Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Block multiqueue core code
   3 *
   4 * Copyright (C) 2013-2014 Jens Axboe
   5 * Copyright (C) 2013-2014 Christoph Hellwig
   6 */
   7#include <linux/kernel.h>
   8#include <linux/module.h>
   9#include <linux/backing-dev.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
 
  12#include <linux/kmemleak.h>
  13#include <linux/mm.h>
  14#include <linux/init.h>
  15#include <linux/slab.h>
  16#include <linux/workqueue.h>
  17#include <linux/smp.h>
 
  18#include <linux/llist.h>
  19#include <linux/list_sort.h>
  20#include <linux/cpu.h>
  21#include <linux/cache.h>
  22#include <linux/sched/sysctl.h>
 
  23#include <linux/delay.h>
  24#include <linux/crash_dump.h>
 
 
 
 
  25
  26#include <trace/events/block.h>
  27
  28#include <linux/blk-mq.h>
  29#include "blk.h"
  30#include "blk-mq.h"
  31#include "blk-mq-tag.h"
  32
  33static DEFINE_MUTEX(all_q_mutex);
  34static LIST_HEAD(all_q_list);
  35
  36static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
 
 
 
 
 
 
 
 
 
 
 
  37
  38/*
  39 * Check if any of the ctx's have pending work in this hardware queue
 
  40 */
  41static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  42{
  43	unsigned int i;
  44
  45	for (i = 0; i < hctx->ctx_map.size; i++)
  46		if (hctx->ctx_map.map[i].word)
  47			return true;
  48
  49	return false;
  50}
  51
  52static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
  53					      struct blk_mq_ctx *ctx)
  54{
  55	return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
  56}
  57
  58#define CTX_TO_BIT(hctx, ctx)	\
  59	((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
  60
  61/*
  62 * Mark this ctx as having pending work in this hardware queue
  63 */
  64static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  65				     struct blk_mq_ctx *ctx)
  66{
  67	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
  68
  69	if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
  70		set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
  71}
  72
  73static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  74				      struct blk_mq_ctx *ctx)
  75{
  76	struct blk_align_bitmap *bm = get_bm(hctx, ctx);
  77
  78	clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
  79}
  80
  81void blk_mq_freeze_queue_start(struct request_queue *q)
 
 
 
 
 
  82{
  83	int freeze_depth;
 
 
 
 
 
 
 
 
  84
  85	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
  86	if (freeze_depth == 1) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  87		percpu_ref_kill(&q->q_usage_counter);
  88		blk_mq_run_hw_queues(q, false);
 
 
 
 
  89	}
 
 
  90}
  91EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
  92
  93static void blk_mq_freeze_queue_wait(struct request_queue *q)
 
 
 
 
 
 
 
  94{
  95	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
  96}
 
  97
  98/*
  99 * Guarantee no request is in use, so we can change any data structure of
 100 * the queue afterward.
 101 */
 102void blk_freeze_queue(struct request_queue *q)
 103{
 104	/*
 105	 * In the !blk_mq case we are only calling this to kill the
 106	 * q_usage_counter, otherwise this increases the freeze depth
 107	 * and waits for it to return to zero.  For this reason there is
 108	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 109	 * exported to drivers as the only user for unfreeze is blk_mq.
 110	 */
 111	blk_mq_freeze_queue_start(q);
 112	blk_mq_freeze_queue_wait(q);
 113}
 
 114
 115void blk_mq_freeze_queue(struct request_queue *q)
 116{
 117	/*
 118	 * ...just an alias to keep freeze and unfreeze actions balanced
 119	 * in the blk_mq_* namespace
 120	 */
 121	blk_freeze_queue(q);
 122}
 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 124
 125void blk_mq_unfreeze_queue(struct request_queue *q)
 126{
 127	int freeze_depth;
 128
 129	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
 130	WARN_ON_ONCE(freeze_depth < 0);
 131	if (!freeze_depth) {
 132		percpu_ref_reinit(&q->q_usage_counter);
 
 
 
 133		wake_up_all(&q->mq_freeze_wq);
 134	}
 
 
 
 
 
 
 
 
 
 
 135}
 136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138void blk_mq_wake_waiters(struct request_queue *q)
 139{
 140	struct blk_mq_hw_ctx *hctx;
 141	unsigned int i;
 142
 143	queue_for_each_hw_ctx(q, hctx, i)
 144		if (blk_mq_hw_queue_mapped(hctx))
 145			blk_mq_tag_wakeup_all(hctx->tags, true);
 146
 147	/*
 148	 * If we are called because the queue has now been marked as
 149	 * dying, we need to ensure that processes currently waiting on
 150	 * the queue are notified as well.
 151	 */
 152	wake_up_all(&q->mq_freeze_wq);
 153}
 154
 155bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 156{
 157	return blk_mq_has_free_tags(hctx->tags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 158}
 159EXPORT_SYMBOL(blk_mq_can_queue);
 160
 161static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
 162			       struct request *rq, unsigned int rw_flags)
 163{
 164	if (blk_queue_io_stat(q))
 165		rw_flags |= REQ_IO_STAT;
 
 
 166
 167	INIT_LIST_HEAD(&rq->queuelist);
 168	/* csd/requeue_work/fifo_time is initialized before use */
 169	rq->q = q;
 170	rq->mq_ctx = ctx;
 171	rq->cmd_flags |= rw_flags;
 172	/* do not touch atomic flags, it needs atomic ops against the timer */
 173	rq->cpu = -1;
 174	INIT_HLIST_NODE(&rq->hash);
 175	RB_CLEAR_NODE(&rq->rb_node);
 176	rq->rq_disk = NULL;
 
 
 
 
 
 
 
 
 
 
 177	rq->part = NULL;
 178	rq->start_time = jiffies;
 179#ifdef CONFIG_BLK_CGROUP
 180	rq->rl = NULL;
 181	set_start_time_ns(rq);
 182	rq->io_start_time_ns = 0;
 183#endif
 184	rq->nr_phys_segments = 0;
 185#if defined(CONFIG_BLK_DEV_INTEGRITY)
 186	rq->nr_integrity_segments = 0;
 187#endif
 188	rq->special = NULL;
 
 
 
 189	/* tag was already set */
 190	rq->errors = 0;
 
 191
 192	rq->cmd = rq->__cmd;
 
 193
 194	rq->extra_len = 0;
 195	rq->sense_len = 0;
 196	rq->resid_len = 0;
 197	rq->sense = NULL;
 198
 199	INIT_LIST_HEAD(&rq->timeout_list);
 200	rq->timeout = 0;
 
 201
 202	rq->end_io = NULL;
 203	rq->end_io_data = NULL;
 204	rq->next_rq = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 205
 206	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
 207}
 208
 209static struct request *
 210__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
 211{
 
 
 212	struct request *rq;
 213	unsigned int tag;
 214
 215	tag = blk_mq_get_tag(data);
 216	if (tag != BLK_MQ_TAG_FAIL) {
 217		rq = data->hctx->tags->rqs[tag];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218
 219		if (blk_mq_tag_busy(data->hctx)) {
 220			rq->cmd_flags = REQ_MQ_INFLIGHT;
 221			atomic_inc(&data->hctx->nr_active);
 
 
 
 
 
 
 
 
 
 
 222		}
 
 
 
 223
 224		rq->tag = tag;
 225		blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
 226		return rq;
 
 
 
 
 
 
 
 
 
 
 227	}
 228
 229	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230}
 231
 232struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
 233		unsigned int flags)
 
 234{
 235	struct blk_mq_ctx *ctx;
 236	struct blk_mq_hw_ctx *hctx;
 237	struct request *rq;
 238	struct blk_mq_alloc_data alloc_data;
 239	int ret;
 240
 241	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
 242	if (ret)
 243		return ERR_PTR(ret);
 
 
 
 
 
 
 
 
 
 
 244
 245	ctx = blk_mq_get_ctx(q);
 246	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 247	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
 248
 249	rq = __blk_mq_alloc_request(&alloc_data, rw);
 250	if (!rq && !(flags & BLK_MQ_REQ_NOWAIT)) {
 251		__blk_mq_run_hw_queue(hctx);
 252		blk_mq_put_ctx(ctx);
 253
 254		ctx = blk_mq_get_ctx(q);
 255		hctx = q->mq_ops->map_queue(q, ctx->cpu);
 256		blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
 257		rq =  __blk_mq_alloc_request(&alloc_data, rw);
 258		ctx = alloc_data.ctx;
 259	}
 260	blk_mq_put_ctx(ctx);
 
 
 
 
 
 
 
 
 
 
 
 261	if (!rq) {
 262		blk_queue_exit(q);
 263		return ERR_PTR(-EWOULDBLOCK);
 264	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265	return rq;
 
 
 
 266}
 267EXPORT_SYMBOL(blk_mq_alloc_request);
 268
 269static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
 270				  struct blk_mq_ctx *ctx, struct request *rq)
 271{
 272	const int tag = rq->tag;
 273	struct request_queue *q = rq->q;
 
 
 
 
 
 
 
 
 
 274
 275	if (rq->cmd_flags & REQ_MQ_INFLIGHT)
 276		atomic_dec(&hctx->nr_active);
 277	rq->cmd_flags = 0;
 278
 279	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 280	blk_mq_put_tag(hctx, tag, &ctx->last_tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281	blk_queue_exit(q);
 
 282}
 
 283
 284void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
 285{
 286	struct blk_mq_ctx *ctx = rq->mq_ctx;
 287
 288	ctx->rq_completed[rq_is_sync(rq)]++;
 289	__blk_mq_free_request(hctx, ctx, rq);
 290
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291}
 292EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
 293
 294void blk_mq_free_request(struct request *rq)
 295{
 296	struct blk_mq_hw_ctx *hctx;
 297	struct request_queue *q = rq->q;
 298
 299	hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
 300	blk_mq_free_hctx_request(hctx, rq);
 
 
 
 
 
 
 
 
 301}
 302EXPORT_SYMBOL_GPL(blk_mq_free_request);
 303
 304inline void __blk_mq_end_request(struct request *rq, int error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 305{
 306	blk_account_io_done(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307
 308	if (rq->end_io) {
 309		rq->end_io(rq, error);
 
 
 310	} else {
 311		if (unlikely(blk_bidi_rq(rq)))
 312			blk_mq_free_request(rq->next_rq);
 313		blk_mq_free_request(rq);
 314	}
 315}
 316EXPORT_SYMBOL(__blk_mq_end_request);
 317
 318void blk_mq_end_request(struct request *rq, int error)
 319{
 320	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 321		BUG();
 322	__blk_mq_end_request(rq, error);
 323}
 324EXPORT_SYMBOL(blk_mq_end_request);
 325
 326static void __blk_mq_complete_request_remote(void *data)
 
 
 
 327{
 328	struct request *rq = data;
 
 
 329
 330	rq->q->softirq_done_fn(rq);
 
 331}
 332
 333static void blk_mq_ipi_complete_request(struct request *rq)
 334{
 335	struct blk_mq_ctx *ctx = rq->mq_ctx;
 336	bool shared = false;
 337	int cpu;
 
 338
 339	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
 340		rq->q->softirq_done_fn(rq);
 341		return;
 342	}
 343
 344	cpu = get_cpu();
 345	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
 346		shared = cpus_share_cache(cpu, ctx->cpu);
 347
 348	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
 349		rq->csd.func = __blk_mq_complete_request_remote;
 350		rq->csd.info = rq;
 351		rq->csd.flags = 0;
 352		smp_call_function_single_async(ctx->cpu, &rq->csd);
 353	} else {
 354		rq->q->softirq_done_fn(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355	}
 356	put_cpu();
 
 
 357}
 
 358
 359static void __blk_mq_complete_request(struct request *rq)
 360{
 361	struct request_queue *q = rq->q;
 
 362
 363	if (!q->softirq_done_fn)
 364		blk_mq_end_request(rq, rq->errors);
 365	else
 366		blk_mq_ipi_complete_request(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367}
 368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369/**
 370 * blk_mq_complete_request - end I/O on a request
 371 * @rq:		the request being processed
 372 *
 373 * Description:
 374 *	Ends all I/O on a request. It does not handle partial completions.
 375 *	The actual completion happens out-of-order, through a IPI handler.
 376 **/
 377void blk_mq_complete_request(struct request *rq, int error)
 378{
 379	struct request_queue *q = rq->q;
 380
 381	if (unlikely(blk_should_fake_timeout(q)))
 382		return;
 383	if (!blk_mark_rq_complete(rq)) {
 384		rq->errors = error;
 385		__blk_mq_complete_request(rq);
 386	}
 387}
 388EXPORT_SYMBOL(blk_mq_complete_request);
 389
 390int blk_mq_request_started(struct request *rq)
 391{
 392	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 393}
 394EXPORT_SYMBOL_GPL(blk_mq_request_started);
 395
 
 
 396void blk_mq_start_request(struct request *rq)
 397{
 398	struct request_queue *q = rq->q;
 399
 400	trace_block_rq_issue(q, rq);
 
 
 
 
 
 
 
 
 401
 402	rq->resid_len = blk_rq_bytes(rq);
 403	if (unlikely(blk_bidi_rq(rq)))
 404		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
 405
 406	blk_add_timer(rq);
 
 
 407
 408	/*
 409	 * Ensure that ->deadline is visible before set the started
 410	 * flag and clear the completed flag.
 411	 */
 412	smp_mb__before_atomic();
 413
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414	/*
 415	 * Mark us as started and clear complete. Complete might have been
 416	 * set if requeue raced with timeout, which then marked it as
 417	 * complete. So be sure to clear complete again when we start
 418	 * the request, otherwise we'll ignore the completion event.
 419	 */
 420	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
 421		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 422	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
 423		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
 
 424
 425	if (q->dma_drain_size && blk_rq_bytes(rq)) {
 426		/*
 427		 * Make sure space for the drain appears.  We know we can do
 428		 * this because max_hw_segments has been adjusted to be one
 429		 * fewer than the device can handle.
 430		 */
 431		rq->nr_phys_segments++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432	}
 
 
 
 433}
 434EXPORT_SYMBOL(blk_mq_start_request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436static void __blk_mq_requeue_request(struct request *rq)
 437{
 438	struct request_queue *q = rq->q;
 439
 440	trace_block_rq_requeue(q, rq);
 441
 442	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
 443		if (q->dma_drain_size && blk_rq_bytes(rq))
 444			rq->nr_phys_segments--;
 
 
 
 445	}
 446}
 447
 448void blk_mq_requeue_request(struct request *rq)
 449{
 
 
 
 450	__blk_mq_requeue_request(rq);
 451
 452	BUG_ON(blk_queued_rq(rq));
 453	blk_mq_add_to_requeue_list(rq, true);
 
 
 
 
 
 
 
 454}
 455EXPORT_SYMBOL(blk_mq_requeue_request);
 456
 457static void blk_mq_requeue_work(struct work_struct *work)
 458{
 459	struct request_queue *q =
 460		container_of(work, struct request_queue, requeue_work);
 461	LIST_HEAD(rq_list);
 462	struct request *rq, *next;
 463	unsigned long flags;
 464
 465	spin_lock_irqsave(&q->requeue_lock, flags);
 466	list_splice_init(&q->requeue_list, &rq_list);
 467	spin_unlock_irqrestore(&q->requeue_lock, flags);
 
 468
 469	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 470		if (!(rq->cmd_flags & REQ_SOFTBARRIER))
 471			continue;
 472
 473		rq->cmd_flags &= ~REQ_SOFTBARRIER;
 474		list_del_init(&rq->queuelist);
 475		blk_mq_insert_request(rq, true, false, false);
 
 
 
 
 
 
 
 
 
 476	}
 477
 478	while (!list_empty(&rq_list)) {
 479		rq = list_entry(rq_list.next, struct request, queuelist);
 480		list_del_init(&rq->queuelist);
 481		blk_mq_insert_request(rq, false, false, false);
 482	}
 483
 484	/*
 485	 * Use the start variant of queue running here, so that running
 486	 * the requeue work will kick stopped queues.
 487	 */
 488	blk_mq_start_hw_queues(q);
 489}
 490
 491void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
 492{
 493	struct request_queue *q = rq->q;
 494	unsigned long flags;
 495
 496	/*
 497	 * We abuse this flag that is otherwise used by the I/O scheduler to
 498	 * request head insertation from the workqueue.
 499	 */
 500	BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
 501
 502	spin_lock_irqsave(&q->requeue_lock, flags);
 503	if (at_head) {
 504		rq->cmd_flags |= REQ_SOFTBARRIER;
 505		list_add(&rq->queuelist, &q->requeue_list);
 506	} else {
 507		list_add_tail(&rq->queuelist, &q->requeue_list);
 508	}
 509	spin_unlock_irqrestore(&q->requeue_lock, flags);
 510}
 511EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
 512
 513void blk_mq_cancel_requeue_work(struct request_queue *q)
 
 514{
 515	cancel_work_sync(&q->requeue_work);
 
 516}
 517EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
 518
 519void blk_mq_kick_requeue_list(struct request_queue *q)
 520{
 521	kblockd_schedule_work(&q->requeue_work);
 522}
 523EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 524
 525void blk_mq_abort_requeue_list(struct request_queue *q)
 526{
 527	unsigned long flags;
 528	LIST_HEAD(rq_list);
 
 
 
 
 
 
 
 
 
 
 
 
 529
 530	spin_lock_irqsave(&q->requeue_lock, flags);
 531	list_splice_init(&q->requeue_list, &rq_list);
 532	spin_unlock_irqrestore(&q->requeue_lock, flags);
 533
 534	while (!list_empty(&rq_list)) {
 535		struct request *rq;
 536
 537		rq = list_first_entry(&rq_list, struct request, queuelist);
 538		list_del_init(&rq->queuelist);
 539		rq->errors = -EIO;
 540		blk_mq_end_request(rq, rq->errors);
 541	}
 
 542}
 543EXPORT_SYMBOL(blk_mq_abort_requeue_list);
 544
 545struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 546{
 547	if (tag < tags->nr_tags)
 548		return tags->rqs[tag];
 
 549
 550	return NULL;
 
 
 
 
 
 
 551}
 552EXPORT_SYMBOL(blk_mq_tag_to_rq);
 553
 554struct blk_mq_timeout_data {
 
 555	unsigned long next;
 556	unsigned int next_set;
 557};
 558
 559void blk_mq_rq_timed_out(struct request *req, bool reserved)
 560{
 561	struct blk_mq_ops *ops = req->q->mq_ops;
 562	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
 563
 564	/*
 565	 * We know that complete is set at this point. If STARTED isn't set
 566	 * anymore, then the request isn't active and the "timeout" should
 567	 * just be ignored. This can happen due to the bitflag ordering.
 568	 * Timeout first checks if STARTED is set, and if it is, assumes
 569	 * the request is active. But if we race with completion, then
 570	 * we both flags will get cleared. So check here again, and ignore
 571	 * a timeout event with a request that isn't active.
 572	 */
 573	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
 574		return;
 575
 576	if (ops->timeout)
 577		ret = ops->timeout(req, reserved);
 
 578
 579	switch (ret) {
 580	case BLK_EH_HANDLED:
 581		__blk_mq_complete_request(req);
 582		break;
 583	case BLK_EH_RESET_TIMER:
 584		blk_add_timer(req);
 585		blk_clear_rq_complete(req);
 586		break;
 587	case BLK_EH_NOT_HANDLED:
 588		break;
 589	default:
 590		printk(KERN_ERR "block: bad eh return: %d\n", ret);
 591		break;
 
 592	}
 593}
 594
 595static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 596		struct request *rq, void *priv, bool reserved)
 597{
 598	struct blk_mq_timeout_data *data = priv;
 599
 600	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
 601		/*
 602		 * If a request wasn't started before the queue was
 603		 * marked dying, kill it here or it'll go unnoticed.
 604		 */
 605		if (unlikely(blk_queue_dying(rq->q))) {
 606			rq->errors = -EIO;
 607			blk_mq_end_request(rq, rq->errors);
 608		}
 609		return;
 610	}
 
 
 611
 612	if (time_after_eq(jiffies, rq->deadline)) {
 613		if (!blk_mark_rq_complete(rq))
 614			blk_mq_rq_timed_out(rq, reserved);
 615	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
 616		data->next = rq->deadline;
 617		data->next_set = 1;
 618	}
 619}
 620
 621static void blk_mq_timeout_work(struct work_struct *work)
 622{
 623	struct request_queue *q =
 624		container_of(work, struct request_queue, timeout_work);
 625	struct blk_mq_timeout_data data = {
 626		.next		= 0,
 627		.next_set	= 0,
 628	};
 629	int i;
 
 630
 631	if (blk_queue_enter(q, true))
 
 
 
 
 
 
 
 
 
 
 
 
 
 632		return;
 633
 634	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
 
 
 
 
 
 
 
 
 
 635
 636	if (data.next_set) {
 637		data.next = blk_rq_timeout(round_jiffies_up(data.next));
 638		mod_timer(&q->timeout, data.next);
 639	} else {
 640		struct blk_mq_hw_ctx *hctx;
 641
 
 
 
 
 
 
 
 
 
 642		queue_for_each_hw_ctx(q, hctx, i) {
 643			/* the hctx may be unmapped, so check it here */
 644			if (blk_mq_hw_queue_mapped(hctx))
 645				blk_mq_tag_idle(hctx);
 646		}
 647	}
 648	blk_queue_exit(q);
 649}
 650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 651/*
 652 * Reverse check our software queue for entries that we could potentially
 653 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 654 * too much time checking for merges.
 655 */
 656static bool blk_mq_attempt_merge(struct request_queue *q,
 657				 struct blk_mq_ctx *ctx, struct bio *bio)
 658{
 659	struct request *rq;
 660	int checked = 8;
 
 
 661
 662	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
 663		int el_ret;
 664
 665		if (!checked--)
 666			break;
 
 
 667
 668		if (!blk_rq_merge_ok(rq, bio))
 669			continue;
 
 
 
 
 
 670
 671		el_ret = blk_try_merge(rq, bio);
 672		if (el_ret == ELEVATOR_BACK_MERGE) {
 673			if (bio_attempt_back_merge(q, rq, bio)) {
 674				ctx->rq_merged++;
 675				return true;
 676			}
 677			break;
 678		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
 679			if (bio_attempt_front_merge(q, rq, bio)) {
 680				ctx->rq_merged++;
 681				return true;
 682			}
 683			break;
 684		}
 685	}
 
 686
 687	return false;
 688}
 689
 690/*
 691 * Process software queues that have been marked busy, splicing them
 692 * to the for-dispatch
 693 */
 694static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 695{
 696	struct blk_mq_ctx *ctx;
 697	int i;
 
 
 
 698
 699	for (i = 0; i < hctx->ctx_map.size; i++) {
 700		struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
 701		unsigned int off, bit;
 702
 703		if (!bm->word)
 704			continue;
 705
 706		bit = 0;
 707		off = i * hctx->ctx_map.bits_per_word;
 708		do {
 709			bit = find_next_bit(&bm->word, bm->depth, bit);
 710			if (bit >= bm->depth)
 711				break;
 712
 713			ctx = hctx->ctxs[bit + off];
 714			clear_bit(bit, &bm->word);
 715			spin_lock(&ctx->lock);
 716			list_splice_tail_init(&ctx->rq_list, list);
 717			spin_unlock(&ctx->lock);
 718
 719			bit++;
 720		} while (1);
 
 
 
 
 721	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722}
 723
 724/*
 725 * Run this hardware queue, pulling any software queues mapped to it in.
 726 * Note that this function currently has various problems around ordering
 727 * of IO. In particular, we'd like FIFO behaviour on handling existing
 728 * items on the hctx->dispatch list. Ignore that for now.
 729 */
 730static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
 
 731{
 732	struct request_queue *q = hctx->queue;
 733	struct request *rq;
 734	LIST_HEAD(rq_list);
 735	LIST_HEAD(driver_list);
 736	struct list_head *dptr;
 737	int queued;
 
 
 738
 739	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
 
 
 
 
 
 
 
 
 
 740
 741	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
 742		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743
 744	hctx->run++;
 
 
 745
 746	/*
 747	 * Touch any software queue that has pending entries.
 
 
 
 
 
 
 
 
 
 
 
 748	 */
 749	flush_busy_ctxs(hctx, &rq_list);
 750
 751	/*
 752	 * If we have previous entries on our dispatch list, grab them
 753	 * and stuff them at the front for more fair dispatch.
 
 754	 */
 755	if (!list_empty_careful(&hctx->dispatch)) {
 756		spin_lock(&hctx->lock);
 757		if (!list_empty(&hctx->dispatch))
 758			list_splice_init(&hctx->dispatch, &rq_list);
 759		spin_unlock(&hctx->lock);
 760	}
 761
 762	/*
 763	 * Start off with dptr being NULL, so we start the first request
 764	 * immediately, even if we have more pending.
 765	 */
 766	dptr = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 767
 768	/*
 769	 * Now process all the entries, sending them to the driver.
 770	 */
 771	queued = 0;
 772	while (!list_empty(&rq_list)) {
 773		struct blk_mq_queue_data bd;
 774		int ret;
 775
 776		rq = list_first_entry(&rq_list, struct request, queuelist);
 
 
 
 
 
 
 777		list_del_init(&rq->queuelist);
 778
 779		bd.rq = rq;
 780		bd.list = dptr;
 781		bd.last = list_empty(&rq_list);
 782
 
 
 
 
 
 
 783		ret = q->mq_ops->queue_rq(hctx, &bd);
 784		switch (ret) {
 785		case BLK_MQ_RQ_QUEUE_OK:
 786			queued++;
 787			continue;
 788		case BLK_MQ_RQ_QUEUE_BUSY:
 789			list_add(&rq->queuelist, &rq_list);
 790			__blk_mq_requeue_request(rq);
 791			break;
 
 
 
 
 
 
 792		default:
 793			pr_err("blk-mq: bad return on queue: %d\n", ret);
 794		case BLK_MQ_RQ_QUEUE_ERROR:
 795			rq->errors = -EIO;
 796			blk_mq_end_request(rq, rq->errors);
 797			break;
 798		}
 799
 800		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
 801			break;
 802
 803		/*
 804		 * We've done the first request. If we have more than 1
 805		 * left in the list, set dptr to defer issue.
 806		 */
 807		if (!dptr && rq_list.next != rq_list.prev)
 808			dptr = &driver_list;
 809	}
 810
 811	if (!queued)
 812		hctx->dispatched[0]++;
 813	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
 814		hctx->dispatched[ilog2(queued) + 1]++;
 815
 816	/*
 817	 * Any items that need requeuing? Stuff them into hctx->dispatch,
 818	 * that is where we will continue on next queue run.
 819	 */
 820	if (!list_empty(&rq_list)) {
 
 
 
 
 
 
 
 
 
 821		spin_lock(&hctx->lock);
 822		list_splice(&rq_list, &hctx->dispatch);
 823		spin_unlock(&hctx->lock);
 
 824		/*
 825		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
 826		 * it's possible the queue is stopped and restarted again
 827		 * before this. Queue restart will dispatch requests. And since
 828		 * requests in rq_list aren't added into hctx->dispatch yet,
 829		 * the requests in rq_list might get lost.
 
