Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (C) 1999 Eric Youngdale
   3 * Copyright (C) 2014 Christoph Hellwig
   4 *
   5 *  SCSI queueing library.
   6 *      Initial versions: Eric Youngdale (eric@andante.org).
   7 *                        Based upon conversations with large numbers
   8 *                        of people at Linux Expo.
   9 */
  10
  11#include <linux/bio.h>
  12#include <linux/bitops.h>
  13#include <linux/blkdev.h>
  14#include <linux/completion.h>
  15#include <linux/kernel.h>
  16#include <linux/export.h>
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>
  21#include <linux/delay.h>
  22#include <linux/hardirq.h>
  23#include <linux/scatterlist.h>
  24#include <linux/blk-mq.h>
  25#include <linux/ratelimit.h>
  26#include <asm/unaligned.h>
  27
  28#include <scsi/scsi.h>
  29#include <scsi/scsi_cmnd.h>
  30#include <scsi/scsi_dbg.h>
  31#include <scsi/scsi_device.h>
  32#include <scsi/scsi_driver.h>
  33#include <scsi/scsi_eh.h>
  34#include <scsi/scsi_host.h>
  35#include <scsi/scsi_dh.h>
  36
  37#include <trace/events/scsi.h>
  38
  39#include "scsi_priv.h"
  40#include "scsi_logging.h"
  41
  42
  43#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
  44#define SG_MEMPOOL_SIZE		2
  45
  46struct scsi_host_sg_pool {
  47	size_t		size;
  48	char		*name;
  49	struct kmem_cache	*slab;
  50	mempool_t	*pool;
  51};
  52
  53#define SP(x) { .size = x, "sgpool-" __stringify(x) }
  54#if (SCSI_MAX_SG_SEGMENTS < 32)
  55#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
  56#endif
  57static struct scsi_host_sg_pool scsi_sg_pools[] = {
  58	SP(8),
  59	SP(16),
  60#if (SCSI_MAX_SG_SEGMENTS > 32)
  61	SP(32),
  62#if (SCSI_MAX_SG_SEGMENTS > 64)
  63	SP(64),
  64#if (SCSI_MAX_SG_SEGMENTS > 128)
  65	SP(128),
  66#if (SCSI_MAX_SG_SEGMENTS > 256)
  67#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
  68#endif
  69#endif
  70#endif
  71#endif
  72	SP(SCSI_MAX_SG_SEGMENTS)
  73};
  74#undef SP
  75
  76struct kmem_cache *scsi_sdb_cache;
  77
  78/*
  79 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  80 * not change behaviour from the previous unplug mechanism, experimentation
  81 * may prove this needs changing.
  82 */
  83#define SCSI_QUEUE_DELAY	3
  84
  85static void
  86scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
 
 
 
 
 
 
 
 
 
 
 
  87{
  88	struct Scsi_Host *host = cmd->device->host;
  89	struct scsi_device *device = cmd->device;
  90	struct scsi_target *starget = scsi_target(device);
 
 
 
 
 
  91
  92	/*
  93	 * Set the appropriate busy bit for the device/host.
  94	 *
  95	 * If the host/device isn't busy, assume that something actually
  96	 * completed, and that we should be able to queue a command now.
  97	 *
  98	 * Note that the prior mid-layer assumption that any host could
  99	 * always queue at least one command is now broken.  The mid-layer
 100	 * will implement a user specifiable stall (see
 101	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 102	 * if a command is requeued with no other commands outstanding
 103	 * either for the device or for the host.
 104	 */
 105	switch (reason) {
 106	case SCSI_MLQUEUE_HOST_BUSY:
 107		atomic_set(&host->host_blocked, host->max_host_blocked);
 108		break;
 109	case SCSI_MLQUEUE_DEVICE_BUSY:
 110	case SCSI_MLQUEUE_EH_RETRY:
 111		atomic_set(&device->device_blocked,
 112			   device->max_device_blocked);
 113		break;
 114	case SCSI_MLQUEUE_TARGET_BUSY:
 115		atomic_set(&starget->target_blocked,
 116			   starget->max_target_blocked);
 117		break;
 118	}
 119}
 120
 121static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
 122{
 123	struct scsi_device *sdev = cmd->device;
 124	struct request_queue *q = cmd->request->q;
 125
 126	blk_mq_requeue_request(cmd->request);
 127	blk_mq_kick_requeue_list(q);
 128	put_device(&sdev->sdev_gendev);
 129}
 130
 131/**
 132 * __scsi_queue_insert - private queue insertion
 133 * @cmd: The SCSI command being requeued
 134 * @reason:  The reason for the requeue
 135 * @unbusy: Whether the queue should be unbusied
 136 *
 137 * This is a private queue insertion.  The public interface
 138 * scsi_queue_insert() always assumes the queue should be unbusied
 139 * because it's always called before the completion.  This function is
 140 * for a requeue after completion, which should only occur in this
 141 * file.
 142 */
 143static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
 144{
 145	struct scsi_device *device = cmd->device;
 146	struct request_queue *q = device->request_queue;
 147	unsigned long flags;
 148
 149	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
 150		"Inserting command %p into mlqueue\n", cmd));
 151
 152	scsi_set_blocked(cmd, reason);
 153
 154	/*
 155	 * Decrement the counters, since these commands are no longer
 156	 * active on the host/device.
 157	 */
 158	if (unbusy)
 159		scsi_device_unbusy(device);
 160
 161	/*
 162	 * Requeue this command.  It will go before all other commands
 163	 * that are already in the queue. Schedule requeue work under
 164	 * lock such that the kblockd_schedule_work() call happens
 165	 * before blk_cleanup_queue() finishes.
 166	 */
 167	cmd->result = 0;
 168	if (q->mq_ops) {
 169		scsi_mq_requeue_cmd(cmd);
 170		return;
 171	}
 172	spin_lock_irqsave(q->queue_lock, flags);
 173	blk_requeue_request(q, cmd->request);
 174	kblockd_schedule_work(&device->requeue_work);
 175	spin_unlock_irqrestore(q->queue_lock, flags);
 176}
 177
 178/*
 179 * Function:    scsi_queue_insert()
 180 *
 181 * Purpose:     Insert a command in the midlevel queue.
 182 *
 183 * Arguments:   cmd    - command that we are adding to queue.
 184 *              reason - why we are inserting command to queue.
 185 *
 186 * Lock status: Assumed that lock is not held upon entry.
 187 *
 188 * Returns:     Nothing.
 189 *
 190 * Notes:       We do this for one of two cases.  Either the host is busy
 191 *              and it cannot accept any more commands for the time being,
 192 *              or the device returned QUEUE_FULL and can accept no more
 193 *              commands.
 194 * Notes:       This could be called either from an interrupt context or a
 195 *              normal process context.
 196 */
 197void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 198{
 199	__scsi_queue_insert(cmd, reason, 1);
 200}
 201/**
 202 * scsi_execute - insert request and wait for the result
 203 * @sdev:	scsi device
 204 * @cmd:	scsi command
 205 * @data_direction: data direction
 206 * @buffer:	data buffer
 207 * @bufflen:	len of buffer
 208 * @sense:	optional sense buffer
 209 * @timeout:	request timeout in seconds
 210 * @retries:	number of times to retry request
 211 * @flags:	or into request flags;
 212 * @resid:	optional residual length
 213 *
 214 * returns the req->errors value which is the scsi_cmnd result
 215 * field.
 216 */
 217int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 218		 int data_direction, void *buffer, unsigned bufflen,
 219		 unsigned char *sense, int timeout, int retries, u64 flags,
 220		 int *resid)
 221{
 222	struct request *req;
 223	int write = (data_direction == DMA_TO_DEVICE);
 224	int ret = DRIVER_ERROR << 24;
 225
 226	req = blk_get_request(sdev->request_queue, write, __GFP_RECLAIM);
 227	if (IS_ERR(req))
 228		return ret;
 229	blk_rq_set_block_pc(req);
 230
 231	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 232					buffer, bufflen, __GFP_RECLAIM))
 233		goto out;
 234
 235	req->cmd_len = COMMAND_SIZE(cmd[0]);
 236	memcpy(req->cmd, cmd, req->cmd_len);
 237	req->sense = sense;
 238	req->sense_len = 0;
 239	req->retries = retries;
 240	req->timeout = timeout;
 
 241	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 242
 243	/*
 244	 * head injection *required* here otherwise quiesce won't work
 245	 */
 246	blk_execute_rq(req->q, NULL, req, 1);
 247
 248	/*
 249	 * Some devices (USB mass-storage in particular) may transfer
 250	 * garbage data together with a residue indicating that the data
 251	 * is invalid.  Prevent the garbage from being misinterpreted
 252	 * and prevent security leaks by zeroing out the excess data.
 253	 */
 254	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 255		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 256
 257	if (resid)
 258		*resid = req->resid_len;
 259	ret = req->errors;
 260 out:
 261	blk_put_request(req);
 262
 263	return ret;
 264}
 265EXPORT_SYMBOL(scsi_execute);
 266
 267int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
 268		     int data_direction, void *buffer, unsigned bufflen,
 269		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 270		     int *resid, u64 flags)
 271{
 272	char *sense = NULL;
 273	int result;
 274	
 275	if (sshdr) {
 276		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 277		if (!sense)
 278			return DRIVER_ERROR << 24;
 279	}
 280	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 281			      sense, timeout, retries, flags, resid);
 282	if (sshdr)
 283		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 284
 285	kfree(sense);
 286	return result;
 287}
 288EXPORT_SYMBOL(scsi_execute_req_flags);
 289
 290/*
 291 * Function:    scsi_init_cmd_errh()
 292 *
 293 * Purpose:     Initialize cmd fields related to error handling.
 294 *
 295 * Arguments:   cmd	- command that is ready to be queued.
 296 *
 297 * Notes:       This function has the job of initializing a number of
 298 *              fields related to error handling.   Typically this will
 299 *              be called once for each command, as required.
 300 */
 301static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 302{
 303	cmd->serial_number = 0;
 304	scsi_set_resid(cmd, 0);
 305	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 306	if (cmd->cmd_len == 0)
 307		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 308}
 309
 310void scsi_device_unbusy(struct scsi_device *sdev)
 311{
 312	struct Scsi_Host *shost = sdev->host;
 313	struct scsi_target *starget = scsi_target(sdev);
 314	unsigned long flags;
 315
 316	atomic_dec(&shost->host_busy);
 317	if (starget->can_queue > 0)
 318		atomic_dec(&starget->target_busy);
 319
 320	if (unlikely(scsi_host_in_recovery(shost) &&
 321		     (shost->host_failed || shost->host_eh_scheduled))) {
 322		spin_lock_irqsave(shost->host_lock, flags);
 323		scsi_eh_wakeup(shost);
 324		spin_unlock_irqrestore(shost->host_lock, flags);
 325	}
 326
 327	atomic_dec(&sdev->device_busy);
 328}
 329
 330static void scsi_kick_queue(struct request_queue *q)
 331{
 332	if (q->mq_ops)
 333		blk_mq_start_hw_queues(q);
 334	else
 335		blk_run_queue(q);
 336}
 337
 338/*
 339 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 340 * and call blk_run_queue for all the scsi_devices on the target -
 341 * including current_sdev first.
 342 *
 343 * Called with *no* scsi locks held.
 344 */
 345static void scsi_single_lun_run(struct scsi_device *current_sdev)
 346{
 347	struct Scsi_Host *shost = current_sdev->host;
 348	struct scsi_device *sdev, *tmp;
 349	struct scsi_target *starget = scsi_target(current_sdev);
 350	unsigned long flags;
 351
 352	spin_lock_irqsave(shost->host_lock, flags);
 353	starget->starget_sdev_user = NULL;
 354	spin_unlock_irqrestore(shost->host_lock, flags);
 355
 356	/*
 357	 * Call blk_run_queue for all LUNs on the target, starting with
 358	 * current_sdev. We race with others (to set starget_sdev_user),
 359	 * but in most cases, we will be first. Ideally, each LU on the
 360	 * target would get some limited time or requests on the target.
 361	 */
 362	scsi_kick_queue(current_sdev->request_queue);
 363
 364	spin_lock_irqsave(shost->host_lock, flags);
 365	if (starget->starget_sdev_user)
 366		goto out;
 367	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 368			same_target_siblings) {
 369		if (sdev == current_sdev)
 370			continue;
 371		if (scsi_device_get(sdev))
 372			continue;
 373
 374		spin_unlock_irqrestore(shost->host_lock, flags);
 375		scsi_kick_queue(sdev->request_queue);
 376		spin_lock_irqsave(shost->host_lock, flags);
 377	
 378		scsi_device_put(sdev);
 379	}
 380 out:
 381	spin_unlock_irqrestore(shost->host_lock, flags);
 382}
 383
 384static inline bool scsi_device_is_busy(struct scsi_device *sdev)
 385{
 386	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
 387		return true;
 388	if (atomic_read(&sdev->device_blocked) > 0)
 389		return true;
 390	return false;
 391}
 392
 393static inline bool scsi_target_is_busy(struct scsi_target *starget)
 394{
 395	if (starget->can_queue > 0) {
 396		if (atomic_read(&starget->target_busy) >= starget->can_queue)
 397			return true;
 398		if (atomic_read(&starget->target_blocked) > 0)
 399			return true;
 400	}
 401	return false;
 402}
 403
 404static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
 405{
 406	if (shost->can_queue > 0 &&
 407	    atomic_read(&shost->host_busy) >= shost->can_queue)
 408		return true;
 409	if (atomic_read(&shost->host_blocked) > 0)
 410		return true;
 411	if (shost->host_self_blocked)
 412		return true;
 413	return false;
 414}
 415
 416static void scsi_starved_list_run(struct Scsi_Host *shost)
 417{
 418	LIST_HEAD(starved_list);
 419	struct scsi_device *sdev;
 420	unsigned long flags;
 421
 422	spin_lock_irqsave(shost->host_lock, flags);
 423	list_splice_init(&shost->starved_list, &starved_list);
 424
 425	while (!list_empty(&starved_list)) {
 426		struct request_queue *slq;
 427
 428		/*
 429		 * As long as shost is accepting commands and we have
 430		 * starved queues, call blk_run_queue. scsi_request_fn
 431		 * drops the queue_lock and can add us back to the
 432		 * starved_list.
 433		 *
 434		 * host_lock protects the starved_list and starved_entry.
 435		 * scsi_request_fn must get the host_lock before checking
 436		 * or modifying starved_list or starved_entry.
 437		 */
 438		if (scsi_host_is_busy(shost))
 439			break;
 440
 441		sdev = list_entry(starved_list.next,
 442				  struct scsi_device, starved_entry);
 443		list_del_init(&sdev->starved_entry);
 444		if (scsi_target_is_busy(scsi_target(sdev))) {
 445			list_move_tail(&sdev->starved_entry,
 446				       &shost->starved_list);
 447			continue;
 448		}
 449
 450		/*
 451		 * Once we drop the host lock, a racing scsi_remove_device()
 452		 * call may remove the sdev from the starved list and destroy
 453		 * it and the queue.  Mitigate by taking a reference to the
 454		 * queue and never touching the sdev again after we drop the
 455		 * host lock.  Note: if __scsi_remove_device() invokes
 456		 * blk_cleanup_queue() before the queue is run from this
 457		 * function then blk_run_queue() will return immediately since
 458		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 459		 */
 460		slq = sdev->request_queue;
 461		if (!blk_get_queue(slq))
 462			continue;
 463		spin_unlock_irqrestore(shost->host_lock, flags);
 464
 465		scsi_kick_queue(slq);
 466		blk_put_queue(slq);
 467
 468		spin_lock_irqsave(shost->host_lock, flags);
 469	}
 470	/* put any unprocessed entries back */
 471	list_splice(&starved_list, &shost->starved_list);
 472	spin_unlock_irqrestore(shost->host_lock, flags);
 473}
 474
 475/*
 476 * Function:   scsi_run_queue()
 477 *
 478 * Purpose:    Select a proper request queue to serve next
 479 *
 480 * Arguments:  q       - last request's queue
 481 *
 482 * Returns:     Nothing
 483 *
 484 * Notes:      The previous command was completely finished, start
 485 *             a new one if possible.
 486 */
 487static void scsi_run_queue(struct request_queue *q)
 488{
 489	struct scsi_device *sdev = q->queuedata;
 490
 491	if (scsi_target(sdev)->single_lun)
 492		scsi_single_lun_run(sdev);
 493	if (!list_empty(&sdev->host->starved_list))
 494		scsi_starved_list_run(sdev->host);
 495
 496	if (q->mq_ops)
 497		blk_mq_start_stopped_hw_queues(q, false);
 498	else
 499		blk_run_queue(q);
 500}
 501
 502void scsi_requeue_run_queue(struct work_struct *work)
 503{
 504	struct scsi_device *sdev;
 505	struct request_queue *q;
 506
 507	sdev = container_of(work, struct scsi_device, requeue_work);
 508	q = sdev->request_queue;
 509	scsi_run_queue(q);
 510}
 511
 512/*
 513 * Function:	scsi_requeue_command()
 514 *
 515 * Purpose:	Handle post-processing of completed commands.
 516 *
 517 * Arguments:	q	- queue to operate on
 518 *		cmd	- command that may need to be requeued.
 519 *
 520 * Returns:	Nothing
 521 *
 522 * Notes:	After command completion, there may be blocks left
 523 *		over which weren't finished by the previous command
 524 *		this can be for a number of reasons - the main one is
 525 *		I/O errors in the middle of the request, in which case
 526 *		we need to request the blocks that come after the bad
 527 *		sector.
 528 * Notes:	Upon return, cmd is a stale pointer.
 529 */
 530static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 531{
 532	struct scsi_device *sdev = cmd->device;
 533	struct request *req = cmd->request;
 534	unsigned long flags;
 535
 536	spin_lock_irqsave(q->queue_lock, flags);
 537	blk_unprep_request(req);
 538	req->special = NULL;
 539	scsi_put_command(cmd);
 540	blk_requeue_request(q, req);
 541	spin_unlock_irqrestore(q->queue_lock, flags);
 542
 543	scsi_run_queue(q);
 544
 545	put_device(&sdev->sdev_gendev);
 546}
 547
 
 
 
 
 
 
 
 
 
 
 
 548void scsi_run_host_queues(struct Scsi_Host *shost)
 549{
 550	struct scsi_device *sdev;
 551
 552	shost_for_each_device(sdev, shost)
 553		scsi_run_queue(sdev->request_queue);
 554}
 555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556static inline unsigned int scsi_sgtable_index(unsigned short nents)
 557{
 558	unsigned int index;
 559
 560	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
 561
 562	if (nents <= 8)
 563		index = 0;
 564	else
 565		index = get_count_order(nents) - 3;
 566
 567	return index;
 568}
 569
 570static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
 571{
 572	struct scsi_host_sg_pool *sgp;
 573
 574	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 575	mempool_free(sgl, sgp->pool);
 576}
 577
 578static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
 579{
 580	struct scsi_host_sg_pool *sgp;
 581
 582	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 583	return mempool_alloc(sgp->pool, gfp_mask);
 584}
 585
 586static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
 
 587{
 588	if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
 589		return;
 590	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
 591}
 592
 593static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
 594{
 595	struct scatterlist *first_chunk = NULL;
 596	int ret;
 597
 598	BUG_ON(!nents);
 599
 600	if (mq) {
 601		if (nents <= SCSI_MAX_SG_SEGMENTS) {
 602			sdb->table.nents = sdb->table.orig_nents = nents;
 603			sg_init_table(sdb->table.sgl, nents);
 604			return 0;
 605		}
 606		first_chunk = sdb->table.sgl;
 607	}
 608
 609	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
 610			       first_chunk, GFP_ATOMIC, scsi_sg_alloc);
 611	if (unlikely(ret))
 612		scsi_free_sgtable(sdb, mq);
 
 
 613	return ret;
 614}
 615
 616static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
 617{
 618	if (cmd->request->cmd_type == REQ_TYPE_FS) {
 619		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
 620
 621		if (drv->uninit_command)
 622			drv->uninit_command(cmd);
 623	}
 624}
 625
 626static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
 627{
 628	if (cmd->sdb.table.nents)
 629		scsi_free_sgtable(&cmd->sdb, true);
 630	if (cmd->request->next_rq && cmd->request->next_rq->special)
 631		scsi_free_sgtable(cmd->request->next_rq->special, true);
 632	if (scsi_prot_sg_count(cmd))
 633		scsi_free_sgtable(cmd->prot_sdb, true);
 634}
 635
 636static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
 637{
 638	struct scsi_device *sdev = cmd->device;
 639	struct Scsi_Host *shost = sdev->host;
 640	unsigned long flags;
 641
 642	scsi_mq_free_sgtables(cmd);
 643	scsi_uninit_cmd(cmd);
 644
 645	if (shost->use_cmd_list) {
 646		BUG_ON(list_empty(&cmd->list));
 647		spin_lock_irqsave(&sdev->list_lock, flags);
 648		list_del_init(&cmd->list);
 649		spin_unlock_irqrestore(&sdev->list_lock, flags);
 
 650	}
 
 
 
 651}
 652
 653/*
 654 * Function:    scsi_release_buffers()
 655 *
 656 * Purpose:     Free resources allocate for a scsi_command.
 657 *
 658 * Arguments:   cmd	- command that we are bailing.
 659 *
 660 * Lock status: Assumed that no lock is held upon entry.
 661 *
 662 * Returns:     Nothing
 663 *
 664 * Notes:       In the event that an upper level driver rejects a
 665 *		command, we must release resources allocated during
 666 *		the __init_io() function.  Primarily this would involve
 667 *		the scatter-gather table.
 
