Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Copyright (c) 2015 Oracle.  All rights reserved.
  3 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
  4 */
  5
  6/* Lightweight memory registration using Fast Registration Work
  7 * Requests (FRWR). Also referred to sometimes as FRMR mode.
  8 *
  9 * FRWR features ordered asynchronous registration and deregistration
 10 * of arbitrarily sized memory regions. This is the fastest and safest
 11 * but most complex memory registration mode.
 12 */
 13
 14/* Normal operation
 15 *
 16 * A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG
 17 * Work Request (frmr_op_map). When the RDMA operation is finished, this
 18 * Memory Region is invalidated using a LOCAL_INV Work Request
 19 * (frmr_op_unmap).
 20 *
 21 * Typically these Work Requests are not signaled, and neither are RDMA
 22 * SEND Work Requests (with the exception of signaling occasionally to
 23 * prevent provider work queue overflows). This greatly reduces HCA
 24 * interrupt workload.
 25 *
 26 * As an optimization, frwr_op_unmap marks MRs INVALID before the
 27 * LOCAL_INV WR is posted. If posting succeeds, the MR is placed on
 28 * rb_mws immediately so that no work (like managing a linked list
 29 * under a spinlock) is needed in the completion upcall.
 30 *
 31 * But this means that frwr_op_map() can occasionally encounter an MR
 32 * that is INVALID but the LOCAL_INV WR has not completed. Work Queue
 33 * ordering prevents a subsequent FAST_REG WR from executing against
 34 * that MR while it is still being invalidated.
 35 */
 36
 37/* Transport recovery
 38 *
 39 * ->op_map and the transport connect worker cannot run at the same
 40 * time, but ->op_unmap can fire while the transport connect worker
 41 * is running. Thus MR recovery is handled in ->op_map, to guarantee
 42 * that recovered MRs are owned by a sending RPC, and not one where
 43 * ->op_unmap could fire at the same time transport reconnect is
 44 * being done.
 45 *
 46 * When the underlying transport disconnects, MRs are left in one of
 47 * three states:
 48 *
 49 * INVALID:	The MR was not in use before the QP entered ERROR state.
 50 *		(Or, the LOCAL_INV WR has not completed or flushed yet).
 51 *
 52 * STALE:	The MR was being registered or unregistered when the QP
 53 *		entered ERROR state, and the pending WR was flushed.
 54 *
 55 * VALID:	The MR was registered before the QP entered ERROR state.
 56 *
 57 * When frwr_op_map encounters STALE and VALID MRs, they are recovered
 58 * with ib_dereg_mr and then are re-initialized. Beause MR recovery
 59 * allocates fresh resources, it is deferred to a workqueue, and the
 60 * recovered MRs are placed back on the rb_mws list when recovery is
 61 * complete. frwr_op_map allocates another MR for the current RPC while
 62 * the broken MR is reset.
 63 *
 64 * To ensure that frwr_op_map doesn't encounter an MR that is marked
 65 * INVALID but that is about to be flushed due to a previous transport
 66 * disconnect, the transport connect worker attempts to drain all
 67 * pending send queue WRs before the transport is reconnected.
 68 */
 69
 70#include "xprt_rdma.h"
 71
 72#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
 73# define RPCDBG_FACILITY	RPCDBG_TRANS
 74#endif
 75
 76static struct workqueue_struct *frwr_recovery_wq;
 77
 78#define FRWR_RECOVERY_WQ_FLAGS		(WQ_UNBOUND | WQ_MEM_RECLAIM)
 79
 80int
 81frwr_alloc_recovery_wq(void)
 82{
 83	frwr_recovery_wq = alloc_workqueue("frwr_recovery",
 84					   FRWR_RECOVERY_WQ_FLAGS, 0);
 85	return !frwr_recovery_wq ? -ENOMEM : 0;
 
 86}
 87
 88void
 89frwr_destroy_recovery_wq(void)
 90{
 91	struct workqueue_struct *wq;
 92
 93	if (!frwr_recovery_wq)
 94		return;
 95
 96	wq = frwr_recovery_wq;
 97	frwr_recovery_wq = NULL;
 98	destroy_workqueue(wq);
 99}
100
101/* Deferred reset of a single FRMR. Generate a fresh rkey by
102 * replacing the MR.
 
103 *
104 * There's no recovery if this fails. The FRMR is abandoned, but
105 * remains in rb_all. It will be cleaned up when the transport is
106 * destroyed.
107 */
108static void
109__frwr_recovery_worker(struct work_struct *work)
110{
111	struct rpcrdma_mw *r = container_of(work, struct rpcrdma_mw,
112					    frmr.fr_work);
113	struct rpcrdma_xprt *r_xprt = r->frmr.fr_xprt;
114	unsigned int depth = r_xprt->rx_ia.ri_max_frmr_depth;
115	struct ib_pd *pd = r_xprt->rx_ia.ri_pd;
116
117	if (ib_dereg_mr(r->frmr.fr_mr))
118		goto out_fail;
119
120	r->frmr.fr_mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, depth);
121	if (IS_ERR(r->frmr.fr_mr))
122		goto out_fail;
 
 
 
123
124	dprintk("RPC:       %s: recovered FRMR %p\n", __func__, r);
125	r->frmr.fr_state = FRMR_IS_INVALID;
126	rpcrdma_put_mw(r_xprt, r);
127	return;
128
129out_fail:
130	pr_warn("RPC:       %s: FRMR %p unrecovered\n",
131		__func__, r);
 
132}
133
134/* A broken MR was discovered in a context that can't sleep.
135 * Defer recovery to the recovery worker.
 