 
 
 
 
 
 
 830		 *
 831		 * blk_mq_run_hw_queue() already checks the STOPPED bit
 832		 **/
 833		blk_mq_run_hw_queue(hctx, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835}
 836
 837/*
 838 * It'd be great if the workqueue API had a way to pass
 839 * in a mask and had some smarts for more clever placement.
 840 * For now we just round-robin here, switching for every
 841 * BLK_MQ_CPU_WORK_BATCH queued items.
 842 */
 843static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
 844{
 845	if (hctx->queue->nr_hw_queues == 1)
 
 
 
 
 846		return WORK_CPU_UNBOUND;
 847
 848	if (--hctx->next_cpu_batch <= 0) {
 849		int cpu = hctx->next_cpu, next_cpu;
 850
 851		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
 852		if (next_cpu >= nr_cpu_ids)
 853			next_cpu = cpumask_first(hctx->cpumask);
 854
 855		hctx->next_cpu = next_cpu;
 856		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
 
 
 
 
 
 
 
 
 
 
 
 857
 858		return cpu;
 
 
 
 
 
 
 859	}
 860
 861	return hctx->next_cpu;
 
 862}
 863
 864void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
 
 
 
 
 
 
 
 865{
 866	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
 867	    !blk_mq_hw_queue_mapped(hctx)))
 868		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869
 870	if (!async) {
 871		int cpu = get_cpu();
 872		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
 873			__blk_mq_run_hw_queue(hctx);
 874			put_cpu();
 875			return;
 876		}
 877
 878		put_cpu();
 
 
 879	}
 880
 881	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
 882			&hctx->run_work, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883}
 884
 
 
 
 
 
 885void blk_mq_run_hw_queues(struct request_queue *q, bool async)
 886{
 887	struct blk_mq_hw_ctx *hctx;
 888	int i;
 889
 
 
 
 890	queue_for_each_hw_ctx(q, hctx, i) {
 891		if ((!blk_mq_hctx_has_pending(hctx) &&
 892		    list_empty_careful(&hctx->dispatch)) ||
 893		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
 894			continue;
 895
 896		blk_mq_run_hw_queue(hctx, async);
 
 
 
 
 
 
 897	}
 898}
 899EXPORT_SYMBOL(blk_mq_run_hw_queues);
 900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
 902{
 903	cancel_delayed_work(&hctx->run_work);
 904	cancel_delayed_work(&hctx->delay_work);
 905	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
 906}
 907EXPORT_SYMBOL(blk_mq_stop_hw_queue);
 908
 
 
 
 
 
 
 
 
 
 909void blk_mq_stop_hw_queues(struct request_queue *q)
 910{
 911	struct blk_mq_hw_ctx *hctx;
 912	int i;
 913
 914	queue_for_each_hw_ctx(q, hctx, i)
 915		blk_mq_stop_hw_queue(hctx);
 916}
 917EXPORT_SYMBOL(blk_mq_stop_hw_queues);
 918
 919void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
 920{
 921	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 922
 923	blk_mq_run_hw_queue(hctx, false);
 924}
 925EXPORT_SYMBOL(blk_mq_start_hw_queue);
 926
 927void blk_mq_start_hw_queues(struct request_queue *q)
 928{
 929	struct blk_mq_hw_ctx *hctx;
 930	int i;
 931
 932	queue_for_each_hw_ctx(q, hctx, i)
 933		blk_mq_start_hw_queue(hctx);
 934}
 935EXPORT_SYMBOL(blk_mq_start_hw_queues);
 936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
 938{
 939	struct blk_mq_hw_ctx *hctx;
 940	int i;
 941
 942	queue_for_each_hw_ctx(q, hctx, i) {
 943		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
 944			continue;
 945
 946		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 947		blk_mq_run_hw_queue(hctx, async);
 948	}
 949}
 950EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
 951
 952static void blk_mq_run_work_fn(struct work_struct *work)
 953{
 954	struct blk_mq_hw_ctx *hctx;
 
 955
 956	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957
 958	__blk_mq_run_hw_queue(hctx);
 
 
 
 
 
 959}
 960
 961static void blk_mq_delay_work_fn(struct work_struct *work)
 
 
 962{
 963	struct blk_mq_hw_ctx *hctx;
 
 964
 965	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966
 967	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
 968		__blk_mq_run_hw_queue(hctx);
 
 
 
 
 969}
 970
 971void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
 972{
 973	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
 974		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975
 976	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
 977			&hctx->delay_work, msecs_to_jiffies(msecs));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 978}
 979EXPORT_SYMBOL(blk_mq_delay_queue);
 980
 981static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
 982					    struct blk_mq_ctx *ctx,
 983					    struct request *rq,
 984					    bool at_head)
 985{
 986	trace_block_rq_insert(hctx->queue, rq);
 987
 988	if (at_head)
 989		list_add(&rq->queuelist, &ctx->rq_list);
 990	else
 991		list_add_tail(&rq->queuelist, &ctx->rq_list);
 
 
 
 
 
 
 
 
 
 
 992}
 993
 994static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
 995				    struct request *rq, bool at_head)
 996{
 997	struct blk_mq_ctx *ctx = rq->mq_ctx;
 
 
 
 
 
 998
 999	__blk_mq_insert_req_list(hctx, ctx, rq, at_head);
1000	blk_mq_hctx_mark_pending(hctx, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001}
1002
1003void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1004		bool async)
1005{
1006	struct request_queue *q = rq->q;
1007	struct blk_mq_hw_ctx *hctx;
1008	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1009
1010	current_ctx = blk_mq_get_ctx(q);
1011	if (!cpu_online(ctx->cpu))
1012		rq->mq_ctx = ctx = current_ctx;
 
 
 
 
 
 
 
1013
1014	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016	spin_lock(&ctx->lock);
1017	__blk_mq_insert_request(hctx, rq, at_head);
1018	spin_unlock(&ctx->lock);
 
 
1019
1020	if (run_queue)
1021		blk_mq_run_hw_queue(hctx, async);
 
 
 
1022
1023	blk_mq_put_ctx(current_ctx);
 
 
 
 
 
 
 
 
 
 
 
 
1024}
1025
1026static void blk_mq_insert_requests(struct request_queue *q,
1027				     struct blk_mq_ctx *ctx,
1028				     struct list_head *list,
1029				     int depth,
1030				     bool from_schedule)
1031
1032{
1033	struct blk_mq_hw_ctx *hctx;
1034	struct blk_mq_ctx *current_ctx;
 
 
 
 
 
1035
1036	trace_block_unplug(q, depth, !from_schedule);
 
 
 
1037
1038	current_ctx = blk_mq_get_ctx(q);
 
 
 
 
 
1039
1040	if (!cpu_online(ctx->cpu))
1041		ctx = current_ctx;
1042	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1043
1044	/*
1045	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1046	 * offline now
1047	 */
1048	spin_lock(&ctx->lock);
1049	while (!list_empty(list)) {
1050		struct request *rq;
1051
1052		rq = list_first_entry(list, struct request, queuelist);
1053		list_del_init(&rq->queuelist);
1054		rq->mq_ctx = ctx;
1055		__blk_mq_insert_req_list(hctx, ctx, rq, false);
 
 
 
 
 
 
 
 
 
 
1056	}
1057	blk_mq_hctx_mark_pending(hctx, ctx);
1058	spin_unlock(&ctx->lock);
1059
1060	blk_mq_run_hw_queue(hctx, from_schedule);
1061	blk_mq_put_ctx(current_ctx);
 
1062}
1063
1064static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
 
1065{
1066	struct request *rqa = container_of(a, struct request, queuelist);
1067	struct request *rqb = container_of(b, struct request, queuelist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068
1069	return !(rqa->mq_ctx < rqb->mq_ctx ||
1070		 (rqa->mq_ctx == rqb->mq_ctx &&
1071		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072}
1073
1074void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1075{
1076	struct blk_mq_ctx *this_ctx;
1077	struct request_queue *this_q;
1078	struct request *rq;
1079	LIST_HEAD(list);
1080	LIST_HEAD(ctx_list);
1081	unsigned int depth;
1082
1083	list_splice_init(&plug->mq_list, &list);
1084
1085	list_sort(NULL, &list, plug_ctx_cmp);
 
 
 
 
 
 
 
 
1086
1087	this_q = NULL;
1088	this_ctx = NULL;
1089	depth = 0;
1090
1091	while (!list_empty(&list)) {
1092		rq = list_entry_rq(list.next);
1093		list_del_init(&rq->queuelist);
1094		BUG_ON(!rq->q);
1095		if (rq->mq_ctx != this_ctx) {
1096			if (this_ctx) {
1097				blk_mq_insert_requests(this_q, this_ctx,
1098							&ctx_list, depth,
1099							from_schedule);
1100			}
1101
1102			this_ctx = rq->mq_ctx;
1103			this_q = rq->q;
1104			depth = 0;
 
 
 
 
 
 
 
 
1105		}
1106
1107		depth++;
1108		list_add_tail(&rq->queuelist, &ctx_list);
 
 
1109	}
1110
1111	/*
1112	 * If 'this_ctx' is set, we know we have entries to complete
1113	 * on 'ctx_list'. Do those.
1114	 */
1115	if (this_ctx) {
1116		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1117				       from_schedule);
1118	}
1119}
1120
1121static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
 
1122{
1123	init_request_from_bio(rq, bio);
 
 
 
 
 
1124
1125	if (blk_do_io_stat(rq))
1126		blk_account_io_start(rq, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127}
1128
1129static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
 
1130{
1131	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1132		!blk_queue_nomerges(hctx->queue);
 
 
 
 
 
1133}
1134
1135static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1136					 struct blk_mq_ctx *ctx,
1137					 struct request *rq, struct bio *bio)
1138{
1139	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1140		blk_mq_bio_to_request(rq, bio);
1141		spin_lock(&ctx->lock);
1142insert_rq:
1143		__blk_mq_insert_request(hctx, rq, false);
1144		spin_unlock(&ctx->lock);
1145		return false;
1146	} else {
1147		struct request_queue *q = hctx->queue;
1148
1149		spin_lock(&ctx->lock);
1150		if (!blk_mq_attempt_merge(q, ctx, bio)) {
1151			blk_mq_bio_to_request(rq, bio);
1152			goto insert_rq;
1153		}
1154
1155		spin_unlock(&ctx->lock);
1156		__blk_mq_free_request(hctx, ctx, rq);
1157		return true;
 
1158	}
1159}
1160
1161struct blk_map_ctx {
1162	struct blk_mq_hw_ctx *hctx;
1163	struct blk_mq_ctx *ctx;
1164};
 
 
 
 
1165
1166static struct request *blk_mq_map_request(struct request_queue *q,
1167					  struct bio *bio,
1168					  struct blk_map_ctx *data)
 
 
1169{
1170	struct blk_mq_hw_ctx *hctx;
1171	struct blk_mq_ctx *ctx;
1172	struct request *rq;
1173	int rw = bio_data_dir(bio);
1174	struct blk_mq_alloc_data alloc_data;
1175
1176	blk_queue_enter_live(q);
1177	ctx = blk_mq_get_ctx(q);
1178	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1179
1180	if (rw_is_sync(bio->bi_rw))
1181		rw |= REQ_SYNC;
1182
1183	trace_block_getrq(q, bio, rw);
1184	blk_mq_set_alloc_data(&alloc_data, q, BLK_MQ_REQ_NOWAIT, ctx, hctx);
1185	rq = __blk_mq_alloc_request(&alloc_data, rw);
1186	if (unlikely(!rq)) {
1187		__blk_mq_run_hw_queue(hctx);
1188		blk_mq_put_ctx(ctx);
1189		trace_block_sleeprq(q, bio, rw);
1190
1191		ctx = blk_mq_get_ctx(q);
1192		hctx = q->mq_ops->map_queue(q, ctx->cpu);
1193		blk_mq_set_alloc_data(&alloc_data, q, 0, ctx, hctx);
1194		rq = __blk_mq_alloc_request(&alloc_data, rw);
1195		ctx = alloc_data.ctx;
1196		hctx = alloc_data.hctx;
1197	}
1198
1199	hctx->queued++;
1200	data->hctx = hctx;
1201	data->ctx = ctx;
1202	return rq;
1203}
1204
1205static int blk_mq_direct_issue_request(struct request *rq, blk_qc_t *cookie)
 
1206{
1207	int ret;
1208	struct request_queue *q = rq->q;
1209	struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1210			rq->mq_ctx->cpu);
1211	struct blk_mq_queue_data bd = {
1212		.rq = rq,
1213		.list = NULL,
1214		.last = 1
1215	};
1216	blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1217
1218	/*
1219	 * For OK queue, we are done. For error, kill it. Any other
1220	 * error (busy), just add it to our list as we previously
1221	 * would have done
1222	 */
1223	ret = q->mq_ops->queue_rq(hctx, &bd);
1224	if (ret == BLK_MQ_RQ_QUEUE_OK) {
1225		*cookie = new_cookie;
1226		return 0;
1227	}
1228
1229	__blk_mq_requeue_request(rq);
 
 
 
1230
1231	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1232		*cookie = BLK_QC_T_NONE;
1233		rq->errors = -EIO;
1234		blk_mq_end_request(rq, rq->errors);
1235		return 0;
1236	}
1237
1238	return -1;
 
 
 
 
1239}
1240
1241/*
1242 * Multiple hardware queue variant. This will not use per-process plugs,
1243 * but will attempt to bypass the hctx queueing if we can go straight to
1244 * hardware for SYNC IO.
1245 */
1246static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1247{
1248	const int is_sync = rw_is_sync(bio->bi_rw);
1249	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1250	struct blk_map_ctx data;
 
 
 
 
 
 
 
 
 
 
1251	struct request *rq;
1252	unsigned int request_count = 0;
1253	struct blk_plug *plug;
1254	struct request *same_queue_rq = NULL;
1255	blk_qc_t cookie;
 
 
1256
1257	blk_queue_bounce(q, &bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1258
1259	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
 
 
 
 
 
1260		bio_io_error(bio);
1261		return BLK_QC_T_NONE;
 
 
 
 
 
 
1262	}
1263
1264	blk_queue_split(q, &bio, q->bio_split);
 
 
1265
1266	if (!is_flush_fua && !blk_queue_nomerges(q)) {
1267		if (blk_attempt_plug_merge(q, bio, &request_count,
1268					   &same_queue_rq))
1269			return BLK_QC_T_NONE;
1270	} else
1271		request_count = blk_plug_queued_count(q);
1272
1273	rq = blk_mq_map_request(q, bio, &data);
1274	if (unlikely(!rq))
1275		return BLK_QC_T_NONE;
1276
1277	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
 
1278
1279	if (unlikely(is_flush_fua)) {
1280		blk_mq_bio_to_request(rq, bio);
1281		blk_insert_flush(rq);
1282		goto run_queue;
 
 
 
1283	}
1284
1285	plug = current->plug;
1286	/*
1287	 * If the driver supports defer issued based on 'last', then
1288	 * queue it up like normal since we can potentially save some
1289	 * CPU this way.
1290	 */
1291	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1292	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1293		struct request *old_rq = NULL;
1294
1295		blk_mq_bio_to_request(rq, bio);
1296
1297		/*
1298		 * We do limited pluging. If the bio can be merged, do that.
1299		 * Otherwise the existing request in the plug list will be
1300		 * issued. So the plug list will have one request at most
1301		 */
1302		if (plug) {
1303			/*
1304			 * The plug list might get flushed before this. If that
1305			 * happens, same_queue_rq is invalid and plug list is
1306			 * empty
1307			 */
1308			if (same_queue_rq && !list_empty(&plug->mq_list)) {
1309				old_rq = same_queue_rq;
1310				list_del_init(&old_rq->queuelist);
1311			}
1312			list_add_tail(&rq->queuelist, &plug->mq_list);
1313		} else /* is_sync */
1314			old_rq = rq;
1315		blk_mq_put_ctx(data.ctx);
1316		if (!old_rq)
1317			goto done;
1318		if (!blk_mq_direct_issue_request(old_rq, &cookie))
1319			goto done;
1320		blk_mq_insert_request(old_rq, false, true, true);
1321		goto done;
1322	}
1323
1324	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1325		/*
1326		 * For a SYNC request, send it to the hardware immediately. For
1327		 * an ASYNC request, just ensure that we run it later on. The
1328		 * latter allows for merging opportunities and more efficient
1329		 * dispatching.
1330		 */
1331run_queue:
1332		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1333	}
1334	blk_mq_put_ctx(data.ctx);
1335done:
1336	return cookie;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337}
1338
1339/*
1340 * Single hardware queue variant. This will attempt to use any per-process
1341 * plug for merging and IO deferral.
 
1342 */
1343static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1344{
1345	const int is_sync = rw_is_sync(bio->bi_rw);
1346	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1347	struct blk_plug *plug;
1348	unsigned int request_count = 0;
1349	struct blk_map_ctx data;
1350	struct request *rq;
1351	blk_qc_t cookie;
1352
1353	blk_queue_bounce(q, &bio);
 
 
 
 
 
 
 
 
 
 
 
 
1354
1355	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1356		bio_io_error(bio);
1357		return BLK_QC_T_NONE;
1358	}
1359
1360	blk_queue_split(q, &bio, q->bio_split);
1361
1362	if (!is_flush_fua && !blk_queue_nomerges(q) &&
1363	    blk_attempt_plug_merge(q, bio, &request_count, NULL))
1364		return BLK_QC_T_NONE;
 
 
 
 
 
1365
1366	rq = blk_mq_map_request(q, bio, &data);
1367	if (unlikely(!rq))
1368		return BLK_QC_T_NONE;
1369
1370	cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
 
 
1371
1372	if (unlikely(is_flush_fua)) {
1373		blk_mq_bio_to_request(rq, bio);
1374		blk_insert_flush(rq);
1375		goto run_queue;
1376	}
1377
1378	/*
1379	 * A task plug currently exists. Since this is completely lockless,
1380	 * utilize that to temporarily store requests until the task is
1381	 * either done or scheduled away.
1382	 */
1383	plug = current->plug;
1384	if (plug) {
1385		blk_mq_bio_to_request(rq, bio);
1386		if (!request_count)
1387			trace_block_plug(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
1388
1389		blk_mq_put_ctx(data.ctx);
 
 
 
 
 
 
1390
1391		if (request_count >= BLK_MAX_REQUEST_COUNT) {
1392			blk_flush_plug_list(plug, false);
1393			trace_block_plug(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394		}
1395
1396		list_add_tail(&rq->queuelist, &plug->mq_list);
1397		return cookie;
 
 
 
 
1398	}
1399
1400	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1401		/*
1402		 * For a SYNC request, send it to the hardware immediately. For
1403		 * an ASYNC request, just ensure that we run it later on. The
1404		 * latter allows for merging opportunities and more efficient
1405		 * dispatching.
1406		 */
1407run_queue:
1408		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1409	}
 
1410
1411	blk_mq_put_ctx(data.ctx);
1412	return cookie;
 
 
 
 
 
 
 
1413}
 
 
1414
1415/*
1416 * Default mapping to a software queue, since we use one per CPU.
 
1417 */
1418struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419{
1420	return q->queue_hw_ctx[q->mq_map[cpu]];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1421}
1422EXPORT_SYMBOL(blk_mq_map_queue);
1423
1424static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1425		struct blk_mq_tags *tags, unsigned int hctx_idx)
1426{
 
1427	struct page *page;
1428
1429	if (tags->rqs && set->ops->exit_request) {
 
 
 
 
 
 
 
 
1430		int i;
1431
1432		for (i = 0; i < tags->nr_tags; i++) {
1433			if (!tags->rqs[i])
 
 
1434				continue;
1435			set->ops->exit_request(set->driver_data, tags->rqs[i],
1436						hctx_idx, i);
1437			tags->rqs[i] = NULL;
1438		}
1439	}
1440
 
 
1441	while (!list_empty(&tags->page_list)) {
1442		page = list_first_entry(&tags->page_list, struct page, lru);
1443		list_del_init(&page->lru);
1444		/*
1445		 * Remove kmemleak object previously allocated in
1446		 * blk_mq_init_rq_map().
1447		 */
1448		kmemleak_free(page_address(page));
1449		__free_pages(page, page->private);
1450	}
 
1451
 
 
1452	kfree(tags->rqs);
 
 
 
1453
1454	blk_mq_free_tags(tags);
1455}
1456
1457static size_t order_to_size(unsigned int order)
 
1458{
1459	return (size_t)PAGE_SIZE << order;
 
 
 
 
 
 
 
 
 
 
 
 
 
1460}
1461
1462static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1463		unsigned int hctx_idx)
1464{
 
 
 
 
 
 
 
 
 
 
 
1465	struct blk_mq_tags *tags;
1466	unsigned int i, j, entries_per_page, max_order = 4;
1467	size_t rq_size, left;
1468
1469	tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1470				set->numa_node,
 
 
1471				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1472	if (!tags)
1473		return NULL;
1474
1475	INIT_LIST_HEAD(&tags->page_list);
 
 
 
 
 
 
 
 
 
 
1476
1477	tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1478				 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1479				 set->numa_node);
1480	if (!tags->rqs) {
1481		blk_mq_free_tags(tags);
1482		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
1483	}
1484
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485	/*
1486	 * rq_size is the size of the request plus driver payload, rounded
1487	 * to the cacheline size
1488	 */
1489	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1490				cache_line_size());
1491	left = rq_size * set->queue_depth;
1492
1493	for (i = 0; i < set->queue_depth; ) {
1494		int this_order = max_order;
1495		struct page *page;
1496		int to_do;
1497		void *p;
1498
1499		while (left < order_to_size(this_order - 1) && this_order)
1500			this_order--;
1501
1502		do {
1503			page = alloc_pages_node(set->numa_node,
1504				GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1505				this_order);
1506			if (page)
1507				break;
1508			if (!this_order--)
1509				break;
1510			if (order_to_size(this_order) < rq_size)
1511				break;
1512		} while (1);
1513
1514		if (!page)
1515			goto fail;
1516
1517		page->private = this_order;
1518		list_add_tail(&page->lru, &tags->page_list);
1519
1520		p = page_address(page);
1521		/*
1522		 * Allow kmemleak to scan these pages as they contain pointers
1523		 * to additional allocations like via ops->init_request().
1524		 */
1525		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
1526		entries_per_page = order_to_size(this_order) / rq_size;
1527		to_do = min(entries_per_page, set->queue_depth - i);
1528		left -= to_do * rq_size;
1529		for (j = 0; j < to_do; j++) {
1530			tags->rqs[i] = p;
1531			if (set->ops->init_request) {
1532				if (set->ops->init_request(set->driver_data,
1533						tags->rqs[i], hctx_idx, i,
1534						set->numa_node)) {
1535					tags->rqs[i] = NULL;
1536					goto fail;
1537				}
1538			}
1539
1540			p += rq_size;
1541			i++;
1542		}
1543	}
1544	return tags;
1545
1546fail:
1547	blk_mq_free_rq_map(set, tags, hctx_idx);
1548	return NULL;
1549}
1550
1551static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
 
 
 
 
 
1552{
1553	kfree(bitmap->map);
 
 
 
 
 
1554}
1555
1556static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1557{
1558	unsigned int bpw = 8, total, num_maps, i;
 
 
 
 
1559
1560	bitmap->bits_per_word = bpw;
 
 
1561
1562	num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1563	bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1564					GFP_KERNEL, node);
1565	if (!bitmap->map)
1566		return -ENOMEM;
 
 
 
 
 
 
 
 
 
1567
1568	total = nr_cpu_ids;
1569	for (i = 0; i < num_maps; i++) {
1570		bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1571		total -= bitmap->map[i].depth;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572	}
1573
1574	return 0;
1575}
1576
1577static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
 
 
 
 
 
 
 
 
1578{
1579	struct request_queue *q = hctx->queue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1580	struct blk_mq_ctx *ctx;
1581	LIST_HEAD(tmp);
 
1582
1583	/*
1584	 * Move ctx entries to new CPU, if this one is going away.
1585	 */
1586	ctx = __blk_mq_get_ctx(q, cpu);
 
 
1587
1588	spin_lock(&ctx->lock);
1589	if (!list_empty(&ctx->rq_list)) {
1590		list_splice_init(&ctx->rq_list, &tmp);
1591		blk_mq_hctx_clear_pending(hctx, ctx);
1592	}
1593	spin_unlock(&ctx->lock);
1594
1595	if (list_empty(&tmp))
1596		return NOTIFY_OK;
1597
1598	ctx = blk_mq_get_ctx(q);
1599	spin_lock(&ctx->lock);
 
1600
1601	while (!list_empty(&tmp)) {
1602		struct request *rq;
 
 
 
 
 
1603
1604		rq = list_first_entry(&tmp, struct request, queuelist);
1605		rq->mq_ctx = ctx;
1606		list_move_tail(&rq->queuelist, &ctx->rq_list);
 
 
1607	}
1608
1609	hctx = q->mq_ops->map_queue(q, ctx->cpu);
1610	blk_mq_hctx_mark_pending(hctx, ctx);
 
 
 
 
1611
1612	spin_unlock(&ctx->lock);
 
 
 
 
 
1613
1614	blk_mq_run_hw_queue(hctx, true);
1615	blk_mq_put_ctx(ctx);
1616	return NOTIFY_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1617}
1618
1619static int blk_mq_hctx_notify(void *data, unsigned long action,
1620			      unsigned int cpu)
 
 
 
 
1621{
1622	struct blk_mq_hw_ctx *hctx = data;
 
 
 
 
1623
1624	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1625		return blk_mq_hctx_cpu_offline(hctx, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1626
1627	/*
1628	 * In case of CPU online, tags may be reallocated
1629	 * in blk_mq_map_swqueue() after mapping is updated.
 
 
1630	 */
1631
1632	return NOTIFY_OK;
1633}
1634
1635/* hctx->ctxs will be freed in queue's release handler */
1636static void blk_mq_exit_hctx(struct request_queue *q,
1637		struct blk_mq_tag_set *set,
1638		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1639{
1640	unsigned flush_start_tag = set->queue_depth;
1641
1642	blk_mq_tag_idle(hctx);
 
1643
 
 
 
1644	if (set->ops->exit_request)
1645		set->ops->exit_request(set->driver_data,
1646				       hctx->fq->flush_rq, hctx_idx,
1647				       flush_start_tag + hctx_idx);
1648
1649	if (set->ops->exit_hctx)
1650		set->ops->exit_hctx(hctx, hctx_idx);
1651
1652	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1653	blk_free_flush_queue(hctx->fq);
1654	blk_mq_free_bitmap(&hctx->ctx_map);
 
 
1655}
1656
1657static void blk_mq_exit_hw_queues(struct request_queue *q,
1658		struct blk_mq_tag_set *set, int nr_queue)
1659{
1660	struct blk_mq_hw_ctx *hctx;
1661	unsigned int i;
1662
1663	queue_for_each_hw_ctx(q, hctx, i) {
1664		if (i == nr_queue)
1665			break;
 
1666		blk_mq_exit_hctx(q, set, hctx, i);
1667	}
1668}
1669
1670static void blk_mq_free_hw_queues(struct request_queue *q,
1671		struct blk_mq_tag_set *set)
 
1672{
1673	struct blk_mq_hw_ctx *hctx;
1674	unsigned int i;
1675
1676	queue_for_each_hw_ctx(q, hctx, i)
1677		free_cpumask_var(hctx->cpumask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1678}
1679
1680static int blk_mq_init_hctx(struct request_queue *q,
1681		struct blk_mq_tag_set *set,
1682		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1683{
1684	int node;
1685	unsigned flush_start_tag = set->queue_depth;
 
 
 
 
1686
1687	node = hctx->numa_node;
 
 
 
1688	if (node == NUMA_NO_NODE)
1689		node = hctx->numa_node = set->numa_node;
 
1690
1691	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1692	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1693	spin_lock_init(&hctx->lock);
1694	INIT_LIST_HEAD(&hctx->dispatch);
 
 
1695	hctx->queue = q;
1696	hctx->queue_num = hctx_idx;
1697	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1698
1699	blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1700					blk_mq_hctx_notify, hctx);
1701	blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1702
1703	hctx->tags = set->tags[hctx_idx];
1704
1705	/*
1706	 * Allocate space for all possible cpus to avoid allocation at
1707	 * runtime
1708	 */
1709	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1710					GFP_KERNEL, node);
1711	if (!hctx->ctxs)
1712		goto unregister_cpu_notifier;
1713
1714	if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
 
1715		goto free_ctxs;
1716
1717	hctx->nr_ctx = 0;
1718
1719	if (set->ops->init_hctx &&
1720	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1721		goto free_bitmap;
1722
1723	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1724	if (!hctx->fq)
1725		goto exit_hctx;
1726
1727	if (set->ops->init_request &&
1728	    set->ops->init_request(set->driver_data,
1729				   hctx->fq->flush_rq, hctx_idx,
1730				   flush_start_tag + hctx_idx, node))
1731		goto free_fq;
1732
1733	return 0;
1734
1735 free_fq:
1736	kfree(hctx->fq);
1737 exit_hctx:
1738	if (set->ops->exit_hctx)
1739		set->ops->exit_hctx(hctx, hctx_idx);
1740 free_bitmap:
1741	blk_mq_free_bitmap(&hctx->ctx_map);
1742 free_ctxs:
1743	kfree(hctx->ctxs);
1744 unregister_cpu_notifier:
1745	blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1746
1747	return -1;
 
 
1748}
1749
1750static void blk_mq_init_cpu_queues(struct request_queue *q,
1751				   unsigned int nr_hw_queues)
1752{
1753	unsigned int i;
 
1754
1755	for_each_possible_cpu(i) {
1756		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1757		struct blk_mq_hw_ctx *hctx;
 
1758
1759		memset(__ctx, 0, sizeof(*__ctx));
1760		__ctx->cpu = i;
1761		spin_lock_init(&__ctx->lock);
1762		INIT_LIST_HEAD(&__ctx->rq_list);
1763		__ctx->queue = q;
1764
1765		/* If the cpu isn't online, the cpu is mapped to first hctx */
1766		if (!cpu_online(i))
1767			continue;
1768
1769		hctx = q->mq_ops->map_queue(q, i);
1770
1771		/*
1772		 * Set local node, IFF we have more than one hw queue. If
1773		 * not, we remain on the home node of the device
1774		 */
1775		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1776			hctx->numa_node = local_memory_node(cpu_to_node(i));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778}
1779
1780static void blk_mq_map_swqueue(struct request_queue *q,
1781			       const struct cpumask *online_mask)
1782{
1783	unsigned int i;
 
1784	struct blk_mq_hw_ctx *hctx;
1785	struct blk_mq_ctx *ctx;
1786	struct blk_mq_tag_set *set = q->tag_set;
1787
1788	/*
1789	 * Avoid others reading imcomplete hctx->cpumask through sysfs
1790	 */
1791	mutex_lock(&q->sysfs_lock);
1792
1793	queue_for_each_hw_ctx(q, hctx, i) {
1794		cpumask_clear(hctx->cpumask);
1795		hctx->nr_ctx = 0;
 
1796	}
1797
1798	/*
1799	 * Map software to hardware queues
 
 
1800	 */
1801	for_each_possible_cpu(i) {
1802		/* If the cpu isn't online, the cpu is mapped to first hctx */
1803		if (!cpumask_test_cpu(i, online_mask))
1804			continue;
1805
1806		ctx = per_cpu_ptr(q->queue_ctx, i);
1807		hctx = q->mq_ops->map_queue(q, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1808
1809		cpumask_set_cpu(i, hctx->cpumask);
1810		ctx->index_hw = hctx->nr_ctx;
1811		hctx->ctxs[hctx->nr_ctx++] = ctx;
1812	}
 
 
 
 
 
1813
1814	mutex_unlock(&q->sysfs_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815
1816	queue_for_each_hw_ctx(q, hctx, i) {
1817		struct blk_mq_ctxmap *map = &hctx->ctx_map;
1818
1819		/*
1820		 * If no software queues are mapped to this hardware queue,
1821		 * disable it and free the request entries.
1822		 */
1823		if (!hctx->nr_ctx) {
1824			if (set->tags[i]) {
1825				blk_mq_free_rq_map(set, set->tags[i], i);
1826				set->tags[i] = NULL;
1827			}
 
 
 
1828			hctx->tags = NULL;
1829			continue;
1830		}
1831
1832		/* unmapped hw queue can be remapped after CPU topo changed */
1833		if (!set->tags[i])
1834			set->tags[i] = blk_mq_init_rq_map(set, i);
1835		hctx->tags = set->tags[i];
1836		WARN_ON(!hctx->tags);
1837
1838		cpumask_copy(hctx->tags->cpumask, hctx->cpumask);
1839		/*
1840		 * Set the map size to the number of mapped software queues.
1841		 * This is more accurate and more efficient than looping
1842		 * over all possibly mapped software queues.
1843		 */
1844		map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
 
 
 
 
 
 
 
 
 
1845
1846		/*
1847		 * Initialize batch roundrobin counts
1848		 */
1849		hctx->next_cpu = cpumask_first(hctx->cpumask);
1850		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1851	}
1852}
1853
 
 
 
 
1854static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1855{
1856	struct blk_mq_hw_ctx *hctx;
1857	int i;
1858
1859	queue_for_each_hw_ctx(q, hctx, i) {
1860		if (shared)
1861			hctx->flags |= BLK_MQ_F_TAG_SHARED;
1862		else
1863			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
 
