Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Copyright (c) 2015 Oracle.  All rights reserved.
  3 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
  4 */
  5
  6/* Lightweight memory registration using Fast Registration Work
  7 * Requests (FRWR). Also referred to sometimes as FRMR mode.
  8 *
  9 * FRWR features ordered asynchronous registration and deregistration
 10 * of arbitrarily sized memory regions. This is the fastest and safest
 11 * but most complex memory registration mode.
 12 */
 13
 14/* Normal operation
 15 *
 16 * A Memory Region is prepared for RDMA READ or WRITE using a FAST_REG
 17 * Work Request (frmr_op_map). When the RDMA operation is finished, this
 18 * Memory Region is invalidated using a LOCAL_INV Work Request
 19 * (frmr_op_unmap).
 20 *
 21 * Typically these Work Requests are not signaled, and neither are RDMA
 22 * SEND Work Requests (with the exception of signaling occasionally to
 23 * prevent provider work queue overflows). This greatly reduces HCA
 24 * interrupt workload.
 25 *
 26 * As an optimization, frwr_op_unmap marks MRs INVALID before the
 27 * LOCAL_INV WR is posted. If posting succeeds, the MR is placed on
 28 * rb_mws immediately so that no work (like managing a linked list
 29 * under a spinlock) is needed in the completion upcall.
 30 *
 31 * But this means that frwr_op_map() can occasionally encounter an MR
 32 * that is INVALID but the LOCAL_INV WR has not completed. Work Queue
 33 * ordering prevents a subsequent FAST_REG WR from executing against
 34 * that MR while it is still being invalidated.
 35 */
 36
 37/* Transport recovery
 38 *
 39 * ->op_map and the transport connect worker cannot run at the same
 40 * time, but ->op_unmap can fire while the transport connect worker
 41 * is running. Thus MR recovery is handled in ->op_map, to guarantee
 42 * that recovered MRs are owned by a sending RPC, and not one where
 43 * ->op_unmap could fire at the same time transport reconnect is
 44 * being done.
 45 *
 46 * When the underlying transport disconnects, MRs are left in one of
 47 * three states:
 48 *
 49 * INVALID:	The MR was not in use before the QP entered ERROR state.
 50 *		(Or, the LOCAL_INV WR has not completed or flushed yet).
 51 *
 52 * STALE:	The MR was being registered or unregistered when the QP
 53 *		entered ERROR state, and the pending WR was flushed.
 54 *
 55 * VALID:	The MR was registered before the QP entered ERROR state.
 56 *
 57 * When frwr_op_map encounters STALE and VALID MRs, they are recovered
 58 * with ib_dereg_mr and then are re-initialized. Beause MR recovery
 59 * allocates fresh resources, it is deferred to a workqueue, and the
 60 * recovered MRs are placed back on the rb_mws list when recovery is
 61 * complete. frwr_op_map allocates another MR for the current RPC while
 62 * the broken MR is reset.
 63 *
 64 * To ensure that frwr_op_map doesn't encounter an MR that is marked
 65 * INVALID but that is about to be flushed due to a previous transport
 66 * disconnect, the transport connect worker attempts to drain all
 67 * pending send queue WRs before the transport is reconnected.
 68 */
 69
 70#include "xprt_rdma.h"
 71
 72#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
 73# define RPCDBG_FACILITY	RPCDBG_TRANS
 74#endif
 75
 76static struct workqueue_struct *frwr_recovery_wq;
 77
 78#define FRWR_RECOVERY_WQ_FLAGS		(WQ_UNBOUND | WQ_MEM_RECLAIM)
 79
 80int
 81frwr_alloc_recovery_wq(void)
 82{
 83	frwr_recovery_wq = alloc_workqueue("frwr_recovery",
 84					   FRWR_RECOVERY_WQ_FLAGS, 0);
 85	return !frwr_recovery_wq ? -ENOMEM : 0;
 
 86}
 87
 88void
 89frwr_destroy_recovery_wq(void)
 90{
 91	struct workqueue_struct *wq;
 92
 93	if (!frwr_recovery_wq)
 94		return;
 95
 96	wq = frwr_recovery_wq;
 97	frwr_recovery_wq = NULL;
 98	destroy_workqueue(wq);
 99}
100
101/* Deferred reset of a single FRMR. Generate a fresh rkey by
102 * replacing the MR.
 
103 *
104 * There's no recovery if this fails. The FRMR is abandoned, but
105 * remains in rb_all. It will be cleaned up when the transport is
106 * destroyed.
107 */
108static void
109__frwr_recovery_worker(struct work_struct *work)
110{
111	struct rpcrdma_mw *r = container_of(work, struct rpcrdma_mw,
112					    frmr.fr_work);
113	struct rpcrdma_xprt *r_xprt = r->frmr.fr_xprt;
114	unsigned int depth = r_xprt->rx_ia.ri_max_frmr_depth;
115	struct ib_pd *pd = r_xprt->rx_ia.ri_pd;
116
117	if (ib_dereg_mr(r->frmr.fr_mr))
118		goto out_fail;
119
120	r->frmr.fr_mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, depth);
121	if (IS_ERR(r->frmr.fr_mr))
122		goto out_fail;
 
 
 
123
124	dprintk("RPC:       %s: recovered FRMR %p\n", __func__, r);
125	r->frmr.fr_state = FRMR_IS_INVALID;
126	rpcrdma_put_mw(r_xprt, r);
127	return;
128
129out_fail:
130	pr_warn("RPC:       %s: FRMR %p unrecovered\n",
131		__func__, r);
 
132}
133
134/* A broken MR was discovered in a context that can't sleep.
135 * Defer recovery to the recovery worker.
 
 
 
 
 
 
 
 
136 */
137static void
138__frwr_queue_recovery(struct rpcrdma_mw *r)
139{
140	INIT_WORK(&r->frmr.fr_work, __frwr_recovery_worker);
141	queue_work(frwr_recovery_wq, &r->frmr.fr_work);
 
 
142}
143
144static int
145__frwr_init(struct rpcrdma_mw *r, struct ib_pd *pd, struct ib_device *device,
146	    unsigned int depth)
147{
148	struct rpcrdma_frmr *f = &r->frmr;
149	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
150
151	f->fr_mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, depth);
152	if (IS_ERR(f->fr_mr))
153		goto out_mr_err;
154
155	f->sg = kcalloc(depth, sizeof(*f->sg), GFP_KERNEL);
156	if (!f->sg)
157		goto out_list_err;
158
159	sg_init_table(f->sg, depth);
160
161	init_completion(&f->fr_linv_done);
162
 
