH;
4473	}
4474
4475	if (!set->nr_maps)
4476		set->nr_maps = 1;
4477	else if (set->nr_maps > HCTX_MAX_TYPES)
4478		return -EINVAL;
4479
4480	/*
4481	 * If a crashdump is active, then we are potentially in a very
4482	 * memory constrained environment. Limit us to  64 tags to prevent
4483	 * using too much memory.
4484	 */
4485	if (is_kdump_kernel())
 
4486		set->queue_depth = min(64U, set->queue_depth);
4487
4488	/*
4489	 * There is no use for more h/w queues than cpus if we just have
4490	 * a single map
4491	 */
4492	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4493		set->nr_hw_queues = nr_cpu_ids;
4494
4495	if (set->flags & BLK_MQ_F_BLOCKING) {
4496		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4497		if (!set->srcu)
4498			return -ENOMEM;
4499		ret = init_srcu_struct(set->srcu);
4500		if (ret)
4501			goto out_free_srcu;
4502	}
4503
4504	ret = -ENOMEM;
4505	set->tags = kcalloc_node(set->nr_hw_queues,
4506				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4507				 set->numa_node);
4508	if (!set->tags)
4509		goto out_cleanup_srcu;
4510
4511	for (i = 0; i < set->nr_maps; i++) {
4512		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4513						  sizeof(set->map[i].mq_map[0]),
4514						  GFP_KERNEL, set->numa_node);
4515		if (!set->map[i].mq_map)
4516			goto out_free_mq_map;
4517		set->map[i].nr_queues = set->nr_hw_queues;
4518	}
4519
4520	blk_mq_update_queue_map(set);
4521
4522	ret = blk_mq_alloc_set_map_and_rqs(set);
4523	if (ret)
4524		goto out_free_mq_map;
4525
4526	mutex_init(&set->tag_list_lock);
4527	INIT_LIST_HEAD(&set->tag_list);
4528
4529	return 0;
4530
4531out_free_mq_map:
4532	for (i = 0; i < set->nr_maps; i++) {
4533		kfree(set->map[i].mq_map);
4534		set->map[i].mq_map = NULL;
4535	}
4536	kfree(set->tags);
4537	set->tags = NULL;
4538out_cleanup_srcu:
4539	if (set->flags & BLK_MQ_F_BLOCKING)
4540		cleanup_srcu_struct(set->srcu);
4541out_free_srcu:
4542	if (set->flags & BLK_MQ_F_BLOCKING)
4543		kfree(set->srcu);
4544	return ret;
4545}
4546EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4547
4548/* allocate and initialize a tagset for a simple single-queue device */
4549int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4550		const struct blk_mq_ops *ops, unsigned int queue_depth,
4551		unsigned int set_flags)
4552{
4553	memset(set, 0, sizeof(*set));
4554	set->ops = ops;
4555	set->nr_hw_queues = 1;
4556	set->nr_maps = 1;
4557	set->queue_depth = queue_depth;
4558	set->numa_node = NUMA_NO_NODE;
4559	set->flags = set_flags;
4560	return blk_mq_alloc_tag_set(set);
4561}
4562EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4563
4564void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4565{
4566	int i, j;
4567
4568	for (i = 0; i < set->nr_hw_queues; i++)
4569		__blk_mq_free_map_and_rqs(set, i);
4570
4571	if (blk_mq_is_shared_tags(set->flags)) {
4572		blk_mq_free_map_and_rqs(set, set->shared_tags,
4573					BLK_MQ_NO_HCTX_IDX);
4574	}
4575
4576	for (j = 0; j < set->nr_maps; j++) {
4577		kfree(set->map[j].mq_map);
4578		set->map[j].mq_map = NULL;
4579	}
4580
4581	kfree(set->tags);
4582	set->tags = NULL;
4583	if (set->flags & BLK_MQ_F_BLOCKING) {
4584		cleanup_srcu_struct(set->srcu);
4585		kfree(set->srcu);
4586	}
4587}
4588EXPORT_SYMBOL(blk_mq_free_tag_set);
4589
4590int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4591{
4592	struct blk_mq_tag_set *set = q->tag_set;
4593	struct blk_mq_hw_ctx *hctx;
4594	int ret;
4595	unsigned long i;
4596
4597	if (!set)
4598		return -EINVAL;
4599
4600	if (q->nr_requests == nr)
4601		return 0;
4602
4603	blk_mq_freeze_queue(q);
4604	blk_mq_quiesce_queue(q);
4605
4606	ret = 0;
4607	queue_for_each_hw_ctx(q, hctx, i) {
4608		if (!hctx->tags)
4609			continue;
4610		/*
4611		 * If we're using an MQ scheduler, just update the scheduler
4612		 * queue depth. This is similar to what the old code would do.
