Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 1999 Eric Youngdale
   3 * Copyright (C) 2014 Christoph Hellwig
   4 *
   5 *  SCSI queueing library.
   6 *      Initial versions: Eric Youngdale (eric@andante.org).
   7 *                        Based upon conversations with large numbers
   8 *                        of people at Linux Expo.
   9 */
  10
  11#include <linux/bio.h>
  12#include <linux/bitops.h>
  13#include <linux/blkdev.h>
  14#include <linux/completion.h>
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>
  21#include <linux/delay.h>
  22#include <linux/hardirq.h>
  23#include <linux/scatterlist.h>
  24#include <linux/blk-mq.h>
 
  25#include <linux/ratelimit.h>
  26#include <asm/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
 
  35#include <scsi/scsi_dh.h>
  36
  37#include <trace/events/scsi.h>
  38
 
  39#include "scsi_priv.h"
  40#include "scsi_logging.h"
  41
 
 
 
 
 
 
 
 
 
 
 
  42
  43#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
  44#define SG_MEMPOOL_SIZE		2
  45
  46struct scsi_host_sg_pool {
  47	size_t		size;
  48	char		*name;
  49	struct kmem_cache	*slab;
  50	mempool_t	*pool;
  51};
  52
  53#define SP(x) { .size = x, "sgpool-" __stringify(x) }
  54#if (SCSI_MAX_SG_SEGMENTS < 32)
  55#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
  56#endif
  57static struct scsi_host_sg_pool scsi_sg_pools[] = {
  58	SP(8),
  59	SP(16),
  60#if (SCSI_MAX_SG_SEGMENTS > 32)
  61	SP(32),
  62#if (SCSI_MAX_SG_SEGMENTS > 64)
  63	SP(64),
  64#if (SCSI_MAX_SG_SEGMENTS > 128)
  65	SP(128),
  66#if (SCSI_MAX_SG_SEGMENTS > 256)
  67#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
  68#endif
  69#endif
  70#endif
  71#endif
  72	SP(SCSI_MAX_SG_SEGMENTS)
  73};
  74#undef SP
  75
  76struct kmem_cache *scsi_sdb_cache;
 
 
  77
  78/*
  79 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  80 * not change behaviour from the previous unplug mechanism, experimentation
  81 * may prove this needs changing.
  82 */
  83#define SCSI_QUEUE_DELAY	3
 
 
 
 
 
 
  84
  85static void
  86scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  87{
  88	struct Scsi_Host *host = cmd->device->host;
  89	struct scsi_device *device = cmd->device;
  90	struct scsi_target *starget = scsi_target(device);
  91
  92	/*
  93	 * Set the appropriate busy bit for the device/host.
  94	 *
  95	 * If the host/device isn't busy, assume that something actually
  96	 * completed, and that we should be able to queue a command now.
  97	 *
  98	 * Note that the prior mid-layer assumption that any host could
  99	 * always queue at least one command is now broken.  The mid-layer
 100	 * will implement a user specifiable stall (see
 101	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 102	 * if a command is requeued with no other commands outstanding
 103	 * either for the device or for the host.
 104	 */
 105	switch (reason) {
 106	case SCSI_MLQUEUE_HOST_BUSY:
 107		atomic_set(&host->host_blocked, host->max_host_blocked);
 108		break;
 109	case SCSI_MLQUEUE_DEVICE_BUSY:
 110	case SCSI_MLQUEUE_EH_RETRY:
 111		atomic_set(&device->device_blocked,
 112			   device->max_device_blocked);
 113		break;
 114	case SCSI_MLQUEUE_TARGET_BUSY:
 115		atomic_set(&starget->target_blocked,
 116			   starget->max_target_blocked);
 117		break;
 118	}
 119}
 120
 121static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 122{
 123	struct scsi_device *sdev = cmd->device;
 124	struct request_queue *q = cmd->request->q;
 125
 126	blk_mq_requeue_request(cmd->request);
 127	blk_mq_kick_requeue_list(q);
 128	put_device(&sdev->sdev_gendev);
 
 
 
 
 
 
 
 129}
 130
 131/**
 132 * __scsi_queue_insert - private queue insertion
 133 * @cmd: The SCSI command being requeued
 134 * @reason:  The reason for the requeue
 135 * @unbusy: Whether the queue should be unbusied
 136 *
 137 * This is a private queue insertion.  The public interface
 138 * scsi_queue_insert() always assumes the queue should be unbusied
 139 * because it's always called before the completion.  This function is
 140 * for a requeue after completion, which should only occur in this
 141 * file.
 142 */
 143static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 144{
 145	struct scsi_device *device = cmd->device;
 146	struct request_queue *q = device->request_queue;
 147	unsigned long flags;
 148
 149	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 150		"Inserting command %p into mlqueue\n", cmd));
 151
 152	scsi_set_blocked(cmd, reason);
 153
 154	/*
 155	 * Decrement the counters, since these commands are no longer
 156	 * active on the host/device.
 157	 */
 158	if (unbusy)
 159		scsi_device_unbusy(device);
 160
 161	/*
 162	 * Requeue this command.  It will go before all other commands
 163	 * that are already in the queue. Schedule requeue work under
 164	 * lock such that the kblockd_schedule_work() call happens
 165	 * before blk_cleanup_queue() finishes.
 166	 */
 167	cmd->result = 0;
 168	if (q->mq_ops) {
 169		scsi_mq_requeue_cmd(cmd);
 170		return;
 171	}
 172	spin_lock_irqsave(q->queue_lock, flags);
 173	blk_requeue_request(q, cmd->request);
 174	kblockd_schedule_work(&device->requeue_work);
 175	spin_unlock_irqrestore(q->queue_lock, flags);
 176}
 177
 178/*
 179 * Function:    scsi_queue_insert()
 180 *
 181 * Purpose:     Insert a command in the midlevel queue.
 182 *
 183 * Arguments:   cmd    - command that we are adding to queue.
 184 *              reason - why we are inserting command to queue.
 185 *
 186 * Lock status: Assumed that lock is not held upon entry.
 187 *
 188 * Returns:     Nothing.
 
 
 189 *
 190 * Notes:       We do this for one of two cases.  Either the host is busy
 191 *              and it cannot accept any more commands for the time being,
 192 *              or the device returned QUEUE_FULL and can accept no more
 193 *              commands.
 194 * Notes:       This could be called either from an interrupt context or a
 195 *              normal process context.
 196 */
 197void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 198{
 199	__scsi_queue_insert(cmd, reason, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200}
 
 201/**
 202 * scsi_execute - insert request and wait for the result
 203 * @sdev:	scsi device
 204 * @cmd:	scsi command
 205 * @data_direction: data direction
 206 * @buffer:	data buffer
 207 * @bufflen:	len of buffer
 208 * @sense:	optional sense buffer
 209 * @timeout:	request timeout in seconds
 210 * @retries:	number of times to retry request
 211 * @flags:	or into request flags;
 212 * @resid:	optional residual length
 213 *
 214 * returns the req->errors value which is the scsi_cmnd result
 215 * field.
 216 */
 217int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 218		 int data_direction, void *buffer, unsigned bufflen,
 219		 unsigned char *sense, int timeout, int retries, u64 flags,
 220		 int *resid)
 221{
 
 222	struct request *req;
 223	int write = (data_direction == DMA_TO_DEVICE);
 224	int ret = DRIVER_ERROR << 24;
 225
 226	req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
 
 
 
 
 
 
 
 227	if (IS_ERR(req))
 228		return ret;
 229	blk_rq_set_block_pc(req);
 230
 231	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 232					buffer, bufflen, __GFP_RECLAIM))
 233		goto out;
 234
 235	req->cmd_len = COMMAND_SIZE(cmd[0]);
 236	memcpy(req->cmd, cmd, req->cmd_len);
 237	req->sense = sense;
 238	req->sense_len = 0;
 239	req->retries = retries;
 
 
 240	req->timeout = timeout;
 241	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 242
 243	/*
 244	 * head injection *required* here otherwise quiesce won't work
 245	 */
 246	blk_execute_rq(req->q, NULL, req, 1);
 
 
 
 
 
 247
 248	/*
 249	 * Some devices (USB mass-storage in particular) may transfer
 250	 * garbage data together with a residue indicating that the data
 251	 * is invalid.  Prevent the garbage from being misinterpreted
 252	 * and prevent security leaks by zeroing out the excess data.
 253	 */
 254	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 255		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 
 
 
 
 
 
 
 
 256
 257	if (resid)
 258		*resid = req->resid_len;
 259	ret = req->errors;
 260 out:
 261	blk_put_request(req);
 262
 263	return ret;
 264}
 265EXPORT_SYMBOL(scsi_execute);
 266
 267int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
 268		     int data_direction, void *buffer, unsigned bufflen,
 269		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 270		     int *resid, u64 flags)
 271{
 272	char *sense = NULL;
 273	int result;
 274	
 275	if (sshdr) {
 276		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 277		if (!sense)
 278			return DRIVER_ERROR << 24;
 279	}
 280	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 281			      sense, timeout, retries, flags, resid);
 282	if (sshdr)
 283		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 284
 285	kfree(sense);
 286	return result;
 287}
 288EXPORT_SYMBOL(scsi_execute_req_flags);
 289
 290/*
 291 * Function:    scsi_init_cmd_errh()
 292 *
 293 * Purpose:     Initialize cmd fields related to error handling.
 294 *
 295 * Arguments:   cmd	- command that is ready to be queued.
 296 *
 297 * Notes:       This function has the job of initializing a number of
 298 *              fields related to error handling.   Typically this will
 299 *              be called once for each command, as required.
 300 */
 301static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 302{
 303	cmd->serial_number = 0;
 304	scsi_set_resid(cmd, 0);
 305	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 306	if (cmd->cmd_len == 0)
 307		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 
 
 
 
 
 
 
 
 308}
 309
 310void scsi_device_unbusy(struct scsi_device *sdev)
 311{
 312	struct Scsi_Host *shost = sdev->host;
 313	struct scsi_target *starget = scsi_target(sdev);
 314	unsigned long flags;
 315
 316	atomic_dec(&shost->host_busy);
 
 317	if (starget->can_queue > 0)
 318		atomic_dec(&starget->target_busy);
 319
 320	if (unlikely(scsi_host_in_recovery(shost) &&
 321		     (shost->host_failed || shost->host_eh_scheduled))) {
 322		spin_lock_irqsave(shost->host_lock, flags);
 323		scsi_eh_wakeup(shost);
 324		spin_unlock_irqrestore(shost->host_lock, flags);
 325	}
 326
 327	atomic_dec(&sdev->device_busy);
 328}
 329
 330static void scsi_kick_queue(struct request_queue *q)
 
 
 
 
 331{
 332	if (q->mq_ops)
 333		blk_mq_start_hw_queues(q);
 334	else
 335		blk_run_queue(q);
 336}
 337
 338/*
 339 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 340 * and call blk_run_queue for all the scsi_devices on the target -
 341 * including current_sdev first.
 342 *
 343 * Called with *no* scsi locks held.
 344 */
 345static void scsi_single_lun_run(struct scsi_device *current_sdev)
 346{
 347	struct Scsi_Host *shost = current_sdev->host;
 348	struct scsi_device *sdev, *tmp;
 349	struct scsi_target *starget = scsi_target(current_sdev);
 350	unsigned long flags;
 351
 352	spin_lock_irqsave(shost->host_lock, flags);
 353	starget->starget_sdev_user = NULL;
 354	spin_unlock_irqrestore(shost->host_lock, flags);
 355
 356	/*
 357	 * Call blk_run_queue for all LUNs on the target, starting with
 358	 * current_sdev. We race with others (to set starget_sdev_user),
 359	 * but in most cases, we will be first. Ideally, each LU on the
 360	 * target would get some limited time or requests on the target.
 361	 */
 362	scsi_kick_queue(current_sdev->request_queue);
 
 363
 364	spin_lock_irqsave(shost->host_lock, flags);
 365	if (starget->starget_sdev_user)
 366		goto out;
 367	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 368			same_target_siblings) {
 369		if (sdev == current_sdev)
 370			continue;
 371		if (scsi_device_get(sdev))
 372			continue;
 373
 374		spin_unlock_irqrestore(shost->host_lock, flags);
 375		scsi_kick_queue(sdev->request_queue);
 376		spin_lock_irqsave(shost->host_lock, flags);
 377	
 378		scsi_device_put(sdev);
 379	}
 380 out:
 381	spin_unlock_irqrestore(shost->host_lock, flags);
 382}
 383
 384static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 385{
 386	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 387		return true;
 388	if (atomic_read(&sdev->device_blocked) > 0)
 389		return true;
 390	return false;
 391}
 392
 393static inline bool scsi_target_is_busy(struct scsi_target *starget)
 394{
 395	if (starget->can_queue > 0) {
 396		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 397			return true;
 398		if (atomic_read(&starget->target_blocked) > 0)
 399			return true;
 400	}
 401	return false;
 402}
 403
 404static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 405{
 406	if (shost->can_queue > 0 &&
 407	    atomic_read(&shost->host_busy) >= shost->can_queue)
 408		return true;
 409	if (atomic_read(&shost->host_blocked) > 0)
 410		return true;
 411	if (shost->host_self_blocked)
 412		return true;
 413	return false;
 414}
 415
 416static void scsi_starved_list_run(struct Scsi_Host *shost)
 417{
 418	LIST_HEAD(starved_list);
 419	struct scsi_device *sdev;
 420	unsigned long flags;
 421
 422	spin_lock_irqsave(shost->host_lock, flags);
 423	list_splice_init(&shost->starved_list, &starved_list);
 424
 425	while (!list_empty(&starved_list)) {
 426		struct request_queue *slq;
 427
 428		/*
 429		 * As long as shost is accepting commands and we have
 430		 * starved queues, call blk_run_queue. scsi_request_fn
 431		 * drops the queue_lock and can add us back to the
 432		 * starved_list.
 433		 *
 434		 * host_lock protects the starved_list and starved_entry.
 435		 * scsi_request_fn must get the host_lock before checking
 436		 * or modifying starved_list or starved_entry.
 437		 */
 438		if (scsi_host_is_busy(shost))
 439			break;
 440
 441		sdev = list_entry(starved_list.next,
 442				  struct scsi_device, starved_entry);
 443		list_del_init(&sdev->starved_entry);
 444		if (scsi_target_is_busy(scsi_target(sdev))) {
 445			list_move_tail(&sdev->starved_entry,
 446				       &shost->starved_list);
 447			continue;
 448		}
 449
 450		/*
 451		 * Once we drop the host lock, a racing scsi_remove_device()
 452		 * call may remove the sdev from the starved list and destroy
 453		 * it and the queue.  Mitigate by taking a reference to the
 454		 * queue and never touching the sdev again after we drop the
 455		 * host lock.  Note: if __scsi_remove_device() invokes
 456		 * blk_cleanup_queue() before the queue is run from this
 457		 * function then blk_run_queue() will return immediately since
 458		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 459		 */
 460		slq = sdev->request_queue;
 461		if (!blk_get_queue(slq))
 462			continue;
 463		spin_unlock_irqrestore(shost->host_lock, flags);
 464
 465		scsi_kick_queue(slq);
 466		blk_put_queue(slq);
 467
 468		spin_lock_irqsave(shost->host_lock, flags);
 469	}
 470	/* put any unprocessed entries back */
 471	list_splice(&starved_list, &shost->starved_list);
 472	spin_unlock_irqrestore(shost->host_lock, flags);
 473}
 474
 475/*
 476 * Function:   scsi_run_queue()
 477 *
 478 * Purpose:    Select a proper request queue to serve next
 479 *
 480 * Arguments:  q       - last request's queue
 481 *
 482 * Returns:     Nothing
 483 *
 484 * Notes:      The previous command was completely finished, start
 485 *             a new one if possible.
 486 */
 487static void scsi_run_queue(struct request_queue *q)
 488{
 489	struct scsi_device *sdev = q->queuedata;
 490
 491	if (scsi_target(sdev)->single_lun)
 492		scsi_single_lun_run(sdev);
 493	if (!list_empty(&sdev->host->starved_list))
 494		scsi_starved_list_run(sdev->host);
 495
 496	if (q->mq_ops)
 497		blk_mq_start_stopped_hw_queues(q, false);
 498	else
 499		blk_run_queue(q);
 500}
 501
 502void scsi_requeue_run_queue(struct work_struct *work)
 503{
 504	struct scsi_device *sdev;
 505	struct request_queue *q;
 506
 507	sdev = container_of(work, struct scsi_device, requeue_work);
 508	q = sdev->request_queue;
 509	scsi_run_queue(q);
 510}
 511
 512/*
 513 * Function:	scsi_requeue_command()
 514 *
 515 * Purpose:	Handle post-processing of completed commands.
 516 *
 517 * Arguments:	q	- queue to operate on
 518 *		cmd	- command that may need to be requeued.
 519 *
 520 * Returns:	Nothing
 521 *
 522 * Notes:	After command completion, there may be blocks left
 523 *		over which weren't finished by the previous command
 524 *		this can be for a number of reasons - the main one is
 525 *		I/O errors in the middle of the request, in which case
 526 *		we need to request the blocks that come after the bad
 527 *		sector.
 528 * Notes:	Upon return, cmd is a stale pointer.
 529 */
 530static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 531{
 532	struct scsi_device *sdev = cmd->device;
 533	struct request *req = cmd->request;
 534	unsigned long flags;
 535
 536	spin_lock_irqsave(q->queue_lock, flags);
 537	blk_unprep_request(req);
 538	req->special = NULL;
 539	scsi_put_command(cmd);
 540	blk_requeue_request(q, req);
 541	spin_unlock_irqrestore(q->queue_lock, flags);
 542
 543	scsi_run_queue(q);
 544
 545	put_device(&sdev->sdev_gendev);
 546}
 547
 548void scsi_run_host_queues(struct Scsi_Host *shost)
 549{
 550	struct scsi_device *sdev;
 551
 552	shost_for_each_device(sdev, shost)
 553		scsi_run_queue(sdev->request_queue);
 554}
 555
 556static inline unsigned int scsi_sgtable_index(unsigned short nents)
 557{
 558	unsigned int index;
 559
 560	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
 561
 562	if (nents <= 8)
 563		index = 0;
 564	else
 565		index = get_count_order(nents) - 3;
 566
 567	return index;
 568}
 569
 570static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
 571{
 572	struct scsi_host_sg_pool *sgp;
 573
 574	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 575	mempool_free(sgl, sgp->pool);
 576}
 577
 578static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
 579{
 580	struct scsi_host_sg_pool *sgp;
 581
 582	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 583	return mempool_alloc(sgp->pool, gfp_mask);
 584}
 585
 586static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
 587{
 588	if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
 589		return;
 590	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
 591}
 592
 593static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
 594{
 595	struct scatterlist *first_chunk = NULL;
 596	int ret;
 597
 598	BUG_ON(!nents);
 599
 600	if (mq) {
 601		if (nents <= SCSI_MAX_SG_SEGMENTS) {
 602			sdb->table.nents = sdb->table.orig_nents = nents;
 603			sg_init_table(sdb->table.sgl, nents);
 604			return 0;
 605		}
 606		first_chunk = sdb->table.sgl;
 607	}
 608
 609	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
 610			       first_chunk, GFP_ATOMIC, scsi_sg_alloc);
 611	if (unlikely(ret))
 612		scsi_free_sgtable(sdb, mq);
 613	return ret;
 614}
 615
 616static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 617{
 618	if (cmd->request->cmd_type == REQ_TYPE_FS) {
 619		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 620
 621		if (drv->uninit_command)
 622			drv->uninit_command(cmd);
 623	}
 624}
 625
 626static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 627{
 628	if (cmd->sdb.table.nents)
 629		scsi_free_sgtable(&cmd->sdb, true);
 630	if (cmd->request->next_rq && cmd->request->next_rq->special)
 631		scsi_free_sgtable(cmd->request->next_rq->special, true);
 632	if (scsi_prot_sg_count(cmd))
 633		scsi_free_sgtable(cmd->prot_sdb, true);
 
 634}
 
 635
 636static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 637{
 638	struct scsi_device *sdev = cmd->device;
 639	struct Scsi_Host *shost = sdev->host;
 640	unsigned long flags;
 641
 642	scsi_mq_free_sgtables(cmd);
 643	scsi_uninit_cmd(cmd);
 644
 645	if (shost->use_cmd_list) {
 646		BUG_ON(list_empty(&cmd->list));
 647		spin_lock_irqsave(&sdev->list_lock, flags);
 648		list_del_init(&cmd->list);
 649		spin_unlock_irqrestore(&sdev->list_lock, flags);
 650	}
 651}
 652
 653/*
 654 * Function:    scsi_release_buffers()
 655 *
 656 * Purpose:     Free resources allocate for a scsi_command.
 657 *
 658 * Arguments:   cmd	- command that we are bailing.
 659 *
 660 * Lock status: Assumed that no lock is held upon entry.
 661 *
 662 * Returns:     Nothing
 663 *
 664 * Notes:       In the event that an upper level driver rejects a
 665 *		command, we must release resources allocated during
 666 *		the __init_io() function.  Primarily this would involve
 667 *		the scatter-gather table.
 668 */
 669static void scsi_release_buffers(struct scsi_cmnd *cmd)
 670{
 671	if (cmd->sdb.table.nents)
 672		scsi_free_sgtable(&cmd->sdb, false);
 673
 674	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 675
 676	if (scsi_prot_sg_count(cmd))
 677		scsi_free_sgtable(cmd->prot_sdb, false);
 678}
 679
 680static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
 681{
 682	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
 
 
 
 
 
 
 
 683
 684	scsi_free_sgtable(bidi_sdb, false);
 685	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 686	cmd->request->next_rq->special = NULL;
 
 
 
 
 
 
 
 
 687}
 688
 689static bool scsi_end_request(struct request *req, int error,
 690		unsigned int bytes, unsigned int bidi_bytes)
 
 691{
 692	struct scsi_cmnd *cmd = req->special;
 693	struct scsi_device *sdev = cmd->device;
 694	struct request_queue *q = sdev->request_queue;
 695
 696	if (blk_update_request(req, error, bytes))
 697		return true;
 698
 699	/* Bidi request must be completed as a whole */
 700	if (unlikely(bidi_bytes) &&
 701	    blk_update_request(req->next_rq, error, bidi_bytes))
 702		return true;
 703
 704	if (blk_queue_add_random(q))
 705		add_disk_randomness(req->rq_disk);
 706
 707	if (req->mq_ctx) {
 708		/*
 709		 * In the MQ case the command gets freed by __blk_mq_end_request,
 710		 * so we have to do all cleanup that depends on it earlier.
 711		 *
 712		 * We also can't kick the queues from irq context, so we
 713		 * will have to defer it to a workqueue.
 714		 */
 715		scsi_mq_uninit_cmd(cmd);
 716
 717		__blk_mq_end_request(req, error);
 
 
 718
 719		if (scsi_target(sdev)->single_lun ||
 720		    !list_empty(&sdev->host->starved_list))
 721			kblockd_schedule_work(&sdev->requeue_work);
 722		else
 723			blk_mq_start_stopped_hw_queues(q, true);
 724	} else {
 725		unsigned long flags;
 726
 727		if (bidi_bytes)
 728			scsi_release_bidi_buffers(cmd);
 
 
 
 
 
 
 729
 730		spin_lock_irqsave(q->queue_lock, flags);
 731		blk_finish_request(req, error);
 732		spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 733
 734		scsi_release_buffers(cmd);
 735
 736		scsi_put_command(cmd);
 737		scsi_run_queue(q);
 738	}
 739
 740	put_device(&sdev->sdev_gendev);
 741	return false;
 742}
 743
 744/**
 745 * __scsi_error_from_host_byte - translate SCSI error code into errno
 746 * @cmd:	SCSI command (unused)
 747 * @result:	scsi error code
 748 *
 749 * Translate SCSI error code into standard UNIX errno.
 750 * Return values:
 751 * -ENOLINK	temporary transport failure
 752 * -EREMOTEIO	permanent target failure, do not retry
 753 * -EBADE	permanent nexus failure, retry on other path
 754 * -ENOSPC	No write space available
 755 * -ENODATA	Medium error
 756 * -EIO		unspecified I/O error
 757 */
 758static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 759{
 760	int error = 0;
 761
 762	switch(host_byte(result)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763	case DID_TRANSPORT_FAILFAST:
 764		error = -ENOLINK;
 765		break;
 766	case DID_TARGET_FAILURE:
 767		set_host_byte(cmd, DID_OK);
 768		error = -EREMOTEIO;
 769		break;
 770	case DID_NEXUS_FAILURE:
 771		set_host_byte(cmd, DID_OK);
 772		error = -EBADE;
 773		break;
 774	case DID_ALLOC_FAILURE:
 775		set_host_byte(cmd, DID_OK);
 776		error = -ENOSPC;
 777		break;
 778	case DID_MEDIUM_ERROR:
 779		set_host_byte(cmd, DID_OK);
 780		error = -ENODATA;
 781		break;
 782	default:
 783		error = -EIO;
 784		break;
 785	}
 786
 787	return error;
 788}
 789
 790/*
 791 * Function:    scsi_io_completion()
 792 *
 793 * Purpose:     Completion processing for block device I/O requests.
 794 *
 795 * Arguments:   cmd   - command that is finished.
 796 *
 797 * Lock status: Assumed that no lock is held upon entry.
 798 *
 799 * Returns:     Nothing
 800 *
 801 * Notes:       We will finish off the specified number of sectors.  If we
 802 *		are done, the command block will be released and the queue
 803 *		function will be goosed.  If we are not done then we have to
 804 *		figure out what to do next:
 805 *
 806 *		a) We can call scsi_requeue_command().  The request
 807 *		   will be unprepared and put back on the queue.  Then
 808 *		   a new command will be created for it.  This should
 809 *		   be used if we made forward progress, or if we want
 810 *		   to switch from READ(10) to READ(6) for example.
 811 *
 812 *		b) We can call __scsi_queue_insert().  The request will
 813 *		   be put back on the queue and retried using the same
 814 *		   command as before, possibly after a delay.
 