 
 
 
 
 
 
136 */
137static void
138__frwr_queue_recovery(struct rpcrdma_mw *r)
139{
140	INIT_WORK(&r->frmr.fr_work, __frwr_recovery_worker);
141	queue_work(frwr_recovery_wq, &r->frmr.fr_work);
 
 
142}
143
144static int
145__frwr_init(struct rpcrdma_mw *r, struct ib_pd *pd, struct ib_device *device,
146	    unsigned int depth)
147{
148	struct rpcrdma_frmr *f = &r->frmr;
149	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
150
151	f->fr_mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, depth);
152	if (IS_ERR(f->fr_mr))
153		goto out_mr_err;
154
155	f->sg = kcalloc(depth, sizeof(*f->sg), GFP_KERNEL);
156	if (!f->sg)
157		goto out_list_err;
158
159	sg_init_table(f->sg, depth);
160
161	init_completion(&f->fr_linv_done);
162
 
 
163	return 0;
164
165out_mr_err:
166	rc = PTR_ERR(f->fr_mr);
167	dprintk("RPC:       %s: ib_alloc_mr status %i\n",
168		__func__, rc);
169	return rc;
170
171out_list_err:
172	rc = -ENOMEM;
173	dprintk("RPC:       %s: sg allocation failure\n",
174		__func__);
175	ib_dereg_mr(f->fr_mr);
176	return rc;
177}
178
179static void
180__frwr_release(struct rpcrdma_mw *r)
181{
182	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
184	rc = ib_dereg_mr(r->frmr.fr_mr);
185	if (rc)
186		dprintk("RPC:       %s: ib_dereg_mr status %i\n",
187			__func__, rc);
188	kfree(r->frmr.sg);
189}
190
191static int
192frwr_op_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep,
193	     struct rpcrdma_create_data_internal *cdata)
194{
195	int depth, delta;
196
197	ia->ri_max_frmr_depth =
198			min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
199			      ia->ri_device->attrs.max_fast_reg_page_list_len);
200	dprintk("RPC:       %s: device's max FR page list len = %u\n",
201		__func__, ia->ri_max_frmr_depth);
202
203	/* Add room for frmr register and invalidate WRs.
204	 * 1. FRMR reg WR for head
205	 * 2. FRMR invalidate WR for head
206	 * 3. N FRMR reg WRs for pagelist
207	 * 4. N FRMR invalidate WRs for pagelist
208	 * 5. FRMR reg WR for tail
209	 * 6. FRMR invalidate WR for tail
210	 * 7. The RDMA_SEND WR
211	 */
212	depth = 7;
213
214	/* Calculate N if the device max FRMR depth is smaller than
215	 * RPCRDMA_MAX_DATA_SEGS.
216	 */
217	if (ia->ri_max_frmr_depth < RPCRDMA_MAX_DATA_SEGS) {
218		delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frmr_depth;
219		do {
220			depth += 2; /* FRMR reg + invalidate */
221			delta -= ia->ri_max_frmr_depth;
222		} while (delta > 0);
223	}
224
225	ep->rep_attr.cap.max_send_wr *= depth;
226	if (ep->rep_attr.cap.max_send_wr > ia->ri_device->attrs.max_qp_wr) {
227		cdata->max_requests = ia->ri_device->attrs.max_qp_wr / depth;
228		if (!cdata->max_requests)
229			return -EINVAL;
230		ep->rep_attr.cap.max_send_wr = cdata->max_requests *
231					       depth;
 
 
 
 
 
 
232	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
234	return 0;
235}
236
237/* FRWR mode conveys a list of pages per chunk segment. The
238 * maximum length of that list is the FRWR page list depth.
 
 
 
 
 
 
 
 
 
 
 
 
239 */
240static size_t
241frwr_op_maxpages(struct rpcrdma_xprt *r_xprt)
 
 
242{
243	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
 
 
 
 
244
245	return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
246		     rpcrdma_max_segments(r_xprt) * ia->ri_max_frmr_depth);
247}
 
 
248
249static void
250__frwr_sendcompletion_flush(struct ib_wc *wc, struct rpcrdma_frmr *frmr,
251			    const char *wr)
252{
253	frmr->fr_state = FRMR_IS_STALE;
254	if (wc->status != IB_WC_WR_FLUSH_ERR)
255		pr_err("rpcrdma: %s: %s (%u/0x%x)\n",
256		       wr, ib_wc_status_msg(wc->status),
257		       wc->status, wc->vendor_err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258}
259
260/**
261 * frwr_wc_fastreg - Invoked by RDMA provider for each polled FastReg WC
262 * @cq:	completion queue (ignored)
263 * @wc:	completed WR
264 *
 
265 */
266static void
267frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
268{
269	struct rpcrdma_frmr *frmr;
270	struct ib_cqe *cqe;
271
272	/* WARNING: Only wr_cqe and status are reliable at this point */
273	if (wc->status != IB_WC_SUCCESS) {
274		cqe = wc->wr_cqe;
275		frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe);
276		__frwr_sendcompletion_flush(wc, frmr, "fastreg");
277	}
278}
279
280/**
281 * frwr_wc_localinv - Invoked by RDMA provider for each polled LocalInv WC
282 * @cq:	completion queue (ignored)
283 * @wc:	completed WR
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
284 *
285 */
286static void
287frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
288{
289	struct rpcrdma_frmr *frmr;
290	struct ib_cqe *cqe;
291
292	/* WARNING: Only wr_cqe and status are reliable at this point */
293	if (wc->status != IB_WC_SUCCESS) {
294		cqe = wc->wr_cqe;
295		frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe);
296		__frwr_sendcompletion_flush(wc, frmr, "localinv");
297	}
 
 
 
 
 
 
 