 
1864	}
1865}
1866
1867static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
 
1868{
1869	struct request_queue *q;
1870
 
 
1871	list_for_each_entry(q, &set->tag_list, tag_set_list) {
1872		blk_mq_freeze_queue(q);
1873		queue_set_hctx_shared(q, shared);
1874		blk_mq_unfreeze_queue(q);
1875	}
1876}
1877
1878static void blk_mq_del_queue_tag_set(struct request_queue *q)
1879{
1880	struct blk_mq_tag_set *set = q->tag_set;
1881
1882	mutex_lock(&set->tag_list_lock);
1883	list_del_init(&q->tag_set_list);
1884	if (list_is_singular(&set->tag_list)) {
1885		/* just transitioned to unshared */
1886		set->flags &= ~BLK_MQ_F_TAG_SHARED;
1887		/* update existing queue */
1888		blk_mq_update_tag_set_depth(set, false);
1889	}
1890	mutex_unlock(&set->tag_list_lock);
 
1891}
1892
1893static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1894				     struct request_queue *q)
1895{
1896	q->tag_set = set;
1897
1898	mutex_lock(&set->tag_list_lock);
1899
1900	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
1901	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
1902		set->flags |= BLK_MQ_F_TAG_SHARED;
 
 
 
1903		/* update existing queue */
1904		blk_mq_update_tag_set_depth(set, true);
1905	}
1906	if (set->flags & BLK_MQ_F_TAG_SHARED)
1907		queue_set_hctx_shared(q, true);
1908	list_add_tail(&q->tag_set_list, &set->tag_list);
1909
1910	mutex_unlock(&set->tag_list_lock);
1911}
1912
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1913/*
1914 * It is the actual release handler for mq, but we do it from
1915 * request queue's release handler for avoiding use-after-free
1916 * and headache because q->mq_kobj shouldn't have been introduced,
1917 * but we can't group ctx/kctx kobj without it.
1918 */
1919void blk_mq_release(struct request_queue *q)
1920{
1921	struct blk_mq_hw_ctx *hctx;
1922	unsigned int i;
1923
1924	/* hctx kobj stays in hctx */
1925	queue_for_each_hw_ctx(q, hctx, i) {
1926		if (!hctx)
1927			continue;
1928		kfree(hctx->ctxs);
1929		kfree(hctx);
1930	}
1931
1932	kfree(q->mq_map);
1933	q->mq_map = NULL;
 
 
 
1934
1935	kfree(q->queue_hw_ctx);
1936
1937	/* ctx kobj stays in queue_ctx */
1938	free_percpu(q->queue_ctx);
 
 
 
1939}
1940
1941struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
 
1942{
1943	struct request_queue *uninit_q, *q;
 
 
1944
1945	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1946	if (!uninit_q)
1947		return ERR_PTR(-ENOMEM);
 
 
1948
1949	q = blk_mq_init_allocated_queue(set, uninit_q);
1950	if (IS_ERR(q))
1951		blk_cleanup_queue(uninit_q);
1952
 
 
 
 
 
1953	return q;
1954}
1955EXPORT_SYMBOL(blk_mq_init_queue);
1956
1957static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
1958						struct request_queue *q)
 
 
 
 
 
 
 
 
 
1959{
1960	int i, j;
1961	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
1962
1963	blk_mq_sysfs_unregister(q);
1964	for (i = 0; i < set->nr_hw_queues; i++) {
1965		int node;
1966
1967		if (hctxs[i])
1968			continue;
 
1969
1970		node = blk_mq_hw_queue_to_node(q->mq_map, i);
1971		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1972					GFP_KERNEL, node);
1973		if (!hctxs[i])
1974			break;
 
 
 
 
 
 
 
1975
1976		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1977						node)) {
1978			kfree(hctxs[i]);
1979			hctxs[i] = NULL;
1980			break;
1981		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1982
1983		atomic_set(&hctxs[i]->nr_active, 0);
1984		hctxs[i]->numa_node = node;
1985		hctxs[i]->queue_num = i;
1986
1987		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
1988			free_cpumask_var(hctxs[i]->cpumask);
1989			kfree(hctxs[i]);
1990			hctxs[i] = NULL;
1991			break;
1992		}
1993		blk_mq_hctx_kobj_init(hctxs[i]);
1994	}
1995	for (j = i; j < q->nr_hw_queues; j++) {
1996		struct blk_mq_hw_ctx *hctx = hctxs[j];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1997
1998		if (hctx) {
1999			if (hctx->tags) {
2000				blk_mq_free_rq_map(set, hctx->tags, j);
2001				set->tags[j] = NULL;
2002			}
2003			blk_mq_exit_hctx(q, set, hctx, j);
2004			free_cpumask_var(hctx->cpumask);
2005			kobject_put(&hctx->kobj);
2006			kfree(hctx->ctxs);
2007			kfree(hctx);
2008			hctxs[j] = NULL;
2009
 
 
 
 
 
 
 
 
 
 
2010		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011	}
2012	q->nr_hw_queues = i;
2013	blk_mq_sysfs_register(q);
 
 
 
 
 
 
 
 
2014}
2015
2016struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2017						  struct request_queue *q)
2018{
2019	/* mark the queue as mq asap */
2020	q->mq_ops = set->ops;
2021
2022	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2023	if (!q->queue_ctx)
2024		return ERR_PTR(-ENOMEM);
 
 
 
 
 
2025
2026	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2027						GFP_KERNEL, set->numa_node);
2028	if (!q->queue_hw_ctx)
2029		goto err_percpu;
2030
2031	q->mq_map = blk_mq_make_queue_map(set);
2032	if (!q->mq_map)
2033		goto err_map;
2034
2035	blk_mq_realloc_hw_ctxs(set, q);
2036	if (!q->nr_hw_queues)
2037		goto err_hctxs;
2038
2039	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2040	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2041
2042	q->nr_queues = nr_cpu_ids;
2043
2044	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2045
2046	if (!(set->flags & BLK_MQ_F_SG_MERGE))
2047		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2048
2049	q->sg_reserved_size = INT_MAX;
2050
2051	INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2052	INIT_LIST_HEAD(&q->requeue_list);
2053	spin_lock_init(&q->requeue_lock);
2054
2055	if (q->nr_hw_queues > 1)
2056		blk_queue_make_request(q, blk_mq_make_request);
2057	else
2058		blk_queue_make_request(q, blk_sq_make_request);
2059
2060	/*
2061	 * Do this after blk_queue_make_request() overrides it...
2062	 */
2063	q->nr_requests = set->queue_depth;
2064
2065	if (set->ops->complete)
2066		blk_queue_softirq_done(q, set->ops->complete);
2067
2068	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2069
2070	get_online_cpus();
2071	mutex_lock(&all_q_mutex);
2072
2073	list_add_tail(&q->all_q_node, &all_q_list);
2074	blk_mq_add_queue_tag_set(set, q);
2075	blk_mq_map_swqueue(q, cpu_online_mask);
2076
2077	mutex_unlock(&all_q_mutex);
2078	put_online_cpus();
2079
2080	return q;
2081
2082err_hctxs:
2083	kfree(q->mq_map);
2084err_map:
2085	kfree(q->queue_hw_ctx);
2086err_percpu:
2087	free_percpu(q->queue_ctx);
2088	return ERR_PTR(-ENOMEM);
2089}
2090EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2091
2092void blk_mq_free_queue(struct request_queue *q)
 
2093{
2094	struct blk_mq_tag_set	*set = q->tag_set;
2095
2096	mutex_lock(&all_q_mutex);
2097	list_del_init(&q->all_q_node);
2098	mutex_unlock(&all_q_mutex);
2099
2100	blk_mq_del_queue_tag_set(q);
2101
 
2102	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2103	blk_mq_free_hw_queues(q, set);
2104}
2105
2106/* Basically redo blk_mq_init_queue with queue frozen */
2107static void blk_mq_queue_reinit(struct request_queue *q,
2108				const struct cpumask *online_mask)
2109{
2110	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2111
2112	blk_mq_sysfs_unregister(q);
2113
2114	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
2115
2116	/*
2117	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2118	 * we should change hctx numa_node according to new topology (this
2119	 * involves free and re-allocate memory, worthy doing?)
2120	 */
2121
2122	blk_mq_map_swqueue(q, online_mask);
2123
2124	blk_mq_sysfs_register(q);
2125}
2126
2127static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2128				      unsigned long action, void *hcpu)
2129{
2130	struct request_queue *q;
2131	int cpu = (unsigned long)hcpu;
2132	/*
2133	 * New online cpumask which is going to be set in this hotplug event.
2134	 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2135	 * one-by-one and dynamically allocating this could result in a failure.
2136	 */
2137	static struct cpumask online_new;
2138
2139	/*
2140	 * Before hotadded cpu starts handling requests, new mappings must
2141	 * be established.  Otherwise, these requests in hw queue might
2142	 * never be dispatched.
2143	 *
2144	 * For example, there is a single hw queue (hctx) and two CPU queues
2145	 * (ctx0 for CPU0, and ctx1 for CPU1).
2146	 *
2147	 * Now CPU1 is just onlined and a request is inserted into
2148	 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2149	 * still zero.
2150	 *
2151	 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2152	 * set in pending bitmap and tries to retrieve requests in
2153	 * hctx->ctxs[0]->rq_list.  But htx->ctxs[0] is a pointer to ctx0,
2154	 * so the request in ctx1->rq_list is ignored.
2155	 */
2156	switch (action & ~CPU_TASKS_FROZEN) {
2157	case CPU_DEAD:
2158	case CPU_UP_CANCELED:
2159		cpumask_copy(&online_new, cpu_online_mask);
2160		break;
2161	case CPU_UP_PREPARE:
2162		cpumask_copy(&online_new, cpu_online_mask);
2163		cpumask_set_cpu(cpu, &online_new);
2164		break;
2165	default:
2166		return NOTIFY_OK;
2167	}
2168
2169	mutex_lock(&all_q_mutex);
2170
2171	/*
2172	 * We need to freeze and reinit all existing queues.  Freezing
2173	 * involves synchronous wait for an RCU grace period and doing it
2174	 * one by one may take a long time.  Start freezing all queues in
2175	 * one swoop and then wait for the completions so that freezing can
2176	 * take place in parallel.
2177	 */
2178	list_for_each_entry(q, &all_q_list, all_q_node)
2179		blk_mq_freeze_queue_start(q);
2180	list_for_each_entry(q, &all_q_list, all_q_node) {
2181		blk_mq_freeze_queue_wait(q);
2182
2183		/*
2184		 * timeout handler can't touch hw queue during the
2185		 * reinitialization
2186		 */
2187		del_timer_sync(&q->timeout);
2188	}
2189
2190	list_for_each_entry(q, &all_q_list, all_q_node)
2191		blk_mq_queue_reinit(q, &online_new);
2192
2193	list_for_each_entry(q, &all_q_list, all_q_node)
2194		blk_mq_unfreeze_queue(q);
2195
2196	mutex_unlock(&all_q_mutex);
2197	return NOTIFY_OK;
2198}
2199
2200static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2201{
2202	int i;
2203
 
 
 
 
 
 
 
 
2204	for (i = 0; i < set->nr_hw_queues; i++) {
2205		set->tags[i] = blk_mq_init_rq_map(set, i);
2206		if (!set->tags[i])
2207			goto out_unwind;
 
2208	}
2209
2210	return 0;
2211
2212out_unwind:
2213	while (--i >= 0)
2214		blk_mq_free_rq_map(set, set->tags[i], i);
 
 
 
 
 
2215
2216	return -ENOMEM;
2217}
2218
2219/*
2220 * Allocate the request maps associated with this tag_set. Note that this
2221 * may reduce the depth asked for, if memory is tight. set->queue_depth
2222 * will be updated to reflect the allocated depth.
2223 */
2224static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2225{
2226	unsigned int depth;
2227	int err;
2228
2229	depth = set->queue_depth;
2230	do {
2231		err = __blk_mq_alloc_rq_maps(set);
2232		if (!err)
2233			break;
2234
2235		set->queue_depth >>= 1;
2236		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2237			err = -ENOMEM;
2238			break;
2239		}
2240	} while (set->queue_depth);
2241
2242	if (!set->queue_depth || err) {
2243		pr_err("blk-mq: failed to allocate request map\n");
2244		return -ENOMEM;
2245	}
2246
2247	if (depth != set->queue_depth)
2248		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2249						depth, set->queue_depth);
2250
2251	return 0;
2252}
2253
2254struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255{
2256	return tags->cpumask;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2257}
2258EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2259
2260/*
2261 * Alloc a tag set to be associated with one or more request queues.
2262 * May fail with EINVAL for various error conditions. May adjust the
2263 * requested depth down, if if it too large. In that case, the set
2264 * value will be stored in set->queue_depth.
2265 */
2266int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2267{
 
 
2268	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2269
2270	if (!set->nr_hw_queues)
2271		return -EINVAL;
2272	if (!set->queue_depth)
2273		return -EINVAL;
2274	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2275		return -EINVAL;
2276
2277	if (!set->ops->queue_rq || !set->ops->map_queue)
 
 
 
2278		return -EINVAL;
2279
2280	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2281		pr_info("blk-mq: reduced tag depth to %u\n",
2282			BLK_MQ_MAX_DEPTH);
2283		set->queue_depth = BLK_MQ_MAX_DEPTH;
2284	}
2285
 
 
 
 
 
2286	/*
2287	 * If a crashdump is active, then we are potentially in a very
2288	 * memory constrained environment. Limit us to 1 queue and
2289	 * 64 tags to prevent using too much memory.
2290	 */
2291	if (is_kdump_kernel()) {
2292		set->nr_hw_queues = 1;
2293		set->queue_depth = min(64U, set->queue_depth);
2294	}
2295	/*
2296	 * There is no use for more h/w queues than cpus.
 
2297	 */
2298	if (set->nr_hw_queues > nr_cpu_ids)
2299		set->nr_hw_queues = nr_cpu_ids;
2300
2301	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2302				 GFP_KERNEL, set->numa_node);
 
 
 
 
 
 
 
 
 
 
 
2303	if (!set->tags)
2304		return -ENOMEM;
 
 
 
 
 
 
 
 
 
2305
2306	if (blk_mq_alloc_rq_maps(set))
2307		goto enomem;
 
 
 
2308
2309	mutex_init(&set->tag_list_lock);
2310	INIT_LIST_HEAD(&set->tag_list);
2311
2312	return 0;
2313enomem:
 
 
 
 
 
2314	kfree(set->tags);
2315	set->tags = NULL;
2316	return -ENOMEM;
 
 
 
 
 
 
2317}
2318EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2320void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2321{
2322	int i;
2323
2324	for (i = 0; i < nr_cpu_ids; i++) {
2325		if (set->tags[i])
2326			blk_mq_free_rq_map(set, set->tags[i], i);
 
 
 
 
 
 
 
 
2327	}
2328
2329	kfree(set->tags);
2330	set->tags = NULL;
 
 
 
 
2331}
2332EXPORT_SYMBOL(blk_mq_free_tag_set);
2333
2334int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2335{
2336	struct blk_mq_tag_set *set = q->tag_set;
2337	struct blk_mq_hw_ctx *hctx;
2338	int i, ret;
 
 
 
 
2339
2340	if (!set || nr > set->queue_depth)
2341		return -EINVAL;
2342
 
 
 
 
 
2343	ret = 0;
2344	queue_for_each_hw_ctx(q, hctx, i) {
2345		if (!hctx->tags)
2346			continue;
2347		ret = blk_mq_tag_update_depth(hctx->tags, nr);
 
 
 
 
 
 
 
 
 
 
2348		if (ret)
2349			break;
 
 
2350	}
2351
2352	if (!ret)
2353		q->nr_requests = nr;
 
 
 
 
 
 
 
 
 
2354
2355	return ret;
2356}
2357
2358void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2359{
2360	struct request_queue *q;
 
 
 
 
 
2361
2362	if (nr_hw_queues > nr_cpu_ids)
2363		nr_hw_queues = nr_cpu_ids;
2364	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
 
 
2365		return;
2366
2367	list_for_each_entry(q, &set->tag_list, tag_set_list)
2368		blk_mq_freeze_queue(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369
2370	set->nr_hw_queues = nr_hw_queues;
 
2371	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2372		blk_mq_realloc_hw_ctxs(set, q);
2373
2374		if (q->nr_hw_queues > 1)
2375			blk_queue_make_request(q, blk_mq_make_request);
2376		else
2377			blk_queue_make_request(q, blk_sq_make_request);
 
 
 
2378
2379		blk_mq_queue_reinit(q, cpu_online_mask);
 
 
 
2380	}
2381
 
 
 
 
 
 
 
 
 
 
2382	list_for_each_entry(q, &set->tag_list, tag_set_list)
2383		blk_mq_unfreeze_queue(q);
 
 
 
 
 
 
 
 
 
 
 
2384}
2385EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2386
2387void blk_mq_disable_hotplug(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2388{
2389	mutex_lock(&all_q_mutex);
2390}
 
2391
2392void blk_mq_enable_hotplug(void)
2393{
2394	mutex_unlock(&all_q_mutex);
 
 
 
 
 
 
2395}
2396
2397static int __init blk_mq_init(void)
2398{
2399	blk_mq_cpu_init();
2400
2401	hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2403	return 0;
2404}
2405subsys_initcall(blk_mq_init);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/blk-integrity.h>
  14#include <linux/kmemleak.h>
  15#include <linux/mm.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/workqueue.h>
  19#include <linux/smp.h>
  20#include <linux/interrupt.h>
  21#include <linux/llist.h>
 
  22#include <linux/cpu.h>
  23#include <linux/cache.h>
  24#include <linux/sched/topology.h>
  25#include <linux/sched/signal.h>
  26#include <linux/delay.h>
  27#include <linux/crash_dump.h>
  28#include <linux/prefetch.h>
  29#include <linux/blk-crypto.h>
  30#include <linux/part_stat.h>
  31#include <linux/sched/isolation.h>
  32
  33#include <trace/events/block.h>
  34
  35#include <linux/t10-pi.h>
  36#include "blk.h"
  37#include "blk-mq.h"
  38#include "blk-mq-debugfs.h"
  39#include "blk-pm.h"
  40#include "blk-stat.h"
  41#include "blk-mq-sched.h"
  42#include "blk-rq-qos.h"
  43
  44static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
  45static DEFINE_PER_CPU(call_single_data_t, blk_cpu_csd);
  46static DEFINE_MUTEX(blk_mq_cpuhp_lock);
  47
  48static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
  49static void blk_mq_request_bypass_insert(struct request *rq,
  50		blk_insert_t flags);
  51static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
  52		struct list_head *list);
  53static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
  54			 struct io_comp_batch *iob, unsigned int flags);
  55
  56/*
  57 * Check if any of the ctx, dispatch list or elevator
  58 * have pending work in this hardware queue.
  59 */
  60static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  61{
  62	return !list_empty_careful(&hctx->dispatch) ||
  63		sbitmap_any_bit_set(&hctx->ctx_map) ||
  64			blk_mq_sched_has_work(hctx);
 
 
 
 
  65}
  66
 
 
 
 
 
 
 
 
 
  67/*
  68 * Mark this ctx as having pending work in this hardware queue
  69 */
  70static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  71				     struct blk_mq_ctx *ctx)
  72{
  73	const int bit = ctx->index_hw[hctx->type];
  74
  75	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
  76		sbitmap_set_bit(&hctx->ctx_map, bit);
  77}
  78
  79static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  80				      struct blk_mq_ctx *ctx)
  81{
  82	const int bit = ctx->index_hw[hctx->type];
  83
  84	sbitmap_clear_bit(&hctx->ctx_map, bit);
  85}
  86
  87struct mq_inflight {
  88	struct block_device *part;
  89	unsigned int inflight[2];
  90};
  91
  92static bool blk_mq_check_inflight(struct request *rq, void *priv)
  93{
  94	struct mq_inflight *mi = priv;
  95
  96	if (rq->rq_flags & RQF_IO_STAT &&
  97	    (!bdev_is_partition(mi->part) || rq->part == mi->part) &&
  98	    blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
  99		mi->inflight[rq_data_dir(rq)]++;
 100
 101	return true;
 102}
 103
 104unsigned int blk_mq_in_flight(struct request_queue *q,
 105		struct block_device *part)
 106{
 107	struct mq_inflight mi = { .part = part };
 108
 109	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 110
 111	return mi.inflight[0] + mi.inflight[1];
 112}
 113
 114void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
 115		unsigned int inflight[2])
 116{
 117	struct mq_inflight mi = { .part = part };
 118
 119	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 120	inflight[0] = mi.inflight[0];
 121	inflight[1] = mi.inflight[1];
 122}
 123
 124#ifdef CONFIG_LOCKDEP
 125static bool blk_freeze_set_owner(struct request_queue *q,
 126				 struct task_struct *owner)
 127{
 128	if (!owner)
 129		return false;
 130
 131	if (!q->mq_freeze_depth) {
 132		q->mq_freeze_owner = owner;
 133		q->mq_freeze_owner_depth = 1;
 134		return true;
 135	}
 136
 137	if (owner == q->mq_freeze_owner)
 138		q->mq_freeze_owner_depth += 1;
 139	return false;
 140}
 141
 142/* verify the last unfreeze in owner context */
 143static bool blk_unfreeze_check_owner(struct request_queue *q)
 144{
 145	if (!q->mq_freeze_owner)
 146		return false;
 147	if (q->mq_freeze_owner != current)
 148		return false;
 149	if (--q->mq_freeze_owner_depth == 0) {
 150		q->mq_freeze_owner = NULL;
 151		return true;
 152	}
 153	return false;
 154}
 155
 156#else
 157
 158static bool blk_freeze_set_owner(struct request_queue *q,
 159				 struct task_struct *owner)
 160{
 161	return false;
 162}
 163
 164static bool blk_unfreeze_check_owner(struct request_queue *q)
 165{
 166	return false;
 167}
 168#endif
 169
 170bool __blk_freeze_queue_start(struct request_queue *q,
 171			      struct task_struct *owner)
 172{
 173	bool freeze;
 174
 175	mutex_lock(&q->mq_freeze_lock);
 176	freeze = blk_freeze_set_owner(q, owner);
 177	if (++q->mq_freeze_depth == 1) {
 178		percpu_ref_kill(&q->q_usage_counter);
 179		mutex_unlock(&q->mq_freeze_lock);
 180		if (queue_is_mq(q))
 181			blk_mq_run_hw_queues(q, false);
 182	} else {
 183		mutex_unlock(&q->mq_freeze_lock);
 184	}
 185
 186	return freeze;
 187}
 
 188
 189void blk_freeze_queue_start(struct request_queue *q)
 190{
 191	if (__blk_freeze_queue_start(q, current))
 192		blk_freeze_acquire_lock(q, false, false);
 193}
 194EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 195
 196void blk_mq_freeze_queue_wait(struct request_queue *q)
 197{
 198	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 199}
 200EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 201
 202int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 203				     unsigned long timeout)
 
 
 
 204{
 205	return wait_event_timeout(q->mq_freeze_wq,
 206					percpu_ref_is_zero(&q->q_usage_counter),
 207					timeout);
 
 
 
 
 
 
 208}
 209EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 210
 211void blk_mq_freeze_queue(struct request_queue *q)
 212{
 213	blk_freeze_queue_start(q);
 214	blk_mq_freeze_queue_wait(q);
 
 
 
 215}
 216EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 217
 218bool __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
 219{
 220	bool unfreeze;
 221
 222	mutex_lock(&q->mq_freeze_lock);
 223	if (force_atomic)
 224		q->q_usage_counter.data->force_atomic = true;
 225	q->mq_freeze_depth--;
 226	WARN_ON_ONCE(q->mq_freeze_depth < 0);
 227	if (!q->mq_freeze_depth) {
 228		percpu_ref_resurrect(&q->q_usage_counter);
 229		wake_up_all(&q->mq_freeze_wq);
 230	}
 231	unfreeze = blk_unfreeze_check_owner(q);
 232	mutex_unlock(&q->mq_freeze_lock);
 233
 234	return unfreeze;
 235}
 236
 237void blk_mq_unfreeze_queue(struct request_queue *q)
 238{
 239	if (__blk_mq_unfreeze_queue(q, false))
 240		blk_unfreeze_release_lock(q, false, false);
 241}
 242EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 243
 244/*
 245 * non_owner variant of blk_freeze_queue_start
 246 *
 247 * Unlike blk_freeze_queue_start, the queue doesn't need to be unfrozen
 248 * by the same task.  This is fragile and should not be used if at all
 249 * possible.
 250 */
 251void blk_freeze_queue_start_non_owner(struct request_queue *q)
 252{
 253	__blk_freeze_queue_start(q, NULL);
 254}
 255EXPORT_SYMBOL_GPL(blk_freeze_queue_start_non_owner);
 256
 257/* non_owner variant of blk_mq_unfreeze_queue */
 258void blk_mq_unfreeze_queue_non_owner(struct request_queue *q)
 259{
 260	__blk_mq_unfreeze_queue(q, false);
 261}
 262EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue_non_owner);
 263
 264/*
 265 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 266 * mpt3sas driver such that this function can be removed.
 267 */
 268void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 269{
 270	unsigned long flags;
 271
 272	spin_lock_irqsave(&q->queue_lock, flags);
 273	if (!q->quiesce_depth++)
 274		blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 275	spin_unlock_irqrestore(&q->queue_lock, flags);
 276}
 277EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 278
 279/**
 280 * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
 281 * @set: tag_set to wait on
 282 *
 283 * Note: it is driver's responsibility for making sure that quiesce has
 284 * been started on or more of the request_queues of the tag_set.  This
 285 * function only waits for the quiesce on those request_queues that had
 286 * the quiesce flag set using blk_mq_quiesce_queue_nowait.
 287 */
 288void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
 289{
 290	if (set->flags & BLK_MQ_F_BLOCKING)
 291		synchronize_srcu(set->srcu);
 292	else
 293		synchronize_rcu();
 294}
 295EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
 296
 297/**
 298 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 299 * @q: request queue.
 300 *
 301 * Note: this function does not prevent that the struct request end_io()
 302 * callback function is invoked. Once this function is returned, we make
 303 * sure no dispatch can happen until the queue is unquiesced via
 304 * blk_mq_unquiesce_queue().
 305 */
 306void blk_mq_quiesce_queue(struct request_queue *q)
 307{
 308	blk_mq_quiesce_queue_nowait(q);
 309	/* nothing to wait for non-mq queues */
 310	if (queue_is_mq(q))
 311		blk_mq_wait_quiesce_done(q->tag_set);
 312}
 313EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 314
 315/*
 316 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 317 * @q: request queue.
 318 *
 319 * This function recovers queue into the state before quiescing
 320 * which is done by blk_mq_quiesce_queue.
 321 */
 322void blk_mq_unquiesce_queue(struct request_queue *q)
 323{
 324	unsigned long flags;
 325	bool run_queue = false;
 326
 327	spin_lock_irqsave(&q->queue_lock, flags);
 328	if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
 329		;
 330	} else if (!--q->quiesce_depth) {
 331		blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 332		run_queue = true;
 333	}
 334	spin_unlock_irqrestore(&q->queue_lock, flags);
 335
 336	/* dispatch requests which are inserted during quiescing */
 337	if (run_queue)
 338		blk_mq_run_hw_queues(q, true);
 339}
 340EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 341
 342void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
 343{
 344	struct request_queue *q;
 345
 346	mutex_lock(&set->tag_list_lock);
 347	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 348		if (!blk_queue_skip_tagset_quiesce(q))
 349			blk_mq_quiesce_queue_nowait(q);
 350	}
 351	mutex_unlock(&set->tag_list_lock);
 352
 353	blk_mq_wait_quiesce_done(set);
 354}
 355EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
 356
 357void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
 358{
 359	struct request_queue *q;
 360
 361	mutex_lock(&set->tag_list_lock);
 362	list_for_each_entry(q, &set->tag_list, tag_set_list) {
 363		if (!blk_queue_skip_tagset_quiesce(q))
 364			blk_mq_unquiesce_queue(q);
 365	}
 366	mutex_unlock(&set->tag_list_lock);
 367}
 368EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
 369
 370void blk_mq_wake_waiters(struct request_queue *q)
 371{
 372	struct blk_mq_hw_ctx *hctx;
 373	unsigned long i;
 374
 375	queue_for_each_hw_ctx(q, hctx, i)
 376		if (blk_mq_hw_queue_mapped(hctx))
 377			blk_mq_tag_wakeup_all(hctx->tags, true);
 
 
 
 
 
 
 
 378}
 379
 380void blk_rq_init(struct request_queue *q, struct request *rq)
 381{
 382	memset(rq, 0, sizeof(*rq));
 383
 384	INIT_LIST_HEAD(&rq->queuelist);
 385	rq->q = q;
 386	rq->__sector = (sector_t) -1;
 387	INIT_HLIST_NODE(&rq->hash);
 388	RB_CLEAR_NODE(&rq->rb_node);
 389	rq->tag = BLK_MQ_NO_TAG;
 390	rq->internal_tag = BLK_MQ_NO_TAG;
 391	rq->start_time_ns = blk_time_get_ns();
 392	blk_crypto_rq_set_defaults(rq);
 393}
 394EXPORT_SYMBOL(blk_rq_init);
 395
 396/* Set start and alloc time when the allocated request is actually used */
 397static inline void blk_mq_rq_time_init(struct request *rq, u64 alloc_time_ns)
 398{
 399#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 400	if (blk_queue_rq_alloc_time(rq->q))
 401		rq->alloc_time_ns = alloc_time_ns;
 402	else
 403		rq->alloc_time_ns = 0;
 404#endif
 405}
 
 406
 407static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 408		struct blk_mq_tags *tags, unsigned int tag)
 409{
 410	struct blk_mq_ctx *ctx = data->ctx;
 411	struct blk_mq_hw_ctx *hctx = data->hctx;
 412	struct request_queue *q = data->q;
 413	struct request *rq = tags->static_rqs[tag];
 414
 