 
 815 *
 816 *		c) We can call scsi_end_request() with -EIO to fail
 817 *		   the remainder of the request.
 818 */
 819void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 820{
 821	int result = cmd->result;
 822	struct request_queue *q = cmd->device->request_queue;
 823	struct request *req = cmd->request;
 824	int error = 0;
 825	struct scsi_sense_hdr sshdr;
 826	bool sense_valid = false;
 827	int sense_deferred = 0, level = 0;
 828	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 829	      ACTION_DELAYED_RETRY} action;
 830	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 831
 832	if (result) {
 833		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 834		if (sense_valid)
 835			sense_deferred = scsi_sense_is_deferred(&sshdr);
 836	}
 837
 838	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 839		if (result) {
 840			if (sense_valid && req->sense) {
 841				/*
 842				 * SG_IO wants current and deferred errors
 843				 */
 844				int len = 8 + cmd->sense_buffer[7];
 845
 846				if (len > SCSI_SENSE_BUFFERSIZE)
 847					len = SCSI_SENSE_BUFFERSIZE;
 848				memcpy(req->sense, cmd->sense_buffer,  len);
 849				req->sense_len = len;
 850			}
 851			if (!sense_deferred)
 852				error = __scsi_error_from_host_byte(cmd, result);
 853		}
 854		/*
 855		 * __scsi_error_from_host_byte may have reset the host_byte
 856		 */
 857		req->errors = cmd->result;
 858
 859		req->resid_len = scsi_get_resid(cmd);
 860
 861		if (scsi_bidi_cmnd(cmd)) {
 862			/*
 863			 * Bidi commands Must be complete as a whole,
 864			 * both sides at once.
 865			 */
 866			req->next_rq->resid_len = scsi_in(cmd)->resid;
 867			if (scsi_end_request(req, 0, blk_rq_bytes(req),
 868					blk_rq_bytes(req->next_rq)))
 869				BUG();
 870			return;
 871		}
 872	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
 873		/*
 874		 * Certain non BLOCK_PC requests are commands that don't
 875		 * actually transfer anything (FLUSH), so cannot use
 876		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 877		 * This sets the error explicitly for the problem case.
 878		 */
 879		error = __scsi_error_from_host_byte(cmd, result);
 880	}
 881
 882	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 883	BUG_ON(blk_bidi_rq(req));
 884
 885	/*
 886	 * Next deal with any sectors which we were able to correctly
 887	 * handle.
 
 
 
 888	 */
 889	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 890		"%u sectors total, %d bytes done.\n",
 891		blk_rq_sectors(req), good_bytes));
 892
 893	/*
 894	 * Recovered errors need reporting, but they're always treated
 895	 * as success, so fiddle the result code here.  For BLOCK_PC
 896	 * we already took a copy of the original into rq->errors which
 897	 * is what gets returned to the user
 898	 */
 899	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 900		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 901		 * print since caller wants ATA registers. Only occurs on
 902		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 903		 */
 904		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 905			;
 906		else if (!(req->cmd_flags & REQ_QUIET))
 907			scsi_print_sense(cmd);
 908		result = 0;
 909		/* BLOCK_PC may have set error */
 910		error = 0;
 911	}
 912
 913	/*
 914	 * If we finished all bytes in the request we are done now.
 915	 */
 916	if (!scsi_end_request(req, error, good_bytes, 0))
 917		return;
 918
 919	/*
 920	 * Kill remainder if no retrys.
 921	 */
 922	if (error && scsi_noretry_cmd(cmd)) {
 923		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
 924			BUG();
 925		return;
 
 
 
 
 
 
 926	}
 
 
 927
 928	/*
 929	 * If there had been no error, but we have leftover bytes in the
 930	 * requeues just queue the command up again.
 931	 */
 932	if (result == 0)
 933		goto requeue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934
 935	error = __scsi_error_from_host_byte(cmd, result);
 936
 937	if (host_byte(result) == DID_RESET) {
 938		/* Third party bus reset or reset for error recovery
 939		 * reasons.  Just retry the command and see what
 940		 * happens.
 941		 */
 942		action = ACTION_RETRY;
 943	} else if (sense_valid && !sense_deferred) {
 944		switch (sshdr.sense_key) {
 945		case UNIT_ATTENTION:
 946			if (cmd->device->removable) {
 947				/* Detected disc change.  Set a bit
 948				 * and quietly refuse further access.
 949				 */
 950				cmd->device->changed = 1;
 951				action = ACTION_FAIL;
 952			} else {
 953				/* Must have been a power glitch, or a
 954				 * bus reset.  Could not have been a
 955				 * media change, so we just retry the
 956				 * command and see what happens.
 957				 */
 958				action = ACTION_RETRY;
 959			}
 960			break;
 961		case ILLEGAL_REQUEST:
 962			/* If we had an ILLEGAL REQUEST returned, then
 963			 * we may have performed an unsupported
 964			 * command.  The only thing this should be
 965			 * would be a ten byte read where only a six
 966			 * byte read was supported.  Also, on a system
 967			 * where READ CAPACITY failed, we may have
 968			 * read past the end of the disk.
 969			 */
 970			if ((cmd->device->use_10_for_rw &&
 971			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 972			    (cmd->cmnd[0] == READ_10 ||
 973			     cmd->cmnd[0] == WRITE_10)) {
 974				/* This will issue a new 6-byte command. */
 975				cmd->device->use_10_for_rw = 0;
 976				action = ACTION_REPREP;
 977			} else if (sshdr.asc == 0x10) /* DIX */ {
 978				action = ACTION_FAIL;
 979				error = -EILSEQ;
 980			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 981			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 982				action = ACTION_FAIL;
 983				error = -EREMOTEIO;
 984			} else
 985				action = ACTION_FAIL;
 986			break;
 987		case ABORTED_COMMAND:
 988			action = ACTION_FAIL;
 989			if (sshdr.asc == 0x10) /* DIF */
 990				error = -EILSEQ;
 991			break;
 992		case NOT_READY:
 993			/* If the device is in the process of becoming
 994			 * ready, or has a temporary blockage, retry.
 995			 */
 996			if (sshdr.asc == 0x04) {
 997				switch (sshdr.ascq) {
 998				case 0x01: /* becoming ready */
 999				case 0x04: /* format in progress */
1000				case 0x05: /* rebuild in progress */
1001				case 0x06: /* recalculation in progress */
1002				case 0x07: /* operation in progress */
1003				case 0x08: /* Long write in progress */
1004				case 0x09: /* self test in progress */
 
1005				case 0x14: /* space allocation in progress */
 
 
 
 
 
1006					action = ACTION_DELAYED_RETRY;
1007					break;
 
 
 
1008				default:
1009					action = ACTION_FAIL;
1010					break;
1011				}
1012			} else
1013				action = ACTION_FAIL;
1014			break;
1015		case VOLUME_OVERFLOW:
1016			/* See SSC3rXX or current. */
1017			action = ACTION_FAIL;
1018			break;
 
 
 
 
 
 
 
 
 
 
 
1019		default:
1020			action = ACTION_FAIL;
1021			break;
1022		}
1023	} else
1024		action = ACTION_FAIL;
1025
1026	if (action != ACTION_FAIL &&
1027	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1028		action = ACTION_FAIL;
1029
1030	switch (action) {
1031	case ACTION_FAIL:
1032		/* Give up and fail the remainder of the request */
1033		if (!(req->cmd_flags & REQ_QUIET)) {
1034			static DEFINE_RATELIMIT_STATE(_rs,
1035					DEFAULT_RATELIMIT_INTERVAL,
1036					DEFAULT_RATELIMIT_BURST);
1037
1038			if (unlikely(scsi_logging_level))
1039				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1040						       SCSI_LOG_MLCOMPLETE_BITS);
 
1041
1042			/*
1043			 * if logging is enabled the failure will be printed
1044			 * in scsi_log_completion(), so avoid duplicate messages
1045			 */
1046			if (!level && __ratelimit(&_rs)) {
1047				scsi_print_result(cmd, NULL, FAILED);
1048				if (driver_byte(result) & DRIVER_SENSE)
1049					scsi_print_sense(cmd);
1050				scsi_print_command(cmd);
1051			}
1052		}
1053		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1054			return;
1055		/*FALLTHRU*/
1056	case ACTION_REPREP:
1057	requeue:
1058		/* Unprep the request and put it back at the head of the queue.
1059		 * A new command will be prepared and issued.
1060		 */
1061		if (q->mq_ops) {
1062			cmd->request->cmd_flags &= ~REQ_DONTPREP;
1063			scsi_mq_uninit_cmd(cmd);
1064			scsi_mq_requeue_cmd(cmd);
1065		} else {
1066			scsi_release_buffers(cmd);
1067			scsi_requeue_command(q, cmd);
1068		}
1069		break;
1070	case ACTION_RETRY:
1071		/* Retry the same command immediately */
1072		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1073		break;
1074	case ACTION_DELAYED_RETRY:
1075		/* Retry the same command after a delay */
1076		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1077		break;
1078	}
1079}
1080
1081static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082{
1083	int count;
 
 
 
 
 
1084
1085	/*
1086	 * If sg table allocation fails, requeue request later.
 
1087	 */
1088	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1089					req->mq_ctx != NULL)))
1090		return BLKPREP_DEFER;
1091
1092	/* 
1093	 * Next, walk the list, and fill in the addresses and sizes of
1094	 * each segment.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1095	 */
1096	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1097	BUG_ON(count > sdb->table.nents);
1098	sdb->table.nents = count;
1099	sdb->length = blk_rq_bytes(req);
1100	return BLKPREP_OK;
1101}
1102
1103/*
1104 * Function:    scsi_init_io()
1105 *
1106 * Purpose:     SCSI I/O initialize function.
 
 
 
 
 
 
 
1107 *
1108 * Arguments:   cmd   - Command descriptor we wish to initialize
 
1109 *
1110 * Returns:     0 on success
1111 *		BLKPREP_DEFER if the failure is retryable
1112 *		BLKPREP_KILL if the failure is fatal
 
1113 */
1114int scsi_init_io(struct scsi_cmnd *cmd)
1115{
1116	struct scsi_device *sdev = cmd->device;
1117	struct request *rq = cmd->request;
1118	bool is_mq = (rq->mq_ctx != NULL);
1119	int error;
1120
1121	BUG_ON(!rq->nr_phys_segments);
1122
1123	error = scsi_init_sgtable(rq, &cmd->sdb);
1124	if (error)
1125		goto err_exit;
1126
1127	if (blk_bidi_rq(rq)) {
1128		if (!rq->q->mq_ops) {
1129			struct scsi_data_buffer *bidi_sdb =
1130				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1131			if (!bidi_sdb) {
1132				error = BLKPREP_DEFER;
1133				goto err_exit;
1134			}
1135
1136			rq->next_rq->special = bidi_sdb;
1137		}
1138
1139		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1140		if (error)
1141			goto err_exit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1142	}
1143
 
 
 
 
1144	if (blk_integrity_rq(rq)) {
1145		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1146		int ivecs, count;
1147
1148		if (prot_sdb == NULL) {
1149			/*
1150			 * This can happen if someone (e.g. multipath)
1151			 * queues a command to a device on an adapter
1152			 * that does not support DIX.
1153			 */
1154			WARN_ON_ONCE(1);
1155			error = BLKPREP_KILL;
1156			goto err_exit;
1157		}
1158
1159		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1160
1161		if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1162			error = BLKPREP_DEFER;
1163			goto err_exit;
 
 
1164		}
1165
1166		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1167						prot_sdb->table.sgl);
1168		BUG_ON(unlikely(count > ivecs));
1169		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1170
1171		cmd->prot_sdb = prot_sdb;
1172		cmd->prot_sdb->table.nents = count;
1173	}
1174
1175	return BLKPREP_OK;
1176err_exit:
1177	if (is_mq) {
1178		scsi_mq_free_sgtables(cmd);
1179	} else {
1180		scsi_release_buffers(cmd);
1181		cmd->request->special = NULL;
1182		scsi_put_command(cmd);
1183		put_device(&sdev->sdev_gendev);
1184	}
1185	return error;
1186}
1187EXPORT_SYMBOL(scsi_init_io);
1188
1189static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1190		struct request *req)
 
 
 
 
 
 
 
1191{
1192	struct scsi_cmnd *cmd;
1193
1194	if (!req->special) {
1195		/* Bail if we can't get a reference to the device */
1196		if (!get_device(&sdev->sdev_gendev))
1197			return NULL;
1198
1199		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1200		if (unlikely(!cmd)) {
1201			put_device(&sdev->sdev_gendev);
1202			return NULL;
1203		}
1204		req->special = cmd;
1205	} else {
1206		cmd = req->special;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1207	}
 
1208
1209	/* pull a tag out of the request if we have one */
1210	cmd->tag = req->tag;
1211	cmd->request = req;
 
1212
1213	cmd->cmnd = req->cmd;
1214	cmd->prot_op = SCSI_PROT_NORMAL;
 
 
1215
1216	return cmd;
 
 
1217}
1218
1219static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
 
1220{
1221	struct scsi_cmnd *cmd = req->special;
1222
1223	/*
1224	 * BLOCK_PC requests may transfer data, in which case they must
1225	 * a bio attached to them.  Or they might contain a SCSI command
1226	 * that does not transfer data, in which case they may optionally
1227	 * submit a request without an attached bio.
1228	 */
1229	if (req->bio) {
1230		int ret = scsi_init_io(cmd);
1231		if (unlikely(ret))
1232			return ret;
1233	} else {
1234		BUG_ON(blk_rq_bytes(req));
1235
1236		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1237	}
1238
1239	cmd->cmd_len = req->cmd_len;
1240	cmd->transfersize = blk_rq_bytes(req);
1241	cmd->allowed = req->retries;
1242	return BLKPREP_OK;
1243}
1244
1245/*
1246 * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1247 * that still need to be translated to SCSI CDBs from the ULD.
1248 */
1249static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1250{
1251	struct scsi_cmnd *cmd = req->special;
1252
1253	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1254		int ret = sdev->handler->prep_fn(sdev, req);
1255		if (ret != BLKPREP_OK)
1256			return ret;
1257	}
1258
1259	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1260	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1261}
1262
1263static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
 
1264{
1265	struct scsi_cmnd *cmd = req->special;
1266
1267	if (!blk_rq_bytes(req))
1268		cmd->sc_data_direction = DMA_NONE;
1269	else if (rq_data_dir(req) == WRITE)
1270		cmd->sc_data_direction = DMA_TO_DEVICE;
1271	else
1272		cmd->sc_data_direction = DMA_FROM_DEVICE;
1273
1274	switch (req->cmd_type) {
1275	case REQ_TYPE_FS:
1276		return scsi_setup_fs_cmnd(sdev, req);
1277	case REQ_TYPE_BLOCK_PC:
1278		return scsi_setup_blk_pc_cmnd(sdev, req);
1279	default:
1280		return BLKPREP_KILL;
1281	}
1282}
1283
1284static int
1285scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1286{
1287	int ret = BLKPREP_OK;
1288
1289	/*
1290	 * If the device is not in running state we will reject some
1291	 * or all commands.
1292	 */
1293	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1294		switch (sdev->sdev_state) {
1295		case SDEV_OFFLINE:
1296		case SDEV_TRANSPORT_OFFLINE:
1297			/*
1298			 * If the device is offline we refuse to process any
1299			 * commands.  The device must be brought online
1300			 * before trying any recovery commands.
1301			 */
1302			sdev_printk(KERN_ERR, sdev,
1303				    "rejecting I/O to offline device\n");
1304			ret = BLKPREP_KILL;
1305			break;
1306		case SDEV_DEL:
1307			/*
1308			 * If the device is fully deleted, we refuse to
1309			 * process any commands as well.
1310			 */
1311			sdev_printk(KERN_ERR, sdev,
1312				    "rejecting I/O to dead device\n");
1313			ret = BLKPREP_KILL;
1314			break;
1315		case SDEV_BLOCK:
1316		case SDEV_CREATED_BLOCK:
1317			ret = BLKPREP_DEFER;
1318			break;
1319		case SDEV_QUIESCE:
1320			/*
1321			 * If the devices is blocked we defer normal commands.
1322			 */
1323			if (!(req->cmd_flags & REQ_PREEMPT))
1324				ret = BLKPREP_DEFER;
1325			break;
1326		default:
1327			/*
1328			 * For any other not fully online state we only allow
1329			 * special commands.  In particular any user initiated
1330			 * command is not allowed.
1331			 */
1332			if (!(req->cmd_flags & REQ_PREEMPT))
1333				ret = BLKPREP_KILL;
1334			break;
1335		}
1336	}
1337	return ret;
1338}
1339
1340static int
1341scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1342{
1343	struct scsi_device *sdev = q->queuedata;
1344
1345	switch (ret) {
1346	case BLKPREP_KILL:
1347	case BLKPREP_INVALID:
1348		req->errors = DID_NO_CONNECT << 16;
1349		/* release the command and kill it */
1350		if (req->special) {
1351			struct scsi_cmnd *cmd = req->special;
1352			scsi_release_buffers(cmd);
1353			scsi_put_command(cmd);
1354			put_device(&sdev->sdev_gendev);
1355			req->special = NULL;
1356		}
1357		break;
1358	case BLKPREP_DEFER:
1359		/*
1360		 * If we defer, the blk_peek_request() returns NULL, but the
1361		 * queue must be restarted, so we schedule a callback to happen
1362		 * shortly.
1363		 */
1364		if (atomic_read(&sdev->device_busy) == 0)
1365			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1366		break;
 
 
 
 
 
 
 
 
 
 
 
1367	default:
1368		req->cmd_flags |= REQ_DONTPREP;
1369	}
1370
1371	return ret;
1372}
1373
1374static int scsi_prep_fn(struct request_queue *q, struct request *req)
1375{
1376	struct scsi_device *sdev = q->queuedata;
1377	struct scsi_cmnd *cmd;
1378	int ret;
1379
1380	ret = scsi_prep_state_check(sdev, req);
1381	if (ret != BLKPREP_OK)
1382		goto out;
1383
1384	cmd = scsi_get_cmd_from_req(sdev, req);
1385	if (unlikely(!cmd)) {
1386		ret = BLKPREP_DEFER;
1387		goto out;
1388	}
1389
1390	ret = scsi_setup_cmnd(sdev, req);
1391out:
1392	return scsi_prep_return(q, req, ret);
1393}
1394
1395static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1396{
1397	scsi_uninit_cmd(req->special);
1398}
1399
1400/*
1401 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1402 * return 0.
1403 *
1404 * Called with the queue_lock held.
1405 */
1406static inline int scsi_dev_queue_ready(struct request_queue *q,
1407				  struct scsi_device *sdev)
1408{
1409	unsigned int busy;
1410
1411	busy = atomic_inc_return(&sdev->device_busy) - 1;
1412	if (atomic_read(&sdev->device_blocked)) {
1413		if (busy)
1414			goto out_dec;
1415
1416		/*
1417		 * unblock after device_blocked iterates to zero
1418		 */
1419		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1420			/*
1421			 * For the MQ case we take care of this in the caller.
1422			 */
1423			if (!q->mq_ops)
1424				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1425			goto out_dec;
1426		}
1427		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1428				   "unblocking device at zero depth\n"));
1429	}
1430
1431	if (busy >= sdev->queue_depth)
1432		goto out_dec;
1433
1434	return 1;
1435out_dec:
1436	atomic_dec(&sdev->device_busy);
1437	return 0;
1438}
1439
1440/*
1441 * scsi_target_queue_ready: checks if there we can send commands to target
1442 * @sdev: scsi device on starget to check.
1443 */
1444static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1445					   struct scsi_device *sdev)
1446{
1447	struct scsi_target *starget = scsi_target(sdev);
1448	unsigned int busy;
1449
1450	if (starget->single_lun) {
1451		spin_lock_irq(shost->host_lock);
1452		if (starget->starget_sdev_user &&
1453		    starget->starget_sdev_user != sdev) {
1454			spin_unlock_irq(shost->host_lock);
1455			return 0;
1456		}
1457		starget->starget_sdev_user = sdev;
1458		spin_unlock_irq(shost->host_lock);
1459	}
1460
1461	if (starget->can_queue <= 0)
1462		return 1;
1463
1464	busy = atomic_inc_return(&starget->target_busy) - 1;
1465	if (atomic_read(&starget->target_blocked) > 0) {
1466		if (busy)
1467			goto starved;
1468
1469		/*
1470		 * unblock after target_blocked iterates to zero
1471		 */
1472		if (atomic_dec_return(&starget->target_blocked) > 0)
1473			goto out_dec;
1474
1475		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1476				 "unblocking target at zero depth\n"));
1477	}
1478
1479	if (busy >= starget->can_queue)
1480		goto starved;
1481
1482	return 1;
1483
1484starved:
1485	spin_lock_irq(shost->host_lock);
1486	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1487	spin_unlock_irq(shost->host_lock);
1488out_dec:
1489	if (starget->can_queue > 0)
1490		atomic_dec(&starget->target_busy);
1491	return 0;
1492}
1493
1494/*
1495 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1496 * return 0. We must end up running the queue again whenever 0 is
1497 * returned, else IO can hang.
1498 */
1499static inline int scsi_host_queue_ready(struct request_queue *q,
1500				   struct Scsi_Host *shost,
1501				   struct scsi_device *sdev)
 
1502{
1503	unsigned int busy;
1504
1505	if (scsi_host_in_recovery(shost))
1506		return 0;
1507
1508	busy = atomic_inc_return(&shost->host_busy) - 1;
1509	if (atomic_read(&shost->host_blocked) > 0) {
1510		if (busy)
1511			goto starved;
1512
1513		/*
1514		 * unblock after host_blocked iterates to zero
1515		 */
1516		if (atomic_dec_return(&shost->host_blocked) > 0)
1517			goto out_dec;
1518
1519		SCSI_LOG_MLQUEUE(3,
1520			shost_printk(KERN_INFO, shost,
1521				     "unblocking host at zero depth\n"));
1522	}
1523
1524	if (shost->can_queue > 0 && busy >= shost->can_queue)
1525		goto starved;
1526	if (shost->host_self_blocked)
1527		goto starved;
1528
1529	/* We're OK to process the command, so we can't be starved */
1530	if (!list_empty(&sdev->starved_entry)) {
1531		spin_lock_irq(shost->host_lock);
1532		if (!list_empty(&sdev->starved_entry))
1533			list_del_init(&sdev->starved_entry);
1534		spin_unlock_irq(shost->host_lock);
1535	}
1536
 
 
1537	return 1;
1538
1539starved:
1540	spin_lock_irq(shost->host_lock);
1541	if (list_empty(&sdev->starved_entry))
1542		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1543	spin_unlock_irq(shost->host_lock);
1544out_dec:
1545	atomic_dec(&shost->host_busy);
1546	return 0;
1547}
1548
1549/*
1550 * Busy state exporting function for request stacking drivers.
1551 *
1552 * For efficiency, no lock is taken to check the busy state of
1553 * shost/starget/sdev, since the returned value is not guaranteed and
1554 * may be changed after request stacking drivers call the function,
1555 * regardless of taking lock or not.
1556 *
1557 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1558 * needs to return 'not busy'. Otherwise, request stacking drivers
1559 * may hold requests forever.
1560 */
1561static int scsi_lld_busy(struct request_queue *q)
1562{
1563	struct scsi_device *sdev = q->queuedata;
1564	struct Scsi_Host *shost;
1565
1566	if (blk_queue_dying(q))
1567		return 0;
1568
1569	shost = sdev->host;
1570
1571	/*
1572	 * Ignore host/starget busy state.
1573	 * Since block layer does not have a concept of fairness across
1574	 * multiple queues, congestion of host/starget needs to be handled
1575	 * in SCSI layer.
1576	 */
1577	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1578		return 1;
1579
1580	return 0;
1581}
1582
1583/*
1584 * Kill a request for a dead device
 
1585 */
1586static void scsi_kill_request(struct request *req, struct request_queue *q)
1587{
1588	struct scsi_cmnd *cmd = req->special;
1589	struct scsi_device *sdev;
1590	struct scsi_target *starget;
1591	struct Scsi_Host *shost;
1592
1593	blk_start_request(req);
1594
1595	scmd_printk(KERN_INFO, cmd, "killing request\n");
1596
1597	sdev = cmd->device;
1598	starget = scsi_target(sdev);
1599	shost = sdev->host;
1600	scsi_init_cmd_errh(cmd);
1601	cmd->result = DID_NO_CONNECT << 16;
1602	atomic_inc(&cmd->device->iorequest_cnt);
1603
1604	/*
1605	 * SCSI request completion path will do scsi_device_unbusy(),
1606	 * bump busy counts.  To bump the counters, we need to dance
1607	 * with the locks as normal issue path does.
1608	 */
1609	atomic_inc(&sdev->device_busy);
1610	atomic_inc(&shost->host_busy);
1611	if (starget->can_queue > 0)
1612		atomic_inc(&starget->target_busy);
1613
1614	blk_complete_request(req);
1615}
1616
1617static void scsi_softirq_done(struct request *rq)
1618{
1619	struct scsi_cmnd *cmd = rq->special;
1620	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1621	int disposition;
1622
1623	INIT_LIST_HEAD(&cmd->eh_entry);
1624
1625	atomic_inc(&cmd->device->iodone_cnt);
1626	if (cmd->result)
1627		atomic_inc(&cmd->device->ioerr_cnt);
1628
1629	disposition = scsi_decide_disposition(cmd);
1630	if (disposition != SUCCESS &&
1631	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1632		sdev_printk(KERN_ERR, cmd->device,
1633			    "timing out command, waited %lus\n",
1634			    wait_for/HZ);
1635		disposition = SUCCESS;
1636	}
1637
1638	scsi_log_completion(cmd, disposition);
1639
1640	switch (disposition) {
1641		case SUCCESS:
1642			scsi_finish_command(cmd);
1643			break;
1644		case NEEDS_RETRY:
1645			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1646			break;
1647		case ADD_TO_MLQUEUE:
1648			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1649			break;
1650		default:
1651			if (!scsi_eh_scmd_add(cmd, 0))
1652				scsi_finish_command(cmd);
1653	}
1654}
1655
1656/**
1657 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1658 * @cmd: command block we are dispatching.
1659 *
1660 * Return: nonzero return request was rejected and device's queue needs to be
1661 * plugged.
1662 */
1663static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1664{
1665	struct Scsi_Host *host = cmd->device->host;
1666	int rtn = 0;
1667
1668	atomic_inc(&cmd->device->iorequest_cnt);
1669
1670	/* check if the device is still usable */
1671	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1672		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1673		 * returns an immediate error upwards, and signals
1674		 * that the device is no longer present */
1675		cmd->result = DID_NO_CONNECT << 16;
1676		goto done;
1677	}
1678
1679	/* Check to see if the scsi lld made this device blocked. */
1680	if (unlikely(scsi_device_blocked(cmd->device))) {
1681		/*
1682		 * in blocked state, the command is just put back on
1683		 * the device queue.  The suspend state has already
1684		 * blocked the queue so future requests should not
1685		 * occur until the device transitions out of the
1686		 * suspend state.
1687		 */
1688		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1689			"queuecommand : device blocked\n"));
 