 668 */
 669static void scsi_release_buffers(struct scsi_cmnd *cmd)
 670{
 671	if (cmd->sdb.table.nents)
 672		scsi_free_sgtable(&cmd->sdb, false);
 673
 674	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 675
 676	if (scsi_prot_sg_count(cmd))
 677		scsi_free_sgtable(cmd->prot_sdb, false);
 678}
 679
 680static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
 681{
 682	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
 683
 684	scsi_free_sgtable(bidi_sdb, false);
 685	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 686	cmd->request->next_rq->special = NULL;
 687}
 688
 689static bool scsi_end_request(struct request *req, int error,
 690		unsigned int bytes, unsigned int bidi_bytes)
 691{
 692	struct scsi_cmnd *cmd = req->special;
 693	struct scsi_device *sdev = cmd->device;
 694	struct request_queue *q = sdev->request_queue;
 695
 696	if (blk_update_request(req, error, bytes))
 697		return true;
 698
 699	/* Bidi request must be completed as a whole */
 700	if (unlikely(bidi_bytes) &&
 701	    blk_update_request(req->next_rq, error, bidi_bytes))
 702		return true;
 703
 704	if (blk_queue_add_random(q))
 705		add_disk_randomness(req->rq_disk);
 706
 707	if (req->mq_ctx) {
 708		/*
 709		 * In the MQ case the command gets freed by __blk_mq_end_request,
 710		 * so we have to do all cleanup that depends on it earlier.
 711		 *
 712		 * We also can't kick the queues from irq context, so we
 713		 * will have to defer it to a workqueue.
 714		 */
 715		scsi_mq_uninit_cmd(cmd);
 716
 717		__blk_mq_end_request(req, error);
 718
 719		if (scsi_target(sdev)->single_lun ||
 720		    !list_empty(&sdev->host->starved_list))
 721			kblockd_schedule_work(&sdev->requeue_work);
 722		else
 723			blk_mq_start_stopped_hw_queues(q, true);
 724	} else {
 725		unsigned long flags;
 726
 727		if (bidi_bytes)
 728			scsi_release_bidi_buffers(cmd);
 729
 730		spin_lock_irqsave(q->queue_lock, flags);
 731		blk_finish_request(req, error);
 732		spin_unlock_irqrestore(q->queue_lock, flags);
 733
 734		scsi_release_buffers(cmd);
 735
 736		scsi_put_command(cmd);
 737		scsi_run_queue(q);
 738	}
 739
 740	put_device(&sdev->sdev_gendev);
 741	return false;
 742}
 
 743
 744/**
 745 * __scsi_error_from_host_byte - translate SCSI error code into errno
 746 * @cmd:	SCSI command (unused)
 747 * @result:	scsi error code
 748 *
 749 * Translate SCSI error code into standard UNIX errno.
 750 * Return values:
 751 * -ENOLINK	temporary transport failure
 752 * -EREMOTEIO	permanent target failure, do not retry
 753 * -EBADE	permanent nexus failure, retry on other path
 754 * -ENOSPC	No write space available
 755 * -ENODATA	Medium error
 756 * -EIO		unspecified I/O error
 757 */
 758static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 759{
 760	int error = 0;
 761
 762	switch(host_byte(result)) {
 763	case DID_TRANSPORT_FAILFAST:
 764		error = -ENOLINK;
 765		break;
 766	case DID_TARGET_FAILURE:
 767		set_host_byte(cmd, DID_OK);
 768		error = -EREMOTEIO;
 769		break;
 770	case DID_NEXUS_FAILURE:
 771		set_host_byte(cmd, DID_OK);
 772		error = -EBADE;
 773		break;
 774	case DID_ALLOC_FAILURE:
 775		set_host_byte(cmd, DID_OK);
 776		error = -ENOSPC;
 777		break;
 778	case DID_MEDIUM_ERROR:
 779		set_host_byte(cmd, DID_OK);
 780		error = -ENODATA;
 781		break;
 782	default:
 783		error = -EIO;
 784		break;
 785	}
 786
 787	return error;
 788}
 789
 790/*
 791 * Function:    scsi_io_completion()
 792 *
 793 * Purpose:     Completion processing for block device I/O requests.
 794 *
 795 * Arguments:   cmd   - command that is finished.
 796 *
 797 * Lock status: Assumed that no lock is held upon entry.
 798 *
 799 * Returns:     Nothing
 800 *
 801 * Notes:       We will finish off the specified number of sectors.  If we
 802 *		are done, the command block will be released and the queue
 803 *		function will be goosed.  If we are not done then we have to
 
 
 
 
 
 
 
 804 *		figure out what to do next:
 805 *
 806 *		a) We can call scsi_requeue_command().  The request
 807 *		   will be unprepared and put back on the queue.  Then
 808 *		   a new command will be created for it.  This should
 809 *		   be used if we made forward progress, or if we want
 810 *		   to switch from READ(10) to READ(6) for example.
 811 *
 812 *		b) We can call __scsi_queue_insert().  The request will
 813 *		   be put back on the queue and retried using the same
 814 *		   command as before, possibly after a delay.
 815 *
 816 *		c) We can call scsi_end_request() with -EIO to fail
 817 *		   the remainder of the request.
 818 */
 819void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 820{
 821	int result = cmd->result;
 822	struct request_queue *q = cmd->device->request_queue;
 823	struct request *req = cmd->request;
 824	int error = 0;
 825	struct scsi_sense_hdr sshdr;
 826	bool sense_valid = false;
 827	int sense_deferred = 0, level = 0;
 828	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 829	      ACTION_DELAYED_RETRY} action;
 
 830	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 831
 832	if (result) {
 833		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 834		if (sense_valid)
 835			sense_deferred = scsi_sense_is_deferred(&sshdr);
 836	}
 837
 838	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 839		if (result) {
 840			if (sense_valid && req->sense) {
 841				/*
 842				 * SG_IO wants current and deferred errors
 843				 */
 844				int len = 8 + cmd->sense_buffer[7];
 845
 846				if (len > SCSI_SENSE_BUFFERSIZE)
 847					len = SCSI_SENSE_BUFFERSIZE;
 848				memcpy(req->sense, cmd->sense_buffer,  len);
 849				req->sense_len = len;
 850			}
 851			if (!sense_deferred)
 852				error = __scsi_error_from_host_byte(cmd, result);
 853		}
 854		/*
 855		 * __scsi_error_from_host_byte may have reset the host_byte
 856		 */
 857		req->errors = cmd->result;
 858
 859		req->resid_len = scsi_get_resid(cmd);
 860
 861		if (scsi_bidi_cmnd(cmd)) {
 862			/*
 863			 * Bidi commands Must be complete as a whole,
 864			 * both sides at once.
 865			 */
 866			req->next_rq->resid_len = scsi_in(cmd)->resid;
 867			if (scsi_end_request(req, 0, blk_rq_bytes(req),
 868					blk_rq_bytes(req->next_rq)))
 869				BUG();
 
 
 870			return;
 871		}
 872	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
 873		/*
 874		 * Certain non BLOCK_PC requests are commands that don't
 875		 * actually transfer anything (FLUSH), so cannot use
 876		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
 877		 * This sets the error explicitly for the problem case.
 878		 */
 879		error = __scsi_error_from_host_byte(cmd, result);
 880	}
 881
 882	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 883	BUG_ON(blk_bidi_rq(req));
 884
 885	/*
 886	 * Next deal with any sectors which we were able to correctly
 887	 * handle.
 888	 */
 889	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
 890		"%u sectors total, %d bytes done.\n",
 891		blk_rq_sectors(req), good_bytes));
 892
 893	/*
 894	 * Recovered errors need reporting, but they're always treated
 895	 * as success, so fiddle the result code here.  For BLOCK_PC
 896	 * we already took a copy of the original into rq->errors which
 897	 * is what gets returned to the user
 898	 */
 899	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 900		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 901		 * print since caller wants ATA registers. Only occurs on
 902		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 903		 */
 904		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 905			;
 906		else if (!(req->cmd_flags & REQ_QUIET))
 907			scsi_print_sense(cmd);
 908		result = 0;
 909		/* BLOCK_PC may have set error */
 910		error = 0;
 911	}
 912
 913	/*
 914	 * If we finished all bytes in the request we are done now.
 
 
 915	 */
 916	if (!scsi_end_request(req, error, good_bytes, 0))
 917		return;
 918
 919	/*
 920	 * Kill remainder if no retrys.
 921	 */
 922	if (error && scsi_noretry_cmd(cmd)) {
 923		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
 924			BUG();
 925		return;
 926	}
 927
 928	/*
 929	 * If there had been no error, but we have leftover bytes in the
 930	 * requeues just queue the command up again.
 931	 */
 932	if (result == 0)
 933		goto requeue;
 934
 935	error = __scsi_error_from_host_byte(cmd, result);
 936
 937	if (host_byte(result) == DID_RESET) {
 938		/* Third party bus reset or reset for error recovery
 939		 * reasons.  Just retry the command and see what
 940		 * happens.
 941		 */
 942		action = ACTION_RETRY;
 943	} else if (sense_valid && !sense_deferred) {
 944		switch (sshdr.sense_key) {
 945		case UNIT_ATTENTION:
 946			if (cmd->device->removable) {
 947				/* Detected disc change.  Set a bit
 948				 * and quietly refuse further access.
 949				 */
 950				cmd->device->changed = 1;
 
 951				action = ACTION_FAIL;
 952			} else {
 953				/* Must have been a power glitch, or a
 954				 * bus reset.  Could not have been a
 955				 * media change, so we just retry the
 956				 * command and see what happens.
 957				 */
 958				action = ACTION_RETRY;
 959			}
 960			break;
 961		case ILLEGAL_REQUEST:
 962			/* If we had an ILLEGAL REQUEST returned, then
 963			 * we may have performed an unsupported
 964			 * command.  The only thing this should be
 965			 * would be a ten byte read where only a six
 966			 * byte read was supported.  Also, on a system
 967			 * where READ CAPACITY failed, we may have
 968			 * read past the end of the disk.
 969			 */
 970			if ((cmd->device->use_10_for_rw &&
 971			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 972			    (cmd->cmnd[0] == READ_10 ||
 973			     cmd->cmnd[0] == WRITE_10)) {
 974				/* This will issue a new 6-byte command. */
 975				cmd->device->use_10_for_rw = 0;
 976				action = ACTION_REPREP;
 977			} else if (sshdr.asc == 0x10) /* DIX */ {
 
 978				action = ACTION_FAIL;
 979				error = -EILSEQ;
 980			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 981			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982				action = ACTION_FAIL;
 983				error = -EREMOTEIO;
 984			} else
 985				action = ACTION_FAIL;
 986			break;
 987		case ABORTED_COMMAND:
 988			action = ACTION_FAIL;
 989			if (sshdr.asc == 0x10) /* DIF */
 
 990				error = -EILSEQ;
 
 991			break;
 992		case NOT_READY:
 993			/* If the device is in the process of becoming
 994			 * ready, or has a temporary blockage, retry.
 995			 */
 996			if (sshdr.asc == 0x04) {
 997				switch (sshdr.ascq) {
 998				case 0x01: /* becoming ready */
 999				case 0x04: /* format in progress */
1000				case 0x05: /* rebuild in progress */
1001				case 0x06: /* recalculation in progress */
1002				case 0x07: /* operation in progress */
1003				case 0x08: /* Long write in progress */
1004				case 0x09: /* self test in progress */
1005				case 0x14: /* space allocation in progress */
1006					action = ACTION_DELAYED_RETRY;
1007					break;
1008				default:
 
1009					action = ACTION_FAIL;
1010					break;
1011				}
1012			} else
 
1013				action = ACTION_FAIL;
 
1014			break;
1015		case VOLUME_OVERFLOW:
1016			/* See SSC3rXX or current. */
1017			action = ACTION_FAIL;
1018			break;
1019		default:
 
1020			action = ACTION_FAIL;
1021			break;
1022		}
1023	} else
 
1024		action = ACTION_FAIL;
 
1025
1026	if (action != ACTION_FAIL &&
1027	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1028		action = ACTION_FAIL;
 
 
1029
1030	switch (action) {
1031	case ACTION_FAIL:
1032		/* Give up and fail the remainder of the request */
 
1033		if (!(req->cmd_flags & REQ_QUIET)) {
1034			static DEFINE_RATELIMIT_STATE(_rs,
1035					DEFAULT_RATELIMIT_INTERVAL,
1036					DEFAULT_RATELIMIT_BURST);
1037
1038			if (unlikely(scsi_logging_level))
1039				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1040						       SCSI_LOG_MLCOMPLETE_BITS);
1041
1042			/*
1043			 * if logging is enabled the failure will be printed
1044			 * in scsi_log_completion(), so avoid duplicate messages
1045			 */
1046			if (!level && __ratelimit(&_rs)) {
1047				scsi_print_result(cmd, NULL, FAILED);
1048				if (driver_byte(result) & DRIVER_SENSE)
1049					scsi_print_sense(cmd);
1050				scsi_print_command(cmd);
1051			}
1052		}
1053		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1054			return;
1055		/*FALLTHRU*/
 
 
1056	case ACTION_REPREP:
1057	requeue:
1058		/* Unprep the request and put it back at the head of the queue.
1059		 * A new command will be prepared and issued.
1060		 */
1061		if (q->mq_ops) {
1062			cmd->request->cmd_flags &= ~REQ_DONTPREP;
1063			scsi_mq_uninit_cmd(cmd);
1064			scsi_mq_requeue_cmd(cmd);
1065		} else {
1066			scsi_release_buffers(cmd);
1067			scsi_requeue_command(q, cmd);
1068		}
1069		break;
1070	case ACTION_RETRY:
1071		/* Retry the same command immediately */
1072		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1073		break;
1074	case ACTION_DELAYED_RETRY:
1075		/* Retry the same command after a delay */
1076		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1077		break;
1078	}
1079}
1080
1081static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
 
1082{
1083	int count;
1084
1085	/*
1086	 * If sg table allocation fails, requeue request later.
1087	 */
1088	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1089					req->mq_ctx != NULL)))
1090		return BLKPREP_DEFER;
 
 
 
1091
1092	/* 
1093	 * Next, walk the list, and fill in the addresses and sizes of
1094	 * each segment.
1095	 */
1096	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1097	BUG_ON(count > sdb->table.nents);
1098	sdb->table.nents = count;
1099	sdb->length = blk_rq_bytes(req);
1100	return BLKPREP_OK;
1101}
1102
1103/*
1104 * Function:    scsi_init_io()
1105 *
1106 * Purpose:     SCSI I/O initialize function.
1107 *
1108 * Arguments:   cmd   - Command descriptor we wish to initialize
1109 *
1110 * Returns:     0 on success
1111 *		BLKPREP_DEFER if the failure is retryable
1112 *		BLKPREP_KILL if the failure is fatal
1113 */
1114int scsi_init_io(struct scsi_cmnd *cmd)
1115{
1116	struct scsi_device *sdev = cmd->device;
1117	struct request *rq = cmd->request;
1118	bool is_mq = (rq->mq_ctx != NULL);
1119	int error;
1120
1121	BUG_ON(!rq->nr_phys_segments);
1122
1123	error = scsi_init_sgtable(rq, &cmd->sdb);
1124	if (error)
1125		goto err_exit;
1126
1127	if (blk_bidi_rq(rq)) {
1128		if (!rq->q->mq_ops) {
1129			struct scsi_data_buffer *bidi_sdb =
1130				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1131			if (!bidi_sdb) {
1132				error = BLKPREP_DEFER;
1133				goto err_exit;
1134			}
1135
1136			rq->next_rq->special = bidi_sdb;
1137		}
1138
1139		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
 
1140		if (error)
1141			goto err_exit;
1142	}
1143
1144	if (blk_integrity_rq(rq)) {
1145		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1146		int ivecs, count;
1147
1148		if (prot_sdb == NULL) {
1149			/*
1150			 * This can happen if someone (e.g. multipath)
1151			 * queues a command to a device on an adapter
1152			 * that does not support DIX.
1153			 */
1154			WARN_ON_ONCE(1);
1155			error = BLKPREP_KILL;
1156			goto err_exit;
1157		}
1158
1159		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1160
1161		if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1162			error = BLKPREP_DEFER;
1163			goto err_exit;
1164		}
1165
1166		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1167						prot_sdb->table.sgl);
1168		BUG_ON(unlikely(count > ivecs));
1169		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1170
1171		cmd->prot_sdb = prot_sdb;
1172		cmd->prot_sdb->table.nents = count;
1173	}
1174
1175	return BLKPREP_OK;
 
1176err_exit:
1177	if (is_mq) {
1178		scsi_mq_free_sgtables(cmd);
1179	} else {
1180		scsi_release_buffers(cmd);
1181		cmd->request->special = NULL;
1182		scsi_put_command(cmd);
1183		put_device(&sdev->sdev_gendev);
1184	}
1185	return error;
1186}
1187EXPORT_SYMBOL(scsi_init_io);
1188
1189static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1190		struct request *req)
1191{
1192	struct scsi_cmnd *cmd;
1193
1194	if (!req->special) {
1195		/* Bail if we can't get a reference to the device */
1196		if (!get_device(&sdev->sdev_gendev))
1197			return NULL;
1198
1199		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1200		if (unlikely(!cmd)) {
1201			put_device(&sdev->sdev_gendev);
1202			return NULL;
1203		}
1204		req->special = cmd;
1205	} else {
1206		cmd = req->special;
1207	}
1208
1209	/* pull a tag out of the request if we have one */
1210	cmd->tag = req->tag;
1211	cmd->request = req;
1212
1213	cmd->cmnd = req->cmd;
1214	cmd->prot_op = SCSI_PROT_NORMAL;
1215
1216	return cmd;
1217}
1218
1219static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1220{
1221	struct scsi_cmnd *cmd = req->special;
 
 
 
 
 
 
 
 
1222
1223	/*
1224	 * BLOCK_PC requests may transfer data, in which case they must
1225	 * a bio attached to them.  Or they might contain a SCSI command
1226	 * that does not transfer data, in which case they may optionally
1227	 * submit a request without an attached bio.
1228	 */
1229	if (req->bio) {
1230		int ret = scsi_init_io(cmd);
 
 
 
 
1231		if (unlikely(ret))
1232			return ret;
1233	} else {
1234		BUG_ON(blk_rq_bytes(req));
1235
1236		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
1237	}
1238
1239	cmd->cmd_len = req->cmd_len;
 
 
 
 
 
 
 
1240	cmd->transfersize = blk_rq_bytes(req);
1241	cmd->allowed = req->retries;
1242	return BLKPREP_OK;
1243}
 
1244
1245/*
1246 * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1247 * that still need to be translated to SCSI CDBs from the ULD.
 
1248 */
1249static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1250{
1251	struct scsi_cmnd *cmd = req->special;
 
1252
1253	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1254		int ret = sdev->handler->prep_fn(sdev, req);
 
 
 
 
1255		if (ret != BLKPREP_OK)
1256			return ret;
1257	}
1258
1259	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1260	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1261}
1262
1263static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1264{
1265	struct scsi_cmnd *cmd = req->special;
1266
1267	if (!blk_rq_bytes(req))
1268		cmd->sc_data_direction = DMA_NONE;
1269	else if (rq_data_dir(req) == WRITE)
1270		cmd->sc_data_direction = DMA_TO_DEVICE;
1271	else
1272		cmd->sc_data_direction = DMA_FROM_DEVICE;
1273
1274	switch (req->cmd_type) {
1275	case REQ_TYPE_FS:
1276		return scsi_setup_fs_cmnd(sdev, req);
1277	case REQ_TYPE_BLOCK_PC:
1278		return scsi_setup_blk_pc_cmnd(sdev, req);
1279	default:
1280		return BLKPREP_KILL;
1281	}
1282}
 
1283
1284static int
1285scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1286{
1287	int ret = BLKPREP_OK;
1288
1289	/*
1290	 * If the device is not in running state we will reject some
1291	 * or all commands.
1292	 */
1293	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1294		switch (sdev->sdev_state) {
1295		case SDEV_OFFLINE:
1296		case SDEV_TRANSPORT_OFFLINE:
1297			/*
1298			 * If the device is offline we refuse to process any
1299			 * commands.  The device must be brought online
1300			 * before trying any recovery commands.
1301			 */
1302			sdev_printk(KERN_ERR, sdev,
1303				    "rejecting I/O to offline device\n");
1304			ret = BLKPREP_KILL;
1305			break;
1306		case SDEV_DEL:
1307			/*
1308			 * If the device is fully deleted, we refuse to
1309			 * process any commands as well.
1310			 */
1311			sdev_printk(KERN_ERR, sdev,
1312				    "rejecting I/O to dead device\n");
1313			ret = BLKPREP_KILL;
1314			break;
 
1315		case SDEV_BLOCK:
1316		case SDEV_CREATED_BLOCK:
1317			ret = BLKPREP_DEFER;
1318			break;
1319		case SDEV_QUIESCE:
1320			/*
1321			 * If the devices is blocked we defer normal commands.
1322			 */
1323			if (!(req->cmd_flags & REQ_PREEMPT))
1324				ret = BLKPREP_DEFER;
1325			break;
1326		default:
1327			/*
1328			 * For any other not fully online state we only allow
1329			 * special commands.  In particular any user initiated
1330			 * command is not allowed.
1331			 */
1332			if (!(req->cmd_flags & REQ_PREEMPT))
1333				ret = BLKPREP_KILL;
1334			break;
1335		}
1336	}
1337	return ret;
1338}
 
1339
1340static int
1341scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1342{
1343	struct scsi_device *sdev = q->queuedata;
1344
1345	switch (ret) {
1346	case BLKPREP_KILL:
1347	case BLKPREP_INVALID:
1348		req->errors = DID_NO_CONNECT << 16;
1349		/* release the command and kill it */
1350		if (req->special) {
1351			struct scsi_cmnd *cmd = req->special;
1352			scsi_release_buffers(cmd);
1353			scsi_put_command(cmd);
1354			put_device(&sdev->sdev_gendev);
1355			req->special = NULL;
1356		}
1357		break;
1358	case BLKPREP_DEFER:
1359		/*
1360		 * If we defer, the blk_peek_request() returns NULL, but the
1361		 * queue must be restarted, so we schedule a callback to happen
1362		 * shortly.
1363		 */
1364		if (atomic_read(&sdev->device_busy) == 0)
1365			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1366		break;
1367	default:
1368		req->cmd_flags |= REQ_DONTPREP;
1369	}
1370
1371	return ret;
1372}
 
1373
1374static int scsi_prep_fn(struct request_queue *q, struct request *req)
1375{
1376	struct scsi_device *sdev = q->queuedata;
1377	struct scsi_cmnd *cmd;
1378	int ret;
1379
1380	ret = scsi_prep_state_check(sdev, req);
1381	if (ret != BLKPREP_OK)
1382		goto out;
1383
1384	cmd = scsi_get_cmd_from_req(sdev, req);
1385	if (unlikely(!cmd)) {
1386		ret = BLKPREP_DEFER;
1387		goto out;
1388	}
1389
1390	ret = scsi_setup_cmnd(sdev, req);
1391out:
1392	return scsi_prep_return(q, req, ret);
1393}
1394
1395static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1396{
1397	scsi_uninit_cmd(req->special);
1398}
1399
1400/*
1401 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1402 * return 0.
1403 *
1404 * Called with the queue_lock held.
1405 */
1406static inline int scsi_dev_queue_ready(struct request_queue *q,
1407				  struct scsi_device *sdev)
1408{
1409	unsigned int busy;
1410
1411	busy = atomic_inc_return(&sdev->device_busy) - 1;
1412	if (atomic_read(&sdev->device_blocked)) {
1413		if (busy)
1414			goto out_dec;
1415
1416		/*
1417		 * unblock after device_blocked iterates to zero
1418		 */
1419		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1420			/*
1421			 * For the MQ case we take care of this in the caller.
1422			 */
1423			if (!q->mq_ops)
1424				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1425			goto out_dec;
1426		}
1427		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1428				   "unblocking device at zero depth\n"));
 
 
 
 
1429	}
1430
1431	if (busy >= sdev->queue_depth)
1432		goto out_dec;
1433
1434	return 1;
1435out_dec:
1436	atomic_dec(&sdev->device_busy);
1437	return 0;
1438}
1439
 
1440/*
1441 * scsi_target_queue_ready: checks if there we can send commands to target
1442 * @sdev: scsi device on starget to check.
 
 
1443 */
1444static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1445					   struct scsi_device *sdev)
1446{
1447	struct scsi_target *starget = scsi_target(sdev);
1448	unsigned int busy;
1449
1450	if (starget->single_lun) {
1451		spin_lock_irq(shost->host_lock);
1452		if (starget->starget_sdev_user &&
1453		    starget->starget_sdev_user != sdev) {
1454			spin_unlock_irq(shost->host_lock);
1455			return 0;
1456		}
1457		starget->starget_sdev_user = sdev;
1458		spin_unlock_irq(shost->host_lock);
1459	}
1460
1461	if (starget->can_queue <= 0)
1462		return 1;
1463
1464	busy = atomic_inc_return(&starget->target_busy) - 1;
1465	if (atomic_read(&starget->target_blocked) > 0) {
1466		if (busy)
1467			goto starved;
1468
1469		/*
1470		 * unblock after target_blocked iterates to zero
1471		 */
1472		if (atomic_dec_return(&starget->target_blocked) > 0)
1473			goto out_dec;
1474
1475		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1476				 "unblocking target at zero depth\n"));
1477	}
1478
1479	if (busy >= starget->can_queue)
1480		goto starved;
 
 
1481
1482	return 1;
1483
1484starved:
1485	spin_lock_irq(shost->host_lock);
1486	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1487	spin_unlock_irq(shost->host_lock);
1488out_dec:
1489	if (starget->can_queue > 0)
1490		atomic_dec(&starget->target_busy);
1491	return 0;
1492}
1493
1494/*
1495 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1496 * return 0. We must end up running the queue again whenever 0 is
1497 * returned, else IO can hang.
 
