Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
 
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
 
  18#include <linux/slab.h>
  19#include <linux/vmalloc.h>
  20
  21#define DM_MSG_PREFIX "cache"
  22
  23DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  24	"A percentage of time allocated for copying to and/or from cache");
  25
  26/*----------------------------------------------------------------*/
  27
  28#define IOT_RESOLUTION 4
 
 
 
 
 
 
 
 
 
  29
  30struct io_tracker {
  31	spinlock_t lock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32
 
 
 
 
 
 
 
  33	/*
  34	 * Sectors of in-flight IO.
  35	 */
  36	sector_t in_flight;
 
  37
  38	/*
  39	 * The time, in jiffies, when this device became idle (if it is
  40	 * indeed idle).
  41	 */
  42	unsigned long idle_time;
  43	unsigned long last_update_time;
  44};
  45
  46static void iot_init(struct io_tracker *iot)
  47{
  48	spin_lock_init(&iot->lock);
  49	iot->in_flight = 0ul;
  50	iot->idle_time = 0ul;
  51	iot->last_update_time = jiffies;
  52}
  53
  54static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  55{
  56	if (iot->in_flight)
  57		return false;
  58
  59	return time_after(jiffies, iot->idle_time + jifs);
  60}
  61
  62static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  63{
  64	bool r;
  65	unsigned long flags;
 
 
 
 
 
  66
  67	spin_lock_irqsave(&iot->lock, flags);
  68	r = __iot_idle_for(iot, jifs);
  69	spin_unlock_irqrestore(&iot->lock, flags);
  70
  71	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72}
  73
  74static void iot_io_begin(struct io_tracker *iot, sector_t len)
 
 
 
 
 
  75{
  76	unsigned long flags;
 
 
 
 
  77
  78	spin_lock_irqsave(&iot->lock, flags);
  79	iot->in_flight += len;
  80	spin_unlock_irqrestore(&iot->lock, flags);
 
 
  81}
  82
  83static void __iot_io_end(struct io_tracker *iot, sector_t len)
  84{
  85	iot->in_flight -= len;
  86	if (!iot->in_flight)
  87		iot->idle_time = jiffies;
  88}
  89
  90static void iot_io_end(struct io_tracker *iot, sector_t len)
  91{
  92	unsigned long flags;
 
 
 
 
 
  93
  94	spin_lock_irqsave(&iot->lock, flags);
  95	__iot_io_end(iot, len);
  96	spin_unlock_irqrestore(&iot->lock, flags);
  97}
  98
  99/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100
 101/*
 102 * Glossary:
 103 *
 104 * oblock: index of an origin block
 105 * cblock: index of a cache block
 106 * promotion: movement of a block from origin to cache
 107 * demotion: movement of a block from cache to origin
 108 * migration: movement of a block between the origin and cache device,
 109 *	      either direction
 110 */
 
 
 
 111
 112/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 113
 114/*
 115 * There are a couple of places where we let a bio run, but want to do some
 116 * work before calling its endio function.  We do this by temporarily
 117 * changing the endio fn.
 118 */
 119struct dm_hook_info {
 120	bio_end_io_t *bi_end_io;
 121};
 122
 123static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 124			bio_end_io_t *bi_end_io, void *bi_private)
 125{
 126	h->bi_end_io = bio->bi_end_io;
 127
 128	bio->bi_end_io = bi_end_io;
 129	bio->bi_private = bi_private;
 130}
 131
 132static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 133{
 134	bio->bi_end_io = h->bi_end_io;
 135}
 136
 137/*----------------------------------------------------------------*/
 138
 139#define MIGRATION_POOL_SIZE 128
 140#define COMMIT_PERIOD HZ
 141#define MIGRATION_COUNT_WINDOW 10
 142
 143/*
 144 * The block size of the device holding cache data must be
 145 * between 32KB and 1GB.
 146 */
 147#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 148#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 149
 150enum cache_metadata_mode {
 151	CM_WRITE,		/* metadata may be changed */
 152	CM_READ_ONLY,		/* metadata may not be changed */
 153	CM_FAIL
 154};
 155
 156enum cache_io_mode {
 157	/*
 158	 * Data is written to cached blocks only.  These blocks are marked
 159	 * dirty.  If you lose the cache device you will lose data.
 160	 * Potential performance increase for both reads and writes.
 161	 */
 162	CM_IO_WRITEBACK,
 163
 164	/*
 165	 * Data is written to both cache and origin.  Blocks are never
 166	 * dirty.  Potential performance benfit for reads only.
 167	 */
 168	CM_IO_WRITETHROUGH,
 169
 170	/*
 171	 * A degraded mode useful for various cache coherency situations
 172	 * (eg, rolling back snapshots).  Reads and writes always go to the
 173	 * origin.  If a write goes to a cached oblock, then the cache
 174	 * block is invalidated.
 175	 */
 176	CM_IO_PASSTHROUGH
 177};
 178
 179struct cache_features {
 180	enum cache_metadata_mode mode;
 181	enum cache_io_mode io_mode;
 
 
 182};
 183
 184struct cache_stats {
 185	atomic_t read_hit;
 186	atomic_t read_miss;
 187	atomic_t write_hit;
 188	atomic_t write_miss;
 189	atomic_t demotion;
 190	atomic_t promotion;
 
 191	atomic_t copies_avoided;
 192	atomic_t cache_cell_clash;
 193	atomic_t commit_count;
 194	atomic_t discard_count;
 195};
 196
 197/*
 198 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
 199 * the one-past-the-end value.
 200 */
 201struct cblock_range {
 202	dm_cblock_t begin;
 203	dm_cblock_t end;
 204};
 205
 206struct invalidation_request {
 207	struct list_head list;
 208	struct cblock_range *cblocks;
 209
 210	atomic_t complete;
 211	int err;
 212
 213	wait_queue_head_t result_wait;
 214};
 215
 216struct cache {
 217	struct dm_target *ti;
 218	struct dm_target_callbacks callbacks;
 
 
 
 
 
 
 219
 220	struct dm_cache_metadata *cmd;
 221
 222	/*
 223	 * Metadata is written to this device.
 224	 */
 225	struct dm_dev *metadata_dev;
 226
 227	/*
 228	 * The slower of the two data devices.  Typically a spindle.
 229	 */
 230	struct dm_dev *origin_dev;
 231
 232	/*
 233	 * The faster of the two data devices.  Typically an SSD.
 234	 */
 235	struct dm_dev *cache_dev;
 236
 237	/*
 238	 * Size of the origin device in _complete_ blocks and native sectors.
 239	 */
 240	dm_oblock_t origin_blocks;
 241	sector_t origin_sectors;
 242
 243	/*
 244	 * Size of the cache device in blocks.
 245	 */
 246	dm_cblock_t cache_size;
 247
 248	/*
 249	 * Fields for converting from sectors to blocks.
 250	 */
 251	uint32_t sectors_per_block;
 252	int sectors_per_block_shift;
 253
 254	spinlock_t lock;
 255	struct list_head deferred_cells;
 256	struct bio_list deferred_bios;
 257	struct bio_list deferred_flush_bios;
 258	struct bio_list deferred_writethrough_bios;
 259	struct list_head quiesced_migrations;
 260	struct list_head completed_migrations;
 261	struct list_head need_commit_migrations;
 262	sector_t migration_threshold;
 263	wait_queue_head_t migration_wait;
 264	atomic_t nr_allocated_migrations;
 265
 266	/*
 267	 * The number of in flight migrations that are performing
 268	 * background io. eg, promotion, writeback.
 269	 */
 270	atomic_t nr_io_migrations;
 271
 272	wait_queue_head_t quiescing_wait;
 273	atomic_t quiescing;
 274	atomic_t quiescing_ack;
 275
 276	/*
 277	 * cache_size entries, dirty if set
 278	 */
 279	atomic_t nr_dirty;
 280	unsigned long *dirty_bitset;
 281
 282	/*
 283	 * origin_blocks entries, discarded if set.
 284	 */
 285	dm_dblock_t discard_nr_blocks;
 286	unsigned long *discard_bitset;
 287	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 288
 289	/*
 290	 * Rather than reconstructing the table line for the status we just
 291	 * save it and regurgitate.
 292	 */
 293	unsigned nr_ctr_args;
 294	const char **ctr_args;
 295
 296	struct dm_kcopyd_client *copier;
 
 
 297	struct workqueue_struct *wq;
 298	struct work_struct worker;
 299
 300	struct delayed_work waker;
 301	unsigned long last_commit_jiffies;
 302
 303	struct dm_bio_prison *prison;
 304	struct dm_deferred_set *all_io_ds;
 305
 306	mempool_t *migration_pool;
 
 
 
 
 307
 
 308	struct dm_cache_policy *policy;
 309	unsigned policy_nr_args;
 
 
 
 
 
 
 310
 311	bool need_tick_bio:1;
 312	bool sized:1;
 313	bool invalidate:1;
 314	bool commit_requested:1;
 315	bool loaded_mappings:1;
 316	bool loaded_discards:1;
 317
 318	/*
 319	 * Cache features such as write-through.
 320	 */
 321	struct cache_features features;
 322
 323	struct cache_stats stats;
 
 324
 325	/*
 326	 * Invalidation fields.
 327	 */
 328	spinlock_t invalidation_lock;
 329	struct list_head invalidation_requests;
 330
 331	struct io_tracker origin_tracker;
 332};
 333
 334struct per_bio_data {
 335	bool tick:1;
 336	unsigned req_nr:2;
 337	struct dm_deferred_entry *all_io_entry;
 338	struct dm_hook_info hook_info;
 339	sector_t len;
 340
 341	/*
 342	 * writethrough fields.  These MUST remain at the end of this
 343	 * structure and the 'cache' member must be the first as it
 344	 * is used to determine the offset of the writethrough fields.
 345	 */
 346	struct cache *cache;
 347	dm_cblock_t cblock;
 348	struct dm_bio_details bio_details;
 349};
 350
 351struct dm_cache_migration {
 352	struct list_head list;
 353	struct cache *cache;
 354
 355	unsigned long start_jiffies;
 356	dm_oblock_t old_oblock;
 357	dm_oblock_t new_oblock;
 358	dm_cblock_t cblock;
 359
 360	bool err:1;
 361	bool discard:1;
 362	bool writeback:1;
 363	bool demote:1;
 364	bool promote:1;
 365	bool requeue_holder:1;
 366	bool invalidate:1;
 367
 368	struct dm_bio_prison_cell *old_ocell;
 369	struct dm_bio_prison_cell *new_ocell;
 370};
 371
 372/*
 373 * Processing a bio in the worker thread may require these memory
 374 * allocations.  We prealloc to avoid deadlocks (the same worker thread
 375 * frees them back to the mempool).
 376 */
 377struct prealloc {
 378	struct dm_cache_migration *mg;
 379	struct dm_bio_prison_cell *cell1;
 380	struct dm_bio_prison_cell *cell2;
 381};
 
 
 
 
 
 
 382
 383static enum cache_metadata_mode get_cache_mode(struct cache *cache);
 384
 385static void wake_worker(struct cache *cache)
 386{
 387	queue_work(cache->wq, &cache->worker);
 
 
 
 
 
 
 
 
 388}
 389
 390/*----------------------------------------------------------------*/
 391
 392static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
 393{
 394	/* FIXME: change to use a local slab. */
 395	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
 396}
 397
 398static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
 399{
 400	dm_bio_prison_free_cell(cache->prison, cell);
 401}
 402
 403static struct dm_cache_migration *alloc_migration(struct cache *cache)
 404{
 405	struct dm_cache_migration *mg;
 406
 407	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
 408	if (mg) {
 409		mg->cache = cache;
 410		atomic_inc(&mg->cache->nr_allocated_migrations);
 411	}
 
 412
 413	return mg;
 414}
 415
 416static void free_migration(struct dm_cache_migration *mg)
 417{
 418	struct cache *cache = mg->cache;
 419
 420	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 421		wake_up(&cache->migration_wait);
 422
 423	mempool_free(mg, cache->migration_pool);
 424}
 425
 426static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
 427{
 428	if (!p->mg) {
 429		p->mg = alloc_migration(cache);
 430		if (!p->mg)
 431			return -ENOMEM;
 432	}
 433
 434	if (!p->cell1) {
 435		p->cell1 = alloc_prison_cell(cache);
 436		if (!p->cell1)
 437			return -ENOMEM;
 438	}
 439
 440	if (!p->cell2) {
 441		p->cell2 = alloc_prison_cell(cache);
 442		if (!p->cell2)
 443			return -ENOMEM;
 444	}
 445
 446	return 0;
 447}
 448
 449static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
 450{
 451	if (p->cell2)
 452		free_prison_cell(cache, p->cell2);
 453
 454	if (p->cell1)
 455		free_prison_cell(cache, p->cell1);
 456
 457	if (p->mg)
 458		free_migration(p->mg);
 459}
 460
 461static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
 462{
 463	struct dm_cache_migration *mg = p->mg;
 464
 465	BUG_ON(!mg);
 466	p->mg = NULL;
 467
 468	return mg;
 469}
 470
 471/*
 472 * You must have a cell within the prealloc struct to return.  If not this
 473 * function will BUG() rather than returning NULL.
 474 */
 475static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
 
 
 
 476{
 477	struct dm_bio_prison_cell *r = NULL;
 
 
 
 478
 479	if (p->cell1) {
 480		r = p->cell1;
 481		p->cell1 = NULL;
 
 
 482
 483	} else if (p->cell2) {
 484		r = p->cell2;
 485		p->cell2 = NULL;
 486	} else
 487		BUG();
 488
 489	return r;
 
 490}
 491
 492/*
 493 * You can't have more than two cells in a prealloc struct.  BUG() will be
 494 * called if you try and overfill.
 495 */
 496static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
 497{
 498	if (!p->cell2)
 499		p->cell2 = cell;
 500
 501	else if (!p->cell1)
 502		p->cell1 = cell;
 
 
 503
 504	else
 505		BUG();
 506}
 507
 508/*----------------------------------------------------------------*/
 509
 510static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
 511{
 512	key->virtual = 0;
 513	key->dev = 0;
 514	key->block_begin = from_oblock(begin);
 515	key->block_end = from_oblock(end);
 516}
 517
 518/*
 519 * The caller hands in a preallocated cell, and a free function for it.
 520 * The cell will be freed if there's an error, or if it wasn't used because
 521 * a cell with that key already exists.
 522 */
 523typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
 524
 525static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
 526			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 527			    cell_free_fn free_fn, void *free_context,
 528			    struct dm_bio_prison_cell **cell_result)
 529{
 530	int r;
 531	struct dm_cell_key key;
 532
 533	build_key(oblock_begin, oblock_end, &key);
 534	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
 535	if (r)
 536		free_fn(free_context, cell_prealloc);
 537
 538	return r;
 539}
 540
 541static int bio_detain(struct cache *cache, dm_oblock_t oblock,
 542		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 543		      cell_free_fn free_fn, void *free_context,
 544		      struct dm_bio_prison_cell **cell_result)
 545{
 
 
 
 546	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 547	return bio_detain_range(cache, oblock, end, bio,
 548				cell_prealloc, free_fn, free_context, cell_result);
 549}
 550
 551static int get_cell(struct cache *cache,
 552		    dm_oblock_t oblock,
 553		    struct prealloc *structs,
 554		    struct dm_bio_prison_cell **cell_result)
 555{
 556	int r;
 557	struct dm_cell_key key;
 558	struct dm_bio_prison_cell *cell_prealloc;
 559
 560	cell_prealloc = prealloc_get_cell(structs);
 
 
 
 
 
 
 
 
 561
 562	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
 563	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
 564	if (r)
 565		prealloc_put_cell(structs, cell_prealloc);
 
 566
 567	return r;
 568}
 569
 570/*----------------------------------------------------------------*/
 571
 572static bool is_dirty(struct cache *cache, dm_cblock_t b)
 573{
 574	return test_bit(from_cblock(b), cache->dirty_bitset);
 575}
 576
 577static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 578{
 579	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 580		atomic_inc(&cache->nr_dirty);
 581		policy_set_dirty(cache->policy, oblock);
 582	}
 583}
 584
 585static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 
 
 
 
 
 
 
 
 
 
 
 586{
 587	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 588		policy_clear_dirty(cache->policy, oblock);
 589		if (atomic_dec_return(&cache->nr_dirty) == 0)
 590			dm_table_event(cache->ti->table);
 591	}
 