4613		 */
4614		if (hctx->sched_tags) {
4615			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4616						      nr, true);
4617		} else {
4618			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4619						      false);
4620		}
4621		if (ret)
4622			break;
4623		if (q->elevator && q->elevator->type->ops.depth_updated)
4624			q->elevator->type->ops.depth_updated(hctx);
4625	}
4626	if (!ret) {
 
4627		q->nr_requests = nr;
4628		if (blk_mq_is_shared_tags(set->flags)) {
4629			if (q->elevator)
4630				blk_mq_tag_update_sched_shared_tags(q);
4631			else
4632				blk_mq_tag_resize_shared_tags(set, nr);
4633		}
4634	}
4635
4636	blk_mq_unquiesce_queue(q);
4637	blk_mq_unfreeze_queue(q);
4638
4639	return ret;
4640}
4641
4642/*
4643 * request_queue and elevator_type pair.
4644 * It is just used by __blk_mq_update_nr_hw_queues to cache
4645 * the elevator_type associated with a request_queue.
4646 */
4647struct blk_mq_qe_pair {
4648	struct list_head node;
4649	struct request_queue *q;
4650	struct elevator_type *type;
4651};
4652
4653/*
4654 * Cache the elevator_type in qe pair list and switch the
4655 * io scheduler to 'none'
4656 */
4657static bool blk_mq_elv_switch_none(struct list_head *head,
4658		struct request_queue *q)
4659{
4660	struct blk_mq_qe_pair *qe;
4661
4662	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4663	if (!qe)
4664		return false;
4665
4666	/* q->elevator needs protection from ->sysfs_lock */
4667	mutex_lock(&q->sysfs_lock);
4668
4669	/* the check has to be done with holding sysfs_lock */
4670	if (!q->elevator) {
4671		kfree(qe);
4672		goto unlock;
4673	}
4674
4675	INIT_LIST_HEAD(&qe->node);
4676	qe->q = q;
4677	qe->type = q->elevator->type;
4678	/* keep a reference to the elevator module as we'll switch back */
4679	__elevator_get(qe->type);
4680	list_add(&qe->node, head);
4681	elevator_disable(q);
4682unlock:
4683	mutex_unlock(&q->sysfs_lock);
4684
4685	return true;
4686}
4687
4688static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4689						struct request_queue *q)
4690{
4691	struct blk_mq_qe_pair *qe;
4692
4693	list_for_each_entry(qe, head, node)
4694		if (qe->q == q)
4695			return qe;
4696
4697	return NULL;
4698}
4699
4700static void blk_mq_elv_switch_back(struct list_head *head,
4701				  struct request_queue *q)
4702{
4703	struct blk_mq_qe_pair *qe;
4704	struct elevator_type *t;
4705
4706	qe = blk_lookup_qe_pair(head, q);
4707	if (!qe)
4708		return;
4709	t = qe->type;
4710	list_del(&qe->node);
4711	kfree(qe);
4712
4713	mutex_lock(&q->sysfs_lock);
4714	elevator_switch(q, t);
4715	/* drop the reference acquired in blk_mq_elv_switch_none */
4716	elevator_put(t);
4717	mutex_unlock(&q->sysfs_lock);
4718}
4719
4720static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4721							int nr_hw_queues)
4722{
4723	struct request_queue *q;
4724	LIST_HEAD(head);
4725	int prev_nr_hw_queues = set->nr_hw_queues;
4726	int i;
4727
4728	lockdep_assert_held(&set->tag_list_lock);
4729
4730	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4731		nr_hw_queues = nr_cpu_ids;
4732	if (nr_hw_queues < 1)
4733		return;
4734	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4735		return;
4736
4737	list_for_each_entry(q, &set->tag_list, tag_set_list)
4738		blk_mq_freeze_queue(q);
4739	/*
4740	 * Switch IO scheduler to 'none', cleaning up the data associated
4741	 * with the previous scheduler. We will switch back once we are done
4742	 * updating the new sw to hw queue mappings.