298}
299
300/**
301 * frwr_wc_localinv - Invoked by RDMA provider for each polled LocalInv WC
302 * @cq:	completion queue (ignored)
303 * @wc:	completed WR
304 *
305 * Awaken anyone waiting for an MR to finish being fenced.
306 */
307static void
308frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
309{
310	struct rpcrdma_frmr *frmr;
311	struct ib_cqe *cqe;
312
313	/* WARNING: Only wr_cqe and status are reliable at this point */
314	cqe = wc->wr_cqe;
315	frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe);
316	if (wc->status != IB_WC_SUCCESS)
317		__frwr_sendcompletion_flush(wc, frmr, "localinv");
318	complete_all(&frmr->fr_linv_done);
319}
320
321static int
322frwr_op_init(struct rpcrdma_xprt *r_xprt)
323{
324	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
325	struct ib_device *device = r_xprt->rx_ia.ri_device;
326	unsigned int depth = r_xprt->rx_ia.ri_max_frmr_depth;
327	struct ib_pd *pd = r_xprt->rx_ia.ri_pd;
328	int i;
329
330	spin_lock_init(&buf->rb_mwlock);
331	INIT_LIST_HEAD(&buf->rb_mws);
332	INIT_LIST_HEAD(&buf->rb_all);
333
334	i = max_t(int, RPCRDMA_MAX_DATA_SEGS / depth, 1);
335	i += 2;				/* head + tail */
336	i *= buf->rb_max_requests;	/* one set for each RPC slot */
337	dprintk("RPC:       %s: initalizing %d FRMRs\n", __func__, i);
338
339	while (i--) {
340		struct rpcrdma_mw *r;
341		int rc;
342
343		r = kzalloc(sizeof(*r), GFP_KERNEL);
344		if (!r)
345			return -ENOMEM;
346
347		rc = __frwr_init(r, pd, device, depth);
348		if (rc) {
349			kfree(r);
350			return rc;
351		}
352
353		list_add(&r->mw_list, &buf->rb_mws);
354		list_add(&r->mw_all, &buf->rb_all);
355		r->frmr.fr_xprt = r_xprt;
356	}
357
358	return 0;
359}
360
361/* Post a FAST_REG Work Request to register a memory region
362 * for remote access via RDMA READ or RDMA WRITE.
 
 
 
 
363 */
364static int
365frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
366	    int nsegs, bool writing)
367{
368	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
369	struct ib_device *device = ia->ri_device;
370	enum dma_data_direction direction = rpcrdma_data_dir(writing);
371	struct rpcrdma_mr_seg *seg1 = seg;
372	struct rpcrdma_mw *mw;
373	struct rpcrdma_frmr *frmr;
374	struct ib_mr *mr;
375	struct ib_reg_wr *reg_wr;
376	struct ib_send_wr *bad_wr;
377	int rc, i, n, dma_nents;
378	u8 key;
379
380	mw = seg1->rl_mw;
381	seg1->rl_mw = NULL;
382	do {
383		if (mw)
384			__frwr_queue_recovery(mw);
385		mw = rpcrdma_get_mw(r_xprt);
386		if (!mw)
387			return -ENOMEM;
388	} while (mw->frmr.fr_state != FRMR_IS_INVALID);
389	frmr = &mw->frmr;
390	frmr->fr_state = FRMR_IS_VALID;
391	mr = frmr->fr_mr;
392	reg_wr = &frmr->fr_regwr;
393
394	if (nsegs > ia->ri_max_frmr_depth)
395		nsegs = ia->ri_max_frmr_depth;
396
397	for (i = 0; i < nsegs;) {
398		if (seg->mr_page)
399			sg_set_page(&frmr->sg[i],
400				    seg->mr_page,
401				    seg->mr_len,
402				    offset_in_page(seg->mr_offset));
403		else
404			sg_set_buf(&frmr->sg[i], seg->mr_offset,
405				   seg->mr_len);
406
407		++seg;
408		++i;
409
410		/* Check for holes */
411		if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
412		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
413			break;
414	}
415	frmr->sg_nents = i;
416
417	dma_nents = ib_dma_map_sg(device, frmr->sg, frmr->sg_nents, direction);
418	if (!dma_nents) {
419		pr_err("RPC:       %s: failed to dma map sg %p sg_nents %u\n",
420		       __func__, frmr->sg, frmr->sg_nents);
421		return -ENOMEM;
422	}
423
424	n = ib_map_mr_sg(mr, frmr->sg, frmr->sg_nents, PAGE_SIZE);
425	if (unlikely(n != frmr->sg_nents)) {
426		pr_err("RPC:       %s: failed to map mr %p (%u/%u)\n",
427		       __func__, frmr->fr_mr, n, frmr->sg_nents);
428		rc = n < 0 ? n : -EINVAL;
429		goto out_senderr;
430	}
431
432	dprintk("RPC:       %s: Using frmr %p to map %u segments (%u bytes)\n",
433		__func__, mw, frmr->sg_nents, mr->length);
 
 
434
435	key = (u8)(mr->rkey & 0x000000FF);
436	ib_update_fast_reg_key(mr, ++key);
437
438	reg_wr->wr.next = NULL;
439	reg_wr->wr.opcode = IB_WR_REG_MR;
440	frmr->fr_cqe.done = frwr_wc_fastreg;
441	reg_wr->wr.wr_cqe = &frmr->fr_cqe;
442	reg_wr->wr.num_sge = 0;
443	reg_wr->wr.send_flags = 0;
444	reg_wr->mr = mr;
445	reg_wr->key = mr->rkey;
446	reg_wr->access = writing ?
447			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
448			 IB_ACCESS_REMOTE_READ;
 
 
 
 
 
 
 
449
450	DECR_CQCOUNT(&r_xprt->rx_ep);
451	rc = ib_post_send(ia->ri_id->qp, &reg_wr->wr, &bad_wr);
452	if (rc)
453		goto out_senderr;
 
 
 
 
 
 
454
455	seg1->mr_dir = direction;
456	seg1->rl_mw = mw;
457	seg1->mr_rkey = mr->rkey;
458	seg1->mr_base = mr->iova;
459	seg1->mr_nsegs = frmr->sg_nents;
460	seg1->mr_len = mr->length;
 
 
 
 
 
 
 
 
461
462	return frmr->sg_nents;
463
464out_senderr:
465	dprintk("RPC:       %s: ib_post_send status %i\n", __func__, rc);
466	ib_dma_unmap_sg(device, frmr->sg, dma_nents, direction);
467	__frwr_queue_recovery(mw);
468	return rc;
469}
470
471static struct ib_send_wr *
472__frwr_prepare_linv_wr(struct rpcrdma_mr_seg *seg)
473{
474	struct rpcrdma_mw *mw = seg->rl_mw;
475	struct rpcrdma_frmr *f = &mw->frmr;
476	struct ib_send_wr *invalidate_wr;
477
478	f->fr_state = FRMR_IS_INVALID;
479	invalidate_wr = &f->fr_invwr;
 