 
163	return 0;
164
165out_mr_err:
166	rc = PTR_ERR(f->fr_mr);
167	dprintk("RPC:       %s: ib_alloc_mr status %i\n",
168		__func__, rc);
169	return rc;
170
171out_list_err:
172	rc = -ENOMEM;
173	dprintk("RPC:       %s: sg allocation failure\n",
174		__func__);
175	ib_dereg_mr(f->fr_mr);
176	return rc;
177}
178
179static void
180__frwr_release(struct rpcrdma_mw *r)
181{
182	int rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
184	rc = ib_dereg_mr(r->frmr.fr_mr);
185	if (rc)
186		dprintk("RPC:       %s: ib_dereg_mr status %i\n",
187			__func__, rc);
188	kfree(r->frmr.sg);
189}
190
191static int
192frwr_op_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep,
193	     struct rpcrdma_create_data_internal *cdata)
194{
195	int depth, delta;
196
197	ia->ri_max_frmr_depth =
198			min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
199			      ia->ri_device->attrs.max_fast_reg_page_list_len);
200	dprintk("RPC:       %s: device's max FR page list len = %u\n",
201		__func__, ia->ri_max_frmr_depth);
202
203	/* Add room for frmr register and invalidate WRs.
204	 * 1. FRMR reg WR for head
205	 * 2. FRMR invalidate WR for head
206	 * 3. N FRMR reg WRs for pagelist
207	 * 4. N FRMR invalidate WRs for pagelist
208	 * 5. FRMR reg WR for tail
209	 * 6. FRMR invalidate WR for tail
210	 * 7. The RDMA_SEND WR
211	 */
212	depth = 7;
213
214	/* Calculate N if the device max FRMR depth is smaller than
215	 * RPCRDMA_MAX_DATA_SEGS.
216	 */
217	if (ia->ri_max_frmr_depth < RPCRDMA_MAX_DATA_SEGS) {
218		delta = RPCRDMA_MAX_DATA_SEGS - ia->ri_max_frmr_depth;
219		do {
220			depth += 2; /* FRMR reg + invalidate */
221			delta -= ia->ri_max_frmr_depth;
222		} while (delta > 0);
223	}
224
225	ep->rep_attr.cap.max_send_wr *= depth;
226	if (ep->rep_attr.cap.max_send_wr > ia->ri_device->attrs.max_qp_wr) {
227		cdata->max_requests = ia->ri_device->attrs.max_qp_wr / depth;
228		if (!cdata->max_requests)
229			return -EINVAL;
230		ep->rep_attr.cap.max_send_wr = cdata->max_requests *
231					       depth;
 
 
 
 
 
 
232	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233
234	return 0;
235}
236
237/* FRWR mode conveys a list of pages per chunk segment. The
238 * maximum length of that list is the FRWR page list depth.
 
 
 
 
 
 
 
 
 
 
 
 
239 */
240static size_t
241frwr_op_maxpages(struct rpcrdma_xprt *r_xprt)
 
 
242{
243	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
 
 
 
 
244
245	return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
246		     rpcrdma_max_segments(r_xprt) * ia->ri_max_frmr_depth);
247}
 
 
248
249static void
250__frwr_sendcompletion_flush(struct ib_wc *wc, struct rpcrdma_frmr *frmr,
251			    const char *wr)
252{
253	frmr->fr_state = FRMR_IS_STALE;
254	if (wc->status != IB_WC_WR_FLUSH_ERR)
255		pr_err("rpcrdma: %s: %s (%u/0x%x)\n",
256		       wr, ib_wc_status_msg(wc->status),
257		       wc->status, wc->vendor_err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258}
259
260/**
261 * frwr_wc_fastreg - Invoked by RDMA provider for each polled FastReg WC
262 * @cq:	completion queue (ignored)
263 * @wc:	completed WR
264 *
 
265 */
266static void
267frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
268{
269	struct rpcrdma_frmr *frmr;
270	struct ib_cqe *cqe;
271
272	/* WARNING: Only wr_cqe and status are reliable at this point */
273	if (wc->status != IB_WC_SUCCESS) {
274		cqe = wc->wr_cqe;
275		frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe);
276		__frwr_sendcompletion_flush(wc, frmr, "fastreg");
277	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278}
279
280/**
281 * frwr_wc_localinv - Invoked by RDMA provider for each polled LocalInv WC
282 * @cq:	completion queue (ignored)
283 * @wc:	completed WR
284 *
285 */
286static void
287frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
288{
289	struct rpcrdma_frmr *frmr;
290	struct ib_cqe *cqe;
291
292	/* WARNING: Only wr_cqe and status are reliable at this point */
293	if (wc->status != IB_WC_SUCCESS) {
294		cqe = wc->wr_cqe;
295		frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe);
296		__frwr_sendcompletion_flush(wc, frmr, "localinv");
297	}
 
 
 
 
 
 
 
298}
299
300/**
301 * frwr_wc_localinv - Invoked by RDMA provider for each polled LocalInv WC
302 * @cq:	completion queue (ignored)
303 * @wc:	completed WR
304 *
305 * Awaken anyone waiting for an MR to finish being fenced.
306 */
307static void
308frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
309{
310	struct rpcrdma_frmr *frmr;
311	struct ib_cqe *cqe;
312
313	/* WARNING: Only wr_cqe and status are reliable at this point */
314	cqe = wc->wr_cqe;
315	frmr = container_of(cqe, struct rpcrdma_frmr, fr_cqe);
316	if (wc->status != IB_WC_SUCCESS)
317		__frwr_sendcompletion_flush(wc, frmr, "localinv");
318	complete_all(&frmr->fr_linv_done);
319}
320
321static int
322frwr_op_init(struct rpcrdma_xprt *r_xprt)
323{
324	struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
325	struct ib_device *device = r_xprt->rx_ia.ri_device;
326	unsigned int depth = r_xprt->rx_ia.ri_max_frmr_depth;
327	struct ib_pd *pd = r_xprt->rx_ia.ri_pd;
328	int i;
329
330	spin_lock_init(&buf->rb_mwlock);
331	INIT_LIST_HEAD(&buf->rb_mws);
332	INIT_LIST_HEAD(&buf->rb_all);
333
334	i = max_t(int, RPCRDMA_MAX_DATA_SEGS / depth, 1);
335	i += 2;				/* head + tail */
336	i *= buf->rb_max_requests;	/* one set for each RPC slot */
337	dprintk("RPC:       %s: initalizing %d FRMRs\n", __func__, i);
338
339	while (i--) {
340		struct rpcrdma_mw *r;
341		int rc;
342
343		r = kzalloc(sizeof(*r), GFP_KERNEL);
344		if (!r)
345			return -ENOMEM;
346
347		rc = __frwr_init(r, pd, device, depth);
348		if (rc) {
349			kfree(r);
350			return rc;
351		}
352
353		list_add(&r->mw_list, &buf->rb_mws);
354		list_add(&r->mw_all, &buf->rb_all);
355		r->frmr.fr_xprt = r_xprt;
356	}
357
358	return 0;
359}
360
361/* Post a FAST_REG Work Request to register a memory region
362 * for remote access via RDMA READ or RDMA WRITE.
 