1690		return SCSI_MLQUEUE_DEVICE_BUSY;
1691	}
1692
1693	/* Store the LUN value in cmnd, if needed. */
1694	if (cmd->device->lun_in_cdb)
1695		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1696			       (cmd->device->lun << 5 & 0xe0);
1697
1698	scsi_log_send(cmd);
1699
1700	/*
1701	 * Before we queue this command, check if the command
1702	 * length exceeds what the host adapter can handle.
1703	 */
1704	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1705		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1706			       "queuecommand : command too long. "
1707			       "cdb_size=%d host->max_cmd_len=%d\n",
1708			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1709		cmd->result = (DID_ABORT << 16);
1710		goto done;
1711	}
1712
1713	if (unlikely(host->shost_state == SHOST_DEL)) {
1714		cmd->result = (DID_NO_CONNECT << 16);
1715		goto done;
1716
1717	}
1718
1719	trace_scsi_dispatch_cmd_start(cmd);
1720	rtn = host->hostt->queuecommand(host, cmd);
1721	if (rtn) {
 
1722		trace_scsi_dispatch_cmd_error(cmd, rtn);
1723		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1724		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1725			rtn = SCSI_MLQUEUE_HOST_BUSY;
1726
1727		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1728			"queuecommand : request rejected\n"));
1729	}
1730
1731	return rtn;
1732 done:
1733	cmd->scsi_done(cmd);
1734	return 0;
1735}
1736
1737/**
1738 * scsi_done - Invoke completion on finished SCSI command.
1739 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1740 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1741 *
1742 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1743 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1744 * calls blk_complete_request() for further processing.
1745 *
1746 * This function is interrupt context safe.
1747 */
1748static void scsi_done(struct scsi_cmnd *cmd)
1749{
1750	trace_scsi_dispatch_cmd_done(cmd);
1751	blk_complete_request(cmd->request);
1752}
1753
1754/*
1755 * Function:    scsi_request_fn()
1756 *
1757 * Purpose:     Main strategy routine for SCSI.
1758 *
1759 * Arguments:   q       - Pointer to actual queue.
1760 *
1761 * Returns:     Nothing
1762 *
1763 * Lock status: IO request lock assumed to be held when called.
1764 */
1765static void scsi_request_fn(struct request_queue *q)
1766	__releases(q->queue_lock)
1767	__acquires(q->queue_lock)
1768{
1769	struct scsi_device *sdev = q->queuedata;
1770	struct Scsi_Host *shost;
1771	struct scsi_cmnd *cmd;
1772	struct request *req;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1773
1774	/*
1775	 * To start with, we keep looping until the queue is empty, or until
1776	 * the host is no longer able to accept any more requests.
1777	 */
1778	shost = sdev->host;
1779	for (;;) {
1780		int rtn;
1781		/*
1782		 * get next queueable request.  We do this early to make sure
1783		 * that the request is fully prepared even if we cannot
1784		 * accept it.
1785		 */
1786		req = blk_peek_request(q);
1787		if (!req)
1788			break;
1789
1790		if (unlikely(!scsi_device_online(sdev))) {
1791			sdev_printk(KERN_ERR, sdev,
1792				    "rejecting I/O to offline device\n");
1793			scsi_kill_request(req, q);
1794			continue;
1795		}
1796
1797		if (!scsi_dev_queue_ready(q, sdev))
1798			break;
1799
1800		/*
1801		 * Remove the request from the request list.
1802		 */
1803		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1804			blk_start_request(req);
1805
1806		spin_unlock_irq(q->queue_lock);
1807		cmd = req->special;
1808		if (unlikely(cmd == NULL)) {
1809			printk(KERN_CRIT "impossible request in %s.\n"
1810					 "please mail a stack trace to "
1811					 "linux-scsi@vger.kernel.org\n",
1812					 __func__);
1813			blk_dump_rq_flags(req, "foo");
1814			BUG();
1815		}
1816
1817		/*
1818		 * We hit this when the driver is using a host wide
1819		 * tag map. For device level tag maps the queue_depth check
1820		 * in the device ready fn would prevent us from trying
1821		 * to allocate a tag. Since the map is a shared host resource
1822		 * we add the dev to the starved list so it eventually gets
1823		 * a run when a tag is freed.
1824		 */
1825		if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1826			spin_lock_irq(shost->host_lock);
1827			if (list_empty(&sdev->starved_entry))
1828				list_add_tail(&sdev->starved_entry,
1829					      &shost->starved_list);
1830			spin_unlock_irq(shost->host_lock);
1831			goto not_ready;
1832		}
1833
1834		if (!scsi_target_queue_ready(shost, sdev))
1835			goto not_ready;
1836
1837		if (!scsi_host_queue_ready(q, shost, sdev))
1838			goto host_not_ready;
1839	
1840		if (sdev->simple_tags)
1841			cmd->flags |= SCMD_TAGGED;
1842		else
1843			cmd->flags &= ~SCMD_TAGGED;
1844
1845		/*
1846		 * Finally, initialize any error handling parameters, and set up
1847		 * the timers for timeouts.
1848		 */
1849		scsi_init_cmd_errh(cmd);
1850
1851		/*
1852		 * Dispatch the command to the low-level driver.
1853		 */
1854		cmd->scsi_done = scsi_done;
1855		rtn = scsi_dispatch_cmd(cmd);
1856		if (rtn) {
1857			scsi_queue_insert(cmd, rtn);
1858			spin_lock_irq(q->queue_lock);
1859			goto out_delay;
1860		}
1861		spin_lock_irq(q->queue_lock);
1862	}
1863
1864	return;
 
 
 
 
1865
1866 host_not_ready:
1867	if (scsi_target(sdev)->can_queue > 0)
1868		atomic_dec(&scsi_target(sdev)->target_busy);
1869 not_ready:
1870	/*
1871	 * lock q, handle tag, requeue req, and decrement device_busy. We
1872	 * must return with queue_lock held.
1873	 *
1874	 * Decrementing device_busy without checking it is OK, as all such
1875	 * cases (host limits or settings) should run the queue at some
1876	 * later time.
1877	 */
1878	spin_lock_irq(q->queue_lock);
1879	blk_requeue_request(q, req);
1880	atomic_dec(&sdev->device_busy);
1881out_delay:
1882	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1883		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1884}
1885
1886static inline int prep_to_mq(int ret)
1887{
1888	switch (ret) {
1889	case BLKPREP_OK:
1890		return 0;
1891	case BLKPREP_DEFER:
1892		return BLK_MQ_RQ_QUEUE_BUSY;
1893	default:
1894		return BLK_MQ_RQ_QUEUE_ERROR;
1895	}
1896}
 
1897
1898static int scsi_mq_prep_fn(struct request *req)
1899{
1900	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1901	struct scsi_device *sdev = req->q->queuedata;
1902	struct Scsi_Host *shost = sdev->host;
1903	unsigned char *sense_buf = cmd->sense_buffer;
1904	struct scatterlist *sg;
1905
1906	memset(cmd, 0, sizeof(struct scsi_cmnd));
1907
1908	req->special = cmd;
1909
1910	cmd->request = req;
1911	cmd->device = sdev;
1912	cmd->sense_buffer = sense_buf;
1913
1914	cmd->tag = req->tag;
1915
1916	cmd->cmnd = req->cmd;
1917	cmd->prot_op = SCSI_PROT_NORMAL;
 
1918
1919	INIT_LIST_HEAD(&cmd->list);
1920	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1921	cmd->jiffies_at_alloc = jiffies;
1922
1923	if (shost->use_cmd_list) {
1924		spin_lock_irq(&sdev->list_lock);
1925		list_add_tail(&cmd->list, &sdev->cmd_list);
1926		spin_unlock_irq(&sdev->list_lock);
1927	}
 
1928
1929	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1930	cmd->sdb.table.sgl = sg;
 
 
1931
1932	if (scsi_host_get_prot(shost)) {
1933		cmd->prot_sdb = (void *)sg +
1934			min_t(unsigned int,
1935			      shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1936			sizeof(struct scatterlist);
1937		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1938
1939		cmd->prot_sdb->table.sgl =
1940			(struct scatterlist *)(cmd->prot_sdb + 1);
1941	}
1942
1943	if (blk_bidi_rq(req)) {
1944		struct request *next_rq = req->next_rq;
1945		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1946
1947		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1948		bidi_sdb->table.sgl =
1949			(struct scatterlist *)(bidi_sdb + 1);
1950
1951		next_rq->special = bidi_sdb;
1952	}
 
 
 
 
 
 
 
 
 
 
 
1953
1954	blk_mq_start_request(req);
 
 
1955
1956	return scsi_setup_cmnd(sdev, req);
1957}
1958
1959static void scsi_mq_done(struct scsi_cmnd *cmd)
1960{
1961	trace_scsi_dispatch_cmd_done(cmd);
1962	blk_mq_complete_request(cmd->request, cmd->request->errors);
 
1963}
1964
1965static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1966			 const struct blk_mq_queue_data *bd)
1967{
1968	struct request *req = bd->rq;
1969	struct request_queue *q = req->q;
1970	struct scsi_device *sdev = q->queuedata;
1971	struct Scsi_Host *shost = sdev->host;
1972	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1973	int ret;
1974	int reason;
1975
1976	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1977	if (ret)
1978		goto out;
1979
1980	ret = BLK_MQ_RQ_QUEUE_BUSY;
1981	if (!get_device(&sdev->sdev_gendev))
1982		goto out;
1983
1984	if (!scsi_dev_queue_ready(q, sdev))
1985		goto out_put_device;
 
 
 
 
 
 
 
 
 
1986	if (!scsi_target_queue_ready(shost, sdev))
1987		goto out_dec_device_busy;
1988	if (!scsi_host_queue_ready(q, shost, sdev))
 
 
 
 
 
1989		goto out_dec_target_busy;
1990
1991
1992	if (!(req->cmd_flags & REQ_DONTPREP)) {
1993		ret = prep_to_mq(scsi_mq_prep_fn(req));
1994		if (ret)
1995			goto out_dec_host_busy;
1996		req->cmd_flags |= REQ_DONTPREP;
1997	} else {
1998		blk_mq_start_request(req);
1999	}
2000
 
2001	if (sdev->simple_tags)
2002		cmd->flags |= SCMD_TAGGED;
2003	else
2004		cmd->flags &= ~SCMD_TAGGED;
2005
2006	scsi_init_cmd_errh(cmd);
2007	cmd->scsi_done = scsi_mq_done;
 
2008
 
2009	reason = scsi_dispatch_cmd(cmd);
2010	if (reason) {
2011		scsi_set_blocked(cmd, reason);
2012		ret = BLK_MQ_RQ_QUEUE_BUSY;
2013		goto out_dec_host_busy;
2014	}
2015
2016	return BLK_MQ_RQ_QUEUE_OK;
2017
2018out_dec_host_busy:
2019	atomic_dec(&shost->host_busy);
2020out_dec_target_busy:
2021	if (scsi_target(sdev)->can_queue > 0)
2022		atomic_dec(&scsi_target(sdev)->target_busy);
2023out_dec_device_busy:
2024	atomic_dec(&sdev->device_busy);
2025out_put_device:
2026	put_device(&sdev->sdev_gendev);
2027out:
2028	switch (ret) {
2029	case BLK_MQ_RQ_QUEUE_BUSY:
2030		blk_mq_stop_hw_queue(hctx);
2031		if (atomic_read(&sdev->device_busy) == 0 &&
2032		    !scsi_device_blocked(sdev))
2033			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
 
 
 
 
 
 
2034		break;
2035	case BLK_MQ_RQ_QUEUE_ERROR:
 
 
 
 
2036		/*
2037		 * Make sure to release all allocated ressources when
2038		 * we hit an error, as we will never see this command
2039		 * again.
2040		 */
2041		if (req->cmd_flags & REQ_DONTPREP)
2042			scsi_mq_uninit_cmd(cmd);
2043		break;
2044	default:
2045		break;
2046	}
2047	return ret;
2048}
2049
2050static enum blk_eh_timer_return scsi_timeout(struct request *req,
2051		bool reserved)
2052{
2053	if (reserved)
2054		return BLK_EH_RESET_TIMER;
2055	return scsi_times_out(req);
2056}
2057
2058static int scsi_init_request(void *data, struct request *rq,
2059		unsigned int hctx_idx, unsigned int request_idx,
2060		unsigned int numa_node)
2061{
 
2062	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
 
 
2063
2064	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2065			numa_node);
2066	if (!cmd->sense_buffer)
2067		return -ENOMEM;
2068	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2069}
2070
2071static void scsi_exit_request(void *data, struct request *rq,
2072		unsigned int hctx_idx, unsigned int request_idx)
2073{
 
2074	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2075
2076	kfree(cmd->sense_buffer);
 
 
2077}
2078
2079static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
 
2080{
2081	struct device *host_dev;
2082	u64 bounce_limit = 0xffffffff;
2083
2084	if (shost->unchecked_isa_dma)
2085		return BLK_BOUNCE_ISA;
2086	/*
2087	 * Platforms with virtual-DMA translation
2088	 * hardware have no practical limit.
2089	 */
2090	if (!PCI_DMA_BUS_IS_PHYS)
2091		return BLK_BOUNCE_ANY;
2092
2093	host_dev = scsi_get_device(shost);
2094	if (host_dev && host_dev->dma_mask)
2095		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
 
 
 
 
2096
2097	return bounce_limit;
 
2098}
2099
2100static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
 
 
 
 
 
 
 
 
 
2101{
2102	struct device *dev = shost->dma_dev;
2103
2104	/*
2105	 * this limit is imposed by hardware restrictions
2106	 */
2107	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2108					SCSI_MAX_SG_CHAIN_SEGMENTS));
2109
2110	if (scsi_host_prot_dma(shost)) {
2111		shost->sg_prot_tablesize =
2112			min_not_zero(shost->sg_prot_tablesize,
2113				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2114		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2115		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2116	}
2117
2118	blk_queue_max_hw_sectors(q, shost->max_sectors);
2119	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2120	blk_queue_segment_boundary(q, shost->dma_boundary);
2121	dma_set_seg_boundary(dev, shost->dma_boundary);
2122
2123	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2124
2125	if (!shost->use_clustering)
2126		q->limits.cluster = 0;
2127
2128	/*
2129	 * set a reasonable default alignment on word boundaries: the
2130	 * host and device may alter it using
2131	 * blk_queue_update_dma_alignment() later.
 
 
2132	 */
2133	blk_queue_dma_alignment(q, 0x03);
2134}
 
2135
2136struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2137					 request_fn_proc *request_fn)
2138{
2139	struct request_queue *q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2140
2141	q = blk_init_queue(request_fn, NULL);
2142	if (!q)
2143		return NULL;
2144	__scsi_init_queue(shost, q);
2145	return q;
2146}
2147EXPORT_SYMBOL(__scsi_alloc_queue);
2148
2149struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2150{
2151	struct request_queue *q;
2152
2153	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2154	if (!q)
2155		return NULL;
2156
2157	blk_queue_prep_rq(q, scsi_prep_fn);
2158	blk_queue_unprep_rq(q, scsi_unprep_fn);
2159	blk_queue_softirq_done(q, scsi_softirq_done);
2160	blk_queue_rq_timed_out(q, scsi_times_out);
2161	blk_queue_lld_busy(q, scsi_lld_busy);
2162	return q;
2163}
2164
2165static struct blk_mq_ops scsi_mq_ops = {
2166	.map_queue	= blk_mq_map_queue,
 
2167	.queue_rq	= scsi_queue_rq,
2168	.complete	= scsi_softirq_done,
 
2169	.timeout	= scsi_timeout,
2170	.init_request	= scsi_init_request,
2171	.exit_request	= scsi_exit_request,
 
 
 
 
 
 
 
 
 
 
2172};
2173
2174struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2175{
2176	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2177	if (IS_ERR(sdev->request_queue))
2178		return NULL;
2179
2180	sdev->request_queue->queuedata = sdev;
2181	__scsi_init_queue(sdev->host, sdev->request_queue);
2182	return sdev->request_queue;
2183}
2184
2185int scsi_mq_setup_tags(struct Scsi_Host *shost)
2186{
2187	unsigned int cmd_size, sgl_size, tbl_size;
 
2188
2189	tbl_size = shost->sg_tablesize;
2190	if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2191		tbl_size = SCSI_MAX_SG_SEGMENTS;
2192	sgl_size = tbl_size * sizeof(struct scatterlist);
2193	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2194	if (scsi_host_get_prot(shost))
2195		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
 
2196
2197	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2198	shost->tag_set.ops = &scsi_mq_ops;
2199	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2200	shost->tag_set.queue_depth = shost->can_queue;
2201	shost->tag_set.cmd_size = cmd_size;
2202	shost->tag_set.numa_node = NUMA_NO_NODE;
2203	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2204	shost->tag_set.flags |=
 
 
 
 
2205		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2206	shost->tag_set.driver_data = shost;
 
 
 
 
2207
2208	return blk_mq_alloc_tag_set(&shost->tag_set);
2209}
2210
2211void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2212{
 
 
 
2213	blk_mq_free_tag_set(&shost->tag_set);
 
2214}
2215
2216/*
2217 * Function:    scsi_block_requests()
2218 *
2219 * Purpose:     Utility function used by low-level drivers to prevent further
2220 *		commands from being queued to the device.
2221 *
2222 * Arguments:   shost       - Host in question
2223 *
2224 * Returns:     Nothing
2225 *
2226 * Lock status: No locks are assumed held.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2227 *
2228 * Notes:       There is no timer nor any other means by which the requests
2229 *		get unblocked other than the low-level driver calling
2230 *		scsi_unblock_requests().
2231 */
2232void scsi_block_requests(struct Scsi_Host *shost)
2233{
2234	shost->host_self_blocked = 1;
2235}
2236EXPORT_SYMBOL(scsi_block_requests);
2237
2238/*
2239 * Function:    scsi_unblock_requests()
2240 *
2241 * Purpose:     Utility function used by low-level drivers to allow further
2242 *		commands from being queued to the device.
2243 *
2244 * Arguments:   shost       - Host in question
2245 *
2246 * Returns:     Nothing
2247 *
2248 * Lock status: No locks are assumed held.
2249 *
2250 * Notes:       There is no timer nor any other means by which the requests
2251 *		get unblocked other than the low-level driver calling
2252 *		scsi_unblock_requests().
2253 *
2254 *		This is done as an API function so that changes to the
2255 *		internals of the scsi mid-layer won't require wholesale
2256 *		changes to drivers that use this feature.
2257 */
2258void scsi_unblock_requests(struct Scsi_Host *shost)
2259{
2260	shost->host_self_blocked = 0;
2261	scsi_run_host_queues(shost);
2262}
2263EXPORT_SYMBOL(scsi_unblock_requests);
2264
2265int __init scsi_init_queue(void)
2266{
2267	int i;
2268
2269	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2270					   sizeof(struct scsi_data_buffer),
2271					   0, 0, NULL);
2272	if (!scsi_sdb_cache) {
2273		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2274		return -ENOMEM;
2275	}
2276
2277	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2278		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2279		int size = sgp->size * sizeof(struct scatterlist);
2280
2281		sgp->slab = kmem_cache_create(sgp->name, size, 0,
2282				SLAB_HWCACHE_ALIGN, NULL);
2283		if (!sgp->slab) {
2284			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2285					sgp->name);
2286			goto cleanup_sdb;
2287		}
2288
2289		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2290						     sgp->slab);
2291		if (!sgp->pool) {
2292			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2293					sgp->name);
2294			goto cleanup_sdb;
2295		}
2296	}
2297
2298	return 0;
2299
2300cleanup_sdb:
2301	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2302		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2303		if (sgp->pool)
2304			mempool_destroy(sgp->pool);
2305		if (sgp->slab)
2306			kmem_cache_destroy(sgp->slab);
2307	}
2308	kmem_cache_destroy(scsi_sdb_cache);
2309
2310	return -ENOMEM;
2311}
2312
2313void scsi_exit_queue(void)
2314{
2315	int i;
2316
2317	kmem_cache_destroy(scsi_sdb_cache);
2318
2319	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2320		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2321		mempool_destroy(sgp->pool);
2322		kmem_cache_destroy(sgp->slab);
2323	}
2324}
2325
2326/**
2327 *	scsi_mode_select - issue a mode select
2328 *	@sdev:	SCSI device to be queried
2329 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2330 *	@sp:	Save page bit (0 == don't save, 1 == save)
2331 *	@modepage: mode page being requested
2332 *	@buffer: request buffer (may not be smaller than eight bytes)
2333 *	@len:	length of request buffer.
2334 *	@timeout: command timeout
2335 *	@retries: number of retries before failing
2336 *	@data: returns a structure abstracting the mode header data
2337 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2338 *		must be SCSI_SENSE_BUFFERSIZE big.
2339 *
2340 *	Returns zero if successful; negative error number or scsi
2341 *	status on error
2342 *
2343 */
2344int
2345scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2346		 unsigned char *buffer, int len, int timeout, int retries,
2347		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2348{
2349	unsigned char cmd[10];
2350	unsigned char *real_buffer;
 
 
 
2351	int ret;
2352
2353	memset(cmd, 0, sizeof(cmd));
2354	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2355
2356	if (sdev->use_10_for_ms) {
2357		if (len > 65535)
 
 
 
 
 
 
 
2358			return -EINVAL;
2359		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2360		if (!real_buffer)
2361			return -ENOMEM;
2362		memcpy(real_buffer + 8, buffer, len);
2363		len += 8;
2364		real_buffer[0] = 0;
2365		real_buffer[1] = 0;
2366		real_buffer[2] = data->medium_type;
2367		real_buffer[3] = data->device_specific;
2368		real_buffer[4] = data->longlba ? 0x01 : 0;
2369		real_buffer[5] = 0;
2370		real_buffer[6] = data->block_descriptor_length >> 8;
2371		real_buffer[7] = data->block_descriptor_length;
2372
2373		cmd[0] = MODE_SELECT_10;
2374		cmd[7] = len >> 8;
2375		cmd[8] = len;
2376	} else {
2377		if (len > 255 || data->block_descriptor_length > 255 ||
2378		    data->longlba)
2379			return -EINVAL;
2380
2381		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2382		if (!real_buffer)
2383			return -ENOMEM;
2384		memcpy(real_buffer + 4, buffer, len);
2385		len += 4;
2386		real_buffer[0] = 0;
2387		real_buffer[1] = data->medium_type;
2388		real_buffer[2] = data->device_specific;
2389		real_buffer[3] = data->block_descriptor_length;
2390		
2391
2392		cmd[0] = MODE_SELECT;
2393		cmd[4] = len;
2394	}
2395
2396	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2397			       sshdr, timeout, retries, NULL);
2398	kfree(real_buffer);
2399	return ret;
2400}
2401EXPORT_SYMBOL_GPL(scsi_mode_select);
2402
2403/**
2404 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2405 *	@sdev:	SCSI device to be queried
2406 *	@dbd:	set if mode sense will allow block descriptors to be returned
2407 *	@modepage: mode page being requested
 
2408 *	@buffer: request buffer (may not be smaller than eight bytes)
2409 *	@len:	length of request buffer.
2410 *	@timeout: command timeout
2411 *	@retries: number of retries before failing
2412 *	@data: returns a structure abstracting the mode header data
2413 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2414 *		must be SCSI_SENSE_BUFFERSIZE big.
2415 *
2416 *	Returns zero if unsuccessful, or the header offset (either 4
2417 *	or 8 depending on whether a six or ten byte command was
2418 *	issued) if successful.
2419 */
2420int
2421scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2422		  unsigned char *buffer, int len, int timeout, int retries,
2423		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2424{
2425	unsigned char cmd[12];
2426	int use_10_for_ms;
2427	int header_length;
2428	int result, retry_count = retries;
2429	struct scsi_sense_hdr my_sshdr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2430
2431	memset(data, 0, sizeof(*data));
2432	memset(&cmd[0], 0, 12);
 
 
2433	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2434	cmd[2] = modepage;
 
2435
2436	/* caller might not be interested in sense, but we need it */
2437	if (!sshdr)
2438		sshdr = &my_sshdr;
2439
2440 retry:
2441	use_10_for_ms = sdev->use_10_for_ms;
2442
2443	if (use_10_for_ms) {
2444		if (len < 8)
2445			len = 8;
2446
2447		cmd[0] = MODE_SENSE_10;
2448		cmd[8] = len;
2449		header_length = 8;
2450	} else {
2451		if (len < 4)
2452			len = 4;
2453
2454		cmd[0] = MODE_SENSE;
2455		cmd[4] = len;
2456		header_length = 4;
2457	}
2458
2459	memset(buffer, 0, len);
2460
2461	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2462				  sshdr, timeout, retries, NULL);
 
 
2463
2464	/* This code looks awful: what it's doing is making sure an
2465	 * ILLEGAL REQUEST sense return identifies the actual command
2466	 * byte as the problem.  MODE_SENSE commands can return
2467	 * ILLEGAL REQUEST if the code page isn't supported */
2468
2469	if (use_10_for_ms && !scsi_status_is_good(result) &&
2470	    (driver_byte(result) & DRIVER_SENSE)) {
2471		if (scsi_sense_valid(sshdr)) {
2472			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2473			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2474				/* 
2475				 * Invalid command operation code
 
 
 
 
2476				 */
2477				sdev->use_10_for_ms = 0;
2478				goto retry;
 
 
 
 
2479			}
2480		}
 
2481	}
2482
2483	if(scsi_status_is_good(result)) {
2484		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2485			     (modepage == 6 || modepage == 8))) {
2486			/* Initio breakage? */
2487			header_length = 0;
2488			data->length = 13;
2489			data->medium_type = 0;
2490			data->device_specific = 0;
2491			data->longlba = 0;
2492			data->block_descriptor_length = 0;
2493		} else if(use_10_for_ms) {
2494			data->length = buffer[0]*256 + buffer[1] + 2;
2495			data->medium_type = buffer[2];
2496			data->device_specific = buffer[3];
2497			data->longlba = buffer[4] & 0x01;
2498			data->block_descriptor_length = buffer[6]*256
2499				+ buffer[7];
2500		} else {
2501			data->length = buffer[0] + 1;
2502			data->medium_type = buffer[1];
2503			data->device_specific = buffer[2];
2504			data->block_descriptor_length = buffer[3];
2505		}
2506		data->header_length = header_length;
2507	} else if ((status_byte(result) == CHECK_CONDITION) &&
2508		   scsi_sense_valid(sshdr) &&
2509		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2510		retry_count--;
2511		goto retry;
2512	}
 
2513
2514	return result;
2515}
2516EXPORT_SYMBOL(scsi_mode_sense);
2517
2518/**
2519 *	scsi_test_unit_ready - test if unit is ready
2520 *	@sdev:	scsi device to change the state of.
2521 *	@timeout: command timeout
2522 *	@retries: number of retries before failing
2523 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2524 *		returning sense. Make sure that this is cleared before passing
2525 *		in.
2526 *
2527 *	Returns zero if unsuccessful or an error if TUR failed.  For
2528 *	removable media, UNIT_ATTENTION sets ->changed flag.
2529 **/
2530int
2531scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2532		     struct scsi_sense_hdr *sshdr_external)
2533{
2534	char cmd[] = {
2535		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2536	};
2537	struct scsi_sense_hdr *sshdr;
 