 
1498 */
1499static inline int scsi_host_queue_ready(struct request_queue *q,
1500				   struct Scsi_Host *shost,
1501				   struct scsi_device *sdev)
1502{
1503	unsigned int busy;
1504
1505	if (scsi_host_in_recovery(shost))
1506		return 0;
1507
1508	busy = atomic_inc_return(&shost->host_busy) - 1;
1509	if (atomic_read(&shost->host_blocked) > 0) {
1510		if (busy)
1511			goto starved;
1512
1513		/*
1514		 * unblock after host_blocked iterates to zero
1515		 */
1516		if (atomic_dec_return(&shost->host_blocked) > 0)
1517			goto out_dec;
1518
1519		SCSI_LOG_MLQUEUE(3,
1520			shost_printk(KERN_INFO, shost,
1521				     "unblocking host at zero depth\n"));
 
 
 
 
 
 
1522	}
1523
1524	if (shost->can_queue > 0 && busy >= shost->can_queue)
1525		goto starved;
1526	if (shost->host_self_blocked)
1527		goto starved;
1528
1529	/* We're OK to process the command, so we can't be starved */
1530	if (!list_empty(&sdev->starved_entry)) {
1531		spin_lock_irq(shost->host_lock);
1532		if (!list_empty(&sdev->starved_entry))
1533			list_del_init(&sdev->starved_entry);
1534		spin_unlock_irq(shost->host_lock);
1535	}
1536
1537	return 1;
1538
1539starved:
1540	spin_lock_irq(shost->host_lock);
1541	if (list_empty(&sdev->starved_entry))
1542		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1543	spin_unlock_irq(shost->host_lock);
1544out_dec:
1545	atomic_dec(&shost->host_busy);
1546	return 0;
1547}
1548
1549/*
1550 * Busy state exporting function for request stacking drivers.
1551 *
1552 * For efficiency, no lock is taken to check the busy state of
1553 * shost/starget/sdev, since the returned value is not guaranteed and
1554 * may be changed after request stacking drivers call the function,
1555 * regardless of taking lock or not.
1556 *
1557 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1558 * needs to return 'not busy'. Otherwise, request stacking drivers
1559 * may hold requests forever.
1560 */
1561static int scsi_lld_busy(struct request_queue *q)
1562{
1563	struct scsi_device *sdev = q->queuedata;
1564	struct Scsi_Host *shost;
1565
1566	if (blk_queue_dying(q))
1567		return 0;
1568
1569	shost = sdev->host;
1570
1571	/*
1572	 * Ignore host/starget busy state.
1573	 * Since block layer does not have a concept of fairness across
1574	 * multiple queues, congestion of host/starget needs to be handled
1575	 * in SCSI layer.
1576	 */
1577	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1578		return 1;
1579
1580	return 0;
1581}
1582
1583/*
1584 * Kill a request for a dead device
1585 */
1586static void scsi_kill_request(struct request *req, struct request_queue *q)
1587{
1588	struct scsi_cmnd *cmd = req->special;
1589	struct scsi_device *sdev;
1590	struct scsi_target *starget;
1591	struct Scsi_Host *shost;
1592
1593	blk_start_request(req);
1594
1595	scmd_printk(KERN_INFO, cmd, "killing request\n");
1596
1597	sdev = cmd->device;
1598	starget = scsi_target(sdev);
1599	shost = sdev->host;
1600	scsi_init_cmd_errh(cmd);
1601	cmd->result = DID_NO_CONNECT << 16;
1602	atomic_inc(&cmd->device->iorequest_cnt);
1603
1604	/*
1605	 * SCSI request completion path will do scsi_device_unbusy(),
1606	 * bump busy counts.  To bump the counters, we need to dance
1607	 * with the locks as normal issue path does.
1608	 */
1609	atomic_inc(&sdev->device_busy);
1610	atomic_inc(&shost->host_busy);
1611	if (starget->can_queue > 0)
1612		atomic_inc(&starget->target_busy);
 
 
 
1613
1614	blk_complete_request(req);
1615}
1616
1617static void scsi_softirq_done(struct request *rq)
1618{
1619	struct scsi_cmnd *cmd = rq->special;
1620	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1621	int disposition;
1622
1623	INIT_LIST_HEAD(&cmd->eh_entry);
1624
1625	atomic_inc(&cmd->device->iodone_cnt);
1626	if (cmd->result)
1627		atomic_inc(&cmd->device->ioerr_cnt);
1628
1629	disposition = scsi_decide_disposition(cmd);
1630	if (disposition != SUCCESS &&
1631	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1632		sdev_printk(KERN_ERR, cmd->device,
1633			    "timing out command, waited %lus\n",
1634			    wait_for/HZ);
1635		disposition = SUCCESS;
1636	}
1637
1638	scsi_log_completion(cmd, disposition);
1639
1640	switch (disposition) {
1641		case SUCCESS:
1642			scsi_finish_command(cmd);
1643			break;
1644		case NEEDS_RETRY:
1645			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1646			break;
1647		case ADD_TO_MLQUEUE:
1648			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1649			break;
1650		default:
1651			if (!scsi_eh_scmd_add(cmd, 0))
1652				scsi_finish_command(cmd);
1653	}
1654}
1655
1656/**
1657 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1658 * @cmd: command block we are dispatching.
1659 *
1660 * Return: nonzero return request was rejected and device's queue needs to be
1661 * plugged.
1662 */
1663static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1664{
1665	struct Scsi_Host *host = cmd->device->host;
1666	int rtn = 0;
1667
1668	atomic_inc(&cmd->device->iorequest_cnt);
1669
1670	/* check if the device is still usable */
1671	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1672		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1673		 * returns an immediate error upwards, and signals
1674		 * that the device is no longer present */
1675		cmd->result = DID_NO_CONNECT << 16;
1676		goto done;
1677	}
1678
1679	/* Check to see if the scsi lld made this device blocked. */
1680	if (unlikely(scsi_device_blocked(cmd->device))) {
1681		/*
1682		 * in blocked state, the command is just put back on
1683		 * the device queue.  The suspend state has already
1684		 * blocked the queue so future requests should not
1685		 * occur until the device transitions out of the
1686		 * suspend state.
1687		 */
1688		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1689			"queuecommand : device blocked\n"));
1690		return SCSI_MLQUEUE_DEVICE_BUSY;
1691	}
1692
1693	/* Store the LUN value in cmnd, if needed. */
1694	if (cmd->device->lun_in_cdb)
1695		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1696			       (cmd->device->lun << 5 & 0xe0);
1697
1698	scsi_log_send(cmd);
1699
1700	/*
1701	 * Before we queue this command, check if the command
1702	 * length exceeds what the host adapter can handle.
1703	 */
1704	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1705		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1706			       "queuecommand : command too long. "
1707			       "cdb_size=%d host->max_cmd_len=%d\n",
1708			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1709		cmd->result = (DID_ABORT << 16);
1710		goto done;
1711	}
1712
1713	if (unlikely(host->shost_state == SHOST_DEL)) {
1714		cmd->result = (DID_NO_CONNECT << 16);
1715		goto done;
1716
1717	}
1718
1719	trace_scsi_dispatch_cmd_start(cmd);
1720	rtn = host->hostt->queuecommand(host, cmd);
1721	if (rtn) {
1722		trace_scsi_dispatch_cmd_error(cmd, rtn);
1723		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1724		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1725			rtn = SCSI_MLQUEUE_HOST_BUSY;
1726
1727		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1728			"queuecommand : request rejected\n"));
1729	}
1730
1731	return rtn;
1732 done:
1733	cmd->scsi_done(cmd);
1734	return 0;
1735}
1736
1737/**
1738 * scsi_done - Invoke completion on finished SCSI command.
1739 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1740 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1741 *
1742 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1743 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1744 * calls blk_complete_request() for further processing.
1745 *
1746 * This function is interrupt context safe.
1747 */
1748static void scsi_done(struct scsi_cmnd *cmd)
1749{
1750	trace_scsi_dispatch_cmd_done(cmd);
1751	blk_complete_request(cmd->request);
1752}
1753
1754/*
1755 * Function:    scsi_request_fn()
1756 *
1757 * Purpose:     Main strategy routine for SCSI.
1758 *
1759 * Arguments:   q       - Pointer to actual queue.
1760 *
1761 * Returns:     Nothing
1762 *
1763 * Lock status: IO request lock assumed to be held when called.
1764 */
1765static void scsi_request_fn(struct request_queue *q)
1766	__releases(q->queue_lock)
1767	__acquires(q->queue_lock)
1768{
1769	struct scsi_device *sdev = q->queuedata;
1770	struct Scsi_Host *shost;
1771	struct scsi_cmnd *cmd;
1772	struct request *req;
1773
1774	/*
1775	 * To start with, we keep looping until the queue is empty, or until
1776	 * the host is no longer able to accept any more requests.
1777	 */
1778	shost = sdev->host;
1779	for (;;) {
1780		int rtn;
1781		/*
1782		 * get next queueable request.  We do this early to make sure
1783		 * that the request is fully prepared even if we cannot
1784		 * accept it.
1785		 */
1786		req = blk_peek_request(q);
1787		if (!req)
1788			break;
1789
1790		if (unlikely(!scsi_device_online(sdev))) {
1791			sdev_printk(KERN_ERR, sdev,
1792				    "rejecting I/O to offline device\n");
1793			scsi_kill_request(req, q);
1794			continue;
1795		}
1796
1797		if (!scsi_dev_queue_ready(q, sdev))
1798			break;
1799
1800		/*
1801		 * Remove the request from the request list.
1802		 */
1803		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1804			blk_start_request(req);
 
1805
1806		spin_unlock_irq(q->queue_lock);
1807		cmd = req->special;
1808		if (unlikely(cmd == NULL)) {
1809			printk(KERN_CRIT "impossible request in %s.\n"
1810					 "please mail a stack trace to "
1811					 "linux-scsi@vger.kernel.org\n",
1812					 __func__);
1813			blk_dump_rq_flags(req, "foo");
1814			BUG();
1815		}
 
1816
1817		/*
1818		 * We hit this when the driver is using a host wide
1819		 * tag map. For device level tag maps the queue_depth check
1820		 * in the device ready fn would prevent us from trying
1821		 * to allocate a tag. Since the map is a shared host resource
1822		 * we add the dev to the starved list so it eventually gets
1823		 * a run when a tag is freed.
1824		 */
1825		if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1826			spin_lock_irq(shost->host_lock);
1827			if (list_empty(&sdev->starved_entry))
1828				list_add_tail(&sdev->starved_entry,
1829					      &shost->starved_list);
1830			spin_unlock_irq(shost->host_lock);
1831			goto not_ready;
1832		}
1833
1834		if (!scsi_target_queue_ready(shost, sdev))
1835			goto not_ready;
1836
1837		if (!scsi_host_queue_ready(q, shost, sdev))
1838			goto host_not_ready;
1839	
1840		if (sdev->simple_tags)
1841			cmd->flags |= SCMD_TAGGED;
1842		else
1843			cmd->flags &= ~SCMD_TAGGED;
 
 
 
 
1844
1845		/*
1846		 * Finally, initialize any error handling parameters, and set up
1847		 * the timers for timeouts.
1848		 */
1849		scsi_init_cmd_errh(cmd);
1850
1851		/*
1852		 * Dispatch the command to the low-level driver.
1853		 */
1854		cmd->scsi_done = scsi_done;
1855		rtn = scsi_dispatch_cmd(cmd);
1856		if (rtn) {
1857			scsi_queue_insert(cmd, rtn);
1858			spin_lock_irq(q->queue_lock);
1859			goto out_delay;
1860		}
1861		spin_lock_irq(q->queue_lock);
 
 
1862	}
1863
1864	return;
1865
1866 host_not_ready:
1867	if (scsi_target(sdev)->can_queue > 0)
1868		atomic_dec(&scsi_target(sdev)->target_busy);
1869 not_ready:
 
 
1870	/*
1871	 * lock q, handle tag, requeue req, and decrement device_busy. We
1872	 * must return with queue_lock held.
1873	 *
1874	 * Decrementing device_busy without checking it is OK, as all such
1875	 * cases (host limits or settings) should run the queue at some
1876	 * later time.
1877	 */
1878	spin_lock_irq(q->queue_lock);
1879	blk_requeue_request(q, req);
1880	atomic_dec(&sdev->device_busy);
1881out_delay:
1882	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1883		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1884}
1885
1886static inline int prep_to_mq(int ret)
1887{
1888	switch (ret) {
1889	case BLKPREP_OK:
1890		return 0;
1891	case BLKPREP_DEFER:
1892		return BLK_MQ_RQ_QUEUE_BUSY;
1893	default:
1894		return BLK_MQ_RQ_QUEUE_ERROR;
1895	}
1896}
1897
1898static int scsi_mq_prep_fn(struct request *req)
1899{
1900	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1901	struct scsi_device *sdev = req->q->queuedata;
1902	struct Scsi_Host *shost = sdev->host;
1903	unsigned char *sense_buf = cmd->sense_buffer;
1904	struct scatterlist *sg;
1905
1906	memset(cmd, 0, sizeof(struct scsi_cmnd));
1907
1908	req->special = cmd;
1909
1910	cmd->request = req;
1911	cmd->device = sdev;
1912	cmd->sense_buffer = sense_buf;
1913
1914	cmd->tag = req->tag;
1915
1916	cmd->cmnd = req->cmd;
1917	cmd->prot_op = SCSI_PROT_NORMAL;
1918
1919	INIT_LIST_HEAD(&cmd->list);
1920	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1921	cmd->jiffies_at_alloc = jiffies;
1922
1923	if (shost->use_cmd_list) {
1924		spin_lock_irq(&sdev->list_lock);
1925		list_add_tail(&cmd->list, &sdev->cmd_list);
1926		spin_unlock_irq(&sdev->list_lock);
1927	}
1928
1929	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1930	cmd->sdb.table.sgl = sg;
1931
1932	if (scsi_host_get_prot(shost)) {
1933		cmd->prot_sdb = (void *)sg +
1934			min_t(unsigned int,
1935			      shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1936			sizeof(struct scatterlist);
1937		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1938
1939		cmd->prot_sdb->table.sgl =
1940			(struct scatterlist *)(cmd->prot_sdb + 1);
1941	}
1942
1943	if (blk_bidi_rq(req)) {
1944		struct request *next_rq = req->next_rq;
1945		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1946
1947		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1948		bidi_sdb->table.sgl =
1949			(struct scatterlist *)(bidi_sdb + 1);
1950
1951		next_rq->special = bidi_sdb;
1952	}
1953
1954	blk_mq_start_request(req);
1955
1956	return scsi_setup_cmnd(sdev, req);
1957}
1958
1959static void scsi_mq_done(struct scsi_cmnd *cmd)
1960{
1961	trace_scsi_dispatch_cmd_done(cmd);
1962	blk_mq_complete_request(cmd->request, cmd->request->errors);
1963}
1964
1965static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1966			 const struct blk_mq_queue_data *bd)
1967{
1968	struct request *req = bd->rq;
1969	struct request_queue *q = req->q;
1970	struct scsi_device *sdev = q->queuedata;
1971	struct Scsi_Host *shost = sdev->host;
1972	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1973	int ret;
1974	int reason;
1975
1976	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1977	if (ret)
1978		goto out;
1979
1980	ret = BLK_MQ_RQ_QUEUE_BUSY;
1981	if (!get_device(&sdev->sdev_gendev))
1982		goto out;
1983
1984	if (!scsi_dev_queue_ready(q, sdev))
1985		goto out_put_device;
1986	if (!scsi_target_queue_ready(shost, sdev))
1987		goto out_dec_device_busy;
1988	if (!scsi_host_queue_ready(q, shost, sdev))
1989		goto out_dec_target_busy;
1990
1991
1992	if (!(req->cmd_flags & REQ_DONTPREP)) {
1993		ret = prep_to_mq(scsi_mq_prep_fn(req));
1994		if (ret)
1995			goto out_dec_host_busy;
1996		req->cmd_flags |= REQ_DONTPREP;
1997	} else {
1998		blk_mq_start_request(req);
1999	}
2000
2001	if (sdev->simple_tags)
2002		cmd->flags |= SCMD_TAGGED;
2003	else
2004		cmd->flags &= ~SCMD_TAGGED;
2005
2006	scsi_init_cmd_errh(cmd);
2007	cmd->scsi_done = scsi_mq_done;
2008
2009	reason = scsi_dispatch_cmd(cmd);
2010	if (reason) {
2011		scsi_set_blocked(cmd, reason);
2012		ret = BLK_MQ_RQ_QUEUE_BUSY;
2013		goto out_dec_host_busy;
2014	}
2015
2016	return BLK_MQ_RQ_QUEUE_OK;
2017
2018out_dec_host_busy:
2019	atomic_dec(&shost->host_busy);
2020out_dec_target_busy:
2021	if (scsi_target(sdev)->can_queue > 0)
2022		atomic_dec(&scsi_target(sdev)->target_busy);
2023out_dec_device_busy:
2024	atomic_dec(&sdev->device_busy);
2025out_put_device:
2026	put_device(&sdev->sdev_gendev);
2027out:
2028	switch (ret) {
2029	case BLK_MQ_RQ_QUEUE_BUSY:
2030		blk_mq_stop_hw_queue(hctx);
2031		if (atomic_read(&sdev->device_busy) == 0 &&
2032		    !scsi_device_blocked(sdev))
2033			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2034		break;
2035	case BLK_MQ_RQ_QUEUE_ERROR:
2036		/*
2037		 * Make sure to release all allocated ressources when
2038		 * we hit an error, as we will never see this command
2039		 * again.
2040		 */
2041		if (req->cmd_flags & REQ_DONTPREP)
2042			scsi_mq_uninit_cmd(cmd);
2043		break;
2044	default:
2045		break;
2046	}
2047	return ret;
2048}
2049
2050static enum blk_eh_timer_return scsi_timeout(struct request *req,
2051		bool reserved)
2052{
2053	if (reserved)
2054		return BLK_EH_RESET_TIMER;
2055	return scsi_times_out(req);
2056}
2057
2058static int scsi_init_request(void *data, struct request *rq,
2059		unsigned int hctx_idx, unsigned int request_idx,
2060		unsigned int numa_node)
2061{
2062	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2063
2064	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2065			numa_node);
2066	if (!cmd->sense_buffer)
2067		return -ENOMEM;
2068	return 0;
2069}
2070
2071static void scsi_exit_request(void *data, struct request *rq,
2072		unsigned int hctx_idx, unsigned int request_idx)
2073{
2074	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2075
2076	kfree(cmd->sense_buffer);
2077}
2078
2079static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2080{
2081	struct device *host_dev;
2082	u64 bounce_limit = 0xffffffff;
2083
2084	if (shost->unchecked_isa_dma)
2085		return BLK_BOUNCE_ISA;
2086	/*
2087	 * Platforms with virtual-DMA translation
2088	 * hardware have no practical limit.
2089	 */
2090	if (!PCI_DMA_BUS_IS_PHYS)
2091		return BLK_BOUNCE_ANY;
2092
2093	host_dev = scsi_get_device(shost);
2094	if (host_dev && host_dev->dma_mask)
2095		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2096
2097	return bounce_limit;
2098}
 
2099
2100static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
 
2101{
 
2102	struct device *dev = shost->dma_dev;
2103
 
 
 