 
 592}
 593
 594/*----------------------------------------------------------------*/
 595
 596static bool block_size_is_power_of_two(struct cache *cache)
 597{
 598	return cache->sectors_per_block_shift >= 0;
 599}
 600
 601/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 602#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 603__always_inline
 604#endif
 605static dm_block_t block_div(dm_block_t b, uint32_t n)
 606{
 607	do_div(b, n);
 608
 609	return b;
 610}
 611
 612static dm_block_t oblocks_per_dblock(struct cache *cache)
 613{
 614	dm_block_t oblocks = cache->discard_block_size;
 615
 616	if (block_size_is_power_of_two(cache))
 617		oblocks >>= cache->sectors_per_block_shift;
 618	else
 619		oblocks = block_div(oblocks, cache->sectors_per_block);
 620
 621	return oblocks;
 622}
 623
 624static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 625{
 626	return to_dblock(block_div(from_oblock(oblock),
 627				   oblocks_per_dblock(cache)));
 628}
 629
 630static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
 631{
 632	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
 633}
 634
 635static void set_discard(struct cache *cache, dm_dblock_t b)
 636{
 637	unsigned long flags;
 638
 639	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 640	atomic_inc(&cache->stats.discard_count);
 641
 642	spin_lock_irqsave(&cache->lock, flags);
 643	set_bit(from_dblock(b), cache->discard_bitset);
 644	spin_unlock_irqrestore(&cache->lock, flags);
 645}
 646
 647static void clear_discard(struct cache *cache, dm_dblock_t b)
 648{
 649	unsigned long flags;
 650
 651	spin_lock_irqsave(&cache->lock, flags);
 652	clear_bit(from_dblock(b), cache->discard_bitset);
 653	spin_unlock_irqrestore(&cache->lock, flags);
 654}
 655
 656static bool is_discarded(struct cache *cache, dm_dblock_t b)
 657{
 658	int r;
 659	unsigned long flags;
 660
 661	spin_lock_irqsave(&cache->lock, flags);
 662	r = test_bit(from_dblock(b), cache->discard_bitset);
 663	spin_unlock_irqrestore(&cache->lock, flags);
 664
 665	return r;
 666}
 667
 668static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 669{
 670	int r;
 671	unsigned long flags;
 672
 673	spin_lock_irqsave(&cache->lock, flags);
 674	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 675		     cache->discard_bitset);
 676	spin_unlock_irqrestore(&cache->lock, flags);
 677
 678	return r;
 679}
 680
 681/*----------------------------------------------------------------*/
 682
 683static void load_stats(struct cache *cache)
 684{
 685	struct dm_cache_statistics stats;
 686
 687	dm_cache_metadata_get_stats(cache->cmd, &stats);
 688	atomic_set(&cache->stats.read_hit, stats.read_hits);
 689	atomic_set(&cache->stats.read_miss, stats.read_misses);
 690	atomic_set(&cache->stats.write_hit, stats.write_hits);
 691	atomic_set(&cache->stats.write_miss, stats.write_misses);
 692}
 693
 694static void save_stats(struct cache *cache)
 695{
 696	struct dm_cache_statistics stats;
 697
 698	if (get_cache_mode(cache) >= CM_READ_ONLY)
 699		return;
 700
 701	stats.read_hits = atomic_read(&cache->stats.read_hit);
 702	stats.read_misses = atomic_read(&cache->stats.read_miss);
 703	stats.write_hits = atomic_read(&cache->stats.write_hit);
 704	stats.write_misses = atomic_read(&cache->stats.write_miss);
 705
 706	dm_cache_metadata_set_stats(cache->cmd, &stats);
 707}
 708
 709/*----------------------------------------------------------------
 710 * Per bio data
 711 *--------------------------------------------------------------*/
 712
 713/*
 714 * If using writeback, leave out struct per_bio_data's writethrough fields.
 715 */
 716#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
 717#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
 718
 719static bool writethrough_mode(struct cache_features *f)
 720{
 721	return f->io_mode == CM_IO_WRITETHROUGH;
 722}
 723
 724static bool writeback_mode(struct cache_features *f)
 725{
 726	return f->io_mode == CM_IO_WRITEBACK;
 727}
 728
 729static bool passthrough_mode(struct cache_features *f)
 730{
 731	return f->io_mode == CM_IO_PASSTHROUGH;
 732}
 733
 734static size_t get_per_bio_data_size(struct cache *cache)
 735{
 736	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
 737}
 738
 739static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
 740{
 741	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
 742	BUG_ON(!pb);
 743	return pb;
 744}
 745
 746static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
 747{
 748	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
 749
 750	pb->tick = false;
 751	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 752	pb->all_io_entry = NULL;
 753	pb->len = 0;
 754
 755	return pb;
 756}
 757
 758/*----------------------------------------------------------------
 759 * Remapping
 760 *--------------------------------------------------------------*/
 
 761static void remap_to_origin(struct cache *cache, struct bio *bio)
 762{
 763	bio->bi_bdev = cache->origin_dev->bdev;
 764}
 765
 766static void remap_to_cache(struct cache *cache, struct bio *bio,
 767			   dm_cblock_t cblock)
 768{
 769	sector_t bi_sector = bio->bi_iter.bi_sector;
 770	sector_t block = from_cblock(cblock);
 771
 772	bio->bi_bdev = cache->cache_dev->bdev;
 773	if (!block_size_is_power_of_two(cache))
 774		bio->bi_iter.bi_sector =
 775			(block * cache->sectors_per_block) +
 776			sector_div(bi_sector, cache->sectors_per_block);
 777	else
 778		bio->bi_iter.bi_sector =
 779			(block << cache->sectors_per_block_shift) |
 780			(bi_sector & (cache->sectors_per_block - 1));
 781}
 782
 783static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 784{
 785	unsigned long flags;
 786	size_t pb_data_size = get_per_bio_data_size(cache);
 787	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 788
 789	spin_lock_irqsave(&cache->lock, flags);
 790	if (cache->need_tick_bio &&
 791	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
 
 792		pb->tick = true;
 793		cache->need_tick_bio = false;
 794	}
 795	spin_unlock_irqrestore(&cache->lock, flags);
 796}
 797
 798static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 799				  dm_oblock_t oblock)
 800{
 
 801	check_if_tick_bio_needed(cache, bio);
 802	remap_to_origin(cache, bio);
 803	if (bio_data_dir(bio) == WRITE)
 804		clear_discard(cache, oblock_to_dblock(cache, oblock));
 805}
 806
 807static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 808				 dm_oblock_t oblock, dm_cblock_t cblock)
 809{
 810	check_if_tick_bio_needed(cache, bio);
 811	remap_to_cache(cache, bio, cblock);
 812	if (bio_data_dir(bio) == WRITE) {
 813		set_dirty(cache, oblock, cblock);
 814		clear_discard(cache, oblock_to_dblock(cache, oblock));
 815	}
 816}
 817
 818static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 819{
 820	sector_t block_nr = bio->bi_iter.bi_sector;
 821
 822	if (!block_size_is_power_of_two(cache))
 823		(void) sector_div(block_nr, cache->sectors_per_block);
 824	else
 825		block_nr >>= cache->sectors_per_block_shift;
 826
 827	return to_oblock(block_nr);
 828}
 829
 830static int bio_triggers_commit(struct cache *cache, struct bio *bio)
 831{
 832	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
 833}
 834
 835/*
 836 * You must increment the deferred set whilst the prison cell is held.  To
 837 * encourage this, we ask for 'cell' to be passed in.
 838 */
 839static void inc_ds(struct cache *cache, struct bio *bio,
 840		   struct dm_bio_prison_cell *cell)
 841{
 842	size_t pb_data_size = get_per_bio_data_size(cache);
 843	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 844
 845	BUG_ON(!cell);
 846	BUG_ON(pb->all_io_entry);
 847
 848	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
 849}
 850
 851static bool accountable_bio(struct cache *cache, struct bio *bio)
 852{
 853	return ((bio->bi_bdev == cache->origin_dev->bdev) &&
 854		!(bio->bi_rw & REQ_DISCARD));
 855}
 856
 857static void accounted_begin(struct cache *cache, struct bio *bio)
 858{
 859	size_t pb_data_size = get_per_bio_data_size(cache);
 860	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 861
 862	if (accountable_bio(cache, bio)) {
 
 863		pb->len = bio_sectors(bio);
 864		iot_io_begin(&cache->origin_tracker, pb->len);
 865	}
 866}
 867
 868static void accounted_complete(struct cache *cache, struct bio *bio)
 869{
 870	size_t pb_data_size = get_per_bio_data_size(cache);
 871	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 872
 873	iot_io_end(&cache->origin_tracker, pb->len);
 874}
 875
 876static void accounted_request(struct cache *cache, struct bio *bio)
 877{
 878	accounted_begin(cache, bio);
 879	generic_make_request(bio);
 880}
 881
 882static void issue(struct cache *cache, struct bio *bio)
 883{
 884	unsigned long flags;
 885
 886	if (!bio_triggers_commit(cache, bio)) {
 887		accounted_request(cache, bio);
 888		return;
 889	}
 890
 891	/*
 892	 * Batch together any bios that trigger commits and then issue a
 893	 * single commit for them in do_worker().
 894	 */
 895	spin_lock_irqsave(&cache->lock, flags);
 896	cache->commit_requested = true;
 897	bio_list_add(&cache->deferred_flush_bios, bio);
 898	spin_unlock_irqrestore(&cache->lock, flags);
 899}
 900
 901static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
 902{
 903	inc_ds(cache, bio, cell);
 904	issue(cache, bio);
 905}
 906
 907static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
 908{
 909	unsigned long flags;
 910
 911	spin_lock_irqsave(&cache->lock, flags);
 912	bio_list_add(&cache->deferred_writethrough_bios, bio);
 913	spin_unlock_irqrestore(&cache->lock, flags);
 914
 915	wake_worker(cache);
 916}
 917
 918static void writethrough_endio(struct bio *bio)
 919{
 920	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 921
 922	dm_unhook_bio(&pb->hook_info, bio);
 923
 924	if (bio->bi_error) {
 925		bio_endio(bio);
 926		return;
 927	}
 928
 929	dm_bio_restore(&pb->bio_details, bio);
 930	remap_to_cache(pb->cache, bio, pb->cblock);
 931
 932	/*
 933	 * We can't issue this bio directly, since we're in interrupt
 934	 * context.  So it gets put on a bio list for processing by the
 935	 * worker thread.
 936	 */
 937	defer_writethrough_bio(pb->cache, bio);
 938}
 939
 940/*
 941 * When running in writethrough mode we need to send writes to clean blocks
 942 * to both the cache and origin devices.  In future we'd like to clone the
 943 * bio and send them in parallel, but for now we're doing them in
 944 * series as this is easier.
 945 */
 946static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
 947				       dm_oblock_t oblock, dm_cblock_t cblock)
 948{
 949	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 
 950
 951	pb->cache = cache;
 952	pb->cblock = cblock;
 953	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
 954	dm_bio_record(&pb->bio_details, bio);
 955
 956	remap_to_origin_clear_discard(pb->cache, bio, oblock);
 
 
 
 
 
 
 957}
 958
 959/*----------------------------------------------------------------
 
 960 * Failure modes
 961 *--------------------------------------------------------------*/
 
 962static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 963{
 964	return cache->features.mode;
 965}
 966
 967static const char *cache_device_name(struct cache *cache)
 968{
 969	return dm_device_name(dm_table_get_md(cache->ti->table));
 970}
 971
 972static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 973{
 974	const char *descs[] = {
 975		"write",
 976		"read-only",
 977		"fail"
 978	};
 979
 980	dm_table_event(cache->ti->table);
 981	DMINFO("%s: switching cache to %s mode",
 982	       cache_device_name(cache), descs[(int)mode]);
 983}
 984
 985static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 986{
 987	bool needs_check;
 988	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 989
 990	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 991		DMERR("unable to read needs_check flag, setting failure mode");
 
 992		new_mode = CM_FAIL;
 993	}
 994
 995	if (new_mode == CM_WRITE && needs_check) {
 996		DMERR("%s: unable to switch cache to write mode until repaired.",
 997		      cache_device_name(cache));
 998		if (old_mode != new_mode)
 999			new_mode = old_mode;
1000		else
1001			new_mode = CM_READ_ONLY;
1002	}
1003
1004	/* Never move out of fail mode */
1005	if (old_mode == CM_FAIL)
1006		new_mode = CM_FAIL;
1007
1008	switch (new_mode) {
1009	case CM_FAIL:
1010	case CM_READ_ONLY:
1011		dm_cache_metadata_set_read_only(cache->cmd);
1012		break;
1013
1014	case CM_WRITE:
1015		dm_cache_metadata_set_read_write(cache->cmd);
1016		break;
1017	}
1018
1019	cache->features.mode = new_mode;
1020
1021	if (new_mode != old_mode)
1022		notify_mode_switch(cache, new_mode);
1023}
1024
1025static void abort_transaction(struct cache *cache)
1026{
1027	const char *dev_name = cache_device_name(cache);
1028
1029	if (get_cache_mode(cache) >= CM_READ_ONLY)
1030		return;
1031
1032	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1033		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1034		set_cache_mode(cache, CM_FAIL);
1035	}
1036
1037	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1038	if (dm_cache_metadata_abort(cache->cmd)) {
1039		DMERR("%s: failed to abort metadata transaction", dev_name);
1040		set_cache_mode(cache, CM_FAIL);
1041	}
 
 
 
 
 
1042}
1043
1044static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1045{
1046	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1047		    cache_device_name(cache), op, r);
1048	abort_transaction(cache);
1049	set_cache_mode(cache, CM_READ_ONLY);
1050}
1051
1052/*----------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053 * Migration processing
1054 *
1055 * Migration covers moving data from the origin device to the cache, or
1056 * vice versa.
1057 *--------------------------------------------------------------*/
 
1058static void inc_io_migrations(struct cache *cache)
1059{
1060	atomic_inc(&cache->nr_io_migrations);
1061}
1062
1063static void dec_io_migrations(struct cache *cache)
1064{
1065	atomic_dec(&cache->nr_io_migrations);
1066}
1067
1068static bool discard_or_flush(struct bio *bio)
1069{
1070	return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
1071}
1072
1073static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1074{
1075	if (discard_or_flush(cell->holder)) {
1076		/*
1077		 * We have to handle these bios individually.
1078		 */
1079		dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1080		free_prison_cell(cache, cell);
1081	} else
1082		list_add_tail(&cell->user_list, &cache->deferred_cells);
1083}
1084
1085static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
 
1086{
1087	unsigned long flags;
1088
1089	if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1090		/*
1091		 * There was no prisoner to promote to holder, the
1092		 * cell has been released.
1093		 */
1094		free_prison_cell(cache, cell);
1095		return;
1096	}
1097
1098	spin_lock_irqsave(&cache->lock, flags);
1099	__cell_defer(cache, cell);
1100	spin_unlock_irqrestore(&cache->lock, flags);
1101
1102	wake_worker(cache);
 
 
 
1103}
1104
1105static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1106{
1107	dm_cell_error(cache->prison, cell, err);
1108	free_prison_cell(cache, cell);
1109}
1110
1111static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1112{
1113	cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
 
 
1114}
1115
1116static void free_io_migration(struct dm_cache_migration *mg)
1117{
1118	struct cache *cache = mg->cache;
1119
1120	dec_io_migrations(cache);
1121	free_migration(mg);
1122	wake_worker(cache);
1123}
1124
1125static void migration_failure(struct dm_cache_migration *mg)
1126{
1127	struct cache *cache = mg->cache;
1128	const char *dev_name = cache_device_name(cache);
1129
1130	if (mg->writeback) {
1131		DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1132		set_dirty(cache, mg->old_oblock, mg->cblock);
1133		cell_defer(cache, mg->old_ocell, false);
1134
1135	} else if (mg->demote) {
1136		DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1137		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1138
1139		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1140		if (mg->promote)
1141			cell_defer(cache, mg->new_ocell, true);
1142	} else {
1143		DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1144		policy_remove_mapping(cache->policy, mg->new_oblock);
1145		cell_defer(cache, mg->new_ocell, true);
1146	}
1147
1148	free_io_migration(mg);
1149}
1150
1151static void migration_success_pre_commit(struct dm_cache_migration *mg)
1152{
1153	int r;
1154	unsigned long flags;
1155	struct cache *cache = mg->cache;
1156
1157	if (mg->writeback) {
1158		clear_dirty(cache, mg->old_oblock, mg->cblock);
1159		cell_defer(cache, mg->old_ocell, false);
1160		free_io_migration(mg);
1161		return;
1162
1163	} else if (mg->demote) {
1164		r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1165		if (r) {
1166			DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1167				    cache_device_name(cache));
1168			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1169			policy_force_mapping(cache->policy, mg->new_oblock,
1170					     mg->old_oblock);
1171			if (mg->promote)
1172				cell_defer(cache, mg->new_ocell, true);
1173			free_io_migration(mg);
1174			return;
1175		}
1176	} else {
1177		r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1178		if (r) {
1179			DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1180				    cache_device_name(cache));
1181			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1182			policy_remove_mapping(cache->policy, mg->new_oblock);
1183			free_io_migration(mg);
1184			return;
1185		}
1186	}
1187
1188	spin_lock_irqsave(&cache->lock, flags);
1189	list_add_tail(&mg->list, &cache->need_commit_migrations);
1190	cache->commit_requested = true;
1191	spin_unlock_irqrestore(&cache->lock, flags);
1192}
1193
1194static void migration_success_post_commit(struct dm_cache_migration *mg)
1195{
1196	unsigned long flags;
1197	struct cache *cache = mg->cache;
1198
1199	if (mg->writeback) {
1200		DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1201			     cache_device_name(cache));
1202		return;
1203
1204	} else if (mg->demote) {
1205		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1206
1207		if (mg->promote) {
1208			mg->demote = false;
1209
1210			spin_lock_irqsave(&cache->lock, flags);
1211			list_add_tail(&mg->list, &cache->quiesced_migrations);
1212			spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
1213
1214		} else {
1215			if (mg->invalidate)
1216				policy_remove_mapping(cache->policy, mg->old_oblock);
1217			free_io_migration(mg);
1218		}
1219
1220	} else {
1221		if (mg->requeue_holder) {
1222			clear_dirty(cache, mg->new_oblock, mg->cblock);
1223			cell_defer(cache, mg->new_ocell, true);
1224		} else {
1225			/*
1226			 * The block was promoted via an overwrite, so it's dirty.
1227			 */
1228			set_dirty(cache, mg->new_oblock, mg->cblock);
1229			bio_endio(mg->new_ocell->holder);
1230			cell_defer(cache, mg->new_ocell, false);
1231		}
1232		free_io_migration(mg);
1233	}
1234}
1235
1236static void copy_complete(int read_err, unsigned long write_err, void *context)
1237{
1238	unsigned long flags;
1239	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1240	struct cache *cache = mg->cache;
1241
1242	if (read_err || write_err)
1243		mg->err = true;
1244
1245	spin_lock_irqsave(&cache->lock, flags);
1246	list_add_tail(&mg->list, &cache->completed_migrations);
1247	spin_unlock_irqrestore(&cache->lock, flags);
1248
1249	wake_worker(cache);
1250}
1251
1252static void issue_copy(struct dm_cache_migration *mg)
1253{
1254	int r;
1255	struct dm_io_region o_region, c_region;
1256	struct cache *cache = mg->cache;
1257	sector_t cblock = from_cblock(mg->cblock);
1258
1259	o_region.bdev = cache->origin_dev->bdev;
 