 
2538	int result;
2539
2540	if (!sshdr_external)
2541		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2542	else
2543		sshdr = sshdr_external;
2544
2545	/* try to eat the UNIT_ATTENTION if there are enough retries */
2546	do {
2547		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2548					  timeout, retries, NULL);
2549		if (sdev->removable && scsi_sense_valid(sshdr) &&
2550		    sshdr->sense_key == UNIT_ATTENTION)
2551			sdev->changed = 1;
2552	} while (scsi_sense_valid(sshdr) &&
2553		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2554
2555	if (!sshdr_external)
2556		kfree(sshdr);
2557	return result;
2558}
2559EXPORT_SYMBOL(scsi_test_unit_ready);
2560
2561/**
2562 *	scsi_device_set_state - Take the given device through the device state model.
2563 *	@sdev:	scsi device to change the state of.
2564 *	@state:	state to change to.
2565 *
2566 *	Returns zero if unsuccessful or an error if the requested 
2567 *	transition is illegal.
2568 */
2569int
2570scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2571{
2572	enum scsi_device_state oldstate = sdev->sdev_state;
2573
2574	if (state == oldstate)
2575		return 0;
2576
2577	switch (state) {
2578	case SDEV_CREATED:
2579		switch (oldstate) {
2580		case SDEV_CREATED_BLOCK:
2581			break;
2582		default:
2583			goto illegal;
2584		}
2585		break;
2586			
2587	case SDEV_RUNNING:
2588		switch (oldstate) {
2589		case SDEV_CREATED:
2590		case SDEV_OFFLINE:
2591		case SDEV_TRANSPORT_OFFLINE:
2592		case SDEV_QUIESCE:
2593		case SDEV_BLOCK:
2594			break;
2595		default:
2596			goto illegal;
2597		}
2598		break;
2599
2600	case SDEV_QUIESCE:
2601		switch (oldstate) {
2602		case SDEV_RUNNING:
2603		case SDEV_OFFLINE:
2604		case SDEV_TRANSPORT_OFFLINE:
2605			break;
2606		default:
2607			goto illegal;
2608		}
2609		break;
2610
2611	case SDEV_OFFLINE:
2612	case SDEV_TRANSPORT_OFFLINE:
2613		switch (oldstate) {
2614		case SDEV_CREATED:
2615		case SDEV_RUNNING:
2616		case SDEV_QUIESCE:
2617		case SDEV_BLOCK:
2618			break;
2619		default:
2620			goto illegal;
2621		}
2622		break;
2623
2624	case SDEV_BLOCK:
2625		switch (oldstate) {
2626		case SDEV_RUNNING:
2627		case SDEV_CREATED_BLOCK:
 
 
2628			break;
2629		default:
2630			goto illegal;
2631		}
2632		break;
2633
2634	case SDEV_CREATED_BLOCK:
2635		switch (oldstate) {
2636		case SDEV_CREATED:
2637			break;
2638		default:
2639			goto illegal;
2640		}
2641		break;
2642
2643	case SDEV_CANCEL:
2644		switch (oldstate) {
2645		case SDEV_CREATED:
2646		case SDEV_RUNNING:
2647		case SDEV_QUIESCE:
2648		case SDEV_OFFLINE:
2649		case SDEV_TRANSPORT_OFFLINE:
2650		case SDEV_BLOCK:
2651			break;
2652		default:
2653			goto illegal;
2654		}
2655		break;
2656
2657	case SDEV_DEL:
2658		switch (oldstate) {
2659		case SDEV_CREATED:
2660		case SDEV_RUNNING:
2661		case SDEV_OFFLINE:
2662		case SDEV_TRANSPORT_OFFLINE:
2663		case SDEV_CANCEL:
 
2664		case SDEV_CREATED_BLOCK:
2665			break;
2666		default:
2667			goto illegal;
2668		}
2669		break;
2670
2671	}
 
2672	sdev->sdev_state = state;
2673	return 0;
2674
2675 illegal:
2676	SCSI_LOG_ERROR_RECOVERY(1,
2677				sdev_printk(KERN_ERR, sdev,
2678					    "Illegal state transition %s->%s",
2679					    scsi_device_state_name(oldstate),
2680					    scsi_device_state_name(state))
2681				);
2682	return -EINVAL;
2683}
2684EXPORT_SYMBOL(scsi_device_set_state);
2685
2686/**
2687 * 	sdev_evt_emit - emit a single SCSI device uevent
2688 *	@sdev: associated SCSI device
2689 *	@evt: event to emit
2690 *
2691 *	Send a single uevent (scsi_event) to the associated scsi_device.
2692 */
2693static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2694{
2695	int idx = 0;
2696	char *envp[3];
2697
2698	switch (evt->evt_type) {
2699	case SDEV_EVT_MEDIA_CHANGE:
2700		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2701		break;
2702	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2703		scsi_rescan_device(&sdev->sdev_gendev);
2704		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2705		break;
2706	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2707		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2708		break;
2709	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2710	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2711		break;
2712	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2713		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2714		break;
2715	case SDEV_EVT_LUN_CHANGE_REPORTED:
2716		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2717		break;
2718	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2719		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2720		break;
 
 
 
2721	default:
2722		/* do nothing */
2723		break;
2724	}
2725
2726	envp[idx++] = NULL;
2727
2728	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2729}
2730
2731/**
2732 * 	sdev_evt_thread - send a uevent for each scsi event
2733 *	@work: work struct for scsi_device
2734 *
2735 *	Dispatch queued events to their associated scsi_device kobjects
2736 *	as uevents.
2737 */
2738void scsi_evt_thread(struct work_struct *work)
2739{
2740	struct scsi_device *sdev;
2741	enum scsi_device_event evt_type;
2742	LIST_HEAD(event_list);
2743
2744	sdev = container_of(work, struct scsi_device, event_work);
2745
2746	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2747		if (test_and_clear_bit(evt_type, sdev->pending_events))
2748			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2749
2750	while (1) {
2751		struct scsi_event *evt;
2752		struct list_head *this, *tmp;
2753		unsigned long flags;
2754
2755		spin_lock_irqsave(&sdev->list_lock, flags);
2756		list_splice_init(&sdev->event_list, &event_list);
2757		spin_unlock_irqrestore(&sdev->list_lock, flags);
2758
2759		if (list_empty(&event_list))
2760			break;
2761
2762		list_for_each_safe(this, tmp, &event_list) {
2763			evt = list_entry(this, struct scsi_event, node);
2764			list_del(&evt->node);
2765			scsi_evt_emit(sdev, evt);
2766			kfree(evt);
2767		}
2768	}
2769}
2770
2771/**
2772 * 	sdev_evt_send - send asserted event to uevent thread
2773 *	@sdev: scsi_device event occurred on
2774 *	@evt: event to send
2775 *
2776 *	Assert scsi device event asynchronously.
2777 */
2778void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2779{
2780	unsigned long flags;
2781
2782#if 0
2783	/* FIXME: currently this check eliminates all media change events
2784	 * for polled devices.  Need to update to discriminate between AN
2785	 * and polled events */
2786	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2787		kfree(evt);
2788		return;
2789	}
2790#endif
2791
2792	spin_lock_irqsave(&sdev->list_lock, flags);
2793	list_add_tail(&evt->node, &sdev->event_list);
2794	schedule_work(&sdev->event_work);
2795	spin_unlock_irqrestore(&sdev->list_lock, flags);
2796}
2797EXPORT_SYMBOL_GPL(sdev_evt_send);
2798
2799/**
2800 * 	sdev_evt_alloc - allocate a new scsi event
2801 *	@evt_type: type of event to allocate
2802 *	@gfpflags: GFP flags for allocation
2803 *
2804 *	Allocates and returns a new scsi_event.
2805 */
2806struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2807				  gfp_t gfpflags)
2808{
2809	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2810	if (!evt)
2811		return NULL;
2812
2813	evt->evt_type = evt_type;
2814	INIT_LIST_HEAD(&evt->node);
2815
2816	/* evt_type-specific initialization, if any */
2817	switch (evt_type) {
2818	case SDEV_EVT_MEDIA_CHANGE:
2819	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2820	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2821	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2822	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2823	case SDEV_EVT_LUN_CHANGE_REPORTED:
2824	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
 
2825	default:
2826		/* do nothing */
2827		break;
2828	}
2829
2830	return evt;
2831}
2832EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2833
2834/**
2835 * 	sdev_evt_send_simple - send asserted event to uevent thread
2836 *	@sdev: scsi_device event occurred on
2837 *	@evt_type: type of event to send
2838 *	@gfpflags: GFP flags for allocation
2839 *
2840 *	Assert scsi device event asynchronously, given an event type.
2841 */
2842void sdev_evt_send_simple(struct scsi_device *sdev,
2843			  enum scsi_device_event evt_type, gfp_t gfpflags)
2844{
2845	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2846	if (!evt) {
2847		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2848			    evt_type);
2849		return;
2850	}
2851
2852	sdev_evt_send(sdev, evt);
2853}
2854EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2855
2856/**
2857 *	scsi_device_quiesce - Block user issued commands.
2858 *	@sdev:	scsi device to quiesce.
2859 *
2860 *	This works by trying to transition to the SDEV_QUIESCE state
2861 *	(which must be a legal transition).  When the device is in this
2862 *	state, only special requests will be accepted, all others will
2863 *	be deferred.  Since special requests may also be requeued requests,
2864 *	a successful return doesn't guarantee the device will be 
2865 *	totally quiescent.
2866 *
2867 *	Must be called with user context, may sleep.
2868 *
2869 *	Returns zero if unsuccessful or an error if not.
2870 */
2871int
2872scsi_device_quiesce(struct scsi_device *sdev)
2873{
2874	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2875	if (err)
2876		return err;
2877
2878	scsi_run_queue(sdev->request_queue);
2879	while (atomic_read(&sdev->device_busy)) {
2880		msleep_interruptible(200);
2881		scsi_run_queue(sdev->request_queue);
2882	}
2883	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2884}
2885EXPORT_SYMBOL(scsi_device_quiesce);
2886
2887/**
2888 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2889 *	@sdev:	scsi device to resume.
2890 *
2891 *	Moves the device from quiesced back to running and restarts the
2892 *	queues.
2893 *
2894 *	Must be called with user context, may sleep.
2895 */
2896void scsi_device_resume(struct scsi_device *sdev)
2897{
2898	/* check if the device state was mutated prior to resume, and if
2899	 * so assume the state is being managed elsewhere (for example
2900	 * device deleted during suspend)
2901	 */
2902	if (sdev->sdev_state != SDEV_QUIESCE ||
2903	    scsi_device_set_state(sdev, SDEV_RUNNING))
2904		return;
2905	scsi_run_queue(sdev->request_queue);
 
 
 
 
2906}
2907EXPORT_SYMBOL(scsi_device_resume);
2908
2909static void
2910device_quiesce_fn(struct scsi_device *sdev, void *data)
2911{
2912	scsi_device_quiesce(sdev);
2913}
2914
2915void
2916scsi_target_quiesce(struct scsi_target *starget)
2917{
2918	starget_for_each_device(starget, NULL, device_quiesce_fn);
2919}
2920EXPORT_SYMBOL(scsi_target_quiesce);
2921
2922static void
2923device_resume_fn(struct scsi_device *sdev, void *data)
2924{
2925	scsi_device_resume(sdev);
2926}
2927
2928void
2929scsi_target_resume(struct scsi_target *starget)
2930{
2931	starget_for_each_device(starget, NULL, device_resume_fn);
2932}
2933EXPORT_SYMBOL(scsi_target_resume);
2934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2935/**
2936 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2937 * @sdev:	device to block
2938 *
2939 * Block request made by scsi lld's to temporarily stop all
2940 * scsi commands on the specified device.  Called from interrupt
2941 * or normal process context.
2942 *
2943 * Returns zero if successful or error if not
2944 *
2945 * Notes:       
2946 *	This routine transitions the device to the SDEV_BLOCK state
2947 *	(which must be a legal transition).  When the device is in this
2948 *	state, all commands are deferred until the scsi lld reenables
2949 *	the device with scsi_device_unblock or device_block_tmo fires.
2950 */
2951int
2952scsi_internal_device_block(struct scsi_device *sdev)
2953{
2954	struct request_queue *q = sdev->request_queue;
2955	unsigned long flags;
2956	int err = 0;
2957
2958	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2959	if (err) {
2960		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2961
2962		if (err)
2963			return err;
2964	}
2965
2966	/* 
2967	 * The device has transitioned to SDEV_BLOCK.  Stop the
2968	 * block layer from calling the midlayer with this device's
2969	 * request queue. 
2970	 */
2971	if (q->mq_ops) {
2972		blk_mq_stop_hw_queues(q);
2973	} else {
2974		spin_lock_irqsave(q->queue_lock, flags);
2975		blk_stop_queue(q);
2976		spin_unlock_irqrestore(q->queue_lock, flags);
2977	}
2978
2979	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2980}
2981EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2982 
2983/**
2984 * scsi_internal_device_unblock - resume a device after a block request
2985 * @sdev:	device to resume
2986 * @new_state:	state to set devices to after unblocking
2987 *
2988 * Called by scsi lld's or the midlayer to restart the device queue
2989 * for the previously suspended scsi device.  Called from interrupt or
2990 * normal process context.
2991 *
2992 * Returns zero if successful or error if not.
2993 *
2994 * Notes:       
2995 *	This routine transitions the device to the SDEV_RUNNING state
2996 *	or to one of the offline states (which must be a legal transition)
2997 *	allowing the midlayer to goose the queue for this device.
2998 */
2999int
3000scsi_internal_device_unblock(struct scsi_device *sdev,
3001			     enum scsi_device_state new_state)
3002{
3003	struct request_queue *q = sdev->request_queue; 
3004	unsigned long flags;
 
 
 
 
 
3005
3006	/*
3007	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3008	 * offlined states and goose the device queue if successful.
3009	 */
3010	if ((sdev->sdev_state == SDEV_BLOCK) ||
3011	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
 
3012		sdev->sdev_state = new_state;
3013	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
 
3014		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3015		    new_state == SDEV_OFFLINE)
3016			sdev->sdev_state = new_state;
3017		else
3018			sdev->sdev_state = SDEV_CREATED;
3019	} else if (sdev->sdev_state != SDEV_CANCEL &&
3020		 sdev->sdev_state != SDEV_OFFLINE)
 
 
 
3021		return -EINVAL;
3022
3023	if (q->mq_ops) {
3024		blk_mq_start_stopped_hw_queues(q, false);
3025	} else {
3026		spin_lock_irqsave(q->queue_lock, flags);
3027		blk_start_queue(q);
3028		spin_unlock_irqrestore(q->queue_lock, flags);
3029	}
 
3030
3031	return 0;
3032}
3033EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3034
3035static void
3036device_block(struct scsi_device *sdev, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3037{
3038	scsi_internal_device_block(sdev);
 
 
 
 
 
 
3039}
3040
3041static int
3042target_block(struct device *dev, void *data)
3043{
3044	if (scsi_is_target_device(dev))
3045		starget_for_each_device(to_scsi_target(dev), NULL,
3046					device_block);
3047	return 0;
3048}
3049
 
 
 
 
 
 
 
 
 
 
 
 
3050void
3051scsi_target_block(struct device *dev)
3052{
3053	if (scsi_is_target_device(dev))
3054		starget_for_each_device(to_scsi_target(dev), NULL,
3055					device_block);
3056	else
3057		device_for_each_child(dev, NULL, target_block);
3058}
3059EXPORT_SYMBOL_GPL(scsi_target_block);
3060
3061static void
3062device_unblock(struct scsi_device *sdev, void *data)
3063{
3064	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3065}
3066
3067static int
3068target_unblock(struct device *dev, void *data)
3069{
3070	if (scsi_is_target_device(dev))
3071		starget_for_each_device(to_scsi_target(dev), data,
3072					device_unblock);
3073	return 0;
3074}
3075
3076void
3077scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3078{
3079	if (scsi_is_target_device(dev))
3080		starget_for_each_device(to_scsi_target(dev), &new_state,
3081					device_unblock);
3082	else
3083		device_for_each_child(dev, &new_state, target_unblock);
3084}
3085EXPORT_SYMBOL_GPL(scsi_target_unblock);
3086
3087/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3088 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3089 * @sgl:	scatter-gather list
3090 * @sg_count:	number of segments in sg
3091 * @offset:	offset in bytes into sg, on return offset into the mapped area
3092 * @len:	bytes to map, on return number of bytes mapped
3093 *
3094 * Returns virtual address of the start of the mapped page
3095 */
3096void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3097			  size_t *offset, size_t *len)
3098{
3099	int i;
3100	size_t sg_len = 0, len_complete = 0;
3101	struct scatterlist *sg;
3102	struct page *page;
3103
3104	WARN_ON(!irqs_disabled());
3105
3106	for_each_sg(sgl, sg, sg_count, i) {
3107		len_complete = sg_len; /* Complete sg-entries */
3108		sg_len += sg->length;
3109		if (sg_len > *offset)
3110			break;
3111	}
3112
3113	if (unlikely(i == sg_count)) {
3114		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3115			"elements %d\n",
3116		       __func__, sg_len, *offset, sg_count);
3117		WARN_ON(1);
3118		return NULL;
3119	}
3120
3121	/* Offset starting from the beginning of first page in this sg-entry */
3122	*offset = *offset - len_complete + sg->offset;
3123
3124	/* Assumption: contiguous pages can be accessed as "page + i" */
3125	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3126	*offset &= ~PAGE_MASK;
3127
3128	/* Bytes in this sg-entry from *offset to the end of the page */
3129	sg_len = PAGE_SIZE - *offset;
3130	if (*len > sg_len)
3131		*len = sg_len;
3132
3133	return kmap_atomic(page);
3134}
3135EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3136
3137/**
3138 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3139 * @virt:	virtual address to be unmapped
3140 */
3141void scsi_kunmap_atomic_sg(void *virt)
3142{
3143	kunmap_atomic(virt);
3144}
3145EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3146
3147void sdev_disable_disk_events(struct scsi_device *sdev)
3148{
3149	atomic_inc(&sdev->disk_events_disable_depth);
3150}
3151EXPORT_SYMBOL(sdev_disable_disk_events);
3152
3153void sdev_enable_disk_events(struct scsi_device *sdev)
3154{
3155	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3156		return;
3157	atomic_dec(&sdev->disk_events_disable_depth);
3158}
3159EXPORT_SYMBOL(sdev_enable_disk_events);
3160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3161/**
3162 * scsi_vpd_lun_id - return a unique device identification
3163 * @sdev: SCSI device
3164 * @id:   buffer for the identification
3165 * @id_len:  length of the buffer
3166 *
3167 * Copies a unique device identification into @id based
3168 * on the information in the VPD page 0x83 of the device.
3169 * The string will be formatted as a SCSI name string.
3170 *
3171 * Returns the length of the identification or error on failure.
3172 * If the identifier is longer than the supplied buffer the actual
3173 * identifier length is returned and the buffer is not zero-padded.
3174 */
3175int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3176{
3177	u8 cur_id_type = 0xff;
3178	u8 cur_id_size = 0;
3179	unsigned char *d, *cur_id_str;
3180	unsigned char __rcu *vpd_pg83;
3181	int id_size = -EINVAL;
3182
3183	rcu_read_lock();
3184	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3185	if (!vpd_pg83) {
3186		rcu_read_unlock();
3187		return -ENXIO;
3188	}
3189
3190	/*
3191	 * Look for the correct descriptor.
3192	 * Order of preference for lun descriptor:
3193	 * - SCSI name string
3194	 * - NAA IEEE Registered Extended
3195	 * - EUI-64 based 16-byte
3196	 * - EUI-64 based 12-byte
3197	 * - NAA IEEE Registered
3198	 * - NAA IEEE Extended
3199	 * as longer descriptors reduce the likelyhood
3200	 * of identification clashes.
3201	 */
3202
3203	/* The id string must be at least 20 bytes + terminating NULL byte */
3204	if (id_len < 21) {
3205		rcu_read_unlock();
3206		return -EINVAL;
3207	}
3208
3209	memset(id, 0, id_len);
3210	d = vpd_pg83 + 4;
3211	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3212		/* Skip designators not referring to the LUN */
3213		if ((d[1] & 0x30) != 0x00)
3214			goto next_desig;
 
 
3215
3216		switch (d[1] & 0xf) {
3217		case 0x2:
3218			/* EUI-64 */
3219			if (cur_id_size > d[3])
3220				break;
3221			/* Prefer NAA IEEE Registered Extended */
3222			if (cur_id_type == 0x3 &&
3223			    cur_id_size == d[3])
3224				break;
 
 
 
 
 
 
 
3225			cur_id_size = d[3];
3226			cur_id_str = d + 4;
3227			cur_id_type = d[1] & 0xf;
3228			switch (cur_id_size) {
3229			case 8:
3230				id_size = snprintf(id, id_len,
3231						   "eui.%8phN",
3232						   cur_id_str);
3233				break;
3234			case 12:
3235				id_size = snprintf(id, id_len,
3236						   "eui.%12phN",
3237						   cur_id_str);
3238				break;
3239			case 16:
3240				id_size = snprintf(id, id_len,
3241						   "eui.%16phN",
3242						   cur_id_str);
3243				break;
3244			default:
3245				cur_id_size = 0;
3246				break;
3247			}
3248			break;
3249		case 0x3:
3250			/* NAA */
3251			if (cur_id_size > d[3])
3252				break;
3253			cur_id_size = d[3];
3254			cur_id_str = d + 4;
3255			cur_id_type = d[1] & 0xf;
3256			switch (cur_id_size) {
3257			case 8:
3258				id_size = snprintf(id, id_len,
3259						   "naa.%8phN",
3260						   cur_id_str);
3261				break;
3262			case 16:
3263				id_size = snprintf(id, id_len,
3264						   "naa.%16phN",
3265						   cur_id_str);
3266				break;
3267			default:
3268				cur_id_size = 0;
3269				break;
3270			}
3271			break;
3272		case 0x8:
3273			/* SCSI name string */
3274			if (cur_id_size + 4 > d[3])
3275				break;
3276			/* Prefer others for truncated descriptor */
3277			if (cur_id_size && d[3] > id_len)
3278				break;
 
 
 
 
3279			cur_id_size = id_size = d[3];
3280			cur_id_str = d + 4;
3281			cur_id_type = d[1] & 0xf;
3282			if (cur_id_size >= id_len)
3283				cur_id_size = id_len - 1;
3284			memcpy(id, cur_id_str, cur_id_size);
3285			/* Decrease priority for truncated descriptor */
3286			if (cur_id_size != id_size)
3287				cur_id_size = 6;
3288			break;
3289		default:
3290			break;
3291		}
3292next_desig:
3293		d += d[3] + 4;
3294	}
3295	rcu_read_unlock();
3296
3297	return id_size;
3298}
3299EXPORT_SYMBOL(scsi_vpd_lun_id);
3300
3301/*
3302 * scsi_vpd_tpg_id - return a target port group identifier
3303 * @sdev: SCSI device
3304 *
3305 * Returns the Target Port Group identifier from the information
3306 * froom VPD page 0x83 of the device.
3307 *
3308 * Returns the identifier or error on failure.
3309 */
3310int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3311{
3312	unsigned char *d;
3313	unsigned char __rcu *vpd_pg83;
3314	int group_id = -EAGAIN, rel_port = -1;
3315
3316	rcu_read_lock();
3317	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3318	if (!vpd_pg83) {
3319		rcu_read_unlock();
3320		return -ENXIO;
3321	}
3322
3323	d = sdev->vpd_pg83 + 4;
3324	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3325		switch (d[1] & 0xf) {
3326		case 0x4:
3327			/* Relative target port */
3328			rel_port = get_unaligned_be16(&d[6]);
3329			break;
3330		case 0x5:
3331			/* Target port group */
3332			group_id = get_unaligned_be16(&d[6]);
3333			break;
3334		default:
3335			break;
3336		}
3337		d += d[3] + 4;
3338	}
3339	rcu_read_unlock();
3340
3341	if (group_id >= 0 && rel_id && rel_port != -1)
3342		*rel_id = rel_port;
3343
3344	return group_id;
3345}
3346EXPORT_SYMBOL(scsi_vpd_tpg_id);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 1999 Eric Youngdale
   4 * Copyright (C) 2014 Christoph Hellwig
   5 *
   6 *  SCSI queueing library.
   7 *      Initial versions: Eric Youngdale (eric@andante.org).
   8 *                        Based upon conversations with large numbers
   9 *                        of people at Linux Expo.
  10 */
  11
  12#include <linux/bio.h>
  13#include <linux/bitops.h>
  14#include <linux/blkdev.h>
  15#include <linux/completion.h>
  16#include <linux/kernel.h>
  17#include <linux/export.h>
 
 
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
  23#include <linux/blk-mq.h>
  24#include <linux/blk-integrity.h>
  25#include <linux/ratelimit.h>
  26#include <asm/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
  35#include <scsi/scsi_transport.h> /* __scsi_init_queue() */
  36#include <scsi/scsi_dh.h>
  37
  38#include <trace/events/scsi.h>
  39
  40#include "scsi_debugfs.h"
  41#include "scsi_priv.h"
  42#include "scsi_logging.h"
  43
  44/*
  45 * Size of integrity metadata is usually small, 1 inline sg should
  46 * cover normal cases.
  47 */
  48#ifdef CONFIG_ARCH_NO_SG_CHAIN
  49#define  SCSI_INLINE_PROT_SG_CNT  0
  50#define  SCSI_INLINE_SG_CNT  0
  51#else
  52#define  SCSI_INLINE_PROT_SG_CNT  1
  53#define  SCSI_INLINE_SG_CNT  2
  54#endif
  55
  56static struct kmem_cache *scsi_sense_cache;
  57static DEFINE_MUTEX(scsi_sense_cache_mutex);
 
 
 
 
 
 
 
  58
  59static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60
  61int scsi_init_sense_cache(struct Scsi_Host *shost)
  62{
  63	int ret = 0;
  64
  65	mutex_lock(&scsi_sense_cache_mutex);
  66	if (!scsi_sense_cache) {
  67		scsi_sense_cache =
  68			kmem_cache_create_usercopy("scsi_sense_cache",
  69				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
  70				0, SCSI_SENSE_BUFFERSIZE, NULL);
  71		if (!scsi_sense_cache)
  72			ret = -ENOMEM;
  73	}
  74	mutex_unlock(&scsi_sense_cache_mutex);
  75	return ret;
  76}
  77
  78static void
  79scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
  80{
  81	struct Scsi_Host *host = cmd->device->host;
  82	struct scsi_device *device = cmd->device;
  83	struct scsi_target *starget = scsi_target(device);
  84
  85	/*
  86	 * Set the appropriate busy bit for the device/host.
  87	 *
  88	 * If the host/device isn't busy, assume that something actually
  89	 * completed, and that we should be able to queue a command now.
  90	 *
  91	 * Note that the prior mid-layer assumption that any host could
  92	 * always queue at least one command is now broken.  The mid-layer
  93	 * will implement a user specifiable stall (see
  94	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
  95	 * if a command is requeued with no other commands outstanding
  96	 * either for the device or for the host.
  97	 */
  98	switch (reason) {
  99	case SCSI_MLQUEUE_HOST_BUSY:
 100		atomic_set(&host->host_blocked, host->max_host_blocked);
 101		break;
 102	case SCSI_MLQUEUE_DEVICE_BUSY:
 103	case SCSI_MLQUEUE_EH_RETRY:
 104		atomic_set(&device->device_blocked,
 105			   device->max_device_blocked);
 106		break;
 107	case SCSI_MLQUEUE_TARGET_BUSY:
 108		atomic_set(&starget->target_blocked,
 109			   starget->max_target_blocked);
 110		break;
 111	}
 112}
 113
 114static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
 115{
 116	struct request *rq = scsi_cmd_to_rq(cmd);
 
 117
 118	if (rq->rq_flags & RQF_DONTPREP) {
 119		rq->rq_flags &= ~RQF_DONTPREP;
 120		scsi_mq_uninit_cmd(cmd);
 121	} else {
 122		WARN_ON_ONCE(true);
 123	}
 124
 125	blk_mq_requeue_request(rq, false);
 126	if (!scsi_host_in_recovery(cmd->device->host))
 127		blk_mq_delay_kick_requeue_list(rq->q, msecs);
 128}
 129
 130/**
 131 * __scsi_queue_insert - private queue insertion
 132 * @cmd: The SCSI command being requeued
 133 * @reason:  The reason for the requeue
 134 * @unbusy: Whether the queue should be unbusied
 135 *
 136 * This is a private queue insertion.  The public interface
 137 * scsi_queue_insert() always assumes the queue should be unbusied
 138 * because it's always called before the completion.  This function is
 139 * for a requeue after completion, which should only occur in this
 140 * file.
 141 */
 142static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
 143{
 144	struct scsi_device *device = cmd->device;
 
 
 145
 146	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 147		"Inserting command %p into mlqueue\n", cmd));
 148
 149	scsi_set_blocked(cmd, reason);
 150
 151	/*
 152	 * Decrement the counters, since these commands are no longer
 153	 * active on the host/device.
 154	 */
 155	if (unbusy)
 156		scsi_device_unbusy(device, cmd);
 157
 158	/*
 159	 * Requeue this command.  It will go before all other commands
 160	 * that are already in the queue. Schedule requeue work under
 161	 * lock such that the kblockd_schedule_work() call happens
 162	 * before blk_mq_destroy_queue() finishes.
 163	 */
 164	cmd->result = 0;
 165
 166	blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
 167			       !scsi_host_in_recovery(cmd->device->host));
 
 
 
 
 
 168}
 169
 170/**
 171 * scsi_queue_insert - Reinsert a command in the queue.
 172 * @cmd:    command that we are adding to queue.
 173 * @reason: why we are inserting command to queue.
 