 
2104	/*
2105	 * this limit is imposed by hardware restrictions
2106	 */
2107	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2108					SCSI_MAX_SG_CHAIN_SEGMENTS));
2109
2110	if (scsi_host_prot_dma(shost)) {
2111		shost->sg_prot_tablesize =
2112			min_not_zero(shost->sg_prot_tablesize,
2113				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2114		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2115		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2116	}
2117
2118	blk_queue_max_hw_sectors(q, shost->max_sectors);
2119	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2120	blk_queue_segment_boundary(q, shost->dma_boundary);
2121	dma_set_seg_boundary(dev, shost->dma_boundary);
2122
2123	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2124
2125	if (!shost->use_clustering)
2126		q->limits.cluster = 0;
2127
2128	/*
2129	 * set a reasonable default alignment on word boundaries: the
2130	 * host and device may alter it using
2131	 * blk_queue_update_dma_alignment() later.
2132	 */
2133	blk_queue_dma_alignment(q, 0x03);
2134}
2135
2136struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2137					 request_fn_proc *request_fn)
2138{
2139	struct request_queue *q;
2140
2141	q = blk_init_queue(request_fn, NULL);
2142	if (!q)
2143		return NULL;
2144	__scsi_init_queue(shost, q);
2145	return q;
2146}
2147EXPORT_SYMBOL(__scsi_alloc_queue);
2148
2149struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2150{
2151	struct request_queue *q;
2152
2153	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2154	if (!q)
2155		return NULL;
2156
2157	blk_queue_prep_rq(q, scsi_prep_fn);
2158	blk_queue_unprep_rq(q, scsi_unprep_fn);
2159	blk_queue_softirq_done(q, scsi_softirq_done);
2160	blk_queue_rq_timed_out(q, scsi_times_out);
2161	blk_queue_lld_busy(q, scsi_lld_busy);
2162	return q;
2163}
2164
2165static struct blk_mq_ops scsi_mq_ops = {
2166	.map_queue	= blk_mq_map_queue,
2167	.queue_rq	= scsi_queue_rq,
2168	.complete	= scsi_softirq_done,
2169	.timeout	= scsi_timeout,
2170	.init_request	= scsi_init_request,
2171	.exit_request	= scsi_exit_request,
2172};
2173
2174struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2175{
2176	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2177	if (IS_ERR(sdev->request_queue))
2178		return NULL;
2179
2180	sdev->request_queue->queuedata = sdev;
2181	__scsi_init_queue(sdev->host, sdev->request_queue);
2182	return sdev->request_queue;
2183}
2184
2185int scsi_mq_setup_tags(struct Scsi_Host *shost)
2186{
2187	unsigned int cmd_size, sgl_size, tbl_size;
2188
2189	tbl_size = shost->sg_tablesize;
2190	if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2191		tbl_size = SCSI_MAX_SG_SEGMENTS;
2192	sgl_size = tbl_size * sizeof(struct scatterlist);
2193	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2194	if (scsi_host_get_prot(shost))
2195		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2196
2197	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2198	shost->tag_set.ops = &scsi_mq_ops;
2199	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2200	shost->tag_set.queue_depth = shost->can_queue;
2201	shost->tag_set.cmd_size = cmd_size;
2202	shost->tag_set.numa_node = NUMA_NO_NODE;
2203	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2204	shost->tag_set.flags |=
2205		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2206	shost->tag_set.driver_data = shost;
2207
2208	return blk_mq_alloc_tag_set(&shost->tag_set);
2209}
2210
2211void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2212{
2213	blk_mq_free_tag_set(&shost->tag_set);
2214}
2215
2216/*
2217 * Function:    scsi_block_requests()
2218 *
2219 * Purpose:     Utility function used by low-level drivers to prevent further
2220 *		commands from being queued to the device.
2221 *
2222 * Arguments:   shost       - Host in question
2223 *
2224 * Returns:     Nothing
2225 *
2226 * Lock status: No locks are assumed held.
2227 *
2228 * Notes:       There is no timer nor any other means by which the requests
2229 *		get unblocked other than the low-level driver calling
2230 *		scsi_unblock_requests().
2231 */
2232void scsi_block_requests(struct Scsi_Host *shost)
2233{
2234	shost->host_self_blocked = 1;
2235}
2236EXPORT_SYMBOL(scsi_block_requests);
2237
2238/*
2239 * Function:    scsi_unblock_requests()
2240 *
2241 * Purpose:     Utility function used by low-level drivers to allow further
2242 *		commands from being queued to the device.
2243 *
2244 * Arguments:   shost       - Host in question
2245 *
2246 * Returns:     Nothing
2247 *
2248 * Lock status: No locks are assumed held.
2249 *
2250 * Notes:       There is no timer nor any other means by which the requests
2251 *		get unblocked other than the low-level driver calling
2252 *		scsi_unblock_requests().
2253 *
2254 *		This is done as an API function so that changes to the
2255 *		internals of the scsi mid-layer won't require wholesale
2256 *		changes to drivers that use this feature.
2257 */
2258void scsi_unblock_requests(struct Scsi_Host *shost)
2259{
2260	shost->host_self_blocked = 0;
2261	scsi_run_host_queues(shost);
2262}
2263EXPORT_SYMBOL(scsi_unblock_requests);
2264
2265int __init scsi_init_queue(void)
2266{
2267	int i;
2268
2269	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2270					   sizeof(struct scsi_data_buffer),
2271					   0, 0, NULL);
2272	if (!scsi_sdb_cache) {
2273		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2274		return -ENOMEM;
2275	}
2276
2277	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2278		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2279		int size = sgp->size * sizeof(struct scatterlist);
2280
2281		sgp->slab = kmem_cache_create(sgp->name, size, 0,
2282				SLAB_HWCACHE_ALIGN, NULL);
2283		if (!sgp->slab) {
2284			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2285					sgp->name);
2286			goto cleanup_sdb;
2287		}
2288
2289		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2290						     sgp->slab);
2291		if (!sgp->pool) {
2292			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2293					sgp->name);
2294			goto cleanup_sdb;
2295		}
2296	}
2297
2298	return 0;
2299
2300cleanup_sdb:
2301	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2302		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2303		if (sgp->pool)
2304			mempool_destroy(sgp->pool);
2305		if (sgp->slab)
2306			kmem_cache_destroy(sgp->slab);
2307	}
2308	kmem_cache_destroy(scsi_sdb_cache);
2309
2310	return -ENOMEM;
2311}
2312
2313void scsi_exit_queue(void)
2314{
2315	int i;
2316
2317	kmem_cache_destroy(scsi_sdb_cache);
2318
2319	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2320		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2321		mempool_destroy(sgp->pool);
2322		kmem_cache_destroy(sgp->slab);
2323	}
2324}
2325
2326/**
2327 *	scsi_mode_select - issue a mode select
2328 *	@sdev:	SCSI device to be queried
2329 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2330 *	@sp:	Save page bit (0 == don't save, 1 == save)
2331 *	@modepage: mode page being requested
2332 *	@buffer: request buffer (may not be smaller than eight bytes)
2333 *	@len:	length of request buffer.
2334 *	@timeout: command timeout
2335 *	@retries: number of retries before failing
2336 *	@data: returns a structure abstracting the mode header data
2337 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2338 *		must be SCSI_SENSE_BUFFERSIZE big.
2339 *
2340 *	Returns zero if successful; negative error number or scsi
2341 *	status on error
2342 *
2343 */
2344int
2345scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2346		 unsigned char *buffer, int len, int timeout, int retries,
2347		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2348{
2349	unsigned char cmd[10];
2350	unsigned char *real_buffer;
2351	int ret;
2352
2353	memset(cmd, 0, sizeof(cmd));
2354	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2355
2356	if (sdev->use_10_for_ms) {
2357		if (len > 65535)
2358			return -EINVAL;
2359		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2360		if (!real_buffer)
2361			return -ENOMEM;
2362		memcpy(real_buffer + 8, buffer, len);
2363		len += 8;
2364		real_buffer[0] = 0;
2365		real_buffer[1] = 0;
2366		real_buffer[2] = data->medium_type;
2367		real_buffer[3] = data->device_specific;
2368		real_buffer[4] = data->longlba ? 0x01 : 0;
2369		real_buffer[5] = 0;
2370		real_buffer[6] = data->block_descriptor_length >> 8;
2371		real_buffer[7] = data->block_descriptor_length;
2372
2373		cmd[0] = MODE_SELECT_10;
2374		cmd[7] = len >> 8;
2375		cmd[8] = len;
2376	} else {
2377		if (len > 255 || data->block_descriptor_length > 255 ||
2378		    data->longlba)
2379			return -EINVAL;
2380
2381		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2382		if (!real_buffer)
2383			return -ENOMEM;
2384		memcpy(real_buffer + 4, buffer, len);
2385		len += 4;
2386		real_buffer[0] = 0;
2387		real_buffer[1] = data->medium_type;
2388		real_buffer[2] = data->device_specific;
2389		real_buffer[3] = data->block_descriptor_length;
2390		
2391
2392		cmd[0] = MODE_SELECT;
2393		cmd[4] = len;
2394	}
2395
2396	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2397			       sshdr, timeout, retries, NULL);
2398	kfree(real_buffer);
2399	return ret;
2400}
2401EXPORT_SYMBOL_GPL(scsi_mode_select);
2402
2403/**
2404 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2405 *	@sdev:	SCSI device to be queried
2406 *	@dbd:	set if mode sense will allow block descriptors to be returned
2407 *	@modepage: mode page being requested
2408 *	@buffer: request buffer (may not be smaller than eight bytes)
2409 *	@len:	length of request buffer.
2410 *	@timeout: command timeout
2411 *	@retries: number of retries before failing
2412 *	@data: returns a structure abstracting the mode header data
2413 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2414 *		must be SCSI_SENSE_BUFFERSIZE big.
2415 *
2416 *	Returns zero if unsuccessful, or the header offset (either 4
2417 *	or 8 depending on whether a six or ten byte command was
2418 *	issued) if successful.
2419 */
2420int
2421scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2422		  unsigned char *buffer, int len, int timeout, int retries,
2423		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2424{
2425	unsigned char cmd[12];
2426	int use_10_for_ms;
2427	int header_length;
2428	int result, retry_count = retries;
2429	struct scsi_sense_hdr my_sshdr;
2430
2431	memset(data, 0, sizeof(*data));
2432	memset(&cmd[0], 0, 12);
2433	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2434	cmd[2] = modepage;
2435
2436	/* caller might not be interested in sense, but we need it */
2437	if (!sshdr)
2438		sshdr = &my_sshdr;
2439
2440 retry:
2441	use_10_for_ms = sdev->use_10_for_ms;
2442
2443	if (use_10_for_ms) {
2444		if (len < 8)
2445			len = 8;
2446
2447		cmd[0] = MODE_SENSE_10;
2448		cmd[8] = len;
2449		header_length = 8;
2450	} else {
2451		if (len < 4)
2452			len = 4;
2453
2454		cmd[0] = MODE_SENSE;
2455		cmd[4] = len;
2456		header_length = 4;
2457	}
2458
2459	memset(buffer, 0, len);
2460
2461	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2462				  sshdr, timeout, retries, NULL);
2463
2464	/* This code looks awful: what it's doing is making sure an
2465	 * ILLEGAL REQUEST sense return identifies the actual command
2466	 * byte as the problem.  MODE_SENSE commands can return
2467	 * ILLEGAL REQUEST if the code page isn't supported */
2468
2469	if (use_10_for_ms && !scsi_status_is_good(result) &&
2470	    (driver_byte(result) & DRIVER_SENSE)) {
2471		if (scsi_sense_valid(sshdr)) {
2472			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2473			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2474				/* 
2475				 * Invalid command operation code
2476				 */
2477				sdev->use_10_for_ms = 0;
2478				goto retry;
2479			}
2480		}
2481	}
2482
2483	if(scsi_status_is_good(result)) {
2484		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2485			     (modepage == 6 || modepage == 8))) {
2486			/* Initio breakage? */
2487			header_length = 0;
2488			data->length = 13;
2489			data->medium_type = 0;
2490			data->device_specific = 0;
2491			data->longlba = 0;
2492			data->block_descriptor_length = 0;
2493		} else if(use_10_for_ms) {
2494			data->length = buffer[0]*256 + buffer[1] + 2;
2495			data->medium_type = buffer[2];
2496			data->device_specific = buffer[3];
2497			data->longlba = buffer[4] & 0x01;
2498			data->block_descriptor_length = buffer[6]*256
2499				+ buffer[7];
2500		} else {
2501			data->length = buffer[0] + 1;
2502			data->medium_type = buffer[1];
2503			data->device_specific = buffer[2];
2504			data->block_descriptor_length = buffer[3];
2505		}
2506		data->header_length = header_length;
2507	} else if ((status_byte(result) == CHECK_CONDITION) &&
2508		   scsi_sense_valid(sshdr) &&
2509		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2510		retry_count--;
2511		goto retry;
2512	}
2513
2514	return result;
2515}
2516EXPORT_SYMBOL(scsi_mode_sense);
2517
2518/**
2519 *	scsi_test_unit_ready - test if unit is ready
2520 *	@sdev:	scsi device to change the state of.
2521 *	@timeout: command timeout
2522 *	@retries: number of retries before failing
2523 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2524 *		returning sense. Make sure that this is cleared before passing
2525 *		in.
2526 *
2527 *	Returns zero if unsuccessful or an error if TUR failed.  For
2528 *	removable media, UNIT_ATTENTION sets ->changed flag.
2529 **/
2530int
2531scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2532		     struct scsi_sense_hdr *sshdr_external)
2533{
2534	char cmd[] = {
2535		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2536	};
2537	struct scsi_sense_hdr *sshdr;
2538	int result;
2539
2540	if (!sshdr_external)
2541		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2542	else
2543		sshdr = sshdr_external;
2544
2545	/* try to eat the UNIT_ATTENTION if there are enough retries */
2546	do {
2547		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2548					  timeout, retries, NULL);
2549		if (sdev->removable && scsi_sense_valid(sshdr) &&
2550		    sshdr->sense_key == UNIT_ATTENTION)
2551			sdev->changed = 1;
2552	} while (scsi_sense_valid(sshdr) &&
2553		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2554
2555	if (!sshdr_external)
2556		kfree(sshdr);
2557	return result;
2558}
2559EXPORT_SYMBOL(scsi_test_unit_ready);
2560
2561/**
2562 *	scsi_device_set_state - Take the given device through the device state model.
2563 *	@sdev:	scsi device to change the state of.
2564 *	@state:	state to change to.
2565 *
2566 *	Returns zero if unsuccessful or an error if the requested 
2567 *	transition is illegal.
2568 */
2569int
2570scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2571{
2572	enum scsi_device_state oldstate = sdev->sdev_state;
2573
2574	if (state == oldstate)
2575		return 0;
2576
2577	switch (state) {
2578	case SDEV_CREATED:
2579		switch (oldstate) {
2580		case SDEV_CREATED_BLOCK:
2581			break;
2582		default:
2583			goto illegal;
2584		}
2585		break;
2586			
2587	case SDEV_RUNNING:
2588		switch (oldstate) {
2589		case SDEV_CREATED:
2590		case SDEV_OFFLINE:
2591		case SDEV_TRANSPORT_OFFLINE:
2592		case SDEV_QUIESCE:
2593		case SDEV_BLOCK:
2594			break;
2595		default:
2596			goto illegal;
2597		}
2598		break;
2599
2600	case SDEV_QUIESCE:
2601		switch (oldstate) {
2602		case SDEV_RUNNING:
2603		case SDEV_OFFLINE:
2604		case SDEV_TRANSPORT_OFFLINE:
2605			break;
2606		default:
2607			goto illegal;
2608		}
2609		break;
2610
2611	case SDEV_OFFLINE:
2612	case SDEV_TRANSPORT_OFFLINE:
2613		switch (oldstate) {
2614		case SDEV_CREATED:
2615		case SDEV_RUNNING:
2616		case SDEV_QUIESCE:
2617		case SDEV_BLOCK:
2618			break;
2619		default:
2620			goto illegal;
2621		}
2622		break;
2623
2624	case SDEV_BLOCK:
2625		switch (oldstate) {
2626		case SDEV_RUNNING:
2627		case SDEV_CREATED_BLOCK:
2628			break;
2629		default:
2630			goto illegal;
2631		}
2632		break;
2633
2634	case SDEV_CREATED_BLOCK:
2635		switch (oldstate) {
2636		case SDEV_CREATED:
2637			break;
2638		default:
2639			goto illegal;
2640		}
2641		break;
2642
2643	case SDEV_CANCEL:
2644		switch (oldstate) {
2645		case SDEV_CREATED:
2646		case SDEV_RUNNING:
2647		case SDEV_QUIESCE:
2648		case SDEV_OFFLINE:
2649		case SDEV_TRANSPORT_OFFLINE:
2650		case SDEV_BLOCK:
2651			break;
2652		default:
2653			goto illegal;
2654		}
2655		break;
2656
2657	case SDEV_DEL:
2658		switch (oldstate) {
2659		case SDEV_CREATED:
2660		case SDEV_RUNNING:
2661		case SDEV_OFFLINE:
2662		case SDEV_TRANSPORT_OFFLINE:
2663		case SDEV_CANCEL:
2664		case SDEV_CREATED_BLOCK:
2665			break;
2666		default:
2667			goto illegal;
2668		}
2669		break;
2670
2671	}
2672	sdev->sdev_state = state;
2673	return 0;
2674
2675 illegal:
2676	SCSI_LOG_ERROR_RECOVERY(1,
2677				sdev_printk(KERN_ERR, sdev,
2678					    "Illegal state transition %s->%s",
2679					    scsi_device_state_name(oldstate),
2680					    scsi_device_state_name(state))
2681				);
2682	return -EINVAL;
2683}
2684EXPORT_SYMBOL(scsi_device_set_state);
2685
2686/**
2687 * 	sdev_evt_emit - emit a single SCSI device uevent
2688 *	@sdev: associated SCSI device
2689 *	@evt: event to emit
2690 *
2691 *	Send a single uevent (scsi_event) to the associated scsi_device.
2692 */
2693static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2694{
2695	int idx = 0;
2696	char *envp[3];
2697
2698	switch (evt->evt_type) {
2699	case SDEV_EVT_MEDIA_CHANGE:
2700		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2701		break;
2702	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2703		scsi_rescan_device(&sdev->sdev_gendev);
2704		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2705		break;
2706	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2707		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2708		break;
2709	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2710	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2711		break;
2712	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2713		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2714		break;
2715	case SDEV_EVT_LUN_CHANGE_REPORTED:
2716		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2717		break;
2718	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2719		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2720		break;
2721	default:
2722		/* do nothing */
2723		break;
2724	}
2725
2726	envp[idx++] = NULL;
2727
2728	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2729}
2730
2731/**
2732 * 	sdev_evt_thread - send a uevent for each scsi event
2733 *	@work: work struct for scsi_device
2734 *
2735 *	Dispatch queued events to their associated scsi_device kobjects
2736 *	as uevents.
2737 */
2738void scsi_evt_thread(struct work_struct *work)
2739{
2740	struct scsi_device *sdev;
2741	enum scsi_device_event evt_type;
2742	LIST_HEAD(event_list);
2743
2744	sdev = container_of(work, struct scsi_device, event_work);
2745
2746	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2747		if (test_and_clear_bit(evt_type, sdev->pending_events))
2748			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2749
2750	while (1) {
2751		struct scsi_event *evt;
2752		struct list_head *this, *tmp;
2753		unsigned long flags;
2754
2755		spin_lock_irqsave(&sdev->list_lock, flags);
2756		list_splice_init(&sdev->event_list, &event_list);
2757		spin_unlock_irqrestore(&sdev->list_lock, flags);
2758
2759		if (list_empty(&event_list))
2760			break;
2761
2762		list_for_each_safe(this, tmp, &event_list) {
2763			evt = list_entry(this, struct scsi_event, node);
2764			list_del(&evt->node);
2765			scsi_evt_emit(sdev, evt);
2766			kfree(evt);
2767		}
2768	}
2769}
2770
2771/**
2772 * 	sdev_evt_send - send asserted event to uevent thread
2773 *	@sdev: scsi_device event occurred on
2774 *	@evt: event to send
2775 *
2776 *	Assert scsi device event asynchronously.
2777 */
2778void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2779{
2780	unsigned long flags;
2781
2782#if 0
2783	/* FIXME: currently this check eliminates all media change events
2784	 * for polled devices.  Need to update to discriminate between AN
2785	 * and polled events */
2786	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2787		kfree(evt);
2788		return;
2789	}
2790#endif
2791
2792	spin_lock_irqsave(&sdev->list_lock, flags);
2793	list_add_tail(&evt->node, &sdev->event_list);
2794	schedule_work(&sdev->event_work);
2795	spin_unlock_irqrestore(&sdev->list_lock, flags);
2796}
2797EXPORT_SYMBOL_GPL(sdev_evt_send);
2798
2799/**
2800 * 	sdev_evt_alloc - allocate a new scsi event
2801 *	@evt_type: type of event to allocate
2802 *	@gfpflags: GFP flags for allocation
2803 *
2804 *	Allocates and returns a new scsi_event.
2805 */
2806struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2807				  gfp_t gfpflags)
2808{
2809	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2810	if (!evt)
2811		return NULL;
2812
2813	evt->evt_type = evt_type;
2814	INIT_LIST_HEAD(&evt->node);
2815
2816	/* evt_type-specific initialization, if any */
2817	switch (evt_type) {
2818	case SDEV_EVT_MEDIA_CHANGE:
2819	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2820	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2821	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2822	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2823	case SDEV_EVT_LUN_CHANGE_REPORTED:
2824	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2825	default:
2826		/* do nothing */
2827		break;
2828	}
2829
2830	return evt;
2831}
2832EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2833
2834/**
2835 * 	sdev_evt_send_simple - send asserted event to uevent thread
2836 *	@sdev: scsi_device event occurred on
2837 *	@evt_type: type of event to send
2838 *	@gfpflags: GFP flags for allocation
2839 *
2840 *	Assert scsi device event asynchronously, given an event type.
2841 */
2842void sdev_evt_send_simple(struct scsi_device *sdev,
2843			  enum scsi_device_event evt_type, gfp_t gfpflags)
2844{
2845	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2846	if (!evt) {
2847		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2848			    evt_type);
2849		return;
2850	}
2851
2852	sdev_evt_send(sdev, evt);
2853}
2854EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2855
2856/**
2857 *	scsi_device_quiesce - Block user issued commands.
2858 *	@sdev:	scsi device to quiesce.
2859 *
2860 *	This works by trying to transition to the SDEV_QUIESCE state
2861 *	(which must be a legal transition).  When the device is in this
2862 *	state, only special requests will be accepted, all others will
2863 *	be deferred.  Since special requests may also be requeued requests,
2864 *	a successful return doesn't guarantee the device will be 
2865 *	totally quiescent.
2866 *
2867 *	Must be called with user context, may sleep.
2868 *
2869 *	Returns zero if unsuccessful or an error if not.
2870 */
2871int
2872scsi_device_quiesce(struct scsi_device *sdev)
2873{
2874	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2875	if (err)
2876		return err;
2877
2878	scsi_run_queue(sdev->request_queue);
2879	while (atomic_read(&sdev->device_busy)) {
2880		msleep_interruptible(200);
2881		scsi_run_queue(sdev->request_queue);
2882	}
2883	return 0;
2884}
2885EXPORT_SYMBOL(scsi_device_quiesce);
2886
2887/**
2888 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2889 *	@sdev:	scsi device to resume.
2890 *
2891 *	Moves the device from quiesced back to running and restarts the
2892 *	queues.
2893 *
2894 *	Must be called with user context, may sleep.
2895 */
2896void scsi_device_resume(struct scsi_device *sdev)
2897{
2898	/* check if the device state was mutated prior to resume, and if
2899	 * so assume the state is being managed elsewhere (for example
2900	 * device deleted during suspend)
2901	 */
2902	if (sdev->sdev_state != SDEV_QUIESCE ||
2903	    scsi_device_set_state(sdev, SDEV_RUNNING))
2904		return;
2905	scsi_run_queue(sdev->request_queue);
2906}
2907EXPORT_SYMBOL(scsi_device_resume);
2908
2909static void
2910device_quiesce_fn(struct scsi_device *sdev, void *data)
2911{
2912	scsi_device_quiesce(sdev);
2913}
2914
2915void
2916scsi_target_quiesce(struct scsi_target *starget)
2917{
2918	starget_for_each_device(starget, NULL, device_quiesce_fn);
2919}
2920EXPORT_SYMBOL(scsi_target_quiesce);
2921
2922static void
2923device_resume_fn(struct scsi_device *sdev, void *data)
2924{
2925	scsi_device_resume(sdev);
2926}
2927
2928void
2929scsi_target_resume(struct scsi_target *starget)
2930{
2931	starget_for_each_device(starget, NULL, device_resume_fn);
2932}
2933EXPORT_SYMBOL(scsi_target_resume);
2934
2935/**
2936 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2937 * @sdev:	device to block
2938 *
2939 * Block request made by scsi lld's to temporarily stop all
2940 * scsi commands on the specified device.  Called from interrupt
2941 * or normal process context.
2942 *
2943 * Returns zero if successful or error if not
2944 *
2945 * Notes:       
2946 *	This routine transitions the device to the SDEV_BLOCK state
2947 *	(which must be a legal transition).  When the device is in this
2948 *	state, all commands are deferred until the scsi lld reenables
2949 *	the device with scsi_device_unblock or device_block_tmo fires.
2950 */
2951int
2952scsi_internal_device_block(struct scsi_device *sdev)
2953{
2954	struct request_queue *q = sdev->request_queue;
2955	unsigned long flags;
2956	int err = 0;
2957
2958	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2959	if (err) {
2960		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2961
2962		if (err)
2963			return err;
2964	}
2965
2966	/* 
2967	 * The device has transitioned to SDEV_BLOCK.  Stop the
2968	 * block layer from calling the midlayer with this device's
2969	 * request queue. 
2970	 */
2971	if (q->mq_ops) {
2972		blk_mq_stop_hw_queues(q);
2973	} else {
2974		spin_lock_irqsave(q->queue_lock, flags);
2975		blk_stop_queue(q);
2976		spin_unlock_irqrestore(q->queue_lock, flags);
2977	}
2978
2979	return 0;
2980}
2981EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2982 
2983/**
2984 * scsi_internal_device_unblock - resume a device after a block request
2985 * @sdev:	device to resume
2986 * @new_state:	state to set devices to after unblocking
2987 *
2988 * Called by scsi lld's or the midlayer to restart the device queue
2989 * for the previously suspended scsi device.  Called from interrupt or
2990 * normal process context.
2991 *
2992 * Returns zero if successful or error if not.
2993 *
2994 * Notes:       
2995 *	This routine transitions the device to the SDEV_RUNNING state
2996 *	or to one of the offline states (which must be a legal transition)
2997 *	allowing the midlayer to goose the queue for this device.
2998 */
2999int
3000scsi_internal_device_unblock(struct scsi_device *sdev,
3001			     enum scsi_device_state new_state)
3002{
3003	struct request_queue *q = sdev->request_queue; 
3004	unsigned long flags;
3005
3006	/*
3007	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3008	 * offlined states and goose the device queue if successful.
3009	 */
3010	if ((sdev->sdev_state == SDEV_BLOCK) ||
3011	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3012		sdev->sdev_state = new_state;
3013	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3014		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3015		    new_state == SDEV_OFFLINE)
3016			sdev->sdev_state = new_state;
3017		else
3018			sdev->sdev_state = SDEV_CREATED;
3019	} else if (sdev->sdev_state != SDEV_CANCEL &&
3020		 sdev->sdev_state != SDEV_OFFLINE)
3021		return -EINVAL;
3022
3023	if (q->mq_ops) {
3024		blk_mq_start_stopped_hw_queues(q, false);
3025	} else {
3026		spin_lock_irqsave(q->queue_lock, flags);
3027		blk_start_queue(q);
3028		spin_unlock_irqrestore(q->queue_lock, flags);
3029	}
3030
3031	return 0;
3032}
3033EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3034
3035static void
3036device_block(struct scsi_device *sdev, void *data)
3037{
3038	scsi_internal_device_block(sdev);
3039}
3040
3041static int
3042target_block(struct device *dev, void *data)
3043{
3044	if (scsi_is_target_device(dev))
3045		starget_for_each_device(to_scsi_target(dev), NULL,
3046					device_block);
3047	return 0;
3048}
3049
3050void
3051scsi_target_block(struct device *dev)
3052{
3053	if (scsi_is_target_device(dev))
3054		starget_for_each_device(to_scsi_target(dev), NULL,
3055					device_block);
3056	else
3057		device_for_each_child(dev, NULL, target_block);
3058}
3059EXPORT_SYMBOL_GPL(scsi_target_block);
3060
3061static void
3062device_unblock(struct scsi_device *sdev, void *data)
3063{
3064	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3065}
3066
3067static int
3068target_unblock(struct device *dev, void *data)
3069{
3070	if (scsi_is_target_device(dev))
3071		starget_for_each_device(to_scsi_target(dev), data,
3072					device_unblock);
3073	return 0;
3074}
3075
3076void
3077scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3078{
3079	if (scsi_is_target_device(dev))
3080		starget_for_each_device(to_scsi_target(dev), &new_state,
3081					device_unblock);
3082	else
3083		device_for_each_child(dev, &new_state, target_unblock);
3084}
3085EXPORT_SYMBOL_GPL(scsi_target_unblock);
3086
3087/**
3088 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3089 * @sgl:	scatter-gather list
3090 * @sg_count:	number of segments in sg
3091 * @offset:	offset in bytes into sg, on return offset into the mapped area
3092 * @len:	bytes to map, on return number of bytes mapped
3093 *
3094 * Returns virtual address of the start of the mapped page
3095 */
3096void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3097			  size_t *offset, size_t *len)
3098{
3099	int i;
3100	size_t sg_len = 0, len_complete = 0;
3101	struct scatterlist *sg;
3102	struct page *page;
3103
3104	WARN_ON(!irqs_disabled());
3105
3106	for_each_sg(sgl, sg, sg_count, i) {
3107		len_complete = sg_len; /* Complete sg-entries */
3108		sg_len += sg->length;
3109		if (sg_len > *offset)
3110			break;
3111	}
3112
3113	if (unlikely(i == sg_count)) {
3114		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3115			"elements %d\n",
3116		       __func__, sg_len, *offset, sg_count);
3117		WARN_ON(1);
3118		return NULL;
3119	}
3120
3121	/* Offset starting from the beginning of first page in this sg-entry */
3122	*offset = *offset - len_complete + sg->offset;
3123
3124	/* Assumption: contiguous pages can be accessed as "page + i" */
3125	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3126	*offset &= ~PAGE_MASK;
3127
3128	/* Bytes in this sg-entry from *offset to the end of the page */
3129	sg_len = PAGE_SIZE - *offset;
3130	if (*len > sg_len)
3131		*len = sg_len;
3132
3133	return kmap_atomic(page);
3134}
3135EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3136
3137/**
3138 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3139 * @virt:	virtual address to be unmapped
3140 */
3141void scsi_kunmap_atomic_sg(void *virt)
3142{
3143	kunmap_atomic(virt);
3144}
3145EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3146
3147void sdev_disable_disk_events(struct scsi_device *sdev)
3148{
3149	atomic_inc(&sdev->disk_events_disable_depth);
3150}
3151EXPORT_SYMBOL(sdev_disable_disk_events);
3152
3153void sdev_enable_disk_events(struct scsi_device *sdev)
3154{
3155	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3156		return;
3157	atomic_dec(&sdev->disk_events_disable_depth);
3158}
3159EXPORT_SYMBOL(sdev_enable_disk_events);
3160
3161/**
3162 * scsi_vpd_lun_id - return a unique device identification
3163 * @sdev: SCSI device
3164 * @id:   buffer for the identification
3165 * @id_len:  length of the buffer
3166 *
3167 * Copies a unique device identification into @id based
3168 * on the information in the VPD page 0x83 of the device.
3169 * The string will be formatted as a SCSI name string.
3170 *
3171 * Returns the length of the identification or error on failure.
3172 * If the identifier is longer than the supplied buffer the actual
3173 * identifier length is returned and the buffer is not zero-padded.
3174 */
3175int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3176{
3177	u8 cur_id_type = 0xff;
3178	u8 cur_id_size = 0;
3179	unsigned char *d, *cur_id_str;
3180	unsigned char __rcu *vpd_pg83;
3181	int id_size = -EINVAL;
3182
3183	rcu_read_lock();
3184	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3185	if (!vpd_pg83) {
3186		rcu_read_unlock();
3187		return -ENXIO;
3188	}
3189
3190	/*
3191	 * Look for the correct descriptor.
3192	 * Order of preference for lun descriptor:
3193	 * - SCSI name string
3194	 * - NAA IEEE Registered Extended
3195	 * - EUI-64 based 16-byte
3196	 * - EUI-64 based 12-byte
3197	 * - NAA IEEE Registered
3198	 * - NAA IEEE Extended
3199	 * as longer descriptors reduce the likelyhood
3200	 * of identification clashes.
3201	 */
3202
3203	/* The id string must be at least 20 bytes + terminating NULL byte */
3204	if (id_len < 21) {
3205		rcu_read_unlock();
3206		return -EINVAL;
3207	}
3208
3209	memset(id, 0, id_len);
3210	d = vpd_pg83 + 4;
3211	while (d < vpd_pg83 + sdev->vpd_pg83_len) {
3212		/* Skip designators not referring to the LUN */
3213		if ((d[1] & 0x30) != 0x00)
3214			goto next_desig;
3215
3216		switch (d[1] & 0xf) {
3217		case 0x2:
3218			/* EUI-64 */
3219			if (cur_id_size > d[3])
3220				break;
3221			/* Prefer NAA IEEE Registered Extended */
3222			if (cur_id_type == 0x3 &&
3223			    cur_id_size == d[3])
3224				break;
3225			cur_id_size = d[3];
3226			cur_id_str = d + 4;
3227			cur_id_type = d[1] & 0xf;
3228			switch (cur_id_size) {
3229			case 8:
3230				id_size = snprintf(id, id_len,
3231						   "eui.%8phN",
3232						   cur_id_str);
3233				break;
3234			case 12:
3235				id_size = snprintf(id, id_len,
3236						   "eui.%12phN",
3237						   cur_id_str);
3238				break;
3239			case 16:
3240				id_size = snprintf(id, id_len,
3241						   "eui.%16phN",
3242						   cur_id_str);
3243				break;
3244			default:
3245				cur_id_size = 0;
3246				break;
3247			}
3248			break;
3249		case 0x3:
3250			/* NAA */
3251			if (cur_id_size > d[3])
3252				break;
3253			cur_id_size = d[3];
3254			cur_id_str = d + 4;
3255			cur_id_type = d[1] & 0xf;
3256			switch (cur_id_size) {
3257			case 8:
3258				id_size = snprintf(id, id_len,
3259						   "naa.%8phN",
3260						   cur_id_str);
3261				break;
3262			case 16:
3263				id_size = snprintf(id, id_len,
3264						   "naa.%16phN",
3265						   cur_id_str);
3266				break;
3267			default:
3268				cur_id_size = 0;
3269				break;
3270			}
3271			break;
3272		case 0x8:
3273			/* SCSI name string */
3274			if (cur_id_size + 4 > d[3])
3275				break;
3276			/* Prefer others for truncated descriptor */
3277			if (cur_id_size && d[3] > id_len)
3278				break;
3279			cur_id_size = id_size = d[3];
3280			cur_id_str = d + 4;
3281			cur_id_type = d[1] & 0xf;
3282			if (cur_id_size >= id_len)
3283				cur_id_size = id_len - 1;
3284			memcpy(id, cur_id_str, cur_id_size);
3285			/* Decrease priority for truncated descriptor */
3286			if (cur_id_size != id_size)
3287				cur_id_size = 6;
3288			break;
3289		default:
3290			break;
3291		}
3292next_desig:
3293		d += d[3] + 4;
3294	}
3295	rcu_read_unlock();
3296
3297	return id_size;
3298}
3299EXPORT_SYMBOL(scsi_vpd_lun_id);
3300
3301/*
3302 * scsi_vpd_tpg_id - return a target port group identifier
3303 * @sdev: SCSI device
3304 *
3305 * Returns the Target Port Group identifier from the information
3306 * froom VPD page 0x83 of the device.
3307 *
3308 * Returns the identifier or error on failure.
3309 */
3310int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3311{
3312	unsigned char *d;
3313	unsigned char __rcu *vpd_pg83;
3314	int group_id = -EAGAIN, rel_port = -1;
3315
3316	rcu_read_lock();
3317	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3318	if (!vpd_pg83) {
3319		rcu_read_unlock();
3320		return -ENXIO;
3321	}
3322
3323	d = sdev->vpd_pg83 + 4;
3324	while (d < sdev->vpd_pg83 + sdev->vpd_pg83_len) {
3325		switch (d[1] & 0xf) {
3326		case 0x4:
3327			/* Relative target port */
3328			rel_port = get_unaligned_be16(&d[6]);
3329			break;
3330		case 0x5:
3331			/* Target port group */
3332			group_id = get_unaligned_be16(&d[6]);
3333			break;
3334		default:
3335			break;
3336		}
3337		d += d[3] + 4;
3338	}
3339	rcu_read_unlock();
3340
3341	if (group_id >= 0 && rel_id && rel_port != -1)
3342		*rel_id = rel_port;
3343
3344	return group_id;
3345}
3346EXPORT_SYMBOL(scsi_vpd_tpg_id);
v3.15
   1/*
   2 *  scsi_lib.c Copyright (C) 1999 Eric Youngdale
 