1260	o_region.count = cache->sectors_per_block;
1261
1262	c_region.bdev = cache->cache_dev->bdev;
1263	c_region.sector = cblock * cache->sectors_per_block;
1264	c_region.count = cache->sectors_per_block;
1265
1266	if (mg->writeback || mg->demote) {
1267		/* demote */
1268		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1269		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1270	} else {
1271		/* promote */
1272		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1273		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1274	}
1275
1276	if (r < 0) {
1277		DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1278		migration_failure(mg);
1279	}
 
 
 
1280}
1281
1282static void overwrite_endio(struct bio *bio)
1283{
1284	struct dm_cache_migration *mg = bio->bi_private;
1285	struct cache *cache = mg->cache;
1286	size_t pb_data_size = get_per_bio_data_size(cache);
1287	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1288	unsigned long flags;
1289
1290	dm_unhook_bio(&pb->hook_info, bio);
1291
1292	if (bio->bi_error)
1293		mg->err = true;
1294
1295	mg->requeue_holder = false;
1296
1297	spin_lock_irqsave(&cache->lock, flags);
1298	list_add_tail(&mg->list, &cache->completed_migrations);
1299	spin_unlock_irqrestore(&cache->lock, flags);
1300
1301	wake_worker(cache);
1302}
1303
1304static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
 
1305{
1306	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1307	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1308
1309	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1310	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1311
1312	/*
1313	 * No need to inc_ds() here, since the cell will be held for the
1314	 * duration of the io.
1315	 */
1316	accounted_request(mg->cache, bio);
1317}
 
 
1318
1319static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1320{
1321	return (bio_data_dir(bio) == WRITE) &&
1322		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1323}
1324
1325static void avoid_copy(struct dm_cache_migration *mg)
 
 
 
 
 
 
 
 
 
 
 
1326{
1327	atomic_inc(&mg->cache->stats.copies_avoided);
1328	migration_success_pre_commit(mg);
1329}
 
1330
1331static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1332				     dm_dblock_t *b, dm_dblock_t *e)
1333{
1334	sector_t sb = bio->bi_iter.bi_sector;
1335	sector_t se = bio_end_sector(bio);
1336
1337	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338
1339	if (se - sb < cache->discard_block_size)
1340		*e = *b;
1341	else
1342		*e = to_dblock(block_div(se, cache->discard_block_size));
1343}
 
 
 
 
1344
1345static void issue_discard(struct dm_cache_migration *mg)
1346{
1347	dm_dblock_t b, e;
1348	struct bio *bio = mg->new_ocell->holder;
1349	struct cache *cache = mg->cache;
 
 
1350
1351	calc_discard_block_range(cache, bio, &b, &e);
1352	while (b != e) {
1353		set_discard(cache, b);
1354		b = to_dblock(from_dblock(b) + 1);
1355	}
1356
1357	bio_endio(bio);
1358	cell_defer(cache, mg->new_ocell, false);
1359	free_migration(mg);
1360	wake_worker(cache);
 
 
 
1361}
1362
1363static void issue_copy_or_discard(struct dm_cache_migration *mg)
1364{
1365	bool avoid;
1366	struct cache *cache = mg->cache;
1367
1368	if (mg->discard) {
1369		issue_discard(mg);
1370		return;
1371	}
1372
1373	if (mg->writeback || mg->demote)
1374		avoid = !is_dirty(cache, mg->cblock) ||
1375			is_discarded_oblock(cache, mg->old_oblock);
1376	else {
1377		struct bio *bio = mg->new_ocell->holder;
 
1378
1379		avoid = is_discarded_oblock(cache, mg->new_oblock);
 
 
 
 
 
 
1380
1381		if (writeback_mode(&cache->features) &&
1382		    !avoid && bio_writes_complete_block(cache, bio)) {
1383			issue_overwrite(mg, bio);
1384			return;
1385		}
1386	}
1387
1388	avoid ? avoid_copy(mg) : issue_copy(mg);
1389}
1390
1391static void complete_migration(struct dm_cache_migration *mg)
1392{
1393	if (mg->err)
1394		migration_failure(mg);
1395	else
1396		migration_success_pre_commit(mg);
1397}
1398
1399static void process_migrations(struct cache *cache, struct list_head *head,
1400			       void (*fn)(struct dm_cache_migration *))
1401{
1402	unsigned long flags;
1403	struct list_head list;
1404	struct dm_cache_migration *mg, *tmp;
1405
1406	INIT_LIST_HEAD(&list);
1407	spin_lock_irqsave(&cache->lock, flags);
1408	list_splice_init(head, &list);
1409	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410
1411	list_for_each_entry_safe(mg, tmp, &list, list)
1412		fn(mg);
 
 
1413}
1414
1415static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1416{
1417	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
 
 
 
 
 
 
 
 
1418}
1419
1420static void queue_quiesced_migration(struct dm_cache_migration *mg)
1421{
1422	unsigned long flags;
1423	struct cache *cache = mg->cache;
1424
1425	spin_lock_irqsave(&cache->lock, flags);
1426	__queue_quiesced_migration(mg);
1427	spin_unlock_irqrestore(&cache->lock, flags);
1428
1429	wake_worker(cache);
1430}
 
 
 
1431
1432static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1433{
1434	unsigned long flags;
1435	struct dm_cache_migration *mg, *tmp;
 
 
 
 
1436
1437	spin_lock_irqsave(&cache->lock, flags);
1438	list_for_each_entry_safe(mg, tmp, work, list)
1439		__queue_quiesced_migration(mg);
1440	spin_unlock_irqrestore(&cache->lock, flags);
1441
1442	wake_worker(cache);
 
 
1443}
1444
1445static void check_for_quiesced_migrations(struct cache *cache,
1446					  struct per_bio_data *pb)
1447{
1448	struct list_head work;
 
 
 
1449
1450	if (!pb->all_io_entry)
 
 
1451		return;
 
1452
1453	INIT_LIST_HEAD(&work);
1454	dm_deferred_entry_dec(pb->all_io_entry, &work);
1455
1456	if (!list_empty(&work))
1457		queue_quiesced_migrations(cache, &work);
1458}
1459
1460static void quiesce_migration(struct dm_cache_migration *mg)
1461{
1462	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1463		queue_quiesced_migration(mg);
1464}
1465
1466static void promote(struct cache *cache, struct prealloc *structs,
1467		    dm_oblock_t oblock, dm_cblock_t cblock,
1468		    struct dm_bio_prison_cell *cell)
1469{
1470	struct dm_cache_migration *mg = prealloc_get_migration(structs);
 
 
 
 
 
 
1471
1472	mg->err = false;
1473	mg->discard = false;
1474	mg->writeback = false;
1475	mg->demote = false;
1476	mg->promote = true;
1477	mg->requeue_holder = true;
1478	mg->invalidate = false;
1479	mg->cache = cache;
1480	mg->new_oblock = oblock;
1481	mg->cblock = cblock;
1482	mg->old_ocell = NULL;
1483	mg->new_ocell = cell;
1484	mg->start_jiffies = jiffies;
1485
1486	inc_io_migrations(cache);
1487	quiesce_migration(mg);
1488}
1489
1490static void writeback(struct cache *cache, struct prealloc *structs,
1491		      dm_oblock_t oblock, dm_cblock_t cblock,
1492		      struct dm_bio_prison_cell *cell)
1493{
1494	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1495
1496	mg->err = false;
1497	mg->discard = false;
1498	mg->writeback = true;
1499	mg->demote = false;
1500	mg->promote = false;
1501	mg->requeue_holder = true;
1502	mg->invalidate = false;
1503	mg->cache = cache;
1504	mg->old_oblock = oblock;
1505	mg->cblock = cblock;
1506	mg->old_ocell = cell;
1507	mg->new_ocell = NULL;
1508	mg->start_jiffies = jiffies;
1509
1510	inc_io_migrations(cache);
1511	quiesce_migration(mg);
1512}
1513
1514static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1515				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1516				dm_cblock_t cblock,
1517				struct dm_bio_prison_cell *old_ocell,
1518				struct dm_bio_prison_cell *new_ocell)
1519{
1520	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1521
1522	mg->err = false;
1523	mg->discard = false;
1524	mg->writeback = false;
1525	mg->demote = true;
1526	mg->promote = true;
1527	mg->requeue_holder = true;
1528	mg->invalidate = false;
1529	mg->cache = cache;
1530	mg->old_oblock = old_oblock;
1531	mg->new_oblock = new_oblock;
1532	mg->cblock = cblock;
1533	mg->old_ocell = old_ocell;
1534	mg->new_ocell = new_ocell;
1535	mg->start_jiffies = jiffies;
1536
1537	inc_io_migrations(cache);
1538	quiesce_migration(mg);
1539}
1540
1541/*
1542 * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1543 * block are thrown away.
1544 */
1545static void invalidate(struct cache *cache, struct prealloc *structs,
1546		       dm_oblock_t oblock, dm_cblock_t cblock,
1547		       struct dm_bio_prison_cell *cell)
1548{
1549	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1550
1551	mg->err = false;
1552	mg->discard = false;
1553	mg->writeback = false;
1554	mg->demote = true;
1555	mg->promote = false;
1556	mg->requeue_holder = true;
1557	mg->invalidate = true;
1558	mg->cache = cache;
1559	mg->old_oblock = oblock;
1560	mg->cblock = cblock;
1561	mg->old_ocell = cell;
1562	mg->new_ocell = NULL;
1563	mg->start_jiffies = jiffies;
1564
1565	inc_io_migrations(cache);
1566	quiesce_migration(mg);
1567}
1568
1569static void discard(struct cache *cache, struct prealloc *structs,
1570		    struct dm_bio_prison_cell *cell)
1571{
1572	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1573
1574	mg->err = false;
1575	mg->discard = true;
1576	mg->writeback = false;
1577	mg->demote = false;
1578	mg->promote = false;
1579	mg->requeue_holder = false;
1580	mg->invalidate = false;
1581	mg->cache = cache;
1582	mg->old_ocell = NULL;
1583	mg->new_ocell = cell;
1584	mg->start_jiffies = jiffies;
1585
1586	quiesce_migration(mg);
 
1587}
1588
1589/*----------------------------------------------------------------
1590 * bio processing
1591 *--------------------------------------------------------------*/
1592static void defer_bio(struct cache *cache, struct bio *bio)
1593{
1594	unsigned long flags;
 
 
 
1595
1596	spin_lock_irqsave(&cache->lock, flags);
1597	bio_list_add(&cache->deferred_bios, bio);
1598	spin_unlock_irqrestore(&cache->lock, flags);
1599
1600	wake_worker(cache);
1601}
 
 
 
 
 
 
 
 
 
 
 
 
1602
1603static void process_flush_bio(struct cache *cache, struct bio *bio)
1604{
1605	size_t pb_data_size = get_per_bio_data_size(cache);
1606	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1607
1608	BUG_ON(bio->bi_iter.bi_size);
1609	if (!pb->req_nr)
1610		remap_to_origin(cache, bio);
1611	else
1612		remap_to_cache(cache, bio, 0);
1613
1614	/*
1615	 * REQ_FLUSH is not directed at any particular block so we don't
1616	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_FLUSH
1617	 * by dm-core.
1618	 */
1619	issue(cache, bio);
1620}
1621
1622static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1623				struct bio *bio)
1624{
1625	int r;
1626	dm_dblock_t b, e;
1627	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1628
1629	calc_discard_block_range(cache, bio, &b, &e);
1630	if (b == e) {
1631		bio_endio(bio);
1632		return;
1633	}
1634
1635	cell_prealloc = prealloc_get_cell(structs);
1636	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1637			     (cell_free_fn) prealloc_put_cell,
1638			     structs, &new_ocell);
1639	if (r > 0)
1640		return;
1641
1642	discard(cache, structs, new_ocell);
1643}
1644
1645static bool spare_migration_bandwidth(struct cache *cache)
1646{
1647	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1648		cache->sectors_per_block;
1649	return current_volume < cache->migration_threshold;
1650}
1651
1652static void inc_hit_counter(struct cache *cache, struct bio *bio)
1653{
1654	atomic_inc(bio_data_dir(bio) == READ ?
1655		   &cache->stats.read_hit : &cache->stats.write_hit);
1656}
1657
1658static void inc_miss_counter(struct cache *cache, struct bio *bio)
1659{
1660	atomic_inc(bio_data_dir(bio) == READ ?
1661		   &cache->stats.read_miss : &cache->stats.write_miss);
1662}
1663
1664/*----------------------------------------------------------------*/
1665
1666struct inc_detail {
1667	struct cache *cache;
1668	struct bio_list bios_for_issue;
1669	struct bio_list unhandled_bios;
1670	bool any_writes;
1671};
1672
1673static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1674{
1675	struct bio *bio;
1676	struct inc_detail *detail = context;
1677	struct cache *cache = detail->cache;
1678
1679	inc_ds(cache, cell->holder, cell);
1680	if (bio_data_dir(cell->holder) == WRITE)
1681		detail->any_writes = true;
1682
1683	while ((bio = bio_list_pop(&cell->bios))) {
1684		if (discard_or_flush(bio)) {
1685			bio_list_add(&detail->unhandled_bios, bio);
1686			continue;
1687		}
1688
1689		if (bio_data_dir(bio) == WRITE)
1690			detail->any_writes = true;
1691
1692		bio_list_add(&detail->bios_for_issue, bio);
1693		inc_ds(cache, bio, cell);
1694	}
1695}
1696
1697// FIXME: refactor these two
1698static void remap_cell_to_origin_clear_discard(struct cache *cache,
1699					       struct dm_bio_prison_cell *cell,
1700					       dm_oblock_t oblock, bool issue_holder)
1701{
1702	struct bio *bio;
1703	unsigned long flags;
1704	struct inc_detail detail;
1705
1706	detail.cache = cache;
1707	bio_list_init(&detail.bios_for_issue);
1708	bio_list_init(&detail.unhandled_bios);
1709	detail.any_writes = false;
1710
1711	spin_lock_irqsave(&cache->lock, flags);
1712	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1713	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1714	spin_unlock_irqrestore(&cache->lock, flags);
1715
1716	remap_to_origin(cache, cell->holder);
1717	if (issue_holder)
1718		issue(cache, cell->holder);
1719	else
1720		accounted_begin(cache, cell->holder);
1721
1722	if (detail.any_writes)
1723		clear_discard(cache, oblock_to_dblock(cache, oblock));
1724
1725	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1726		remap_to_origin(cache, bio);
1727		issue(cache, bio);
1728	}
1729
1730	free_prison_cell(cache, cell);
1731}
1732
1733static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1734				      dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1735{
1736	struct bio *bio;
1737	unsigned long flags;
1738	struct inc_detail detail;
1739
1740	detail.cache = cache;
1741	bio_list_init(&detail.bios_for_issue);
1742	bio_list_init(&detail.unhandled_bios);
1743	detail.any_writes = false;
1744
1745	spin_lock_irqsave(&cache->lock, flags);
1746	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1747	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1748	spin_unlock_irqrestore(&cache->lock, flags);
1749
1750	remap_to_cache(cache, cell->holder, cblock);
1751	if (issue_holder)
1752		issue(cache, cell->holder);
1753	else
1754		accounted_begin(cache, cell->holder);
1755
1756	if (detail.any_writes) {
1757		set_dirty(cache, oblock, cblock);
1758		clear_discard(cache, oblock_to_dblock(cache, oblock));
1759	}
 
1760
1761	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1762		remap_to_cache(cache, bio, cblock);
1763		issue(cache, bio);
1764	}
1765
1766	free_prison_cell(cache, cell);
1767}
1768
1769/*----------------------------------------------------------------*/
1770
1771struct old_oblock_lock {
1772	struct policy_locker locker;
1773	struct cache *cache;
1774	struct prealloc *structs;
1775	struct dm_bio_prison_cell *cell;
1776};
1777
1778static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1779{
1780	/* This should never be called */
1781	BUG();
1782	return 0;
1783}
1784
1785static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1786{
1787	struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1788	struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
 
1789
1790	return bio_detain(l->cache, b, NULL, cell_prealloc,
1791			  (cell_free_fn) prealloc_put_cell,
1792			  l->structs, &l->cell);
 
 
1793}
1794
1795static void process_cell(struct cache *cache, struct prealloc *structs,
1796			 struct dm_bio_prison_cell *new_ocell)
1797{
1798	int r;
1799	bool release_cell = true;
1800	struct bio *bio = new_ocell->holder;
1801	dm_oblock_t block = get_bio_block(cache, bio);
1802	struct policy_result lookup_result;
1803	bool passthrough = passthrough_mode(&cache->features);
1804	bool fast_promotion, can_migrate;
1805	struct old_oblock_lock ool;
1806
1807	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1808	can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1809
1810	ool.locker.fn = cell_locker;
1811	ool.cache = cache;
1812	ool.structs = structs;
1813	ool.cell = NULL;
1814	r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1815		       bio, &ool.locker, &lookup_result);
1816
1817	if (r == -EWOULDBLOCK)
1818		/* migration has been denied */
1819		lookup_result.op = POLICY_MISS;
1820
1821	switch (lookup_result.op) {
1822	case POLICY_HIT:
1823		if (passthrough) {
1824			inc_miss_counter(cache, bio);
1825
1826			/*
1827			 * Passthrough always maps to the origin,
1828			 * invalidating any cache blocks that are written
1829			 * to.
1830			 */
1831
1832			if (bio_data_dir(bio) == WRITE) {
1833				atomic_inc(&cache->stats.demotion);
1834				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1835				release_cell = false;
1836
1837			} else {
1838				/* FIXME: factor out issue_origin() */
1839				remap_to_origin_clear_discard(cache, bio, block);
1840				inc_and_issue(cache, bio, new_ocell);
1841			}
1842		} else {
1843			inc_hit_counter(cache, bio);
1844
1845			if (bio_data_dir(bio) == WRITE &&
1846			    writethrough_mode(&cache->features) &&
1847			    !is_dirty(cache, lookup_result.cblock)) {
1848				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1849				inc_and_issue(cache, bio, new_ocell);
1850
1851			} else {
1852				remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1853				release_cell = false;
1854			}
1855		}
1856
1857		break;
1858
1859	case POLICY_MISS:
1860		inc_miss_counter(cache, bio);
1861		remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1862		release_cell = false;
1863		break;
 
 
 
1864
1865	case POLICY_NEW:
1866		atomic_inc(&cache->stats.promotion);
1867		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1868		release_cell = false;
1869		break;
1870
1871	case POLICY_REPLACE:
1872		atomic_inc(&cache->stats.demotion);
1873		atomic_inc(&cache->stats.promotion);
1874		demote_then_promote(cache, structs, lookup_result.old_oblock,
1875				    block, lookup_result.cblock,
1876				    ool.cell, new_ocell);
1877		release_cell = false;
1878		break;
1879
1880	default:
1881		DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1882			    cache_device_name(cache), __func__,
1883			    (unsigned) lookup_result.op);
1884		bio_io_error(bio);
 
 
1885	}
1886
1887	if (release_cell)
1888		cell_defer(cache, new_ocell, false);
1889}
1890
1891static void process_bio(struct cache *cache, struct prealloc *structs,
1892			struct bio *bio)
1893{
1894	int r;
1895	dm_oblock_t block = get_bio_block(cache, bio);
1896	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1897
1898	/*
1899	 * Check to see if that block is currently migrating.
1900	 */
1901	cell_prealloc = prealloc_get_cell(structs);
1902	r = bio_detain(cache, block, bio, cell_prealloc,
1903		       (cell_free_fn) prealloc_put_cell,
1904		       structs, &new_ocell);
1905	if (r > 0)
1906		return;
1907
1908	process_cell(cache, structs, new_ocell);
1909}
1910
1911static int need_commit_due_to_time(struct cache *cache)
1912{
1913	return jiffies < cache->last_commit_jiffies ||
1914	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
 
1915}
1916
1917/*
1918 * A non-zero return indicates read_only or fail_io mode.
 