 
 415	rq->q = q;
 416	rq->mq_ctx = ctx;
 417	rq->mq_hctx = hctx;
 418	rq->cmd_flags = data->cmd_flags;
 419
 420	if (data->flags & BLK_MQ_REQ_PM)
 421		data->rq_flags |= RQF_PM;
 422	rq->rq_flags = data->rq_flags;
 423
 424	if (data->rq_flags & RQF_SCHED_TAGS) {
 425		rq->tag = BLK_MQ_NO_TAG;
 426		rq->internal_tag = tag;
 427	} else {
 428		rq->tag = tag;
 429		rq->internal_tag = BLK_MQ_NO_TAG;
 430	}
 431	rq->timeout = 0;
 432
 433	rq->part = NULL;
 
 
 
 
 434	rq->io_start_time_ns = 0;
 435	rq->stats_sectors = 0;
 436	rq->nr_phys_segments = 0;
 
 437	rq->nr_integrity_segments = 0;
 438	rq->end_io = NULL;
 439	rq->end_io_data = NULL;
 440
 441	blk_crypto_rq_set_defaults(rq);
 442	INIT_LIST_HEAD(&rq->queuelist);
 443	/* tag was already set */
 444	WRITE_ONCE(rq->deadline, 0);
 445	req_ref_set(rq, 1);
 446
 447	if (rq->rq_flags & RQF_USE_SCHED) {
 448		struct elevator_queue *e = data->q->elevator;
 449
 450		INIT_HLIST_NODE(&rq->hash);
 451		RB_CLEAR_NODE(&rq->rb_node);
 
 
 452
 453		if (e->type->ops.prepare_request)
 454			e->type->ops.prepare_request(rq);
 455	}
 456
 457	return rq;
 458}
 459
 460static inline struct request *
 461__blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data)
 462{
 463	unsigned int tag, tag_offset;
 464	struct blk_mq_tags *tags;
 465	struct request *rq;
 466	unsigned long tag_mask;
 467	int i, nr = 0;
 468
 469	tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
 470	if (unlikely(!tag_mask))
 471		return NULL;
 472
 473	tags = blk_mq_tags_from_data(data);
 474	for (i = 0; tag_mask; i++) {
 475		if (!(tag_mask & (1UL << i)))
 476			continue;
 477		tag = tag_offset + i;
 478		prefetch(tags->static_rqs[tag]);
 479		tag_mask &= ~(1UL << i);
 480		rq = blk_mq_rq_ctx_init(data, tags, tag);
 481		rq_list_add_head(data->cached_rqs, rq);
 482		nr++;
 483	}
 484	if (!(data->rq_flags & RQF_SCHED_TAGS))
 485		blk_mq_add_active_requests(data->hctx, nr);
 486	/* caller already holds a reference, add for remainder */
 487	percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
 488	data->nr_tags -= nr;
 489
 490	return rq_list_pop(data->cached_rqs);
 491}
 492
 493static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
 
 494{
 495	struct request_queue *q = data->q;
 496	u64 alloc_time_ns = 0;
 497	struct request *rq;
 498	unsigned int tag;
 499
 500	/* alloc_time includes depth and tag waits */
 501	if (blk_queue_rq_alloc_time(q))
 502		alloc_time_ns = blk_time_get_ns();
 503
 504	if (data->cmd_flags & REQ_NOWAIT)
 505		data->flags |= BLK_MQ_REQ_NOWAIT;
 506
 507retry:
 508	data->ctx = blk_mq_get_ctx(q);
 509	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
 510
 511	if (q->elevator) {
 512		/*
 513		 * All requests use scheduler tags when an I/O scheduler is
 514		 * enabled for the queue.
 515		 */
 516		data->rq_flags |= RQF_SCHED_TAGS;
 517
 518		/*
 519		 * Flush/passthrough requests are special and go directly to the
 520		 * dispatch list.
 521		 */
 522		if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
 523		    !blk_op_is_passthrough(data->cmd_flags)) {
 524			struct elevator_mq_ops *ops = &q->elevator->type->ops;
 525
 526			WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
 527
 528			data->rq_flags |= RQF_USE_SCHED;
 529			if (ops->limit_depth)
 530				ops->limit_depth(data->cmd_flags, data);
 531		}
 532	} else {
 533		blk_mq_tag_busy(data->hctx);
 534	}
 535
 536	if (data->flags & BLK_MQ_REQ_RESERVED)
 537		data->rq_flags |= RQF_RESV;
 538
 539	/*
 540	 * Try batched alloc if we want more than 1 tag.
 541	 */
 542	if (data->nr_tags > 1) {
 543		rq = __blk_mq_alloc_requests_batch(data);
 544		if (rq) {
 545			blk_mq_rq_time_init(rq, alloc_time_ns);
 546			return rq;
 547		}
 548		data->nr_tags = 1;
 549	}
 550
 551	/*
 552	 * Waiting allocations only fail because of an inactive hctx.  In that
 553	 * case just retry the hctx assignment and tag allocation as CPU hotplug
 554	 * should have migrated us to an online CPU by now.
 555	 */
 556	tag = blk_mq_get_tag(data);
 557	if (tag == BLK_MQ_NO_TAG) {
 558		if (data->flags & BLK_MQ_REQ_NOWAIT)
 559			return NULL;
 560		/*
 561		 * Give up the CPU and sleep for a random short time to
 562		 * ensure that thread using a realtime scheduling class
 563		 * are migrated off the CPU, and thus off the hctx that
 564		 * is going away.
 565		 */
 566		msleep(3);
 567		goto retry;
 568	}
 569
 570	if (!(data->rq_flags & RQF_SCHED_TAGS))
 571		blk_mq_inc_active_requests(data->hctx);
 572	rq = blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag);
 573	blk_mq_rq_time_init(rq, alloc_time_ns);
 574	return rq;
 575}
 576
 577static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
 578					    struct blk_plug *plug,
 579					    blk_opf_t opf,
 580					    blk_mq_req_flags_t flags)
 581{
 582	struct blk_mq_alloc_data data = {
 583		.q		= q,
 584		.flags		= flags,
 585		.cmd_flags	= opf,
 586		.nr_tags	= plug->nr_ios,
 587		.cached_rqs	= &plug->cached_rqs,
 588	};
 589	struct request *rq;
 590
 591	if (blk_queue_enter(q, flags))
 592		return NULL;
 593
 594	plug->nr_ios = 1;
 595
 596	rq = __blk_mq_alloc_requests(&data);
 597	if (unlikely(!rq))
 598		blk_queue_exit(q);
 599	return rq;
 600}
 601
 602static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
 603						   blk_opf_t opf,
 604						   blk_mq_req_flags_t flags)
 605{
 606	struct blk_plug *plug = current->plug;
 
 607	struct request *rq;
 
 
 608
 609	if (!plug)
 610		return NULL;
 611
 612	if (rq_list_empty(&plug->cached_rqs)) {
 613		if (plug->nr_ios == 1)
 614			return NULL;
 615		rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
 616		if (!rq)
 617			return NULL;
 618	} else {
 619		rq = rq_list_peek(&plug->cached_rqs);
 620		if (!rq || rq->q != q)
 621			return NULL;
 622
 623		if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
 624			return NULL;
 625		if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
 626			return NULL;
 627
 628		rq_list_pop(&plug->cached_rqs);
 629		blk_mq_rq_time_init(rq, blk_time_get_ns());
 
 
 
 
 
 
 
 630	}
 631
 632	rq->cmd_flags = opf;
 633	INIT_LIST_HEAD(&rq->queuelist);
 634	return rq;
 635}
 636
 637struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
 638		blk_mq_req_flags_t flags)
 639{
 640	struct request *rq;
 641
 642	rq = blk_mq_alloc_cached_request(q, opf, flags);
 643	if (!rq) {
 644		struct blk_mq_alloc_data data = {
 645			.q		= q,
 646			.flags		= flags,
 647			.cmd_flags	= opf,
 648			.nr_tags	= 1,
 649		};
 650		int ret;
 651
 652		ret = blk_queue_enter(q, flags);
 653		if (ret)
 654			return ERR_PTR(ret);
 655
 656		rq = __blk_mq_alloc_requests(&data);
 657		if (!rq)
 658			goto out_queue_exit;
 659	}
 660	rq->__data_len = 0;
 661	rq->__sector = (sector_t) -1;
 662	rq->bio = rq->biotail = NULL;
 663	return rq;
 664out_queue_exit:
 665	blk_queue_exit(q);
 666	return ERR_PTR(-EWOULDBLOCK);
 667}
 668EXPORT_SYMBOL(blk_mq_alloc_request);
 669
 670struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 671	blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 672{
 673	struct blk_mq_alloc_data data = {
 674		.q		= q,
 675		.flags		= flags,
 676		.cmd_flags	= opf,
 677		.nr_tags	= 1,
 678	};
 679	u64 alloc_time_ns = 0;
 680	struct request *rq;
 681	unsigned int cpu;
 682	unsigned int tag;
 683	int ret;
 684
 685	/* alloc_time includes depth and tag waits */
 686	if (blk_queue_rq_alloc_time(q))
 687		alloc_time_ns = blk_time_get_ns();
 688
 689	/*
 690	 * If the tag allocator sleeps we could get an allocation for a
 691	 * different hardware context.  No need to complicate the low level
 692	 * allocator for this for the rare use case of a command tied to
 693	 * a specific queue.
 694	 */
 695	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
 696	    WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
 697		return ERR_PTR(-EINVAL);
 698
 699	if (hctx_idx >= q->nr_hw_queues)
 700		return ERR_PTR(-EIO);
 701
 702	ret = blk_queue_enter(q, flags);
 703	if (ret)
 704		return ERR_PTR(ret);
 705
 706	/*
 707	 * Check if the hardware context is actually mapped to anything.
 708	 * If not tell the caller that it should skip this queue.
 709	 */
 710	ret = -EXDEV;
 711	data.hctx = xa_load(&q->hctx_table, hctx_idx);
 712	if (!blk_mq_hw_queue_mapped(data.hctx))
 713		goto out_queue_exit;
 714	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
 715	if (cpu >= nr_cpu_ids)
 716		goto out_queue_exit;
 717	data.ctx = __blk_mq_get_ctx(q, cpu);
 718
 719	if (q->elevator)
 720		data.rq_flags |= RQF_SCHED_TAGS;
 721	else
 722		blk_mq_tag_busy(data.hctx);
 723
 724	if (flags & BLK_MQ_REQ_RESERVED)
 725		data.rq_flags |= RQF_RESV;
 726
 727	ret = -EWOULDBLOCK;
 728	tag = blk_mq_get_tag(&data);
 729	if (tag == BLK_MQ_NO_TAG)
 730		goto out_queue_exit;
 731	if (!(data.rq_flags & RQF_SCHED_TAGS))
 732		blk_mq_inc_active_requests(data.hctx);
 733	rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag);
 734	blk_mq_rq_time_init(rq, alloc_time_ns);
 735	rq->__data_len = 0;
 736	rq->__sector = (sector_t) -1;
 737	rq->bio = rq->biotail = NULL;
 738	return rq;
 739
 740out_queue_exit:
 741	blk_queue_exit(q);
 742	return ERR_PTR(ret);
 743}
 744EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 745
 746static void blk_mq_finish_request(struct request *rq)
 747{
 748	struct request_queue *q = rq->q;
 749
 750	blk_zone_finish_request(rq);
 
 751
 752	if (rq->rq_flags & RQF_USE_SCHED) {
 753		q->elevator->type->ops.finish_request(rq);
 754		/*
 755		 * For postflush request that may need to be
 756		 * completed twice, we should clear this flag
 757		 * to avoid double finish_request() on the rq.
 758		 */
 759		rq->rq_flags &= ~RQF_USE_SCHED;
 760	}
 761}
 762
 763static void __blk_mq_free_request(struct request *rq)
 764{
 765	struct request_queue *q = rq->q;
 766	struct blk_mq_ctx *ctx = rq->mq_ctx;
 767	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 768	const int sched_tag = rq->internal_tag;
 769
 770	blk_crypto_free_request(rq);
 771	blk_pm_mark_last_busy(rq);
 772	rq->mq_hctx = NULL;
 773
 774	if (rq->tag != BLK_MQ_NO_TAG) {
 775		blk_mq_dec_active_requests(hctx);
 776		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
 777	}
 778	if (sched_tag != BLK_MQ_NO_TAG)
 779		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
 780	blk_mq_sched_restart(hctx);
 781	blk_queue_exit(q);
 782}
 
 783
 784void blk_mq_free_request(struct request *rq)
 785{
 
 786	struct request_queue *q = rq->q;
 787
 788	blk_mq_finish_request(rq);
 789
 790	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 791		laptop_io_completion(q->disk->bdi);
 792
 793	rq_qos_done(q, rq);
 794
 795	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 796	if (req_ref_put_and_test(rq))
 797		__blk_mq_free_request(rq);
 798}
 799EXPORT_SYMBOL_GPL(blk_mq_free_request);
 800
 801void blk_mq_free_plug_rqs(struct blk_plug *plug)
 802{
 803	struct request *rq;
 804
 805	while ((rq = rq_list_pop(&plug->cached_rqs)) != NULL)
 806		blk_mq_free_request(rq);
 807}
 808
 809void blk_dump_rq_flags(struct request *rq, char *msg)
 810{
 811	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
 812		rq->q->disk ? rq->q->disk->disk_name : "?",
 813		(__force unsigned long long) rq->cmd_flags);
 814
 815	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
 816	       (unsigned long long)blk_rq_pos(rq),
 817	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
 818	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
 819	       rq->bio, rq->biotail, blk_rq_bytes(rq));
 820}
 821EXPORT_SYMBOL(blk_dump_rq_flags);
 822
 823static void blk_account_io_completion(struct request *req, unsigned int bytes)
 824{
 825	if (req->rq_flags & RQF_IO_STAT) {
 826		const int sgrp = op_stat_group(req_op(req));
 827
 828		part_stat_lock();
 829		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
 830		part_stat_unlock();
 831	}
 832}
 833
 834static void blk_print_req_error(struct request *req, blk_status_t status)
 835{
 836	printk_ratelimited(KERN_ERR
 837		"%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
 838		"phys_seg %u prio class %u\n",
 839		blk_status_to_str(status),
 840		req->q->disk ? req->q->disk->disk_name : "?",
 841		blk_rq_pos(req), (__force u32)req_op(req),
 842		blk_op_str(req_op(req)),
 843		(__force u32)(req->cmd_flags & ~REQ_OP_MASK),
 844		req->nr_phys_segments,
 845		IOPRIO_PRIO_CLASS(req_get_ioprio(req)));
 846}
 847
 848/*
 849 * Fully end IO on a request. Does not support partial completions, or
 850 * errors.
 851 */
 852static void blk_complete_request(struct request *req)
 853{
 854	const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
 855	int total_bytes = blk_rq_bytes(req);
 856	struct bio *bio = req->bio;
 857
 858	trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
 859
 860	if (!bio)
 861		return;
 862
 863	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
 864		blk_integrity_complete(req, total_bytes);
 865
 866	/*
 867	 * Upper layers may call blk_crypto_evict_key() anytime after the last
 868	 * bio_endio().  Therefore, the keyslot must be released before that.
 869	 */
 870	blk_crypto_rq_put_keyslot(req);
 871
 872	blk_account_io_completion(req, total_bytes);
 873
 874	do {
 875		struct bio *next = bio->bi_next;
 876
 877		/* Completion has already been traced */
 878		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 879
 880		blk_zone_update_request_bio(req, bio);
 881
 882		if (!is_flush)
 883			bio_endio(bio);
 884		bio = next;
 885	} while (bio);
 886
 887	/*
 888	 * Reset counters so that the request stacking driver
 889	 * can find how many bytes remain in the request
 890	 * later.
 891	 */
 892	if (!req->end_io) {
 893		req->bio = NULL;
 894		req->__data_len = 0;
 895	}
 896}
 897
 898/**
 899 * blk_update_request - Complete multiple bytes without completing the request
 900 * @req:      the request being processed
 901 * @error:    block status code
 902 * @nr_bytes: number of bytes to complete for @req
 903 *
 904 * Description:
 905 *     Ends I/O on a number of bytes attached to @req, but doesn't complete
 906 *     the request structure even if @req doesn't have leftover.
 907 *     If @req has leftover, sets it up for the next range of segments.
 908 *
 909 *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
 910 *     %false return from this function.
 911 *
 912 * Note:
 913 *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
 914 *      except in the consistency check at the end of this function.
 915 *
 916 * Return:
 917 *     %false - this request doesn't have any more data
 918 *     %true  - this request has more data
 919 **/
 920bool blk_update_request(struct request *req, blk_status_t error,
 921		unsigned int nr_bytes)
 922{
 923	bool is_flush = req->rq_flags & RQF_FLUSH_SEQ;
 924	bool quiet = req->rq_flags & RQF_QUIET;
 925	int total_bytes;
 926
 927	trace_block_rq_complete(req, error, nr_bytes);
 928
 929	if (!req->bio)
 930		return false;
 931
 932	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
 933	    error == BLK_STS_OK)
 934		blk_integrity_complete(req, nr_bytes);
 935
 936	/*
 937	 * Upper layers may call blk_crypto_evict_key() anytime after the last
 938	 * bio_endio().  Therefore, the keyslot must be released before that.
 939	 */
 940	if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
 941		__blk_crypto_rq_put_keyslot(req);
 942
 943	if (unlikely(error && !blk_rq_is_passthrough(req) && !quiet) &&
 944	    !test_bit(GD_DEAD, &req->q->disk->state)) {
 945		blk_print_req_error(req, error);
 946		trace_block_rq_error(req, error, nr_bytes);
 947	}
 948
 949	blk_account_io_completion(req, nr_bytes);
 950
 951	total_bytes = 0;
 952	while (req->bio) {
 953		struct bio *bio = req->bio;
 954		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
 955
 956		if (unlikely(error))
 957			bio->bi_status = error;
 958
 959		if (bio_bytes == bio->bi_iter.bi_size) {
 960			req->bio = bio->bi_next;
 961		} else if (bio_is_zone_append(bio) && error == BLK_STS_OK) {
 962			/*
 963			 * Partial zone append completions cannot be supported
 964			 * as the BIO fragments may end up not being written
 965			 * sequentially.
 966			 */
 967			bio->bi_status = BLK_STS_IOERR;
 968		}
 969
 970		/* Completion has already been traced */
 971		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
 972		if (unlikely(quiet))
 973			bio_set_flag(bio, BIO_QUIET);
 974
 975		bio_advance(bio, bio_bytes);
 976
 977		/* Don't actually finish bio if it's part of flush sequence */
 978		if (!bio->bi_iter.bi_size) {
 979			blk_zone_update_request_bio(req, bio);
 980			if (!is_flush)
 981				bio_endio(bio);
 982		}
 983
 984		total_bytes += bio_bytes;
 985		nr_bytes -= bio_bytes;
 986
 987		if (!nr_bytes)
 988			break;
 989	}
 990
 991	/*
 992	 * completely done
 993	 */
 994	if (!req->bio) {
 995		/*
 996		 * Reset counters so that the request stacking driver
 997		 * can find how many bytes remain in the request
 998		 * later.
 999		 */
1000		req->__data_len = 0;
1001		return false;
1002	}
1003
1004	req->__data_len -= total_bytes;
1005
1006	/* update sector only for requests with clear definition of sector */
1007	if (!blk_rq_is_passthrough(req))
1008		req->__sector += total_bytes >> 9;
1009
1010	/* mixed attributes always follow the first bio */
1011	if (req->rq_flags & RQF_MIXED_MERGE) {
1012		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1013		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1014	}
1015
1016	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1017		/*
1018		 * If total number of sectors is less than the first segment
1019		 * size, something has gone terribly wrong.
1020		 */
1021		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1022			blk_dump_rq_flags(req, "request botched");
1023			req->__data_len = blk_rq_cur_bytes(req);
1024		}
1025
1026		/* recalculate the number of segments */
1027		req->nr_phys_segments = blk_recalc_rq_segments(req);
1028	}
1029
1030	return true;
1031}
1032EXPORT_SYMBOL_GPL(blk_update_request);
1033
1034static inline void blk_account_io_done(struct request *req, u64 now)
1035{
1036	trace_block_io_done(req);
1037
1038	/*
1039	 * Account IO completion.  flush_rq isn't accounted as a
1040	 * normal IO on queueing nor completion.  Accounting the
1041	 * containing request is enough.
1042	 */
1043	if ((req->rq_flags & (RQF_IO_STAT|RQF_FLUSH_SEQ)) == RQF_IO_STAT) {
1044		const int sgrp = op_stat_group(req_op(req));
1045
1046		part_stat_lock();
1047		update_io_ticks(req->part, jiffies, true);
1048		part_stat_inc(req->part, ios[sgrp]);
1049		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1050		part_stat_local_dec(req->part,
1051				    in_flight[op_is_write(req_op(req))]);
1052		part_stat_unlock();
1053	}
1054}
1055
1056static inline bool blk_rq_passthrough_stats(struct request *req)
1057{
1058	struct bio *bio = req->bio;
1059
1060	if (!blk_queue_passthrough_stat(req->q))
1061		return false;
1062
1063	/* Requests without a bio do not transfer data. */
1064	if (!bio)
1065		return false;
1066
1067	/*
1068	 * Stats are accumulated in the bdev, so must have one attached to a
1069	 * bio to track stats. Most drivers do not set the bdev for passthrough
1070	 * requests, but nvme is one that will set it.
1071	 */
1072	if (!bio->bi_bdev)
1073		return false;
1074
1075	/*
1076	 * We don't know what a passthrough command does, but we know the
1077	 * payload size and data direction. Ensuring the size is aligned to the
1078	 * block size filters out most commands with payloads that don't
1079	 * represent sector access.
1080	 */
1081	if (blk_rq_bytes(req) & (bdev_logical_block_size(bio->bi_bdev) - 1))
1082		return false;
1083	return true;
1084}
1085
1086static inline void blk_account_io_start(struct request *req)
1087{
1088	trace_block_io_start(req);
1089
1090	if (!blk_queue_io_stat(req->q))
1091		return;
1092	if (blk_rq_is_passthrough(req) && !blk_rq_passthrough_stats(req))
1093		return;
1094
1095	req->rq_flags |= RQF_IO_STAT;
1096	req->start_time_ns = blk_time_get_ns();
1097
1098	/*
1099	 * All non-passthrough requests are created from a bio with one
1100	 * exception: when a flush command that is part of a flush sequence
1101	 * generated by the state machine in blk-flush.c is cloned onto the
1102	 * lower device by dm-multipath we can get here without a bio.
1103	 */
1104	if (req->bio)
1105		req->part = req->bio->bi_bdev;
1106	else
1107		req->part = req->q->disk->part0;
1108
1109	part_stat_lock();
1110	update_io_ticks(req->part, jiffies, false);
1111	part_stat_local_inc(req->part, in_flight[op_is_write(req_op(req))]);
1112	part_stat_unlock();
1113}
1114
1115static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1116{
1117	if (rq->rq_flags & RQF_STATS)
1118		blk_stat_add(rq, now);
1119
1120	blk_mq_sched_completed_request(rq, now);
1121	blk_account_io_done(rq, now);
1122}
1123
1124inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1125{
1126	if (blk_mq_need_time_stamp(rq))
1127		__blk_mq_end_request_acct(rq, blk_time_get_ns());
1128
1129	blk_mq_finish_request(rq);
1130
1131	if (rq->end_io) {
1132		rq_qos_done(rq->q, rq);
1133		if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1134			blk_mq_free_request(rq);
1135	} else {
 
 
1136		blk_mq_free_request(rq);
1137	}
1138}
1139EXPORT_SYMBOL(__blk_mq_end_request);
1140
1141void blk_mq_end_request(struct request *rq, blk_status_t error)
1142{
1143	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1144		BUG();
1145	__blk_mq_end_request(rq, error);
1146}
1147EXPORT_SYMBOL(blk_mq_end_request);
1148
1149#define TAG_COMP_BATCH		32
1150
1151static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1152					  int *tag_array, int nr_tags)
1153{
1154	struct request_queue *q = hctx->queue;
1155
1156	blk_mq_sub_active_requests(hctx, nr_tags);
1157
1158	blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1159	percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1160}
1161
1162void blk_mq_end_request_batch(struct io_comp_batch *iob)
1163{
1164	int tags[TAG_COMP_BATCH], nr_tags = 0;
1165	struct blk_mq_hw_ctx *cur_hctx = NULL;
1166	struct request *rq;
1167	u64 now = 0;
1168
1169	if (iob->need_ts)
1170		now = blk_time_get_ns();
 
 
1171
1172	while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1173		prefetch(rq->bio);
1174		prefetch(rq->rq_next);
1175
1176		blk_complete_request(rq);
1177		if (iob->need_ts)
1178			__blk_mq_end_request_acct(rq, now);
1179
1180		blk_mq_finish_request(rq);
1181
1182		rq_qos_done(rq->q, rq);
1183
1184		/*
1185		 * If end_io handler returns NONE, then it still has
1186		 * ownership of the request.
1187		 */
1188		if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1189			continue;
1190
1191		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1192		if (!req_ref_put_and_test(rq))
1193			continue;
1194
1195		blk_crypto_free_request(rq);
1196		blk_pm_mark_last_busy(rq);
1197
1198		if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1199			if (cur_hctx)
1200				blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1201			nr_tags = 0;
1202			cur_hctx = rq->mq_hctx;
1203		}
1204		tags[nr_tags++] = rq->tag;
1205	}
1206
1207	if (nr_tags)
1208		blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1209}
1210EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1211
1212static void blk_complete_reqs(struct llist_head *list)
1213{
1214	struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1215	struct request *rq, *next;
1216
1217	llist_for_each_entry_safe(rq, next, entry, ipi_list)
1218		rq->q->mq_ops->complete(rq);
1219}
1220
1221static __latent_entropy void blk_done_softirq(void)
1222{
1223	blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1224}
1225
1226static int blk_softirq_cpu_dead(unsigned int cpu)
1227{
1228	blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1229	return 0;
1230}
1231
1232static void __blk_mq_complete_request_remote(void *data)
1233{
1234	__raise_softirq_irqoff(BLOCK_SOFTIRQ);
1235}
1236
1237static inline bool blk_mq_complete_need_ipi(struct request *rq)
1238{
1239	int cpu = raw_smp_processor_id();
1240
1241	if (!IS_ENABLED(CONFIG_SMP) ||
1242	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1243		return false;
1244	/*
1245	 * With force threaded interrupts enabled, raising softirq from an SMP
1246	 * function call will always result in waking the ksoftirqd thread.
1247	 * This is probably worse than completing the request on a different
1248	 * cache domain.
1249	 */
1250	if (force_irqthreads())
1251		return false;
1252
1253	/* same CPU or cache domain and capacity?  Complete locally */
1254	if (cpu == rq->mq_ctx->cpu ||
1255	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1256	     cpus_share_cache(cpu, rq->mq_ctx->cpu) &&
1257	     cpus_equal_capacity(cpu, rq->mq_ctx->cpu)))
1258		return false;
1259
1260	/* don't try to IPI to an offline CPU */
1261	return cpu_online(rq->mq_ctx->cpu);
1262}
1263
1264static void blk_mq_complete_send_ipi(struct request *rq)
1265{
1266	unsigned int cpu;
1267
1268	cpu = rq->mq_ctx->cpu;
1269	if (llist_add(&rq->ipi_list, &per_cpu(blk_cpu_done, cpu)))
1270		smp_call_function_single_async(cpu, &per_cpu(blk_cpu_csd, cpu));
1271}
1272
1273static void blk_mq_raise_softirq(struct request *rq)
1274{
1275	struct llist_head *list;
1276
1277	preempt_disable();
1278	list = this_cpu_ptr(&blk_cpu_done);
1279	if (llist_add(&rq->ipi_list, list))
1280		raise_softirq(BLOCK_SOFTIRQ);
1281	preempt_enable();
1282}
1283
1284bool blk_mq_complete_request_remote(struct request *rq)
1285{
1286	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1287
1288	/*
1289	 * For request which hctx has only one ctx mapping,
1290	 * or a polled request, always complete locally,
1291	 * it's pointless to redirect the completion.
1292	 */
1293	if ((rq->mq_hctx->nr_ctx == 1 &&
1294	     rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1295	     rq->cmd_flags & REQ_POLLED)
1296		return false;
1297
1298	if (blk_mq_complete_need_ipi(rq)) {
1299		blk_mq_complete_send_ipi(rq);
1300		return true;
1301	}
1302
1303	if (rq->q->nr_hw_queues == 1) {
1304		blk_mq_raise_softirq(rq);
1305		return true;
1306	}
1307	return false;
1308}
1309EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1310
1311/**
1312 * blk_mq_complete_request - end I/O on a request
1313 * @rq:		the request being processed
1314 *
1315 * Description:
1316 *	Complete a request by scheduling the ->complete_rq operation.
 