   3 *
   4 *  SCSI queueing library.
   5 *      Initial versions: Eric Youngdale (eric@andante.org).
   6 *                        Based upon conversations with large numbers
   7 *                        of people at Linux Expo.
   8 */
   9
  10#include <linux/bio.h>
  11#include <linux/bitops.h>
  12#include <linux/blkdev.h>
  13#include <linux/completion.h>
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/mempool.h>
  17#include <linux/slab.h>
  18#include <linux/init.h>
  19#include <linux/pci.h>
  20#include <linux/delay.h>
  21#include <linux/hardirq.h>
  22#include <linux/scatterlist.h>
 
 
 
  23
  24#include <scsi/scsi.h>
  25#include <scsi/scsi_cmnd.h>
  26#include <scsi/scsi_dbg.h>
  27#include <scsi/scsi_device.h>
  28#include <scsi/scsi_driver.h>
  29#include <scsi/scsi_eh.h>
  30#include <scsi/scsi_host.h>
 
 
 
  31
  32#include "scsi_priv.h"
  33#include "scsi_logging.h"
  34
  35
  36#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
  37#define SG_MEMPOOL_SIZE		2
  38
  39struct scsi_host_sg_pool {
  40	size_t		size;
  41	char		*name;
  42	struct kmem_cache	*slab;
  43	mempool_t	*pool;
  44};
  45
  46#define SP(x) { x, "sgpool-" __stringify(x) }
  47#if (SCSI_MAX_SG_SEGMENTS < 32)
  48#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
  49#endif
  50static struct scsi_host_sg_pool scsi_sg_pools[] = {
  51	SP(8),
  52	SP(16),
  53#if (SCSI_MAX_SG_SEGMENTS > 32)
  54	SP(32),
  55#if (SCSI_MAX_SG_SEGMENTS > 64)
  56	SP(64),
  57#if (SCSI_MAX_SG_SEGMENTS > 128)
  58	SP(128),
  59#if (SCSI_MAX_SG_SEGMENTS > 256)
  60#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
  61#endif
  62#endif
  63#endif
  64#endif
  65	SP(SCSI_MAX_SG_SEGMENTS)
  66};
  67#undef SP
  68
  69struct kmem_cache *scsi_sdb_cache;
  70
  71/*
  72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
  73 * not change behaviour from the previous unplug mechanism, experimentation
  74 * may prove this needs changing.
  75 */
  76#define SCSI_QUEUE_DELAY	3
  77
  78/**
  79 * __scsi_queue_insert - private queue insertion
  80 * @cmd: The SCSI command being requeued
  81 * @reason:  The reason for the requeue
  82 * @unbusy: Whether the queue should be unbusied
  83 *
  84 * This is a private queue insertion.  The public interface
  85 * scsi_queue_insert() always assumes the queue should be unbusied
  86 * because it's always called before the completion.  This function is
  87 * for a requeue after completion, which should only occur in this
  88 * file.
  89 */
  90static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
  91{
  92	struct Scsi_Host *host = cmd->device->host;
  93	struct scsi_device *device = cmd->device;
  94	struct scsi_target *starget = scsi_target(device);
  95	struct request_queue *q = device->request_queue;
  96	unsigned long flags;
  97
  98	SCSI_LOG_MLQUEUE(1,
  99		 printk("Inserting command %p into mlqueue\n", cmd));
 100
 101	/*
 102	 * Set the appropriate busy bit for the device/host.
 103	 *
 104	 * If the host/device isn't busy, assume that something actually
 105	 * completed, and that we should be able to queue a command now.
 106	 *
 107	 * Note that the prior mid-layer assumption that any host could
 108	 * always queue at least one command is now broken.  The mid-layer
 109	 * will implement a user specifiable stall (see
 110	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
 111	 * if a command is requeued with no other commands outstanding
 112	 * either for the device or for the host.
 113	 */
 114	switch (reason) {
 115	case SCSI_MLQUEUE_HOST_BUSY:
 116		host->host_blocked = host->max_host_blocked;
 117		break;
 118	case SCSI_MLQUEUE_DEVICE_BUSY:
 119	case SCSI_MLQUEUE_EH_RETRY:
 120		device->device_blocked = device->max_device_blocked;
 
 121		break;
 122	case SCSI_MLQUEUE_TARGET_BUSY:
 123		starget->target_blocked = starget->max_target_blocked;
 
 124		break;
 125	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126
 127	/*
 128	 * Decrement the counters, since these commands are no longer
 129	 * active on the host/device.
 130	 */
 131	if (unbusy)
 132		scsi_device_unbusy(device);
 133
 134	/*
 135	 * Requeue this command.  It will go before all other commands
 136	 * that are already in the queue. Schedule requeue work under
 137	 * lock such that the kblockd_schedule_work() call happens
 138	 * before blk_cleanup_queue() finishes.
 139	 */
 140	cmd->result = 0;
 
 
 
 
 141	spin_lock_irqsave(q->queue_lock, flags);
 142	blk_requeue_request(q, cmd->request);
 143	kblockd_schedule_work(q, &device->requeue_work);
 144	spin_unlock_irqrestore(q->queue_lock, flags);
 145}
 146
 147/*
 148 * Function:    scsi_queue_insert()
 149 *
 150 * Purpose:     Insert a command in the midlevel queue.
 151 *
 152 * Arguments:   cmd    - command that we are adding to queue.
 153 *              reason - why we are inserting command to queue.
 154 *
 155 * Lock status: Assumed that lock is not held upon entry.
 156 *
 157 * Returns:     Nothing.
 158 *
 159 * Notes:       We do this for one of two cases.  Either the host is busy
 160 *              and it cannot accept any more commands for the time being,
 161 *              or the device returned QUEUE_FULL and can accept no more
 162 *              commands.
 163 * Notes:       This could be called either from an interrupt context or a
 164 *              normal process context.
 165 */
 166void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
 167{
 168	__scsi_queue_insert(cmd, reason, 1);
 169}
 170/**
 171 * scsi_execute - insert request and wait for the result
 172 * @sdev:	scsi device
 173 * @cmd:	scsi command
 174 * @data_direction: data direction
 175 * @buffer:	data buffer
 176 * @bufflen:	len of buffer
 177 * @sense:	optional sense buffer
 178 * @timeout:	request timeout in seconds
 179 * @retries:	number of times to retry request
 180 * @flags:	or into request flags;
 181 * @resid:	optional residual length
 182 *
 183 * returns the req->errors value which is the scsi_cmnd result
 184 * field.
 185 */
 186int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
 187		 int data_direction, void *buffer, unsigned bufflen,
 188		 unsigned char *sense, int timeout, int retries, u64 flags,
 189		 int *resid)
 190{
 191	struct request *req;
 192	int write = (data_direction == DMA_TO_DEVICE);
 193	int ret = DRIVER_ERROR << 24;
 194
 195	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
 196	if (!req)
 197		return ret;
 
 198
 199	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
 200					buffer, bufflen, __GFP_WAIT))
 201		goto out;
 202
 203	req->cmd_len = COMMAND_SIZE(cmd[0]);
 204	memcpy(req->cmd, cmd, req->cmd_len);
 205	req->sense = sense;
 206	req->sense_len = 0;
 207	req->retries = retries;
 208	req->timeout = timeout;
 209	req->cmd_type = REQ_TYPE_BLOCK_PC;
 210	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
 211
 212	/*
 213	 * head injection *required* here otherwise quiesce won't work
 214	 */
 215	blk_execute_rq(req->q, NULL, req, 1);
 216
 217	/*
 218	 * Some devices (USB mass-storage in particular) may transfer
 219	 * garbage data together with a residue indicating that the data
 220	 * is invalid.  Prevent the garbage from being misinterpreted
 221	 * and prevent security leaks by zeroing out the excess data.
 222	 */
 223	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
 224		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
 225
 226	if (resid)
 227		*resid = req->resid_len;
 228	ret = req->errors;
 229 out:
 230	blk_put_request(req);
 231
 232	return ret;
 233}
 234EXPORT_SYMBOL(scsi_execute);
 235
 236int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
 237		     int data_direction, void *buffer, unsigned bufflen,
 238		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
 239		     int *resid, u64 flags)
 240{
 241	char *sense = NULL;
 242	int result;
 243	
 244	if (sshdr) {
 245		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
 246		if (!sense)
 247			return DRIVER_ERROR << 24;
 248	}
 249	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
 250			      sense, timeout, retries, flags, resid);
 251	if (sshdr)
 252		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
 253
 254	kfree(sense);
 255	return result;
 256}
 257EXPORT_SYMBOL(scsi_execute_req_flags);
 258
 259/*
 260 * Function:    scsi_init_cmd_errh()
 261 *
 262 * Purpose:     Initialize cmd fields related to error handling.
 263 *
 264 * Arguments:   cmd	- command that is ready to be queued.
 265 *
 266 * Notes:       This function has the job of initializing a number of
 267 *              fields related to error handling.   Typically this will
 268 *              be called once for each command, as required.
 269 */
 270static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
 271{
 272	cmd->serial_number = 0;
 273	scsi_set_resid(cmd, 0);
 274	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
 275	if (cmd->cmd_len == 0)
 276		cmd->cmd_len = scsi_command_size(cmd->cmnd);
 277}
 278
 279void scsi_device_unbusy(struct scsi_device *sdev)
 280{
 281	struct Scsi_Host *shost = sdev->host;
 282	struct scsi_target *starget = scsi_target(sdev);
 283	unsigned long flags;
 284
 285	spin_lock_irqsave(shost->host_lock, flags);
 286	shost->host_busy--;
 287	starget->target_busy--;
 
 288	if (unlikely(scsi_host_in_recovery(shost) &&
 289		     (shost->host_failed || shost->host_eh_scheduled)))
 
 290		scsi_eh_wakeup(shost);
 291	spin_unlock(shost->host_lock);
 292	spin_lock(sdev->request_queue->queue_lock);
 293	sdev->device_busy--;
 294	spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
 
 
 
 
 
 
 
 
 295}
 296
 297/*
 298 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
 299 * and call blk_run_queue for all the scsi_devices on the target -
 300 * including current_sdev first.
 301 *
 302 * Called with *no* scsi locks held.
 303 */
 304static void scsi_single_lun_run(struct scsi_device *current_sdev)
 305{
 306	struct Scsi_Host *shost = current_sdev->host;
 307	struct scsi_device *sdev, *tmp;
 308	struct scsi_target *starget = scsi_target(current_sdev);
 309	unsigned long flags;
 310
 311	spin_lock_irqsave(shost->host_lock, flags);
 312	starget->starget_sdev_user = NULL;
 313	spin_unlock_irqrestore(shost->host_lock, flags);
 314
 315	/*
 316	 * Call blk_run_queue for all LUNs on the target, starting with
 317	 * current_sdev. We race with others (to set starget_sdev_user),
 318	 * but in most cases, we will be first. Ideally, each LU on the
 319	 * target would get some limited time or requests on the target.
 320	 */
 321	blk_run_queue(current_sdev->request_queue);
 322
 323	spin_lock_irqsave(shost->host_lock, flags);
 324	if (starget->starget_sdev_user)
 325		goto out;
 326	list_for_each_entry_safe(sdev, tmp, &starget->devices,
 327			same_target_siblings) {
 328		if (sdev == current_sdev)
 329			continue;
 330		if (scsi_device_get(sdev))
 331			continue;
 332
 333		spin_unlock_irqrestore(shost->host_lock, flags);
 334		blk_run_queue(sdev->request_queue);
 335		spin_lock_irqsave(shost->host_lock, flags);
 336	
 337		scsi_device_put(sdev);
 338	}
 339 out:
 340	spin_unlock_irqrestore(shost->host_lock, flags);
 341}
 342
 343static inline int scsi_device_is_busy(struct scsi_device *sdev)
 344{
 345	if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
 346		return 1;
 347
 348	return 0;
 
 349}
 350
 351static inline int scsi_target_is_busy(struct scsi_target *starget)
 352{
 353	return ((starget->can_queue > 0 &&
 354		 starget->target_busy >= starget->can_queue) ||
 355		 starget->target_blocked);
 
 
 
 
 356}
 357
 358static inline int scsi_host_is_busy(struct Scsi_Host *shost)
 359{
 360	if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
 361	    shost->host_blocked || shost->host_self_blocked)
 362		return 1;
 363
 364	return 0;
 
 
 