 
 
 
363 */
364static int
365frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
366	    int nsegs, bool writing)
367{
368	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
369	struct ib_device *device = ia->ri_device;
370	enum dma_data_direction direction = rpcrdma_data_dir(writing);
371	struct rpcrdma_mr_seg *seg1 = seg;
372	struct rpcrdma_mw *mw;
373	struct rpcrdma_frmr *frmr;
374	struct ib_mr *mr;
375	struct ib_reg_wr *reg_wr;
376	struct ib_send_wr *bad_wr;
377	int rc, i, n, dma_nents;
378	u8 key;
379
380	mw = seg1->rl_mw;
381	seg1->rl_mw = NULL;
382	do {
383		if (mw)
384			__frwr_queue_recovery(mw);
385		mw = rpcrdma_get_mw(r_xprt);
386		if (!mw)
387			return -ENOMEM;
388	} while (mw->frmr.fr_state != FRMR_IS_INVALID);
389	frmr = &mw->frmr;
390	frmr->fr_state = FRMR_IS_VALID;
391	mr = frmr->fr_mr;
392	reg_wr = &frmr->fr_regwr;
393
394	if (nsegs > ia->ri_max_frmr_depth)
395		nsegs = ia->ri_max_frmr_depth;
396
397	for (i = 0; i < nsegs;) {
398		if (seg->mr_page)
399			sg_set_page(&frmr->sg[i],
400				    seg->mr_page,
401				    seg->mr_len,
402				    offset_in_page(seg->mr_offset));
403		else
404			sg_set_buf(&frmr->sg[i], seg->mr_offset,
405				   seg->mr_len);
406
407		++seg;
408		++i;
409
410		/* Check for holes */
411		if ((i < nsegs && offset_in_page(seg->mr_offset)) ||
412		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
413			break;
414	}
415	frmr->sg_nents = i;
416
417	dma_nents = ib_dma_map_sg(device, frmr->sg, frmr->sg_nents, direction);
418	if (!dma_nents) {
419		pr_err("RPC:       %s: failed to dma map sg %p sg_nents %u\n",
420		       __func__, frmr->sg, frmr->sg_nents);
421		return -ENOMEM;
422	}
423
424	n = ib_map_mr_sg(mr, frmr->sg, frmr->sg_nents, PAGE_SIZE);
425	if (unlikely(n != frmr->sg_nents)) {
426		pr_err("RPC:       %s: failed to map mr %p (%u/%u)\n",
427		       __func__, frmr->fr_mr, n, frmr->sg_nents);
428		rc = n < 0 ? n : -EINVAL;
429		goto out_senderr;
430	}
431
432	dprintk("RPC:       %s: Using frmr %p to map %u segments (%u bytes)\n",
433		__func__, mw, frmr->sg_nents, mr->length);
 
 
434
435	key = (u8)(mr->rkey & 0x000000FF);
436	ib_update_fast_reg_key(mr, ++key);
437
438	reg_wr->wr.next = NULL;
439	reg_wr->wr.opcode = IB_WR_REG_MR;
440	frmr->fr_cqe.done = frwr_wc_fastreg;
441	reg_wr->wr.wr_cqe = &frmr->fr_cqe;
442	reg_wr->wr.num_sge = 0;
443	reg_wr->wr.send_flags = 0;
444	reg_wr->mr = mr;
445	reg_wr->key = mr->rkey;
446	reg_wr->access = writing ?
447			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
448			 IB_ACCESS_REMOTE_READ;
 
 
 
 
 
 
 
449
450	DECR_CQCOUNT(&r_xprt->rx_ep);
451	rc = ib_post_send(ia->ri_id->qp, &reg_wr->wr, &bad_wr);
452	if (rc)
453		goto out_senderr;
 
 
 
 
 
 
454
455	seg1->mr_dir = direction;
456	seg1->rl_mw = mw;
457	seg1->mr_rkey = mr->rkey;
458	seg1->mr_base = mr->iova;
459	seg1->mr_nsegs = frmr->sg_nents;
460	seg1->mr_len = mr->length;
 
 
 
 
 
 
 
 
461
462	return frmr->sg_nents;
463
464out_senderr:
465	dprintk("RPC:       %s: ib_post_send status %i\n", __func__, rc);
466	ib_dma_unmap_sg(device, frmr->sg, dma_nents, direction);
467	__frwr_queue_recovery(mw);
468	return rc;
469}
470
471static struct ib_send_wr *
472__frwr_prepare_linv_wr(struct rpcrdma_mr_seg *seg)
473{
474	struct rpcrdma_mw *mw = seg->rl_mw;
475	struct rpcrdma_frmr *f = &mw->frmr;
476	struct ib_send_wr *invalidate_wr;
477
478	f->fr_state = FRMR_IS_INVALID;
479	invalidate_wr = &f->fr_invwr;
 
 
 
 
 
 
480
481	memset(invalidate_wr, 0, sizeof(*invalidate_wr));
482	f->fr_cqe.done = frwr_wc_localinv;
483	invalidate_wr->wr_cqe = &f->fr_cqe;
484	invalidate_wr->opcode = IB_WR_LOCAL_INV;
485	invalidate_wr->ex.invalidate_rkey = f->fr_mr->rkey;
486
487	return invalidate_wr;
 
 
488}
489
490static void
491__frwr_dma_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
492		 int rc)
 
 
 
 
493{
494	struct ib_device *device = r_xprt->rx_ia.ri_device;
495	struct rpcrdma_mw *mw = seg->rl_mw;
496	struct rpcrdma_frmr *f = &mw->frmr;
497
498	seg->rl_mw = NULL;
 
499
500	ib_dma_unmap_sg(device, f->sg, f->sg_nents, seg->mr_dir);
 
 
501
502	if (!rc)
503		rpcrdma_put_mw(r_xprt, mw);
504	else
505		__frwr_queue_recovery(mw);
 
 
 
 
506}
507
508/* Invalidate all memory regions that were registered for "req".
509 *
510 * Sleeps until it is safe for the host CPU to access the
511 * previously mapped memory regions.
512 */
513static void
514frwr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
515{
516	struct ib_send_wr *invalidate_wrs, *pos, *prev, *bad_wr;
517	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
518	struct rpcrdma_mr_seg *seg;
519	unsigned int i, nchunks;
520	struct rpcrdma_frmr *f;
 
 
521	int rc;
522
523	dprintk("RPC:       %s: req %p\n", __func__, req);
524
525	/* ORDER: Invalidate all of the req's MRs first
526	 *
527	 * Chain the LOCAL_INV Work Requests and post them with
528	 * a single ib_post_send() call.
529	 */
530	invalidate_wrs = pos = prev = NULL;
531	seg = NULL;
532	for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) {
533		seg = &req->rl_segments[i];
534
535		pos = __frwr_prepare_linv_wr(seg);
536
537		if (!invalidate_wrs)
538			invalidate_wrs = pos;
539		else
540			prev->next = pos;
541		prev = pos;
542
543		i += seg->mr_nsegs;
544	}
545	f = &seg->rl_mw->frmr;
 
 
 
 
 
 
 
 
 
 
 
546
547	/* Strong send queue ordering guarantees that when the
548	 * last WR in the chain completes, all WRs in the chain
549	 * are complete.
 