 
 
 
 
 
480
481	memset(invalidate_wr, 0, sizeof(*invalidate_wr));
482	f->fr_cqe.done = frwr_wc_localinv;
483	invalidate_wr->wr_cqe = &f->fr_cqe;
484	invalidate_wr->opcode = IB_WR_LOCAL_INV;
485	invalidate_wr->ex.invalidate_rkey = f->fr_mr->rkey;
486
487	return invalidate_wr;
 
 
488}
489
490static void
491__frwr_dma_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
492		 int rc)
 
 
 
 
493{
494	struct ib_device *device = r_xprt->rx_ia.ri_device;
495	struct rpcrdma_mw *mw = seg->rl_mw;
496	struct rpcrdma_frmr *f = &mw->frmr;
497
498	seg->rl_mw = NULL;
 
499
500	ib_dma_unmap_sg(device, f->sg, f->sg_nents, seg->mr_dir);
 
 
501
502	if (!rc)
503		rpcrdma_put_mw(r_xprt, mw);
504	else
505		__frwr_queue_recovery(mw);
 
 
 
 
506}
507
508/* Invalidate all memory regions that were registered for "req".
509 *
510 * Sleeps until it is safe for the host CPU to access the
511 * previously mapped memory regions.
512 */
513static void
514frwr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
515{
516	struct ib_send_wr *invalidate_wrs, *pos, *prev, *bad_wr;
517	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
518	struct rpcrdma_mr_seg *seg;
519	unsigned int i, nchunks;
520	struct rpcrdma_frmr *f;
 
 
521	int rc;
522
523	dprintk("RPC:       %s: req %p\n", __func__, req);
524
525	/* ORDER: Invalidate all of the req's MRs first
526	 *
527	 * Chain the LOCAL_INV Work Requests and post them with
528	 * a single ib_post_send() call.
529	 */
530	invalidate_wrs = pos = prev = NULL;
531	seg = NULL;
532	for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) {
533		seg = &req->rl_segments[i];
534
535		pos = __frwr_prepare_linv_wr(seg);
536
537		if (!invalidate_wrs)
538			invalidate_wrs = pos;
539		else
540			prev->next = pos;
541		prev = pos;
542
543		i += seg->mr_nsegs;
544	}
545	f = &seg->rl_mw->frmr;
 
 
 
 
 
 
 
 
 
 
 
546
547	/* Strong send queue ordering guarantees that when the
548	 * last WR in the chain completes, all WRs in the chain
549	 * are complete.
 
550	 */
551	f->fr_invwr.send_flags = IB_SEND_SIGNALED;
552	f->fr_cqe.done = frwr_wc_localinv_wake;
553	reinit_completion(&f->fr_linv_done);
554	INIT_CQCOUNT(&r_xprt->rx_ep);
555
556	/* Transport disconnect drains the receive CQ before it
557	 * replaces the QP. The RPC reply handler won't call us
558	 * unless ri_id->qp is a valid pointer.
559	 */
560	rc = ib_post_send(ia->ri_id->qp, invalidate_wrs, &bad_wr);
561	if (rc) {
562		pr_warn("%s: ib_post_send failed %i\n", __func__, rc);
563		rdma_disconnect(ia->ri_id);
564		goto unmap;
565	}
566
567	wait_for_completion(&f->fr_linv_done);
 
568
569	/* ORDER: Now DMA unmap all of the req's MRs, and return
570	 * them to the free MW list.
 
 
571	 */
572unmap:
573	for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) {
574		seg = &req->rl_segments[i];
575
576		__frwr_dma_unmap(r_xprt, seg, rc);
577
578		i += seg->mr_nsegs;
579		seg->mr_nsegs = 0;
580	}
581
582	req->rl_nchunks = 0;
583}
584
585/* Post a LOCAL_INV Work Request to prevent further remote access
586 * via RDMA READ or RDMA WRITE.
 
 
 
587 */
588static int
589frwr_op_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg)
590{
591	struct rpcrdma_mr_seg *seg1 = seg;
592	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
593	struct rpcrdma_mw *mw = seg1->rl_mw;
594	struct rpcrdma_frmr *frmr = &mw->frmr;
595	struct ib_send_wr *invalidate_wr, *bad_wr;
596	int rc, nsegs = seg->mr_nsegs;
597
598	dprintk("RPC:       %s: FRMR %p\n", __func__, mw);
599
600	seg1->rl_mw = NULL;
601	frmr->fr_state = FRMR_IS_INVALID;
602	invalidate_wr = &mw->frmr.fr_invwr;
603
604	memset(invalidate_wr, 0, sizeof(*invalidate_wr));
605	frmr->fr_cqe.done = frwr_wc_localinv;
606	invalidate_wr->wr_cqe = &frmr->fr_cqe;
607	invalidate_wr->opcode = IB_WR_LOCAL_INV;
608	invalidate_wr->ex.invalidate_rkey = frmr->fr_mr->rkey;
609	DECR_CQCOUNT(&r_xprt->rx_ep);
610
611	ib_dma_unmap_sg(ia->ri_device, frmr->sg, frmr->sg_nents, seg1->mr_dir);
612	read_lock(&ia->ri_qplock);
613	rc = ib_post_send(ia->ri_id->qp, invalidate_wr, &bad_wr);
614	read_unlock(&ia->ri_qplock);
615	if (rc)
616		goto out_err;
617
618	rpcrdma_put_mw(r_xprt, mw);
619	return nsegs;
620
621out_err:
622	dprintk("RPC:       %s: ib_post_send status %i\n", __func__, rc);
623	__frwr_queue_recovery(mw);
624	return nsegs;
625}
626
627static void
628frwr_op_destroy(struct rpcrdma_buffer *buf)
629{
630	struct rpcrdma_mw *r;
631
632	/* Ensure stale MWs for "buf" are no longer in flight */
633	flush_workqueue(frwr_recovery_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634
635	while (!list_empty(&buf->rb_all)) {
636		r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
637		list_del(&r->mw_all);
638		__frwr_release(r);
639		kfree(r);
640	}
641}
642
643const struct rpcrdma_memreg_ops rpcrdma_frwr_memreg_ops = {
644	.ro_map				= frwr_op_map,
645	.ro_unmap_sync			= frwr_op_unmap_sync,
646	.ro_unmap			= frwr_op_unmap,
647	.ro_open			= frwr_op_open,
648	.ro_maxpages			= frwr_op_maxpages,
649	.ro_init			= frwr_op_init,
650	.ro_destroy			= frwr_op_destroy,
651	.ro_displayname			= "frwr",
652};
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
  4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
  5 */
  6
  7/* Lightweight memory registration using Fast Registration Work
  8 * Requests (FRWR).
  9 *
 10 * FRWR features ordered asynchronous registration and invalidation
 11 * of arbitrarily-sized memory regions. This is the fastest and safest
 12 * but most complex memory registration mode.
 13 */
 14
 15/* Normal operation
 16 *
 17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
 18 * Work Request (frwr_map). When the RDMA operation is finished, this
 19 * Memory Region is invalidated using a LOCAL_INV Work Request
 20 * (frwr_unmap_async and frwr_unmap_sync).
 21 *
 22 * Typically FAST_REG Work Requests are not signaled, and neither are
 23 * RDMA Send Work Requests (with the exception of signaling occasionally
 24 * to prevent provider work queue overflows). This greatly reduces HCA
 25 * interrupt workload.
 