 365}
 366
 367static void scsi_starved_list_run(struct Scsi_Host *shost)
 368{
 369	LIST_HEAD(starved_list);
 370	struct scsi_device *sdev;
 371	unsigned long flags;
 372
 373	spin_lock_irqsave(shost->host_lock, flags);
 374	list_splice_init(&shost->starved_list, &starved_list);
 375
 376	while (!list_empty(&starved_list)) {
 377		struct request_queue *slq;
 378
 379		/*
 380		 * As long as shost is accepting commands and we have
 381		 * starved queues, call blk_run_queue. scsi_request_fn
 382		 * drops the queue_lock and can add us back to the
 383		 * starved_list.
 384		 *
 385		 * host_lock protects the starved_list and starved_entry.
 386		 * scsi_request_fn must get the host_lock before checking
 387		 * or modifying starved_list or starved_entry.
 388		 */
 389		if (scsi_host_is_busy(shost))
 390			break;
 391
 392		sdev = list_entry(starved_list.next,
 393				  struct scsi_device, starved_entry);
 394		list_del_init(&sdev->starved_entry);
 395		if (scsi_target_is_busy(scsi_target(sdev))) {
 396			list_move_tail(&sdev->starved_entry,
 397				       &shost->starved_list);
 398			continue;
 399		}
 400
 401		/*
 402		 * Once we drop the host lock, a racing scsi_remove_device()
 403		 * call may remove the sdev from the starved list and destroy
 404		 * it and the queue.  Mitigate by taking a reference to the
 405		 * queue and never touching the sdev again after we drop the
 406		 * host lock.  Note: if __scsi_remove_device() invokes
 407		 * blk_cleanup_queue() before the queue is run from this
 408		 * function then blk_run_queue() will return immediately since
 409		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
 410		 */
 411		slq = sdev->request_queue;
 412		if (!blk_get_queue(slq))
 413			continue;
 414		spin_unlock_irqrestore(shost->host_lock, flags);
 415
 416		blk_run_queue(slq);
 417		blk_put_queue(slq);
 418
 419		spin_lock_irqsave(shost->host_lock, flags);
 420	}
 421	/* put any unprocessed entries back */
 422	list_splice(&starved_list, &shost->starved_list);
 423	spin_unlock_irqrestore(shost->host_lock, flags);
 424}
 425
 426/*
 427 * Function:   scsi_run_queue()
 428 *
 429 * Purpose:    Select a proper request queue to serve next
 430 *
 431 * Arguments:  q       - last request's queue
 432 *
 433 * Returns:     Nothing
 434 *
 435 * Notes:      The previous command was completely finished, start
 436 *             a new one if possible.
 437 */
 438static void scsi_run_queue(struct request_queue *q)
 439{
 440	struct scsi_device *sdev = q->queuedata;
 441
 442	if (scsi_target(sdev)->single_lun)
 443		scsi_single_lun_run(sdev);
 444	if (!list_empty(&sdev->host->starved_list))
 445		scsi_starved_list_run(sdev->host);
 446
 447	blk_run_queue(q);
 
 
 
 448}
 449
 450void scsi_requeue_run_queue(struct work_struct *work)
 451{
 452	struct scsi_device *sdev;
 453	struct request_queue *q;
 454
 455	sdev = container_of(work, struct scsi_device, requeue_work);
 456	q = sdev->request_queue;
 457	scsi_run_queue(q);
 458}
 459
 460/*
 461 * Function:	scsi_requeue_command()
 462 *
 463 * Purpose:	Handle post-processing of completed commands.
 464 *
 465 * Arguments:	q	- queue to operate on
 466 *		cmd	- command that may need to be requeued.
 467 *
 468 * Returns:	Nothing
 469 *
 470 * Notes:	After command completion, there may be blocks left
 471 *		over which weren't finished by the previous command
 472 *		this can be for a number of reasons - the main one is
 473 *		I/O errors in the middle of the request, in which case
 474 *		we need to request the blocks that come after the bad
 475 *		sector.
 476 * Notes:	Upon return, cmd is a stale pointer.
 477 */
 478static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
 479{
 480	struct scsi_device *sdev = cmd->device;
 481	struct request *req = cmd->request;
 482	unsigned long flags;
 483
 484	spin_lock_irqsave(q->queue_lock, flags);
 485	blk_unprep_request(req);
 486	req->special = NULL;
 487	scsi_put_command(cmd);
 488	blk_requeue_request(q, req);
 489	spin_unlock_irqrestore(q->queue_lock, flags);
 490
 491	scsi_run_queue(q);
 492
 493	put_device(&sdev->sdev_gendev);
 494}
 495
 496void scsi_next_command(struct scsi_cmnd *cmd)
 497{
 498	struct scsi_device *sdev = cmd->device;
 499	struct request_queue *q = sdev->request_queue;
 500
 501	scsi_put_command(cmd);
 502	scsi_run_queue(q);
 503
 504	put_device(&sdev->sdev_gendev);
 505}
 506
 507void scsi_run_host_queues(struct Scsi_Host *shost)
 508{
 509	struct scsi_device *sdev;
 510
 511	shost_for_each_device(sdev, shost)
 512		scsi_run_queue(sdev->request_queue);
 513}
 514
 515static void __scsi_release_buffers(struct scsi_cmnd *, int);
 516
 517/*
 518 * Function:    scsi_end_request()
 519 *
 520 * Purpose:     Post-processing of completed commands (usually invoked at end
 521 *		of upper level post-processing and scsi_io_completion).
 522 *
 523 * Arguments:   cmd	 - command that is complete.
 524 *              error    - 0 if I/O indicates success, < 0 for I/O error.
 525 *              bytes    - number of bytes of completed I/O
 526 *		requeue  - indicates whether we should requeue leftovers.
 527 *
 528 * Lock status: Assumed that lock is not held upon entry.
 529 *
 530 * Returns:     cmd if requeue required, NULL otherwise.
 531 *
 532 * Notes:       This is called for block device requests in order to
 533 *              mark some number of sectors as complete.
 534 * 
 535 *		We are guaranteeing that the request queue will be goosed
 536 *		at some point during this call.
 537 * Notes:	If cmd was requeued, upon return it will be a stale pointer.
 538 */
 539static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
 540					  int bytes, int requeue)
 541{
 542	struct request_queue *q = cmd->device->request_queue;
 543	struct request *req = cmd->request;
 544
 545	/*
 546	 * If there are blocks left over at the end, set up the command
 547	 * to queue the remainder of them.
 548	 */
 549	if (blk_end_request(req, error, bytes)) {
 550		/* kill remainder if no retrys */
 551		if (error && scsi_noretry_cmd(cmd))
 552			blk_end_request_all(req, error);
 553		else {
 554			if (requeue) {
 555				/*
 556				 * Bleah.  Leftovers again.  Stick the
 557				 * leftovers in the front of the
 558				 * queue, and goose the queue again.
 559				 */
 560				scsi_release_buffers(cmd);
 561				scsi_requeue_command(q, cmd);
 562				cmd = NULL;
 563			}
 564			return cmd;
 565		}
 566	}
 567
 568	/*
 569	 * This will goose the queue request function at the end, so we don't
 570	 * need to worry about launching another command.
 571	 */
 572	__scsi_release_buffers(cmd, 0);
 573	scsi_next_command(cmd);
 574	return NULL;
 575}
 576
 577static inline unsigned int scsi_sgtable_index(unsigned short nents)
 578{
 579	unsigned int index;
 580
 581	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
 582
 583	if (nents <= 8)
 584		index = 0;
 585	else
 586		index = get_count_order(nents) - 3;
 587
 588	return index;
 589}
 590
 591static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
 592{
 593	struct scsi_host_sg_pool *sgp;
 594
 595	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 596	mempool_free(sgl, sgp->pool);
 597}
 598
 599static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
 600{
 601	struct scsi_host_sg_pool *sgp;
 602
 603	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
 604	return mempool_alloc(sgp->pool, gfp_mask);
 605}
 606
 607static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
 608			      gfp_t gfp_mask)
 609{
 
 
 
 
 
 
 
 
 610	int ret;
 611
 612	BUG_ON(!nents);
 613
 
 
 
 
 
 
 
 
 
 614	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
 615			       gfp_mask, scsi_sg_alloc);
 616	if (unlikely(ret))
 617		__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
 618				scsi_sg_free);
 619
 620	return ret;
 621}
 622
 623static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
 624{
 625	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
 
 
 
 
 
 626}
 627
 628static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
 629{
 
 
 
 
 
 
 
 630
 631	if (cmd->sdb.table.nents)
 632		scsi_free_sgtable(&cmd->sdb);
 
 
 
 633
 634	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
 
 635
 636	if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
 637		struct scsi_data_buffer *bidi_sdb =
 638			cmd->request->next_rq->special;
 639		scsi_free_sgtable(bidi_sdb);
 640		kmem_cache_free(scsi_sdb_cache, bidi_sdb);
 641		cmd->request->next_rq->special = NULL;
 642	}
 643
 644	if (scsi_prot_sg_count(cmd))
 645		scsi_free_sgtable(cmd->prot_sdb);
 646}
 647
 648/*
 649 * Function:    scsi_release_buffers()
 650 *
 651 * Purpose:     Completion processing for block device I/O requests.
 652 *
 653 * Arguments:   cmd	- command that we are bailing.
 654 *
 655 * Lock status: Assumed that no lock is held upon entry.
 656 *
 657 * Returns:     Nothing
 658 *
 659 * Notes:       In the event that an upper level driver rejects a
 660 *		command, we must release resources allocated during
 661 *		the __init_io() function.  Primarily this would involve
 662 *		the scatter-gather table, and potentially any bounce
 663 *		buffers.
 664 */
 665void scsi_release_buffers(struct scsi_cmnd *cmd)
 
 
 
 
 
 
 
 
 
 
 
 666{
 667	__scsi_release_buffers(cmd, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668}
 669EXPORT_SYMBOL(scsi_release_buffers);
 670
 671/**
 672 * __scsi_error_from_host_byte - translate SCSI error code into errno
 673 * @cmd:	SCSI command (unused)
 674 * @result:	scsi error code
 675 *
 676 * Translate SCSI error code into standard UNIX errno.
 677 * Return values:
 678 * -ENOLINK	temporary transport failure
 679 * -EREMOTEIO	permanent target failure, do not retry
 680 * -EBADE	permanent nexus failure, retry on other path
 681 * -ENOSPC	No write space available
 682 * -ENODATA	Medium error
 683 * -EIO		unspecified I/O error
 684 */
 685static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
 686{
 687	int error = 0;
 688
 689	switch(host_byte(result)) {
 690	case DID_TRANSPORT_FAILFAST:
 691		error = -ENOLINK;
 692		break;
 693	case DID_TARGET_FAILURE:
 694		set_host_byte(cmd, DID_OK);
 695		error = -EREMOTEIO;
 696		break;
 697	case DID_NEXUS_FAILURE:
 698		set_host_byte(cmd, DID_OK);
 699		error = -EBADE;
 700		break;
 701	case DID_ALLOC_FAILURE:
 702		set_host_byte(cmd, DID_OK);
 703		error = -ENOSPC;
 704		break;
 705	case DID_MEDIUM_ERROR:
 706		set_host_byte(cmd, DID_OK);
 707		error = -ENODATA;
 708		break;
 709	default:
 710		error = -EIO;
 711		break;
 712	}
 713
 714	return error;
 715}
 716
 717/*
 718 * Function:    scsi_io_completion()
 719 *
 720 * Purpose:     Completion processing for block device I/O requests.
 721 *
 722 * Arguments:   cmd   - command that is finished.
 723 *
 724 * Lock status: Assumed that no lock is held upon entry.
 725 *
 726 * Returns:     Nothing
 727 *
 728 * Notes:       This function is matched in terms of capabilities to
 729 *              the function that created the scatter-gather list.
 730 *              In other words, if there are no bounce buffers
 731 *              (the normal case for most drivers), we don't need
 732 *              the logic to deal with cleaning up afterwards.
 733 *
 734 *		We must call scsi_end_request().  This will finish off
 735 *		the specified number of sectors.  If we are done, the
 736 *		command block will be released and the queue function
 737 *		will be goosed.  If we are not done then we have to
 738 *		figure out what to do next:
 739 *
 740 *		a) We can call scsi_requeue_command().  The request
 741 *		   will be unprepared and put back on the queue.  Then
 742 *		   a new command will be created for it.  This should
 743 *		   be used if we made forward progress, or if we want
 744 *		   to switch from READ(10) to READ(6) for example.
 745 *
 746 *		b) We can call scsi_queue_insert().  The request will
 747 *		   be put back on the queue and retried using the same
 748 *		   command as before, possibly after a delay.
 749 *
 750 *		c) We can call blk_end_request() with -EIO to fail
 751 *		   the remainder of the request.
 752 */
 753void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
 754{
 755	int result = cmd->result;
 756	struct request_queue *q = cmd->device->request_queue;
 757	struct request *req = cmd->request;
 758	int error = 0;
 759	struct scsi_sense_hdr sshdr;
 760	int sense_valid = 0;
 761	int sense_deferred = 0;
 762	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
 763	      ACTION_DELAYED_RETRY} action;
 764	char *description = NULL;
 765	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
 766
 767	if (result) {
 768		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
 769		if (sense_valid)
 770			sense_deferred = scsi_sense_is_deferred(&sshdr);
 771	}
 772
 773	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
 774		if (result) {
 775			if (sense_valid && req->sense) {
 776				/*
 777				 * SG_IO wants current and deferred errors
 778				 */
 779				int len = 8 + cmd->sense_buffer[7];
 780
 781				if (len > SCSI_SENSE_BUFFERSIZE)
 782					len = SCSI_SENSE_BUFFERSIZE;
 783				memcpy(req->sense, cmd->sense_buffer,  len);
 784				req->sense_len = len;
 785			}
 786			if (!sense_deferred)
 787				error = __scsi_error_from_host_byte(cmd, result);
 788		}
 789		/*
 790		 * __scsi_error_from_host_byte may have reset the host_byte
 791		 */
 792		req->errors = cmd->result;
 793
 794		req->resid_len = scsi_get_resid(cmd);
 795
 796		if (scsi_bidi_cmnd(cmd)) {
 797			/*
 798			 * Bidi commands Must be complete as a whole,
 799			 * both sides at once.
 800			 */
 801			req->next_rq->resid_len = scsi_in(cmd)->resid;
 802
 803			scsi_release_buffers(cmd);
 804			blk_end_request_all(req, 0);
 805
 806			scsi_next_command(cmd);
 807			return;
 808		}
 
 
 
 
 
 
 
 
 809	}
 810
 811	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
 812	BUG_ON(blk_bidi_rq(req));
 813
 814	/*
 815	 * Next deal with any sectors which we were able to correctly
 816	 * handle.
 817	 */
 818	SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
 819				      "%d bytes done.\n",
 820				      blk_rq_sectors(req), good_bytes));
 821
 822	/*
 823	 * Recovered errors need reporting, but they're always treated
 824	 * as success, so fiddle the result code here.  For BLOCK_PC
 825	 * we already took a copy of the original into rq->errors which
 826	 * is what gets returned to the user
 827	 */
 828	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
 829		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
 830		 * print since caller wants ATA registers. Only occurs on
 831		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
 832		 */
 833		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
 834			;
 835		else if (!(req->cmd_flags & REQ_QUIET))
 836			scsi_print_sense("", cmd);
 837		result = 0;
 838		/* BLOCK_PC may have set error */
 839		error = 0;
 840	}
 841
 842	/*
 843	 * A number of bytes were successfully read.  If there
 844	 * are leftovers and there is some kind of error
 845	 * (result != 0), retry the rest.
 846	 */
 847	if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
 848		return;
 849
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	error = __scsi_error_from_host_byte(cmd, result);
 851
 852	if (host_byte(result) == DID_RESET) {
 853		/* Third party bus reset or reset for error recovery
 854		 * reasons.  Just retry the command and see what
 855		 * happens.
 856		 */
 857		action = ACTION_RETRY;
 858	} else if (sense_valid && !sense_deferred) {
 859		switch (sshdr.sense_key) {
 860		case UNIT_ATTENTION:
 861			if (cmd->device->removable) {
 862				/* Detected disc change.  Set a bit
 863				 * and quietly refuse further access.
 864				 */
 865				cmd->device->changed = 1;
 866				description = "Media Changed";
 867				action = ACTION_FAIL;
 868			} else {
 869				/* Must have been a power glitch, or a
 870				 * bus reset.  Could not have been a
 871				 * media change, so we just retry the
 872				 * command and see what happens.
 873				 */
 874				action = ACTION_RETRY;
 875			}
 876			break;
 877		case ILLEGAL_REQUEST:
 878			/* If we had an ILLEGAL REQUEST returned, then
 879			 * we may have performed an unsupported
 880			 * command.  The only thing this should be
 881			 * would be a ten byte read where only a six
 882			 * byte read was supported.  Also, on a system
 883			 * where READ CAPACITY failed, we may have
 884			 * read past the end of the disk.
 885			 */
 886			if ((cmd->device->use_10_for_rw &&
 887			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
 888			    (cmd->cmnd[0] == READ_10 ||
 889			     cmd->cmnd[0] == WRITE_10)) {
 890				/* This will issue a new 6-byte command. */
 891				cmd->device->use_10_for_rw = 0;
 892				action = ACTION_REPREP;
 893			} else if (sshdr.asc == 0x10) /* DIX */ {
 894				description = "Host Data Integrity Failure";
 895				action = ACTION_FAIL;
 896				error = -EILSEQ;
 897			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
 898			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
 899				switch (cmd->cmnd[0]) {
 900				case UNMAP:
 901					description = "Discard failure";
 902					break;
 903				case WRITE_SAME:
 904				case WRITE_SAME_16:
 905					if (cmd->cmnd[1] & 0x8)
 906						description = "Discard failure";
 907					else
 908						description =
 909							"Write same failure";
 910					break;
 911				default:
 912					description = "Invalid command failure";
 913					break;
 914				}
 915				action = ACTION_FAIL;
 916				error = -EREMOTEIO;
 917			} else
 918				action = ACTION_FAIL;
 919			break;
 920		case ABORTED_COMMAND:
 921			action = ACTION_FAIL;
 922			if (sshdr.asc == 0x10) { /* DIF */
 923				description = "Target Data Integrity Failure";
 924				error = -EILSEQ;
 925			}
 926			break;
 927		case NOT_READY:
 928			/* If the device is in the process of becoming
 929			 * ready, or has a temporary blockage, retry.
 930			 */
 931			if (sshdr.asc == 0x04) {
 932				switch (sshdr.ascq) {
 933				case 0x01: /* becoming ready */
 934				case 0x04: /* format in progress */
 935				case 0x05: /* rebuild in progress */
 936				case 0x06: /* recalculation in progress */
 937				case 0x07: /* operation in progress */
 938				case 0x08: /* Long write in progress */
 939				case 0x09: /* self test in progress */
 940				case 0x14: /* space allocation in progress */
 941					action = ACTION_DELAYED_RETRY;
 942					break;
 943				default:
 944					description = "Device not ready";
 945					action = ACTION_FAIL;
 946					break;
 947				}
 948			} else {
 949				description = "Device not ready";
 950				action = ACTION_FAIL;
 951			}
 952			break;
 953		case VOLUME_OVERFLOW:
 954			/* See SSC3rXX or current. */
 955			action = ACTION_FAIL;
 956			break;
 957		default:
 958			description = "Unhandled sense code";
 959			action = ACTION_FAIL;
 960			break;
 961		}
 962	} else {
 963		description = "Unhandled error code";
 964		action = ACTION_FAIL;
 965	}
 966
 967	if (action != ACTION_FAIL &&
 968	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
 969		action = ACTION_FAIL;
 970		description = "Command timed out";
 971	}
 972
 973	switch (action) {
 974	case ACTION_FAIL:
 975		/* Give up and fail the remainder of the request */
 976		scsi_release_buffers(cmd);
 977		if (!(req->cmd_flags & REQ_QUIET)) {
 978			if (description)
 979				scmd_printk(KERN_INFO, cmd, "%s\n",
 980					    description);
 981			scsi_print_result(cmd);
 982			if (driver_byte(result) & DRIVER_SENSE)
 983				scsi_print_sense("", cmd);
 984			scsi_print_command(cmd);
 
 
 
 
 
 
 
 
 
 
 
 985		}
 986		if (blk_end_request_err(req, error))
 987			scsi_requeue_command(q, cmd);
 988		else
 989			scsi_next_command(cmd);
 990		break;
 991	case ACTION_REPREP:
 
 992		/* Unprep the request and put it back at the head of the queue.
 993		 * A new command will be prepared and issued.
 994		 */
 995		scsi_release_buffers(cmd);
 996		scsi_requeue_command(q, cmd);
 
 
 
 
 
 
 997		break;
 998	case ACTION_RETRY:
 999		/* Retry the same command immediately */
1000		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1001		break;
1002	case ACTION_DELAYED_RETRY:
1003		/* Retry the same command after a delay */
1004		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1005		break;
1006	}
1007}
1008
1009static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1010			     gfp_t gfp_mask)
1011{
1012	int count;
1013
1014	/*
1015	 * If sg table allocation fails, requeue request later.
1016	 */
1017	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1018					gfp_mask))) {
1019		return BLKPREP_DEFER;
1020	}
1021
1022	req->buffer = NULL;
1023
1024	/* 
1025	 * Next, walk the list, and fill in the addresses and sizes of
1026	 * each segment.
1027	 */
1028	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1029	BUG_ON(count > sdb->table.nents);
1030	sdb->table.nents = count;
1031	sdb->length = blk_rq_bytes(req);
1032	return BLKPREP_OK;
1033}
1034
1035/*
1036 * Function:    scsi_init_io()
1037 *
1038 * Purpose:     SCSI I/O initialize function.
1039 *
1040 * Arguments:   cmd   - Command descriptor we wish to initialize
1041 *
1042 * Returns:     0 on success
1043 *		BLKPREP_DEFER if the failure is retryable
1044 *		BLKPREP_KILL if the failure is fatal
1045 */
1046int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1047{
1048	struct scsi_device *sdev = cmd->device;
1049	struct request *rq = cmd->request;
 
 
 
 
1050
1051	int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1052	if (error)
1053		goto err_exit;
1054
1055	if (blk_bidi_rq(rq)) {
1056		struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1057			scsi_sdb_cache, GFP_ATOMIC);
1058		if (!bidi_sdb) {
1059			error = BLKPREP_DEFER;
1060			goto err_exit;
 
 
 
 
1061		}
1062
1063		rq->next_rq->special = bidi_sdb;
1064		error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1065		if (error)
1066			goto err_exit;
1067	}
1068
1069	if (blk_integrity_rq(rq)) {
1070		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1071		int ivecs, count;
1072
1073		BUG_ON(prot_sdb == NULL);
 
 
 
 
 
 
 
 
 
 
1074		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1075
1076		if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1077			error = BLKPREP_DEFER;
1078			goto err_exit;
1079		}
1080
1081		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1082						prot_sdb->table.sgl);
1083		BUG_ON(unlikely(count > ivecs));
1084		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1085
1086		cmd->prot_sdb = prot_sdb;
1087		cmd->prot_sdb->table.nents = count;
1088	}
1089
1090	return BLKPREP_OK ;
1091
1092err_exit:
1093	scsi_release_buffers(cmd);
1094	cmd->request->special = NULL;
1095	scsi_put_command(cmd);
1096	put_device(&sdev->sdev_gendev);
 
 
 