550	 */
551	f->fr_invwr.send_flags = IB_SEND_SIGNALED;
552	f->fr_cqe.done = frwr_wc_localinv_wake;
553	reinit_completion(&f->fr_linv_done);
554	INIT_CQCOUNT(&r_xprt->rx_ep);
555
556	/* Transport disconnect drains the receive CQ before it
557	 * replaces the QP. The RPC reply handler won't call us
558	 * unless ri_id->qp is a valid pointer.
559	 */
560	rc = ib_post_send(ia->ri_id->qp, invalidate_wrs, &bad_wr);
561	if (rc) {
562		pr_warn("%s: ib_post_send failed %i\n", __func__, rc);
563		rdma_disconnect(ia->ri_id);
564		goto unmap;
565	}
566
567	wait_for_completion(&f->fr_linv_done);
 
568
569	/* ORDER: Now DMA unmap all of the req's MRs, and return
570	 * them to the free MW list.
 
 
571	 */
572unmap:
573	for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) {
574		seg = &req->rl_segments[i];
575
576		__frwr_dma_unmap(r_xprt, seg, rc);
577
578		i += seg->mr_nsegs;
579		seg->mr_nsegs = 0;
580	}
581
582	req->rl_nchunks = 0;
583}
584
585/* Post a LOCAL_INV Work Request to prevent further remote access
586 * via RDMA READ or RDMA WRITE.
 
 
 
587 */
588static int
589frwr_op_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg)
590{
591	struct rpcrdma_mr_seg *seg1 = seg;
592	struct rpcrdma_ia *ia = &r_xprt->rx_ia;
593	struct rpcrdma_mw *mw = seg1->rl_mw;
594	struct rpcrdma_frmr *frmr = &mw->frmr;
595	struct ib_send_wr *invalidate_wr, *bad_wr;
596	int rc, nsegs = seg->mr_nsegs;
597
598	dprintk("RPC:       %s: FRMR %p\n", __func__, mw);
599
600	seg1->rl_mw = NULL;
601	frmr->fr_state = FRMR_IS_INVALID;
602	invalidate_wr = &mw->frmr.fr_invwr;
603
604	memset(invalidate_wr, 0, sizeof(*invalidate_wr));
605	frmr->fr_cqe.done = frwr_wc_localinv;
606	invalidate_wr->wr_cqe = &frmr->fr_cqe;
607	invalidate_wr->opcode = IB_WR_LOCAL_INV;
608	invalidate_wr->ex.invalidate_rkey = frmr->fr_mr->rkey;
609	DECR_CQCOUNT(&r_xprt->rx_ep);
610
611	ib_dma_unmap_sg(ia->ri_device, frmr->sg, frmr->sg_nents, seg1->mr_dir);
612	read_lock(&ia->ri_qplock);
613	rc = ib_post_send(ia->ri_id->qp, invalidate_wr, &bad_wr);
614	read_unlock(&ia->ri_qplock);
615	if (rc)
616		goto out_err;
617
618	rpcrdma_put_mw(r_xprt, mw);
619	return nsegs;
620
621out_err:
622	dprintk("RPC:       %s: ib_post_send status %i\n", __func__, rc);
623	__frwr_queue_recovery(mw);
624	return nsegs;
625}
626
627static void
628frwr_op_destroy(struct rpcrdma_buffer *buf)
629{
630	struct rpcrdma_mw *r;
631
632	/* Ensure stale MWs for "buf" are no longer in flight */
633	flush_workqueue(frwr_recovery_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
634
635	while (!list_empty(&buf->rb_all)) {
636		r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
637		list_del(&r->mw_all);
638		__frwr_release(r);
639		kfree(r);
640	}
641}
642
643const struct rpcrdma_memreg_ops rpcrdma_frwr_memreg_ops = {
644	.ro_map				= frwr_op_map,
645	.ro_unmap_sync			= frwr_op_unmap_sync,
646	.ro_unmap			= frwr_op_unmap,
647	.ro_open			= frwr_op_open,
648	.ro_maxpages			= frwr_op_maxpages,
649	.ro_init			= frwr_op_init,
650	.ro_destroy			= frwr_op_destroy,
651	.ro_displayname			= "frwr",
652};
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2015, 2017 Oracle.  All rights reserved.
  4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
  5 */
  6
  7/* Lightweight memory registration using Fast Registration Work
  8 * Requests (FRWR).
  9 *
 10 * FRWR features ordered asynchronous registration and invalidation
 11 * of arbitrarily-sized memory regions. This is the fastest and safest
 12 * but most complex memory registration mode.
 13 */
 14
 15/* Normal operation
 16 *
 17 * A Memory Region is prepared for RDMA Read or Write using a FAST_REG
 18 * Work Request (frwr_map). When the RDMA operation is finished, this
 19 * Memory Region is invalidated using a LOCAL_INV Work Request
 20 * (frwr_unmap_async and frwr_unmap_sync).
 21 *
 22 * Typically FAST_REG Work Requests are not signaled, and neither are
 23 * RDMA Send Work Requests (with the exception of signaling occasionally
 24 * to prevent provider work queue overflows). This greatly reduces HCA
 25 * interrupt workload.
 