 
 
 
 
 
 
 
 
 
 26 */
 27
 28/* Transport recovery
 29 *
 30 * frwr_map and frwr_unmap_* cannot run at the same time the transport
 31 * connect worker is running. The connect worker holds the transport
 32 * send lock, just as ->send_request does. This prevents frwr_map and
 33 * the connect worker from running concurrently. When a connection is
 34 * closed, the Receive completion queue is drained before the allowing
 35 * the connect worker to get control. This prevents frwr_unmap and the
 36 * connect worker from running concurrently.
 37 *
 38 * When the underlying transport disconnects, MRs that are in flight
 39 * are flushed and are likely unusable. Thus all MRs are destroyed.
 40 * New MRs are created on demand.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41 */
 42
 43#include <linux/sunrpc/svc_rdma.h>
 
 
 
 
 44
 45#include "xprt_rdma.h"
 46#include <trace/events/rpcrdma.h>
 
 47
 48static void frwr_cid_init(struct rpcrdma_ep *ep,
 49			  struct rpcrdma_mr *mr)
 50{
 51	struct rpc_rdma_cid *cid = &mr->mr_cid;
 52
 53	cid->ci_queue_id = ep->re_attr.send_cq->res.id;
 54	cid->ci_completion_id = mr->mr_ibmr->res.id;
 55}
 56
 57static void frwr_mr_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
 
 58{
 59	if (mr->mr_device) {
 60		trace_xprtrdma_mr_unmap(mr);
 61		ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents,
 62				mr->mr_dir);
 63		mr->mr_device = NULL;
 64	}
 
 
 65}
 66
 67/**
 68 * frwr_mr_release - Destroy one MR
 69 * @mr: MR allocated by frwr_mr_init
 70 *
 
 
 
 71 */
 72void frwr_mr_release(struct rpcrdma_mr *mr)
 
 73{
 74	int rc;
 
 
 
 
 75
 76	frwr_mr_unmap(mr->mr_xprt, mr);
 
 77
 78	rc = ib_dereg_mr(mr->mr_ibmr);
 79	if (rc)
 80		trace_xprtrdma_frwr_dereg(mr, rc);
 81	kfree(mr->mr_sg);
 82	kfree(mr);
 83}
 84
 85static void frwr_mr_put(struct rpcrdma_mr *mr)
 86{
 87	frwr_mr_unmap(mr->mr_xprt, mr);
 
 88
 89	/* The MR is returned to the req's MR free list instead
 90	 * of to the xprt's MR free list. No spinlock is needed.
 91	 */
 92	rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
 93}
 94
 95/* frwr_reset - Place MRs back on the free list
 96 * @req: request to reset
 97 *
 98 * Used after a failed marshal. For FRWR, this means the MRs
 99 * don't have to be fully released and recreated.
100 *
101 * NB: This is safe only as long as none of @req's MRs are
102 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
103 * Work Request.
104 */
105void frwr_reset(struct rpcrdma_req *req)
 
106{
107	struct rpcrdma_mr *mr;
108
109	while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
110		frwr_mr_put(mr);
111}
112
113/**
114 * frwr_mr_init - Initialize one MR
115 * @r_xprt: controlling transport instance
116 * @mr: generic MR to prepare for FRWR
117 *
118 * Returns zero if successful. Otherwise a negative errno
119 * is returned.
120 */
121int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
122{
123	struct rpcrdma_ep *ep = r_xprt->rx_ep;
124	unsigned int depth = ep->re_max_fr_depth;
125	struct scatterlist *sg;
126	struct ib_mr *frmr;
127
128	sg = kcalloc_node(depth, sizeof(*sg), XPRTRDMA_GFP_FLAGS,
129			  ibdev_to_node(ep->re_id->device));
130	if (!sg)
131		return -ENOMEM;
132
133	frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
134	if (IS_ERR(frmr))
135		goto out_mr_err;
136
137	mr->mr_xprt = r_xprt;
138	mr->mr_ibmr = frmr;
139	mr->mr_device = NULL;
140	INIT_LIST_HEAD(&mr->mr_list);
141	init_completion(&mr->mr_linv_done);
142	frwr_cid_init(ep, mr);
 
143
144	sg_init_table(sg, depth);
145	mr->mr_sg = sg;
146	return 0;
147
148out_mr_err:
149	kfree(sg);
150	trace_xprtrdma_frwr_alloc(mr, PTR_ERR(frmr));
151	return PTR_ERR(frmr);
 
 
 
 
 
 
 