 
1097	return error;
1098}
1099EXPORT_SYMBOL(scsi_init_io);
1100
1101static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1102		struct request *req)
1103{
1104	struct scsi_cmnd *cmd;
1105
1106	if (!req->special) {
1107		/* Bail if we can't get a reference to the device */
1108		if (!get_device(&sdev->sdev_gendev))
1109			return NULL;
1110
1111		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1112		if (unlikely(!cmd)) {
1113			put_device(&sdev->sdev_gendev);
1114			return NULL;
1115		}
1116		req->special = cmd;
1117	} else {
1118		cmd = req->special;
1119	}
1120
1121	/* pull a tag out of the request if we have one */
1122	cmd->tag = req->tag;
1123	cmd->request = req;
1124
1125	cmd->cmnd = req->cmd;
1126	cmd->prot_op = SCSI_PROT_NORMAL;
1127
1128	return cmd;
1129}
1130
1131int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1132{
1133	struct scsi_cmnd *cmd;
1134	int ret = scsi_prep_state_check(sdev, req);
1135
1136	if (ret != BLKPREP_OK)
1137		return ret;
1138
1139	cmd = scsi_get_cmd_from_req(sdev, req);
1140	if (unlikely(!cmd))
1141		return BLKPREP_DEFER;
1142
1143	/*
1144	 * BLOCK_PC requests may transfer data, in which case they must
1145	 * a bio attached to them.  Or they might contain a SCSI command
1146	 * that does not transfer data, in which case they may optionally
1147	 * submit a request without an attached bio.
1148	 */
1149	if (req->bio) {
1150		int ret;
1151
1152		BUG_ON(!req->nr_phys_segments);
1153
1154		ret = scsi_init_io(cmd, GFP_ATOMIC);
1155		if (unlikely(ret))
1156			return ret;
1157	} else {
1158		BUG_ON(blk_rq_bytes(req));
1159
1160		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1161		req->buffer = NULL;
1162	}
1163
1164	cmd->cmd_len = req->cmd_len;
1165	if (!blk_rq_bytes(req))
1166		cmd->sc_data_direction = DMA_NONE;
1167	else if (rq_data_dir(req) == WRITE)
1168		cmd->sc_data_direction = DMA_TO_DEVICE;
1169	else
1170		cmd->sc_data_direction = DMA_FROM_DEVICE;
1171	
1172	cmd->transfersize = blk_rq_bytes(req);
1173	cmd->allowed = req->retries;
1174	return BLKPREP_OK;
1175}
1176EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1177
1178/*
1179 * Setup a REQ_TYPE_FS command.  These are simple read/write request
1180 * from filesystems that still need to be translated to SCSI CDBs from
1181 * the ULD.
1182 */
1183int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1184{
1185	struct scsi_cmnd *cmd;
1186	int ret = scsi_prep_state_check(sdev, req);
1187
1188	if (ret != BLKPREP_OK)
1189		return ret;
1190
1191	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1192			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1193		ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1194		if (ret != BLKPREP_OK)
1195			return ret;
1196	}
1197
1198	/*
1199	 * Filesystem requests must transfer data.
1200	 */
1201	BUG_ON(!req->nr_phys_segments);
 
 
 
1202
1203	cmd = scsi_get_cmd_from_req(sdev, req);
1204	if (unlikely(!cmd))
1205		return BLKPREP_DEFER;
 
 
 
1206
1207	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1208	return scsi_init_io(cmd, GFP_ATOMIC);
 
 
 
 
 
 
1209}
1210EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1211
1212int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
 
1213{
1214	int ret = BLKPREP_OK;
1215
1216	/*
1217	 * If the device is not in running state we will reject some
1218	 * or all commands.
1219	 */
1220	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1221		switch (sdev->sdev_state) {
1222		case SDEV_OFFLINE:
1223		case SDEV_TRANSPORT_OFFLINE:
1224			/*
1225			 * If the device is offline we refuse to process any
1226			 * commands.  The device must be brought online
1227			 * before trying any recovery commands.
1228			 */
1229			sdev_printk(KERN_ERR, sdev,
1230				    "rejecting I/O to offline device\n");
1231			ret = BLKPREP_KILL;
1232			break;
1233		case SDEV_DEL:
1234			/*
1235			 * If the device is fully deleted, we refuse to
1236			 * process any commands as well.
1237			 */
1238			sdev_printk(KERN_ERR, sdev,
1239				    "rejecting I/O to dead device\n");
1240			ret = BLKPREP_KILL;
1241			break;
1242		case SDEV_QUIESCE:
1243		case SDEV_BLOCK:
1244		case SDEV_CREATED_BLOCK:
 
 
 
1245			/*
1246			 * If the devices is blocked we defer normal commands.
1247			 */
1248			if (!(req->cmd_flags & REQ_PREEMPT))
1249				ret = BLKPREP_DEFER;
1250			break;
1251		default:
1252			/*
1253			 * For any other not fully online state we only allow
1254			 * special commands.  In particular any user initiated
1255			 * command is not allowed.
1256			 */
1257			if (!(req->cmd_flags & REQ_PREEMPT))
1258				ret = BLKPREP_KILL;
1259			break;
1260		}
1261	}
1262	return ret;
1263}
1264EXPORT_SYMBOL(scsi_prep_state_check);
1265
1266int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
 
1267{
1268	struct scsi_device *sdev = q->queuedata;
1269
1270	switch (ret) {
1271	case BLKPREP_KILL:
 
1272		req->errors = DID_NO_CONNECT << 16;
1273		/* release the command and kill it */
1274		if (req->special) {
1275			struct scsi_cmnd *cmd = req->special;
1276			scsi_release_buffers(cmd);
1277			scsi_put_command(cmd);
1278			put_device(&sdev->sdev_gendev);
1279			req->special = NULL;
1280		}
1281		break;
1282	case BLKPREP_DEFER:
1283		/*
1284		 * If we defer, the blk_peek_request() returns NULL, but the
1285		 * queue must be restarted, so we schedule a callback to happen
1286		 * shortly.
1287		 */
1288		if (sdev->device_busy == 0)
1289			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1290		break;
1291	default:
1292		req->cmd_flags |= REQ_DONTPREP;
1293	}
1294
1295	return ret;
1296}
1297EXPORT_SYMBOL(scsi_prep_return);
1298
1299int scsi_prep_fn(struct request_queue *q, struct request *req)
1300{
1301	struct scsi_device *sdev = q->queuedata;
1302	int ret = BLKPREP_KILL;
 
1303
1304	if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1305		ret = scsi_setup_blk_pc_cmnd(sdev, req);
 
 
 
 
 
 
 
 
 
 
1306	return scsi_prep_return(q, req, ret);
1307}
1308EXPORT_SYMBOL(scsi_prep_fn);
 
 
 
 
1309
1310/*
1311 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1312 * return 0.
1313 *
1314 * Called with the queue_lock held.
1315 */
1316static inline int scsi_dev_queue_ready(struct request_queue *q,
1317				  struct scsi_device *sdev)
1318{
1319	if (sdev->device_busy == 0 && sdev->device_blocked) {
 
 
 
 
 
 
1320		/*
1321		 * unblock after device_blocked iterates to zero
1322		 */
1323		if (--sdev->device_blocked == 0) {
1324			SCSI_LOG_MLQUEUE(3,
1325				   sdev_printk(KERN_INFO, sdev,
 
 
 
 
 
 
1326				   "unblocking device at zero depth\n"));
1327		} else {
1328			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1329			return 0;
1330		}
1331	}
1332	if (scsi_device_is_busy(sdev))
1333		return 0;
 
1334
1335	return 1;
 
 
 
1336}
1337
1338
1339/*
1340 * scsi_target_queue_ready: checks if there we can send commands to target
1341 * @sdev: scsi device on starget to check.
1342 *
1343 * Called with the host lock held.
1344 */
1345static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1346					   struct scsi_device *sdev)
1347{
1348	struct scsi_target *starget = scsi_target(sdev);
 
1349
1350	if (starget->single_lun) {
 
1351		if (starget->starget_sdev_user &&
1352		    starget->starget_sdev_user != sdev)
 
1353			return 0;
 
1354		starget->starget_sdev_user = sdev;
 
1355	}
1356
1357	if (starget->target_busy == 0 && starget->target_blocked) {
 
 
 
 
 
 
 
1358		/*
1359		 * unblock after target_blocked iterates to zero
1360		 */
1361		if (--starget->target_blocked == 0) {
1362			SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1363					 "unblocking target at zero depth\n"));
1364		} else
1365			return 0;
1366	}
1367
1368	if (scsi_target_is_busy(starget)) {
1369		list_move_tail(&sdev->starved_entry, &shost->starved_list);
1370		return 0;
1371	}
1372
1373	return 1;
 
 
 
 
 
 
 
 
 
1374}
1375
1376/*
1377 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1378 * return 0. We must end up running the queue again whenever 0 is
1379 * returned, else IO can hang.
1380 *
1381 * Called with host_lock held.
1382 */
1383static inline int scsi_host_queue_ready(struct request_queue *q,
1384				   struct Scsi_Host *shost,
1385				   struct scsi_device *sdev)
1386{
 
 
1387	if (scsi_host_in_recovery(shost))
1388		return 0;
1389	if (shost->host_busy == 0 && shost->host_blocked) {
 
 
 
 
 
1390		/*
1391		 * unblock after host_blocked iterates to zero
1392		 */
1393		if (--shost->host_blocked == 0) {
1394			SCSI_LOG_MLQUEUE(3,
1395				printk("scsi%d unblocking host at zero depth\n",
1396					shost->host_no));
1397		} else {
1398			return 0;
1399		}
1400	}
1401	if (scsi_host_is_busy(shost)) {
1402		if (list_empty(&sdev->starved_entry))
1403			list_add_tail(&sdev->starved_entry, &shost->starved_list);
1404		return 0;
1405	}
 
 
 
 
 
1406
1407	/* We're OK to process the command, so we can't be starved */
1408	if (!list_empty(&sdev->starved_entry))
1409		list_del_init(&sdev->starved_entry);
 
 
 
 
1410
1411	return 1;
 
 
 
 
 
 
 
 
 
1412}
1413
1414/*
1415 * Busy state exporting function for request stacking drivers.
1416 *
1417 * For efficiency, no lock is taken to check the busy state of
1418 * shost/starget/sdev, since the returned value is not guaranteed and
1419 * may be changed after request stacking drivers call the function,
1420 * regardless of taking lock or not.
1421 *
1422 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1423 * needs to return 'not busy'. Otherwise, request stacking drivers
1424 * may hold requests forever.
1425 */
1426static int scsi_lld_busy(struct request_queue *q)
1427{
1428	struct scsi_device *sdev = q->queuedata;
1429	struct Scsi_Host *shost;
1430
1431	if (blk_queue_dying(q))
1432		return 0;
1433
1434	shost = sdev->host;
1435
1436	/*
1437	 * Ignore host/starget busy state.
1438	 * Since block layer does not have a concept of fairness across
1439	 * multiple queues, congestion of host/starget needs to be handled
1440	 * in SCSI layer.
1441	 */
1442	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1443		return 1;
1444
1445	return 0;
1446}
1447
1448/*
1449 * Kill a request for a dead device
1450 */
1451static void scsi_kill_request(struct request *req, struct request_queue *q)
1452{
1453	struct scsi_cmnd *cmd = req->special;
1454	struct scsi_device *sdev;
1455	struct scsi_target *starget;
1456	struct Scsi_Host *shost;
1457
1458	blk_start_request(req);
1459
1460	scmd_printk(KERN_INFO, cmd, "killing request\n");
1461
1462	sdev = cmd->device;
1463	starget = scsi_target(sdev);
1464	shost = sdev->host;
1465	scsi_init_cmd_errh(cmd);
1466	cmd->result = DID_NO_CONNECT << 16;
1467	atomic_inc(&cmd->device->iorequest_cnt);
1468
1469	/*
1470	 * SCSI request completion path will do scsi_device_unbusy(),
1471	 * bump busy counts.  To bump the counters, we need to dance
1472	 * with the locks as normal issue path does.
1473	 */
1474	sdev->device_busy++;
1475	spin_unlock(sdev->request_queue->queue_lock);
1476	spin_lock(shost->host_lock);
1477	shost->host_busy++;
1478	starget->target_busy++;
1479	spin_unlock(shost->host_lock);
1480	spin_lock(sdev->request_queue->queue_lock);
1481
1482	blk_complete_request(req);
1483}
1484
1485static void scsi_softirq_done(struct request *rq)
1486{
1487	struct scsi_cmnd *cmd = rq->special;
1488	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1489	int disposition;
1490
1491	INIT_LIST_HEAD(&cmd->eh_entry);
1492
1493	atomic_inc(&cmd->device->iodone_cnt);
1494	if (cmd->result)
1495		atomic_inc(&cmd->device->ioerr_cnt);
1496
1497	disposition = scsi_decide_disposition(cmd);
1498	if (disposition != SUCCESS &&
1499	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1500		sdev_printk(KERN_ERR, cmd->device,
1501			    "timing out command, waited %lus\n",
1502			    wait_for/HZ);
1503		disposition = SUCCESS;
1504	}
1505			
1506	scsi_log_completion(cmd, disposition);
1507
1508	switch (disposition) {
1509		case SUCCESS:
1510			scsi_finish_command(cmd);
1511			break;
1512		case NEEDS_RETRY:
1513			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1514			break;
1515		case ADD_TO_MLQUEUE:
1516			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1517			break;
1518		default:
1519			if (!scsi_eh_scmd_add(cmd, 0))
1520				scsi_finish_command(cmd);
1521	}
1522}
1523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524/*
1525 * Function:    scsi_request_fn()
1526 *
1527 * Purpose:     Main strategy routine for SCSI.
1528 *
1529 * Arguments:   q       - Pointer to actual queue.
1530 *
1531 * Returns:     Nothing
1532 *
1533 * Lock status: IO request lock assumed to be held when called.
1534 */
1535static void scsi_request_fn(struct request_queue *q)
1536	__releases(q->queue_lock)
1537	__acquires(q->queue_lock)
1538{
1539	struct scsi_device *sdev = q->queuedata;
1540	struct Scsi_Host *shost;
1541	struct scsi_cmnd *cmd;
1542	struct request *req;
1543
1544	/*
1545	 * To start with, we keep looping until the queue is empty, or until
1546	 * the host is no longer able to accept any more requests.
1547	 */
1548	shost = sdev->host;
1549	for (;;) {
1550		int rtn;
1551		/*
1552		 * get next queueable request.  We do this early to make sure
1553		 * that the request is fully prepared even if we cannot 
1554		 * accept it.
1555		 */
1556		req = blk_peek_request(q);
1557		if (!req || !scsi_dev_queue_ready(q, sdev))
1558			break;
1559
1560		if (unlikely(!scsi_device_online(sdev))) {
1561			sdev_printk(KERN_ERR, sdev,
1562				    "rejecting I/O to offline device\n");
1563			scsi_kill_request(req, q);
1564			continue;
1565		}
1566
 
 
1567
1568		/*
1569		 * Remove the request from the request list.
1570		 */
1571		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1572			blk_start_request(req);
1573		sdev->device_busy++;
1574
1575		spin_unlock(q->queue_lock);
1576		cmd = req->special;
1577		if (unlikely(cmd == NULL)) {
1578			printk(KERN_CRIT "impossible request in %s.\n"
1579					 "please mail a stack trace to "
1580					 "linux-scsi@vger.kernel.org\n",
1581					 __func__);
1582			blk_dump_rq_flags(req, "foo");
1583			BUG();
1584		}
1585		spin_lock(shost->host_lock);
1586
1587		/*
1588		 * We hit this when the driver is using a host wide
1589		 * tag map. For device level tag maps the queue_depth check
1590		 * in the device ready fn would prevent us from trying
1591		 * to allocate a tag. Since the map is a shared host resource
1592		 * we add the dev to the starved list so it eventually gets
1593		 * a run when a tag is freed.
1594		 */
1595		if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
 
1596			if (list_empty(&sdev->starved_entry))
1597				list_add_tail(&sdev->starved_entry,
1598					      &shost->starved_list);
 
1599			goto not_ready;
1600		}
1601
1602		if (!scsi_target_queue_ready(shost, sdev))
1603			goto not_ready;
1604
1605		if (!scsi_host_queue_ready(q, shost, sdev))
1606			goto not_ready;
1607
1608		scsi_target(sdev)->target_busy++;
1609		shost->host_busy++;
1610
1611		/*
1612		 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1613		 *		take the lock again.
1614		 */
1615		spin_unlock_irq(shost->host_lock);
1616
1617		/*
1618		 * Finally, initialize any error handling parameters, and set up
1619		 * the timers for timeouts.
1620		 */
1621		scsi_init_cmd_errh(cmd);
1622
1623		/*
1624		 * Dispatch the command to the low-level driver.
1625		 */
 
1626		rtn = scsi_dispatch_cmd(cmd);
 
 
 
 
 
1627		spin_lock_irq(q->queue_lock);
1628		if (rtn)
1629			goto out_delay;
1630	}
1631
1632	return;
1633
 
 
 
1634 not_ready:
1635	spin_unlock_irq(shost->host_lock);
1636
1637	/*
1638	 * lock q, handle tag, requeue req, and decrement device_busy. We
1639	 * must return with queue_lock held.
1640	 *
1641	 * Decrementing device_busy without checking it is OK, as all such
1642	 * cases (host limits or settings) should run the queue at some
1643	 * later time.
1644	 */
1645	spin_lock_irq(q->queue_lock);
1646	blk_requeue_request(q, req);
1647	sdev->device_busy--;
1648out_delay:
1649	if (sdev->device_busy == 0)
1650		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1651}
1652
1653u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1654{
1655	struct device *host_dev;
1656	u64 bounce_limit = 0xffffffff;
1657
1658	if (shost->unchecked_isa_dma)
1659		return BLK_BOUNCE_ISA;
1660	/*
1661	 * Platforms with virtual-DMA translation
1662	 * hardware have no practical limit.
1663	 */
1664	if (!PCI_DMA_BUS_IS_PHYS)
1665		return BLK_BOUNCE_ANY;
1666
1667	host_dev = scsi_get_device(shost);
1668	if (host_dev && host_dev->dma_mask)
1669		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1670
1671	return bounce_limit;
1672}
1673EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1674
1675struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1676					 request_fn_proc *request_fn)
1677{
1678	struct request_queue *q;
1679	struct device *dev = shost->dma_dev;
1680
1681	q = blk_init_queue(request_fn, NULL);
1682	if (!q)
1683		return NULL;
1684
1685	/*
1686	 * this limit is imposed by hardware restrictions
1687	 */
1688	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1689					SCSI_MAX_SG_CHAIN_SEGMENTS));
1690
1691	if (scsi_host_prot_dma(shost)) {
1692		shost->sg_prot_tablesize =
1693			min_not_zero(shost->sg_prot_tablesize,
1694				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1695		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1696		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1697	}
1698
1699	blk_queue_max_hw_sectors(q, shost->max_sectors);
1700	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1701	blk_queue_segment_boundary(q, shost->dma_boundary);
1702	dma_set_seg_boundary(dev, shost->dma_boundary);
1703
1704	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1705
1706	if (!shost->use_clustering)
1707		q->limits.cluster = 0;
1708
1709	/*
1710	 * set a reasonable default alignment on word boundaries: the
1711	 * host and device may alter it using
1712	 * blk_queue_update_dma_alignment() later.
1713	 */
1714	blk_queue_dma_alignment(q, 0x03);
 
 
 
 
 
 
1715
 
 
 
 
1716	return q;
1717}
1718EXPORT_SYMBOL(__scsi_alloc_queue);
1719
1720struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1721{
1722	struct request_queue *q;
1723
1724	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1725	if (!q)
1726		return NULL;
1727
1728	blk_queue_prep_rq(q, scsi_prep_fn);
 