 
 
 
 
 
 
 
 
 
 26 */
 27
 28/* Transport recovery
 29 *
 30 * frwr_map and frwr_unmap_* cannot run at the same time the transport
 31 * connect worker is running. The connect worker holds the transport
 32 * send lock, just as ->send_request does. This prevents frwr_map and
 33 * the connect worker from running concurrently. When a connection is
 34 * closed, the Receive completion queue is drained before the allowing
 35 * the connect worker to get control. This prevents frwr_unmap and the
 36 * connect worker from running concurrently.
 37 *
 38 * When the underlying transport disconnects, MRs that are in flight
 39 * are flushed and are likely unusable. Thus all MRs are destroyed.
 40 * New MRs are created on demand.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41 */
 42
 43#include <linux/sunrpc/svc_rdma.h>
 
 
 
 
 44
 45#include "xprt_rdma.h"
 46#include <trace/events/rpcrdma.h>
 
 47
 48static void frwr_cid_init(struct rpcrdma_ep *ep,
 49			  struct rpcrdma_mr *mr)
 50{
 51	struct rpc_rdma_cid *cid = &mr->mr_cid;
 52
 53	cid->ci_queue_id = ep->re_attr.send_cq->res.id;
 54	cid->ci_completion_id = mr->mr_ibmr->res.id;
 55}
 56
 57static void frwr_mr_unmap(struct rpcrdma_mr *mr)
 
 58{
 59	if (mr->mr_device) {
 60		trace_xprtrdma_mr_unmap(mr);
 61		ib_dma_unmap_sg(mr->mr_device, mr->mr_sg, mr->mr_nents,
 62				mr->mr_dir);
 63		mr->mr_device = NULL;
 64	}
 
 
 65}
 66
 67/**
 68 * frwr_mr_release - Destroy one MR
 69 * @mr: MR allocated by frwr_mr_init
 70 *
 
 
 
 71 */
 72void frwr_mr_release(struct rpcrdma_mr *mr)
 
 73{
 74	int rc;
 
 
 
 
 75
 76	frwr_mr_unmap(mr);
 
 77
 78	rc = ib_dereg_mr(mr->mr_ibmr);
 79	if (rc)
 80		trace_xprtrdma_frwr_dereg(mr, rc);
 81	kfree(mr->mr_sg);
 82	kfree(mr);
 83}
 84
 85static void frwr_mr_put(struct rpcrdma_mr *mr)
 86{
 87	frwr_mr_unmap(mr);
 
 88
 89	/* The MR is returned to the req's MR free list instead
 90	 * of to the xprt's MR free list. No spinlock is needed.
 91	 */
 92	rpcrdma_mr_push(mr, &mr->mr_req->rl_free_mrs);
 93}
 94
 95/**
 96 * frwr_reset - Place MRs back on @req's free list
 97 * @req: request to reset
 98 *
 99 * Used after a failed marshal. For FRWR, this means the MRs
100 * don't have to be fully released and recreated.
101 *
102 * NB: This is safe only as long as none of @req's MRs are
103 * involved with an ongoing asynchronous FAST_REG or LOCAL_INV
104 * Work Request.
105 */
106void frwr_reset(struct rpcrdma_req *req)
 
107{
108	struct rpcrdma_mr *mr;
109
110	while ((mr = rpcrdma_mr_pop(&req->rl_registered)))
111		frwr_mr_put(mr);
112}
113
114/**
115 * frwr_mr_init - Initialize one MR
116 * @r_xprt: controlling transport instance
117 * @mr: generic MR to prepare for FRWR
118 *
119 * Returns zero if successful. Otherwise a negative errno
120 * is returned.
121 */
122int frwr_mr_init(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr *mr)
123{
124	struct rpcrdma_ep *ep = r_xprt->rx_ep;
125	unsigned int depth = ep->re_max_fr_depth;
126	struct scatterlist *sg;
127	struct ib_mr *frmr;
128
129	sg = kcalloc_node(depth, sizeof(*sg), XPRTRDMA_GFP_FLAGS,
130			  ibdev_to_node(ep->re_id->device));
131	if (!sg)
132		return -ENOMEM;
133
134	frmr = ib_alloc_mr(ep->re_pd, ep->re_mrtype, depth);
135	if (IS_ERR(frmr))
136		goto out_mr_err;
137
138	mr->mr_xprt = r_xprt;
139	mr->mr_ibmr = frmr;
140	mr->mr_device = NULL;
141	INIT_LIST_HEAD(&mr->mr_list);
142	init_completion(&mr->mr_linv_done);
143	frwr_cid_init(ep, mr);
 
144
145	sg_init_table(sg, depth);
146	mr->mr_sg = sg;
147	return 0;
148
149out_mr_err:
150	kfree(sg);
151	trace_xprtrdma_frwr_alloc(mr, PTR_ERR(frmr));
152	return PTR_ERR(frmr);
 
 
 
 
 
 
 
 
153}
154
155/**
156 * frwr_query_device - Prepare a transport for use with FRWR
157 * @ep: endpoint to fill in
158 * @device: RDMA device to query
159 *
160 * On success, sets:
161 *	ep->re_attr
162 *	ep->re_max_requests
163 *	ep->re_max_rdma_segs
164 *	ep->re_max_fr_depth
165 *	ep->re_mrtype
166 *
167 * Return values:
168 *   On success, returns zero.
169 *   %-EINVAL - the device does not support FRWR memory registration
170 *   %-ENOMEM - the device is not sufficiently capable for NFS/RDMA
171 */
172int frwr_query_device(struct rpcrdma_ep *ep, const struct ib_device *device)
173{
174	const struct ib_device_attr *attrs = &device->attrs;
175	int max_qp_wr, depth, delta;
176	unsigned int max_sge;
177
178	if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) ||
179	    attrs->max_fast_reg_page_list_len == 0) {
180		pr_err("rpcrdma: 'frwr' mode is not supported by device %s\n",
181		       device->name);
182		return -EINVAL;
183	}
184
185	max_sge = min_t(unsigned int, attrs->max_send_sge,
186			RPCRDMA_MAX_SEND_SGES);
187	if (max_sge < RPCRDMA_MIN_SEND_SGES) {
188		pr_err("rpcrdma: HCA provides only %u send SGEs\n", max_sge);
189		return -ENOMEM;
190	}
191	ep->re_attr.cap.max_send_sge = max_sge;
192	ep->re_attr.cap.max_recv_sge = 1;
193
194	ep->re_mrtype = IB_MR_TYPE_MEM_REG;
195	if (attrs->kernel_cap_flags & IBK_SG_GAPS_REG)
196		ep->re_mrtype = IB_MR_TYPE_SG_GAPS;
197
198	/* Quirk: Some devices advertise a large max_fast_reg_page_list_len
199	 * capability, but perform optimally when the MRs are not larger
200	 * than a page.
201	 */
202	if (attrs->max_sge_rd > RPCRDMA_MAX_HDR_SEGS)
203		ep->re_max_fr_depth = attrs->max_sge_rd;
204	else
205		ep->re_max_fr_depth = attrs->max_fast_reg_page_list_len;
206	if (ep->re_max_fr_depth > RPCRDMA_MAX_DATA_SEGS)
207		ep->re_max_fr_depth = RPCRDMA_MAX_DATA_SEGS;
208
209	/* Add room for frwr register and invalidate WRs.
210	 * 1. FRWR reg WR for head
211	 * 2. FRWR invalidate WR for head
212	 * 3. N FRWR reg WRs for pagelist
213	 * 4. N FRWR invalidate WRs for pagelist
214	 * 5. FRWR reg WR for tail
215	 * 6. FRWR invalidate WR for tail
 