 
152}
153
154/**
155 * frwr_query_device - Prepare a transport for use with FRWR
156 * @ep: endpoint to fill in
157 * @device: RDMA device to query
158 *
159 * On success, sets:
160 *	ep->re_attr
161 *	ep->re_max_requests
162 *	ep->re_max_rdma_segs
163 *	ep->re_max_fr_depth
164 *	ep->re_mrtype
165 *
166 * Return values:
167 *   On success, returns zero.
168 *   %-EINVAL - the device does not support FRWR memory registration
169 *   %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
170 */
171int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
172{
173	const struct ib_device_attr *attrs = &device->attrs;
174	int max_qp_wr, depth, delta;
175	unsigned int max_sge;
176
177	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
178	    attrs->max_fast_reg_page_list_len == 0) {
179		pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
180		       device->name);
181		return -EINVAL;
182	}
183
184	max_sge = min_t(unsigned int, attrs->max_send_sge,
185			RPCRDMA_MAX_SEND_SGES);
186	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
187		pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
188		return -ENOMEM;
189	}
190	ep->re_attr.cap.max_send_sge = max_sge;
191	ep->re_attr.cap.max_recv_sge = 1;
192
193	ep->re_mrtype = IB_MR_TYPE_MEM_REG;
194	if (attrs->kernel_cap_flags & IBK_SG_GAPS_REG)
195		ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
196
197	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
198	 * capability, but perform optimally when the MRs are not larger
199	 * than a page.
200	 */
201	if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
202		ep->re_max_fr_depth = attrs->max_sge_rd;
203	else
204		ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
205	if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
206		ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
207
208	/* Add room for frwr register and invalidate WRs.
209	 * 1. FRWR reg WR for head
210	 * 2. FRWR invalidate WR for head
211	 * 3. N FRWR reg WRs for pagelist
212	 * 4. N FRWR invalidate WRs for pagelist
213	 * 5. FRWR reg WR for tail
214	 * 6. FRWR invalidate WR for tail
 
 
 
 
215	 * 7. The RDMA_SEND WR
216	 */
217	depth = 7;
218
219	/* Calculate N if the device max FRWR depth is smaller than
220	 * RPCRDMA_MAX_DATA_SEGS.
221	 */
222	if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
223		delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
224		do {
225			depth += 2; /* FRWR reg + invalidate */
226			delta -= ep->re_max_fr_depth;
227		} while (delta > 0);
228	}
229
230	max_qp_wr = attrs->max_qp_wr;
231	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
232	max_qp_wr -= 1;
233	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
234		return -ENOMEM;
235	if (ep->re_max_requests > max_qp_wr)
236		ep->re_max_requests = max_qp_wr;
237	ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
238	if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
239		ep->re_max_requests = max_qp_wr / depth;
240		if (!ep->re_max_requests)
241			return -ENOMEM;
242		ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
243	}
244	ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
245	ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
246	ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
247	ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
248	ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH;
249	ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
250
251	ep->re_max_rdma_segs =
252		DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
253	/* Reply chunks require segments for head and tail buffers */
254	ep->re_max_rdma_segs += 2;
255	if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
256		ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
257
258	/* Ensure the underlying device is capable of conveying the
259	 * largest r/wsize NFS will ask for. This guarantees that
260	 * failing over from one RDMA device to another will not
261	 * break NFS I/O.
262	 */
263	if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
264		return -ENOMEM;
265
266	return 0;
267}
268
269/**
270 * frwr_map - Register a memory region
271 * @r_xprt: controlling transport
272 * @seg: memory region co-ordinates
273 * @nsegs: number of segments remaining
274 * @writing: true when RDMA Write will be used
275 * @xid: XID of RPC using the registered memory
276 * @mr: MR to fill in
277 *
278 * Prepare a REG_MR Work Request to register a memory region
279 * for remote access via RDMA READ or RDMA WRITE.
280 *
281 * Returns the next segment or a negative errno pointer.
282 * On success, @mr is filled in.
283 */
284struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
285				struct rpcrdma_mr_seg *seg,
286				int nsegs, bool writing, __be32 xid,
287				struct rpcrdma_mr *mr)
288{
289	struct rpcrdma_ep *ep = r_xprt->rx_ep;
290	struct ib_reg_wr *reg_wr;
291	int i, n, dma_nents;
292	struct ib_mr *ibmr;
293	u8 key;
294
295	if (nsegs > ep->re_max_fr_depth)
296		nsegs = ep->re_max_fr_depth;
297	for (i = 0; i < nsegs;) {
298		sg_set_page(&mr->mr_sg[i], seg->mr_page,
299			    seg->mr_len, seg->mr_offset);
300
301		++seg;
302		++i;
303		if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
304			continue;
305		if ((i < nsegs && seg->mr_offset) ||
306		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
307			break;
308	}
309	mr->mr_dir = rpcrdma_data_dir(writing);
310	mr->mr_nents = i;
311
312	dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
313				  mr->mr_dir);
314	if (!dma_nents)
315		goto out_dmamap_err;
316	mr->mr_device = ep->re_id->device;
317
318	ibmr = mr->mr_ibmr;
319	n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
320	if (n != dma_nents)
321		goto out_mapmr_err;
322
323	ibmr->iova &= 0x00000000ffffffff;
324	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
325	key = (u8)(ibmr->rkey & 0x000000FF);
326	ib_update_fast_reg_key(ibmr, ++key);
327
328	reg_wr = &mr->mr_regwr;
329	reg_wr->mr = ibmr;
330	reg_wr->key = ibmr->rkey;
331	reg_wr->access = writing ?
332			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
333			 IB_ACCESS_REMOTE_READ;
334
335	mr->mr_handle = ibmr->rkey;
336	mr->mr_length = ibmr->length;
337	mr->mr_offset = ibmr->iova;
338	trace_xprtrdma_mr_map(mr);
339
340	return seg;
341
342out_dmamap_err:
343	trace_xprtrdma_frwr_sgerr(mr, i);
344	return ERR_PTR(-EIO);
345
346out_mapmr_err:
347	trace_xprtrdma_frwr_maperr(mr, n);
348	return ERR_PTR(-EIO);
349}
350
351/**
352 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
353 * @cq: completion queue
354 * @wc: WCE for a completed FastReg WR
355 *
356 * Each flushed MR gets destroyed after the QP has drained.
357 */
358static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
 