1317 **/
1318void blk_mq_complete_request(struct request *rq)
1319{
1320	if (!blk_mq_complete_request_remote(rq))
1321		rq->q->mq_ops->complete(rq);
 
 
 
 
 
 
1322}
1323EXPORT_SYMBOL(blk_mq_complete_request);
1324
1325/**
1326 * blk_mq_start_request - Start processing a request
1327 * @rq: Pointer to request to be started
1328 *
1329 * Function used by device drivers to notify the block layer that a request
1330 * is going to be processed now, so blk layer can do proper initializations
1331 * such as starting the timeout timer.
1332 */
1333void blk_mq_start_request(struct request *rq)
1334{
1335	struct request_queue *q = rq->q;
1336
1337	trace_block_rq_issue(rq);
1338
1339	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags) &&
1340	    !blk_rq_is_passthrough(rq)) {
1341		rq->io_start_time_ns = blk_time_get_ns();
1342		rq->stats_sectors = blk_rq_sectors(rq);
1343		rq->rq_flags |= RQF_STATS;
1344		rq_qos_issue(q, rq);
1345	}
1346
1347	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
 
 
1348
1349	blk_add_timer(rq);
1350	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1351	rq->mq_hctx->tags->rqs[rq->tag] = rq;
1352
1353	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1354		blk_integrity_prepare(rq);
 
 
 
1355
1356	if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1357	        WRITE_ONCE(rq->bio->bi_cookie, rq->mq_hctx->queue_num);
1358}
1359EXPORT_SYMBOL(blk_mq_start_request);
1360
1361/*
1362 * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1363 * queues. This is important for md arrays to benefit from merging
1364 * requests.
1365 */
1366static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1367{
1368	if (plug->multiple_queues)
1369		return BLK_MAX_REQUEST_COUNT * 2;
1370	return BLK_MAX_REQUEST_COUNT;
1371}
1372
1373static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1374{
1375	struct request *last = rq_list_peek(&plug->mq_list);
1376
1377	if (!plug->rq_count) {
1378		trace_block_plug(rq->q);
1379	} else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1380		   (!blk_queue_nomerges(rq->q) &&
1381		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1382		blk_mq_flush_plug_list(plug, false);
1383		last = NULL;
1384		trace_block_plug(rq->q);
1385	}
1386
1387	if (!plug->multiple_queues && last && last->q != rq->q)
1388		plug->multiple_queues = true;
1389	/*
1390	 * Any request allocated from sched tags can't be issued to
1391	 * ->queue_rqs() directly
 
 
1392	 */
1393	if (!plug->has_elevator && (rq->rq_flags & RQF_SCHED_TAGS))
1394		plug->has_elevator = true;
1395	rq_list_add_tail(&plug->mq_list, rq);
1396	plug->rq_count++;
1397}
1398
1399/**
1400 * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1401 * @rq:		request to insert
1402 * @at_head:    insert request at head or tail of queue
1403 *
1404 * Description:
1405 *    Insert a fully prepared request at the back of the I/O scheduler queue
1406 *    for execution.  Don't wait for completion.
1407 *
1408 * Note:
1409 *    This function will invoke @done directly if the queue is dead.
1410 */
1411void blk_execute_rq_nowait(struct request *rq, bool at_head)
1412{
1413	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1414
1415	WARN_ON(irqs_disabled());
1416	WARN_ON(!blk_rq_is_passthrough(rq));
1417
1418	blk_account_io_start(rq);
1419
1420	if (current->plug && !at_head) {
1421		blk_add_rq_to_plug(current->plug, rq);
1422		return;
1423	}
1424
1425	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1426	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
1427}
1428EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1429
1430struct blk_rq_wait {
1431	struct completion done;
1432	blk_status_t ret;
1433};
1434
1435static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1436{
1437	struct blk_rq_wait *wait = rq->end_io_data;
1438
1439	wait->ret = ret;
1440	complete(&wait->done);
1441	return RQ_END_IO_NONE;
1442}
1443
1444bool blk_rq_is_poll(struct request *rq)
1445{
1446	if (!rq->mq_hctx)
1447		return false;
1448	if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1449		return false;
1450	return true;
1451}
1452EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1453
1454static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1455{
1456	do {
1457		blk_hctx_poll(rq->q, rq->mq_hctx, NULL, 0);
1458		cond_resched();
1459	} while (!completion_done(wait));
1460}
1461
1462/**
1463 * blk_execute_rq - insert a request into queue for execution
1464 * @rq:		request to insert
1465 * @at_head:    insert request at head or tail of queue
1466 *
1467 * Description:
1468 *    Insert a fully prepared request at the back of the I/O scheduler queue
1469 *    for execution and wait for completion.
1470 * Return: The blk_status_t result provided to blk_mq_end_request().
1471 */
1472blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1473{
1474	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1475	struct blk_rq_wait wait = {
1476		.done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1477	};
1478
1479	WARN_ON(irqs_disabled());
1480	WARN_ON(!blk_rq_is_passthrough(rq));
1481
1482	rq->end_io_data = &wait;
1483	rq->end_io = blk_end_sync_rq;
1484
1485	blk_account_io_start(rq);
1486	blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1487	blk_mq_run_hw_queue(hctx, false);
1488
1489	if (blk_rq_is_poll(rq))
1490		blk_rq_poll_completion(rq, &wait.done);
1491	else
1492		blk_wait_io(&wait.done);
1493
1494	return wait.ret;
1495}
1496EXPORT_SYMBOL(blk_execute_rq);
1497
1498static void __blk_mq_requeue_request(struct request *rq)
1499{
1500	struct request_queue *q = rq->q;
1501
1502	blk_mq_put_driver_tag(rq);
1503
1504	trace_block_rq_requeue(rq);
1505	rq_qos_requeue(q, rq);
1506
1507	if (blk_mq_request_started(rq)) {
1508		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1509		rq->rq_flags &= ~RQF_TIMED_OUT;
1510	}
1511}
1512
1513void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1514{
1515	struct request_queue *q = rq->q;
1516	unsigned long flags;
1517
1518	__blk_mq_requeue_request(rq);
1519
1520	/* this request will be re-inserted to io scheduler queue */
1521	blk_mq_sched_requeue_request(rq);
1522
1523	spin_lock_irqsave(&q->requeue_lock, flags);
1524	list_add_tail(&rq->queuelist, &q->requeue_list);
1525	spin_unlock_irqrestore(&q->requeue_lock, flags);
1526
1527	if (kick_requeue_list)
1528		blk_mq_kick_requeue_list(q);
1529}
1530EXPORT_SYMBOL(blk_mq_requeue_request);
1531
1532static void blk_mq_requeue_work(struct work_struct *work)
1533{
1534	struct request_queue *q =
1535		container_of(work, struct request_queue, requeue_work.work);
1536	LIST_HEAD(rq_list);
1537	LIST_HEAD(flush_list);
1538	struct request *rq;
1539
1540	spin_lock_irq(&q->requeue_lock);
1541	list_splice_init(&q->requeue_list, &rq_list);
1542	list_splice_init(&q->flush_list, &flush_list);
1543	spin_unlock_irq(&q->requeue_lock);
1544
1545	while (!list_empty(&rq_list)) {
1546		rq = list_entry(rq_list.next, struct request, queuelist);
 
 
 
1547		list_del_init(&rq->queuelist);
1548		/*
1549		 * If RQF_DONTPREP is set, the request has been started by the
1550		 * driver already and might have driver-specific data allocated
1551		 * already.  Insert it into the hctx dispatch list to avoid
1552		 * block layer merges for the request.
1553		 */
1554		if (rq->rq_flags & RQF_DONTPREP)
1555			blk_mq_request_bypass_insert(rq, 0);
1556		else
1557			blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1558	}
1559
1560	while (!list_empty(&flush_list)) {
1561		rq = list_entry(flush_list.next, struct request, queuelist);
1562		list_del_init(&rq->queuelist);
1563		blk_mq_insert_request(rq, 0);
1564	}
1565
1566	blk_mq_run_hw_queues(q, false);
 
 
 
 
1567}
1568
1569void blk_mq_kick_requeue_list(struct request_queue *q)
1570{
1571	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572}
1573EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1574
1575void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1576				    unsigned long msecs)
1577{
1578	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1579				    msecs_to_jiffies(msecs));
1580}
1581EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1582
1583static bool blk_is_flush_data_rq(struct request *rq)
1584{
1585	return (rq->rq_flags & RQF_FLUSH_SEQ) && !is_flush_rq(rq);
1586}
 
1587
1588static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1589{
1590	/*
1591	 * If we find a request that isn't idle we know the queue is busy
1592	 * as it's checked in the iter.
1593	 * Return false to stop the iteration.
1594	 *
1595	 * In case of queue quiesce, if one flush data request is completed,
1596	 * don't count it as inflight given the flush sequence is suspended,
1597	 * and the original flush data request is invisible to driver, just
1598	 * like other pending requests because of quiesce
1599	 */
1600	if (blk_mq_request_started(rq) && !(blk_queue_quiesced(rq->q) &&
1601				blk_is_flush_data_rq(rq) &&
1602				blk_mq_request_completed(rq))) {
1603		bool *busy = priv;
1604
1605		*busy = true;
1606		return false;
1607	}
1608
1609	return true;
1610}
1611
1612bool blk_mq_queue_inflight(struct request_queue *q)
1613{
1614	bool busy = false;
1615
1616	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1617	return busy;
1618}
1619EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1620
1621static void blk_mq_rq_timed_out(struct request *req)
1622{
1623	req->rq_flags |= RQF_TIMED_OUT;
1624	if (req->q->mq_ops->timeout) {
1625		enum blk_eh_timer_return ret;
1626
1627		ret = req->q->mq_ops->timeout(req);
1628		if (ret == BLK_EH_DONE)
1629			return;
1630		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1631	}
1632
1633	blk_add_timer(req);
1634}
 
1635
1636struct blk_expired_data {
1637	bool has_timedout_rq;
1638	unsigned long next;
1639	unsigned long timeout_start;
1640};
1641
1642static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1643{
1644	unsigned long deadline;
 
1645
1646	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1647		return false;
1648	if (rq->rq_flags & RQF_TIMED_OUT)
1649		return false;
 
 
 
 
 
 
 
1650
1651	deadline = READ_ONCE(rq->deadline);
1652	if (time_after_eq(expired->timeout_start, deadline))
1653		return true;
1654
1655	if (expired->next == 0)
1656		expired->next = deadline;
1657	else if (time_after(expired->next, deadline))
1658		expired->next = deadline;
1659	return false;
1660}
1661
1662void blk_mq_put_rq_ref(struct request *rq)
1663{
1664	if (is_flush_rq(rq)) {
1665		if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1666			blk_mq_free_request(rq);
1667	} else if (req_ref_put_and_test(rq)) {
1668		__blk_mq_free_request(rq);
1669	}
1670}
1671
1672static bool blk_mq_check_expired(struct request *rq, void *priv)
 
1673{
1674	struct blk_expired_data *expired = priv;
1675
1676	/*
1677	 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1678	 * be reallocated underneath the timeout handler's processing, then
1679	 * the expire check is reliable. If the request is not expired, then
1680	 * it was completed and reallocated as a new request after returning
1681	 * from blk_mq_check_expired().
1682	 */
1683	if (blk_mq_req_expired(rq, expired)) {
1684		expired->has_timedout_rq = true;
1685		return false;
1686	}
1687	return true;
1688}
1689
1690static bool blk_mq_handle_expired(struct request *rq, void *priv)
1691{
1692	struct blk_expired_data *expired = priv;
1693
1694	if (blk_mq_req_expired(rq, expired))
1695		blk_mq_rq_timed_out(rq);
1696	return true;
1697}
1698
1699static void blk_mq_timeout_work(struct work_struct *work)
1700{
1701	struct request_queue *q =
1702		container_of(work, struct request_queue, timeout_work);
1703	struct blk_expired_data expired = {
1704		.timeout_start = jiffies,
 
1705	};
1706	struct blk_mq_hw_ctx *hctx;
1707	unsigned long i;
1708
1709	/* A deadlock might occur if a request is stuck requiring a
1710	 * timeout at the same time a queue freeze is waiting
1711	 * completion, since the timeout code would not be able to
1712	 * acquire the queue reference here.
1713	 *
1714	 * That's why we don't use blk_queue_enter here; instead, we use
1715	 * percpu_ref_tryget directly, because we need to be able to
1716	 * obtain a reference even in the short window between the queue
1717	 * starting to freeze, by dropping the first reference in
1718	 * blk_freeze_queue_start, and the moment the last request is
1719	 * consumed, marked by the instant q_usage_counter reaches
1720	 * zero.
1721	 */
1722	if (!percpu_ref_tryget(&q->q_usage_counter))
1723		return;
1724
1725	/* check if there is any timed-out request */
1726	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1727	if (expired.has_timedout_rq) {
1728		/*
1729		 * Before walking tags, we must ensure any submit started
1730		 * before the current time has finished. Since the submit
1731		 * uses srcu or rcu, wait for a synchronization point to
1732		 * ensure all running submits have finished
1733		 */
1734		blk_mq_wait_quiesce_done(q->tag_set);
1735
1736		expired.next = 0;
1737		blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1738	}
 
 
1739
1740	if (expired.next != 0) {
1741		mod_timer(&q->timeout, expired.next);
1742	} else {
1743		/*
1744		 * Request timeouts are handled as a forward rolling timer. If
1745		 * we end up here it means that no requests are pending and
1746		 * also that no request has been pending for a while. Mark
1747		 * each hctx as idle.
1748		 */
1749		queue_for_each_hw_ctx(q, hctx, i) {
1750			/* the hctx may be unmapped, so check it here */
1751			if (blk_mq_hw_queue_mapped(hctx))
1752				blk_mq_tag_idle(hctx);
1753		}
1754	}
1755	blk_queue_exit(q);
1756}
1757
1758struct flush_busy_ctx_data {
1759	struct blk_mq_hw_ctx *hctx;
1760	struct list_head *list;
1761};
1762
1763static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1764{
1765	struct flush_busy_ctx_data *flush_data = data;
1766	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1767	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1768	enum hctx_type type = hctx->type;
1769
1770	spin_lock(&ctx->lock);
1771	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1772	sbitmap_clear_bit(sb, bitnr);
1773	spin_unlock(&ctx->lock);
1774	return true;
1775}
1776
1777/*
1778 * Process software queues that have been marked busy, splicing them
1779 * to the for-dispatch
 
1780 */
1781void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 
1782{
1783	struct flush_busy_ctx_data data = {
1784		.hctx = hctx,
1785		.list = list,
1786	};
1787
1788	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1789}
1790
1791struct dispatch_rq_data {
1792	struct blk_mq_hw_ctx *hctx;
1793	struct request *rq;
1794};
1795
1796static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1797		void *data)
1798{
1799	struct dispatch_rq_data *dispatch_data = data;
1800	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1801	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1802	enum hctx_type type = hctx->type;
1803
1804	spin_lock(&ctx->lock);
1805	if (!list_empty(&ctx->rq_lists[type])) {
1806		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1807		list_del_init(&dispatch_data->rq->queuelist);
1808		if (list_empty(&ctx->rq_lists[type]))
1809			sbitmap_clear_bit(sb, bitnr);
 
 
 
 
 
 
 
 
1810	}
1811	spin_unlock(&ctx->lock);
1812
1813	return !dispatch_data->rq;
1814}
1815
1816struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1817					struct blk_mq_ctx *start)
 
 
 
1818{
1819	unsigned off = start ? start->index_hw[hctx->type] : 0;
1820	struct dispatch_rq_data data = {
1821		.hctx = hctx,
1822		.rq   = NULL,
1823	};
1824
1825	__sbitmap_for_each_set(&hctx->ctx_map, off,
1826			       dispatch_rq_from_ctx, &data);
 
1827
1828	return data.rq;
1829}
1830
1831bool __blk_mq_alloc_driver_tag(struct request *rq)
1832{
1833	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1834	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1835	int tag;
 
1836
1837	blk_mq_tag_busy(rq->mq_hctx);
 
 
 
 
1838
1839	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1840		bt = &rq->mq_hctx->tags->breserved_tags;
1841		tag_offset = 0;
1842	} else {
1843		if (!hctx_may_queue(rq->mq_hctx, bt))
1844			return false;
1845	}
1846
1847	tag = __sbitmap_queue_get(bt);
1848	if (tag == BLK_MQ_NO_TAG)
1849		return false;
1850
1851	rq->tag = tag + tag_offset;
1852	blk_mq_inc_active_requests(rq->mq_hctx);
1853	return true;
1854}
1855
1856static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1857				int flags, void *key)
1858{
1859	struct blk_mq_hw_ctx *hctx;
1860
1861	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1862
1863	spin_lock(&hctx->dispatch_wait_lock);
1864	if (!list_empty(&wait->entry)) {
1865		struct sbitmap_queue *sbq;
1866
1867		list_del_init(&wait->entry);
1868		sbq = &hctx->tags->bitmap_tags;
1869		atomic_dec(&sbq->ws_active);
1870	}
1871	spin_unlock(&hctx->dispatch_wait_lock);
1872
1873	blk_mq_run_hw_queue(hctx, true);
1874	return 1;
1875}
1876
1877/*
1878 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1879 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1880 * restart. For both cases, take care to check the condition again after
1881 * marking us as waiting.
1882 */
1883static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1884				 struct request *rq)
1885{
1886	struct sbitmap_queue *sbq;
1887	struct wait_queue_head *wq;
1888	wait_queue_entry_t *wait;
1889	bool ret;
1890
1891	if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1892	    !(blk_mq_is_shared_tags(hctx->flags))) {
1893		blk_mq_sched_mark_restart_hctx(hctx);
1894
1895		/*
1896		 * It's possible that a tag was freed in the window between the
1897		 * allocation failure and adding the hardware queue to the wait
1898		 * queue.
1899		 *
1900		 * Don't clear RESTART here, someone else could have set it.
1901		 * At most this will cost an extra queue run.
1902		 */
1903		return blk_mq_get_driver_tag(rq);
1904	}
1905
1906	wait = &hctx->dispatch_wait;
1907	if (!list_empty_careful(&wait->entry))
1908		return false;
1909
1910	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1911		sbq = &hctx->tags->breserved_tags;
1912	else
1913		sbq = &hctx->tags->bitmap_tags;
1914	wq = &bt_wait_ptr(sbq, hctx)->wait;
1915
1916	spin_lock_irq(&wq->lock);
1917	spin_lock(&hctx->dispatch_wait_lock);
1918	if (!list_empty(&wait->entry)) {
1919		spin_unlock(&hctx->dispatch_wait_lock);
1920		spin_unlock_irq(&wq->lock);
1921		return false;
1922	}
1923
1924	atomic_inc(&sbq->ws_active);
1925	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1926	__add_wait_queue(wq, wait);
1927
1928	/*
1929	 * Add one explicit barrier since blk_mq_get_driver_tag() may
1930	 * not imply barrier in case of failure.
1931	 *
1932	 * Order adding us to wait queue and allocating driver tag.
1933	 *
1934	 * The pair is the one implied in sbitmap_queue_wake_up() which
1935	 * orders clearing sbitmap tag bits and waitqueue_active() in
1936	 * __sbitmap_queue_wake_up(), since waitqueue_active() is lockless
1937	 *
1938	 * Otherwise, re-order of adding wait queue and getting driver tag
1939	 * may cause __sbitmap_queue_wake_up() to wake up nothing because
1940	 * the waitqueue_active() may not observe us in wait queue.
1941	 */
1942	smp_mb();
1943
1944	/*
1945	 * It's possible that a tag was freed in the window between the
1946	 * allocation failure and adding the hardware queue to the wait
1947	 * queue.
1948	 */
1949	ret = blk_mq_get_driver_tag(rq);
1950	if (!ret) {
1951		spin_unlock(&hctx->dispatch_wait_lock);
1952		spin_unlock_irq(&wq->lock);
1953		return false;
1954	}
1955
1956	/*
1957	 * We got a tag, remove ourselves from the wait queue to ensure
1958	 * someone else gets the wakeup.
1959	 */
1960	list_del_init(&wait->entry);
1961	atomic_dec(&sbq->ws_active);
1962	spin_unlock(&hctx->dispatch_wait_lock);
1963	spin_unlock_irq(&wq->lock);
1964
1965	return true;
1966}
1967
1968#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1969#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1970/*
1971 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1972 * - EWMA is one simple way to compute running average value
1973 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1974 * - take 4 as factor for avoiding to get too small(0) result, and this
1975 *   factor doesn't matter because EWMA decreases exponentially
1976 */
1977static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1978{
1979	unsigned int ewma;
1980
1981	ewma = hctx->dispatch_busy;
1982
1983	if (!ewma && !busy)
1984		return;
1985
1986	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1987	if (busy)
1988		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1989	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1990
1991	hctx->dispatch_busy = ewma;
1992}
1993
1994#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1995
1996static void blk_mq_handle_dev_resource(struct request *rq,
1997				       struct list_head *list)
1998{
1999	list_add(&rq->queuelist, list);
2000	__blk_mq_requeue_request(rq);
2001}
2002
2003enum prep_dispatch {
2004	PREP_DISPATCH_OK,
2005	PREP_DISPATCH_NO_TAG,
2006	PREP_DISPATCH_NO_BUDGET,
2007};
2008
2009static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
2010						  bool need_budget)
2011{
2012	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2013	int budget_token = -1;
2014
2015	if (need_budget) {
2016		budget_token = blk_mq_get_dispatch_budget(rq->q);
2017		if (budget_token < 0) {
2018			blk_mq_put_driver_tag(rq);
2019			return PREP_DISPATCH_NO_BUDGET;
2020		}
2021		blk_mq_set_rq_budget_token(rq, budget_token);
2022	}
2023
2024	if (!blk_mq_get_driver_tag(rq)) {
2025		/*
2026		 * The initial allocation attempt failed, so we need to
2027		 * rerun the hardware queue when a tag is freed. The
2028		 * waitqueue takes care of that. If the queue is run
2029		 * before we add this entry back on the dispatch list,
2030		 * we'll re-run it below.
2031		 */
2032		if (!blk_mq_mark_tag_wait(hctx, rq)) {
2033			/*
2034			 * All budgets not got from this function will be put
2035			 * together during handling partial dispatch
2036			 */
2037			if (need_budget)
2038				blk_mq_put_dispatch_budget(rq->q, budget_token);
2039			return PREP_DISPATCH_NO_TAG;
2040		}
2041	}
2042
2043	return PREP_DISPATCH_OK;
2044}
2045
2046/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
2047static void blk_mq_release_budgets(struct request_queue *q,
2048		struct list_head *list)
2049{
2050	struct request *rq;
2051
2052	list_for_each_entry(rq, list, queuelist) {
2053		int budget_token = blk_mq_get_rq_budget_token(rq);
2054
2055		if (budget_token >= 0)
2056			blk_mq_put_dispatch_budget(q, budget_token);
2057	}
2058}
2059
2060/*
2061 * blk_mq_commit_rqs will notify driver using bd->last that there is no
2062 * more requests. (See comment in struct blk_mq_ops for commit_rqs for
2063 * details)
2064 * Attention, we should explicitly call this in unusual cases:
2065 *  1) did not queue everything initially scheduled to queue
2066 *  2) the last attempt to queue a request failed
2067 */
2068static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
2069			      bool from_schedule)
2070{
2071	if (hctx->queue->mq_ops->commit_rqs && queued) {
2072		trace_block_unplug(hctx->queue, queued, !from_schedule);
2073		hctx->queue->mq_ops->commit_rqs(hctx);
2074	}
2075}
2076
2077/*
2078 * Returns true if we did some work AND can potentially do more.
2079 */
2080bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2081			     unsigned int nr_budgets)
2082{
2083	enum prep_dispatch prep;
2084	struct request_queue *q = hctx->queue;
2085	struct request *rq;
2086	int queued;
2087	blk_status_t ret = BLK_STS_OK;
2088	bool needs_resource = false;
2089
2090	if (list_empty(list))
2091		return false;
2092
2093	/*
2094	 * Now process all the entries, sending them to the driver.
2095	 */
2096	queued = 0;
2097	do {
2098		struct blk_mq_queue_data bd;
 
2099
2100		rq = list_first_entry(list, struct request, queuelist);
2101
2102		WARN_ON_ONCE(hctx != rq->mq_hctx);
2103		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2104		if (prep != PREP_DISPATCH_OK)
2105			break;
2106
2107		list_del_init(&rq->queuelist);
2108
2109		bd.rq = rq;
2110		bd.last = list_empty(list);
 
2111
2112		/*
2113		 * once the request is queued to lld, no need to cover the
2114		 * budget any more
2115		 */
2116		if (nr_budgets)
2117			nr_budgets--;
2118		ret = q->mq_ops->queue_rq(hctx, &bd);
2119		switch (ret) {
2120		case BLK_STS_OK:
2121			queued++;
 
 
 
 
2122			break;
2123		case BLK_STS_RESOURCE:
2124			needs_resource = true;
2125			fallthrough;
2126		case BLK_STS_DEV_RESOURCE:
2127			blk_mq_handle_dev_resource(rq, list);
2128			goto out;
2129		default:
2130			blk_mq_end_request(rq, ret);
 
 
 
 
2131		}
2132	} while (!list_empty(list));
2133out:
2134	/* If we didn't flush the entire list, we could have told the driver
2135	 * there was more coming, but that turned out to be a lie.
2136	 */
2137	if (!list_empty(list) || ret != BLK_STS_OK)
2138		blk_mq_commit_rqs(hctx, queued, false);
 
 
 
 
 
 
 
 
 
2139
2140	/*
2141	 * Any items that need requeuing? Stuff them into hctx->dispatch,
2142	 * that is where we will continue on next queue run.
2143	 */
2144	if (!list_empty(list)) {
2145		bool needs_restart;
2146		/* For non-shared tags, the RESTART check will suffice */
2147		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2148			((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2149			blk_mq_is_shared_tags(hctx->flags));
2150
2151		if (nr_budgets)
2152			blk_mq_release_budgets(q, list);
2153
2154		spin_lock(&hctx->lock);
2155		list_splice_tail_init(list, &hctx->dispatch);
2156		spin_unlock(&hctx->lock);
2157
2158		/*
2159		 * Order adding requests to hctx->dispatch and checking
2160		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
2161		 * in blk_mq_sched_restart(). Avoid restart code path to
2162		 * miss the new added requests to hctx->dispatch, meantime
2163		 * SCHED_RESTART is observed here.
2164		 */
2165		smp_mb();
2166
2167		/*
2168		 * If SCHED_RESTART was set by the caller of this function and
2169		 * it is no longer set that means that it was cleared by another
2170		 * thread and hence that a queue rerun is needed.
2171		 *
2172		 * If 'no_tag' is set, that means that we failed getting
2173		 * a driver tag with an I/O scheduler attached. If our dispatch
2174		 * waitqueue is no longer active, ensure that we run the queue
2175		 * AFTER adding our entries back to the list.
2176		 *
2177		 * If no I/O scheduler has been configured it is possible that
2178		 * the hardware queue got stopped and restarted before requests
2179		 * were pushed back onto the dispatch list. Rerun the queue to
2180		 * avoid starvation. Notes:
2181		 * - blk_mq_run_hw_queue() checks whether or not a queue has
2182		 *   been stopped before rerunning a queue.
2183		 * - Some but not all block drivers stop a queue before
2184		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2185		 *   and dm-rq.
2186		 *
2187		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2188		 * bit is set, run queue after a delay to avoid IO stalls
2189		 * that could otherwise occur if the queue is idle.  We'll do
2190		 * similar if we couldn't get budget or couldn't lock a zone
2191		 * and SCHED_RESTART is set.
2192		 */
2193		needs_restart = blk_mq_sched_needs_restart(hctx);
2194		if (prep == PREP_DISPATCH_NO_BUDGET)
2195			needs_resource = true;
2196		if (!needs_restart ||
2197		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2198			blk_mq_run_hw_queue(hctx, true);
2199		else if (needs_resource)
2200			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2201
2202		blk_mq_update_dispatch_busy(hctx, true);
2203		return false;
2204	}
2205
2206	blk_mq_update_dispatch_busy(hctx, false);
2207	return true;
2208}
2209
2210static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2211{
2212	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2213
2214	if (cpu >= nr_cpu_ids)
2215		cpu = cpumask_first(hctx->cpumask);
2216	return cpu;
2217}
2218
2219/*
2220 * ->next_cpu is always calculated from hctx->cpumask, so simply use
2221 * it for speeding up the check
2222 */
2223static bool blk_mq_hctx_empty_cpumask(struct blk_mq_hw_ctx *hctx)
2224{
2225        return hctx->next_cpu >= nr_cpu_ids;
2226}
2227
2228/*
2229 * It'd be great if the workqueue API had a way to pass
2230 * in a mask and had some smarts for more clever placement.
2231 * For now we just round-robin here, switching for every
2232 * BLK_MQ_CPU_WORK_BATCH queued items.
2233 */
2234static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2235{
2236	bool tried = false;
2237	int next_cpu = hctx->next_cpu;
2238
2239	/* Switch to unbound if no allowable CPUs in this hctx */
2240	if (hctx->queue->nr_hw_queues == 1 || blk_mq_hctx_empty_cpumask(hctx))
2241		return WORK_CPU_UNBOUND;
2242
2243	if (--hctx->next_cpu_batch <= 0) {
2244select_cpu:
2245		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2246				cpu_online_mask);
2247		if (next_cpu >= nr_cpu_ids)
2248			next_cpu = blk_mq_first_mapped_cpu(hctx);
 
 
2249		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2250	}
2251
2252	/*
2253	 * Do unbound schedule if we can't find a online CPU for this hctx,
2254	 * and it should only happen in the path of handling CPU DEAD.
2255	 */
2256	if (!cpu_online(next_cpu)) {
2257		if (!tried) {
2258			tried = true;
2259			goto select_cpu;
2260		}
2261
2262		/*
2263		 * Make sure to re-select CPU next time once after CPUs
2264		 * in hctx->cpumask become online again.
2265		 */
2266		hctx->next_cpu = next_cpu;
2267		hctx->next_cpu_batch = 1;
2268		return WORK_CPU_UNBOUND;
2269	}
2270
2271	hctx->next_cpu = next_cpu;
2272	return next_cpu;
2273}
2274
2275/**
2276 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2277 * @hctx: Pointer to the hardware queue to run.
2278 * @msecs: Milliseconds of delay to wait before running the queue.
2279 *
2280 * Run a hardware queue asynchronously with a delay of @msecs.
2281 */
2282void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2283{
2284	if (unlikely(blk_mq_hctx_stopped(hctx)))
 
2285		return;
2286	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2287				    msecs_to_jiffies(msecs));
2288}
2289EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2290
2291static inline bool blk_mq_hw_queue_need_run(struct blk_mq_hw_ctx *hctx)
2292{
2293	bool need_run;
2294
2295	/*
2296	 * When queue is quiesced, we may be switching io scheduler, or
2297	 * updating nr_hw_queues, or other things, and we can't run queue
2298	 * any more, even blk_mq_hctx_has_pending() can't be called safely.
2299	 *
2300	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2301	 * quiesced.
2302	 */
2303	__blk_mq_run_dispatch_ops(hctx->queue, false,
2304		need_run = !blk_queue_quiesced(hctx->queue) &&
2305		blk_mq_hctx_has_pending(hctx));
2306	return need_run;
2307}
2308
2309/**
2310 * blk_mq_run_hw_queue - Start to run a hardware queue.
2311 * @hctx: Pointer to the hardware queue to run.
2312 * @async: If we want to run the queue asynchronously.
2313 *
2314 * Check if the request queue is not in a quiesced state and if there are
2315 * pending requests to be sent. If this is true, run the queue to send requests
2316 * to hardware.
2317 */
2318void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2319{
2320	bool need_run;
2321
2322	/*
2323	 * We can't run the queue inline with interrupts disabled.
2324	 */
2325	WARN_ON_ONCE(!async && in_interrupt());
2326
2327	might_sleep_if(!async && hctx->flags & BLK_MQ_F_BLOCKING);
2328
2329	need_run = blk_mq_hw_queue_need_run(hctx);
2330	if (!need_run) {
2331		unsigned long flags;
2332
2333		/*
2334		 * Synchronize with blk_mq_unquiesce_queue(), because we check
2335		 * if hw queue is quiesced locklessly above, we need the use
2336		 * ->queue_lock to make sure we see the up-to-date status to
2337		 * not miss rerunning the hw queue.
2338		 */
2339		spin_lock_irqsave(&hctx->queue->queue_lock, flags);
2340		need_run = blk_mq_hw_queue_need_run(hctx);
2341		spin_unlock_irqrestore(&hctx->queue->queue_lock, flags);
2342
2343		if (!need_run)
 