 
1919 */
1920static int commit(struct cache *cache, bool clean_shutdown)
1921{
1922	int r;
1923
1924	if (get_cache_mode(cache) >= CM_READ_ONLY)
1925		return -EINVAL;
 
 
1926
1927	atomic_inc(&cache->stats.commit_count);
1928	r = dm_cache_commit(cache->cmd, clean_shutdown);
1929	if (r)
1930		metadata_operation_failed(cache, "dm_cache_commit", r);
 
1931
1932	return r;
 
 
 
1933}
1934
1935static int commit_if_needed(struct cache *cache)
1936{
1937	int r = 0;
1938
1939	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1940	    dm_cache_changed_this_transaction(cache->cmd)) {
1941		r = commit(cache, false);
1942		cache->commit_requested = false;
1943		cache->last_commit_jiffies = jiffies;
1944	}
1945
1946	return r;
1947}
1948
1949static void process_deferred_bios(struct cache *cache)
1950{
1951	bool prealloc_used = false;
1952	unsigned long flags;
1953	struct bio_list bios;
1954	struct bio *bio;
1955	struct prealloc structs;
1956
1957	memset(&structs, 0, sizeof(structs));
1958	bio_list_init(&bios);
1959
1960	spin_lock_irqsave(&cache->lock, flags);
1961	bio_list_merge(&bios, &cache->deferred_bios);
1962	bio_list_init(&cache->deferred_bios);
1963	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 
1964
1965	while (!bio_list_empty(&bios)) {
 
1966		/*
1967		 * If we've got no free migration structs, and processing
1968		 * this bio might require one, we pause until there are some
1969		 * prepared mappings to process.
 
1970		 */
1971		prealloc_used = true;
1972		if (prealloc_data_structs(cache, &structs)) {
1973			spin_lock_irqsave(&cache->lock, flags);
1974			bio_list_merge(&cache->deferred_bios, &bios);
1975			spin_unlock_irqrestore(&cache->lock, flags);
1976			break;
1977		}
1978
1979		bio = bio_list_pop(&bios);
1980
1981		if (bio->bi_rw & REQ_FLUSH)
1982			process_flush_bio(cache, bio);
1983		else if (bio->bi_rw & REQ_DISCARD)
1984			process_discard_bio(cache, &structs, bio);
1985		else
1986			process_bio(cache, &structs, bio);
1987	}
1988
1989	if (prealloc_used)
1990		prealloc_free_structs(cache, &structs);
1991}
1992
1993static void process_deferred_cells(struct cache *cache)
1994{
1995	bool prealloc_used = false;
1996	unsigned long flags;
1997	struct dm_bio_prison_cell *cell, *tmp;
1998	struct list_head cells;
1999	struct prealloc structs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2000
2001	memset(&structs, 0, sizeof(structs));
 
 
2002
2003	INIT_LIST_HEAD(&cells);
 
2004
2005	spin_lock_irqsave(&cache->lock, flags);
2006	list_splice_init(&cache->deferred_cells, &cells);
2007	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2008
2009	list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2010		/*
2011		 * If we've got no free migration structs, and processing
2012		 * this bio might require one, we pause until there are some
2013		 * prepared mappings to process.
2014		 */
2015		prealloc_used = true;
2016		if (prealloc_data_structs(cache, &structs)) {
2017			spin_lock_irqsave(&cache->lock, flags);
2018			list_splice(&cells, &cache->deferred_cells);
2019			spin_unlock_irqrestore(&cache->lock, flags);
2020			break;
 
 
 
 
 
 
 
 
2021		}
 
2022
2023		process_cell(cache, &structs, cell);
 
 
 
 
 
 
 
 
 
 
 
2024	}
2025
2026	if (prealloc_used)
2027		prealloc_free_structs(cache, &structs);
2028}
2029
2030static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2031{
2032	unsigned long flags;
2033	struct bio_list bios;
2034	struct bio *bio;
2035
2036	bio_list_init(&bios);
2037
2038	spin_lock_irqsave(&cache->lock, flags);
2039	bio_list_merge(&bios, &cache->deferred_flush_bios);
2040	bio_list_init(&cache->deferred_flush_bios);
2041	spin_unlock_irqrestore(&cache->lock, flags);
2042
2043	/*
2044	 * These bios have already been through inc_ds()
2045	 */
2046	while ((bio = bio_list_pop(&bios)))
2047		submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2048}
2049
2050static void process_deferred_writethrough_bios(struct cache *cache)
 
 
 
2051{
2052	unsigned long flags;
2053	struct bio_list bios;
2054	struct bio *bio;
2055
2056	bio_list_init(&bios);
 
2057
2058	spin_lock_irqsave(&cache->lock, flags);
2059	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2060	bio_list_init(&cache->deferred_writethrough_bios);
2061	spin_unlock_irqrestore(&cache->lock, flags);
2062
2063	/*
2064	 * These bios have already been through inc_ds()
2065	 */
2066	while ((bio = bio_list_pop(&bios)))
2067		accounted_request(cache, bio);
2068}
2069
2070static void writeback_some_dirty_blocks(struct cache *cache)
 
 
 
2071{
2072	bool prealloc_used = false;
2073	dm_oblock_t oblock;
2074	dm_cblock_t cblock;
2075	struct prealloc structs;
2076	struct dm_bio_prison_cell *old_ocell;
2077	bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2078
2079	memset(&structs, 0, sizeof(structs));
2080
2081	while (spare_migration_bandwidth(cache)) {
2082		if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2083			break; /* no work to do */
2084
2085		prealloc_used = true;
2086		if (prealloc_data_structs(cache, &structs) ||
2087		    get_cell(cache, oblock, &structs, &old_ocell)) {
2088			policy_set_dirty(cache->policy, oblock);
2089			break;
2090		}
2091
2092		writeback(cache, &structs, oblock, cblock, old_ocell);
2093	}
2094
2095	if (prealloc_used)
2096		prealloc_free_structs(cache, &structs);
2097}
2098
2099/*----------------------------------------------------------------
2100 * Invalidations.
2101 * Dropping something from the cache *without* writing back.
2102 *--------------------------------------------------------------*/
2103
2104static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2105{
2106	int r = 0;
2107	uint64_t begin = from_cblock(req->cblocks->begin);
2108	uint64_t end = from_cblock(req->cblocks->end);
2109
2110	while (begin != end) {
2111		r = policy_remove_cblock(cache->policy, to_cblock(begin));
2112		if (!r) {
2113			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2114			if (r) {
2115				metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2116				break;
2117			}
2118
2119		} else if (r == -ENODATA) {
2120			/* harmless, already unmapped */
2121			r = 0;
2122
2123		} else {
2124			DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2125			break;
2126		}
2127
2128		begin++;
2129        }
2130
2131	cache->commit_requested = true;
2132
2133	req->err = r;
2134	atomic_set(&req->complete, 1);
2135
2136	wake_up(&req->result_wait);
 
2137}
2138
2139static void process_invalidation_requests(struct cache *cache)
2140{
2141	struct list_head list;
2142	struct invalidation_request *req, *tmp;
2143
2144	INIT_LIST_HEAD(&list);
2145	spin_lock(&cache->invalidation_lock);
2146	list_splice_init(&cache->invalidation_requests, &list);
2147	spin_unlock(&cache->invalidation_lock);
2148
2149	list_for_each_entry_safe (req, tmp, &list, list)
2150		process_invalidation_request(cache, req);
2151}
 
 
 
 
 
 
 
2152
2153/*----------------------------------------------------------------
2154 * Main worker loop
2155 *--------------------------------------------------------------*/
2156static bool is_quiescing(struct cache *cache)
2157{
2158	return atomic_read(&cache->quiescing);
2159}
2160
2161static void ack_quiescing(struct cache *cache)
2162{
2163	if (is_quiescing(cache)) {
2164		atomic_inc(&cache->quiescing_ack);
2165		wake_up(&cache->quiescing_wait);
2166	}
2167}
2168
2169static void wait_for_quiescing_ack(struct cache *cache)
2170{
2171	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2172}
2173
2174static void start_quiescing(struct cache *cache)
2175{
2176	atomic_inc(&cache->quiescing);
2177	wait_for_quiescing_ack(cache);
2178}
2179
2180static void stop_quiescing(struct cache *cache)
2181{
2182	atomic_set(&cache->quiescing, 0);
2183	atomic_set(&cache->quiescing_ack, 0);
2184}
2185
2186static void wait_for_migrations(struct cache *cache)
2187{
2188	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2189}
2190
2191static void stop_worker(struct cache *cache)
2192{
2193	cancel_delayed_work(&cache->waker);
2194	flush_workqueue(cache->wq);
2195}
2196
2197static void requeue_deferred_cells(struct cache *cache)
2198{
2199	unsigned long flags;
2200	struct list_head cells;
2201	struct dm_bio_prison_cell *cell, *tmp;
2202
2203	INIT_LIST_HEAD(&cells);
2204	spin_lock_irqsave(&cache->lock, flags);
2205	list_splice_init(&cache->deferred_cells, &cells);
2206	spin_unlock_irqrestore(&cache->lock, flags);
2207
2208	list_for_each_entry_safe(cell, tmp, &cells, user_list)
2209		cell_requeue(cache, cell);
2210}
2211
 
 
 
 
 
2212static void requeue_deferred_bios(struct cache *cache)
2213{
2214	struct bio *bio;
2215	struct bio_list bios;
2216
2217	bio_list_init(&bios);
2218	bio_list_merge(&bios, &cache->deferred_bios);
2219	bio_list_init(&cache->deferred_bios);
2220
2221	while ((bio = bio_list_pop(&bios))) {
2222		bio->bi_error = DM_ENDIO_REQUEUE;
2223		bio_endio(bio);
 
2224	}
2225}
2226
2227static int more_work(struct cache *cache)
2228{
2229	if (is_quiescing(cache))
2230		return !list_empty(&cache->quiesced_migrations) ||
2231			!list_empty(&cache->completed_migrations) ||
2232			!list_empty(&cache->need_commit_migrations);
2233	else
2234		return !bio_list_empty(&cache->deferred_bios) ||
2235			!list_empty(&cache->deferred_cells) ||
2236			!bio_list_empty(&cache->deferred_flush_bios) ||
2237			!bio_list_empty(&cache->deferred_writethrough_bios) ||
2238			!list_empty(&cache->quiesced_migrations) ||
2239			!list_empty(&cache->completed_migrations) ||
2240			!list_empty(&cache->need_commit_migrations) ||
2241			cache->invalidate;
2242}
2243
2244static void do_worker(struct work_struct *ws)
2245{
2246	struct cache *cache = container_of(ws, struct cache, worker);
2247
2248	do {
2249		if (!is_quiescing(cache)) {
2250			writeback_some_dirty_blocks(cache);
2251			process_deferred_writethrough_bios(cache);
2252			process_deferred_bios(cache);
2253			process_deferred_cells(cache);
2254			process_invalidation_requests(cache);
2255		}
2256
2257		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2258		process_migrations(cache, &cache->completed_migrations, complete_migration);
2259
2260		if (commit_if_needed(cache)) {
2261			process_deferred_flush_bios(cache, false);
2262			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2263		} else {
2264			process_deferred_flush_bios(cache, true);
2265			process_migrations(cache, &cache->need_commit_migrations,
2266					   migration_success_post_commit);
2267		}
2268
2269		ack_quiescing(cache);
2270
2271	} while (more_work(cache));
2272}
2273
2274/*
2275 * We want to commit periodically so that not too much
2276 * unwritten metadata builds up.
2277 */
2278static void do_waker(struct work_struct *ws)
2279{
2280	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
 
2281	policy_tick(cache->policy, true);
2282	wake_worker(cache);
 
2283	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2284}
2285
2286/*----------------------------------------------------------------*/
2287
2288static int is_congested(struct dm_dev *dev, int bdi_bits)
2289{
2290	struct request_queue *q = bdev_get_queue(dev->bdev);
2291	return bdi_congested(&q->backing_dev_info, bdi_bits);
2292}
 
2293
2294static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2295{
2296	struct cache *cache = container_of(cb, struct cache, callbacks);
 
 
 
 
 
 
 
 
 
 
 
 
 
2297
2298	return is_congested(cache->origin_dev, bdi_bits) ||
2299		is_congested(cache->cache_dev, bdi_bits);
2300}
2301
2302/*----------------------------------------------------------------
 
2303 * Target methods
2304 *--------------------------------------------------------------*/
 
2305
2306/*
2307 * This function gets called on the error paths of the constructor, so we
2308 * have to cope with a partially initialised struct.
2309 */
2310static void destroy(struct cache *cache)
2311{
2312	unsigned i;
2313
2314	mempool_destroy(cache->migration_pool);
2315
2316	if (cache->all_io_ds)
2317		dm_deferred_set_destroy(cache->all_io_ds);
2318
2319	if (cache->prison)
2320		dm_bio_prison_destroy(cache->prison);
2321
 
2322	if (cache->wq)
2323		destroy_workqueue(cache->wq);
2324
2325	if (cache->dirty_bitset)
2326		free_bitset(cache->dirty_bitset);
2327
2328	if (cache->discard_bitset)
2329		free_bitset(cache->discard_bitset);
2330
2331	if (cache->copier)
2332		dm_kcopyd_client_destroy(cache->copier);
2333
2334	if (cache->cmd)
2335		dm_cache_metadata_close(cache->cmd);
2336
2337	if (cache->metadata_dev)
2338		dm_put_device(cache->ti, cache->metadata_dev);
2339
2340	if (cache->origin_dev)
2341		dm_put_device(cache->ti, cache->origin_dev);
2342
2343	if (cache->cache_dev)
2344		dm_put_device(cache->ti, cache->cache_dev);
2345
2346	if (cache->policy)
2347		dm_cache_policy_destroy(cache->policy);
2348
2349	for (i = 0; i < cache->nr_ctr_args ; i++)
2350		kfree(cache->ctr_args[i]);
2351	kfree(cache->ctr_args);
2352
 