359{
360	struct ib_cqe *cqe = wc->wr_cqe;
361	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
362
363	/* WARNING: Only wr_cqe and status are reliable at this point */
364	trace_xprtrdma_wc_fastreg(wc, &mr->mr_cid);
365
366	rpcrdma_flush_disconnect(cq->cq_context, wc);
 
 
367}
368
369/**
370 * frwr_send - post Send WRs containing the RPC Call message
371 * @r_xprt: controlling transport instance
372 * @req: prepared RPC Call
373 *
374 * For FRWR, chain any FastReg WRs to the Send WR. Only a
375 * single ib_post_send call is needed to register memory
376 * and then post the Send WR.
377 *
378 * Returns the return code from ib_post_send.
379 *
380 * Caller must hold the transport send lock to ensure that the
381 * pointers to the transport's rdma_cm_id and QP are stable.
382 */
383int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
384{
385	struct ib_send_wr *post_wr, *send_wr = &req->rl_wr;
386	struct rpcrdma_ep *ep = r_xprt->rx_ep;
387	struct rpcrdma_mr *mr;
388	unsigned int num_wrs;
389	int ret;
390
391	num_wrs = 1;
392	post_wr = send_wr;
393	list_for_each_entry(mr, &req->rl_registered, mr_list) {
394		trace_xprtrdma_mr_fastreg(mr);
395
396		mr->mr_cqe.done = frwr_wc_fastreg;
397		mr->mr_regwr.wr.next = post_wr;
398		mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
399		mr->mr_regwr.wr.num_sge = 0;
400		mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
401		mr->mr_regwr.wr.send_flags = 0;
402		post_wr = &mr->mr_regwr.wr;
403		++num_wrs;
404	}
405
406	if ((kref_read(&req->rl_kref) > 1) || num_wrs > ep->re_send_count) {
407		send_wr->send_flags |= IB_SEND_SIGNALED;
408		ep->re_send_count = min_t(unsigned int, ep->re_send_batch,
409					  num_wrs - ep->re_send_count);
410	} else {
411		send_wr->send_flags &= ~IB_SEND_SIGNALED;
412		ep->re_send_count -= num_wrs;
413	}
414
415	trace_xprtrdma_post_send(req);
416	ret = ib_post_send(ep->re_id->qp, post_wr, NULL);
417	if (ret)
418		trace_xprtrdma_post_send_err(r_xprt, req, ret);
419	return ret;
420}
421
422/**
423 * frwr_reminv - handle a remotely invalidated mr on the @mrs list
424 * @rep: Received reply
425 * @mrs: list of MRs to check
426 *
427 */
428void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
 
429{
430	struct rpcrdma_mr *mr;
 
431
432	list_for_each_entry(mr, mrs, mr_list)
433		if (mr->mr_handle == rep->rr_inv_rkey) {
434			list_del_init(&mr->mr_list);
435			trace_xprtrdma_mr_reminv(mr);
436			frwr_mr_put(mr);
437			break;	/* only one invalidated MR per RPC */
438		}
439}
440
441static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr)
442{
443	if (likely(wc->status == IB_WC_SUCCESS))
444		frwr_mr_put(mr);
445}
446
447/**
448 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
449 * @cq: completion queue
450 * @wc: WCE for a completed LocalInv WR
451 *
 
452 */
453static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
 
454{
455	struct ib_cqe *cqe = wc->wr_cqe;
456	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
457
458	/* WARNING: Only wr_cqe and status are reliable at this point */
459	trace_xprtrdma_wc_li(wc, &mr->mr_cid);
460	frwr_mr_done(wc, mr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461
462	rpcrdma_flush_disconnect(cq->cq_context, wc);
463}
464
465/**
466 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
467 * @cq: completion queue
468 * @wc: WCE for a completed LocalInv WR
469 *
470 * Awaken anyone waiting for an MR to finish being fenced.
471 */
472static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
473{
474	struct ib_cqe *cqe = wc->wr_cqe;
475	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476
477	/* WARNING: Only wr_cqe and status are reliable at this point */
478	trace_xprtrdma_wc_li_wake(wc, &mr->mr_cid);
479	frwr_mr_done(wc, mr);
480	complete(&mr->mr_linv_done);
481
482	rpcrdma_flush_disconnect(cq->cq_context, wc);
483}
484
485/**
486 * frwr_unmap_sync - invalidate memory regions that were registered for @req
487 * @r_xprt: controlling transport instance
488 * @req: rpcrdma_req with a non-empty list of MRs to process
489 *
490 * Sleeps until it is safe for the host CPU to access the previously mapped
491 * memory regions. This guarantees that registered MRs are properly fenced
492 * from the server before the RPC consumer accesses the data in them. It
493 * also ensures proper Send flow control: waking the next RPC waits until
494 * this RPC has relinquished all its Send Queue entries.
495 */
496void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
497{
498	struct ib_send_wr *first, **prev, *last;
499	struct rpcrdma_ep *ep = r_xprt->rx_ep;
500	const struct ib_send_wr *bad_wr;
501	struct rpcrdma_mr *mr;
502	int rc;
503
504	/* ORDER: Invalidate all of the MRs first
505	 *
506	 * Chain the LOCAL_INV Work Requests and post them with
507	 * a single ib_post_send() call.
508	 */
509	prev = &first;
510	mr = rpcrdma_mr_pop(&req->rl_registered);
511	do {
512		trace_xprtrdma_mr_localinv(mr);
513		r_xprt->rx_stats.local_inv_needed++;
514
515		last = &mr->mr_invwr;
516		last->next = NULL;
517		last->wr_cqe = &mr->mr_cqe;
518		last->sg_list = NULL;
519		last->num_sge = 0;
520		last->opcode = IB_WR_LOCAL_INV;
521		last->send_flags = IB_SEND_SIGNALED;
522		last->ex.invalidate_rkey = mr->mr_handle;
523
524		last->wr_cqe->done = frwr_wc_localinv;
525
526		*prev = last;
527		prev = &last->next;
528	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
529
530	mr = container_of(last, struct rpcrdma_mr, mr_invwr);
531
532	/* Strong send queue ordering guarantees that when the
533	 * last WR in the chain completes, all WRs in the chain
534	 * are complete.
535	 */
536	last->wr_cqe->done = frwr_wc_localinv_wake;
537	reinit_completion(&mr->mr_linv_done);
538
539	/* Transport disconnect drains the receive CQ before it
540	 * replaces the QP. The RPC reply handler won't call us
541	 * unless re_id->qp is a valid pointer.
542	 */
543	bad_wr = NULL;
544	rc = ib_post_send(ep->re_id->qp, first, &bad_wr);
545
546	/* The final LOCAL_INV WR in the chain is supposed to
547	 * do the wake. If it was never posted, the wake will
548	 * not happen, so don't wait in that case.
549	 */
550	if (bad_wr != first)
551		wait_for_completion(&mr->mr_linv_done);
552	if (!rc)
553		return;
554
555	/* On error, the MRs get destroyed once the QP has drained. */
556	trace_xprtrdma_post_linv_err(req, rc);
 