 
 
 
2344			return;
2345	}
2346
2347	if (async || !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2348		blk_mq_delay_run_hw_queue(hctx, 0);
2349		return;
2350	}
2351
2352	blk_mq_run_dispatch_ops(hctx->queue,
2353				blk_mq_sched_dispatch_requests(hctx));
2354}
2355EXPORT_SYMBOL(blk_mq_run_hw_queue);
2356
2357/*
2358 * Return prefered queue to dispatch from (if any) for non-mq aware IO
2359 * scheduler.
2360 */
2361static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2362{
2363	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2364	/*
2365	 * If the IO scheduler does not respect hardware queues when
2366	 * dispatching, we just don't bother with multiple HW queues and
2367	 * dispatch from hctx for the current CPU since running multiple queues
2368	 * just causes lock contention inside the scheduler and pointless cache
2369	 * bouncing.
2370	 */
2371	struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2372
2373	if (!blk_mq_hctx_stopped(hctx))
2374		return hctx;
2375	return NULL;
2376}
2377
2378/**
2379 * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2380 * @q: Pointer to the request queue to run.
2381 * @async: If we want to run the queue asynchronously.
2382 */
2383void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2384{
2385	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2386	unsigned long i;
2387
2388	sq_hctx = NULL;
2389	if (blk_queue_sq_sched(q))
2390		sq_hctx = blk_mq_get_sq_hctx(q);
2391	queue_for_each_hw_ctx(q, hctx, i) {
2392		if (blk_mq_hctx_stopped(hctx))
 
 
2393			continue;
2394		/*
2395		 * Dispatch from this hctx either if there's no hctx preferred
2396		 * by IO scheduler or if it has requests that bypass the
2397		 * scheduler.
2398		 */
2399		if (!sq_hctx || sq_hctx == hctx ||
2400		    !list_empty_careful(&hctx->dispatch))
2401			blk_mq_run_hw_queue(hctx, async);
2402	}
2403}
2404EXPORT_SYMBOL(blk_mq_run_hw_queues);
2405
2406/**
2407 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2408 * @q: Pointer to the request queue to run.
2409 * @msecs: Milliseconds of delay to wait before running the queues.
2410 */
2411void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2412{
2413	struct blk_mq_hw_ctx *hctx, *sq_hctx;
2414	unsigned long i;
2415
2416	sq_hctx = NULL;
2417	if (blk_queue_sq_sched(q))
2418		sq_hctx = blk_mq_get_sq_hctx(q);
2419	queue_for_each_hw_ctx(q, hctx, i) {
2420		if (blk_mq_hctx_stopped(hctx))
2421			continue;
2422		/*
2423		 * If there is already a run_work pending, leave the
2424		 * pending delay untouched. Otherwise, a hctx can stall
2425		 * if another hctx is re-delaying the other's work
2426		 * before the work executes.
2427		 */
2428		if (delayed_work_pending(&hctx->run_work))
2429			continue;
2430		/*
2431		 * Dispatch from this hctx either if there's no hctx preferred
2432		 * by IO scheduler or if it has requests that bypass the
2433		 * scheduler.
2434		 */
2435		if (!sq_hctx || sq_hctx == hctx ||
2436		    !list_empty_careful(&hctx->dispatch))
2437			blk_mq_delay_run_hw_queue(hctx, msecs);
2438	}
2439}
2440EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2441
2442/*
2443 * This function is often used for pausing .queue_rq() by driver when
2444 * there isn't enough resource or some conditions aren't satisfied, and
2445 * BLK_STS_RESOURCE is usually returned.
2446 *
2447 * We do not guarantee that dispatch can be drained or blocked
2448 * after blk_mq_stop_hw_queue() returns. Please use
2449 * blk_mq_quiesce_queue() for that requirement.
2450 */
2451void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2452{
2453	cancel_delayed_work(&hctx->run_work);
2454
2455	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2456}
2457EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2458
2459/*
2460 * This function is often used for pausing .queue_rq() by driver when
2461 * there isn't enough resource or some conditions aren't satisfied, and
2462 * BLK_STS_RESOURCE is usually returned.
2463 *
2464 * We do not guarantee that dispatch can be drained or blocked
2465 * after blk_mq_stop_hw_queues() returns. Please use
2466 * blk_mq_quiesce_queue() for that requirement.
2467 */
2468void blk_mq_stop_hw_queues(struct request_queue *q)
2469{
2470	struct blk_mq_hw_ctx *hctx;
2471	unsigned long i;
2472
2473	queue_for_each_hw_ctx(q, hctx, i)
2474		blk_mq_stop_hw_queue(hctx);
2475}
2476EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2477
2478void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2479{
2480	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2481
2482	blk_mq_run_hw_queue(hctx, hctx->flags & BLK_MQ_F_BLOCKING);
2483}
2484EXPORT_SYMBOL(blk_mq_start_hw_queue);
2485
2486void blk_mq_start_hw_queues(struct request_queue *q)
2487{
2488	struct blk_mq_hw_ctx *hctx;
2489	unsigned long i;
2490
2491	queue_for_each_hw_ctx(q, hctx, i)
2492		blk_mq_start_hw_queue(hctx);
2493}
2494EXPORT_SYMBOL(blk_mq_start_hw_queues);
2495
2496void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2497{
2498	if (!blk_mq_hctx_stopped(hctx))
2499		return;
2500
2501	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2502	/*
2503	 * Pairs with the smp_mb() in blk_mq_hctx_stopped() to order the
2504	 * clearing of BLK_MQ_S_STOPPED above and the checking of dispatch
2505	 * list in the subsequent routine.
2506	 */
2507	smp_mb__after_atomic();
2508	blk_mq_run_hw_queue(hctx, async);
2509}
2510EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2511
2512void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2513{
2514	struct blk_mq_hw_ctx *hctx;
2515	unsigned long i;
 
 
 
 
2516
2517	queue_for_each_hw_ctx(q, hctx, i)
2518		blk_mq_start_stopped_hw_queue(hctx, async ||
2519					(hctx->flags & BLK_MQ_F_BLOCKING));
2520}
2521EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2522
2523static void blk_mq_run_work_fn(struct work_struct *work)
2524{
2525	struct blk_mq_hw_ctx *hctx =
2526		container_of(work, struct blk_mq_hw_ctx, run_work.work);
2527
2528	blk_mq_run_dispatch_ops(hctx->queue,
2529				blk_mq_sched_dispatch_requests(hctx));
2530}
2531
2532/**
2533 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2534 * @rq: Pointer to request to be inserted.
2535 * @flags: BLK_MQ_INSERT_*
2536 *
2537 * Should only be used carefully, when the caller knows we want to
2538 * bypass a potential IO scheduler on the target device.
2539 */
2540static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2541{
2542	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2543
2544	spin_lock(&hctx->lock);
2545	if (flags & BLK_MQ_INSERT_AT_HEAD)
2546		list_add(&rq->queuelist, &hctx->dispatch);
2547	else
2548		list_add_tail(&rq->queuelist, &hctx->dispatch);
2549	spin_unlock(&hctx->lock);
2550}
2551
2552static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2553		struct blk_mq_ctx *ctx, struct list_head *list,
2554		bool run_queue_async)
2555{
2556	struct request *rq;
2557	enum hctx_type type = hctx->type;
2558
2559	/*
2560	 * Try to issue requests directly if the hw queue isn't busy to save an
2561	 * extra enqueue & dequeue to the sw queue.
2562	 */
2563	if (!hctx->dispatch_busy && !run_queue_async) {
2564		blk_mq_run_dispatch_ops(hctx->queue,
2565			blk_mq_try_issue_list_directly(hctx, list));
2566		if (list_empty(list))
2567			goto out;
2568	}
2569
2570	/*
2571	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
2572	 * offline now
2573	 */
2574	list_for_each_entry(rq, list, queuelist) {
2575		BUG_ON(rq->mq_ctx != ctx);
2576		trace_block_rq_insert(rq);
2577		if (rq->cmd_flags & REQ_NOWAIT)
2578			run_queue_async = true;
2579	}
2580
2581	spin_lock(&ctx->lock);
2582	list_splice_tail_init(list, &ctx->rq_lists[type]);
2583	blk_mq_hctx_mark_pending(hctx, ctx);
2584	spin_unlock(&ctx->lock);
2585out:
2586	blk_mq_run_hw_queue(hctx, run_queue_async);
2587}
2588
2589static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2590{
2591	struct request_queue *q = rq->q;
2592	struct blk_mq_ctx *ctx = rq->mq_ctx;
2593	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2594
2595	if (blk_rq_is_passthrough(rq)) {
2596		/*
2597		 * Passthrough request have to be added to hctx->dispatch
2598		 * directly.  The device may be in a situation where it can't
2599		 * handle FS request, and always returns BLK_STS_RESOURCE for
2600		 * them, which gets them added to hctx->dispatch.
2601		 *
2602		 * If a passthrough request is required to unblock the queues,
2603		 * and it is added to the scheduler queue, there is no chance to
2604		 * dispatch it given we prioritize requests in hctx->dispatch.
2605		 */
2606		blk_mq_request_bypass_insert(rq, flags);
2607	} else if (req_op(rq) == REQ_OP_FLUSH) {
2608		/*
2609		 * Firstly normal IO request is inserted to scheduler queue or
2610		 * sw queue, meantime we add flush request to dispatch queue(
2611		 * hctx->dispatch) directly and there is at most one in-flight
2612		 * flush request for each hw queue, so it doesn't matter to add
2613		 * flush request to tail or front of the dispatch queue.
2614		 *
2615		 * Secondly in case of NCQ, flush request belongs to non-NCQ
2616		 * command, and queueing it will fail when there is any
2617		 * in-flight normal IO request(NCQ command). When adding flush
2618		 * rq to the front of hctx->dispatch, it is easier to introduce
2619		 * extra time to flush rq's latency because of S_SCHED_RESTART
2620		 * compared with adding to the tail of dispatch queue, then
2621		 * chance of flush merge is increased, and less flush requests
2622		 * will be issued to controller. It is observed that ~10% time
2623		 * is saved in blktests block/004 on disk attached to AHCI/NCQ
2624		 * drive when adding flush rq to the front of hctx->dispatch.
2625		 *
2626		 * Simply queue flush rq to the front of hctx->dispatch so that
2627		 * intensive flush workloads can benefit in case of NCQ HW.
2628		 */
2629		blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2630	} else if (q->elevator) {
2631		LIST_HEAD(list);
2632
2633		WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2634
2635		list_add(&rq->queuelist, &list);
2636		q->elevator->type->ops.insert_requests(hctx, &list, flags);
2637	} else {
2638		trace_block_rq_insert(rq);
2639
2640		spin_lock(&ctx->lock);
2641		if (flags & BLK_MQ_INSERT_AT_HEAD)
2642			list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2643		else
2644			list_add_tail(&rq->queuelist,
2645				      &ctx->rq_lists[hctx->type]);
2646		blk_mq_hctx_mark_pending(hctx, ctx);
2647		spin_unlock(&ctx->lock);
2648	}
2649}
 
2650
2651static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2652		unsigned int nr_segs)
 
 
2653{
2654	int err;
2655
2656	if (bio->bi_opf & REQ_RAHEAD)
2657		rq->cmd_flags |= REQ_FAILFAST_MASK;
2658
2659	rq->__sector = bio->bi_iter.bi_sector;
2660	blk_rq_bio_prep(rq, bio, nr_segs);
2661	if (bio_integrity(bio))
2662		rq->nr_integrity_segments = blk_rq_count_integrity_sg(rq->q,
2663								      bio);
2664
2665	/* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2666	err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2667	WARN_ON_ONCE(err);
2668
2669	blk_account_io_start(rq);
2670}
2671
2672static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2673					    struct request *rq, bool last)
2674{
2675	struct request_queue *q = rq->q;
2676	struct blk_mq_queue_data bd = {
2677		.rq = rq,
2678		.last = last,
2679	};
2680	blk_status_t ret;
2681
2682	/*
2683	 * For OK queue, we are done. For error, caller may kill it.
2684	 * Any other error (busy), just add it to our list as we
2685	 * previously would have done.
2686	 */
2687	ret = q->mq_ops->queue_rq(hctx, &bd);
2688	switch (ret) {
2689	case BLK_STS_OK:
2690		blk_mq_update_dispatch_busy(hctx, false);
2691		break;
2692	case BLK_STS_RESOURCE:
2693	case BLK_STS_DEV_RESOURCE:
2694		blk_mq_update_dispatch_busy(hctx, true);
2695		__blk_mq_requeue_request(rq);
2696		break;
2697	default:
2698		blk_mq_update_dispatch_busy(hctx, false);
2699		break;
2700	}
2701
2702	return ret;
2703}
2704
2705static bool blk_mq_get_budget_and_tag(struct request *rq)
 
2706{
2707	int budget_token;
 
 
2708
2709	budget_token = blk_mq_get_dispatch_budget(rq->q);
2710	if (budget_token < 0)
2711		return false;
2712	blk_mq_set_rq_budget_token(rq, budget_token);
2713	if (!blk_mq_get_driver_tag(rq)) {
2714		blk_mq_put_dispatch_budget(rq->q, budget_token);
2715		return false;
2716	}
2717	return true;
2718}
2719
2720/**
2721 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2722 * @hctx: Pointer of the associated hardware queue.
2723 * @rq: Pointer to request to be sent.
2724 *
2725 * If the device has enough resources to accept a new request now, send the
2726 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2727 * we can try send it another time in the future. Requests inserted at this
2728 * queue have higher priority.
2729 */
2730static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2731		struct request *rq)
2732{
2733	blk_status_t ret;
2734
2735	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2736		blk_mq_insert_request(rq, 0);
2737		blk_mq_run_hw_queue(hctx, false);
2738		return;
2739	}
2740
2741	if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2742		blk_mq_insert_request(rq, 0);
2743		blk_mq_run_hw_queue(hctx, rq->cmd_flags & REQ_NOWAIT);
2744		return;
2745	}
2746
2747	ret = __blk_mq_issue_directly(hctx, rq, true);
2748	switch (ret) {
2749	case BLK_STS_OK:
2750		break;
2751	case BLK_STS_RESOURCE:
2752	case BLK_STS_DEV_RESOURCE:
2753		blk_mq_request_bypass_insert(rq, 0);
2754		blk_mq_run_hw_queue(hctx, false);
2755		break;
2756	default:
2757		blk_mq_end_request(rq, ret);
2758		break;
2759	}
2760}
2761
2762static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
 
 
 
 
 
2763{
2764	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2765
2766	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2767		blk_mq_insert_request(rq, 0);
2768		blk_mq_run_hw_queue(hctx, false);
2769		return BLK_STS_OK;
2770	}
2771
2772	if (!blk_mq_get_budget_and_tag(rq))
2773		return BLK_STS_RESOURCE;
2774	return __blk_mq_issue_directly(hctx, rq, last);
2775}
2776
2777static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2778{
2779	struct blk_mq_hw_ctx *hctx = NULL;
2780	struct request *rq;
2781	int queued = 0;
2782	blk_status_t ret = BLK_STS_OK;
2783
2784	while ((rq = rq_list_pop(&plug->mq_list))) {
2785		bool last = rq_list_empty(&plug->mq_list);
 
2786
2787		if (hctx != rq->mq_hctx) {
2788			if (hctx) {
2789				blk_mq_commit_rqs(hctx, queued, false);
2790				queued = 0;
2791			}
2792			hctx = rq->mq_hctx;
2793		}
2794
2795		ret = blk_mq_request_issue_directly(rq, last);
2796		switch (ret) {
2797		case BLK_STS_OK:
2798			queued++;
2799			break;
2800		case BLK_STS_RESOURCE:
2801		case BLK_STS_DEV_RESOURCE:
2802			blk_mq_request_bypass_insert(rq, 0);
2803			blk_mq_run_hw_queue(hctx, false);
2804			goto out;
2805		default:
2806			blk_mq_end_request(rq, ret);
2807			break;
2808		}
2809	}
 
 
2810
2811out:
2812	if (ret != BLK_STS_OK)
2813		blk_mq_commit_rqs(hctx, queued, false);
2814}
2815
2816static void __blk_mq_flush_plug_list(struct request_queue *q,
2817				     struct blk_plug *plug)
2818{
2819	if (blk_queue_quiesced(q))
2820		return;
2821	q->mq_ops->queue_rqs(&plug->mq_list);
2822}
2823
2824static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2825{
2826	struct blk_mq_hw_ctx *this_hctx = NULL;
2827	struct blk_mq_ctx *this_ctx = NULL;
2828	struct rq_list requeue_list = {};
2829	unsigned int depth = 0;
2830	bool is_passthrough = false;
2831	LIST_HEAD(list);
2832
2833	do {
2834		struct request *rq = rq_list_pop(&plug->mq_list);
2835
2836		if (!this_hctx) {
2837			this_hctx = rq->mq_hctx;
2838			this_ctx = rq->mq_ctx;
2839			is_passthrough = blk_rq_is_passthrough(rq);
2840		} else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2841			   is_passthrough != blk_rq_is_passthrough(rq)) {
2842			rq_list_add_tail(&requeue_list, rq);
2843			continue;
2844		}
2845		list_add_tail(&rq->queuelist, &list);
2846		depth++;
2847	} while (!rq_list_empty(&plug->mq_list));
2848
2849	plug->mq_list = requeue_list;
2850	trace_block_unplug(this_hctx->queue, depth, !from_sched);
2851
2852	percpu_ref_get(&this_hctx->queue->q_usage_counter);
2853	/* passthrough requests should never be issued to the I/O scheduler */
2854	if (is_passthrough) {
2855		spin_lock(&this_hctx->lock);
2856		list_splice_tail_init(&list, &this_hctx->dispatch);
2857		spin_unlock(&this_hctx->lock);
2858		blk_mq_run_hw_queue(this_hctx, from_sched);
2859	} else if (this_hctx->queue->elevator) {
2860		this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2861				&list, 0);
2862		blk_mq_run_hw_queue(this_hctx, from_sched);
2863	} else {
2864		blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2865	}
2866	percpu_ref_put(&this_hctx->queue->q_usage_counter);
2867}
2868
2869void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2870{
 
 
2871	struct request *rq;
 
 
2872	unsigned int depth;
2873
2874	/*
2875	 * We may have been called recursively midway through handling
2876	 * plug->mq_list via a schedule() in the driver's queue_rq() callback.
2877	 * To avoid mq_list changing under our feet, clear rq_count early and
2878	 * bail out specifically if rq_count is 0 rather than checking
2879	 * whether the mq_list is empty.
2880	 */
2881	if (plug->rq_count == 0)
2882		return;
2883	depth = plug->rq_count;
2884	plug->rq_count = 0;
2885
2886	if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2887		struct request_queue *q;
 
2888
2889		rq = rq_list_peek(&plug->mq_list);
2890		q = rq->q;
2891		trace_block_unplug(q, depth, true);
 
 
 
 
 
 
 
2892
2893		/*
2894		 * Peek first request and see if we have a ->queue_rqs() hook.
2895		 * If we do, we can dispatch the whole plug list in one go. We
2896		 * already know at this point that all requests belong to the
2897		 * same queue, caller must ensure that's the case.
2898		 */
2899		if (q->mq_ops->queue_rqs) {
2900			blk_mq_run_dispatch_ops(q,
2901				__blk_mq_flush_plug_list(q, plug));
2902			if (rq_list_empty(&plug->mq_list))
2903				return;
2904		}
2905
2906		blk_mq_run_dispatch_ops(q,
2907				blk_mq_plug_issue_direct(plug));
2908		if (rq_list_empty(&plug->mq_list))
2909			return;
2910	}
2911
2912	do {
2913		blk_mq_dispatch_plug_list(plug, from_schedule);
2914	} while (!rq_list_empty(&plug->mq_list));
 
 
 
 
 
2915}
2916
2917static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2918		struct list_head *list)
2919{
2920	int queued = 0;
2921	blk_status_t ret = BLK_STS_OK;
2922
2923	while (!list_empty(list)) {
2924		struct request *rq = list_first_entry(list, struct request,
2925				queuelist);
2926
2927		list_del_init(&rq->queuelist);
2928		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2929		switch (ret) {
2930		case BLK_STS_OK:
2931			queued++;
2932			break;
2933		case BLK_STS_RESOURCE:
2934		case BLK_STS_DEV_RESOURCE:
2935			blk_mq_request_bypass_insert(rq, 0);
2936			if (list_empty(list))
2937				blk_mq_run_hw_queue(hctx, false);
2938			goto out;
2939		default:
2940			blk_mq_end_request(rq, ret);
2941			break;
2942		}
2943	}
2944
2945out:
2946	if (ret != BLK_STS_OK)
2947		blk_mq_commit_rqs(hctx, queued, false);
2948}
2949
2950static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2951				     struct bio *bio, unsigned int nr_segs)
2952{
2953	if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2954		if (blk_attempt_plug_merge(q, bio, nr_segs))
2955			return true;
2956		if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2957			return true;
2958	}
2959	return false;
2960}
2961
2962static struct request *blk_mq_get_new_requests(struct request_queue *q,
2963					       struct blk_plug *plug,
2964					       struct bio *bio,
2965					       unsigned int nsegs)
2966{
2967	struct blk_mq_alloc_data data = {
2968		.q		= q,
2969		.nr_tags	= 1,
2970		.cmd_flags	= bio->bi_opf,
2971	};
2972	struct request *rq;
 
 
2973
2974	rq_qos_throttle(q, bio);
 
 
 
 
2975
2976	if (plug) {
2977		data.nr_tags = plug->nr_ios;
2978		plug->nr_ios = 1;
2979		data.cached_rqs = &plug->cached_rqs;
2980	}
 
2981
2982	rq = __blk_mq_alloc_requests(&data);
2983	if (rq)
2984		return rq;
2985	rq_qos_cleanup(q, bio);
2986	if (bio->bi_opf & REQ_NOWAIT)
2987		bio_wouldblock_error(bio);
2988	return NULL;
2989}
2990
2991/*
2992 * Check if there is a suitable cached request and return it.
2993 */
2994static struct request *blk_mq_peek_cached_request(struct blk_plug *plug,
2995		struct request_queue *q, blk_opf_t opf)
2996{
2997	enum hctx_type type = blk_mq_get_hctx_type(opf);
 
2998	struct request *rq;
 
 
2999
3000	if (!plug)
3001		return NULL;
3002	rq = rq_list_peek(&plug->cached_rqs);
3003	if (!rq || rq->q != q)
3004		return NULL;
3005	if (type != rq->mq_hctx->type &&
3006	    (type != HCTX_TYPE_READ || rq->mq_hctx->type != HCTX_TYPE_DEFAULT))
3007		return NULL;
3008	if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
3009		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3010	return rq;
3011}
3012
3013static void blk_mq_use_cached_rq(struct request *rq, struct blk_plug *plug,
3014		struct bio *bio)
3015{
3016	if (rq_list_pop(&plug->cached_rqs) != rq)
3017		WARN_ON_ONCE(1);
 
 
 
 
 
 
 
 
3018
3019	/*
3020	 * If any qos ->throttle() end up blocking, we will have flushed the
3021	 * plug and hence killed the cached_rq list as well. Pop this entry
3022	 * before we throttle.
3023	 */
3024	rq_qos_throttle(rq->q, bio);
 
 
 
 
3025
3026	blk_mq_rq_time_init(rq, blk_time_get_ns());
3027	rq->cmd_flags = bio->bi_opf;
3028	INIT_LIST_HEAD(&rq->queuelist);
3029}
3030
3031static bool bio_unaligned(const struct bio *bio, struct request_queue *q)
3032{
3033	unsigned int bs_mask = queue_logical_block_size(q) - 1;
 
 
 
3034
3035	/* .bi_sector of any zero sized bio need to be initialized */
3036	if ((bio->bi_iter.bi_size & bs_mask) ||
3037	    ((bio->bi_iter.bi_sector << SECTOR_SHIFT) & bs_mask))
3038		return true;
3039	return false;
3040}
3041
3042/**
3043 * blk_mq_submit_bio - Create and send a request to block device.
3044 * @bio: Bio pointer.
3045 *
3046 * Builds up a request structure from @q and @bio and send to the device. The
3047 * request may not be queued directly to hardware if:
3048 * * This request can be merged with another one
3049 * * We want to place request at plug queue for possible future merging
3050 * * There is an IO scheduler active at this queue
3051 *
3052 * It will not queue the request if there is an error with the bio, or at the
3053 * request creation.
3054 */
3055void blk_mq_submit_bio(struct bio *bio)
3056{
3057	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
3058	struct blk_plug *plug = current->plug;
3059	const int is_sync = op_is_sync(bio->bi_opf);
3060	struct blk_mq_hw_ctx *hctx;
3061	unsigned int nr_segs;
3062	struct request *rq;
3063	blk_status_t ret;
3064
3065	/*
3066	 * If the plug has a cached request for this queue, try to use it.
3067	 */
3068	rq = blk_mq_peek_cached_request(plug, q, bio->bi_opf);
3069
3070	/*
3071	 * A BIO that was released from a zone write plug has already been
3072	 * through the preparation in this function, already holds a reference
3073	 * on the queue usage counter, and is the only write BIO in-flight for
3074	 * the target zone. Go straight to preparing a request for it.
3075	 */
3076	if (bio_zone_write_plugging(bio)) {
3077		nr_segs = bio->__bi_nr_segments;
3078		if (rq)
3079			blk_queue_exit(q);
3080		goto new_request;
3081	}
3082
3083	bio = blk_queue_bounce(bio, q);
3084
3085	/*
3086	 * The cached request already holds a q_usage_counter reference and we
3087	 * don't have to acquire a new one if we use it.
3088	 */
3089	if (!rq) {
3090		if (unlikely(bio_queue_enter(bio)))
3091			return;
3092	}
3093
3094	/*
3095	 * Device reconfiguration may change logical block size or reduce the
3096	 * number of poll queues, so the checks for alignment and poll support
3097	 * have to be done with queue usage counter held.
3098	 */
3099	if (unlikely(bio_unaligned(bio, q))) {
3100		bio_io_error(bio);
3101		goto queue_exit;
3102	}
3103
3104	if ((bio->bi_opf & REQ_POLLED) && !blk_mq_can_poll(q)) {
3105		bio->bi_status = BLK_STS_NOTSUPP;
3106		bio_endio(bio);
3107		goto queue_exit;
3108	}
3109
3110	bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
3111	if (!bio)
3112		goto queue_exit;
3113
3114	if (!bio_integrity_prep(bio))
3115		goto queue_exit;
 
 
 
 
3116
3117	if (blk_mq_attempt_bio_merge(q, bio, nr_segs))
3118		goto queue_exit;
 
3119
3120	if (blk_queue_is_zoned(q) && blk_zone_plug_bio(bio, nr_segs))
3121		goto queue_exit;
3122
3123new_request:
3124	if (!rq) {
3125		rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
3126		if (unlikely(!rq))
3127			goto queue_exit;
3128	} else {
3129		blk_mq_use_cached_rq(rq, plug, bio);
3130	}
3131
3132	trace_block_getrq(bio);
 
 
 
 
 
 
 
 
3133
3134	rq_qos_track(q, rq, bio);
3135
3136	blk_mq_bio_to_request(rq, bio, nr_segs);
3137
3138	ret = blk_crypto_rq_get_keyslot(rq);
3139	if (ret != BLK_STS_OK) {
3140		bio->bi_status = ret;
3141		bio_endio(bio);
3142		blk_mq_free_request(rq);
3143		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3144	}
3145
3146	if (bio_zone_write_plugging(bio))
3147		blk_zone_write_plug_init_request(rq);
3148
3149	if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
3150		return;
3151
3152	if (plug) {
3153		blk_add_rq_to_plug(plug, rq);
3154		return;
3155	}
3156
3157	hctx = rq->mq_hctx;
3158	if ((rq->rq_flags & RQF_USE_SCHED) ||
3159	    (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
3160		blk_mq_insert_request(rq, 0);
3161		blk_mq_run_hw_queue(hctx, true);
3162	} else {
3163		blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
3164	}
3165	return;
3166
3167queue_exit:
3168	/*
3169	 * Don't drop the queue reference if we were trying to use a cached
3170	 * request and thus didn't acquire one.
3171	 */
3172	if (!rq)
3173		blk_queue_exit(q);
3174}
3175
3176#ifdef CONFIG_BLK_MQ_STACKING
3177/**
3178 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3179 * @rq: the request being queued
3180 */
3181blk_status_t blk_insert_cloned_request(struct request *rq)
3182{
3183	struct request_queue *q = rq->q;
3184	unsigned int max_sectors = blk_queue_get_max_sectors(rq);
3185	unsigned int max_segments = blk_rq_get_max_segments(rq);
3186	blk_status_t ret;
 
 
 