 
2353	kfree(cache);
2354}
2355
2356static void cache_dtr(struct dm_target *ti)
2357{
2358	struct cache *cache = ti->private;
2359
2360	destroy(cache);
2361}
2362
2363static sector_t get_dev_size(struct dm_dev *dev)
2364{
2365	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2366}
2367
2368/*----------------------------------------------------------------*/
2369
2370/*
2371 * Construct a cache device mapping.
2372 *
2373 * cache <metadata dev> <cache dev> <origin dev> <block size>
2374 *       <#feature args> [<feature arg>]*
2375 *       <policy> <#policy args> [<policy arg>]*
2376 *
2377 * metadata dev    : fast device holding the persistent metadata
2378 * cache dev	   : fast device holding cached data blocks
2379 * origin dev	   : slow device holding original data blocks
2380 * block size	   : cache unit size in sectors
2381 *
2382 * #feature args   : number of feature arguments passed
2383 * feature args    : writethrough.  (The default is writeback.)
2384 *
2385 * policy	   : the replacement policy to use
2386 * #policy args    : an even number of policy arguments corresponding
2387 *		     to key/value pairs passed to the policy
2388 * policy args	   : key/value pairs passed to the policy
2389 *		     E.g. 'sequential_threshold 1024'
2390 *		     See cache-policies.txt for details.
2391 *
2392 * Optional feature arguments are:
2393 *   writethrough  : write through caching that prohibits cache block
2394 *		     content from being different from origin block content.
2395 *		     Without this argument, the default behaviour is to write
2396 *		     back cache block contents later for performance reasons,
2397 *		     so they may differ from the corresponding origin blocks.
2398 */
2399struct cache_args {
2400	struct dm_target *ti;
2401
2402	struct dm_dev *metadata_dev;
2403
2404	struct dm_dev *cache_dev;
2405	sector_t cache_sectors;
2406
2407	struct dm_dev *origin_dev;
2408	sector_t origin_sectors;
2409
2410	uint32_t block_size;
2411
2412	const char *policy_name;
2413	int policy_argc;
2414	const char **policy_argv;
2415
2416	struct cache_features features;
2417};
2418
2419static void destroy_cache_args(struct cache_args *ca)
2420{
2421	if (ca->metadata_dev)
2422		dm_put_device(ca->ti, ca->metadata_dev);
2423
2424	if (ca->cache_dev)
2425		dm_put_device(ca->ti, ca->cache_dev);
2426
2427	if (ca->origin_dev)
2428		dm_put_device(ca->ti, ca->origin_dev);
2429
2430	kfree(ca);
2431}
2432
2433static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2434{
2435	if (!as->argc) {
2436		*error = "Insufficient args";
2437		return false;
2438	}
2439
2440	return true;
2441}
2442
2443static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2444			      char **error)
2445{
2446	int r;
2447	sector_t metadata_dev_size;
2448	char b[BDEVNAME_SIZE];
2449
2450	if (!at_least_one_arg(as, error))
2451		return -EINVAL;
2452
2453	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2454			  &ca->metadata_dev);
2455	if (r) {
2456		*error = "Error opening metadata device";
2457		return r;
2458	}
2459
2460	metadata_dev_size = get_dev_size(ca->metadata_dev);
2461	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2462		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2463		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2464
2465	return 0;
2466}
2467
2468static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2469			   char **error)
2470{
2471	int r;
2472
2473	if (!at_least_one_arg(as, error))
2474		return -EINVAL;
2475
2476	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2477			  &ca->cache_dev);
2478	if (r) {
2479		*error = "Error opening cache device";
2480		return r;
2481	}
2482	ca->cache_sectors = get_dev_size(ca->cache_dev);
2483
2484	return 0;
2485}
2486
2487static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2488			    char **error)
2489{
2490	int r;
2491
2492	if (!at_least_one_arg(as, error))
2493		return -EINVAL;
2494
2495	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2496			  &ca->origin_dev);
2497	if (r) {
2498		*error = "Error opening origin device";
2499		return r;
2500	}
2501
2502	ca->origin_sectors = get_dev_size(ca->origin_dev);
2503	if (ca->ti->len > ca->origin_sectors) {
2504		*error = "Device size larger than cached device";
2505		return -EINVAL;
2506	}
2507
2508	return 0;
2509}
2510
2511static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2512			    char **error)
2513{
2514	unsigned long block_size;
2515
2516	if (!at_least_one_arg(as, error))
2517		return -EINVAL;
2518
2519	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2520	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2521	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2522	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2523		*error = "Invalid data block size";
2524		return -EINVAL;
2525	}
2526
2527	if (block_size > ca->cache_sectors) {
2528		*error = "Data block size is larger than the cache device";
2529		return -EINVAL;
2530	}
2531
2532	ca->block_size = block_size;
2533
2534	return 0;
2535}
2536
2537static void init_features(struct cache_features *cf)
2538{
2539	cf->mode = CM_WRITE;
2540	cf->io_mode = CM_IO_WRITEBACK;
 
 
2541}
2542
2543static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2544			  char **error)
2545{
2546	static struct dm_arg _args[] = {
2547		{0, 1, "Invalid number of cache feature arguments"},
2548	};
2549
2550	int r;
2551	unsigned argc;
2552	const char *arg;
2553	struct cache_features *cf = &ca->features;
2554
2555	init_features(cf);
2556
2557	r = dm_read_arg_group(_args, as, &argc, error);
2558	if (r)
2559		return -EINVAL;
2560
2561	while (argc--) {
2562		arg = dm_shift_arg(as);
2563
2564		if (!strcasecmp(arg, "writeback"))
2565			cf->io_mode = CM_IO_WRITEBACK;
 
 
2566
2567		else if (!strcasecmp(arg, "writethrough"))
2568			cf->io_mode = CM_IO_WRITETHROUGH;
 
 
2569
2570		else if (!strcasecmp(arg, "passthrough"))
2571			cf->io_mode = CM_IO_PASSTHROUGH;
 
 
 
 
 
 
 
 
2572
2573		else {
2574			*error = "Unrecognised cache feature requested";
2575			return -EINVAL;
2576		}
2577	}
2578
 
 
 
 
 
2579	return 0;
2580}
2581
2582static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2583			char **error)
2584{
2585	static struct dm_arg _args[] = {
2586		{0, 1024, "Invalid number of policy arguments"},
2587	};
2588
2589	int r;
2590
2591	if (!at_least_one_arg(as, error))
2592		return -EINVAL;
2593
2594	ca->policy_name = dm_shift_arg(as);
2595
2596	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2597	if (r)
2598		return -EINVAL;
2599
2600	ca->policy_argv = (const char **)as->argv;
2601	dm_consume_args(as, ca->policy_argc);
2602
2603	return 0;
2604}
2605
2606static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2607			    char **error)
2608{
2609	int r;
2610	struct dm_arg_set as;
2611
2612	as.argc = argc;
2613	as.argv = argv;
2614
2615	r = parse_metadata_dev(ca, &as, error);
2616	if (r)
2617		return r;
2618
2619	r = parse_cache_dev(ca, &as, error);
2620	if (r)
2621		return r;
2622
2623	r = parse_origin_dev(ca, &as, error);
2624	if (r)
2625		return r;
2626
2627	r = parse_block_size(ca, &as, error);
2628	if (r)
2629		return r;
2630
2631	r = parse_features(ca, &as, error);
2632	if (r)
2633		return r;
2634
2635	r = parse_policy(ca, &as, error);
2636	if (r)
2637		return r;
2638
2639	return 0;
2640}
2641
2642/*----------------------------------------------------------------*/
2643
2644static struct kmem_cache *migration_cache;
2645
2646#define NOT_CORE_OPTION 1
2647
2648static int process_config_option(struct cache *cache, const char *key, const char *value)
2649{
2650	unsigned long tmp;
2651
2652	if (!strcasecmp(key, "migration_threshold")) {
2653		if (kstrtoul(value, 10, &tmp))
2654			return -EINVAL;
2655
2656		cache->migration_threshold = tmp;
2657		return 0;
2658	}
2659
2660	return NOT_CORE_OPTION;
2661}
2662
2663static int set_config_value(struct cache *cache, const char *key, const char *value)
2664{
2665	int r = process_config_option(cache, key, value);
2666
2667	if (r == NOT_CORE_OPTION)
2668		r = policy_set_config_value(cache->policy, key, value);
2669
2670	if (r)
2671		DMWARN("bad config value for %s: %s", key, value);
2672
2673	return r;
2674}
2675
2676static int set_config_values(struct cache *cache, int argc, const char **argv)
2677{
2678	int r = 0;
2679
2680	if (argc & 1) {
2681		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2682		return -EINVAL;
2683	}
2684
2685	while (argc) {
2686		r = set_config_value(cache, argv[0], argv[1]);
2687		if (r)
2688			break;
2689
2690		argc -= 2;
2691		argv += 2;
2692	}
2693
2694	return r;
2695}
2696
2697static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2698			       char **error)
2699{
2700	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2701							   cache->cache_size,
2702							   cache->origin_sectors,
2703							   cache->sectors_per_block);
2704	if (IS_ERR(p)) {
2705		*error = "Error creating cache's policy";
2706		return PTR_ERR(p);
2707	}
2708	cache->policy = p;
 
2709
2710	return 0;
2711}
2712
2713/*
2714 * We want the discard block size to be at least the size of the cache
2715 * block size and have no more than 2^14 discard blocks across the origin.
2716 */
2717#define MAX_DISCARD_BLOCKS (1 << 14)
2718
2719static bool too_many_discard_blocks(sector_t discard_block_size,
2720				    sector_t origin_size)
2721{
2722	(void) sector_div(origin_size, discard_block_size);
2723
2724	return origin_size > MAX_DISCARD_BLOCKS;
2725}
2726
2727static sector_t calculate_discard_block_size(sector_t cache_block_size,
2728					     sector_t origin_size)
2729{
2730	sector_t discard_block_size = cache_block_size;
2731
2732	if (origin_size)
2733		while (too_many_discard_blocks(discard_block_size, origin_size))
2734			discard_block_size *= 2;
2735
2736	return discard_block_size;
2737}
2738
2739static void set_cache_size(struct cache *cache, dm_cblock_t size)
2740{
2741	dm_block_t nr_blocks = from_cblock(size);
2742
2743	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2744		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2745			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2746			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2747			     (unsigned long long) nr_blocks);
2748
2749	cache->cache_size = size;
2750}
2751
2752#define DEFAULT_MIGRATION_THRESHOLD 2048
2753
2754static int cache_create(struct cache_args *ca, struct cache **result)
2755{
2756	int r = 0;
2757	char **error = &ca->ti->error;
2758	struct cache *cache;
2759	struct dm_target *ti = ca->ti;
2760	dm_block_t origin_blocks;
2761	struct dm_cache_metadata *cmd;
2762	bool may_format = ca->features.mode == CM_WRITE;
2763
2764	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2765	if (!cache)
2766		return -ENOMEM;
2767
2768	cache->ti = ca->ti;
2769	ti->private = cache;
 
2770	ti->num_flush_bios = 2;
2771	ti->flush_supported = true;
2772
2773	ti->num_discard_bios = 1;
2774	ti->discards_supported = true;
2775	ti->discard_zeroes_data_unsupported = true;
2776	ti->split_discard_bios = false;
2777
2778	cache->features = ca->features;
2779	ti->per_io_data_size = get_per_bio_data_size(cache);
2780
2781	cache->callbacks.congested_fn = cache_is_congested;
2782	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
 
 
 
 
 
2783
2784	cache->metadata_dev = ca->metadata_dev;
2785	cache->origin_dev = ca->origin_dev;
2786	cache->cache_dev = ca->cache_dev;
2787
2788	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2789
2790	/* FIXME: factor out this whole section */
2791	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2792	origin_blocks = block_div(origin_blocks, ca->block_size);
2793	cache->origin_blocks = to_oblock(origin_blocks);
2794
2795	cache->sectors_per_block = ca->block_size;
2796	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2797		r = -EINVAL;
2798		goto bad;
2799	}
2800
2801	if (ca->block_size & (ca->block_size - 1)) {
2802		dm_block_t cache_size = ca->cache_sectors;
2803
2804		cache->sectors_per_block_shift = -1;
2805		cache_size = block_div(cache_size, ca->block_size);
2806		set_cache_size(cache, to_cblock(cache_size));
2807	} else {
2808		cache->sectors_per_block_shift = __ffs(ca->block_size);
2809		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2810	}
2811
2812	r = create_cache_policy(cache, ca, error);
2813	if (r)
2814		goto bad;
2815
2816	cache->policy_nr_args = ca->policy_argc;
2817	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2818
2819	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2820	if (r) {
2821		*error = "Error setting cache policy's config values";
2822		goto bad;
2823	}
2824
2825	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2826				     ca->block_size, may_format,
2827				     dm_cache_policy_get_hint_size(cache->policy));
 
2828	if (IS_ERR(cmd)) {
2829		*error = "Error creating metadata object";
2830		r = PTR_ERR(cmd);
2831		goto bad;
2832	}
2833	cache->cmd = cmd;
2834	set_cache_mode(cache, CM_WRITE);
2835	if (get_cache_mode(cache) != CM_WRITE) {
2836		*error = "Unable to get write access to metadata, please check/repair metadata.";
2837		r = -EINVAL;
2838		goto bad;
2839	}
2840
2841	if (passthrough_mode(&cache->features)) {
2842		bool all_clean;
2843
2844		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2845		if (r) {
2846			*error = "dm_cache_metadata_all_clean() failed";
2847			goto bad;
2848		}
2849
2850		if (!all_clean) {
2851			*error = "Cannot enter passthrough mode unless all blocks are clean";
2852			r = -EINVAL;
2853			goto bad;
2854		}
 
 
2855	}
2856
2857	spin_lock_init(&cache->lock);
2858	INIT_LIST_HEAD(&cache->deferred_cells);
2859	bio_list_init(&cache->deferred_bios);
2860	bio_list_init(&cache->deferred_flush_bios);
2861	bio_list_init(&cache->deferred_writethrough_bios);
2862	INIT_LIST_HEAD(&cache->quiesced_migrations);
2863	INIT_LIST_HEAD(&cache->completed_migrations);
2864	INIT_LIST_HEAD(&cache->need_commit_migrations);
2865	atomic_set(&cache->nr_allocated_migrations, 0);
2866	atomic_set(&cache->nr_io_migrations, 0);
2867	init_waitqueue_head(&cache->migration_wait);
2868
2869	init_waitqueue_head(&cache->quiescing_wait);
2870	atomic_set(&cache->quiescing, 0);
2871	atomic_set(&cache->quiescing_ack, 0);
2872
2873	r = -ENOMEM;
2874	atomic_set(&cache->nr_dirty, 0);
2875	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2876	if (!cache->dirty_bitset) {
2877		*error = "could not allocate dirty bitset";
2878		goto bad;
2879	}
2880	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2881
2882	cache->discard_block_size =
2883		calculate_discard_block_size(cache->sectors_per_block,
2884					     cache->origin_sectors);
2885	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2886							      cache->discard_block_size));
2887	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2888	if (!cache->discard_bitset) {
2889		*error = "could not allocate discard bitset";
2890		goto bad;
2891	}
2892	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2893
2894	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2895	if (IS_ERR(cache->copier)) {
2896		*error = "could not create kcopyd client";
2897		r = PTR_ERR(cache->copier);
2898		goto bad;
2899	}
2900
2901	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2902	if (!cache->wq) {
2903		*error = "could not create workqueue for metadata object";
2904		goto bad;
2905	}
2906	INIT_WORK(&cache->worker, do_worker);
 
2907	INIT_DELAYED_WORK(&cache->waker, do_waker);
2908	cache->last_commit_jiffies = jiffies;
2909
2910	cache->prison = dm_bio_prison_create();
2911	if (!cache->prison) {
2912		*error = "could not create bio prison";
2913		goto bad;
2914	}
2915
2916	cache->all_io_ds = dm_deferred_set_create();
2917	if (!cache->all_io_ds) {
2918		*error = "could not create all_io deferred set";
2919		goto bad;
2920	}
2921
2922	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2923							 migration_cache);
2924	if (!cache->migration_pool) {
2925		*error = "Error creating cache's migration mempool";
2926		goto bad;
2927	}
2928
2929	cache->need_tick_bio = true;
2930	cache->sized = false;
2931	cache->invalidate = false;
2932	cache->commit_requested = false;
2933	cache->loaded_mappings = false;
2934	cache->loaded_discards = false;
2935
2936	load_stats(cache);
2937
2938	atomic_set(&cache->stats.demotion, 0);
2939	atomic_set(&cache->stats.promotion, 0);
2940	atomic_set(&cache->stats.copies_avoided, 0);
2941	atomic_set(&cache->stats.cache_cell_clash, 0);
2942	atomic_set(&cache->stats.commit_count, 0);
2943	atomic_set(&cache->stats.discard_count, 0);
2944
2945	spin_lock_init(&cache->invalidation_lock);
2946	INIT_LIST_HEAD(&cache->invalidation_requests);
2947
2948	iot_init(&cache->origin_tracker);
 
 
 
 
 
2949
2950	*result = cache;
2951	return 0;
2952
2953bad:
2954	destroy(cache);
2955	return r;
2956}
2957
2958static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2959{
2960	unsigned i;
2961	const char **copy;
2962
2963	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2964	if (!copy)
2965		return -ENOMEM;
2966	for (i = 0; i < argc; i++) {
2967		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2968		if (!copy[i]) {
2969			while (i--)
2970				kfree(copy[i]);
2971			kfree(copy);
2972			return -ENOMEM;
2973		}
2974	}
2975
2976	cache->nr_ctr_args = argc;
2977	cache->ctr_args = copy;
2978
2979	return 0;
2980}
2981
2982static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2983{
2984	int r = -EINVAL;
2985	struct cache_args *ca;
2986	struct cache *cache = NULL;
2987
2988	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2989	if (!ca) {
2990		ti->error = "Error allocating memory for cache";
2991		return -ENOMEM;
2992	}
2993	ca->ti = ti;
2994
2995	r = parse_cache_args(ca, argc, argv, &ti->error);
2996	if (r)
2997		goto out;
2998
2999	r = cache_create(ca, &cache);
3000	if (r)
3001		goto out;
3002
3003	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3004	if (r) {
3005		destroy(cache);
3006		goto out;
3007	}
3008
3009	ti->private = cache;
3010
3011out:
3012	destroy_cache_args(ca);
3013	return r;
3014}
3015
3016/*----------------------------------------------------------------*/
3017
3018static int cache_map(struct dm_target *ti, struct bio *bio)
3019{
3020	struct cache *cache = ti->private;
3021
3022	int r;
3023	struct dm_bio_prison_cell *cell = NULL;
3024	dm_oblock_t block = get_bio_block(cache, bio);
3025	size_t pb_data_size = get_per_bio_data_size(cache);
3026	bool can_migrate = false;
3027	bool fast_promotion;
3028	struct policy_result lookup_result;
3029	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3030	struct old_oblock_lock ool;
3031
3032	ool.locker.fn = null_locker;
3033
 