4743	 */
4744	list_for_each_entry(q, &set->tag_list, tag_set_list)
4745		if (!blk_mq_elv_switch_none(&head, q))
4746			goto switch_back;
4747
4748	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4749		blk_mq_debugfs_unregister_hctxs(q);
4750		blk_mq_sysfs_unregister_hctxs(q);
4751	}
4752
4753	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4754		goto reregister;
4755
4756fallback:
4757	blk_mq_update_queue_map(set);
4758	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4759		blk_mq_realloc_hw_ctxs(set, q);
4760		blk_mq_update_poll_flag(q);
4761		if (q->nr_hw_queues != set->nr_hw_queues) {
4762			int i = prev_nr_hw_queues;
4763
4764			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4765					nr_hw_queues, prev_nr_hw_queues);
4766			for (; i < set->nr_hw_queues; i++)
4767				__blk_mq_free_map_and_rqs(set, i);
4768
4769			set->nr_hw_queues = prev_nr_hw_queues;
4770			goto fallback;
4771		}
4772		blk_mq_map_swqueue(q);
4773	}
4774
4775reregister:
4776	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4777		blk_mq_sysfs_register_hctxs(q);
4778		blk_mq_debugfs_register_hctxs(q);
4779	}
4780
4781switch_back:
4782	list_for_each_entry(q, &set->tag_list, tag_set_list)
4783		blk_mq_elv_switch_back(&head, q);
4784
4785	list_for_each_entry(q, &set->tag_list, tag_set_list)
4786		blk_mq_unfreeze_queue(q);
4787
4788	/* Free the excess tags when nr_hw_queues shrink. */
4789	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
4790		__blk_mq_free_map_and_rqs(set, i);
4791}
4792
4793void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4794{
4795	mutex_lock(&set->tag_list_lock);
4796	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4797	mutex_unlock(&set->tag_list_lock);
4798}
4799EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4800
4801static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
4802			 struct io_comp_batch *iob, unsigned int flags)
4803{
4804	long state = get_current_state();
4805	int ret;
4806
4807	do {
4808		ret = q->mq_ops->poll(hctx, iob);
4809		if (ret > 0) {
4810			__set_current_state(TASK_RUNNING);
4811			return ret;
4812		}
4813
4814		if (signal_pending_state(state, current))
4815			__set_current_state(TASK_RUNNING);
4816		if (task_is_running(current))
4817			return 1;
4818
4819		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4820			break;
4821		cpu_relax();
4822	} while (!need_resched());
4823
4824	__set_current_state(TASK_RUNNING);
4825	return 0;
4826}
4827
4828int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
4829		struct io_comp_batch *iob, unsigned int flags)
4830{
4831	struct blk_mq_hw_ctx *hctx = xa_load(&q->hctx_table, cookie);
4832
4833	return blk_hctx_poll(q, hctx, iob, flags);
4834}
4835
4836int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
4837		unsigned int poll_flags)
4838{
4839	struct request_queue *q = rq->q;
4840	int ret;
4841
4842	if (!blk_rq_is_poll(rq))
4843		return 0;
4844	if (!percpu_ref_tryget(&q->q_usage_counter))
4845		return 0;
4846
4847	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
4848	blk_queue_exit(q);
4849
4850	return ret;
4851}
4852EXPORT_SYMBOL_GPL(blk_rq_poll);
4853
4854unsigned int blk_mq_rq_cpu(struct request *rq)
4855{
4856	return rq->mq_ctx->cpu;
4857}
4858EXPORT_SYMBOL(blk_mq_rq_cpu);
4859
4860void blk_mq_cancel_work_sync(struct request_queue *q)
4861{
4862	struct blk_mq_hw_ctx *hctx;
4863	unsigned long i;
4864
4865	cancel_delayed_work_sync(&q->requeue_work);
4866
4867	queue_for_each_hw_ctx(q, hctx, i)
4868		cancel_delayed_work_sync(&hctx->run_work);
4869}
4870
4871static int __init blk_mq_init(void)
4872{
4873	int i;
 
 
4874
4875	for_each_possible_cpu(i)
4876		init_llist_head(&per_cpu(blk_cpu_done, i));
4877	for_each_possible_cpu(i)
4878		INIT_CSD(&per_cpu(blk_cpu_csd, i),
4879			 __blk_mq_complete_request_remote, NULL);
4880	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4881
4882	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4883				  "block/softirq:dead", NULL,
4884				  blk_softirq_cpu_dead);
4885	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4886				blk_mq_hctx_notify_dead);
4887	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4888				blk_mq_hctx_notify_online,
4889				blk_mq_hctx_notify_offline);
4890	return 0;
4891}
4892subsys_initcall(blk_mq_init);