1729	blk_queue_softirq_done(q, scsi_softirq_done);
1730	blk_queue_rq_timed_out(q, scsi_times_out);
1731	blk_queue_lld_busy(q, scsi_lld_busy);
1732	return q;
1733}
1734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1735/*
1736 * Function:    scsi_block_requests()
1737 *
1738 * Purpose:     Utility function used by low-level drivers to prevent further
1739 *		commands from being queued to the device.
1740 *
1741 * Arguments:   shost       - Host in question
1742 *
1743 * Returns:     Nothing
1744 *
1745 * Lock status: No locks are assumed held.
1746 *
1747 * Notes:       There is no timer nor any other means by which the requests
1748 *		get unblocked other than the low-level driver calling
1749 *		scsi_unblock_requests().
1750 */
1751void scsi_block_requests(struct Scsi_Host *shost)
1752{
1753	shost->host_self_blocked = 1;
1754}
1755EXPORT_SYMBOL(scsi_block_requests);
1756
1757/*
1758 * Function:    scsi_unblock_requests()
1759 *
1760 * Purpose:     Utility function used by low-level drivers to allow further
1761 *		commands from being queued to the device.
1762 *
1763 * Arguments:   shost       - Host in question
1764 *
1765 * Returns:     Nothing
1766 *
1767 * Lock status: No locks are assumed held.
1768 *
1769 * Notes:       There is no timer nor any other means by which the requests
1770 *		get unblocked other than the low-level driver calling
1771 *		scsi_unblock_requests().
1772 *
1773 *		This is done as an API function so that changes to the
1774 *		internals of the scsi mid-layer won't require wholesale
1775 *		changes to drivers that use this feature.
1776 */
1777void scsi_unblock_requests(struct Scsi_Host *shost)
1778{
1779	shost->host_self_blocked = 0;
1780	scsi_run_host_queues(shost);
1781}
1782EXPORT_SYMBOL(scsi_unblock_requests);
1783
1784int __init scsi_init_queue(void)
1785{
1786	int i;
1787
1788	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1789					   sizeof(struct scsi_data_buffer),
1790					   0, 0, NULL);
1791	if (!scsi_sdb_cache) {
1792		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1793		return -ENOMEM;
1794	}
1795
1796	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1797		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1798		int size = sgp->size * sizeof(struct scatterlist);
1799
1800		sgp->slab = kmem_cache_create(sgp->name, size, 0,
1801				SLAB_HWCACHE_ALIGN, NULL);
1802		if (!sgp->slab) {
1803			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1804					sgp->name);
1805			goto cleanup_sdb;
1806		}
1807
1808		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1809						     sgp->slab);
1810		if (!sgp->pool) {
1811			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1812					sgp->name);
1813			goto cleanup_sdb;
1814		}
1815	}
1816
1817	return 0;
1818
1819cleanup_sdb:
1820	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1821		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1822		if (sgp->pool)
1823			mempool_destroy(sgp->pool);
1824		if (sgp->slab)
1825			kmem_cache_destroy(sgp->slab);
1826	}
1827	kmem_cache_destroy(scsi_sdb_cache);
1828
1829	return -ENOMEM;
1830}
1831
1832void scsi_exit_queue(void)
1833{
1834	int i;
1835
1836	kmem_cache_destroy(scsi_sdb_cache);
1837
1838	for (i = 0; i < SG_MEMPOOL_NR; i++) {
1839		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1840		mempool_destroy(sgp->pool);
1841		kmem_cache_destroy(sgp->slab);
1842	}
1843}
1844
1845/**
1846 *	scsi_mode_select - issue a mode select
1847 *	@sdev:	SCSI device to be queried
1848 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
1849 *	@sp:	Save page bit (0 == don't save, 1 == save)
1850 *	@modepage: mode page being requested
1851 *	@buffer: request buffer (may not be smaller than eight bytes)
1852 *	@len:	length of request buffer.
1853 *	@timeout: command timeout
1854 *	@retries: number of retries before failing
1855 *	@data: returns a structure abstracting the mode header data
1856 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1857 *		must be SCSI_SENSE_BUFFERSIZE big.
1858 *
1859 *	Returns zero if successful; negative error number or scsi
1860 *	status on error
1861 *
1862 */
1863int
1864scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1865		 unsigned char *buffer, int len, int timeout, int retries,
1866		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1867{
1868	unsigned char cmd[10];
1869	unsigned char *real_buffer;
1870	int ret;
1871
1872	memset(cmd, 0, sizeof(cmd));
1873	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1874
1875	if (sdev->use_10_for_ms) {
1876		if (len > 65535)
1877			return -EINVAL;
1878		real_buffer = kmalloc(8 + len, GFP_KERNEL);
1879		if (!real_buffer)
1880			return -ENOMEM;
1881		memcpy(real_buffer + 8, buffer, len);
1882		len += 8;
1883		real_buffer[0] = 0;
1884		real_buffer[1] = 0;
1885		real_buffer[2] = data->medium_type;
1886		real_buffer[3] = data->device_specific;
1887		real_buffer[4] = data->longlba ? 0x01 : 0;
1888		real_buffer[5] = 0;
1889		real_buffer[6] = data->block_descriptor_length >> 8;
1890		real_buffer[7] = data->block_descriptor_length;
1891
1892		cmd[0] = MODE_SELECT_10;
1893		cmd[7] = len >> 8;
1894		cmd[8] = len;
1895	} else {
1896		if (len > 255 || data->block_descriptor_length > 255 ||
1897		    data->longlba)
1898			return -EINVAL;
1899
1900		real_buffer = kmalloc(4 + len, GFP_KERNEL);
1901		if (!real_buffer)
1902			return -ENOMEM;
1903		memcpy(real_buffer + 4, buffer, len);
1904		len += 4;
1905		real_buffer[0] = 0;
1906		real_buffer[1] = data->medium_type;
1907		real_buffer[2] = data->device_specific;
1908		real_buffer[3] = data->block_descriptor_length;
1909		
1910
1911		cmd[0] = MODE_SELECT;
1912		cmd[4] = len;
1913	}
1914
1915	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1916			       sshdr, timeout, retries, NULL);
1917	kfree(real_buffer);
1918	return ret;
1919}
1920EXPORT_SYMBOL_GPL(scsi_mode_select);
1921
1922/**
1923 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1924 *	@sdev:	SCSI device to be queried
1925 *	@dbd:	set if mode sense will allow block descriptors to be returned
1926 *	@modepage: mode page being requested
1927 *	@buffer: request buffer (may not be smaller than eight bytes)
1928 *	@len:	length of request buffer.
1929 *	@timeout: command timeout
1930 *	@retries: number of retries before failing
1931 *	@data: returns a structure abstracting the mode header data
1932 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
1933 *		must be SCSI_SENSE_BUFFERSIZE big.
1934 *
1935 *	Returns zero if unsuccessful, or the header offset (either 4
1936 *	or 8 depending on whether a six or ten byte command was
1937 *	issued) if successful.
1938 */
1939int
1940scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1941		  unsigned char *buffer, int len, int timeout, int retries,
1942		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1943{
1944	unsigned char cmd[12];
1945	int use_10_for_ms;
1946	int header_length;
1947	int result;
1948	struct scsi_sense_hdr my_sshdr;
1949
1950	memset(data, 0, sizeof(*data));
1951	memset(&cmd[0], 0, 12);
1952	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
1953	cmd[2] = modepage;
1954
1955	/* caller might not be interested in sense, but we need it */
1956	if (!sshdr)
1957		sshdr = &my_sshdr;
1958
1959 retry:
1960	use_10_for_ms = sdev->use_10_for_ms;
1961
1962	if (use_10_for_ms) {
1963		if (len < 8)
1964			len = 8;
1965
1966		cmd[0] = MODE_SENSE_10;
1967		cmd[8] = len;
1968		header_length = 8;
1969	} else {
1970		if (len < 4)
1971			len = 4;
1972
1973		cmd[0] = MODE_SENSE;
1974		cmd[4] = len;
1975		header_length = 4;
1976	}
1977
1978	memset(buffer, 0, len);
1979
1980	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1981				  sshdr, timeout, retries, NULL);
1982
1983	/* This code looks awful: what it's doing is making sure an
1984	 * ILLEGAL REQUEST sense return identifies the actual command
1985	 * byte as the problem.  MODE_SENSE commands can return
1986	 * ILLEGAL REQUEST if the code page isn't supported */
1987
1988	if (use_10_for_ms && !scsi_status_is_good(result) &&
1989	    (driver_byte(result) & DRIVER_SENSE)) {
1990		if (scsi_sense_valid(sshdr)) {
1991			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1992			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1993				/* 
1994				 * Invalid command operation code
1995				 */
1996				sdev->use_10_for_ms = 0;
1997				goto retry;
1998			}
1999		}
2000	}
2001
2002	if(scsi_status_is_good(result)) {
2003		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2004			     (modepage == 6 || modepage == 8))) {
2005			/* Initio breakage? */
2006			header_length = 0;
2007			data->length = 13;
2008			data->medium_type = 0;
2009			data->device_specific = 0;
2010			data->longlba = 0;
2011			data->block_descriptor_length = 0;
2012		} else if(use_10_for_ms) {
2013			data->length = buffer[0]*256 + buffer[1] + 2;
2014			data->medium_type = buffer[2];
2015			data->device_specific = buffer[3];
2016			data->longlba = buffer[4] & 0x01;
2017			data->block_descriptor_length = buffer[6]*256
2018				+ buffer[7];
2019		} else {
2020			data->length = buffer[0] + 1;
2021			data->medium_type = buffer[1];
2022			data->device_specific = buffer[2];
2023			data->block_descriptor_length = buffer[3];
2024		}
2025		data->header_length = header_length;
 
 
 
 
 
2026	}
2027
2028	return result;
2029}
2030EXPORT_SYMBOL(scsi_mode_sense);
2031
2032/**
2033 *	scsi_test_unit_ready - test if unit is ready
2034 *	@sdev:	scsi device to change the state of.
2035 *	@timeout: command timeout
2036 *	@retries: number of retries before failing
2037 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2038 *		returning sense. Make sure that this is cleared before passing
2039 *		in.
2040 *
2041 *	Returns zero if unsuccessful or an error if TUR failed.  For
2042 *	removable media, UNIT_ATTENTION sets ->changed flag.
2043 **/
2044int
2045scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2046		     struct scsi_sense_hdr *sshdr_external)
2047{
2048	char cmd[] = {
2049		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2050	};
2051	struct scsi_sense_hdr *sshdr;
2052	int result;
2053
2054	if (!sshdr_external)
2055		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2056	else
2057		sshdr = sshdr_external;
2058
2059	/* try to eat the UNIT_ATTENTION if there are enough retries */
2060	do {
2061		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2062					  timeout, retries, NULL);
2063		if (sdev->removable && scsi_sense_valid(sshdr) &&
2064		    sshdr->sense_key == UNIT_ATTENTION)
2065			sdev->changed = 1;
2066	} while (scsi_sense_valid(sshdr) &&
2067		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2068
2069	if (!sshdr_external)
2070		kfree(sshdr);
2071	return result;
2072}
2073EXPORT_SYMBOL(scsi_test_unit_ready);
2074
2075/**
2076 *	scsi_device_set_state - Take the given device through the device state model.
2077 *	@sdev:	scsi device to change the state of.
2078 *	@state:	state to change to.
2079 *
2080 *	Returns zero if unsuccessful or an error if the requested 
2081 *	transition is illegal.
2082 */
2083int
2084scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2085{
2086	enum scsi_device_state oldstate = sdev->sdev_state;
2087
2088	if (state == oldstate)
2089		return 0;
2090
2091	switch (state) {
2092	case SDEV_CREATED:
2093		switch (oldstate) {
2094		case SDEV_CREATED_BLOCK:
2095			break;
2096		default:
2097			goto illegal;
2098		}
2099		break;
2100			
2101	case SDEV_RUNNING:
2102		switch (oldstate) {
2103		case SDEV_CREATED:
2104		case SDEV_OFFLINE:
2105		case SDEV_TRANSPORT_OFFLINE:
2106		case SDEV_QUIESCE:
2107		case SDEV_BLOCK:
2108			break;
2109		default:
2110			goto illegal;
2111		}
2112		break;
2113
2114	case SDEV_QUIESCE:
2115		switch (oldstate) {
2116		case SDEV_RUNNING:
2117		case SDEV_OFFLINE:
2118		case SDEV_TRANSPORT_OFFLINE:
2119			break;
2120		default:
2121			goto illegal;
2122		}
2123		break;
2124
2125	case SDEV_OFFLINE:
2126	case SDEV_TRANSPORT_OFFLINE:
2127		switch (oldstate) {
2128		case SDEV_CREATED:
2129		case SDEV_RUNNING:
2130		case SDEV_QUIESCE:
2131		case SDEV_BLOCK:
2132			break;
2133		default:
2134			goto illegal;
2135		}
2136		break;
2137
2138	case SDEV_BLOCK:
2139		switch (oldstate) {
2140		case SDEV_RUNNING:
2141		case SDEV_CREATED_BLOCK:
2142			break;
2143		default:
2144			goto illegal;
2145		}
2146		break;
2147
2148	case SDEV_CREATED_BLOCK:
2149		switch (oldstate) {
2150		case SDEV_CREATED:
2151			break;
2152		default:
2153			goto illegal;
2154		}
2155		break;
2156
2157	case SDEV_CANCEL:
2158		switch (oldstate) {
2159		case SDEV_CREATED:
2160		case SDEV_RUNNING:
2161		case SDEV_QUIESCE:
2162		case SDEV_OFFLINE:
2163		case SDEV_TRANSPORT_OFFLINE:
2164		case SDEV_BLOCK:
2165			break;
2166		default:
2167			goto illegal;
2168		}
2169		break;
2170
2171	case SDEV_DEL:
2172		switch (oldstate) {
2173		case SDEV_CREATED:
2174		case SDEV_RUNNING:
2175		case SDEV_OFFLINE:
2176		case SDEV_TRANSPORT_OFFLINE:
2177		case SDEV_CANCEL:
2178		case SDEV_CREATED_BLOCK:
2179			break;
2180		default:
2181			goto illegal;
2182		}
2183		break;
2184
2185	}
2186	sdev->sdev_state = state;
2187	return 0;
2188
2189 illegal:
2190	SCSI_LOG_ERROR_RECOVERY(1, 
2191				sdev_printk(KERN_ERR, sdev,
2192					    "Illegal state transition %s->%s\n",
2193					    scsi_device_state_name(oldstate),
2194					    scsi_device_state_name(state))
2195				);
2196	return -EINVAL;
2197}
2198EXPORT_SYMBOL(scsi_device_set_state);
2199
2200/**
2201 * 	sdev_evt_emit - emit a single SCSI device uevent
2202 *	@sdev: associated SCSI device
2203 *	@evt: event to emit
2204 *
2205 *	Send a single uevent (scsi_event) to the associated scsi_device.
2206 */
2207static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2208{
2209	int idx = 0;
2210	char *envp[3];
2211
2212	switch (evt->evt_type) {
2213	case SDEV_EVT_MEDIA_CHANGE:
2214		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2215		break;
2216	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
 
2217		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2218		break;
2219	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2220		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2221		break;
2222	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2223	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2224		break;
2225	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2226		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2227		break;
2228	case SDEV_EVT_LUN_CHANGE_REPORTED:
2229		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2230		break;
 
 
 
2231	default:
2232		/* do nothing */
2233		break;
2234	}
2235
2236	envp[idx++] = NULL;
2237
2238	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2239}
2240
2241/**
2242 * 	sdev_evt_thread - send a uevent for each scsi event
2243 *	@work: work struct for scsi_device
2244 *
2245 *	Dispatch queued events to their associated scsi_device kobjects
2246 *	as uevents.
2247 */
2248void scsi_evt_thread(struct work_struct *work)
2249{
2250	struct scsi_device *sdev;
2251	enum scsi_device_event evt_type;
2252	LIST_HEAD(event_list);
2253
2254	sdev = container_of(work, struct scsi_device, event_work);
2255
2256	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2257		if (test_and_clear_bit(evt_type, sdev->pending_events))
2258			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2259
2260	while (1) {
2261		struct scsi_event *evt;
2262		struct list_head *this, *tmp;
2263		unsigned long flags;
2264
2265		spin_lock_irqsave(&sdev->list_lock, flags);
2266		list_splice_init(&sdev->event_list, &event_list);
2267		spin_unlock_irqrestore(&sdev->list_lock, flags);
2268
2269		if (list_empty(&event_list))
2270			break;
2271
2272		list_for_each_safe(this, tmp, &event_list) {
2273			evt = list_entry(this, struct scsi_event, node);
2274			list_del(&evt->node);
2275			scsi_evt_emit(sdev, evt);
2276			kfree(evt);
2277		}
2278	}
2279}
2280
2281/**
2282 * 	sdev_evt_send - send asserted event to uevent thread
2283 *	@sdev: scsi_device event occurred on
2284 *	@evt: event to send
2285 *
2286 *	Assert scsi device event asynchronously.
2287 */
2288void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2289{
2290	unsigned long flags;
2291
2292#if 0
2293	/* FIXME: currently this check eliminates all media change events
2294	 * for polled devices.  Need to update to discriminate between AN
2295	 * and polled events */
2296	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2297		kfree(evt);
2298		return;
2299	}
2300#endif
2301
2302	spin_lock_irqsave(&sdev->list_lock, flags);
2303	list_add_tail(&evt->node, &sdev->event_list);
2304	schedule_work(&sdev->event_work);
2305	spin_unlock_irqrestore(&sdev->list_lock, flags);
2306}
2307EXPORT_SYMBOL_GPL(sdev_evt_send);
2308
2309/**
2310 * 	sdev_evt_alloc - allocate a new scsi event
2311 *	@evt_type: type of event to allocate
2312 *	@gfpflags: GFP flags for allocation
2313 *
2314 *	Allocates and returns a new scsi_event.
2315 */
2316struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2317				  gfp_t gfpflags)
2318{
2319	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2320	if (!evt)
2321		return NULL;
2322
2323	evt->evt_type = evt_type;
2324	INIT_LIST_HEAD(&evt->node);
2325
2326	/* evt_type-specific initialization, if any */
2327	switch (evt_type) {
2328	case SDEV_EVT_MEDIA_CHANGE:
2329	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2330	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2331	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2332	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2333	case SDEV_EVT_LUN_CHANGE_REPORTED:
 
2334	default:
2335		/* do nothing */
2336		break;
2337	}
2338
2339	return evt;
2340}
2341EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2342
2343/**
2344 * 	sdev_evt_send_simple - send asserted event to uevent thread
2345 *	@sdev: scsi_device event occurred on
2346 *	@evt_type: type of event to send
2347 *	@gfpflags: GFP flags for allocation
2348 *
2349 *	Assert scsi device event asynchronously, given an event type.
2350 */
2351void sdev_evt_send_simple(struct scsi_device *sdev,
2352			  enum scsi_device_event evt_type, gfp_t gfpflags)
2353{
2354	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2355	if (!evt) {
2356		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2357			    evt_type);
2358		return;
2359	}
2360
2361	sdev_evt_send(sdev, evt);
2362}
2363EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2364
2365/**
2366 *	scsi_device_quiesce - Block user issued commands.
2367 *	@sdev:	scsi device to quiesce.
2368 *
2369 *	This works by trying to transition to the SDEV_QUIESCE state
2370 *	(which must be a legal transition).  When the device is in this
2371 *	state, only special requests will be accepted, all others will
2372 *	be deferred.  Since special requests may also be requeued requests,
2373 *	a successful return doesn't guarantee the device will be 
2374 *	totally quiescent.
2375 *
2376 *	Must be called with user context, may sleep.
2377 *
2378 *	Returns zero if unsuccessful or an error if not.
2379 */
2380int
2381scsi_device_quiesce(struct scsi_device *sdev)
2382{
2383	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2384	if (err)
2385		return err;
2386
2387	scsi_run_queue(sdev->request_queue);
2388	while (sdev->device_busy) {
2389		msleep_interruptible(200);
2390		scsi_run_queue(sdev->request_queue);
2391	}
2392	return 0;
2393}
2394EXPORT_SYMBOL(scsi_device_quiesce);
2395
2396/**
2397 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2398 *	@sdev:	scsi device to resume.
2399 *
2400 *	Moves the device from quiesced back to running and restarts the
2401 *	queues.
2402 *
2403 *	Must be called with user context, may sleep.
2404 */
2405void scsi_device_resume(struct scsi_device *sdev)
2406{
2407	/* check if the device state was mutated prior to resume, and if
2408	 * so assume the state is being managed elsewhere (for example
2409	 * device deleted during suspend)
2410	 */
2411	if (sdev->sdev_state != SDEV_QUIESCE ||
2412	    scsi_device_set_state(sdev, SDEV_RUNNING))
2413		return;
2414	scsi_run_queue(sdev->request_queue);
2415}
2416EXPORT_SYMBOL(scsi_device_resume);
2417
2418static void
2419device_quiesce_fn(struct scsi_device *sdev, void *data)
2420{
2421	scsi_device_quiesce(sdev);
2422}
2423
2424void
2425scsi_target_quiesce(struct scsi_target *starget)
2426{
2427	starget_for_each_device(starget, NULL, device_quiesce_fn);
2428}
2429EXPORT_SYMBOL(scsi_target_quiesce);
2430
2431static void
2432device_resume_fn(struct scsi_device *sdev, void *data)
2433{
2434	scsi_device_resume(sdev);
2435}
2436
2437void
2438scsi_target_resume(struct scsi_target *starget)
2439{
2440	starget_for_each_device(starget, NULL, device_resume_fn);
2441}
2442EXPORT_SYMBOL(scsi_target_resume);
2443
2444/**
2445 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2446 * @sdev:	device to block
2447 *
2448 * Block request made by scsi lld's to temporarily stop all
2449 * scsi commands on the specified device.  Called from interrupt
2450 * or normal process context.
2451 *
2452 * Returns zero if successful or error if not
2453 *
2454 * Notes:       
2455 *	This routine transitions the device to the SDEV_BLOCK state
2456 *	(which must be a legal transition).  When the device is in this
2457 *	state, all commands are deferred until the scsi lld reenables
2458 *	the device with scsi_device_unblock or device_block_tmo fires.
2459 */
2460int
2461scsi_internal_device_block(struct scsi_device *sdev)
2462{
2463	struct request_queue *q = sdev->request_queue;
2464	unsigned long flags;
2465	int err = 0;
2466
2467	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2468	if (err) {
2469		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2470
2471		if (err)
2472			return err;
2473	}
2474
2475	/* 
2476	 * The device has transitioned to SDEV_BLOCK.  Stop the
2477	 * block layer from calling the midlayer with this device's
2478	 * request queue. 
2479	 */
2480	spin_lock_irqsave(q->queue_lock, flags);
2481	blk_stop_queue(q);
2482	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
2483
2484	return 0;
2485}
2486EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2487 
2488/**
2489 * scsi_internal_device_unblock - resume a device after a block request
2490 * @sdev:	device to resume
2491 * @new_state:	state to set devices to after unblocking
2492 *
2493 * Called by scsi lld's or the midlayer to restart the device queue
2494 * for the previously suspended scsi device.  Called from interrupt or
2495 * normal process context.
2496 *
2497 * Returns zero if successful or error if not.
2498 *
2499 * Notes:       
2500 *	This routine transitions the device to the SDEV_RUNNING state
2501 *	or to one of the offline states (which must be a legal transition)
2502 *	allowing the midlayer to goose the queue for this device.
2503 */
2504int
2505scsi_internal_device_unblock(struct scsi_device *sdev,
2506			     enum scsi_device_state new_state)
2507{
2508	struct request_queue *q = sdev->request_queue; 
2509	unsigned long flags;
2510
2511	/*
2512	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2513	 * offlined states and goose the device queue if successful.
2514	 */
2515	if ((sdev->sdev_state == SDEV_BLOCK) ||
2516	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2517		sdev->sdev_state = new_state;
2518	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2519		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2520		    new_state == SDEV_OFFLINE)
2521			sdev->sdev_state = new_state;
2522		else
2523			sdev->sdev_state = SDEV_CREATED;
2524	} else if (sdev->sdev_state != SDEV_CANCEL &&
2525		 sdev->sdev_state != SDEV_OFFLINE)
2526		return -EINVAL;
2527
2528	spin_lock_irqsave(q->queue_lock, flags);
2529	blk_start_queue(q);
2530	spin_unlock_irqrestore(q->queue_lock, flags);
 
 
 
 
2531
2532	return 0;
2533}
2534EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2535
2536static void
2537device_block(struct scsi_device *sdev, void *data)
2538{
2539	scsi_internal_device_block(sdev);
2540}
2541
2542static int
2543target_block(struct device *dev, void *data)
2544{
2545	if (scsi_is_target_device(dev))
2546		starget_for_each_device(to_scsi_target(dev), NULL,
2547					device_block);
2548	return 0;
2549}
2550
2551void
2552scsi_target_block(struct device *dev)
2553{
2554	if (scsi_is_target_device(dev))
2555		starget_for_each_device(to_scsi_target(dev), NULL,
2556					device_block);
2557	else
2558		device_for_each_child(dev, NULL, target_block);
2559}
2560EXPORT_SYMBOL_GPL(scsi_target_block);
2561
2562static void
2563device_unblock(struct scsi_device *sdev, void *data)
2564{
2565	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2566}
2567
2568static int
2569target_unblock(struct device *dev, void *data)
2570{
2571	if (scsi_is_target_device(dev))
2572		starget_for_each_device(to_scsi_target(dev), data,
2573					device_unblock);
2574	return 0;
2575}
2576
2577void
2578scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2579{
2580	if (scsi_is_target_device(dev))
2581		starget_for_each_device(to_scsi_target(dev), &new_state,
2582					device_unblock);
2583	else
2584		device_for_each_child(dev, &new_state, target_unblock);
2585}
2586EXPORT_SYMBOL_GPL(scsi_target_unblock);
2587
2588/**
2589 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2590 * @sgl:	scatter-gather list
2591 * @sg_count:	number of segments in sg
2592 * @offset:	offset in bytes into sg, on return offset into the mapped area
2593 * @len:	bytes to map, on return number of bytes mapped
2594 *
2595 * Returns virtual address of the start of the mapped page
2596 */
2597void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2598			  size_t *offset, size_t *len)
2599{
2600	int i;
2601	size_t sg_len = 0, len_complete = 0;
2602	struct scatterlist *sg;
2603	struct page *page;
2604
2605	WARN_ON(!irqs_disabled());
2606
2607	for_each_sg(sgl, sg, sg_count, i) {
2608		len_complete = sg_len; /* Complete sg-entries */
2609		sg_len += sg->length;
2610		if (sg_len > *offset)
2611			break;
2612	}
2613
2614	if (unlikely(i == sg_count)) {
2615		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2616			"elements %d\n",
2617		       __func__, sg_len, *offset, sg_count);
2618		WARN_ON(1);
2619		return NULL;
2620	}
2621
2622	/* Offset starting from the beginning of first page in this sg-entry */
2623	*offset = *offset - len_complete + sg->offset;
2624
2625	/* Assumption: contiguous pages can be accessed as "page + i" */
2626	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2627	*offset &= ~PAGE_MASK;
2628
2629	/* Bytes in this sg-entry from *offset to the end of the page */
2630	sg_len = PAGE_SIZE - *offset;
2631	if (*len > sg_len)
2632		*len = sg_len;
2633
2634	return kmap_atomic(page);
2635}
2636EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2637
2638/**
2639 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2640 * @virt:	virtual address to be unmapped
2641 */
2642void scsi_kunmap_atomic_sg(void *virt)
2643{
2644	kunmap_atomic(virt);
2645}
2646EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2647
2648void sdev_disable_disk_events(struct scsi_device *sdev)
2649{
2650	atomic_inc(&sdev->disk_events_disable_depth);
2651}
2652EXPORT_SYMBOL(sdev_disable_disk_events);
2653
2654void sdev_enable_disk_events(struct scsi_device *sdev)
2655{
2656	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2657		return;
2658	atomic_dec(&sdev->disk_events_disable_depth);
2659}
2660EXPORT_SYMBOL(sdev_enable_disk_events);