3034	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3035		/*
3036		 * This can only occur if the io goes to a partial block at
3037		 * the end of the origin device.  We don't cache these.
3038		 * Just remap to the origin and carry on.
3039		 */
3040		remap_to_origin(cache, bio);
3041		accounted_begin(cache, bio);
3042		return DM_MAPIO_REMAPPED;
3043	}
3044
3045	if (discard_or_flush(bio)) {
3046		defer_bio(cache, bio);
3047		return DM_MAPIO_SUBMITTED;
3048	}
3049
3050	/*
3051	 * Check to see if that block is currently migrating.
3052	 */
3053	cell = alloc_prison_cell(cache);
3054	if (!cell) {
3055		defer_bio(cache, bio);
3056		return DM_MAPIO_SUBMITTED;
3057	}
3058
3059	r = bio_detain(cache, block, bio, cell,
3060		       (cell_free_fn) free_prison_cell,
3061		       cache, &cell);
3062	if (r) {
3063		if (r < 0)
3064			defer_bio(cache, bio);
3065
3066		return DM_MAPIO_SUBMITTED;
3067	}
3068
3069	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3070
3071	r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3072		       bio, &ool.locker, &lookup_result);
3073	if (r == -EWOULDBLOCK) {
3074		cell_defer(cache, cell, true);
3075		return DM_MAPIO_SUBMITTED;
3076
3077	} else if (r) {
3078		DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3079			    cache_device_name(cache), r);
3080		cell_defer(cache, cell, false);
3081		bio_io_error(bio);
3082		return DM_MAPIO_SUBMITTED;
3083	}
3084
3085	r = DM_MAPIO_REMAPPED;
3086	switch (lookup_result.op) {
3087	case POLICY_HIT:
3088		if (passthrough_mode(&cache->features)) {
3089			if (bio_data_dir(bio) == WRITE) {
3090				/*
3091				 * We need to invalidate this block, so
3092				 * defer for the worker thread.
3093				 */
3094				cell_defer(cache, cell, true);
3095				r = DM_MAPIO_SUBMITTED;
3096
3097			} else {
3098				inc_miss_counter(cache, bio);
3099				remap_to_origin_clear_discard(cache, bio, block);
3100				accounted_begin(cache, bio);
3101				inc_ds(cache, bio, cell);
3102				// FIXME: we want to remap hits or misses straight
3103				// away rather than passing over to the worker.
3104				cell_defer(cache, cell, false);
3105			}
3106
3107		} else {
3108			inc_hit_counter(cache, bio);
3109			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3110			    !is_dirty(cache, lookup_result.cblock)) {
3111				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3112				accounted_begin(cache, bio);
3113				inc_ds(cache, bio, cell);
3114				cell_defer(cache, cell, false);
3115
3116			} else
3117				remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3118		}
3119		break;
3120
3121	case POLICY_MISS:
3122		inc_miss_counter(cache, bio);
3123		if (pb->req_nr != 0) {
3124			/*
3125			 * This is a duplicate writethrough io that is no
3126			 * longer needed because the block has been demoted.
3127			 */
3128			bio_endio(bio);
3129			// FIXME: remap everything as a miss
3130			cell_defer(cache, cell, false);
3131			r = DM_MAPIO_SUBMITTED;
3132
3133		} else
3134			remap_cell_to_origin_clear_discard(cache, cell, block, false);
3135		break;
3136
3137	default:
3138		DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3139			    cache_device_name(cache), __func__,
3140			    (unsigned) lookup_result.op);
3141		cell_defer(cache, cell, false);
3142		bio_io_error(bio);
3143		r = DM_MAPIO_SUBMITTED;
3144	}
3145
3146	return r;
3147}
3148
3149static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3150{
3151	struct cache *cache = ti->private;
3152	unsigned long flags;
3153	size_t pb_data_size = get_per_bio_data_size(cache);
3154	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3155
3156	if (pb->tick) {
3157		policy_tick(cache->policy, false);
3158
3159		spin_lock_irqsave(&cache->lock, flags);
3160		cache->need_tick_bio = true;
3161		spin_unlock_irqrestore(&cache->lock, flags);
3162	}
3163
3164	check_for_quiesced_migrations(cache, pb);
3165	accounted_complete(cache, bio);
3166
3167	return 0;
3168}
3169
3170static int write_dirty_bitset(struct cache *cache)
3171{
3172	unsigned i, r;
3173
3174	if (get_cache_mode(cache) >= CM_READ_ONLY)
3175		return -EINVAL;
3176
3177	for (i = 0; i < from_cblock(cache->cache_size); i++) {
3178		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3179				       is_dirty(cache, to_cblock(i)));
3180		if (r) {
3181			metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3182			return r;
3183		}
3184	}
3185
3186	return 0;
3187}
3188
3189static int write_discard_bitset(struct cache *cache)
3190{
3191	unsigned i, r;
3192
3193	if (get_cache_mode(cache) >= CM_READ_ONLY)
3194		return -EINVAL;
3195
3196	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3197					   cache->discard_nr_blocks);
3198	if (r) {
3199		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3200		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3201		return r;
3202	}
3203
3204	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3205		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3206					 is_discarded(cache, to_dblock(i)));
3207		if (r) {
3208			metadata_operation_failed(cache, "dm_cache_set_discard", r);
3209			return r;
3210		}
3211	}
3212
3213	return 0;
3214}
3215
3216static int write_hints(struct cache *cache)
3217{
3218	int r;
3219
3220	if (get_cache_mode(cache) >= CM_READ_ONLY)
3221		return -EINVAL;
3222
3223	r = dm_cache_write_hints(cache->cmd, cache->policy);
3224	if (r) {
3225		metadata_operation_failed(cache, "dm_cache_write_hints", r);
3226		return r;
3227	}
3228
3229	return 0;
3230}
3231
3232/*
3233 * returns true on success
3234 */
3235static bool sync_metadata(struct cache *cache)
3236{
3237	int r1, r2, r3, r4;
3238
3239	r1 = write_dirty_bitset(cache);
3240	if (r1)
3241		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3242
3243	r2 = write_discard_bitset(cache);
3244	if (r2)
3245		DMERR("%s: could not write discard bitset", cache_device_name(cache));
3246
3247	save_stats(cache);
3248
3249	r3 = write_hints(cache);
3250	if (r3)
3251		DMERR("%s: could not write hints", cache_device_name(cache));
3252
3253	/*
3254	 * If writing the above metadata failed, we still commit, but don't
3255	 * set the clean shutdown flag.  This will effectively force every
3256	 * dirty bit to be set on reload.
3257	 */
3258	r4 = commit(cache, !r1 && !r2 && !r3);
3259	if (r4)
3260		DMERR("%s: could not write cache metadata", cache_device_name(cache));
3261
3262	return !r1 && !r2 && !r3 && !r4;
3263}
3264
3265static void cache_postsuspend(struct dm_target *ti)
3266{
3267	struct cache *cache = ti->private;
3268
3269	start_quiescing(cache);
3270	wait_for_migrations(cache);
3271	stop_worker(cache);
 
 
 
 
 
 
 
 
3272	requeue_deferred_bios(cache);
3273	requeue_deferred_cells(cache);
3274	stop_quiescing(cache);
3275
3276	if (get_cache_mode(cache) == CM_WRITE)
3277		(void) sync_metadata(cache);
3278}
3279
3280static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3281			bool dirty, uint32_t hint, bool hint_valid)
3282{
3283	int r;
3284	struct cache *cache = context;
3285
3286	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3287	if (r)
3288		return r;
3289
3290	if (dirty)
3291		set_dirty(cache, oblock, cblock);
3292	else
3293		clear_dirty(cache, oblock, cblock);
3294
3295	return 0;
3296}
3297
3298/*
3299 * The discard block size in the on disk metadata is not
3300 * neccessarily the same as we're currently using.  So we have to
3301 * be careful to only set the discarded attribute if we know it
3302 * covers a complete block of the new size.
3303 */
3304struct discard_load_info {
3305	struct cache *cache;
3306
3307	/*
3308	 * These blocks are sized using the on disk dblock size, rather
3309	 * than the current one.
3310	 */
3311	dm_block_t block_size;
3312	dm_block_t discard_begin, discard_end;
3313};
3314
3315static void discard_load_info_init(struct cache *cache,
3316				   struct discard_load_info *li)
3317{
3318	li->cache = cache;
3319	li->discard_begin = li->discard_end = 0;
3320}
3321
3322static void set_discard_range(struct discard_load_info *li)
3323{
3324	sector_t b, e;
3325
3326	if (li->discard_begin == li->discard_end)
3327		return;
3328
3329	/*
3330	 * Convert to sectors.
3331	 */
3332	b = li->discard_begin * li->block_size;
3333	e = li->discard_end * li->block_size;
3334
3335	/*
3336	 * Then convert back to the current dblock size.
3337	 */
3338	b = dm_sector_div_up(b, li->cache->discard_block_size);
3339	sector_div(e, li->cache->discard_block_size);
3340
3341	/*
3342	 * The origin may have shrunk, so we need to check we're still in
3343	 * bounds.
3344	 */
3345	if (e > from_dblock(li->cache->discard_nr_blocks))
3346		e = from_dblock(li->cache->discard_nr_blocks);
3347
3348	for (; b < e; b++)
3349		set_discard(li->cache, to_dblock(b));
3350}
3351
3352static int load_discard(void *context, sector_t discard_block_size,
3353			dm_dblock_t dblock, bool discard)
3354{
3355	struct discard_load_info *li = context;
3356
3357	li->block_size = discard_block_size;
3358
3359	if (discard) {
3360		if (from_dblock(dblock) == li->discard_end)
3361			/*
3362			 * We're already in a discard range, just extend it.
3363			 */
3364			li->discard_end = li->discard_end + 1ULL;
3365
3366		else {
3367			/*
3368			 * Emit the old range and start a new one.
3369			 */
3370			set_discard_range(li);
3371			li->discard_begin = from_dblock(dblock);
3372			li->discard_end = li->discard_begin + 1ULL;
3373		}
3374	} else {
3375		set_discard_range(li);
3376		li->discard_begin = li->discard_end = 0;
3377	}
3378
3379	return 0;
3380}
3381
3382static dm_cblock_t get_cache_dev_size(struct cache *cache)
3383{
3384	sector_t size = get_dev_size(cache->cache_dev);
3385	(void) sector_div(size, cache->sectors_per_block);
3386	return to_cblock(size);
3387}
3388
3389static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3390{
3391	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3392		return true;
 
 
 
 
 
3393
3394	/*
3395	 * We can't drop a dirty block when shrinking the cache.
3396	 */
3397	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3398		new_size = to_cblock(from_cblock(new_size) + 1);
3399		if (is_dirty(cache, new_size)) {
3400			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3401			      cache_device_name(cache),
3402			      (unsigned long long) from_cblock(new_size));
3403			return false;
3404		}
3405	}
3406
3407	return true;
3408}
3409
3410static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3411{
3412	int r;
3413
3414	r = dm_cache_resize(cache->cmd, new_size);
3415	if (r) {
3416		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3417		metadata_operation_failed(cache, "dm_cache_resize", r);
3418		return r;
3419	}
3420
3421	set_cache_size(cache, new_size);
3422
3423	return 0;
3424}
3425
3426static int cache_preresume(struct dm_target *ti)
3427{
3428	int r = 0;
3429	struct cache *cache = ti->private;
3430	dm_cblock_t csize = get_cache_dev_size(cache);
3431
3432	/*
3433	 * Check to see if the cache has resized.
3434	 */
3435	if (!cache->sized) {
3436		r = resize_cache_dev(cache, csize);
3437		if (r)
3438			return r;
3439
3440		cache->sized = true;
3441
3442	} else if (csize != cache->cache_size) {
3443		if (!can_resize(cache, csize))
3444			return -EINVAL;
3445
3446		r = resize_cache_dev(cache, csize);
3447		if (r)
3448			return r;
3449	}
3450
3451	if (!cache->loaded_mappings) {
3452		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3453					   load_mapping, cache);
3454		if (r) {
3455			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3456			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3457			return r;
3458		}
3459
3460		cache->loaded_mappings = true;
3461	}
3462
3463	if (!cache->loaded_discards) {
3464		struct discard_load_info li;
3465
3466		/*
3467		 * The discard bitset could have been resized, or the
3468		 * discard block size changed.  To be safe we start by
3469		 * setting every dblock to not discarded.
3470		 */
3471		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3472
3473		discard_load_info_init(cache, &li);
3474		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3475		if (r) {
3476			DMERR("%s: could not load origin discards", cache_device_name(cache));
3477			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3478			return r;
3479		}
3480		set_discard_range(&li);
3481
3482		cache->loaded_discards = true;
3483	}
3484
3485	return r;
3486}
3487
3488static void cache_resume(struct dm_target *ti)
3489{
3490	struct cache *cache = ti->private;
3491
3492	cache->need_tick_bio = true;
 
3493	do_waker(&cache->waker.work);
3494}
3495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3496/*
3497 * Status format:
3498 *
3499 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3500 * <cache block size> <#used cache blocks>/<#total cache blocks>
3501 * <#read hits> <#read misses> <#write hits> <#write misses>
3502 * <#demotions> <#promotions> <#dirty>
3503 * <#features> <features>*
3504 * <#core args> <core args>
3505 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3506 */
3507static void cache_status(struct dm_target *ti, status_type_t type,
3508			 unsigned status_flags, char *result, unsigned maxlen)
3509{
3510	int r = 0;
3511	unsigned i;
3512	ssize_t sz = 0;
3513	dm_block_t nr_free_blocks_metadata = 0;
3514	dm_block_t nr_blocks_metadata = 0;
3515	char buf[BDEVNAME_SIZE];
3516	struct cache *cache = ti->private;
3517	dm_cblock_t residency;
3518	bool needs_check;
3519
3520	switch (type) {
3521	case STATUSTYPE_INFO:
3522		if (get_cache_mode(cache) == CM_FAIL) {
3523			DMEMIT("Fail");
3524			break;
3525		}
3526
3527		/* Commit to ensure statistics aren't out-of-date */
3528		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3529			(void) commit(cache, false);
3530
3531		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3532		if (r) {
3533			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3534			      cache_device_name(cache), r);
3535			goto err;
3536		}
3537
3538		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3539		if (r) {
3540			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3541			      cache_device_name(cache), r);
3542			goto err;
3543		}
3544
3545		residency = policy_residency(cache->policy);
3546
3547		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3548		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3549		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3550		       (unsigned long long)nr_blocks_metadata,
3551		       cache->sectors_per_block,
3552		       (unsigned long long) from_cblock(residency),
3553		       (unsigned long long) from_cblock(cache->cache_size),
3554		       (unsigned) atomic_read(&cache->stats.read_hit),
3555		       (unsigned) atomic_read(&cache->stats.read_miss),
3556		       (unsigned) atomic_read(&cache->stats.write_hit),
3557		       (unsigned) atomic_read(&cache->stats.write_miss),
3558		       (unsigned) atomic_read(&cache->stats.demotion),
3559		       (unsigned) atomic_read(&cache->stats.promotion),
3560		       (unsigned long) atomic_read(&cache->nr_dirty));
3561
3562		if (writethrough_mode(&cache->features))
3563			DMEMIT("1 writethrough ");
3564
3565		else if (passthrough_mode(&cache->features))
3566			DMEMIT("1 passthrough ");
3567
3568		else if (writeback_mode(&cache->features))
3569			DMEMIT("1 writeback ");
3570
3571		else {
3572			DMERR("%s: internal error: unknown io mode: %d",
3573			      cache_device_name(cache), (int) cache->features.io_mode);
3574			goto err;
3575		}
3576
3577		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3578
3579		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3580		if (sz < maxlen) {
3581			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3582			if (r)
3583				DMERR("%s: policy_emit_config_values returned %d",
3584				      cache_device_name(cache), r);
3585		}
3586
3587		if (get_cache_mode(cache) == CM_READ_ONLY)
3588			DMEMIT("ro ");
3589		else
3590			DMEMIT("rw ");
3591
3592		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3593
3594		if (r || needs_check)
3595			DMEMIT("needs_check ");
3596		else
3597			DMEMIT("- ");
3598
3599		break;
3600
3601	case STATUSTYPE_TABLE:
3602		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3603		DMEMIT("%s ", buf);
3604		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3605		DMEMIT("%s ", buf);
3606		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3607		DMEMIT("%s", buf);
3608
3609		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3610			DMEMIT(" %s", cache->ctr_args[i]);
3611		if (cache->nr_ctr_args)
3612			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3613	}
3614
3615	return;
3616
3617err:
3618	DMEMIT("Error");
3619}
3620
3621/*
 
 
 
 
 
 
 
 
 
3622 * A cache block range can take two forms:
3623 *
3624 * i) A single cblock, eg. '3456'
3625 * ii) A begin and end cblock with dots between, eg. 123-234
3626 */
3627static int parse_cblock_range(struct cache *cache, const char *str,
3628			      struct cblock_range *result)
3629{
3630	char dummy;
3631	uint64_t b, e;
3632	int r;
3633
3634	/*
3635	 * Try and parse form (ii) first.
3636	 */
3637	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3638	if (r < 0)
3639		return r;
3640
3641	if (r == 2) {
3642		result->begin = to_cblock(b);
3643		result->end = to_cblock(e);
3644		return 0;
3645	}
3646
3647	/*
3648	 * That didn't work, try form (i).
3649	 */
3650	r = sscanf(str, "%llu%c", &b, &dummy);
3651	if (r < 0)
3652		return r;
3653
3654	if (r == 1) {
3655		result->begin = to_cblock(b);
3656		result->end = to_cblock(from_cblock(result->begin) + 1u);
3657		return 0;
3658	}
3659
3660	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3661	return -EINVAL;
3662}
3663
3664static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3665{
3666	uint64_t b = from_cblock(range->begin);
3667	uint64_t e = from_cblock(range->end);
3668	uint64_t n = from_cblock(cache->cache_size);
3669
3670	if (b >= n) {
3671		DMERR("%s: begin cblock out of range: %llu >= %llu",
3672		      cache_device_name(cache), b, n);
3673		return -EINVAL;
3674	}
3675
3676	if (e > n) {
3677		DMERR("%s: end cblock out of range: %llu > %llu",
3678		      cache_device_name(cache), e, n);
3679		return -EINVAL;
3680	}
3681
3682	if (b >= e) {
3683		DMERR("%s: invalid cblock range: %llu >= %llu",
3684		      cache_device_name(cache), b, e);
3685		return -EINVAL;
3686	}
3687
3688	return 0;
3689}
3690
 
 
 
 
 
3691static int request_invalidation(struct cache *cache, struct cblock_range *range)
3692{
3693	struct invalidation_request req;
3694
3695	INIT_LIST_HEAD(&req.list);
3696	req.cblocks = range;
3697	atomic_set(&req.complete, 0);
3698	req.err = 0;
3699	init_waitqueue_head(&req.result_wait);
 
 
 
 
 