 
 
 
 
 174 *
 175 * We do this for one of two cases. Either the host is busy and it cannot accept
 176 * any more commands for the time being, or the device returned QUEUE_FULL and
 177 * can accept no more commands.
 178 *
 179 * Context: This could be called either from an interrupt context or a normal
 180 * process context.
 
 
 
 
 181 */
 182void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 183{
 184	__scsi_queue_insert(cmd, reason, true);
 185}
 186
 187void scsi_failures_reset_retries(struct scsi_failures *failures)
 188{
 189	struct scsi_failure *failure;
 190
 191	failures->total_retries = 0;
 192
 193	for (failure = failures->failure_definitions; failure->result;
 194	     failure++)
 195		failure->retries = 0;
 196}
 197EXPORT_SYMBOL_GPL(scsi_failures_reset_retries);
 198
 199/**
 200 * scsi_check_passthrough - Determine if passthrough scsi_cmnd needs a retry.
 201 * @scmd: scsi_cmnd to check.
 202 * @failures: scsi_failures struct that lists failures to check for.
 203 *
 204 * Returns -EAGAIN if the caller should retry else 0.
 205 */
 206static int scsi_check_passthrough(struct scsi_cmnd *scmd,
 207				  struct scsi_failures *failures)
 208{
 209	struct scsi_failure *failure;
 210	struct scsi_sense_hdr sshdr;
 211	enum sam_status status;
 212
 213	if (!failures)
 214		return 0;
 215
 216	for (failure = failures->failure_definitions; failure->result;
 217	     failure++) {
 218		if (failure->result == SCMD_FAILURE_RESULT_ANY)
 219			goto maybe_retry;
 220
 221		if (host_byte(scmd->result) &&
 222		    host_byte(scmd->result) == host_byte(failure->result))
 223			goto maybe_retry;
 224
 225		status = status_byte(scmd->result);
 226		if (!status)
 227			continue;
 228
 229		if (failure->result == SCMD_FAILURE_STAT_ANY &&
 230		    !scsi_status_is_good(scmd->result))
 231			goto maybe_retry;
 232
 233		if (status != status_byte(failure->result))
 234			continue;
 235
 236		if (status_byte(failure->result) != SAM_STAT_CHECK_CONDITION ||
 237		    failure->sense == SCMD_FAILURE_SENSE_ANY)
 238			goto maybe_retry;
 239
 240		if (!scsi_command_normalize_sense(scmd, &sshdr))
 241			return 0;
 242
 243		if (failure->sense != sshdr.sense_key)
 244			continue;
 245
 246		if (failure->asc == SCMD_FAILURE_ASC_ANY)
 247			goto maybe_retry;
 248
 249		if (failure->asc != sshdr.asc)
 250			continue;
 251
 252		if (failure->ascq == SCMD_FAILURE_ASCQ_ANY ||
 253		    failure->ascq == sshdr.ascq)
 254			goto maybe_retry;
 255	}
 256
 257	return 0;
 258
 259maybe_retry:
 260	if (failure->allowed) {
 261		if (failure->allowed == SCMD_FAILURE_NO_LIMIT ||
 262		    ++failure->retries <= failure->allowed)
 263			return -EAGAIN;
 264	} else {
 265		if (failures->total_allowed == SCMD_FAILURE_NO_LIMIT ||
 266		    ++failures->total_retries <= failures->total_allowed)
 267			return -EAGAIN;
 268	}
 269
 270	return 0;
 271}
 272
 273/**
 274 * scsi_execute_cmd - insert request and wait for the result
 275 * @sdev:	scsi_device
 276 * @cmd:	scsi command
 277 * @opf:	block layer request cmd_flags
 278 * @buffer:	data buffer
 279 * @bufflen:	len of buffer
 280 * @timeout:	request timeout in HZ
 281 * @ml_retries:	number of times SCSI midlayer will retry request
 282 * @args:	Optional args. See struct definition for field descriptions
 283 *
 284 * Returns the scsi_cmnd result field if a command was executed, or a negative
 285 * Linux error code if we didn't get that far.
 286 */
 287int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
 288		     blk_opf_t opf, void *buffer, unsigned int bufflen,
 289		     int timeout, int ml_retries,
 290		     const struct scsi_exec_args *args)
 
 
 291{
 292	static const struct scsi_exec_args default_args;
 293	struct request *req;
 294	struct scsi_cmnd *scmd;
 295	int ret;
 296
 297	if (!args)
 298		args = &default_args;
 299	else if (WARN_ON_ONCE(args->sense &&
 300			      args->sense_len != SCSI_SENSE_BUFFERSIZE))
 301		return -EINVAL;
 302
 303retry:
 304	req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
 305	if (IS_ERR(req))
 306		return PTR_ERR(req);
 
 307
 308	if (bufflen) {
 309		ret = blk_rq_map_kern(sdev->request_queue, req,
 310				      buffer, bufflen, GFP_NOIO);
 311		if (ret)
 312			goto out;
 313	}
 314	scmd = blk_mq_rq_to_pdu(req);
 315	scmd->cmd_len = COMMAND_SIZE(cmd[0]);
 316	memcpy(scmd->cmnd, cmd, scmd->cmd_len);
 317	scmd->allowed = ml_retries;
 318	scmd->flags |= args->scmd_flags;
 319	req->timeout = timeout;
 320	req->rq_flags |= RQF_QUIET;
 321
 322	/*
 323	 * head injection *required* here otherwise quiesce won't work
 324	 */
 325	blk_execute_rq(req, true);
 326
 327	if (scsi_check_passthrough(scmd, args->failures) == -EAGAIN) {
 328		blk_mq_free_request(req);
 329		goto retry;
 330	}
 331
 332	/*
 333	 * Some devices (USB mass-storage in particular) may transfer
 334	 * garbage data together with a residue indicating that the data
 335	 * is invalid.  Prevent the garbage from being misinterpreted
 336	 * and prevent security leaks by zeroing out the excess data.
 337	 */
 338	if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
 339		memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
 340
 341	if (args->resid)
 342		*args->resid = scmd->resid_len;
 343	if (args->sense)
 344		memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
 345	if (args->sshdr)
 346		scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
 347				     args->sshdr);
 348
 349	ret = scmd->result;
 
 
 350 out:
 351	blk_mq_free_request(req);
 352
 353	return ret;
 354}
 355EXPORT_SYMBOL(scsi_execute_cmd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356
 357/*
 358 * Wake up the error handler if necessary. Avoid as follows that the error
 359 * handler is not woken up if host in-flight requests number ==
 360 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
 361 * with an RCU read lock in this function to ensure that this function in
 362 * its entirety either finishes before scsi_eh_scmd_add() increases the
 363 * host_failed counter or that it notices the shost state change made by
 364 * scsi_eh_scmd_add().
 
 
 365 */
 366static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
 367{
 368	unsigned long flags;
 369
 370	rcu_read_lock();
 371	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
 372	if (unlikely(scsi_host_in_recovery(shost))) {
 373		unsigned int busy = scsi_host_busy(shost);
 374
 375		spin_lock_irqsave(shost->host_lock, flags);
 376		if (shost->host_failed || shost->host_eh_scheduled)
 377			scsi_eh_wakeup(shost, busy);
 378		spin_unlock_irqrestore(shost->host_lock, flags);
 379	}
 380	rcu_read_unlock();
 381}
 382
 383void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
 384{
 385	struct Scsi_Host *shost = sdev->host;
 386	struct scsi_target *starget = scsi_target(sdev);
 
 387
 388	scsi_dec_host_busy(shost, cmd);
 389
 390	if (starget->can_queue > 0)
 391		atomic_dec(&starget->target_busy);
 392
 393	sbitmap_put(&sdev->budget_map, cmd->budget_token);
 394	cmd->budget_token = -1;
 
 
 
 
 
 
 395}
 396
 397/*
 398 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
 399 * interrupts disabled.
 400 */
 401static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
 402{
 403	struct scsi_device *current_sdev = data;
 404
 405	if (sdev != current_sdev)
 406		blk_mq_run_hw_queues(sdev->request_queue, true);
 407}
 408
 409/*
 410 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 411 * and call blk_run_queue for all the scsi_devices on the target -
 412 * including current_sdev first.
 413 *
 414 * Called with *no* scsi locks held.
 415 */
 416static void scsi_single_lun_run(struct scsi_device *current_sdev)
 417{
 418	struct Scsi_Host *shost = current_sdev->host;
 
 419	struct scsi_target *starget = scsi_target(current_sdev);
 420	unsigned long flags;
 421
 422	spin_lock_irqsave(shost->host_lock, flags);
 423	starget->starget_sdev_user = NULL;
 424	spin_unlock_irqrestore(shost->host_lock, flags);
 425
 426	/*
 427	 * Call blk_run_queue for all LUNs on the target, starting with
 428	 * current_sdev. We race with others (to set starget_sdev_user),
 429	 * but in most cases, we will be first. Ideally, each LU on the
 430	 * target would get some limited time or requests on the target.
 431	 */
 432	blk_mq_run_hw_queues(current_sdev->request_queue,
 433			     shost->queuecommand_may_block);
 434
 435	spin_lock_irqsave(shost->host_lock, flags);
 436	if (!starget->starget_sdev_user)
 437		__starget_for_each_device(starget, current_sdev,
 438					  scsi_kick_sdev_queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 439	spin_unlock_irqrestore(shost->host_lock, flags);
 440}
 441
 442static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 443{
 444	if (scsi_device_busy(sdev) >= sdev->queue_depth)
 445		return true;
 446	if (atomic_read(&sdev->device_blocked) > 0)
 447		return true;
 448	return false;
 449}
 450
 451static inline bool scsi_target_is_busy(struct scsi_target *starget)
 452{
 453	if (starget->can_queue > 0) {
 454		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 455			return true;
 456		if (atomic_read(&starget->target_blocked) > 0)
 457			return true;
 458	}
 459	return false;
 460}
 461
 462static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 463{
 
 
 
 464	if (atomic_read(&shost->host_blocked) > 0)
 465		return true;
 466	if (shost->host_self_blocked)
 467		return true;
 468	return false;
 469}
 470
 471static void scsi_starved_list_run(struct Scsi_Host *shost)
 472{
 473	LIST_HEAD(starved_list);
 474	struct scsi_device *sdev;
 475	unsigned long flags;
 476
 477	spin_lock_irqsave(shost->host_lock, flags);
 478	list_splice_init(&shost->starved_list, &starved_list);
 479
 480	while (!list_empty(&starved_list)) {
 481		struct request_queue *slq;
 482
 483		/*
 484		 * As long as shost is accepting commands and we have
 485		 * starved queues, call blk_run_queue. scsi_request_fn
 486		 * drops the queue_lock and can add us back to the
 487		 * starved_list.
 488		 *
 489		 * host_lock protects the starved_list and starved_entry.
 490		 * scsi_request_fn must get the host_lock before checking
 491		 * or modifying starved_list or starved_entry.
 492		 */
 493		if (scsi_host_is_busy(shost))
 494			break;
 495
 496		sdev = list_entry(starved_list.next,
 497				  struct scsi_device, starved_entry);
 498		list_del_init(&sdev->starved_entry);
 499		if (scsi_target_is_busy(scsi_target(sdev))) {
 500			list_move_tail(&sdev->starved_entry,
 501				       &shost->starved_list);
 502			continue;
 503		}
 504
 505		/*
 506		 * Once we drop the host lock, a racing scsi_remove_device()
 507		 * call may remove the sdev from the starved list and destroy
 508		 * it and the queue.  Mitigate by taking a reference to the
 509		 * queue and never touching the sdev again after we drop the
 510		 * host lock.  Note: if __scsi_remove_device() invokes
 511		 * blk_mq_destroy_queue() before the queue is run from this
 512		 * function then blk_run_queue() will return immediately since
 513		 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
 514		 */
 515		slq = sdev->request_queue;
 516		if (!blk_get_queue(slq))
 517			continue;
 518		spin_unlock_irqrestore(shost->host_lock, flags);
 519
 520		blk_mq_run_hw_queues(slq, false);
 521		blk_put_queue(slq);
 522
 523		spin_lock_irqsave(shost->host_lock, flags);
 524	}
 525	/* put any unprocessed entries back */
 526	list_splice(&starved_list, &shost->starved_list);
 527	spin_unlock_irqrestore(shost->host_lock, flags);
 528}
 529
 530/**
 531 * scsi_run_queue - Select a proper request queue to serve next.
 532 * @q:  last request's queue
 
 
 
 
 
 533 *
 534 * The previous command was completely finished, start a new one if possible.
 
 535 */
 536static void scsi_run_queue(struct request_queue *q)
 537{
 538	struct scsi_device *sdev = q->queuedata;
 539
 540	if (scsi_target(sdev)->single_lun)
 541		scsi_single_lun_run(sdev);
 542	if (!list_empty(&sdev->host->starved_list))
 543		scsi_starved_list_run(sdev->host);
 544
 545	/* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
 546	blk_mq_kick_requeue_list(q);
 
 
 547}
 548
 549void scsi_requeue_run_queue(struct work_struct *work)
 550{
 551	struct scsi_device *sdev;
 552	struct request_queue *q;
 553
 554	sdev = container_of(work, struct scsi_device, requeue_work);
 555	q = sdev->request_queue;
 556	scsi_run_queue(q);
 557}
 558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 559void scsi_run_host_queues(struct Scsi_Host *shost)
 560{
 561	struct scsi_device *sdev;
 562
 563	shost_for_each_device(sdev, shost)
 564		scsi_run_queue(sdev->request_queue);
 565}
 566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 568{
 569	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
 570		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 571
 572		if (drv->uninit_command)
 573			drv->uninit_command(cmd);
 574	}
 575}
 576
 577void scsi_free_sgtables(struct scsi_cmnd *cmd)
 578{
 579	if (cmd->sdb.table.nents)
 580		sg_free_table_chained(&cmd->sdb.table,
 581				SCSI_INLINE_SG_CNT);
 
 582	if (scsi_prot_sg_count(cmd))
 583		sg_free_table_chained(&cmd->prot_sdb->table,
 584				SCSI_INLINE_PROT_SG_CNT);
 585}
 586EXPORT_SYMBOL_GPL(scsi_free_sgtables);
 587
 588static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 589{
 590	scsi_free_sgtables(cmd);
 
 
 
 
 591	scsi_uninit_cmd(cmd);
 
 
 
 
 
 
 
 592}
 593
 594static void scsi_run_queue_async(struct scsi_device *sdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595{
 596	if (scsi_host_in_recovery(sdev->host))
 597		return;
 
 
 
 
 
 
 598
 599	if (scsi_target(sdev)->single_lun ||
 600	    !list_empty(&sdev->host->starved_list)) {
 601		kblockd_schedule_work(&sdev->requeue_work);
 602	} else {
 603		/*
 604		 * smp_mb() present in sbitmap_queue_clear() or implied in
 605		 * .end_io is for ordering writing .device_busy in
 606		 * scsi_device_unbusy() and reading sdev->restarts.
 607		 */
 608		int old = atomic_read(&sdev->restarts);
 609
 610		/*
 611		 * ->restarts has to be kept as non-zero if new budget
 612		 *  contention occurs.
 613		 *
 614		 *  No need to run queue when either another re-run
 615		 *  queue wins in updating ->restarts or a new budget
 616		 *  contention occurs.
 617		 */
 618		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
 619			blk_mq_run_hw_queues(sdev->request_queue, true);
 620	}
 621}
 622
 623/* Returns false when no more bytes to process, true if there are more */
 624static bool scsi_end_request(struct request *req, blk_status_t error,
 625		unsigned int bytes)
 626{
 627	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
 628	struct scsi_device *sdev = cmd->device;
 629	struct request_queue *q = sdev->request_queue;
 630
 631	if (blk_update_request(req, error, bytes))
 632		return true;
 633
 634	// XXX:
 
 
 
 
 635	if (blk_queue_add_random(q))
 636		add_disk_randomness(req->q->disk);
 
 
 
 
 
 
 
 
 
 
 637
 638	WARN_ON_ONCE(!blk_rq_is_passthrough(req) &&
 639		     !(cmd->flags & SCMD_INITIALIZED));
 640	cmd->flags = 0;
 641
 642	/*
 643	 * Calling rcu_barrier() is not necessary here because the
 644	 * SCSI error handler guarantees that the function called by
 645	 * call_rcu() has been called before scsi_end_request() is
 646	 * called.
 647	 */
 648	destroy_rcu_head(&cmd->rcu);
 649
 650	/*
 651	 * In the MQ case the command gets freed by __blk_mq_end_request,
 652	 * so we have to do all cleanup that depends on it earlier.
 653	 *
 654	 * We also can't kick the queues from irq context, so we
 655	 * will have to defer it to a workqueue.
 656	 */
 657	scsi_mq_uninit_cmd(cmd);
 658
 659	/*
 660	 * queue is still alive, so grab the ref for preventing it
 661	 * from being cleaned up during running queue.
 662	 */
 663	percpu_ref_get(&q->q_usage_counter);
 664
 665	__blk_mq_end_request(req, error);
 666
 667	scsi_run_queue_async(sdev);
 
 
 668
 669	percpu_ref_put(&q->q_usage_counter);
 670	return false;
 671}
 672
 673/**
 674 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
 
 675 * @result:	scsi error code
 676 *
 677 * Translate a SCSI result code into a blk_status_t value.
 
 
 
 
 
 
 
 678 */
 679static blk_status_t scsi_result_to_blk_status(int result)
 680{
 681	/*
 682	 * Check the scsi-ml byte first in case we converted a host or status
 683	 * byte.
 684	 */
 685	switch (scsi_ml_byte(result)) {
 686	case SCSIML_STAT_OK:
 687		break;
 688	case SCSIML_STAT_RESV_CONFLICT:
 689		return BLK_STS_RESV_CONFLICT;
 690	case SCSIML_STAT_NOSPC:
 691		return BLK_STS_NOSPC;
 692	case SCSIML_STAT_MED_ERROR:
 693		return BLK_STS_MEDIUM;
 694	case SCSIML_STAT_TGT_FAILURE:
 695		return BLK_STS_TARGET;
 696	case SCSIML_STAT_DL_TIMEOUT:
 697		return BLK_STS_DURATION_LIMIT;
 698	}
 699
 700	switch (host_byte(result)) {
 701	case DID_OK:
 702		if (scsi_status_is_good(result))
 703			return BLK_STS_OK;
 704		return BLK_STS_IOERR;
 705	case DID_TRANSPORT_FAILFAST:
 706	case DID_TRANSPORT_MARGINAL:
 707		return BLK_STS_TRANSPORT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 708	default:
 709		return BLK_STS_IOERR;
 
 710	}
 
 
 711}
 712
 713/**
 714 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
 715 * @rq: request to examine
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716 *
 717 * Description:
 718 *     A request could be merge of IOs which require different failure
 719 *     handling.  This function determines the number of bytes which
 720 *     can be failed from the beginning of the request without
 721 *     crossing into area which need to be retried further.
 722 *
 723 * Return:
 724 *     The number of bytes to fail.
 725 */
 726static unsigned int scsi_rq_err_bytes(const struct request *rq)
 727{
 728	blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
 729	unsigned int bytes = 0;
 730	struct bio *bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 731
 732	if (!(rq->rq_flags & RQF_MIXED_MERGE))
 733		return blk_rq_bytes(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 734
 735	/*
 736	 * Currently the only 'mixing' which can happen is between
 737	 * different fastfail types.  We can safely fail portions
 738	 * which have all the failfast bits that the first one has -
 739	 * the ones which are at least as eager to fail as the first
 740	 * one.
 741	 */
 742	for (bio = rq->bio; bio; bio = bio->bi_next) {
 743		if ((bio->bi_opf & ff) != ff)
 744			break;
 745		bytes += bio->bi_iter.bi_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 746	}
 747
 748	/* this could lead to infinite loop */
 749	BUG_ON(blk_rq_bytes(rq) && !bytes);
 750	return bytes;
 751}
 
 752
 753static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
 754{
 755	struct request *req = scsi_cmd_to_rq(cmd);
 756	unsigned long wait_for;
 757
 758	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
 759		return false;
 760
 761	wait_for = (cmd->allowed + 1) * req->timeout;
 762	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 763		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
 764			    wait_for/HZ);
 765		return true;
 766	}
 767	return false;
 768}
 769
 770/*
 771 * When ALUA transition state is returned, reprep the cmd to
 772 * use the ALUA handler's transition timeout. Delay the reprep
 773 * 1 sec to avoid aggressive retries of the target in that
 774 * state.
 775 */
 776#define ALUA_TRANSITION_REPREP_DELAY	1000
 777
 778/* Helper for scsi_io_completion() when special action required. */
 779static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
 780{
 781	struct request *req = scsi_cmd_to_rq(cmd);
 782	int level = 0;
 783	enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
 784	      ACTION_RETRY, ACTION_DELAYED_RETRY} action;
 785	struct scsi_sense_hdr sshdr;
 786	bool sense_valid;
 787	bool sense_current = true;      /* false implies "deferred sense" */
 788	blk_status_t blk_stat;
 789
 790	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 791	if (sense_valid)
 792		sense_current = !scsi_sense_is_deferred(&sshdr);
 793
 794	blk_stat = scsi_result_to_blk_status(result);
 795
 796	if (host_byte(result) == DID_RESET) {
 797		/* Third party bus reset or reset for error recovery
 798		 * reasons.  Just retry the command and see what
 799		 * happens.
 800		 */
 801		action = ACTION_RETRY;
 802	} else if (sense_valid && sense_current) {
 803		switch (sshdr.sense_key) {
 804		case UNIT_ATTENTION:
 805			if (cmd->device->removable) {
 806				/* Detected disc change.  Set a bit
 807				 * and quietly refuse further access.
 808				 */
 809				cmd->device->changed = 1;
 810				action = ACTION_FAIL;
 811			} else {
 812				/* Must have been a power glitch, or a
 813				 * bus reset.  Could not have been a
 814				 * media change, so we just retry the
 815				 * command and see what happens.
 816				 */
 817				action = ACTION_RETRY;
 818			}
 819			break;
 820		case ILLEGAL_REQUEST:
 821			/* If we had an ILLEGAL REQUEST returned, then
 822			 * we may have performed an unsupported
 823			 * command.  The only thing this should be
 824			 * would be a ten byte read where only a six
 825			 * byte read was supported.  Also, on a system
 826			 * where READ CAPACITY failed, we may have
 827			 * read past the end of the disk.
 828			 */
 829			if ((cmd->device->use_10_for_rw &&
 830			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 831			    (cmd->cmnd[0] == READ_10 ||
 832			     cmd->cmnd[0] == WRITE_10)) {
 833				/* This will issue a new 6-byte command. */
 834				cmd->device->use_10_for_rw = 0;
 835				action = ACTION_REPREP;
 836			} else if (sshdr.asc == 0x10) /* DIX */ {
 837				action = ACTION_FAIL;
 838				blk_stat = BLK_STS_PROTECTION;
 839			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 840			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 841				action = ACTION_FAIL;
 842				blk_stat = BLK_STS_TARGET;
 843			} else
 844				action = ACTION_FAIL;
 845			break;
 846		case ABORTED_COMMAND:
 847			action = ACTION_FAIL;
 848			if (sshdr.asc == 0x10) /* DIF */
 849				blk_stat = BLK_STS_PROTECTION;
 850			break;
 851		case NOT_READY:
 852			/* If the device is in the process of becoming
 853			 * ready, or has a temporary blockage, retry.
 854			 */
 855			if (sshdr.asc == 0x04) {
 856				switch (sshdr.ascq) {
 857				case 0x01: /* becoming ready */
 858				case 0x04: /* format in progress */
 859				case 0x05: /* rebuild in progress */
 860				case 0x06: /* recalculation in progress */
 861				case 0x07: /* operation in progress */
 862				case 0x08: /* Long write in progress */
 863				case 0x09: /* self test in progress */
 864				case 0x11: /* notify (enable spinup) required */
 865				case 0x14: /* space allocation in progress */
 866				case 0x1a: /* start stop unit in progress */
 867				case 0x1b: /* sanitize in progress */
 868				case 0x1d: /* configuration in progress */
 869				case 0x24: /* depopulation in progress */
 870				case 0x25: /* depopulation restore in progress */
 871					action = ACTION_DELAYED_RETRY;
 872					break;
 873				case 0x0a: /* ALUA state transition */
 874					action = ACTION_DELAYED_REPREP;
 875					break;
 876				default:
 877					action = ACTION_FAIL;
 878					break;
 879				}
 880			} else
 881				action = ACTION_FAIL;
 882			break;
 883		case VOLUME_OVERFLOW:
 884			/* See SSC3rXX or current. */
 885			action = ACTION_FAIL;
 886			break;
 887		case DATA_PROTECT:
 888			action = ACTION_FAIL;
 889			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
 890			    (sshdr.asc == 0x55 &&
 891			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
 892				/* Insufficient zone resources */
 893				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
 894			}
 895			break;
 896		case COMPLETED:
 897			fallthrough;
 898		default:
 899			action = ACTION_FAIL;
 900			break;
 901		}
 902	} else
 903		action = ACTION_FAIL;
 904
 905	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
 