 
 
557
558	/* Force a connection loss to ensure complete recovery.
559	 */
560	rpcrdma_force_disconnect(ep);
561}
562
563/**
564 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
565 * @cq:	completion queue
566 * @wc:	WCE for a completed LocalInv WR
567 *
568 */
569static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
570{
571	struct ib_cqe *cqe = wc->wr_cqe;
572	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
573	struct rpcrdma_rep *rep;
574
575	/* WARNING: Only wr_cqe and status are reliable at this point */
576	trace_xprtrdma_wc_li_done(wc, &mr->mr_cid);
577
578	/* Ensure that @rep is generated before the MR is released */
579	rep = mr->mr_req->rl_reply;
580	smp_rmb();
581
582	if (wc->status != IB_WC_SUCCESS) {
583		if (rep)
584			rpcrdma_unpin_rqst(rep);
585		rpcrdma_flush_disconnect(cq->cq_context, wc);
586		return;
587	}
588	frwr_mr_put(mr);
589	rpcrdma_complete_rqst(rep);
590}
591
592/**
593 * frwr_unmap_async - invalidate memory regions that were registered for @req
594 * @r_xprt: controlling transport instance
595 * @req: rpcrdma_req with a non-empty list of MRs to process
596 *
597 * This guarantees that registered MRs are properly fenced from the
598 * server before the RPC consumer accesses the data in them. It also
599 * ensures proper Send flow control: waking the next RPC waits until
600 * this RPC has relinquished all its Send Queue entries.
601 */
602void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
603{
604	struct ib_send_wr *first, *last, **prev;
605	struct rpcrdma_ep *ep = r_xprt->rx_ep;
606	struct rpcrdma_mr *mr;
607	int rc;
608
609	/* Chain the LOCAL_INV Work Requests and post them with
 
 
 
 
610	 * a single ib_post_send() call.
611	 */
612	prev = &first;
613	mr = rpcrdma_mr_pop(&req->rl_registered);
614	do {
615		trace_xprtrdma_mr_localinv(mr);
616		r_xprt->rx_stats.local_inv_needed++;
 
 
 
 
 
 
 
617
618		last = &mr->mr_invwr;
619		last->next = NULL;
620		last->wr_cqe = &mr->mr_cqe;
621		last->sg_list = NULL;
622		last->num_sge = 0;
623		last->opcode = IB_WR_LOCAL_INV;
624		last->send_flags = IB_SEND_SIGNALED;
625		last->ex.invalidate_rkey = mr->mr_handle;
626
627		last->wr_cqe->done = frwr_wc_localinv;
628
629		*prev = last;
630		prev = &last->next;
631	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
632
633	/* Strong send queue ordering guarantees that when the
634	 * last WR in the chain completes, all WRs in the chain
635	 * are complete. The last completion will wake up the
636	 * RPC waiter.
637	 */
638	last->wr_cqe->done = frwr_wc_localinv_done;
 
 
 
639
640	/* Transport disconnect drains the receive CQ before it
641	 * replaces the QP. The RPC reply handler won't call us
642	 * unless re_id->qp is a valid pointer.
643	 */
644	rc = ib_post_send(ep->re_id->qp, first, NULL);
645	if (!rc)
646		return;
 
 
 
647
648	/* On error, the MRs get destroyed once the QP has drained. */
649	trace_xprtrdma_post_linv_err(req, rc);
650
651	/* The final LOCAL_INV WR in the chain is supposed to
652	 * do the wake. If it was never posted, the wake does
653	 * not happen. Unpin the rqst in preparation for its
654	 * retransmission.
655	 */
656	rpcrdma_unpin_rqst(req->rl_reply);
 
 
657
658	/* Force a connection loss to ensure complete recovery.
659	 */
660	rpcrdma_force_disconnect(ep);
 
 
 
 
661}
662
663/**
664 * frwr_wp_create - Create an MR for padding Write chunks
665 * @r_xprt: transport resources to use
666 *
667 * Return 0 on success, negative errno on failure.
668 */
669int frwr_wp_create(struct rpcrdma_xprt *r_xprt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670{
671	struct rpcrdma_ep *ep = r_xprt->rx_ep;
672	struct rpcrdma_mr_seg seg;
673	struct rpcrdma_mr *mr;
674
675	mr = rpcrdma_mr_get(r_xprt);
676	if (!mr)
677		return -EAGAIN;
678	mr->mr_req = NULL;
679	ep->re_write_pad_mr = mr;
680
681	seg.mr_len = XDR_UNIT;
682	seg.mr_page = virt_to_page(ep->re_write_pad);
683	seg.mr_offset = offset_in_page(ep->re_write_pad);
684	if (IS_ERR(frwr_map(r_xprt, &seg, 1, true, xdr_zero, mr)))
685		return -EIO;
686	trace_xprtrdma_mr_fastreg(mr);
687
688	mr->mr_cqe.done = frwr_wc_fastreg;
689	mr->mr_regwr.wr.next = NULL;
690	mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
691	mr->mr_regwr.wr.num_sge = 0;
692	mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
693	mr->mr_regwr.wr.send_flags = 0;
694
695	return ib_post_send(ep->re_id->qp, &mr->mr_regwr.wr, NULL);
 
 
 
 
 
696}