3700
3701	spin_lock(&cache->invalidation_lock);
3702	list_add(&req.list, &cache->invalidation_requests);
3703	spin_unlock(&cache->invalidation_lock);
3704	wake_worker(cache);
3705
3706	wait_event(req.result_wait, atomic_read(&req.complete));
3707	return req.err;
3708}
3709
3710static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3711					      const char **cblock_ranges)
3712{
3713	int r = 0;
3714	unsigned i;
3715	struct cblock_range range;
3716
3717	if (!passthrough_mode(&cache->features)) {
3718		DMERR("%s: cache has to be in passthrough mode for invalidation",
3719		      cache_device_name(cache));
3720		return -EPERM;
3721	}
3722
3723	for (i = 0; i < count; i++) {
3724		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3725		if (r)
3726			break;
3727
3728		r = validate_cblock_range(cache, &range);
3729		if (r)
3730			break;
3731
3732		/*
3733		 * Pass begin and end origin blocks to the worker and wake it.
3734		 */
3735		r = request_invalidation(cache, &range);
3736		if (r)
3737			break;
3738	}
3739
3740	return r;
3741}
3742
3743/*
3744 * Supports
3745 *	"<key> <value>"
3746 * and
3747 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3748 *
3749 * The key migration_threshold is supported by the cache target core.
3750 */
3751static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
 
3752{
3753	struct cache *cache = ti->private;
3754
3755	if (!argc)
3756		return -EINVAL;
3757
3758	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3759		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3760		      cache_device_name(cache));
3761		return -EOPNOTSUPP;
3762	}
3763
3764	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3765		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3766
3767	if (argc != 2)
3768		return -EINVAL;
3769
3770	return set_config_value(cache, argv[0], argv[1]);
3771}
3772
3773static int cache_iterate_devices(struct dm_target *ti,
3774				 iterate_devices_callout_fn fn, void *data)
3775{
3776	int r = 0;
3777	struct cache *cache = ti->private;
3778
3779	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3780	if (!r)
3781		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3782
3783	return r;
3784}
3785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3786static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3787{
 
 
 
 
 
 
 
 
 
 
 
3788	/*
3789	 * FIXME: these limits may be incompatible with the cache device
 
3790	 */
3791	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3792					    cache->origin_sectors);
3793	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
 
 
3794}
3795
3796static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3797{
3798	struct cache *cache = ti->private;
3799	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3800
3801	/*
3802	 * If the system-determined stacked limits are compatible with the
3803	 * cache's blocksize (io_opt is a factor) do not override them.
3804	 */
3805	if (io_opt_sectors < cache->sectors_per_block ||
3806	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3807		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3808		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3809	}
 
 
3810	set_discard_limits(cache, limits);
3811}
3812
3813/*----------------------------------------------------------------*/
3814
3815static struct target_type cache_target = {
3816	.name = "cache",
3817	.version = {1, 9, 0},
3818	.module = THIS_MODULE,
3819	.ctr = cache_ctr,
3820	.dtr = cache_dtr,
3821	.map = cache_map,
3822	.end_io = cache_end_io,
3823	.postsuspend = cache_postsuspend,
3824	.preresume = cache_preresume,
3825	.resume = cache_resume,
3826	.status = cache_status,
3827	.message = cache_message,
3828	.iterate_devices = cache_iterate_devices,
3829	.io_hints = cache_io_hints,
3830};
3831
3832static int __init dm_cache_init(void)
3833{
3834	int r;
3835
 
 
 
 
3836	r = dm_register_target(&cache_target);
3837	if (r) {
3838		DMERR("cache target registration failed: %d", r);
3839		return r;
3840	}
3841
3842	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3843	if (!migration_cache) {
3844		dm_unregister_target(&cache_target);
3845		return -ENOMEM;
3846	}
3847
3848	return 0;
3849}
3850
3851static void __exit dm_cache_exit(void)
3852{
3853	dm_unregister_target(&cache_target);
3854	kmem_cache_destroy(migration_cache);
3855}
3856
3857module_init(dm_cache_init);
3858module_exit(dm_cache_exit);
3859
3860MODULE_DESCRIPTION(DM_NAME " cache target");
3861MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3862MODULE_LICENSE("GPL");
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2012 Red Hat. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
   9#include "dm-bio-prison-v2.h"
  10#include "dm-bio-record.h"
  11#include "dm-cache-metadata.h"
  12#include "dm-io-tracker.h"
  13
  14#include <linux/dm-io.h>
  15#include <linux/dm-kcopyd.h>
  16#include <linux/jiffies.h>
  17#include <linux/init.h>
  18#include <linux/mempool.h>
  19#include <linux/module.h>
  20#include <linux/rwsem.h>
  21#include <linux/slab.h>
  22#include <linux/vmalloc.h>
  23
  24#define DM_MSG_PREFIX "cache"
  25
  26DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  27	"A percentage of time allocated for copying to and/or from cache");
  28
  29/*----------------------------------------------------------------*/
  30
  31/*
  32 * Glossary:
  33 *
  34 * oblock: index of an origin block
  35 * cblock: index of a cache block
  36 * promotion: movement of a block from origin to cache
  37 * demotion: movement of a block from cache to origin
  38 * migration: movement of a block between the origin and cache device,
  39 *	      either direction
  40 */
  41
  42/*----------------------------------------------------------------*/
  43
  44/*
  45 * Represents a chunk of future work.  'input' allows continuations to pass
  46 * values between themselves, typically error values.
  47 */
  48struct continuation {
  49	struct work_struct ws;
  50	blk_status_t input;
  51};
  52
  53static inline void init_continuation(struct continuation *k,
  54				     void (*fn)(struct work_struct *))
  55{
  56	INIT_WORK(&k->ws, fn);
  57	k->input = 0;
  58}
  59
  60static inline void queue_continuation(struct workqueue_struct *wq,
  61				      struct continuation *k)
  62{
  63	queue_work(wq, &k->ws);
  64}
  65
  66/*----------------------------------------------------------------*/
  67
  68/*
  69 * The batcher collects together pieces of work that need a particular
  70 * operation to occur before they can proceed (typically a commit).
  71 */
  72struct batcher {
  73	/*
  74	 * The operation that everyone is waiting for.
  75	 */
  76	blk_status_t (*commit_op)(void *context);
  77	void *commit_context;
  78
  79	/*
  80	 * This is how bios should be issued once the commit op is complete
  81	 * (accounted_request).
  82	 */
  83	void (*issue_op)(struct bio *bio, void *context);
  84	void *issue_context;
 
  85
  86	/*
  87	 * Queued work gets put on here after commit.
  88	 */
  89	struct workqueue_struct *wq;
 
 
 
  90
  91	spinlock_t lock;
  92	struct list_head work_items;
  93	struct bio_list bios;
  94	struct work_struct commit_work;
  95
  96	bool commit_scheduled;
  97};
  98
  99static void __commit(struct work_struct *_ws)
 100{
 101	struct batcher *b = container_of(_ws, struct batcher, commit_work);
 102	blk_status_t r;
 103	struct list_head work_items;
 104	struct work_struct *ws, *tmp;
 105	struct continuation *k;
 106	struct bio *bio;
 107	struct bio_list bios;
 108
 109	INIT_LIST_HEAD(&work_items);
 110	bio_list_init(&bios);
 
 111
 112	/*
 113	 * We have to grab these before the commit_op to avoid a race
 114	 * condition.
 115	 */
 116	spin_lock_irq(&b->lock);
 117	list_splice_init(&b->work_items, &work_items);
 118	bio_list_merge(&bios, &b->bios);
 119	bio_list_init(&b->bios);
 120	b->commit_scheduled = false;
 121	spin_unlock_irq(&b->lock);
 122
 123	r = b->commit_op(b->commit_context);
 124
 125	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 126		k = container_of(ws, struct continuation, ws);
 127		k->input = r;
 128		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 129		queue_work(b->wq, ws);
 130	}
 131
 132	while ((bio = bio_list_pop(&bios))) {
 133		if (r) {
 134			bio->bi_status = r;
 135			bio_endio(bio);
 136		} else
 137			b->issue_op(bio, b->issue_context);
 138	}
 139}
 140
 141static void batcher_init(struct batcher *b,
 142			 blk_status_t (*commit_op)(void *),
 143			 void *commit_context,
 144			 void (*issue_op)(struct bio *bio, void *),
 145			 void *issue_context,
 146			 struct workqueue_struct *wq)
 147{
 148	b->commit_op = commit_op;
 149	b->commit_context = commit_context;
 150	b->issue_op = issue_op;
 151	b->issue_context = issue_context;
 152	b->wq = wq;
 153
 154	spin_lock_init(&b->lock);
 155	INIT_LIST_HEAD(&b->work_items);
 156	bio_list_init(&b->bios);
 157	INIT_WORK(&b->commit_work, __commit);
 158	b->commit_scheduled = false;
 159}
 160
 161static void async_commit(struct batcher *b)
 162{
 163	queue_work(b->wq, &b->commit_work);
 
 
 164}
 165
 166static void continue_after_commit(struct batcher *b, struct continuation *k)
 167{
 168	bool commit_scheduled;
 169
 170	spin_lock_irq(&b->lock);
 171	commit_scheduled = b->commit_scheduled;
 172	list_add_tail(&k->ws.entry, &b->work_items);
 173	spin_unlock_irq(&b->lock);
 174
 175	if (commit_scheduled)
 176		async_commit(b);
 
 177}
 178
 179/*
 180 * Bios are errored if commit failed.
 181 */
 182static void issue_after_commit(struct batcher *b, struct bio *bio)
 183{
 184	bool commit_scheduled;
 185
 186	spin_lock_irq(&b->lock);
 187	commit_scheduled = b->commit_scheduled;
 188	bio_list_add(&b->bios, bio);
 189	spin_unlock_irq(&b->lock);
 190
 191	if (commit_scheduled)
 192		async_commit(b);
 193}
 194
 195/*
 196 * Call this if some urgent work is waiting for the commit to complete.
 
 
 
 
 
 
 
 197 */
 198static void schedule_commit(struct batcher *b)
 199{
 200	bool immediate;
 201
 202	spin_lock_irq(&b->lock);
 203	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 204	b->commit_scheduled = true;
 205	spin_unlock_irq(&b->lock);
 206
 207	if (immediate)
 208		async_commit(b);
 209}
 210
 211/*
 212 * There are a couple of places where we let a bio run, but want to do some
 213 * work before calling its endio function.  We do this by temporarily
 214 * changing the endio fn.
 215 */
 216struct dm_hook_info {
 217	bio_end_io_t *bi_end_io;
 218};
 219
 220static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 221			bio_end_io_t *bi_end_io, void *bi_private)
 222{
 223	h->bi_end_io = bio->bi_end_io;
 224
 225	bio->bi_end_io = bi_end_io;
 226	bio->bi_private = bi_private;
 227}
 228
 229static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 230{
 231	bio->bi_end_io = h->bi_end_io;
 232}
 233
 234/*----------------------------------------------------------------*/
 235
 236#define MIGRATION_POOL_SIZE 128
 237#define COMMIT_PERIOD HZ
 238#define MIGRATION_COUNT_WINDOW 10
 239
 240/*
 241 * The block size of the device holding cache data must be
 242 * between 32KB and 1GB.
 243 */
 244#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 245#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 246
 247enum cache_metadata_mode {
 248	CM_WRITE,		/* metadata may be changed */
 249	CM_READ_ONLY,		/* metadata may not be changed */
 250	CM_FAIL
 251};
 252
 253enum cache_io_mode {
 254	/*
 255	 * Data is written to cached blocks only.  These blocks are marked
 256	 * dirty.  If you lose the cache device you will lose data.
 257	 * Potential performance increase for both reads and writes.
 258	 */
 259	CM_IO_WRITEBACK,
 260
 261	/*
 262	 * Data is written to both cache and origin.  Blocks are never
 263	 * dirty.  Potential performance benfit for reads only.
 264	 */
 265	CM_IO_WRITETHROUGH,
 266
 267	/*
 268	 * A degraded mode useful for various cache coherency situations
 269	 * (eg, rolling back snapshots).  Reads and writes always go to the
 270	 * origin.  If a write goes to a cached oblock, then the cache
 271	 * block is invalidated.
 272	 */
 273	CM_IO_PASSTHROUGH
 274};
 275
 276struct cache_features {
 277	enum cache_metadata_mode mode;
 278	enum cache_io_mode io_mode;
 279	unsigned int metadata_version;
 280	bool discard_passdown:1;
 281};
 282
 283struct cache_stats {
 284	atomic_t read_hit;
 285	atomic_t read_miss;
 286	atomic_t write_hit;
 287	atomic_t write_miss;
 288	atomic_t demotion;
 289	atomic_t promotion;
 290	atomic_t writeback;
 291	atomic_t copies_avoided;
 292	atomic_t cache_cell_clash;
 293	atomic_t commit_count;
 294	atomic_t discard_count;
 295};
 296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297struct cache {
 298	struct dm_target *ti;
 299	spinlock_t lock;
 300
 301	/*
 302	 * Fields for converting from sectors to blocks.
 303	 */
 304	int sectors_per_block_shift;
 305	sector_t sectors_per_block;
 306
 307	struct dm_cache_metadata *cmd;
 308
 309	/*
 310	 * Metadata is written to this device.
 311	 */
 312	struct dm_dev *metadata_dev;
 313
 314	/*
 315	 * The slower of the two data devices.  Typically a spindle.
 316	 */
 317	struct dm_dev *origin_dev;
 318
 319	/*
 320	 * The faster of the two data devices.  Typically an SSD.
 321	 */
 322	struct dm_dev *cache_dev;
 323
 324	/*
 325	 * Size of the origin device in _complete_ blocks and native sectors.
 326	 */
 327	dm_oblock_t origin_blocks;
 328	sector_t origin_sectors;
 329
 330	/*
 331	 * Size of the cache device in blocks.
 332	 */
 333	dm_cblock_t cache_size;
 334
 335	/*
 336	 * Invalidation fields.
 337	 */
 338	spinlock_t invalidation_lock;
 339	struct list_head invalidation_requests;
 340
 
 
 
 
 
 
 
 
 341	sector_t migration_threshold;
 342	wait_queue_head_t migration_wait;
 343	atomic_t nr_allocated_migrations;
 344
 345	/*
 346	 * The number of in flight migrations that are performing
 347	 * background io. eg, promotion, writeback.
 348	 */
 349	atomic_t nr_io_migrations;
 350
 351	struct bio_list deferred_bios;
 
 
 352
 353	struct rw_semaphore quiesce_lock;
 
 
 
 
 354
 355	/*
 356	 * origin_blocks entries, discarded if set.
 357	 */
 358	dm_dblock_t discard_nr_blocks;
 359	unsigned long *discard_bitset;
 360	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 361
 362	/*
 363	 * Rather than reconstructing the table line for the status we just
 364	 * save it and regurgitate.
 365	 */
 366	unsigned int nr_ctr_args;
 367	const char **ctr_args;
 368
 369	struct dm_kcopyd_client *copier;
 370	struct work_struct deferred_bio_worker;
 371	struct work_struct migration_worker;
 372	struct workqueue_struct *wq;
 
 
 373	struct delayed_work waker;
 374	struct dm_bio_prison_v2 *prison;
 
 
 
 375
 376	/*
 377	 * cache_size entries, dirty if set
 378	 */
 379	unsigned long *dirty_bitset;
 380	atomic_t nr_dirty;
 381
 382	unsigned int policy_nr_args;
 383	struct dm_cache_policy *policy;
 384
 385	/*
 386	 * Cache features such as write-through.
 387	 */
 388	struct cache_features features;
 389
 390	struct cache_stats stats;
 391
 392	bool need_tick_bio:1;
 393	bool sized:1;
 394	bool invalidate:1;
 395	bool commit_requested:1;
 396	bool loaded_mappings:1;
 397	bool loaded_discards:1;
 398
 399	struct rw_semaphore background_work_lock;
 
 
 
 400
 401	struct batcher committer;
 402	struct work_struct commit_ws;
 403
 404	struct dm_io_tracker tracker;
 405
 406	mempool_t migration_pool;
 
 
 407
 408	struct bio_set bs;
 409};
 410
 411struct per_bio_data {
 412	bool tick:1;
 413	unsigned int req_nr:2;
 414	struct dm_bio_prison_cell_v2 *cell;
 415	struct dm_hook_info hook_info;
 416	sector_t len;
 
 
 
 
 
 
 
 
 
 417};
 418
 419struct dm_cache_migration {
 420	struct continuation k;
 421	struct cache *cache;
 422
 423	struct policy_work *op;
 424	struct bio *overwrite_bio;
 425	struct dm_bio_prison_cell_v2 *cell;
 
 426
 427	dm_cblock_t invalidate_cblock;
 428	dm_oblock_t invalidate_oblock;
 
 
 
 
 
 
 
 
 429};
 430
 431/*----------------------------------------------------------------*/
 432
 433static bool writethrough_mode(struct cache *cache)
 434{
 435	return cache->features.io_mode == CM_IO_WRITETHROUGH;
 436}
 437
 438static bool writeback_mode(struct cache *cache)
 439{
 440	return cache->features.io_mode == CM_IO_WRITEBACK;
 441}
 442
 443static inline bool passthrough_mode(struct cache *cache)
 444{
 445	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
 446}
 447
 448/*----------------------------------------------------------------*/
 449
 450static void wake_deferred_bio_worker(struct cache *cache)
 451{
 452	queue_work(cache->wq, &cache->deferred_bio_worker);
 453}
 454
 455static void wake_migration_worker(struct cache *cache)
 456{
 457	if (passthrough_mode(cache))
 458		return;
 459
 460	queue_work(cache->wq, &cache->migration_worker);
 461}
 462
 463/*----------------------------------------------------------------*/
 464
 465static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 466{
 467	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
 
 468}
 469
 470static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 471{
 472	dm_bio_prison_free_cell_v2(cache->prison, cell);
 473}
 474
 475static struct dm_cache_migration *alloc_migration(struct cache *cache)
 476{
 477	struct dm_cache_migration *mg;
 478
 479	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
 480
 481	memset(mg, 0, sizeof(*mg));
 482
 483	mg->cache = cache;
 484	atomic_inc(&cache->nr_allocated_migrations);
 485
 486	return mg;
 487}
 488
 489static void free_migration(struct dm_cache_migration *mg)
 490{
 491	struct cache *cache = mg->cache;
 492
 493	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 494		wake_up(&cache->migration_wait);
 495
 496	mempool_free(mg, &cache->migration_pool);
 497}
 498
 499/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500
 501static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 502{
 503	return to_oblock(from_oblock(b) + 1ull);
 