 906		action = ACTION_FAIL;
 907
 908	switch (action) {
 909	case ACTION_FAIL:
 910		/* Give up and fail the remainder of the request */
 911		if (!(req->rq_flags & RQF_QUIET)) {
 912			static DEFINE_RATELIMIT_STATE(_rs,
 913					DEFAULT_RATELIMIT_INTERVAL,
 914					DEFAULT_RATELIMIT_BURST);
 915
 916			if (unlikely(scsi_logging_level))
 917				level =
 918				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
 919						    SCSI_LOG_MLCOMPLETE_BITS);
 920
 921			/*
 922			 * if logging is enabled the failure will be printed
 923			 * in scsi_log_completion(), so avoid duplicate messages
 924			 */
 925			if (!level && __ratelimit(&_rs)) {
 926				scsi_print_result(cmd, NULL, FAILED);
 927				if (sense_valid)
 928					scsi_print_sense(cmd);
 929				scsi_print_command(cmd);
 930			}
 931		}
 932		if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
 933			return;
 934		fallthrough;
 935	case ACTION_REPREP:
 936		scsi_mq_requeue_cmd(cmd, 0);
 937		break;
 938	case ACTION_DELAYED_REPREP:
 939		scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
 
 
 
 
 
 
 
 
 940		break;
 941	case ACTION_RETRY:
 942		/* Retry the same command immediately */
 943		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
 944		break;
 945	case ACTION_DELAYED_RETRY:
 946		/* Retry the same command after a delay */
 947		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
 948		break;
 949	}
 950}
 951
 952/*
 953 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
 954 * new result that may suppress further error checking. Also modifies
 955 * *blk_statp in some cases.
 956 */
 957static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
 958					blk_status_t *blk_statp)
 959{
 960	bool sense_valid;
 961	bool sense_current = true;	/* false implies "deferred sense" */
 962	struct request *req = scsi_cmd_to_rq(cmd);
 963	struct scsi_sense_hdr sshdr;
 964
 965	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 966	if (sense_valid)
 967		sense_current = !scsi_sense_is_deferred(&sshdr);
 968
 969	if (blk_rq_is_passthrough(req)) {
 970		if (sense_valid) {
 971			/*
 972			 * SG_IO wants current and deferred errors
 973			 */
 974			cmd->sense_len = min(8 + cmd->sense_buffer[7],
 975					     SCSI_SENSE_BUFFERSIZE);
 976		}
 977		if (sense_current)
 978			*blk_statp = scsi_result_to_blk_status(result);
 979	} else if (blk_rq_bytes(req) == 0 && sense_current) {
 980		/*
 981		 * Flush commands do not transfers any data, and thus cannot use
 982		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 983		 * This sets *blk_statp explicitly for the problem case.
 984		 */
 985		*blk_statp = scsi_result_to_blk_status(result);
 986	}
 987	/*
 988	 * Recovered errors need reporting, but they're always treated as
 989	 * success, so fiddle the result code here.  For passthrough requests
 990	 * we already took a copy of the original into sreq->result which
 991	 * is what gets returned to the user
 992	 */
 993	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 994		bool do_print = true;
 995		/*
 996		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
 997		 * skip print since caller wants ATA registers. Only occurs
 998		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
 999		 */
1000		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
1001			do_print = false;
1002		else if (req->rq_flags & RQF_QUIET)
1003			do_print = false;
1004		if (do_print)
1005			scsi_print_sense(cmd);
1006		result = 0;
1007		/* for passthrough, *blk_statp may be set */
1008		*blk_statp = BLK_STS_OK;
1009	}
1010	/*
1011	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1012	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1013	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1014	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1015	 * intermediate statuses (both obsolete in SAM-4) as good.
1016	 */
1017	if ((result & 0xff) && scsi_status_is_good(result)) {
1018		result = 0;
1019		*blk_statp = BLK_STS_OK;
1020	}
1021	return result;
1022}
1023
1024/**
1025 * scsi_io_completion - Completion processing for SCSI commands.
1026 * @cmd:	command that is finished.
1027 * @good_bytes:	number of processed bytes.
1028 *
1029 * We will finish off the specified number of sectors. If we are done, the
1030 * command block will be released and the queue function will be goosed. If we
1031 * are not done then we have to figure out what to do next:
1032 *
1033 *   a) We can call scsi_mq_requeue_cmd().  The request will be
1034 *	unprepared and put back on the queue.  Then a new command will
1035 *	be created for it.  This should be used if we made forward
1036 *	progress, or if we want to switch from READ(10) to READ(6) for
1037 *	example.
1038 *
1039 *   b) We can call scsi_io_completion_action().  The request will be
1040 *	put back on the queue and retried using the same command as
1041 *	before, possibly after a delay.
1042 *
1043 *   c) We can call scsi_end_request() with blk_stat other than
1044 *	BLK_STS_OK, to fail the remainder of the request.
1045 */
1046void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1047{
1048	int result = cmd->result;
1049	struct request *req = scsi_cmd_to_rq(cmd);
1050	blk_status_t blk_stat = BLK_STS_OK;
1051
1052	if (unlikely(result))	/* a nz result may or may not be an error */
1053		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1054
1055	/*
1056	 * Next deal with any sectors which we were able to correctly
1057	 * handle.
1058	 */
1059	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1060		"%u sectors total, %d bytes done.\n",
1061		blk_rq_sectors(req), good_bytes));
1062
1063	/*
1064	 * Failed, zero length commands always need to drop down
1065	 * to retry code. Fast path should return in this block.
1066	 */
1067	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1068		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
1069			return; /* no bytes remaining */
1070	}
1071
1072	/* Kill remainder if no retries. */
1073	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1074		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
1075			WARN_ONCE(true,
1076			    "Bytes remaining after failed, no-retry command");
1077		return;
1078	}
1079
1080	/*
1081	 * If there had been no error, but we have leftover bytes in the
1082	 * request just queue the command up again.
1083	 */
1084	if (likely(result == 0))
1085		scsi_mq_requeue_cmd(cmd, 0);
1086	else
1087		scsi_io_completion_action(cmd, result);
 
1088}
1089
1090static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
1091		struct request *rq)
1092{
1093	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1094	       !op_is_write(req_op(rq)) &&
1095	       sdev->host->hostt->dma_need_drain(rq);
1096}
1097
1098/**
1099 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1100 * @cmd: SCSI command data structure to initialize.
1101 *
1102 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1103 * for @cmd.
1104 *
1105 * Returns:
1106 * * BLK_STS_OK       - on success
1107 * * BLK_STS_RESOURCE - if the failure is retryable
1108 * * BLK_STS_IOERR    - if the failure is fatal
1109 */
1110blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1111{
1112	struct scsi_device *sdev = cmd->device;
1113	struct request *rq = scsi_cmd_to_rq(cmd);
1114	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1115	struct scatterlist *last_sg = NULL;
1116	blk_status_t ret;
1117	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1118	int count;
 
 
 
 
 
 
 
 
 
 
 
 
1119
1120	if (WARN_ON_ONCE(!nr_segs))
1121		return BLK_STS_IOERR;
1122
1123	/*
1124	 * Make sure there is space for the drain.  The driver must adjust
1125	 * max_hw_segments to be prepared for this.
1126	 */
1127	if (need_drain)
1128		nr_segs++;
1129
1130	/*
1131	 * If sg table allocation fails, requeue request later.
1132	 */
1133	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1134			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1135		return BLK_STS_RESOURCE;
1136
1137	/*
1138	 * Next, walk the list, and fill in the addresses and sizes of
1139	 * each segment.
1140	 */
1141	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1142
1143	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1144		unsigned int pad_len =
1145			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1146
1147		last_sg->length += pad_len;
1148		cmd->extra_len += pad_len;
1149	}
1150
1151	if (need_drain) {
1152		sg_unmark_end(last_sg);
1153		last_sg = sg_next(last_sg);
1154		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1155		sg_mark_end(last_sg);
1156
1157		cmd->extra_len += sdev->dma_drain_len;
1158		count++;
1159	}
1160
1161	BUG_ON(count > cmd->sdb.table.nents);
1162	cmd->sdb.table.nents = count;
1163	cmd->sdb.length = blk_rq_payload_bytes(rq);
1164
1165	if (blk_integrity_rq(rq)) {
1166		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1167		int ivecs;
1168
1169		if (WARN_ON_ONCE(!prot_sdb)) {
1170			/*
1171			 * This can happen if someone (e.g. multipath)
1172			 * queues a command to a device on an adapter
1173			 * that does not support DIX.
1174			 */
1175			ret = BLK_STS_IOERR;
1176			goto out_free_sgtables;
 
1177		}
1178
1179		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1180
1181		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1182				prot_sdb->table.sgl,
1183				SCSI_INLINE_PROT_SG_CNT)) {
1184			ret = BLK_STS_RESOURCE;
1185			goto out_free_sgtables;
1186		}
1187
1188		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1189						prot_sdb->table.sgl);
1190		BUG_ON(count > ivecs);
1191		BUG_ON(count > queue_max_integrity_segments(rq->q));
1192
1193		cmd->prot_sdb = prot_sdb;
1194		cmd->prot_sdb->table.nents = count;
1195	}
1196
1197	return BLK_STS_OK;
1198out_free_sgtables:
1199	scsi_free_sgtables(cmd);
1200	return ret;
 
 
 
 
 
 
 
1201}
1202EXPORT_SYMBOL(scsi_alloc_sgtables);
1203
1204/**
1205 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1206 * @rq: Request associated with the SCSI command to be initialized.
1207 *
1208 * This function initializes the members of struct scsi_cmnd that must be
1209 * initialized before request processing starts and that won't be
1210 * reinitialized if a SCSI command is requeued.
1211 */
1212static void scsi_initialize_rq(struct request *rq)
1213{
1214	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1215
1216	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1217	cmd->cmd_len = MAX_COMMAND_SIZE;
1218	cmd->sense_len = 0;
1219	init_rcu_head(&cmd->rcu);
1220	cmd->jiffies_at_alloc = jiffies;
1221	cmd->retries = 0;
1222}
1223
1224struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1225				   blk_mq_req_flags_t flags)
1226{
1227	struct request *rq;
1228
1229	rq = blk_mq_alloc_request(q, opf, flags);
1230	if (!IS_ERR(rq))
1231		scsi_initialize_rq(rq);
1232	return rq;
1233}
1234EXPORT_SYMBOL_GPL(scsi_alloc_request);
1235
1236/*
1237 * Only called when the request isn't completed by SCSI, and not freed by
1238 * SCSI
1239 */
1240static void scsi_cleanup_rq(struct request *rq)
1241{
1242	if (rq->rq_flags & RQF_DONTPREP) {
1243		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1244		rq->rq_flags &= ~RQF_DONTPREP;
1245	}
1246}
1247
1248/* Called before a request is prepared. See also scsi_mq_prep_fn(). */
1249void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1250{
1251	struct request *rq = scsi_cmd_to_rq(cmd);
1252
1253	if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1254		cmd->flags |= SCMD_INITIALIZED;
1255		scsi_initialize_rq(rq);
1256	}
1257
1258	cmd->device = dev;
1259	INIT_LIST_HEAD(&cmd->eh_entry);
1260	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1261}
1262
1263static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1264		struct request *req)
1265{
1266	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1267
1268	/*
1269	 * Passthrough requests may transfer data, in which case they must
1270	 * a bio attached to them.  Or they might contain a SCSI command
1271	 * that does not transfer data, in which case they may optionally
1272	 * submit a request without an attached bio.
1273	 */
1274	if (req->bio) {
1275		blk_status_t ret = scsi_alloc_sgtables(cmd);
1276		if (unlikely(ret != BLK_STS_OK))
1277			return ret;
1278	} else {
1279		BUG_ON(blk_rq_bytes(req));
1280
1281		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1282	}
1283
 
1284	cmd->transfersize = blk_rq_bytes(req);
1285	return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286}
1287
1288static blk_status_t
1289scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1290{
1291	switch (sdev->sdev_state) {
1292	case SDEV_CREATED:
1293		return BLK_STS_OK;
1294	case SDEV_OFFLINE:
1295	case SDEV_TRANSPORT_OFFLINE:
1296		/*
1297		 * If the device is offline we refuse to process any
1298		 * commands.  The device must be brought online
1299		 * before trying any recovery commands.
1300		 */
1301		if (!sdev->offline_already) {
1302			sdev->offline_already = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303			sdev_printk(KERN_ERR, sdev,
1304				    "rejecting I/O to offline device\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1305		}
1306		return BLK_STS_IOERR;
1307	case SDEV_DEL:
1308		/*
1309		 * If the device is fully deleted, we refuse to
1310		 * process any commands as well.
 
1311		 */
1312		sdev_printk(KERN_ERR, sdev,
1313			    "rejecting I/O to dead device\n");
1314		return BLK_STS_IOERR;
1315	case SDEV_BLOCK:
1316	case SDEV_CREATED_BLOCK:
1317		return BLK_STS_RESOURCE;
1318	case SDEV_QUIESCE:
1319		/*
1320		 * If the device is blocked we only accept power management
1321		 * commands.
1322		 */
1323		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1324			return BLK_STS_RESOURCE;
1325		return BLK_STS_OK;
1326	default:
1327		/*
1328		 * For any other not fully online state we only allow
1329		 * power management commands.
1330		 */
1331		if (req && !(req->rq_flags & RQF_PM))
1332			return BLK_STS_OFFLINE;
1333		return BLK_STS_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
1334	}
 
 
 
 
 
 
 
 
 
1335}
1336
1337/*
1338 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1339 * and return the token else return -1.
 
 
1340 */
1341static inline int scsi_dev_queue_ready(struct request_queue *q,
1342				  struct scsi_device *sdev)
1343{
1344	int token;
1345
1346	token = sbitmap_get(&sdev->budget_map);
1347	if (token < 0)
1348		return -1;
 
1349
1350	if (!atomic_read(&sdev->device_blocked))
1351		return token;
1352
1353	/*
1354	 * Only unblock if no other commands are pending and
1355	 * if device_blocked has decreased to zero
1356	 */
1357	if (scsi_device_busy(sdev) > 1 ||
1358	    atomic_dec_return(&sdev->device_blocked) > 0) {
1359		sbitmap_put(&sdev->budget_map, token);
1360		return -1;
 
 
1361	}
1362
1363	SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1364			 "unblocking device at zero depth\n"));
1365
1366	return token;
 
 
 
1367}
1368
1369/*
1370 * scsi_target_queue_ready: checks if there we can send commands to target
1371 * @sdev: scsi device on starget to check.
1372 */
1373static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1374					   struct scsi_device *sdev)
1375{
1376	struct scsi_target *starget = scsi_target(sdev);
1377	unsigned int busy;
1378
1379	if (starget->single_lun) {
1380		spin_lock_irq(shost->host_lock);
1381		if (starget->starget_sdev_user &&
1382		    starget->starget_sdev_user != sdev) {
1383			spin_unlock_irq(shost->host_lock);
1384			return 0;
1385		}
1386		starget->starget_sdev_user = sdev;
1387		spin_unlock_irq(shost->host_lock);
1388	}
1389
1390	if (starget->can_queue <= 0)
1391		return 1;
1392
1393	busy = atomic_inc_return(&starget->target_busy) - 1;
1394	if (atomic_read(&starget->target_blocked) > 0) {
1395		if (busy)
1396			goto starved;
1397
1398		/*
1399		 * unblock after target_blocked iterates to zero
1400		 */
1401		if (atomic_dec_return(&starget->target_blocked) > 0)
1402			goto out_dec;
1403
1404		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1405				 "unblocking target at zero depth\n"));
1406	}
1407
1408	if (busy >= starget->can_queue)
1409		goto starved;
1410
1411	return 1;
1412
1413starved:
1414	spin_lock_irq(shost->host_lock);
1415	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1416	spin_unlock_irq(shost->host_lock);
1417out_dec:
1418	if (starget->can_queue > 0)
1419		atomic_dec(&starget->target_busy);
1420	return 0;
1421}
1422
1423/*
1424 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1425 * return 0. We must end up running the queue again whenever 0 is
1426 * returned, else IO can hang.
1427 */
1428static inline int scsi_host_queue_ready(struct request_queue *q,
1429				   struct Scsi_Host *shost,
1430				   struct scsi_device *sdev,
1431				   struct scsi_cmnd *cmd)
1432{
 
 
 
 
 
 
1433	if (atomic_read(&shost->host_blocked) > 0) {
1434		if (scsi_host_busy(shost) > 0)
1435			goto starved;
1436
1437		/*
1438		 * unblock after host_blocked iterates to zero
1439		 */
1440		if (atomic_dec_return(&shost->host_blocked) > 0)
1441			goto out_dec;
1442
1443		SCSI_LOG_MLQUEUE(3,
1444			shost_printk(KERN_INFO, shost,
1445				     "unblocking host at zero depth\n"));
1446	}
1447
 
 
1448	if (shost->host_self_blocked)
1449		goto starved;
1450
1451	/* We're OK to process the command, so we can't be starved */
1452	if (!list_empty(&sdev->starved_entry)) {
1453		spin_lock_irq(shost->host_lock);
1454		if (!list_empty(&sdev->starved_entry))
1455			list_del_init(&sdev->starved_entry);
1456		spin_unlock_irq(shost->host_lock);
1457	}
1458
1459	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1460
1461	return 1;
1462
1463starved:
1464	spin_lock_irq(shost->host_lock);
1465	if (list_empty(&sdev->starved_entry))
1466		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1467	spin_unlock_irq(shost->host_lock);
1468out_dec:
1469	scsi_dec_host_busy(shost, cmd);
1470	return 0;
1471}
1472
1473/*
1474 * Busy state exporting function for request stacking drivers.
1475 *
1476 * For efficiency, no lock is taken to check the busy state of
1477 * shost/starget/sdev, since the returned value is not guaranteed and
1478 * may be changed after request stacking drivers call the function,
1479 * regardless of taking lock or not.
1480 *
1481 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1482 * needs to return 'not busy'. Otherwise, request stacking drivers
1483 * may hold requests forever.
1484 */
1485static bool scsi_mq_lld_busy(struct request_queue *q)
1486{
1487	struct scsi_device *sdev = q->queuedata;
1488	struct Scsi_Host *shost;
1489
1490	if (blk_queue_dying(q))
1491		return false;
1492
1493	shost = sdev->host;
1494
1495	/*
1496	 * Ignore host/starget busy state.
1497	 * Since block layer does not have a concept of fairness across
1498	 * multiple queues, congestion of host/starget needs to be handled
1499	 * in SCSI layer.
1500	 */
1501	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1502		return true;
1503
1504	return false;
1505}
1506
1507/*
1508 * Block layer request completion callback. May be called from interrupt
1509 * context.
1510 */
1511static void scsi_complete(struct request *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512{
1513	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1514	enum scsi_disposition disposition;
 
1515
1516	INIT_LIST_HEAD(&cmd->eh_entry);
1517
1518	atomic_inc(&cmd->device->iodone_cnt);
1519	if (cmd->result)
1520		atomic_inc(&cmd->device->ioerr_cnt);
1521
1522	disposition = scsi_decide_disposition(cmd);
1523	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
 
 
 
 
1524		disposition = SUCCESS;
 
1525
1526	scsi_log_completion(cmd, disposition);
1527
1528	switch (disposition) {
1529	case SUCCESS:
1530		scsi_finish_command(cmd);
1531		break;
1532	case NEEDS_RETRY:
1533		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1534		break;
1535	case ADD_TO_MLQUEUE:
1536		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1537		break;
1538	default:
1539		scsi_eh_scmd_add(cmd);
1540		break;
1541	}
1542}
1543
1544/**
1545 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1546 * @cmd: command block we are dispatching.
1547 *
1548 * Return: nonzero return request was rejected and device's queue needs to be
1549 * plugged.
1550 */
1551static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1552{
1553	struct Scsi_Host *host = cmd->device->host;
1554	int rtn = 0;
1555
1556	atomic_inc(&cmd->device->iorequest_cnt);
1557
1558	/* check if the device is still usable */
1559	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1560		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1561		 * returns an immediate error upwards, and signals
1562		 * that the device is no longer present */
1563		cmd->result = DID_NO_CONNECT << 16;
1564		goto done;
1565	}
1566
1567	/* Check to see if the scsi lld made this device blocked. */
1568	if (unlikely(scsi_device_blocked(cmd->device))) {
1569		/*
1570		 * in blocked state, the command is just put back on
1571		 * the device queue.  The suspend state has already
1572		 * blocked the queue so future requests should not
1573		 * occur until the device transitions out of the
1574		 * suspend state.
1575		 */
1576		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1577			"queuecommand : device blocked\n"));
1578		atomic_dec(&cmd->device->iorequest_cnt);
1579		return SCSI_MLQUEUE_DEVICE_BUSY;
1580	}
1581
1582	/* Store the LUN value in cmnd, if needed. */
1583	if (cmd->device->lun_in_cdb)
1584		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1585			       (cmd->device->lun << 5 & 0xe0);
1586
1587	scsi_log_send(cmd);
1588
1589	/*
1590	 * Before we queue this command, check if the command
1591	 * length exceeds what the host adapter can handle.
1592	 */
1593	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1594		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1595			       "queuecommand : command too long. "
1596			       "cdb_size=%d host->max_cmd_len=%d\n",
1597			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1598		cmd->result = (DID_ABORT << 16);
1599		goto done;
1600	}
1601
1602	if (unlikely(host->shost_state == SHOST_DEL)) {
1603		cmd->result = (DID_NO_CONNECT << 16);
1604		goto done;
1605
1606	}
1607
1608	trace_scsi_dispatch_cmd_start(cmd);
1609	rtn = host->hostt->queuecommand(host, cmd);
1610	if (rtn) {
1611		atomic_dec(&cmd->device->iorequest_cnt);
1612		trace_scsi_dispatch_cmd_error(cmd, rtn);
1613		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1614		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1615			rtn = SCSI_MLQUEUE_HOST_BUSY;
1616
1617		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1618			"queuecommand : request rejected\n"));
1619	}
1620
1621	return rtn;
1622 done:
1623	scsi_done(cmd);
1624	return 0;
1625}
1626
1627/* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
1628static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
 
 
 
 
 
 
 
 
 
 
1629{
1630	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1631		sizeof(struct scatterlist);
1632}
1633
1634static blk_status_t scsi_prepare_cmd(struct request *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
1635{
1636	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1637	struct scsi_device *sdev = req->q->queuedata;
1638	struct Scsi_Host *shost = sdev->host;
1639	bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1640	struct scatterlist *sg;
1641
1642	scsi_init_command(sdev, cmd);
1643
1644	cmd->eh_eflags = 0;
1645	cmd->prot_type = 0;
1646	cmd->prot_flags = 0;
1647	cmd->submitter = 0;
1648	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1649	cmd->underflow = 0;
1650	cmd->transfersize = 0;
1651	cmd->host_scribble = NULL;
1652	cmd->result = 0;
1653	cmd->extra_len = 0;
1654	cmd->state = 0;
1655	if (in_flight)
1656		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1657
1658	/*
1659	 * Only clear the driver-private command data if the LLD does not supply
1660	 * a function to initialize that data.
1661	 */
1662	if (!shost->hostt->init_cmd_priv)
1663		memset(cmd + 1, 0, shost->hostt->cmd_size);
 
 
 
 
 
 
 
 
 
1664
1665	cmd->prot_op = SCSI_PROT_NORMAL;
1666	if (blk_rq_bytes(req))
1667		cmd->sc_data_direction = rq_dma_dir(req);
1668	else
1669		cmd->sc_data_direction = DMA_NONE;
 
1670
1671	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1672	cmd->sdb.table.sgl = sg;
1673
1674	if (scsi_host_get_prot(shost)) {
1675		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
 
 
 
1676
1677		cmd->prot_sdb->table.sgl =
1678			(struct scatterlist *)(cmd->prot_sdb + 1);
1679	}
 
 
 
 
 
 
 
1680
1681	/*
1682	 * Special handling for passthrough commands, which don't go to the ULP
1683	 * at all:
1684	 */
1685	if (blk_rq_is_passthrough(req))
1686		return scsi_setup_scsi_cmnd(sdev, req);
 
 
 
 
 
 
 
 
 
 
1687
1688	if (sdev->handler && sdev->handler->prep_fn) {
1689		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1690
1691		if (ret != BLK_STS_OK)
1692			return ret;
1693	}
 
 
 
 
1694
1695	/* Usually overridden by the ULP */
1696	cmd->allowed = 0;
1697	memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1698	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1699}
1700
1701static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1702{
1703	struct request *req = scsi_cmd_to_rq(cmd);
1704
1705	switch (cmd->submitter) {
1706	case SUBMITTED_BY_BLOCK_LAYER:
1707		break;
1708	case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1709		return scsi_eh_done(cmd);
1710	case SUBMITTED_BY_SCSI_RESET_IOCTL:
1711		return;
1712	}
1713
1714	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1715		return;
1716	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1717		return;
1718	trace_scsi_dispatch_cmd_done(cmd);
1719
1720	if (complete_directly)
1721		blk_mq_complete_request_direct(req, scsi_complete);
1722	else
1723		blk_mq_complete_request(req);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1724}
1725
1726void scsi_done(struct scsi_cmnd *cmd)
1727{
1728	scsi_done_internal(cmd, false);
 
 
 
 
 
 
 
1729}
1730EXPORT_SYMBOL(scsi_done);
1731
1732void scsi_done_direct(struct scsi_cmnd *cmd)
1733{
1734	scsi_done_internal(cmd, true);
1735}
1736EXPORT_SYMBOL(scsi_done_direct);
 
 
 