 
 
 
216	 * 7. The RDMA_SEND WR
217	 */
218	depth = 7;
219
220	/* Calculate N if the device max FRWR depth is smaller than
221	 * RPCRDMA_MAX_DATA_SEGS.
222	 */
223	if (ep->re_max_fr_depth < RPCRDMA_MAX_DATA_SEGS) {
224		delta = RPCRDMA_MAX_DATA_SEGS - ep->re_max_fr_depth;
225		do {
226			depth += 2; /* FRWR reg + invalidate */
227			delta -= ep->re_max_fr_depth;
228		} while (delta > 0);
229	}
230
231	max_qp_wr = attrs->max_qp_wr;
232	max_qp_wr -= RPCRDMA_BACKWARD_WRS;
233	max_qp_wr -= 1;
234	if (max_qp_wr < RPCRDMA_MIN_SLOT_TABLE)
235		return -ENOMEM;
236	if (ep->re_max_requests > max_qp_wr)
237		ep->re_max_requests = max_qp_wr;
238	ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
239	if (ep->re_attr.cap.max_send_wr > max_qp_wr) {
240		ep->re_max_requests = max_qp_wr / depth;
241		if (!ep->re_max_requests)
242			return -ENOMEM;
243		ep->re_attr.cap.max_send_wr = ep->re_max_requests * depth;
244	}
245	ep->re_attr.cap.max_send_wr += RPCRDMA_BACKWARD_WRS;
246	ep->re_attr.cap.max_send_wr += 1; /* for ib_drain_sq */
247	ep->re_attr.cap.max_recv_wr = ep->re_max_requests;
248	ep->re_attr.cap.max_recv_wr += RPCRDMA_BACKWARD_WRS;
249	ep->re_attr.cap.max_recv_wr += RPCRDMA_MAX_RECV_BATCH;
250	ep->re_attr.cap.max_recv_wr += 1; /* for ib_drain_rq */
251
252	ep->re_max_rdma_segs =
253		DIV_ROUND_UP(RPCRDMA_MAX_DATA_SEGS, ep->re_max_fr_depth);
254	/* Reply chunks require segments for head and tail buffers */
255	ep->re_max_rdma_segs += 2;
256	if (ep->re_max_rdma_segs > RPCRDMA_MAX_HDR_SEGS)
257		ep->re_max_rdma_segs = RPCRDMA_MAX_HDR_SEGS;
258
259	/* Ensure the underlying device is capable of conveying the
260	 * largest r/wsize NFS will ask for. This guarantees that
261	 * failing over from one RDMA device to another will not
262	 * break NFS I/O.
263	 */
264	if ((ep->re_max_rdma_segs * ep->re_max_fr_depth) < RPCRDMA_MAX_SEGS)
265		return -ENOMEM;
266
267	return 0;
268}
269
270/**
271 * frwr_map - Register a memory region
272 * @r_xprt: controlling transport
273 * @seg: memory region co-ordinates
274 * @nsegs: number of segments remaining
275 * @writing: true when RDMA Write will be used
276 * @xid: XID of RPC using the registered memory
277 * @mr: MR to fill in
278 *
279 * Prepare a REG_MR Work Request to register a memory region
280 * for remote access via RDMA READ or RDMA WRITE.
281 *
282 * Returns the next segment or a negative errno pointer.
283 * On success, @mr is filled in.
284 */
285struct rpcrdma_mr_seg *frwr_map(struct rpcrdma_xprt *r_xprt,
286				struct rpcrdma_mr_seg *seg,
287				int nsegs, bool writing, __be32 xid,
288				struct rpcrdma_mr *mr)
289{
290	struct rpcrdma_ep *ep = r_xprt->rx_ep;
291	struct ib_reg_wr *reg_wr;
292	int i, n, dma_nents;
293	struct ib_mr *ibmr;
294	u8 key;
295
296	if (nsegs > ep->re_max_fr_depth)
297		nsegs = ep->re_max_fr_depth;
298	for (i = 0; i < nsegs;) {
299		sg_set_page(&mr->mr_sg[i], seg->mr_page,
300			    seg->mr_len, seg->mr_offset);
301
302		++seg;
303		++i;
304		if (ep->re_mrtype == IB_MR_TYPE_SG_GAPS)
305			continue;
306		if ((i < nsegs && seg->mr_offset) ||
307		    offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
308			break;
309	}
310	mr->mr_dir = rpcrdma_data_dir(writing);
311	mr->mr_nents = i;
312
313	dma_nents = ib_dma_map_sg(ep->re_id->device, mr->mr_sg, mr->mr_nents,
314				  mr->mr_dir);
315	if (!dma_nents)
316		goto out_dmamap_err;
317	mr->mr_device = ep->re_id->device;
318
319	ibmr = mr->mr_ibmr;
320	n = ib_map_mr_sg(ibmr, mr->mr_sg, dma_nents, NULL, PAGE_SIZE);
321	if (n != dma_nents)
322		goto out_mapmr_err;
323
324	ibmr->iova &= 0x00000000ffffffff;
325	ibmr->iova |= ((u64)be32_to_cpu(xid)) << 32;
326	key = (u8)(ibmr->rkey & 0x000000FF);
327	ib_update_fast_reg_key(ibmr, ++key);
328
329	reg_wr = &mr->mr_regwr;
330	reg_wr->mr = ibmr;
331	reg_wr->key = ibmr->rkey;
332	reg_wr->access = writing ?
333			 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
334			 IB_ACCESS_REMOTE_READ;
335
336	mr->mr_handle = ibmr->rkey;
337	mr->mr_length = ibmr->length;
338	mr->mr_offset = ibmr->iova;
339	trace_xprtrdma_mr_map(mr);
340
341	return seg;
342
343out_dmamap_err:
344	trace_xprtrdma_frwr_sgerr(mr, i);
345	return ERR_PTR(-EIO);
346
347out_mapmr_err:
348	trace_xprtrdma_frwr_maperr(mr, n);
349	return ERR_PTR(-EIO);
350}
351
352/**
353 * frwr_wc_fastreg - Invoked by RDMA provider for a flushed FastReg WC
354 * @cq: completion queue
355 * @wc: WCE for a completed FastReg WR
356 *
357 * Each flushed MR gets destroyed after the QP has drained.
358 */
359static void frwr_wc_fastreg(struct ib_cq *cq, struct ib_wc *wc)
 