3187
3188	if (blk_rq_sectors(rq) > max_sectors) {
3189		/*
3190		 * SCSI device does not have a good way to return if
3191		 * Write Same/Zero is actually supported. If a device rejects
3192		 * a non-read/write command (discard, write same,etc.) the
3193		 * low-level device driver will set the relevant queue limit to
3194		 * 0 to prevent blk-lib from issuing more of the offending
3195		 * operations. Commands queued prior to the queue limit being
3196		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3197		 * errors being propagated to upper layers.
3198		 */
3199		if (max_sectors == 0)
3200			return BLK_STS_NOTSUPP;
3201
3202		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3203			__func__, blk_rq_sectors(rq), max_sectors);
3204		return BLK_STS_IOERR;
3205	}
3206
3207	/*
3208	 * The queue settings related to segment counting may differ from the
3209	 * original queue.
3210	 */
3211	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3212	if (rq->nr_phys_segments > max_segments) {
3213		printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3214			__func__, rq->nr_phys_segments, max_segments);
3215		return BLK_STS_IOERR;
3216	}
3217
3218	if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3219		return BLK_STS_IOERR;
 
3220
3221	ret = blk_crypto_rq_get_keyslot(rq);
3222	if (ret != BLK_STS_OK)
3223		return ret;
3224
3225	blk_account_io_start(rq);
 
 
 
 
3226
3227	/*
3228	 * Since we have a scheduler attached on the top device,
3229	 * bypass a potential scheduler on the bottom device for
3230	 * insert.
3231	 */
3232	blk_mq_run_dispatch_ops(q,
3233			ret = blk_mq_request_issue_directly(rq, true));
3234	if (ret)
3235		blk_account_io_done(rq, blk_time_get_ns());
3236	return ret;
3237}
3238EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3239
3240/**
3241 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3242 * @rq: the clone request to be cleaned up
3243 *
3244 * Description:
3245 *     Free all bios in @rq for a cloned request.
3246 */
3247void blk_rq_unprep_clone(struct request *rq)
3248{
3249	struct bio *bio;
3250
3251	while ((bio = rq->bio) != NULL) {
3252		rq->bio = bio->bi_next;
3253
3254		bio_put(bio);
3255	}
3256}
3257EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3258
3259/**
3260 * blk_rq_prep_clone - Helper function to setup clone request
3261 * @rq: the request to be setup
3262 * @rq_src: original request to be cloned
3263 * @bs: bio_set that bios for clone are allocated from
3264 * @gfp_mask: memory allocation mask for bio
3265 * @bio_ctr: setup function to be called for each clone bio.
3266 *           Returns %0 for success, non %0 for failure.
3267 * @data: private data to be passed to @bio_ctr
3268 *
3269 * Description:
3270 *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3271 *     Also, pages which the original bios are pointing to are not copied
3272 *     and the cloned bios just point same pages.
3273 *     So cloned bios must be completed before original bios, which means
3274 *     the caller must complete @rq before @rq_src.
3275 */
3276int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3277		      struct bio_set *bs, gfp_t gfp_mask,
3278		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3279		      void *data)
3280{
3281	struct bio *bio_src;
3282
3283	if (!bs)
3284		bs = &fs_bio_set;
3285
3286	__rq_for_each_bio(bio_src, rq_src) {
3287		struct bio *bio	 = bio_alloc_clone(rq->q->disk->part0, bio_src,
3288					gfp_mask, bs);
3289		if (!bio)
3290			goto free_and_out;
3291
3292		if (bio_ctr && bio_ctr(bio, bio_src, data)) {
3293			bio_put(bio);
3294			goto free_and_out;
3295		}
3296
3297		if (rq->bio) {
3298			rq->biotail->bi_next = bio;
3299			rq->biotail = bio;
3300		} else {
3301			rq->bio = rq->biotail = bio;
3302		}
3303	}
3304
3305	/* Copy attributes of the original request to the clone request. */
3306	rq->__sector = blk_rq_pos(rq_src);
3307	rq->__data_len = blk_rq_bytes(rq_src);
3308	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3309		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3310		rq->special_vec = rq_src->special_vec;
 
 
 
3311	}
3312	rq->nr_phys_segments = rq_src->nr_phys_segments;
3313
3314	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3315		goto free_and_out;
3316
3317	return 0;
3318
3319free_and_out:
3320	blk_rq_unprep_clone(rq);
3321
3322	return -ENOMEM;
3323}
3324EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3325#endif /* CONFIG_BLK_MQ_STACKING */
3326
3327/*
3328 * Steal bios from a request and add them to a bio list.
3329 * The request must not have been partially completed before.
3330 */
3331void blk_steal_bios(struct bio_list *list, struct request *rq)
3332{
3333	if (rq->bio) {
3334		if (list->tail)
3335			list->tail->bi_next = rq->bio;
3336		else
3337			list->head = rq->bio;
3338		list->tail = rq->biotail;
3339
3340		rq->bio = NULL;
3341		rq->biotail = NULL;
3342	}
3343
3344	rq->__data_len = 0;
3345}
3346EXPORT_SYMBOL_GPL(blk_steal_bios);
3347
3348static size_t order_to_size(unsigned int order)
3349{
3350	return (size_t)PAGE_SIZE << order;
3351}
3352
3353/* called before freeing request pool in @tags */
3354static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3355				    struct blk_mq_tags *tags)
3356{
3357	struct page *page;
3358	unsigned long flags;
3359
3360	/*
3361	 * There is no need to clear mapping if driver tags is not initialized
3362	 * or the mapping belongs to the driver tags.
3363	 */
3364	if (!drv_tags || drv_tags == tags)
3365		return;
3366
3367	list_for_each_entry(page, &tags->page_list, lru) {
3368		unsigned long start = (unsigned long)page_address(page);
3369		unsigned long end = start + order_to_size(page->private);
3370		int i;
3371
3372		for (i = 0; i < drv_tags->nr_tags; i++) {
3373			struct request *rq = drv_tags->rqs[i];
3374			unsigned long rq_addr = (unsigned long)rq;
3375
3376			if (rq_addr >= start && rq_addr < end) {
3377				WARN_ON_ONCE(req_ref_read(rq) != 0);
3378				cmpxchg(&drv_tags->rqs[i], rq, NULL);
3379			}
3380		}
3381	}
3382
3383	/*
3384	 * Wait until all pending iteration is done.
3385	 *
3386	 * Request reference is cleared and it is guaranteed to be observed
3387	 * after the ->lock is released.
3388	 */
3389	spin_lock_irqsave(&drv_tags->lock, flags);
3390	spin_unlock_irqrestore(&drv_tags->lock, flags);
3391}
 
3392
3393void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3394		     unsigned int hctx_idx)
3395{
3396	struct blk_mq_tags *drv_tags;
3397	struct page *page;
3398
3399	if (list_empty(&tags->page_list))
3400		return;
3401
3402	if (blk_mq_is_shared_tags(set->flags))
3403		drv_tags = set->shared_tags;
3404	else
3405		drv_tags = set->tags[hctx_idx];
3406
3407	if (tags->static_rqs && set->ops->exit_request) {
3408		int i;
3409
3410		for (i = 0; i < tags->nr_tags; i++) {
3411			struct request *rq = tags->static_rqs[i];
3412
3413			if (!rq)
3414				continue;
3415			set->ops->exit_request(set, rq, hctx_idx);
3416			tags->static_rqs[i] = NULL;
 
3417		}
3418	}
3419
3420	blk_mq_clear_rq_mapping(drv_tags, tags);
3421
3422	while (!list_empty(&tags->page_list)) {
3423		page = list_first_entry(&tags->page_list, struct page, lru);
3424		list_del_init(&page->lru);
3425		/*
3426		 * Remove kmemleak object previously allocated in
3427		 * blk_mq_alloc_rqs().
3428		 */
3429		kmemleak_free(page_address(page));
3430		__free_pages(page, page->private);
3431	}
3432}
3433
3434void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3435{
3436	kfree(tags->rqs);
3437	tags->rqs = NULL;
3438	kfree(tags->static_rqs);
3439	tags->static_rqs = NULL;
3440
3441	blk_mq_free_tags(tags);
3442}
3443
3444static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3445		unsigned int hctx_idx)
3446{
3447	int i;
3448
3449	for (i = 0; i < set->nr_maps; i++) {
3450		unsigned int start = set->map[i].queue_offset;
3451		unsigned int end = start + set->map[i].nr_queues;
3452
3453		if (hctx_idx >= start && hctx_idx < end)
3454			break;
3455	}
3456
3457	if (i >= set->nr_maps)
3458		i = HCTX_TYPE_DEFAULT;
3459
3460	return i;
3461}
3462
3463static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3464		unsigned int hctx_idx)
3465{
3466	enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3467
3468	return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3469}
3470
3471static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3472					       unsigned int hctx_idx,
3473					       unsigned int nr_tags,
3474					       unsigned int reserved_tags)
3475{
3476	int node = blk_mq_get_hctx_node(set, hctx_idx);
3477	struct blk_mq_tags *tags;
 
 
3478
3479	if (node == NUMA_NO_NODE)
3480		node = set->numa_node;
3481
3482	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3483				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3484	if (!tags)
3485		return NULL;
3486
3487	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3488				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3489				 node);
3490	if (!tags->rqs)
3491		goto err_free_tags;
3492
3493	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3494					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3495					node);
3496	if (!tags->static_rqs)
3497		goto err_free_rqs;
3498
3499	return tags;
3500
3501err_free_rqs:
3502	kfree(tags->rqs);
3503err_free_tags:
3504	blk_mq_free_tags(tags);
3505	return NULL;
3506}
3507
3508static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3509			       unsigned int hctx_idx, int node)
3510{
3511	int ret;
3512
3513	if (set->ops->init_request) {
3514		ret = set->ops->init_request(set, rq, hctx_idx, node);
3515		if (ret)
3516			return ret;
3517	}
3518
3519	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3520	return 0;
3521}
3522
3523static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3524			    struct blk_mq_tags *tags,
3525			    unsigned int hctx_idx, unsigned int depth)
3526{
3527	unsigned int i, j, entries_per_page, max_order = 4;
3528	int node = blk_mq_get_hctx_node(set, hctx_idx);
3529	size_t rq_size, left;
3530
3531	if (node == NUMA_NO_NODE)
3532		node = set->numa_node;
3533
3534	INIT_LIST_HEAD(&tags->page_list);
3535
3536	/*
3537	 * rq_size is the size of the request plus driver payload, rounded
3538	 * to the cacheline size
3539	 */
3540	rq_size = round_up(sizeof(struct request) + set->cmd_size,
3541				cache_line_size());
3542	left = rq_size * depth;
3543
3544	for (i = 0; i < depth; ) {
3545		int this_order = max_order;
3546		struct page *page;
3547		int to_do;
3548		void *p;
3549
3550		while (this_order && left < order_to_size(this_order - 1))
3551			this_order--;
3552
3553		do {
3554			page = alloc_pages_node(node,
3555				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3556				this_order);
3557			if (page)
3558				break;
3559			if (!this_order--)
3560				break;
3561			if (order_to_size(this_order) < rq_size)
3562				break;
3563		} while (1);
3564
3565		if (!page)
3566			goto fail;
3567
3568		page->private = this_order;
3569		list_add_tail(&page->lru, &tags->page_list);
3570
3571		p = page_address(page);
3572		/*
3573		 * Allow kmemleak to scan these pages as they contain pointers
3574		 * to additional allocations like via ops->init_request().
3575		 */
3576		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3577		entries_per_page = order_to_size(this_order) / rq_size;
3578		to_do = min(entries_per_page, depth - i);
3579		left -= to_do * rq_size;
3580		for (j = 0; j < to_do; j++) {
3581			struct request *rq = p;
3582
3583			tags->static_rqs[i] = rq;
3584			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3585				tags->static_rqs[i] = NULL;
3586				goto fail;
 
 
3587			}
3588
3589			p += rq_size;
3590			i++;
3591		}
3592	}
3593	return 0;
3594
3595fail:
3596	blk_mq_free_rqs(set, tags, hctx_idx);
3597	return -ENOMEM;
3598}
3599
3600struct rq_iter_data {
3601	struct blk_mq_hw_ctx *hctx;
3602	bool has_rq;
3603};
3604
3605static bool blk_mq_has_request(struct request *rq, void *data)
3606{
3607	struct rq_iter_data *iter_data = data;
3608
3609	if (rq->mq_hctx != iter_data->hctx)
3610		return true;
3611	iter_data->has_rq = true;
3612	return false;
3613}
3614
3615static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3616{
3617	struct blk_mq_tags *tags = hctx->sched_tags ?
3618			hctx->sched_tags : hctx->tags;
3619	struct rq_iter_data data = {
3620		.hctx	= hctx,
3621	};
3622
3623	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3624	return data.has_rq;
3625}
3626
3627static bool blk_mq_hctx_has_online_cpu(struct blk_mq_hw_ctx *hctx,
3628		unsigned int this_cpu)
3629{
3630	enum hctx_type type = hctx->type;
3631	int cpu;
3632
3633	/*
3634	 * hctx->cpumask has to rule out isolated CPUs, but userspace still
3635	 * might submit IOs on these isolated CPUs, so use the queue map to
3636	 * check if all CPUs mapped to this hctx are offline
3637	 */
3638	for_each_online_cpu(cpu) {
3639		struct blk_mq_hw_ctx *h = blk_mq_map_queue_type(hctx->queue,
3640				type, cpu);
3641
3642		if (h != hctx)
3643			continue;
3644
3645		/* this hctx has at least one online CPU */
3646		if (this_cpu != cpu)
3647			return true;
3648	}
3649
3650	return false;
3651}
3652
3653static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3654{
3655	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3656			struct blk_mq_hw_ctx, cpuhp_online);
3657
3658	if (blk_mq_hctx_has_online_cpu(hctx, cpu))
3659		return 0;
3660
3661	/*
3662	 * Prevent new request from being allocated on the current hctx.
3663	 *
3664	 * The smp_mb__after_atomic() Pairs with the implied barrier in
3665	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3666	 * seen once we return from the tag allocator.
3667	 */
3668	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3669	smp_mb__after_atomic();
3670
3671	/*
3672	 * Try to grab a reference to the queue and wait for any outstanding
3673	 * requests.  If we could not grab a reference the queue has been
3674	 * frozen and there are no requests.
3675	 */
3676	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3677		while (blk_mq_hctx_has_requests(hctx))
3678			msleep(5);
3679		percpu_ref_put(&hctx->queue->q_usage_counter);
3680	}
3681
3682	return 0;
3683}
3684
3685/*
3686 * Check if one CPU is mapped to the specified hctx
3687 *
3688 * Isolated CPUs have been ruled out from hctx->cpumask, which is supposed
3689 * to be used for scheduling kworker only. For other usage, please call this
3690 * helper for checking if one CPU belongs to the specified hctx
3691 */
3692static bool blk_mq_cpu_mapped_to_hctx(unsigned int cpu,
3693		const struct blk_mq_hw_ctx *hctx)
3694{
3695	struct blk_mq_hw_ctx *mapped_hctx = blk_mq_map_queue_type(hctx->queue,
3696			hctx->type, cpu);
3697
3698	return mapped_hctx == hctx;
3699}
3700
3701static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3702{
3703	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3704			struct blk_mq_hw_ctx, cpuhp_online);
3705
3706	if (blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3707		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3708	return 0;
3709}
3710
3711/*
3712 * 'cpu' is going away. splice any existing rq_list entries from this
3713 * software queue to the hw queue dispatch list, and ensure that it
3714 * gets run.
3715 */
3716static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3717{
3718	struct blk_mq_hw_ctx *hctx;
3719	struct blk_mq_ctx *ctx;
3720	LIST_HEAD(tmp);
3721	enum hctx_type type;
3722
3723	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3724	if (!blk_mq_cpu_mapped_to_hctx(cpu, hctx))
3725		return 0;
3726
3727	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3728	type = hctx->type;
3729
3730	spin_lock(&ctx->lock);
3731	if (!list_empty(&ctx->rq_lists[type])) {
3732		list_splice_init(&ctx->rq_lists[type], &tmp);
3733		blk_mq_hctx_clear_pending(hctx, ctx);
3734	}
3735	spin_unlock(&ctx->lock);
3736
3737	if (list_empty(&tmp))
3738		return 0;
3739
3740	spin_lock(&hctx->lock);
3741	list_splice_tail_init(&tmp, &hctx->dispatch);
3742	spin_unlock(&hctx->lock);
3743
3744	blk_mq_run_hw_queue(hctx, true);
3745	return 0;
3746}
3747
3748static void __blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3749{
3750	lockdep_assert_held(&blk_mq_cpuhp_lock);
3751
3752	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3753	    !hlist_unhashed(&hctx->cpuhp_online)) {
3754		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3755						    &hctx->cpuhp_online);
3756		INIT_HLIST_NODE(&hctx->cpuhp_online);
3757	}
3758
3759	if (!hlist_unhashed(&hctx->cpuhp_dead)) {
3760		cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3761						    &hctx->cpuhp_dead);
3762		INIT_HLIST_NODE(&hctx->cpuhp_dead);
3763	}
3764}
3765
3766static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3767{
3768	mutex_lock(&blk_mq_cpuhp_lock);
3769	__blk_mq_remove_cpuhp(hctx);
3770	mutex_unlock(&blk_mq_cpuhp_lock);
3771}
3772
3773static void __blk_mq_add_cpuhp(struct blk_mq_hw_ctx *hctx)
3774{
3775	lockdep_assert_held(&blk_mq_cpuhp_lock);
3776
3777	if (!(hctx->flags & BLK_MQ_F_STACKING) &&
3778	    hlist_unhashed(&hctx->cpuhp_online))
3779		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3780				&hctx->cpuhp_online);
3781
3782	if (hlist_unhashed(&hctx->cpuhp_dead))
3783		cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3784				&hctx->cpuhp_dead);
3785}
3786
3787static void __blk_mq_remove_cpuhp_list(struct list_head *head)
3788{
3789	struct blk_mq_hw_ctx *hctx;
3790
3791	lockdep_assert_held(&blk_mq_cpuhp_lock);
3792
3793	list_for_each_entry(hctx, head, hctx_list)
3794		__blk_mq_remove_cpuhp(hctx);
3795}
3796
3797/*
3798 * Unregister cpuhp callbacks from exited hw queues
3799 *
3800 * Safe to call if this `request_queue` is live
3801 */
3802static void blk_mq_remove_hw_queues_cpuhp(struct request_queue *q)
3803{
3804	LIST_HEAD(hctx_list);
3805
3806	spin_lock(&q->unused_hctx_lock);
3807	list_splice_init(&q->unused_hctx_list, &hctx_list);
3808	spin_unlock(&q->unused_hctx_lock);
3809
3810	mutex_lock(&blk_mq_cpuhp_lock);
3811	__blk_mq_remove_cpuhp_list(&hctx_list);
3812	mutex_unlock(&blk_mq_cpuhp_lock);
3813
3814	spin_lock(&q->unused_hctx_lock);
3815	list_splice(&hctx_list, &q->unused_hctx_list);
3816	spin_unlock(&q->unused_hctx_lock);
3817}
3818
3819/*
3820 * Register cpuhp callbacks from all hw queues
3821 *
3822 * Safe to call if this `request_queue` is live
3823 */
3824static void blk_mq_add_hw_queues_cpuhp(struct request_queue *q)
3825{
3826	struct blk_mq_hw_ctx *hctx;
3827	unsigned long i;
3828
3829	mutex_lock(&blk_mq_cpuhp_lock);
3830	queue_for_each_hw_ctx(q, hctx, i)
3831		__blk_mq_add_cpuhp(hctx);
3832	mutex_unlock(&blk_mq_cpuhp_lock);
3833}
3834
3835/*
3836 * Before freeing hw queue, clearing the flush request reference in
3837 * tags->rqs[] for avoiding potential UAF.
3838 */
3839static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3840		unsigned int queue_depth, struct request *flush_rq)
3841{
3842	int i;
3843	unsigned long flags;
3844
3845	/* The hw queue may not be mapped yet */
3846	if (!tags)
3847		return;
3848
3849	WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3850
3851	for (i = 0; i < queue_depth; i++)
3852		cmpxchg(&tags->rqs[i], flush_rq, NULL);
3853
3854	/*
3855	 * Wait until all pending iteration is done.
3856	 *
3857	 * Request reference is cleared and it is guaranteed to be observed
3858	 * after the ->lock is released.
3859	 */
3860	spin_lock_irqsave(&tags->lock, flags);
3861	spin_unlock_irqrestore(&tags->lock, flags);
3862}
3863
3864/* hctx->ctxs will be freed in queue's release handler */
3865static void blk_mq_exit_hctx(struct request_queue *q,
3866		struct blk_mq_tag_set *set,
3867		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3868{
3869	struct request *flush_rq = hctx->fq->flush_rq;
3870
3871	if (blk_mq_hw_queue_mapped(hctx))
3872		blk_mq_tag_idle(hctx);
3873
3874	if (blk_queue_init_done(q))
3875		blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3876				set->queue_depth, flush_rq);
3877	if (set->ops->exit_request)
3878		set->ops->exit_request(set, flush_rq, hctx_idx);
 
 
3879
3880	if (set->ops->exit_hctx)
3881		set->ops->exit_hctx(hctx, hctx_idx);
3882
3883	xa_erase(&q->hctx_table, hctx_idx);
3884
3885	spin_lock(&q->unused_hctx_lock);
3886	list_add(&hctx->hctx_list, &q->unused_hctx_list);
3887	spin_unlock(&q->unused_hctx_lock);
3888}
3889
3890static void blk_mq_exit_hw_queues(struct request_queue *q,
3891		struct blk_mq_tag_set *set, int nr_queue)
3892{
3893	struct blk_mq_hw_ctx *hctx;
3894	unsigned long i;
3895
3896	queue_for_each_hw_ctx(q, hctx, i) {
3897		if (i == nr_queue)
3898			break;
3899		blk_mq_remove_cpuhp(hctx);
3900		blk_mq_exit_hctx(q, set, hctx, i);
3901	}
3902}
3903
3904static int blk_mq_init_hctx(struct request_queue *q,
3905		struct blk_mq_tag_set *set,
3906		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3907{
3908	hctx->queue_num = hctx_idx;
 
3909
3910	hctx->tags = set->tags[hctx_idx];
3911
3912	if (set->ops->init_hctx &&
3913	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3914		goto fail;
3915
3916	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3917				hctx->numa_node))
3918		goto exit_hctx;
3919
3920	if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3921		goto exit_flush_rq;
3922
3923	return 0;
3924
3925 exit_flush_rq:
3926	if (set->ops->exit_request)
3927		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3928 exit_hctx:
3929	if (set->ops->exit_hctx)
3930		set->ops->exit_hctx(hctx, hctx_idx);
3931 fail:
3932	return -1;
3933}
3934
3935static struct blk_mq_hw_ctx *
3936blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3937		int node)
3938{
3939	struct blk_mq_hw_ctx *hctx;
3940	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3941
3942	hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3943	if (!hctx)
3944		goto fail_alloc_hctx;
3945
3946	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3947		goto free_hctx;
3948
3949	atomic_set(&hctx->nr_active, 0);
3950	if (node == NUMA_NO_NODE)
3951		node = set->numa_node;
3952	hctx->numa_node = node;
3953
3954	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
 
3955	spin_lock_init(&hctx->lock);
3956	INIT_LIST_HEAD(&hctx->dispatch);
3957	INIT_HLIST_NODE(&hctx->cpuhp_dead);
3958	INIT_HLIST_NODE(&hctx->cpuhp_online);
3959	hctx->queue = q;
3960	hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
 
3961
3962	INIT_LIST_HEAD(&hctx->hctx_list);
 
 
 
 
3963
3964	/*
3965	 * Allocate space for all possible cpus to avoid allocation at
3966	 * runtime
3967	 */
3968	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3969			gfp, node);
3970	if (!hctx->ctxs)
3971		goto free_cpumask;
3972
3973	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3974				gfp, node, false, false))
3975		goto free_ctxs;
 
3976	hctx->nr_ctx = 0;
3977
3978	spin_lock_init(&hctx->dispatch_wait_lock);
3979	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3980	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3981
3982	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3983	if (!hctx->fq)
3984		goto free_bitmap;
3985
3986	blk_mq_hctx_kobj_init(hctx);
 
 
 
 
3987
3988	return hctx;
3989
 
 
 
 
 
3990 free_bitmap:
3991	sbitmap_free(&hctx->ctx_map);
3992 free_ctxs:
3993	kfree(hctx->ctxs);
3994 free_cpumask:
3995	free_cpumask_var(hctx->cpumask);
3996 free_hctx:
3997	kfree(hctx);
3998 fail_alloc_hctx:
3999	return NULL;
4000}
4001
4002static void blk_mq_init_cpu_queues(struct request_queue *q,
4003				   unsigned int nr_hw_queues)
4004{
4005	struct blk_mq_tag_set *set = q->tag_set;
4006	unsigned int i, j;
4007
4008	for_each_possible_cpu(i) {
4009		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
4010		struct blk_mq_hw_ctx *hctx;
4011		int k;
4012
 
4013		__ctx->cpu = i;
4014		spin_lock_init(&__ctx->lock);
4015		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
4016			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
 
 
 
 
4017
4018		__ctx->queue = q;
4019
4020		/*
4021		 * Set local node, IFF we have more than one hw queue. If
4022		 * not, we remain on the home node of the device
4023		 */
4024		for (j = 0; j < set->nr_maps; j++) {
4025			hctx = blk_mq_map_queue_type(q, j, i);
4026			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
4027				hctx->numa_node = cpu_to_node(i);
4028		}
4029	}
4030}
4031
4032struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4033					     unsigned int hctx_idx,
4034					     unsigned int depth)
4035{
4036	struct blk_mq_tags *tags;
4037	int ret;
4038
4039	tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
4040	if (!tags)
4041		return NULL;
4042
4043	ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
4044	if (ret) {
4045		blk_mq_free_rq_map(tags);
4046		return NULL;
4047	}
4048
4049	return tags;
4050}
4051
4052static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
4053				       int hctx_idx)
4054{
4055	if (blk_mq_is_shared_tags(set->flags)) {
4056		set->tags[hctx_idx] = set->shared_tags;
4057
4058		return true;
4059	}
4060
4061	set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
4062						       set->queue_depth);
4063
4064	return set->tags[hctx_idx];
4065}
4066
4067void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4068			     struct blk_mq_tags *tags,
4069			     unsigned int hctx_idx)
4070{
4071	if (tags) {
4072		blk_mq_free_rqs(set, tags, hctx_idx);
4073		blk_mq_free_rq_map(tags);
4074	}
4075}
4076
4077static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
4078				      unsigned int hctx_idx)
4079{
4080	if (!blk_mq_is_shared_tags(set->flags))
4081		blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
4082
4083	set->tags[hctx_idx] = NULL;
4084}
4085
4086static void blk_mq_map_swqueue(struct request_queue *q)
 
4087{
4088	unsigned int j, hctx_idx;
4089	unsigned long i;
4090	struct blk_mq_hw_ctx *hctx;
4091	struct blk_mq_ctx *ctx;
4092	struct blk_mq_tag_set *set = q->tag_set;
4093
 
 
 
 
 
4094	queue_for_each_hw_ctx(q, hctx, i) {
4095		cpumask_clear(hctx->cpumask);
4096		hctx->nr_ctx = 0;
4097		hctx->dispatch_from = NULL;
4098	}
4099
4100	/*
4101	 * Map software to hardware queues.
4102	 *
4103	 * If the cpu isn't present, the cpu is mapped to first hctx.
4104	 */
4105	for_each_possible_cpu(i) {
 
 
 
4106
4107		ctx = per_cpu_ptr(q->queue_ctx, i);
4108		for (j = 0; j < set->nr_maps; j++) {
4109			if (!set->map[j].nr_queues) {
4110				ctx->hctxs[j] = blk_mq_map_queue_type(q,
4111						HCTX_TYPE_DEFAULT, i);
4112				continue;
4113			}
4114			hctx_idx = set->map[j].mq_map[i];
4115			/* unmapped hw queue can be remapped after CPU topo changed */
4116			if (!set->tags[hctx_idx] &&
4117			    !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
4118				/*
4119				 * If tags initialization fail for some hctx,
4120				 * that hctx won't be brought online.  In this
4121				 * case, remap the current ctx to hctx[0] which
4122				 * is guaranteed to always have tags allocated
4123				 */
4124				set->map[j].mq_map[i] = 0;
4125			}
4126
4127			hctx = blk_mq_map_queue_type(q, j, i);
4128			ctx->hctxs[j] = hctx;
4129			/*
4130			 * If the CPU is already set in the mask, then we've
4131			 * mapped this one already. This can happen if
4132			 * devices share queues across queue maps.
4133			 */
4134			if (cpumask_test_cpu(i, hctx->cpumask))
4135				continue;
4136
4137			cpumask_set_cpu(i, hctx->cpumask);
4138			hctx->type = j;
4139			ctx->index_hw[hctx->type] = hctx->nr_ctx;
4140			hctx->ctxs[hctx->nr_ctx++] = ctx;
4141
4142			/*
4143			 * If the nr_ctx type overflows, we have exceeded the
4144			 * amount of sw queues we can support.
4145			 */
4146			BUG_ON(!hctx->nr_ctx);
4147		}
4148
4149		for (; j < HCTX_MAX_TYPES; j++)
4150			ctx->hctxs[j] = blk_mq_map_queue_type(q,
4151					HCTX_TYPE_DEFAULT, i);
4152	}
4153
4154	queue_for_each_hw_ctx(q, hctx, i) {
4155		int cpu;
4156
4157		/*
4158		 * If no software queues are mapped to this hardware queue,
4159		 * disable it and free the request entries.
4160		 */
4161		if (!hctx->nr_ctx) {
4162			/* Never unmap queue 0.  We need it as a
4163			 * fallback in case of a new remap fails
4164			 * allocation
4165			 */
4166			if (i)
4167				__blk_mq_free_map_and_rqs(set, i);
4168
4169			hctx->tags = NULL;
4170			continue;
4171		}
4172
 
 
 