 
 
 
 
 
 
 
 
 
1737
1738static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1739{
1740	struct scsi_device *sdev = q->queuedata;
1741
1742	sbitmap_put(&sdev->budget_map, budget_token);
1743}
 
1744
1745/*
1746 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1747 * not change behaviour from the previous unplug mechanism, experimentation
1748 * may prove this needs changing.
1749 */
1750#define SCSI_QUEUE_DELAY 3
1751
1752static int scsi_mq_get_budget(struct request_queue *q)
1753{
1754	struct scsi_device *sdev = q->queuedata;
1755	int token = scsi_dev_queue_ready(q, sdev);
1756
1757	if (token >= 0)
1758		return token;
 
 
 
 
1759
1760	atomic_inc(&sdev->restarts);
 
 
1761
1762	/*
1763	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1764	 * .restarts must be incremented before .device_busy is read because the
1765	 * code in scsi_run_queue_async() depends on the order of these operations.
1766	 */
1767	smp_mb__after_atomic();
 
1768
1769	/*
1770	 * If all in-flight requests originated from this LUN are completed
1771	 * before reading .device_busy, sdev->device_busy will be observed as
1772	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1773	 * soon. Otherwise, completion of one of these requests will observe
1774	 * the .restarts flag, and the request queue will be run for handling
1775	 * this request, see scsi_end_request().
1776	 */
1777	if (unlikely(scsi_device_busy(sdev) == 0 &&
1778				!scsi_device_blocked(sdev)))
1779		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1780	return -1;
1781}
1782
1783static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1784{
1785	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1786
1787	cmd->budget_token = token;
1788}
1789
1790static int scsi_mq_get_rq_budget_token(struct request *req)
1791{
1792	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1793
1794	return cmd->budget_token;
1795}
1796
1797static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1798			 const struct blk_mq_queue_data *bd)
1799{
1800	struct request *req = bd->rq;
1801	struct request_queue *q = req->q;
1802	struct scsi_device *sdev = q->queuedata;
1803	struct Scsi_Host *shost = sdev->host;
1804	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1805	blk_status_t ret;
1806	int reason;
1807
1808	WARN_ON_ONCE(cmd->budget_token < 0);
 
 
 
 
 
 
1809
1810	/*
1811	 * If the device is not in running state we will reject some or all
1812	 * commands.
1813	 */
1814	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1815		ret = scsi_device_state_check(sdev, req);
1816		if (ret != BLK_STS_OK)
1817			goto out_put_budget;
1818	}
1819
1820	ret = BLK_STS_RESOURCE;
1821	if (!scsi_target_queue_ready(shost, sdev))
1822		goto out_put_budget;
1823	if (unlikely(scsi_host_in_recovery(shost))) {
1824		if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1825			ret = BLK_STS_OFFLINE;
1826		goto out_dec_target_busy;
1827	}
1828	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1829		goto out_dec_target_busy;
1830
1831	if (!(req->rq_flags & RQF_DONTPREP)) {
1832		ret = scsi_prepare_cmd(req);
1833		if (ret != BLK_STS_OK)
 
1834			goto out_dec_host_busy;
1835		req->rq_flags |= RQF_DONTPREP;
1836	} else {
1837		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1838	}
1839
1840	cmd->flags &= SCMD_PRESERVED_FLAGS;
1841	if (sdev->simple_tags)
1842		cmd->flags |= SCMD_TAGGED;
1843	if (bd->last)
1844		cmd->flags |= SCMD_LAST;
1845
1846	scsi_set_resid(cmd, 0);
1847	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1848	cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1849
1850	blk_mq_start_request(req);
1851	reason = scsi_dispatch_cmd(cmd);
1852	if (reason) {
1853		scsi_set_blocked(cmd, reason);
1854		ret = BLK_STS_RESOURCE;
1855		goto out_dec_host_busy;
1856	}
1857
1858	return BLK_STS_OK;
1859
1860out_dec_host_busy:
1861	scsi_dec_host_busy(shost, cmd);
1862out_dec_target_busy:
1863	if (scsi_target(sdev)->can_queue > 0)
1864		atomic_dec(&scsi_target(sdev)->target_busy);
1865out_put_budget:
1866	scsi_mq_put_budget(q, cmd->budget_token);
1867	cmd->budget_token = -1;
 
 
1868	switch (ret) {
1869	case BLK_STS_OK:
1870		break;
1871	case BLK_STS_RESOURCE:
1872	case BLK_STS_ZONE_RESOURCE:
1873		if (scsi_device_blocked(sdev))
1874			ret = BLK_STS_DEV_RESOURCE;
1875		break;
1876	case BLK_STS_AGAIN:
1877		cmd->result = DID_BUS_BUSY << 16;
1878		if (req->rq_flags & RQF_DONTPREP)
1879			scsi_mq_uninit_cmd(cmd);
1880		break;
1881	default:
1882		if (unlikely(!scsi_device_online(sdev)))
1883			cmd->result = DID_NO_CONNECT << 16;
1884		else
1885			cmd->result = DID_ERROR << 16;
1886		/*
1887		 * Make sure to release all allocated resources when
1888		 * we hit an error, as we will never see this command
1889		 * again.
1890		 */
1891		if (req->rq_flags & RQF_DONTPREP)
1892			scsi_mq_uninit_cmd(cmd);
1893		scsi_run_queue_async(sdev);
 
1894		break;
1895	}
1896	return ret;
1897}
1898
1899static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1900				unsigned int hctx_idx, unsigned int numa_node)
 
 
 
 
 
 
 
 
 
1901{
1902	struct Scsi_Host *shost = set->driver_data;
1903	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1904	struct scatterlist *sg;
1905	int ret = 0;
1906
1907	cmd->sense_buffer =
1908		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1909	if (!cmd->sense_buffer)
1910		return -ENOMEM;
1911
1912	if (scsi_host_get_prot(shost)) {
1913		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1914			shost->hostt->cmd_size;
1915		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1916	}
1917
1918	if (shost->hostt->init_cmd_priv) {
1919		ret = shost->hostt->init_cmd_priv(shost, cmd);
1920		if (ret < 0)
1921			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1922	}
1923
1924	return ret;
1925}
1926
1927static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1928				 unsigned int hctx_idx)
1929{
1930	struct Scsi_Host *shost = set->driver_data;
1931	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1932
1933	if (shost->hostt->exit_cmd_priv)
1934		shost->hostt->exit_cmd_priv(shost, cmd);
1935	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1936}
1937
1938
1939static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1940{
1941	struct Scsi_Host *shost = hctx->driver_data;
 
1942
1943	if (shost->hostt->mq_poll)
1944		return shost->hostt->mq_poll(shost, hctx->queue_num);
 
 
 
 
 
 
1945
1946	return 0;
1947}
1948
1949static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1950			  unsigned int hctx_idx)
1951{
1952	struct Scsi_Host *shost = data;
1953
1954	hctx->driver_data = shost;
1955	return 0;
1956}
1957
1958static void scsi_map_queues(struct blk_mq_tag_set *set)
1959{
1960	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1961
1962	if (shost->hostt->map_queues)
1963		return shost->hostt->map_queues(shost);
1964	blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1965}
1966
1967void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1968{
1969	struct device *dev = shost->dma_dev;
1970
1971	/*
1972	 * this limit is imposed by hardware restrictions
1973	 */
1974	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1975					SG_MAX_SEGMENTS));
1976
1977	if (scsi_host_prot_dma(shost)) {
1978		shost->sg_prot_tablesize =
1979			min_not_zero(shost->sg_prot_tablesize,
1980				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1981		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1982		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1983	}
1984
1985	blk_queue_max_hw_sectors(q, shost->max_sectors);
 
1986	blk_queue_segment_boundary(q, shost->dma_boundary);
1987	dma_set_seg_boundary(dev, shost->dma_boundary);
1988
1989	blk_queue_max_segment_size(q, shost->max_segment_size);
1990	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1991	dma_set_max_seg_size(dev, queue_max_segment_size(q));
 
1992
1993	/*
1994	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1995	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1996	 * which is set by the platform.
1997	 *
1998	 * Devices that require a bigger alignment can increase it later.
1999	 */
2000	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2001}
2002EXPORT_SYMBOL_GPL(__scsi_init_queue);
2003
2004static const struct blk_mq_ops scsi_mq_ops_no_commit = {
2005	.get_budget	= scsi_mq_get_budget,
2006	.put_budget	= scsi_mq_put_budget,
2007	.queue_rq	= scsi_queue_rq,
2008	.complete	= scsi_complete,
2009	.timeout	= scsi_timeout,
2010#ifdef CONFIG_BLK_DEBUG_FS
2011	.show_rq	= scsi_show_rq,
2012#endif
2013	.init_request	= scsi_mq_init_request,
2014	.exit_request	= scsi_mq_exit_request,
2015	.cleanup_rq	= scsi_cleanup_rq,
2016	.busy		= scsi_mq_lld_busy,
2017	.map_queues	= scsi_map_queues,
2018	.init_hctx	= scsi_init_hctx,
2019	.poll		= scsi_mq_poll,
2020	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2021	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2022};
2023
 
 
 
 
 
 
 
2024
2025static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
2026{
2027	struct Scsi_Host *shost = hctx->driver_data;
 
 
 
 
2028
2029	shost->hostt->commit_rqs(shost, hctx->queue_num);
 
 
 
 
 
2030}
2031
2032static const struct blk_mq_ops scsi_mq_ops = {
2033	.get_budget	= scsi_mq_get_budget,
2034	.put_budget	= scsi_mq_put_budget,
2035	.queue_rq	= scsi_queue_rq,
2036	.commit_rqs	= scsi_commit_rqs,
2037	.complete	= scsi_complete,
2038	.timeout	= scsi_timeout,
2039#ifdef CONFIG_BLK_DEBUG_FS
2040	.show_rq	= scsi_show_rq,
2041#endif
2042	.init_request	= scsi_mq_init_request,
2043	.exit_request	= scsi_mq_exit_request,
2044	.cleanup_rq	= scsi_cleanup_rq,
2045	.busy		= scsi_mq_lld_busy,
2046	.map_queues	= scsi_map_queues,
2047	.init_hctx	= scsi_init_hctx,
2048	.poll		= scsi_mq_poll,
2049	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
2050	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
2051};
2052
 
 
 
 
 
 
 
 
 
 
 
2053int scsi_mq_setup_tags(struct Scsi_Host *shost)
2054{
2055	unsigned int cmd_size, sgl_size;
2056	struct blk_mq_tag_set *tag_set = &shost->tag_set;
2057
2058	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
2059				scsi_mq_inline_sgl_size(shost));
 
 
2060	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2061	if (scsi_host_get_prot(shost))
2062		cmd_size += sizeof(struct scsi_data_buffer) +
2063			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
2064
2065	memset(tag_set, 0, sizeof(*tag_set));
2066	if (shost->hostt->commit_rqs)
2067		tag_set->ops = &scsi_mq_ops;
2068	else
2069		tag_set->ops = &scsi_mq_ops_no_commit;
2070	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
2071	tag_set->nr_maps = shost->nr_maps ? : 1;
2072	tag_set->queue_depth = shost->can_queue;
2073	tag_set->cmd_size = cmd_size;
2074	tag_set->numa_node = dev_to_node(shost->dma_dev);
2075	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
2076	tag_set->flags |=
2077		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2078	if (shost->queuecommand_may_block)
2079		tag_set->flags |= BLK_MQ_F_BLOCKING;
2080	tag_set->driver_data = shost;
2081	if (shost->host_tagset)
2082		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
2083
2084	return blk_mq_alloc_tag_set(tag_set);
2085}
2086
2087void scsi_mq_free_tags(struct kref *kref)
2088{
2089	struct Scsi_Host *shost = container_of(kref, typeof(*shost),
2090					       tagset_refcnt);
2091
2092	blk_mq_free_tag_set(&shost->tag_set);
2093	complete(&shost->tagset_freed);
2094}
2095
2096/**
2097 * scsi_device_from_queue - return sdev associated with a request_queue
2098 * @q: The request queue to return the sdev from
 
 
 
 
 
 
2099 *
2100 * Return the sdev associated with a request queue or NULL if the
2101 * request_queue does not reference a SCSI device.
2102 */
2103struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2104{
2105	struct scsi_device *sdev = NULL;
2106
2107	if (q->mq_ops == &scsi_mq_ops_no_commit ||
2108	    q->mq_ops == &scsi_mq_ops)
2109		sdev = q->queuedata;
2110	if (!sdev || !get_device(&sdev->sdev_gendev))
2111		sdev = NULL;
2112
2113	return sdev;
2114}
2115/*
2116 * pktcdvd should have been integrated into the SCSI layers, but for historical
2117 * reasons like the old IDE driver it isn't.  This export allows it to safely
2118 * probe if a given device is a SCSI one and only attach to that.
2119 */
2120#ifdef CONFIG_CDROM_PKTCDVD_MODULE
2121EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2122#endif
2123
2124/**
2125 * scsi_block_requests - Utility function used by low-level drivers to prevent
2126 * further commands from being queued to the device.
2127 * @shost:  host in question
2128 *
2129 * There is no timer nor any other means by which the requests get unblocked
2130 * other than the low-level driver calling scsi_unblock_requests().
 
2131 */
2132void scsi_block_requests(struct Scsi_Host *shost)
2133{
2134	shost->host_self_blocked = 1;
2135}
2136EXPORT_SYMBOL(scsi_block_requests);
2137
2138/**
2139 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2140 * further commands to be queued to the device.
2141 * @shost:  host in question
2142 *
2143 * There is no timer nor any other means by which the requests get unblocked
2144 * other than the low-level driver calling scsi_unblock_requests(). This is done
2145 * as an API function so that changes to the internals of the scsi mid-layer
2146 * won't require wholesale changes to drivers that use this feature.
 
 
 
 
 
 
 
 
 
 
2147 */
2148void scsi_unblock_requests(struct Scsi_Host *shost)
2149{
2150	shost->host_self_blocked = 0;
2151	scsi_run_host_queues(shost);
2152}
2153EXPORT_SYMBOL(scsi_unblock_requests);
2154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2155void scsi_exit_queue(void)
2156{
2157	kmem_cache_destroy(scsi_sense_cache);
 
 
 
 
 
 
 
 
2158}
2159
2160/**
2161 *	scsi_mode_select - issue a mode select
2162 *	@sdev:	SCSI device to be queried
2163 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2164 *	@sp:	Save page bit (0 == don't save, 1 == save)
 
2165 *	@buffer: request buffer (may not be smaller than eight bytes)
2166 *	@len:	length of request buffer.
2167 *	@timeout: command timeout
2168 *	@retries: number of retries before failing
2169 *	@data: returns a structure abstracting the mode header data
2170 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2171 *		must be SCSI_SENSE_BUFFERSIZE big.
2172 *
2173 *	Returns zero if successful; negative error number or scsi
2174 *	status on error
2175 *
2176 */
2177int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2178		     unsigned char *buffer, int len, int timeout, int retries,
2179		     struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
 
2180{
2181	unsigned char cmd[10];
2182	unsigned char *real_buffer;
2183	const struct scsi_exec_args exec_args = {
2184		.sshdr = sshdr,
2185	};
2186	int ret;
2187
2188	memset(cmd, 0, sizeof(cmd));
2189	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2190
2191	/*
2192	 * Use MODE SELECT(10) if the device asked for it or if the mode page
2193	 * and the mode select header cannot fit within the maximumm 255 bytes
2194	 * of the MODE SELECT(6) command.
2195	 */
2196	if (sdev->use_10_for_ms ||
2197	    len + 4 > 255 ||
2198	    data->block_descriptor_length > 255) {
2199		if (len > 65535 - 8)
2200			return -EINVAL;
2201		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2202		if (!real_buffer)
2203			return -ENOMEM;
2204		memcpy(real_buffer + 8, buffer, len);
2205		len += 8;
2206		real_buffer[0] = 0;
2207		real_buffer[1] = 0;
2208		real_buffer[2] = data->medium_type;
2209		real_buffer[3] = data->device_specific;
2210		real_buffer[4] = data->longlba ? 0x01 : 0;
2211		real_buffer[5] = 0;
2212		put_unaligned_be16(data->block_descriptor_length,
2213				   &real_buffer[6]);
2214
2215		cmd[0] = MODE_SELECT_10;
2216		put_unaligned_be16(len, &cmd[7]);
 
2217	} else {
2218		if (data->longlba)
 
2219			return -EINVAL;
2220
2221		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2222		if (!real_buffer)
2223			return -ENOMEM;
2224		memcpy(real_buffer + 4, buffer, len);
2225		len += 4;
2226		real_buffer[0] = 0;
2227		real_buffer[1] = data->medium_type;
2228		real_buffer[2] = data->device_specific;
2229		real_buffer[3] = data->block_descriptor_length;
 
2230
2231		cmd[0] = MODE_SELECT;
2232		cmd[4] = len;
2233	}
2234
2235	ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2236			       timeout, retries, &exec_args);
2237	kfree(real_buffer);
2238	return ret;
2239}
2240EXPORT_SYMBOL_GPL(scsi_mode_select);
2241
2242/**
2243 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2244 *	@sdev:	SCSI device to be queried
2245 *	@dbd:	set to prevent mode sense from returning block descriptors
2246 *	@modepage: mode page being requested
2247 *	@subpage: sub-page of the mode page being requested
2248 *	@buffer: request buffer (may not be smaller than eight bytes)
2249 *	@len:	length of request buffer.
2250 *	@timeout: command timeout
2251 *	@retries: number of retries before failing
2252 *	@data: returns a structure abstracting the mode header data
2253 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2254 *		must be SCSI_SENSE_BUFFERSIZE big.
2255 *
2256 *	Returns zero if successful, or a negative error number on failure
 
 
2257 */
2258int
2259scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2260		  unsigned char *buffer, int len, int timeout, int retries,
2261		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2262{
2263	unsigned char cmd[12];
2264	int use_10_for_ms;
2265	int header_length;
2266	int result;
2267	struct scsi_sense_hdr my_sshdr;
2268	struct scsi_failure failure_defs[] = {
2269		{
2270			.sense = UNIT_ATTENTION,
2271			.asc = SCMD_FAILURE_ASC_ANY,
2272			.ascq = SCMD_FAILURE_ASCQ_ANY,
2273			.allowed = retries,
2274			.result = SAM_STAT_CHECK_CONDITION,
2275		},
2276		{}
2277	};
2278	struct scsi_failures failures = {
2279		.failure_definitions = failure_defs,
2280	};
2281	const struct scsi_exec_args exec_args = {
2282		/* caller might not be interested in sense, but we need it */
2283		.sshdr = sshdr ? : &my_sshdr,
2284		.failures = &failures,
2285	};
2286
2287	memset(data, 0, sizeof(*data));
2288	memset(&cmd[0], 0, 12);
2289
2290	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2291	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2292	cmd[2] = modepage;
2293	cmd[3] = subpage;
2294
2295	sshdr = exec_args.sshdr;
 
 
2296
2297 retry:
2298	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2299
2300	if (use_10_for_ms) {
2301		if (len < 8 || len > 65535)
2302			return -EINVAL;
2303
2304		cmd[0] = MODE_SENSE_10;
2305		put_unaligned_be16(len, &cmd[7]);
2306		header_length = 8;
2307	} else {
2308		if (len < 4)
2309			return -EINVAL;
2310
2311		cmd[0] = MODE_SENSE;
2312		cmd[4] = len;
2313		header_length = 4;
2314	}
2315
2316	memset(buffer, 0, len);
2317
2318	result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2319				  timeout, retries, &exec_args);
2320	if (result < 0)
2321		return result;
2322
2323	/* This code looks awful: what it's doing is making sure an
2324	 * ILLEGAL REQUEST sense return identifies the actual command
2325	 * byte as the problem.  MODE_SENSE commands can return
2326	 * ILLEGAL REQUEST if the code page isn't supported */
2327
2328	if (!scsi_status_is_good(result)) {
 
2329		if (scsi_sense_valid(sshdr)) {
2330			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2331			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2332				/*
2333				 * Invalid command operation code: retry using
2334				 * MODE SENSE(6) if this was a MODE SENSE(10)
2335				 * request, except if the request mode page is
2336				 * too large for MODE SENSE single byte
2337				 * allocation length field.
2338				 */
2339				if (use_10_for_ms) {
2340					if (len > 255)
2341						return -EIO;
2342					sdev->use_10_for_ms = 0;
2343					goto retry;
2344				}
2345			}
2346		}
2347		return -EIO;
2348	}
2349	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2350		     (modepage == 6 || modepage == 8))) {
2351		/* Initio breakage? */
2352		header_length = 0;
2353		data->length = 13;
2354		data->medium_type = 0;
2355		data->device_specific = 0;
2356		data->longlba = 0;
2357		data->block_descriptor_length = 0;
2358	} else if (use_10_for_ms) {
2359		data->length = get_unaligned_be16(&buffer[0]) + 2;
2360		data->medium_type = buffer[2];
2361		data->device_specific = buffer[3];
2362		data->longlba = buffer[4] & 0x01;
2363		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2364	} else {
2365		data->length = buffer[0] + 1;
2366		data->medium_type = buffer[1];
2367		data->device_specific = buffer[2];
2368		data->block_descriptor_length = buffer[3];
 
 
 
 
 
 
 
 
 
 
2369	}
2370	data->header_length = header_length;
2371
2372	return 0;
2373}
2374EXPORT_SYMBOL(scsi_mode_sense);
2375
2376/**
2377 *	scsi_test_unit_ready - test if unit is ready
2378 *	@sdev:	scsi device to change the state of.
2379 *	@timeout: command timeout
2380 *	@retries: number of retries before failing
2381 *	@sshdr: outpout pointer for decoded sense information.
 
 
2382 *
2383 *	Returns zero if unsuccessful or an error if TUR failed.  For
2384 *	removable media, UNIT_ATTENTION sets ->changed flag.
2385 **/
2386int
2387scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2388		     struct scsi_sense_hdr *sshdr)
2389{
2390	char cmd[] = {
2391		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2392	};
2393	const struct scsi_exec_args exec_args = {
2394		.sshdr = sshdr,
2395	};
2396	int result;
2397
 
 
 
 
 
2398	/* try to eat the UNIT_ATTENTION if there are enough retries */
2399	do {
2400		result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2401					  timeout, 1, &exec_args);
2402		if (sdev->removable && result > 0 && scsi_sense_valid(sshdr) &&
2403		    sshdr->sense_key == UNIT_ATTENTION)
2404			sdev->changed = 1;
2405	} while (result > 0 && scsi_sense_valid(sshdr) &&
2406		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2407
 
 
2408	return result;
2409}
2410EXPORT_SYMBOL(scsi_test_unit_ready);
2411
2412/**
2413 *	scsi_device_set_state - Take the given device through the device state model.
2414 *	@sdev:	scsi device to change the state of.
2415 *	@state:	state to change to.
2416 *
2417 *	Returns zero if successful or an error if the requested
2418 *	transition is illegal.
2419 */
2420int
2421scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2422{
2423	enum scsi_device_state oldstate = sdev->sdev_state;
2424
2425	if (state == oldstate)
2426		return 0;
2427
2428	switch (state) {
2429	case SDEV_CREATED:
2430		switch (oldstate) {
2431		case SDEV_CREATED_BLOCK:
2432			break;
2433		default:
2434			goto illegal;
2435		}
2436		break;
2437
2438	case SDEV_RUNNING:
2439		switch (oldstate) {
2440		case SDEV_CREATED:
2441		case SDEV_OFFLINE:
2442		case SDEV_TRANSPORT_OFFLINE:
2443		case SDEV_QUIESCE:
2444		case SDEV_BLOCK:
2445			break;
2446		default:
2447			goto illegal;
2448		}
2449		break;
2450
2451	case SDEV_QUIESCE:
2452		switch (oldstate) {
2453		case SDEV_RUNNING:
2454		case SDEV_OFFLINE:
2455		case SDEV_TRANSPORT_OFFLINE:
2456			break;
2457		default:
2458			goto illegal;
2459		}
2460		break;
2461
2462	case SDEV_OFFLINE:
2463	case SDEV_TRANSPORT_OFFLINE:
2464		switch (oldstate) {
2465		case SDEV_CREATED:
2466		case SDEV_RUNNING:
2467		case SDEV_QUIESCE:
2468		case SDEV_BLOCK:
2469			break;
2470		default:
2471			goto illegal;
2472		}
2473		break;
2474
2475	case SDEV_BLOCK:
2476		switch (oldstate) {
2477		case SDEV_RUNNING:
2478		case SDEV_CREATED_BLOCK:
2479		case SDEV_QUIESCE:
2480		case SDEV_OFFLINE:
2481			break;
2482		default:
2483			goto illegal;
2484		}
2485		break;
2486
2487	case SDEV_CREATED_BLOCK:
2488		switch (oldstate) {
2489		case SDEV_CREATED:
2490			break;
2491		default:
2492			goto illegal;
2493		}
2494		break;
2495
2496	case SDEV_CANCEL:
2497		switch (oldstate) {
2498		case SDEV_CREATED:
2499		case SDEV_RUNNING:
2500		case SDEV_QUIESCE:
2501		case SDEV_OFFLINE:
2502		case SDEV_TRANSPORT_OFFLINE:
 