360{
361	struct ib_cqe *cqe = wc->wr_cqe;
362	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
363
364	/* WARNING: Only wr_cqe and status are reliable at this point */
365	trace_xprtrdma_wc_fastreg(wc, &mr->mr_cid);
366
367	rpcrdma_flush_disconnect(cq->cq_context, wc);
368}
369
370/**
371 * frwr_send - post Send WRs containing the RPC Call message
372 * @r_xprt: controlling transport instance
373 * @req: prepared RPC Call
374 *
375 * For FRWR, chain any FastReg WRs to the Send WR. Only a
376 * single ib_post_send call is needed to register memory
377 * and then post the Send WR.
378 *
379 * Returns the return code from ib_post_send.
380 *
381 * Caller must hold the transport send lock to ensure that the
382 * pointers to the transport's rdma_cm_id and QP are stable.
383 */
384int frwr_send(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
385{
386	struct ib_send_wr *post_wr, *send_wr = &req->rl_wr;
387	struct rpcrdma_ep *ep = r_xprt->rx_ep;
388	struct rpcrdma_mr *mr;
389	unsigned int num_wrs;
390	int ret;
391
392	num_wrs = 1;
393	post_wr = send_wr;
394	list_for_each_entry(mr, &req->rl_registered, mr_list) {
395		trace_xprtrdma_mr_fastreg(mr);
396
397		mr->mr_cqe.done = frwr_wc_fastreg;
398		mr->mr_regwr.wr.next = post_wr;
399		mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
400		mr->mr_regwr.wr.num_sge = 0;
401		mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
402		mr->mr_regwr.wr.send_flags = 0;
403		post_wr = &mr->mr_regwr.wr;
404		++num_wrs;
405	}
406
407	if ((kref_read(&req->rl_kref) > 1) || num_wrs > ep->re_send_count) {
408		send_wr->send_flags |= IB_SEND_SIGNALED;
409		ep->re_send_count = min_t(unsigned int, ep->re_send_batch,
410					  num_wrs - ep->re_send_count);
411	} else {
412		send_wr->send_flags &= ~IB_SEND_SIGNALED;
413		ep->re_send_count -= num_wrs;
414	}
415
416	trace_xprtrdma_post_send(req);
417	ret = ib_post_send(ep->re_id->qp, post_wr, NULL);
418	if (ret)
419		trace_xprtrdma_post_send_err(r_xprt, req, ret);
420	return ret;
421}
422
423/**
424 * frwr_reminv - handle a remotely invalidated mr on the @mrs list
425 * @rep: Received reply
426 * @mrs: list of MRs to check
427 *
428 */
429void frwr_reminv(struct rpcrdma_rep *rep, struct list_head *mrs)
 
430{
431	struct rpcrdma_mr *mr;
 
432
433	list_for_each_entry(mr, mrs, mr_list)
434		if (mr->mr_handle == rep->rr_inv_rkey) {
435			list_del_init(&mr->mr_list);
436			trace_xprtrdma_mr_reminv(mr);
437			frwr_mr_put(mr);
438			break;	/* only one invalidated MR per RPC */
439		}
440}
441
442static void frwr_mr_done(struct ib_wc *wc, struct rpcrdma_mr *mr)
443{
444	if (likely(wc->status == IB_WC_SUCCESS))
445		frwr_mr_put(mr);
446}
447
448/**
449 * frwr_wc_localinv - Invoked by RDMA provider for a LOCAL_INV WC
450 * @cq: completion queue
451 * @wc: WCE for a completed LocalInv WR
452 *
 
453 */
454static void frwr_wc_localinv(struct ib_cq *cq, struct ib_wc *wc)
 
455{
456	struct ib_cqe *cqe = wc->wr_cqe;
457	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
458
459	/* WARNING: Only wr_cqe and status are reliable at this point */
460	trace_xprtrdma_wc_li(wc, &mr->mr_cid);
461	frwr_mr_done(wc, mr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
462
463	rpcrdma_flush_disconnect(cq->cq_context, wc);
 
 
 
 
 
 
 
 
 
 
 
464}
465
466/**
467 * frwr_wc_localinv_wake - Invoked by RDMA provider for a LOCAL_INV WC
468 * @cq: completion queue
469 * @wc: WCE for a completed LocalInv WR
470 *
471 * Awaken anyone waiting for an MR to finish being fenced.
472 */
473static void frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
474{
475	struct ib_cqe *cqe = wc->wr_cqe;
476	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477
478	/* WARNING: Only wr_cqe and status are reliable at this point */
479	trace_xprtrdma_wc_li_wake(wc, &mr->mr_cid);
480	frwr_mr_done(wc, mr);
481	complete(&mr->mr_linv_done);
482
483	rpcrdma_flush_disconnect(cq->cq_context, wc);
484}
485
486/**
487 * frwr_unmap_sync - invalidate memory regions that were registered for @req
488 * @r_xprt: controlling transport instance
489 * @req: rpcrdma_req with a non-empty list of MRs to process
490 *
491 * Sleeps until it is safe for the host CPU to access the previously mapped
492 * memory regions. This guarantees that registered MRs are properly fenced
493 * from the server before the RPC consumer accesses the data in them. It
494 * also ensures proper Send flow control: waking the next RPC waits until
495 * this RPC has relinquished all its Send Queue entries.
496 */
497void frwr_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
498{
499	struct ib_send_wr *first, **prev, *last;
500	struct rpcrdma_ep *ep = r_xprt->rx_ep;
501	const struct ib_send_wr *bad_wr;
502	struct rpcrdma_mr *mr;
503	int rc;
504
505	/* ORDER: Invalidate all of the MRs first
506	 *
507	 * Chain the LOCAL_INV Work Requests and post them with
508	 * a single ib_post_send() call.
509	 */
510	prev = &first;
511	mr = rpcrdma_mr_pop(&req->rl_registered);
512	do {
513		trace_xprtrdma_mr_localinv(mr);
514		r_xprt->rx_stats.local_inv_needed++;
515
516		last = &mr->mr_invwr;
517		last->next = NULL;
518		last->wr_cqe = &mr->mr_cqe;
519		last->sg_list = NULL;
520		last->num_sge = 0;
521		last->opcode = IB_WR_LOCAL_INV;
522		last->send_flags = IB_SEND_SIGNALED;
523		last->ex.invalidate_rkey = mr->mr_handle;
524
525		last->wr_cqe->done = frwr_wc_localinv;
526
527		*prev = last;
528		prev = &last->next;
529	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
530
531	mr = container_of(last, struct rpcrdma_mr, mr_invwr);
532
533	/* Strong send queue ordering guarantees that when the
534	 * last WR in the chain completes, all WRs in the chain
535	 * are complete.
536	 */
537	last->wr_cqe->done = frwr_wc_localinv_wake;
538	reinit_completion(&mr->mr_linv_done);
539
540	/* Transport disconnect drains the receive CQ before it
541	 * replaces the QP. The RPC reply handler won't call us
542	 * unless re_id->qp is a valid pointer.
543	 */
544	bad_wr = NULL;
545	rc = ib_post_send(ep->re_id->qp, first, &bad_wr);
546
547	/* The final LOCAL_INV WR in the chain is supposed to
548	 * do the wake. If it was never posted, the wake will
549	 * not happen, so don't wait in that case.
550	 */
551	if (bad_wr != first)
552		wait_for_completion(&mr->mr_linv_done);
553	if (!rc)
554		return;
555
556	/* On error, the MRs get destroyed once the QP has drained. */
557	trace_xprtrdma_post_linv_err(req, rc);
 