4173		hctx->tags = set->tags[i];
4174		WARN_ON(!hctx->tags);
4175
 
4176		/*
4177		 * Set the map size to the number of mapped software queues.
4178		 * This is more accurate and more efficient than looping
4179		 * over all possibly mapped software queues.
4180		 */
4181		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
4182
4183		/*
4184		 * Rule out isolated CPUs from hctx->cpumask to avoid
4185		 * running block kworker on isolated CPUs
4186		 */
4187		for_each_cpu(cpu, hctx->cpumask) {
4188			if (cpu_is_isolated(cpu))
4189				cpumask_clear_cpu(cpu, hctx->cpumask);
4190		}
4191
4192		/*
4193		 * Initialize batch roundrobin counts
4194		 */
4195		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
4196		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
4197	}
4198}
4199
4200/*
4201 * Caller needs to ensure that we're either frozen/quiesced, or that
4202 * the queue isn't live yet.
4203 */
4204static void queue_set_hctx_shared(struct request_queue *q, bool shared)
4205{
4206	struct blk_mq_hw_ctx *hctx;
4207	unsigned long i;
4208
4209	queue_for_each_hw_ctx(q, hctx, i) {
4210		if (shared) {
4211			hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4212		} else {
4213			blk_mq_tag_idle(hctx);
4214			hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4215		}
4216	}
4217}
4218
4219static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
4220					 bool shared)
4221{
4222	struct request_queue *q;
4223
4224	lockdep_assert_held(&set->tag_list_lock);
4225
4226	list_for_each_entry(q, &set->tag_list, tag_set_list) {
4227		blk_mq_freeze_queue(q);
4228		queue_set_hctx_shared(q, shared);
4229		blk_mq_unfreeze_queue(q);
4230	}
4231}
4232
4233static void blk_mq_del_queue_tag_set(struct request_queue *q)
4234{
4235	struct blk_mq_tag_set *set = q->tag_set;
4236
4237	mutex_lock(&set->tag_list_lock);
4238	list_del(&q->tag_set_list);
4239	if (list_is_singular(&set->tag_list)) {
4240		/* just transitioned to unshared */
4241		set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
4242		/* update existing queue */
4243		blk_mq_update_tag_set_shared(set, false);
4244	}
4245	mutex_unlock(&set->tag_list_lock);
4246	INIT_LIST_HEAD(&q->tag_set_list);
4247}
4248
4249static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
4250				     struct request_queue *q)
4251{
 
 
4252	mutex_lock(&set->tag_list_lock);
4253
4254	/*
4255	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
4256	 */
4257	if (!list_empty(&set->tag_list) &&
4258	    !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
4259		set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
4260		/* update existing queue */
4261		blk_mq_update_tag_set_shared(set, true);
4262	}
4263	if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
4264		queue_set_hctx_shared(q, true);
4265	list_add_tail(&q->tag_set_list, &set->tag_list);
4266
4267	mutex_unlock(&set->tag_list_lock);
4268}
4269
4270/* All allocations will be freed in release handler of q->mq_kobj */
4271static int blk_mq_alloc_ctxs(struct request_queue *q)
4272{
4273	struct blk_mq_ctxs *ctxs;
4274	int cpu;
4275
4276	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
4277	if (!ctxs)
4278		return -ENOMEM;
4279
4280	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
4281	if (!ctxs->queue_ctx)
4282		goto fail;
4283
4284	for_each_possible_cpu(cpu) {
4285		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
4286		ctx->ctxs = ctxs;
4287	}
4288
4289	q->mq_kobj = &ctxs->kobj;
4290	q->queue_ctx = ctxs->queue_ctx;
4291
4292	return 0;
4293 fail:
4294	kfree(ctxs);
4295	return -ENOMEM;
4296}
4297
4298/*
4299 * It is the actual release handler for mq, but we do it from
4300 * request queue's release handler for avoiding use-after-free
4301 * and headache because q->mq_kobj shouldn't have been introduced,
4302 * but we can't group ctx/kctx kobj without it.
4303 */
4304void blk_mq_release(struct request_queue *q)
4305{
4306	struct blk_mq_hw_ctx *hctx, *next;
4307	unsigned long i;
4308
4309	queue_for_each_hw_ctx(q, hctx, i)
4310		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
 
 
 
 
 
4311
4312	/* all hctx are in .unused_hctx_list now */
4313	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4314		list_del_init(&hctx->hctx_list);
4315		kobject_put(&hctx->kobj);
4316	}
4317
4318	xa_destroy(&q->hctx_table);
4319
4320	/*
4321	 * release .mq_kobj and sw queue's kobject now because
4322	 * both share lifetime with request queue.
4323	 */
4324	blk_mq_sysfs_deinit(q);
4325}
4326
4327struct request_queue *blk_mq_alloc_queue(struct blk_mq_tag_set *set,
4328		struct queue_limits *lim, void *queuedata)
4329{
4330	struct queue_limits default_lim = { };
4331	struct request_queue *q;
4332	int ret;
4333
4334	if (!lim)
4335		lim = &default_lim;
4336	lim->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT;
4337	if (set->nr_maps > HCTX_TYPE_POLL)
4338		lim->features |= BLK_FEAT_POLL;
4339
4340	q = blk_alloc_queue(lim, set->numa_node);
4341	if (IS_ERR(q))
4342		return q;
4343	q->queuedata = queuedata;
4344	ret = blk_mq_init_allocated_queue(set, q);
4345	if (ret) {
4346		blk_put_queue(q);
4347		return ERR_PTR(ret);
4348	}
4349	return q;
4350}
4351EXPORT_SYMBOL(blk_mq_alloc_queue);
4352
4353/**
4354 * blk_mq_destroy_queue - shutdown a request queue
4355 * @q: request queue to shutdown
4356 *
4357 * This shuts down a request queue allocated by blk_mq_alloc_queue(). All future
4358 * requests will be failed with -ENODEV. The caller is responsible for dropping
4359 * the reference from blk_mq_alloc_queue() by calling blk_put_queue().
4360 *
4361 * Context: can sleep
4362 */
4363void blk_mq_destroy_queue(struct request_queue *q)
4364{
4365	WARN_ON_ONCE(!queue_is_mq(q));
4366	WARN_ON_ONCE(blk_queue_registered(q));
4367
4368	might_sleep();
 
 
4369
4370	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4371	blk_queue_start_drain(q);
4372	blk_mq_freeze_queue_wait(q);
4373
4374	blk_sync_queue(q);
4375	blk_mq_cancel_work_sync(q);
4376	blk_mq_exit_queue(q);
4377}
4378EXPORT_SYMBOL(blk_mq_destroy_queue);
4379
4380struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set,
4381		struct queue_limits *lim, void *queuedata,
4382		struct lock_class_key *lkclass)
4383{
4384	struct request_queue *q;
4385	struct gendisk *disk;
4386
4387	q = blk_mq_alloc_queue(set, lim, queuedata);
4388	if (IS_ERR(q))
4389		return ERR_CAST(q);
4390
4391	disk = __alloc_disk_node(q, set->numa_node, lkclass);
4392	if (!disk) {
4393		blk_mq_destroy_queue(q);
4394		blk_put_queue(q);
4395		return ERR_PTR(-ENOMEM);
4396	}
4397	set_bit(GD_OWNS_QUEUE, &disk->state);
4398	return disk;
4399}
4400EXPORT_SYMBOL(__blk_mq_alloc_disk);
4401
4402struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4403		struct lock_class_key *lkclass)
4404{
4405	struct gendisk *disk;
4406
4407	if (!blk_get_queue(q))
4408		return NULL;
4409	disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4410	if (!disk)
4411		blk_put_queue(q);
4412	return disk;
4413}
4414EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4415
4416/*
4417 * Only hctx removed from cpuhp list can be reused
4418 */
4419static bool blk_mq_hctx_is_reusable(struct blk_mq_hw_ctx *hctx)
4420{
4421	return hlist_unhashed(&hctx->cpuhp_online) &&
4422		hlist_unhashed(&hctx->cpuhp_dead);
4423}
4424
4425static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4426		struct blk_mq_tag_set *set, struct request_queue *q,
4427		int hctx_idx, int node)
4428{
4429	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4430
4431	/* reuse dead hctx first */
4432	spin_lock(&q->unused_hctx_lock);
4433	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4434		if (tmp->numa_node == node && blk_mq_hctx_is_reusable(tmp)) {
4435			hctx = tmp;
 
 
 
4436			break;
4437		}
 
4438	}
4439	if (hctx)
4440		list_del_init(&hctx->hctx_list);
4441	spin_unlock(&q->unused_hctx_lock);
4442
4443	if (!hctx)
4444		hctx = blk_mq_alloc_hctx(q, set, node);
4445	if (!hctx)
4446		goto fail;
4447
4448	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4449		goto free_hctx;
4450
4451	return hctx;
4452
4453 free_hctx:
4454	kobject_put(&hctx->kobj);
4455 fail:
4456	return NULL;
4457}
4458
4459static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4460						struct request_queue *q)
4461{
4462	struct blk_mq_hw_ctx *hctx;
4463	unsigned long i, j;
 
 
 
 
 
 
4464
4465	/* protect against switching io scheduler  */
4466	mutex_lock(&q->sysfs_lock);
4467	for (i = 0; i < set->nr_hw_queues; i++) {
4468		int old_node;
4469		int node = blk_mq_get_hctx_node(set, i);
4470		struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4471
4472		if (old_hctx) {
4473			old_node = old_hctx->numa_node;
4474			blk_mq_exit_hctx(q, set, old_hctx, i);
4475		}
4476
4477		if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4478			if (!old_hctx)
4479				break;
4480			pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4481					node, old_node);
4482			hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4483			WARN_ON_ONCE(!hctx);
4484		}
4485	}
4486	/*
4487	 * Increasing nr_hw_queues fails. Free the newly allocated
4488	 * hctxs and keep the previous q->nr_hw_queues.
4489	 */
4490	if (i != set->nr_hw_queues) {
4491		j = q->nr_hw_queues;
4492	} else {
4493		j = i;
4494		q->nr_hw_queues = set->nr_hw_queues;
4495	}
4496
4497	xa_for_each_start(&q->hctx_table, j, hctx, j)
4498		blk_mq_exit_hctx(q, set, hctx, j);
4499	mutex_unlock(&q->sysfs_lock);
4500
4501	/* unregister cpuhp callbacks for exited hctxs */
4502	blk_mq_remove_hw_queues_cpuhp(q);
4503
4504	/* register cpuhp for new initialized hctxs */
4505	blk_mq_add_hw_queues_cpuhp(q);
4506}
4507
4508int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4509		struct request_queue *q)
4510{
4511	/* mark the queue as mq asap */
4512	q->mq_ops = set->ops;
4513
4514	/*
4515	 * ->tag_set has to be setup before initialize hctx, which cpuphp
4516	 * handler needs it for checking queue mapping
4517	 */
4518	q->tag_set = set;
4519
4520	if (blk_mq_alloc_ctxs(q))
4521		goto err_exit;
4522
4523	/* init q->mq_kobj and sw queues' kobjects */
4524	blk_mq_sysfs_init(q);
4525
4526	INIT_LIST_HEAD(&q->unused_hctx_list);
4527	spin_lock_init(&q->unused_hctx_lock);
4528
4529	xa_init(&q->hctx_table);
 
4530
4531	blk_mq_realloc_hw_ctxs(set, q);
4532	if (!q->nr_hw_queues)
4533		goto err_hctxs;
4534
4535	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4536	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4537
 
 
4538	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4539
4540	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4541	INIT_LIST_HEAD(&q->flush_list);
 
 
 
 
4542	INIT_LIST_HEAD(&q->requeue_list);
4543	spin_lock_init(&q->requeue_lock);
4544
 
 
 
 
 
 
 
 
4545	q->nr_requests = set->queue_depth;
4546
 
 
 
4547	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
 
 
 
 
 
4548	blk_mq_add_queue_tag_set(set, q);
4549	blk_mq_map_swqueue(q);
4550	return 0;
 
 
 
 
4551
4552err_hctxs:
4553	blk_mq_release(q);
4554err_exit:
4555	q->mq_ops = NULL;
4556	return -ENOMEM;
 
 
4557}
4558EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4559
4560/* tags can _not_ be used after returning from blk_mq_exit_queue */
4561void blk_mq_exit_queue(struct request_queue *q)
4562{
4563	struct blk_mq_tag_set *set = q->tag_set;
 
 
 
 
 
 
4564
4565	/* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4566	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4567	/* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4568	blk_mq_del_queue_tag_set(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4569}
4570
4571static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4572{
4573	int i;
4574
4575	if (blk_mq_is_shared_tags(set->flags)) {
4576		set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4577						BLK_MQ_NO_HCTX_IDX,
4578						set->queue_depth);
4579		if (!set->shared_tags)
4580			return -ENOMEM;
4581	}
4582
4583	for (i = 0; i < set->nr_hw_queues; i++) {
4584		if (!__blk_mq_alloc_map_and_rqs(set, i))
 
4585			goto out_unwind;
4586		cond_resched();
4587	}
4588
4589	return 0;
4590
4591out_unwind:
4592	while (--i >= 0)
4593		__blk_mq_free_map_and_rqs(set, i);
4594
4595	if (blk_mq_is_shared_tags(set->flags)) {
4596		blk_mq_free_map_and_rqs(set, set->shared_tags,
4597					BLK_MQ_NO_HCTX_IDX);
4598	}
4599
4600	return -ENOMEM;
4601}
4602
4603/*
4604 * Allocate the request maps associated with this tag_set. Note that this
4605 * may reduce the depth asked for, if memory is tight. set->queue_depth
4606 * will be updated to reflect the allocated depth.
4607 */
4608static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4609{
4610	unsigned int depth;
4611	int err;
4612
4613	depth = set->queue_depth;
4614	do {
4615		err = __blk_mq_alloc_rq_maps(set);
4616		if (!err)
4617			break;
4618
4619		set->queue_depth >>= 1;
4620		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4621			err = -ENOMEM;
4622			break;
4623		}
4624	} while (set->queue_depth);
4625
4626	if (!set->queue_depth || err) {
4627		pr_err("blk-mq: failed to allocate request map\n");
4628		return -ENOMEM;
4629	}
4630
4631	if (depth != set->queue_depth)
4632		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4633						depth, set->queue_depth);
4634
4635	return 0;
4636}
4637
4638static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4639{
4640	/*
4641	 * blk_mq_map_queues() and multiple .map_queues() implementations
4642	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4643	 * number of hardware queues.
4644	 */
4645	if (set->nr_maps == 1)
4646		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4647
4648	if (set->ops->map_queues) {
4649		int i;
4650
4651		/*
4652		 * transport .map_queues is usually done in the following
4653		 * way:
4654		 *
4655		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4656		 * 	mask = get_cpu_mask(queue)
4657		 * 	for_each_cpu(cpu, mask)
4658		 * 		set->map[x].mq_map[cpu] = queue;
4659		 * }
4660		 *
4661		 * When we need to remap, the table has to be cleared for
4662		 * killing stale mapping since one CPU may not be mapped
4663		 * to any hw queue.
4664		 */
4665		for (i = 0; i < set->nr_maps; i++)
4666			blk_mq_clear_mq_map(&set->map[i]);
4667
4668		set->ops->map_queues(set);
4669	} else {
4670		BUG_ON(set->nr_maps > 1);
4671		blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4672	}
4673}
4674
4675static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4676				       int new_nr_hw_queues)
4677{
4678	struct blk_mq_tags **new_tags;
4679	int i;
4680
4681	if (set->nr_hw_queues >= new_nr_hw_queues)
4682		goto done;
4683
4684	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4685				GFP_KERNEL, set->numa_node);
4686	if (!new_tags)
4687		return -ENOMEM;
4688
4689	if (set->tags)
4690		memcpy(new_tags, set->tags, set->nr_hw_queues *
4691		       sizeof(*set->tags));
4692	kfree(set->tags);
4693	set->tags = new_tags;
4694
4695	for (i = set->nr_hw_queues; i < new_nr_hw_queues; i++) {
4696		if (!__blk_mq_alloc_map_and_rqs(set, i)) {
4697			while (--i >= set->nr_hw_queues)
4698				__blk_mq_free_map_and_rqs(set, i);
4699			return -ENOMEM;
4700		}
4701		cond_resched();
4702	}
4703
4704done:
4705	set->nr_hw_queues = new_nr_hw_queues;
4706	return 0;
4707}
 
4708
4709/*
4710 * Alloc a tag set to be associated with one or more request queues.
4711 * May fail with EINVAL for various error conditions. May adjust the
4712 * requested depth down, if it's too large. In that case, the set
4713 * value will be stored in set->queue_depth.
4714 */
4715int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4716{
4717	int i, ret;
4718
4719	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4720
4721	if (!set->nr_hw_queues)
4722		return -EINVAL;
4723	if (!set->queue_depth)
4724		return -EINVAL;
4725	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4726		return -EINVAL;
4727
4728	if (!set->ops->queue_rq)
4729		return -EINVAL;
4730
4731	if (!set->ops->get_budget ^ !set->ops->put_budget)
4732		return -EINVAL;
4733
4734	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4735		pr_info("blk-mq: reduced tag depth to %u\n",
4736			BLK_MQ_MAX_DEPTH);
4737		set->queue_depth = BLK_MQ_MAX_DEPTH;
4738	}
4739
4740	if (!set->nr_maps)
4741		set->nr_maps = 1;
4742	else if (set->nr_maps > HCTX_MAX_TYPES)
4743		return -EINVAL;
4744
4745	/*
4746	 * If a crashdump is active, then we are potentially in a very
4747	 * memory constrained environment. Limit us to  64 tags to prevent
4748	 * using too much memory.
4749	 */
4750	if (is_kdump_kernel())
 
4751		set->queue_depth = min(64U, set->queue_depth);
4752
4753	/*
4754	 * There is no use for more h/w queues than cpus if we just have
4755	 * a single map
4756	 */
4757	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4758		set->nr_hw_queues = nr_cpu_ids;
4759
4760	if (set->flags & BLK_MQ_F_BLOCKING) {
4761		set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4762		if (!set->srcu)
4763			return -ENOMEM;
4764		ret = init_srcu_struct(set->srcu);
4765		if (ret)
4766			goto out_free_srcu;
4767	}
4768
4769	ret = -ENOMEM;
4770	set->tags = kcalloc_node(set->nr_hw_queues,
4771				 sizeof(struct blk_mq_tags *), GFP_KERNEL,
4772				 set->numa_node);
4773	if (!set->tags)
4774		goto out_cleanup_srcu;
4775
4776	for (i = 0; i < set->nr_maps; i++) {
4777		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4778						  sizeof(set->map[i].mq_map[0]),
4779						  GFP_KERNEL, set->numa_node);
4780		if (!set->map[i].mq_map)
4781			goto out_free_mq_map;
4782		set->map[i].nr_queues = set->nr_hw_queues;
4783	}
4784
4785	blk_mq_update_queue_map(set);
4786
4787	ret = blk_mq_alloc_set_map_and_rqs(set);
4788	if (ret)
4789		goto out_free_mq_map;
4790
4791	mutex_init(&set->tag_list_lock);
4792	INIT_LIST_HEAD(&set->tag_list);
4793
4794	return 0;
4795
4796out_free_mq_map:
4797	for (i = 0; i < set->nr_maps; i++) {
4798		kfree(set->map[i].mq_map);
4799		set->map[i].mq_map = NULL;
4800	}
4801	kfree(set->tags);
4802	set->tags = NULL;
4803out_cleanup_srcu:
4804	if (set->flags & BLK_MQ_F_BLOCKING)
4805		cleanup_srcu_struct(set->srcu);
4806out_free_srcu:
4807	if (set->flags & BLK_MQ_F_BLOCKING)
4808		kfree(set->srcu);
4809	return ret;
4810}
4811EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4812
4813/* allocate and initialize a tagset for a simple single-queue device */
4814int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4815		const struct blk_mq_ops *ops, unsigned int queue_depth,
4816		unsigned int set_flags)
4817{
4818	memset(set, 0, sizeof(*set));
4819	set->ops = ops;
4820	set->nr_hw_queues = 1;
4821	set->nr_maps = 1;
4822	set->queue_depth = queue_depth;
4823	set->numa_node = NUMA_NO_NODE;
4824	set->flags = set_flags;
4825	return blk_mq_alloc_tag_set(set);
4826}
4827EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4828
4829void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4830{
4831	int i, j;
4832
4833	for (i = 0; i < set->nr_hw_queues; i++)
4834		__blk_mq_free_map_and_rqs(set, i);
4835
4836	if (blk_mq_is_shared_tags(set->flags)) {
4837		blk_mq_free_map_and_rqs(set, set->shared_tags,
4838					BLK_MQ_NO_HCTX_IDX);
4839	}
4840
4841	for (j = 0; j < set->nr_maps; j++) {
4842		kfree(set->map[j].mq_map);
4843		set->map[j].mq_map = NULL;
4844	}
4845
4846	kfree(set->tags);
4847	set->tags = NULL;
4848	if (set->flags & BLK_MQ_F_BLOCKING) {
4849		cleanup_srcu_struct(set->srcu);
4850		kfree(set->srcu);
4851	}
4852}
4853EXPORT_SYMBOL(blk_mq_free_tag_set);
4854
4855int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4856{
4857	struct blk_mq_tag_set *set = q->tag_set;
4858	struct blk_mq_hw_ctx *hctx;
4859	int ret;
4860	unsigned long i;
4861
4862	if (WARN_ON_ONCE(!q->mq_freeze_depth))
4863		return -EINVAL;
4864
4865	if (!set)
4866		return -EINVAL;
4867
4868	if (q->nr_requests == nr)
4869		return 0;
4870
4871	blk_mq_quiesce_queue(q);
4872
4873	ret = 0;
4874	queue_for_each_hw_ctx(q, hctx, i) {
4875		if (!hctx->tags)
4876			continue;
4877		/*
4878		 * If we're using an MQ scheduler, just update the scheduler
4879		 * queue depth. This is similar to what the old code would do.
4880		 */
4881		if (hctx->sched_tags) {
4882			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4883						      nr, true);
4884		} else {
4885			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4886						      false);
4887		}
4888		if (ret)
4889			break;
4890		if (q->elevator && q->elevator->type->ops.depth_updated)
4891			q->elevator->type->ops.depth_updated(hctx);
4892	}
4893	if (!ret) {
 
4894		q->nr_requests = nr;
4895		if (blk_mq_is_shared_tags(set->flags)) {
4896			if (q->elevator)
4897				blk_mq_tag_update_sched_shared_tags(q);
4898			else
4899				blk_mq_tag_resize_shared_tags(set, nr);
4900		}
4901	}
4902
4903	blk_mq_unquiesce_queue(q);
4904
4905	return ret;
4906}
4907
4908/*
4909 * request_queue and elevator_type pair.
4910 * It is just used by __blk_mq_update_nr_hw_queues to cache
4911 * the elevator_type associated with a request_queue.
4912 */
4913struct blk_mq_qe_pair {
4914	struct list_head node;
4915	struct request_queue *q;
4916	struct elevator_type *type;
4917};
4918
4919/*
4920 * Cache the elevator_type in qe pair list and switch the
4921 * io scheduler to 'none'
4922 */
4923static bool blk_mq_elv_switch_none(struct list_head *head,
4924		struct request_queue *q)
4925{
4926	struct blk_mq_qe_pair *qe;
4927
4928	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4929	if (!qe)
4930		return false;
4931
4932	/* q->elevator needs protection from ->sysfs_lock */
4933	mutex_lock(&q->sysfs_lock);
4934
4935	/* the check has to be done with holding sysfs_lock */
4936	if (!q->elevator) {
4937		kfree(qe);
4938		goto unlock;
4939	}
4940
4941	INIT_LIST_HEAD(&qe->node);
4942	qe->q = q;
4943	qe->type = q->elevator->type;
4944	/* keep a reference to the elevator module as we'll switch back */
4945	__elevator_get(qe->type);
4946	list_add(&qe->node, head);
4947	elevator_disable(q);
4948unlock:
4949	mutex_unlock(&q->sysfs_lock);
4950
4951	return true;
4952}
4953
4954static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4955						struct request_queue *q)
4956{
4957	struct blk_mq_qe_pair *qe;
4958
4959	list_for_each_entry(qe, head, node)
4960		if (qe->q == q)
4961			return qe;
4962
4963	return NULL;
4964}
4965
4966static void blk_mq_elv_switch_back(struct list_head *head,
4967				  struct request_queue *q)
4968{
4969	struct blk_mq_qe_pair *qe;
4970	struct elevator_type *t;
4971
4972	qe = blk_lookup_qe_pair(head, q);
4973	if (!qe)
4974		return;
4975	t = qe->type;
4976	list_del(&qe->node);
4977	kfree(qe);
4978
4979	mutex_lock(&q->sysfs_lock);
4980	elevator_switch(q, t);
4981	/* drop the reference acquired in blk_mq_elv_switch_none */
4982	elevator_put(t);
4983	mutex_unlock(&q->sysfs_lock);
4984}
4985
4986static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4987							int nr_hw_queues)
4988{
4989	struct request_queue *q;
4990	LIST_HEAD(head);
4991	int prev_nr_hw_queues = set->nr_hw_queues;
4992	int i;
4993
4994	lockdep_assert_held(&set->tag_list_lock);
4995
4996	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4997		nr_hw_queues = nr_cpu_ids;
4998	if (nr_hw_queues < 1)
4999		return;
5000	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
5001		return;
5002
5003	list_for_each_entry(q, &set->tag_list, tag_set_list)
5004		blk_mq_freeze_queue(q);
5005	/*
5006	 * Switch IO scheduler to 'none', cleaning up the data associated
5007	 * with the previous scheduler. We will switch back once we are done
5008	 * updating the new sw to hw queue mappings.
5009	 */
5010	list_for_each_entry(q, &set->tag_list, tag_set_list)
5011		if (!blk_mq_elv_switch_none(&head, q))
5012			goto switch_back;
5013
5014	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5015		blk_mq_debugfs_unregister_hctxs(q);
5016		blk_mq_sysfs_unregister_hctxs(q);
5017	}
5018
5019	if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
5020		goto reregister;
5021
5022fallback:
5023	blk_mq_update_queue_map(set);
5024	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5025		blk_mq_realloc_hw_ctxs(set, q);
5026
5027		if (q->nr_hw_queues != set->nr_hw_queues) {
5028			int i = prev_nr_hw_queues;
5029
5030			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
5031					nr_hw_queues, prev_nr_hw_queues);
5032			for (; i < set->nr_hw_queues; i++)
5033				__blk_mq_free_map_and_rqs(set, i);
5034
5035			set->nr_hw_queues = prev_nr_hw_queues;
5036			goto fallback;
5037		}
5038		blk_mq_map_swqueue(q);
5039	}
5040
5041reregister:
5042	list_for_each_entry(q, &set->tag_list, tag_set_list) {
5043		blk_mq_sysfs_register_hctxs(q);
5044		blk_mq_debugfs_register_hctxs(q);
5045	}
5046
5047switch_back:
5048	list_for_each_entry(q, &set->tag_list, tag_set_list)
5049		blk_mq_elv_switch_back(&head, q);
5050
5051	list_for_each_entry(q, &set->tag_list, tag_set_list)
5052		blk_mq_unfreeze_queue(q);
5053
5054	/* Free the excess tags when nr_hw_queues shrink. */
5055	for (i = set->nr_hw_queues; i < prev_nr_hw_queues; i++)
5056		__blk_mq_free_map_and_rqs(set, i);
5057}
5058
5059void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
5060{
5061	mutex_lock(&set->tag_list_lock);
5062	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
5063	mutex_unlock(&set->tag_list_lock);
5064}
5065EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
5066
5067static int blk_hctx_poll(struct request_queue *q, struct blk_mq_hw_ctx *hctx,
5068			 struct io_comp_batch *iob, unsigned int flags)
5069{
5070	long state = get_current_state();
5071	int ret;
5072
5073	do {
5074		ret = q->mq_ops->poll(hctx, iob);
5075		if (ret > 0) {
5076			__set_current_state(TASK_RUNNING);
5077			return ret;
5078		}
5079
5080		if (signal_pending_state(state, current))
5081			__set_current_state(TASK_RUNNING);
5082		if (task_is_running(current))
5083			return 1;
5084
5085		if (ret < 0 || (flags & BLK_POLL_ONESHOT))
5086			break;
5087		cpu_relax();
5088	} while (!need_resched());
5089
5090	__set_current_state(TASK_RUNNING);
5091	return 0;
5092}
5093
5094int blk_mq_poll(struct request_queue *q, blk_qc_t cookie,
5095		struct io_comp_batch *iob, unsigned int flags)
5096{
5097	if (!blk_mq_can_poll(q))
5098		return 0;
5099	return blk_hctx_poll(q, xa_load(&q->hctx_table, cookie), iob, flags);
5100}
5101
5102int blk_rq_poll(struct request *rq, struct io_comp_batch *iob,
5103		unsigned int poll_flags)
5104{
5105	struct request_queue *q = rq->q;
5106	int ret;
5107
5108	if (!blk_rq_is_poll(rq))
5109		return 0;
5110	if (!percpu_ref_tryget(&q->q_usage_counter))
5111		return 0;
5112
5113	ret = blk_hctx_poll(q, rq->mq_hctx, iob, poll_flags);
5114	blk_queue_exit(q);
5115
5116	return ret;
5117}
5118EXPORT_SYMBOL_GPL(blk_rq_poll);
5119
5120unsigned int blk_mq_rq_cpu(struct request *rq)
5121{
5122	return rq->mq_ctx->cpu;
5123}
5124EXPORT_SYMBOL(blk_mq_rq_cpu);
5125
5126void blk_mq_cancel_work_sync(struct request_queue *q)
5127{
5128	struct blk_mq_hw_ctx *hctx;
5129	unsigned long i;
5130
5131	cancel_delayed_work_sync(&q->requeue_work);
5132
5133	queue_for_each_hw_ctx(q, hctx, i)
5134		cancel_delayed_work_sync(&hctx->run_work);
5135}
5136
5137static int __init blk_mq_init(void)
5138{
5139	int i;
 
 
5140
5141	for_each_possible_cpu(i)
5142		init_llist_head(&per_cpu(blk_cpu_done, i));
5143	for_each_possible_cpu(i)
5144		INIT_CSD(&per_cpu(blk_cpu_csd, i),
5145			 __blk_mq_complete_request_remote, NULL);
5146	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
5147
5148	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
5149				  "block/softirq:dead", NULL,
5150				  blk_softirq_cpu_dead);
5151	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
5152				blk_mq_hctx_notify_dead);
5153	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
5154				blk_mq_hctx_notify_online,
5155				blk_mq_hctx_notify_offline);
5156	return 0;
5157}
5158subsys_initcall(blk_mq_init);