2503			break;
2504		default:
2505			goto illegal;
2506		}
2507		break;
2508
2509	case SDEV_DEL:
2510		switch (oldstate) {
2511		case SDEV_CREATED:
2512		case SDEV_RUNNING:
2513		case SDEV_OFFLINE:
2514		case SDEV_TRANSPORT_OFFLINE:
2515		case SDEV_CANCEL:
2516		case SDEV_BLOCK:
2517		case SDEV_CREATED_BLOCK:
2518			break;
2519		default:
2520			goto illegal;
2521		}
2522		break;
2523
2524	}
2525	sdev->offline_already = false;
2526	sdev->sdev_state = state;
2527	return 0;
2528
2529 illegal:
2530	SCSI_LOG_ERROR_RECOVERY(1,
2531				sdev_printk(KERN_ERR, sdev,
2532					    "Illegal state transition %s->%s",
2533					    scsi_device_state_name(oldstate),
2534					    scsi_device_state_name(state))
2535				);
2536	return -EINVAL;
2537}
2538EXPORT_SYMBOL(scsi_device_set_state);
2539
2540/**
2541 *	scsi_evt_emit - emit a single SCSI device uevent
2542 *	@sdev: associated SCSI device
2543 *	@evt: event to emit
2544 *
2545 *	Send a single uevent (scsi_event) to the associated scsi_device.
2546 */
2547static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2548{
2549	int idx = 0;
2550	char *envp[3];
2551
2552	switch (evt->evt_type) {
2553	case SDEV_EVT_MEDIA_CHANGE:
2554		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2555		break;
2556	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2557		scsi_rescan_device(sdev);
2558		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2559		break;
2560	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2561		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2562		break;
2563	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2564	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2565		break;
2566	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2567		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2568		break;
2569	case SDEV_EVT_LUN_CHANGE_REPORTED:
2570		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2571		break;
2572	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2573		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2574		break;
2575	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2576		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2577		break;
2578	default:
2579		/* do nothing */
2580		break;
2581	}
2582
2583	envp[idx++] = NULL;
2584
2585	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2586}
2587
2588/**
2589 *	scsi_evt_thread - send a uevent for each scsi event
2590 *	@work: work struct for scsi_device
2591 *
2592 *	Dispatch queued events to their associated scsi_device kobjects
2593 *	as uevents.
2594 */
2595void scsi_evt_thread(struct work_struct *work)
2596{
2597	struct scsi_device *sdev;
2598	enum scsi_device_event evt_type;
2599	LIST_HEAD(event_list);
2600
2601	sdev = container_of(work, struct scsi_device, event_work);
2602
2603	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2604		if (test_and_clear_bit(evt_type, sdev->pending_events))
2605			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2606
2607	while (1) {
2608		struct scsi_event *evt;
2609		struct list_head *this, *tmp;
2610		unsigned long flags;
2611
2612		spin_lock_irqsave(&sdev->list_lock, flags);
2613		list_splice_init(&sdev->event_list, &event_list);
2614		spin_unlock_irqrestore(&sdev->list_lock, flags);
2615
2616		if (list_empty(&event_list))
2617			break;
2618
2619		list_for_each_safe(this, tmp, &event_list) {
2620			evt = list_entry(this, struct scsi_event, node);
2621			list_del(&evt->node);
2622			scsi_evt_emit(sdev, evt);
2623			kfree(evt);
2624		}
2625	}
2626}
2627
2628/**
2629 * 	sdev_evt_send - send asserted event to uevent thread
2630 *	@sdev: scsi_device event occurred on
2631 *	@evt: event to send
2632 *
2633 *	Assert scsi device event asynchronously.
2634 */
2635void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2636{
2637	unsigned long flags;
2638
2639#if 0
2640	/* FIXME: currently this check eliminates all media change events
2641	 * for polled devices.  Need to update to discriminate between AN
2642	 * and polled events */
2643	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2644		kfree(evt);
2645		return;
2646	}
2647#endif
2648
2649	spin_lock_irqsave(&sdev->list_lock, flags);
2650	list_add_tail(&evt->node, &sdev->event_list);
2651	schedule_work(&sdev->event_work);
2652	spin_unlock_irqrestore(&sdev->list_lock, flags);
2653}
2654EXPORT_SYMBOL_GPL(sdev_evt_send);
2655
2656/**
2657 * 	sdev_evt_alloc - allocate a new scsi event
2658 *	@evt_type: type of event to allocate
2659 *	@gfpflags: GFP flags for allocation
2660 *
2661 *	Allocates and returns a new scsi_event.
2662 */
2663struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2664				  gfp_t gfpflags)
2665{
2666	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2667	if (!evt)
2668		return NULL;
2669
2670	evt->evt_type = evt_type;
2671	INIT_LIST_HEAD(&evt->node);
2672
2673	/* evt_type-specific initialization, if any */
2674	switch (evt_type) {
2675	case SDEV_EVT_MEDIA_CHANGE:
2676	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2677	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2678	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2679	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2680	case SDEV_EVT_LUN_CHANGE_REPORTED:
2681	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2682	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2683	default:
2684		/* do nothing */
2685		break;
2686	}
2687
2688	return evt;
2689}
2690EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2691
2692/**
2693 * 	sdev_evt_send_simple - send asserted event to uevent thread
2694 *	@sdev: scsi_device event occurred on
2695 *	@evt_type: type of event to send
2696 *	@gfpflags: GFP flags for allocation
2697 *
2698 *	Assert scsi device event asynchronously, given an event type.
2699 */
2700void sdev_evt_send_simple(struct scsi_device *sdev,
2701			  enum scsi_device_event evt_type, gfp_t gfpflags)
2702{
2703	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2704	if (!evt) {
2705		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2706			    evt_type);
2707		return;
2708	}
2709
2710	sdev_evt_send(sdev, evt);
2711}
2712EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2713
2714/**
2715 *	scsi_device_quiesce - Block all commands except power management.
2716 *	@sdev:	scsi device to quiesce.
2717 *
2718 *	This works by trying to transition to the SDEV_QUIESCE state
2719 *	(which must be a legal transition).  When the device is in this
2720 *	state, only power management requests will be accepted, all others will
2721 *	be deferred.
 
 
2722 *
2723 *	Must be called with user context, may sleep.
2724 *
2725 *	Returns zero if unsuccessful or an error if not.
2726 */
2727int
2728scsi_device_quiesce(struct scsi_device *sdev)
2729{
2730	struct request_queue *q = sdev->request_queue;
2731	int err;
2732
2733	/*
2734	 * It is allowed to call scsi_device_quiesce() multiple times from
2735	 * the same context but concurrent scsi_device_quiesce() calls are
2736	 * not allowed.
2737	 */
2738	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2739
2740	if (sdev->quiesced_by == current)
2741		return 0;
2742
2743	blk_set_pm_only(q);
2744
2745	blk_mq_freeze_queue(q);
2746	/*
2747	 * Ensure that the effect of blk_set_pm_only() will be visible
2748	 * for percpu_ref_tryget() callers that occur after the queue
2749	 * unfreeze even if the queue was already frozen before this function
2750	 * was called. See also https://lwn.net/Articles/573497/.
2751	 */
2752	synchronize_rcu();
2753	blk_mq_unfreeze_queue(q);
2754
2755	mutex_lock(&sdev->state_mutex);
2756	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2757	if (err == 0)
2758		sdev->quiesced_by = current;
2759	else
2760		blk_clear_pm_only(q);
2761	mutex_unlock(&sdev->state_mutex);
2762
2763	return err;
2764}
2765EXPORT_SYMBOL(scsi_device_quiesce);
2766
2767/**
2768 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2769 *	@sdev:	scsi device to resume.
2770 *
2771 *	Moves the device from quiesced back to running and restarts the
2772 *	queues.
2773 *
2774 *	Must be called with user context, may sleep.
2775 */
2776void scsi_device_resume(struct scsi_device *sdev)
2777{
2778	/* check if the device state was mutated prior to resume, and if
2779	 * so assume the state is being managed elsewhere (for example
2780	 * device deleted during suspend)
2781	 */
2782	mutex_lock(&sdev->state_mutex);
2783	if (sdev->sdev_state == SDEV_QUIESCE)
2784		scsi_device_set_state(sdev, SDEV_RUNNING);
2785	if (sdev->quiesced_by) {
2786		sdev->quiesced_by = NULL;
2787		blk_clear_pm_only(sdev->request_queue);
2788	}
2789	mutex_unlock(&sdev->state_mutex);
2790}
2791EXPORT_SYMBOL(scsi_device_resume);
2792
2793static void
2794device_quiesce_fn(struct scsi_device *sdev, void *data)
2795{
2796	scsi_device_quiesce(sdev);
2797}
2798
2799void
2800scsi_target_quiesce(struct scsi_target *starget)
2801{
2802	starget_for_each_device(starget, NULL, device_quiesce_fn);
2803}
2804EXPORT_SYMBOL(scsi_target_quiesce);
2805
2806static void
2807device_resume_fn(struct scsi_device *sdev, void *data)
2808{
2809	scsi_device_resume(sdev);
2810}
2811
2812void
2813scsi_target_resume(struct scsi_target *starget)
2814{
2815	starget_for_each_device(starget, NULL, device_resume_fn);
2816}
2817EXPORT_SYMBOL(scsi_target_resume);
2818
2819static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2820{
2821	if (scsi_device_set_state(sdev, SDEV_BLOCK))
2822		return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2823
2824	return 0;
2825}
2826
2827void scsi_start_queue(struct scsi_device *sdev)
2828{
2829	if (cmpxchg(&sdev->queue_stopped, 1, 0))
2830		blk_mq_unquiesce_queue(sdev->request_queue);
2831}
2832
2833static void scsi_stop_queue(struct scsi_device *sdev)
2834{
2835	/*
2836	 * The atomic variable of ->queue_stopped covers that
2837	 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2838	 *
2839	 * The caller needs to wait until quiesce is done.
2840	 */
2841	if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2842		blk_mq_quiesce_queue_nowait(sdev->request_queue);
2843}
2844
2845/**
2846 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2847 * @sdev: device to block
2848 *
2849 * Pause SCSI command processing on the specified device. Does not sleep.
 
 
2850 *
2851 * Returns zero if successful or a negative error code upon failure.
2852 *
2853 * Notes:
2854 * This routine transitions the device to the SDEV_BLOCK state (which must be
2855 * a legal transition). When the device is in this state, command processing
2856 * is paused until the device leaves the SDEV_BLOCK state. See also
2857 * scsi_internal_device_unblock_nowait().
2858 */
2859int scsi_internal_device_block_nowait(struct scsi_device *sdev)
 
2860{
2861	int ret = __scsi_internal_device_block_nowait(sdev);
 
 
2862
2863	/*
 
 
 
 
 
 
 
 
2864	 * The device has transitioned to SDEV_BLOCK.  Stop the
2865	 * block layer from calling the midlayer with this device's
2866	 * request queue.
2867	 */
2868	if (!ret)
2869		scsi_stop_queue(sdev);
2870	return ret;
2871}
2872EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
 
 
2873
2874/**
2875 * scsi_device_block - try to transition to the SDEV_BLOCK state
2876 * @sdev: device to block
2877 * @data: dummy argument, ignored
2878 *
2879 * Pause SCSI command processing on the specified device. Callers must wait
2880 * until all ongoing scsi_queue_rq() calls have finished after this function
2881 * returns.
2882 *
2883 * Note:
2884 * This routine transitions the device to the SDEV_BLOCK state (which must be
2885 * a legal transition). When the device is in this state, command processing
2886 * is paused until the device leaves the SDEV_BLOCK state. See also
2887 * scsi_internal_device_unblock().
2888 */
2889static void scsi_device_block(struct scsi_device *sdev, void *data)
2890{
2891	int err;
2892	enum scsi_device_state state;
2893
2894	mutex_lock(&sdev->state_mutex);
2895	err = __scsi_internal_device_block_nowait(sdev);
2896	state = sdev->sdev_state;
2897	if (err == 0)
2898		/*
2899		 * scsi_stop_queue() must be called with the state_mutex
2900		 * held. Otherwise a simultaneous scsi_start_queue() call
2901		 * might unquiesce the queue before we quiesce it.
2902		 */
2903		scsi_stop_queue(sdev);
2904
2905	mutex_unlock(&sdev->state_mutex);
2906
2907	WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2908		  __func__, dev_name(&sdev->sdev_gendev), state);
2909}
2910
 
2911/**
2912 * scsi_internal_device_unblock_nowait - resume a device after a block request
2913 * @sdev:	device to resume
2914 * @new_state:	state to set the device to after unblocking
2915 *
2916 * Restart the device queue for a previously suspended SCSI device. Does not
2917 * sleep.
2918 *
2919 * Returns zero if successful or a negative error code upon failure.
2920 *
2921 * Notes:
2922 * This routine transitions the device to the SDEV_RUNNING state or to one of
2923 * the offline states (which must be a legal transition) allowing the midlayer
2924 * to goose the queue for this device.
 
2925 */
2926int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2927					enum scsi_device_state new_state)
 
2928{
2929	switch (new_state) {
2930	case SDEV_RUNNING:
2931	case SDEV_TRANSPORT_OFFLINE:
2932		break;
2933	default:
2934		return -EINVAL;
2935	}
2936
2937	/*
2938	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2939	 * offlined states and goose the device queue if successful.
2940	 */
2941	switch (sdev->sdev_state) {
2942	case SDEV_BLOCK:
2943	case SDEV_TRANSPORT_OFFLINE:
2944		sdev->sdev_state = new_state;
2945		break;
2946	case SDEV_CREATED_BLOCK:
2947		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2948		    new_state == SDEV_OFFLINE)
2949			sdev->sdev_state = new_state;
2950		else
2951			sdev->sdev_state = SDEV_CREATED;
2952		break;
2953	case SDEV_CANCEL:
2954	case SDEV_OFFLINE:
2955		break;
2956	default:
2957		return -EINVAL;
 
 
 
 
 
 
 
2958	}
2959	scsi_start_queue(sdev);
2960
2961	return 0;
2962}
2963EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2964
2965/**
2966 * scsi_internal_device_unblock - resume a device after a block request
2967 * @sdev:	device to resume
2968 * @new_state:	state to set the device to after unblocking
2969 *
2970 * Restart the device queue for a previously suspended SCSI device. May sleep.
2971 *
2972 * Returns zero if successful or a negative error code upon failure.
2973 *
2974 * Notes:
2975 * This routine transitions the device to the SDEV_RUNNING state or to one of
2976 * the offline states (which must be a legal transition) allowing the midlayer
2977 * to goose the queue for this device.
2978 */
2979static int scsi_internal_device_unblock(struct scsi_device *sdev,
2980					enum scsi_device_state new_state)
2981{
2982	int ret;
2983
2984	mutex_lock(&sdev->state_mutex);
2985	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2986	mutex_unlock(&sdev->state_mutex);
2987
2988	return ret;
2989}
2990
2991static int
2992target_block(struct device *dev, void *data)
2993{
2994	if (scsi_is_target_device(dev))
2995		starget_for_each_device(to_scsi_target(dev), NULL,
2996					scsi_device_block);
2997	return 0;
2998}
2999
3000/**
3001 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
3002 * @dev: a parent device of one or more scsi_target devices
3003 * @shost: the Scsi_Host to which this device belongs
3004 *
3005 * Iterate over all children of @dev, which should be scsi_target devices,
3006 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
3007 * ongoing scsi_queue_rq() calls to finish. May sleep.
3008 *
3009 * Note:
3010 * @dev must not itself be a scsi_target device.
3011 */
3012void
3013scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
3014{
3015	WARN_ON_ONCE(scsi_is_target_device(dev));
3016	device_for_each_child(dev, NULL, target_block);
3017	blk_mq_wait_quiesce_done(&shost->tag_set);
 
 
3018}
3019EXPORT_SYMBOL_GPL(scsi_block_targets);
3020
3021static void
3022device_unblock(struct scsi_device *sdev, void *data)
3023{
3024	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3025}
3026
3027static int
3028target_unblock(struct device *dev, void *data)
3029{
3030	if (scsi_is_target_device(dev))
3031		starget_for_each_device(to_scsi_target(dev), data,
3032					device_unblock);
3033	return 0;
3034}
3035
3036void
3037scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3038{
3039	if (scsi_is_target_device(dev))
3040		starget_for_each_device(to_scsi_target(dev), &new_state,
3041					device_unblock);
3042	else
3043		device_for_each_child(dev, &new_state, target_unblock);
3044}
3045EXPORT_SYMBOL_GPL(scsi_target_unblock);
3046
3047/**
3048 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
3049 * @shost: device to block
3050 *
3051 * Pause SCSI command processing for all logical units associated with the SCSI
3052 * host and wait until pending scsi_queue_rq() calls have finished.
3053 *
3054 * Returns zero if successful or a negative error code upon failure.
3055 */
3056int
3057scsi_host_block(struct Scsi_Host *shost)
3058{
3059	struct scsi_device *sdev;
3060	int ret;
3061
3062	/*
3063	 * Call scsi_internal_device_block_nowait so we can avoid
3064	 * calling synchronize_rcu() for each LUN.
3065	 */
3066	shost_for_each_device(sdev, shost) {
3067		mutex_lock(&sdev->state_mutex);
3068		ret = scsi_internal_device_block_nowait(sdev);
3069		mutex_unlock(&sdev->state_mutex);
3070		if (ret) {
3071			scsi_device_put(sdev);
3072			return ret;
3073		}
3074	}
3075
3076	/* Wait for ongoing scsi_queue_rq() calls to finish. */
3077	blk_mq_wait_quiesce_done(&shost->tag_set);
3078
3079	return 0;
3080}
3081EXPORT_SYMBOL_GPL(scsi_host_block);
3082
3083int
3084scsi_host_unblock(struct Scsi_Host *shost, int new_state)
3085{
3086	struct scsi_device *sdev;
3087	int ret = 0;
3088
3089	shost_for_each_device(sdev, shost) {
3090		ret = scsi_internal_device_unblock(sdev, new_state);
3091		if (ret) {
3092			scsi_device_put(sdev);
3093			break;
3094		}
3095	}
3096	return ret;
3097}
3098EXPORT_SYMBOL_GPL(scsi_host_unblock);
3099
3100/**
3101 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3102 * @sgl:	scatter-gather list
3103 * @sg_count:	number of segments in sg
3104 * @offset:	offset in bytes into sg, on return offset into the mapped area
3105 * @len:	bytes to map, on return number of bytes mapped
3106 *
3107 * Returns virtual address of the start of the mapped page
3108 */
3109void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3110			  size_t *offset, size_t *len)
3111{
3112	int i;
3113	size_t sg_len = 0, len_complete = 0;
3114	struct scatterlist *sg;
3115	struct page *page;
3116
3117	WARN_ON(!irqs_disabled());
3118
3119	for_each_sg(sgl, sg, sg_count, i) {
3120		len_complete = sg_len; /* Complete sg-entries */
3121		sg_len += sg->length;
3122		if (sg_len > *offset)
3123			break;
3124	}
3125
3126	if (unlikely(i == sg_count)) {
3127		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3128			"elements %d\n",
3129		       __func__, sg_len, *offset, sg_count);
3130		WARN_ON(1);
3131		return NULL;
3132	}
3133
3134	/* Offset starting from the beginning of first page in this sg-entry */
3135	*offset = *offset - len_complete + sg->offset;
3136
3137	/* Assumption: contiguous pages can be accessed as "page + i" */
3138	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3139	*offset &= ~PAGE_MASK;
3140
3141	/* Bytes in this sg-entry from *offset to the end of the page */
3142	sg_len = PAGE_SIZE - *offset;
3143	if (*len > sg_len)
3144		*len = sg_len;
3145
3146	return kmap_atomic(page);
3147}
3148EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3149
3150/**
3151 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3152 * @virt:	virtual address to be unmapped
3153 */
3154void scsi_kunmap_atomic_sg(void *virt)
3155{
3156	kunmap_atomic(virt);
3157}
3158EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3159
3160void sdev_disable_disk_events(struct scsi_device *sdev)
3161{
3162	atomic_inc(&sdev->disk_events_disable_depth);
3163}
3164EXPORT_SYMBOL(sdev_disable_disk_events);
3165
3166void sdev_enable_disk_events(struct scsi_device *sdev)
3167{
3168	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3169		return;
3170	atomic_dec(&sdev->disk_events_disable_depth);
3171}
3172EXPORT_SYMBOL(sdev_enable_disk_events);
3173
3174static unsigned char designator_prio(const unsigned char *d)
3175{
3176	if (d[1] & 0x30)
3177		/* not associated with LUN */
3178		return 0;
3179
3180	if (d[3] == 0)
3181		/* invalid length */
3182		return 0;
3183
3184	/*
3185	 * Order of preference for lun descriptor:
3186	 * - SCSI name string
3187	 * - NAA IEEE Registered Extended
3188	 * - EUI-64 based 16-byte
3189	 * - EUI-64 based 12-byte
3190	 * - NAA IEEE Registered
3191	 * - NAA IEEE Extended
3192	 * - EUI-64 based 8-byte
3193	 * - SCSI name string (truncated)
3194	 * - T10 Vendor ID
3195	 * as longer descriptors reduce the likelyhood
3196	 * of identification clashes.
3197	 */
3198
3199	switch (d[1] & 0xf) {
3200	case 8:
3201		/* SCSI name string, variable-length UTF-8 */
3202		return 9;
3203	case 3:
3204		switch (d[4] >> 4) {
3205		case 6:
3206			/* NAA registered extended */
3207			return 8;
3208		case 5:
3209			/* NAA registered */
3210			return 5;
3211		case 4:
3212			/* NAA extended */
3213			return 4;
3214		case 3:
3215			/* NAA locally assigned */
3216			return 1;
3217		default:
3218			break;
3219		}
3220		break;
3221	case 2:
3222		switch (d[3]) {
3223		case 16:
3224			/* EUI64-based, 16 byte */
3225			return 7;
3226		case 12:
3227			/* EUI64-based, 12 byte */
3228			return 6;
3229		case 8:
3230			/* EUI64-based, 8 byte */
3231			return 3;
3232		default:
3233			break;
3234		}
3235		break;
3236	case 1:
3237		/* T10 vendor ID */
3238		return 1;
3239	default:
3240		break;
3241	}
3242
3243	return 0;
3244}
3245
3246/**
3247 * scsi_vpd_lun_id - return a unique device identification
3248 * @sdev: SCSI device
3249 * @id:   buffer for the identification
3250 * @id_len:  length of the buffer
3251 *
3252 * Copies a unique device identification into @id based
3253 * on the information in the VPD page 0x83 of the device.
3254 * The string will be formatted as a SCSI name string.
3255 *
3256 * Returns the length of the identification or error on failure.
3257 * If the identifier is longer than the supplied buffer the actual
3258 * identifier length is returned and the buffer is not zero-padded.
3259 */
3260int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3261{
3262	u8 cur_id_prio = 0;
3263	u8 cur_id_size = 0;
3264	const unsigned char *d, *cur_id_str;
3265	const struct scsi_vpd *vpd_pg83;
3266	int id_size = -EINVAL;
3267
3268	rcu_read_lock();
3269	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3270	if (!vpd_pg83) {
3271		rcu_read_unlock();
3272		return -ENXIO;
3273	}
3274
 
 
 
 
 
 
 
 
 
 
 
 
 
3275	/* The id string must be at least 20 bytes + terminating NULL byte */
3276	if (id_len < 21) {
3277		rcu_read_unlock();
3278		return -EINVAL;
3279	}
3280
3281	memset(id, 0, id_len);
3282	for (d = vpd_pg83->data + 4;
3283	     d < vpd_pg83->data + vpd_pg83->len;
3284	     d += d[3] + 4) {
3285		u8 prio = designator_prio(d);
3286
3287		if (prio == 0 || cur_id_prio > prio)
3288			continue;
3289
3290		switch (d[1] & 0xf) {
3291		case 0x1:
3292			/* T10 Vendor ID */
3293			if (cur_id_size > d[3])
3294				break;
3295			cur_id_prio = prio;
3296			cur_id_size = d[3];
3297			if (cur_id_size + 4 > id_len)
3298				cur_id_size = id_len - 4;
3299			cur_id_str = d + 4;
3300			id_size = snprintf(id, id_len, "t10.%*pE",
3301					   cur_id_size, cur_id_str);
3302			break;
3303		case 0x2:
3304			/* EUI-64 */
3305			cur_id_prio = prio;
3306			cur_id_size = d[3];
3307			cur_id_str = d + 4;
 
3308			switch (cur_id_size) {
3309			case 8:
3310				id_size = snprintf(id, id_len,
3311						   "eui.%8phN",
3312						   cur_id_str);
3313				break;
3314			case 12:
3315				id_size = snprintf(id, id_len,
3316						   "eui.%12phN",
3317						   cur_id_str);
3318				break;
3319			case 16:
3320				id_size = snprintf(id, id_len,
3321						   "eui.%16phN",
3322						   cur_id_str);
3323				break;
3324			default:
 
3325				break;
3326			}
3327			break;
3328		case 0x3:
3329			/* NAA */
3330			cur_id_prio = prio;
 
3331			cur_id_size = d[3];
3332			cur_id_str = d + 4;
 
3333			switch (cur_id_size) {
3334			case 8:
3335				id_size = snprintf(id, id_len,
3336						   "naa.%8phN",
3337						   cur_id_str);
3338				break;
3339			case 16:
3340				id_size = snprintf(id, id_len,
3341						   "naa.%16phN",
3342						   cur_id_str);
3343				break;
3344			default:
 
3345				break;
3346			}
3347			break;
3348		case 0x8:
3349			/* SCSI name string */
3350			if (cur_id_size > d[3])
3351				break;
3352			/* Prefer others for truncated descriptor */
3353			if (d[3] > id_len) {
3354				prio = 2;
3355				if (cur_id_prio > prio)
3356					break;
3357			}
3358			cur_id_prio = prio;
3359			cur_id_size = id_size = d[3];
3360			cur_id_str = d + 4;
 
3361			if (cur_id_size >= id_len)
3362				cur_id_size = id_len - 1;
3363			memcpy(id, cur_id_str, cur_id_size);
 
 
 
3364			break;
3365		default:
3366			break;
3367		}
 
 
3368	}
3369	rcu_read_unlock();
3370
3371	return id_size;
3372}
3373EXPORT_SYMBOL(scsi_vpd_lun_id);
3374
3375/*
3376 * scsi_vpd_tpg_id - return a target port group identifier
3377 * @sdev: SCSI device
3378 *
3379 * Returns the Target Port Group identifier from the information
3380 * froom VPD page 0x83 of the device.
3381 *
3382 * Returns the identifier or error on failure.
3383 */
3384int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3385{
3386	const unsigned char *d;
3387	const struct scsi_vpd *vpd_pg83;
3388	int group_id = -EAGAIN, rel_port = -1;
3389
3390	rcu_read_lock();
3391	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3392	if (!vpd_pg83) {
3393		rcu_read_unlock();
3394		return -ENXIO;
3395	}
3396
3397	d = vpd_pg83->data + 4;
3398	while (d < vpd_pg83->data + vpd_pg83->len) {
3399		switch (d[1] & 0xf) {
3400		case 0x4:
3401			/* Relative target port */
3402			rel_port = get_unaligned_be16(&d[6]);
3403			break;
3404		case 0x5:
3405			/* Target port group */
3406			group_id = get_unaligned_be16(&d[6]);
3407			break;
3408		default:
3409			break;
3410		}
3411		d += d[3] + 4;
3412	}
3413	rcu_read_unlock();
3414
3415	if (group_id >= 0 && rel_id && rel_port != -1)
3416		*rel_id = rel_port;
3417
3418	return group_id;
3419}
3420EXPORT_SYMBOL(scsi_vpd_tpg_id);
3421
3422/**
3423 * scsi_build_sense - build sense data for a command
3424 * @scmd:	scsi command for which the sense should be formatted
3425 * @desc:	Sense format (non-zero == descriptor format,
3426 *              0 == fixed format)
3427 * @key:	Sense key
3428 * @asc:	Additional sense code
3429 * @ascq:	Additional sense code qualifier
3430 *
3431 **/
3432void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3433{
3434	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3435	scmd->result = SAM_STAT_CHECK_CONDITION;
3436}
3437EXPORT_SYMBOL_GPL(scsi_build_sense);
3438
3439#ifdef CONFIG_SCSI_LIB_KUNIT_TEST
3440#include "scsi_lib_test.c"
3441#endif