 
 
558
559	/* Force a connection loss to ensure complete recovery.
560	 */
561	rpcrdma_force_disconnect(ep);
562}
563
564/**
565 * frwr_wc_localinv_done - Invoked by RDMA provider for a signaled LOCAL_INV WC
566 * @cq:	completion queue
567 * @wc:	WCE for a completed LocalInv WR
568 *
569 */
570static void frwr_wc_localinv_done(struct ib_cq *cq, struct ib_wc *wc)
571{
572	struct ib_cqe *cqe = wc->wr_cqe;
573	struct rpcrdma_mr *mr = container_of(cqe, struct rpcrdma_mr, mr_cqe);
574	struct rpcrdma_rep *rep;
575
576	/* WARNING: Only wr_cqe and status are reliable at this point */
577	trace_xprtrdma_wc_li_done(wc, &mr->mr_cid);
578
579	/* Ensure that @rep is generated before the MR is released */
580	rep = mr->mr_req->rl_reply;
581	smp_rmb();
582
583	if (wc->status != IB_WC_SUCCESS) {
584		if (rep)
585			rpcrdma_unpin_rqst(rep);
586		rpcrdma_flush_disconnect(cq->cq_context, wc);
587		return;
588	}
589	frwr_mr_put(mr);
590	rpcrdma_complete_rqst(rep);
591}
592
593/**
594 * frwr_unmap_async - invalidate memory regions that were registered for @req
595 * @r_xprt: controlling transport instance
596 * @req: rpcrdma_req with a non-empty list of MRs to process
597 *
598 * This guarantees that registered MRs are properly fenced from the
599 * server before the RPC consumer accesses the data in them. It also
600 * ensures proper Send flow control: waking the next RPC waits until
601 * this RPC has relinquished all its Send Queue entries.
602 */
603void frwr_unmap_async(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
604{
605	struct ib_send_wr *first, *last, **prev;
606	struct rpcrdma_ep *ep = r_xprt->rx_ep;
607	struct rpcrdma_mr *mr;
608	int rc;
609
610	/* Chain the LOCAL_INV Work Requests and post them with
 
 
 
 
611	 * a single ib_post_send() call.
612	 */
613	prev = &first;
614	mr = rpcrdma_mr_pop(&req->rl_registered);
615	do {
616		trace_xprtrdma_mr_localinv(mr);
617		r_xprt->rx_stats.local_inv_needed++;
 
 
 
 
 
 
 
618
619		last = &mr->mr_invwr;
620		last->next = NULL;
621		last->wr_cqe = &mr->mr_cqe;
622		last->sg_list = NULL;
623		last->num_sge = 0;
624		last->opcode = IB_WR_LOCAL_INV;
625		last->send_flags = IB_SEND_SIGNALED;
626		last->ex.invalidate_rkey = mr->mr_handle;
627
628		last->wr_cqe->done = frwr_wc_localinv;
629
630		*prev = last;
631		prev = &last->next;
632	} while ((mr = rpcrdma_mr_pop(&req->rl_registered)));
633
634	/* Strong send queue ordering guarantees that when the
635	 * last WR in the chain completes, all WRs in the chain
636	 * are complete. The last completion will wake up the
637	 * RPC waiter.
638	 */
639	last->wr_cqe->done = frwr_wc_localinv_done;
 
 
 
640
641	/* Transport disconnect drains the receive CQ before it
642	 * replaces the QP. The RPC reply handler won't call us
643	 * unless re_id->qp is a valid pointer.
644	 */
645	rc = ib_post_send(ep->re_id->qp, first, NULL);
646	if (!rc)
647		return;
 
 
 
648
649	/* On error, the MRs get destroyed once the QP has drained. */
650	trace_xprtrdma_post_linv_err(req, rc);
651
652	/* The final LOCAL_INV WR in the chain is supposed to
653	 * do the wake. If it was never posted, the wake does
654	 * not happen. Unpin the rqst in preparation for its
655	 * retransmission.
656	 */
657	rpcrdma_unpin_rqst(req->rl_reply);
 
 
658
659	/* Force a connection loss to ensure complete recovery.
660	 */
661	rpcrdma_force_disconnect(ep);
 
 
 
 
662}
663
664/**
665 * frwr_wp_create - Create an MR for padding Write chunks
666 * @r_xprt: transport resources to use
667 *
668 * Return 0 on success, negative errno on failure.
669 */
670int frwr_wp_create(struct rpcrdma_xprt *r_xprt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
671{
672	struct rpcrdma_ep *ep = r_xprt->rx_ep;
673	struct rpcrdma_mr_seg seg;
674	struct rpcrdma_mr *mr;
675
676	mr = rpcrdma_mr_get(r_xprt);
677	if (!mr)
678		return -EAGAIN;
679	mr->mr_req = NULL;
680	ep->re_write_pad_mr = mr;
681
682	seg.mr_len = XDR_UNIT;
683	seg.mr_page = virt_to_page(ep->re_write_pad);
684	seg.mr_offset = offset_in_page(ep->re_write_pad);
685	if (IS_ERR(frwr_map(r_xprt, &seg, 1, true, xdr_zero, mr)))
686		return -EIO;
687	trace_xprtrdma_mr_fastreg(mr);
688
689	mr->mr_cqe.done = frwr_wc_fastreg;
690	mr->mr_regwr.wr.next = NULL;
691	mr->mr_regwr.wr.wr_cqe = &mr->mr_cqe;
692	mr->mr_regwr.wr.num_sge = 0;
693	mr->mr_regwr.wr.opcode = IB_WR_REG_MR;
694	mr->mr_regwr.wr.send_flags = 0;
695
696	return ib_post_send(ep->re_id->qp, &mr->mr_regwr.wr, NULL);
 
 
 
 
 
697}