 
 
 
 
 
 
 504}
 505
 506static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 507{
 508	key->virtual = 0;
 509	key->dev = 0;
 510	key->block_begin = from_oblock(begin);
 511	key->block_end = from_oblock(end);
 
 
 512}
 513
 514/*
 515 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 516 * level 1 which prevents *both* READs and WRITEs.
 517 */
 518#define WRITE_LOCK_LEVEL 0
 519#define READ_WRITE_LOCK_LEVEL 1
 520
 521static unsigned int lock_level(struct bio *bio)
 522{
 523	return bio_data_dir(bio) == WRITE ?
 524		WRITE_LOCK_LEVEL :
 525		READ_WRITE_LOCK_LEVEL;
 526}
 527
 528/*
 529 *--------------------------------------------------------------
 530 * Per bio data
 531 *--------------------------------------------------------------
 532 */
 533
 534static struct per_bio_data *get_per_bio_data(struct bio *bio)
 535{
 536	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 
 
 537
 538	BUG_ON(!pb);
 539	return pb;
 540}
 541
 542static struct per_bio_data *init_per_bio_data(struct bio *bio)
 
 
 
 
 543{
 544	struct per_bio_data *pb = get_per_bio_data(bio);
 
 545
 546	pb->tick = false;
 547	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 548	pb->cell = NULL;
 549	pb->len = 0;
 550
 551	return pb;
 
 552}
 553
 554/*----------------------------------------------------------------*/
 555
 556static void defer_bio(struct cache *cache, struct bio *bio)
 557{
 558	spin_lock_irq(&cache->lock);
 559	bio_list_add(&cache->deferred_bios, bio);
 560	spin_unlock_irq(&cache->lock);
 
 
 561
 562	wake_deferred_bio_worker(cache);
 563}
 
 
 
 
 564
 565static void defer_bios(struct cache *cache, struct bio_list *bios)
 
 
 
 566{
 567	spin_lock_irq(&cache->lock);
 568	bio_list_merge(&cache->deferred_bios, bios);
 569	bio_list_init(bios);
 570	spin_unlock_irq(&cache->lock);
 
 
 
 571
 572	wake_deferred_bio_worker(cache);
 573}
 574
 575/*----------------------------------------------------------------*/
 576
 577static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 
 578{
 579	bool r;
 580	struct per_bio_data *pb;
 581	struct dm_cell_key_v2 key;
 582	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 583	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 
 
 584
 585	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 
 
 
 
 
 
 
 586
 587	build_key(oblock, end, &key);
 588	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 589	if (!r) {
 590		/*
 591		 * Failed to get the lock.
 592		 */
 593		free_prison_cell(cache, cell_prealloc);
 594		return r;
 595	}
 596
 597	if (cell != cell_prealloc)
 598		free_prison_cell(cache, cell_prealloc);
 599
 600	pb = get_per_bio_data(bio);
 601	pb->cell = cell;
 602
 603	return r;
 604}
 605
 606/*----------------------------------------------------------------*/
 607
 608static bool is_dirty(struct cache *cache, dm_cblock_t b)
 609{
 610	return test_bit(from_cblock(b), cache->dirty_bitset);
 611}
 612
 613static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 614{
 615	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 616		atomic_inc(&cache->nr_dirty);
 617		policy_set_dirty(cache->policy, cblock);
 618	}
 619}
 620
 621/*
 622 * These two are called when setting after migrations to force the policy
 623 * and dirty bitset to be in sync.
 624 */
 625static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 626{
 627	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 628		atomic_inc(&cache->nr_dirty);
 629	policy_set_dirty(cache->policy, cblock);
 630}
 631
 632static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 633{
 634	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 
 635		if (atomic_dec_return(&cache->nr_dirty) == 0)
 636			dm_table_event(cache->ti->table);
 637	}
 638
 639	policy_clear_dirty(cache->policy, cblock);
 640}
 641
 642/*----------------------------------------------------------------*/
 643
 644static bool block_size_is_power_of_two(struct cache *cache)
 645{
 646	return cache->sectors_per_block_shift >= 0;
 647}
 648
 
 
 
 
 649static dm_block_t block_div(dm_block_t b, uint32_t n)
 650{
 651	do_div(b, n);
 652
 653	return b;
 654}
 655
 656static dm_block_t oblocks_per_dblock(struct cache *cache)
 657{
 658	dm_block_t oblocks = cache->discard_block_size;
 659
 660	if (block_size_is_power_of_two(cache))
 661		oblocks >>= cache->sectors_per_block_shift;
 662	else
 663		oblocks = block_div(oblocks, cache->sectors_per_block);
 664
 665	return oblocks;
 666}
 667
 668static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 669{
 670	return to_dblock(block_div(from_oblock(oblock),
 671				   oblocks_per_dblock(cache)));
 672}
 673
 
 
 
 
 
 674static void set_discard(struct cache *cache, dm_dblock_t b)
 675{
 
 
 676	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 677	atomic_inc(&cache->stats.discard_count);
 678
 679	spin_lock_irq(&cache->lock);
 680	set_bit(from_dblock(b), cache->discard_bitset);
 681	spin_unlock_irq(&cache->lock);
 682}
 683
 684static void clear_discard(struct cache *cache, dm_dblock_t b)
 685{
 686	spin_lock_irq(&cache->lock);
 
 
 687	clear_bit(from_dblock(b), cache->discard_bitset);
 688	spin_unlock_irq(&cache->lock);
 689}
 690
 691static bool is_discarded(struct cache *cache, dm_dblock_t b)
 692{
 693	int r;
 
 694
 695	spin_lock_irq(&cache->lock);
 696	r = test_bit(from_dblock(b), cache->discard_bitset);
 697	spin_unlock_irq(&cache->lock);
 698
 699	return r;
 700}
 701
 702static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 703{
 704	int r;
 
 705
 706	spin_lock_irq(&cache->lock);
 707	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 708		     cache->discard_bitset);
 709	spin_unlock_irq(&cache->lock);
 710
 711	return r;
 712}
 713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714/*
 715 * -------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716 * Remapping
 717 *--------------------------------------------------------------
 718 */
 719static void remap_to_origin(struct cache *cache, struct bio *bio)
 720{
 721	bio_set_dev(bio, cache->origin_dev->bdev);
 722}
 723
 724static void remap_to_cache(struct cache *cache, struct bio *bio,
 725			   dm_cblock_t cblock)
 726{
 727	sector_t bi_sector = bio->bi_iter.bi_sector;
 728	sector_t block = from_cblock(cblock);
 729
 730	bio_set_dev(bio, cache->cache_dev->bdev);
 731	if (!block_size_is_power_of_two(cache))
 732		bio->bi_iter.bi_sector =
 733			(block * cache->sectors_per_block) +
 734			sector_div(bi_sector, cache->sectors_per_block);
 735	else
 736		bio->bi_iter.bi_sector =
 737			(block << cache->sectors_per_block_shift) |
 738			(bi_sector & (cache->sectors_per_block - 1));
 739}
 740
 741static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 742{
 743	struct per_bio_data *pb;
 
 
 744
 745	spin_lock_irq(&cache->lock);
 746	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 747	    bio_op(bio) != REQ_OP_DISCARD) {
 748		pb = get_per_bio_data(bio);
 749		pb->tick = true;
 750		cache->need_tick_bio = false;
 751	}
 752	spin_unlock_irq(&cache->lock);
 753}
 754
 755static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 756					  dm_oblock_t oblock)
 757{
 758	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
 759	check_if_tick_bio_needed(cache, bio);
 760	remap_to_origin(cache, bio);
 761	if (bio_data_dir(bio) == WRITE)
 762		clear_discard(cache, oblock_to_dblock(cache, oblock));
 763}
 764
 765static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 766				 dm_oblock_t oblock, dm_cblock_t cblock)
 767{
 768	check_if_tick_bio_needed(cache, bio);
 769	remap_to_cache(cache, bio, cblock);
 770	if (bio_data_dir(bio) == WRITE) {
 771		set_dirty(cache, cblock);
 772		clear_discard(cache, oblock_to_dblock(cache, oblock));
 773	}
 774}
 775
 776static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 777{
 778	sector_t block_nr = bio->bi_iter.bi_sector;
 779
 780	if (!block_size_is_power_of_two(cache))
 781		(void) sector_div(block_nr, cache->sectors_per_block);
 782	else
 783		block_nr >>= cache->sectors_per_block_shift;
 784
 785	return to_oblock(block_nr);
 786}
 787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788static bool accountable_bio(struct cache *cache, struct bio *bio)
 789{
 790	return bio_op(bio) != REQ_OP_DISCARD;
 
 791}
 792
 793static void accounted_begin(struct cache *cache, struct bio *bio)
 794{
 795	struct per_bio_data *pb;
 
 796
 797	if (accountable_bio(cache, bio)) {
 798		pb = get_per_bio_data(bio);
 799		pb->len = bio_sectors(bio);
 800		dm_iot_io_begin(&cache->tracker, pb->len);
 801	}
 802}
 803
 804static void accounted_complete(struct cache *cache, struct bio *bio)
 805{
 806	struct per_bio_data *pb = get_per_bio_data(bio);
 
 807
 808	dm_iot_io_end(&cache->tracker, pb->len);
 809}
 810
 811static void accounted_request(struct cache *cache, struct bio *bio)
 812{
 813	accounted_begin(cache, bio);
 814	dm_submit_bio_remap(bio, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815}
 816
 817static void issue_op(struct bio *bio, void *context)
 818{
 819	struct cache *cache = context;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820
 821	accounted_request(cache, bio);
 
 
 
 
 
 822}
 823
 824/*
 825 * When running in writethrough mode we need to send writes to clean blocks
 826 * to both the cache and origin devices.  Clone the bio and send them in parallel.
 
 
 827 */
 828static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
 829				      dm_oblock_t oblock, dm_cblock_t cblock)
 830{
 831	struct bio *origin_bio = bio_alloc_clone(cache->origin_dev->bdev, bio,
 832						 GFP_NOIO, &cache->bs);
 833
 834	BUG_ON(!origin_bio);
 
 
 
 835
 836	bio_chain(origin_bio, bio);
 837
 838	if (bio_data_dir(origin_bio) == WRITE)
 839		clear_discard(cache, oblock_to_dblock(cache, oblock));
 840	submit_bio(origin_bio);
 841
 842	remap_to_cache(cache, bio, cblock);
 843}
 844
 845/*
 846 *--------------------------------------------------------------
 847 * Failure modes
 848 *--------------------------------------------------------------
 849 */
 850static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 851{
 852	return cache->features.mode;
 853}
 854
 855static const char *cache_device_name(struct cache *cache)
 856{
 857	return dm_table_device_name(cache->ti->table);
 858}
 859
 860static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 861{
 862	static const char *descs[] = {
 863		"write",
 864		"read-only",
 865		"fail"
 866	};
 867
 868	dm_table_event(cache->ti->table);
 869	DMINFO("%s: switching cache to %s mode",
 870	       cache_device_name(cache), descs[(int)mode]);
 871}
 872
 873static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 874{
 875	bool needs_check;
 876	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 877
 878	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 879		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 880		      cache_device_name(cache));
 881		new_mode = CM_FAIL;
 882	}
 883
 884	if (new_mode == CM_WRITE && needs_check) {
 885		DMERR("%s: unable to switch cache to write mode until repaired.",
 886		      cache_device_name(cache));
 887		if (old_mode != new_mode)
 888			new_mode = old_mode;
 889		else
 890			new_mode = CM_READ_ONLY;
 891	}
 892
 893	/* Never move out of fail mode */
 894	if (old_mode == CM_FAIL)
 895		new_mode = CM_FAIL;
 896
 897	switch (new_mode) {
 898	case CM_FAIL:
 899	case CM_READ_ONLY:
 900		dm_cache_metadata_set_read_only(cache->cmd);
 901		break;
 902
 903	case CM_WRITE:
 904		dm_cache_metadata_set_read_write(cache->cmd);
 905		break;
 906	}
 907
 908	cache->features.mode = new_mode;
 909
 910	if (new_mode != old_mode)
 911		notify_mode_switch(cache, new_mode);
 912}
 913
 914static void abort_transaction(struct cache *cache)
 915{
 916	const char *dev_name = cache_device_name(cache);
 917
 918	if (get_cache_mode(cache) >= CM_READ_ONLY)
 919		return;
 920
 
 
 
 
 
 921	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
 922	if (dm_cache_metadata_abort(cache->cmd)) {
 923		DMERR("%s: failed to abort metadata transaction", dev_name);
 924		set_cache_mode(cache, CM_FAIL);
 925	}
 926
 927	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
 928		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
 929		set_cache_mode(cache, CM_FAIL);
 930	}
 931}
 932
 933static void metadata_operation_failed(struct cache *cache, const char *op, int r)
 934{
 935	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
 936		    cache_device_name(cache), op, r);
 937	abort_transaction(cache);
 938	set_cache_mode(cache, CM_READ_ONLY);
 939}
 940
 941/*----------------------------------------------------------------*/
 942
 943static void load_stats(struct cache *cache)
 944{
 945	struct dm_cache_statistics stats;
 946
 947	dm_cache_metadata_get_stats(cache->cmd, &stats);
 948	atomic_set(&cache->stats.read_hit, stats.read_hits);
 949	atomic_set(&cache->stats.read_miss, stats.read_misses);
 950	atomic_set(&cache->stats.write_hit, stats.write_hits);
 951	atomic_set(&cache->stats.write_miss, stats.write_misses);
 952}
 953
 954static void save_stats(struct cache *cache)
 955{
 956	struct dm_cache_statistics stats;
 957
 958	if (get_cache_mode(cache) >= CM_READ_ONLY)
 959		return;
 960
 961	stats.read_hits = atomic_read(&cache->stats.read_hit);
 962	stats.read_misses = atomic_read(&cache->stats.read_miss);
 963	stats.write_hits = atomic_read(&cache->stats.write_hit);
 964	stats.write_misses = atomic_read(&cache->stats.write_miss);
 965
 966	dm_cache_metadata_set_stats(cache->cmd, &stats);
 967}
 968
 969static void update_stats(struct cache_stats *stats, enum policy_operation op)
 970{
 971	switch (op) {
 972	case POLICY_PROMOTE:
 973		atomic_inc(&stats->promotion);
 974		break;
 975
 976	case POLICY_DEMOTE:
 977		atomic_inc(&stats->demotion);
 978		break;
 979
 980	case POLICY_WRITEBACK:
 981		atomic_inc(&stats->writeback);
 982		break;
 983	}
 984}
 985
 986/*
 987 *---------------------------------------------------------------------
 988 * Migration processing
 989 *
 990 * Migration covers moving data from the origin device to the cache, or
 991 * vice versa.
 992 *---------------------------------------------------------------------
 993 */
 994static void inc_io_migrations(struct cache *cache)
 995{
 996	atomic_inc(&cache->nr_io_migrations);
 997}
 998
 999static void dec_io_migrations(struct cache *cache)
1000{
1001	atomic_dec(&cache->nr_io_migrations);
1002}
1003
1004static bool discard_or_flush(struct bio *bio)
1005{
1006	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
 
 
 
 
 
 
 
 
 
 
 
 
1007}
1008
1009static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1010				     dm_dblock_t *b, dm_dblock_t *e)
1011{
1012	sector_t sb = bio->bi_iter.bi_sector;
1013	sector_t se = bio_end_sector(bio);
 
 
 
 
 
 
 
 
1014
1015	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
 
 
1016
1017	if (se - sb < cache->discard_block_size)
1018		*e = *b;
1019	else
1020		*e = to_dblock(block_div(se, cache->discard_block_size));
1021}
1022
1023/*----------------------------------------------------------------*/
 
 
 
 
1024
1025static void prevent_background_work(struct cache *cache)
1026{
1027	lockdep_off();
1028	down_write(&cache->background_work_lock);
1029	lockdep_on();
1030}
1031
1032static void allow_background_work(struct cache *cache)
1033{
1034	lockdep_off();
1035	up_write(&cache->background_work_lock);
1036	lockdep_on();
 
 
1037}
1038
1039static bool background_work_begin(struct cache *cache)
1040{
1041	bool r;
 
1042
1043	lockdep_off();
1044	r = down_read_trylock(&cache->background_work_lock);
1045	lockdep_on();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046
1047	return r;
1048}
1049
1050static void background_work_end(struct cache *cache)
1051{
1052	lockdep_off();
1053	up_read(&cache->background_work_lock);
1054	lockdep_on();
1055}
 
 
 
 
 
1056
1057/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1058
1059static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1060{
1061	return (bio_data_dir(bio) == WRITE) &&
1062		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1063}
1064
1065static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1066{
1067	return writeback_mode(cache) &&
1068		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1069}
 
 
 
 
 
 
 
 
 
 
1070
1071static void quiesce(struct dm_cache_migration *mg,
1072		    void (*continuation)(struct work_struct *))
1073{
1074	init_continuation(&mg->k, continuation);
1075	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1076}
1077
1078static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1079{
1080	struct continuation *k = container_of(ws, struct continuation, ws);
 
 
1081
1082	return container_of(k, struct dm_cache_migration, k);
 
 
 
 
 
 
 
 
 
 
 
 
 
1083}
1084
1085static void copy_complete(int read_err, unsigned long write_err, void *context)
1086{
1087	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
 
 
1088
1089	if (read_err || write_err)
1090		mg->k.input = BLK_STS_IOERR;
 
 
 
 
1091
1092	queue_continuation(mg->cache->wq, &mg->k);
1093}
1094
1095static void copy(struct dm_cache_migration *mg, bool promote)
1096{
 
1097	struct dm_io_region o_region, c_region;
1098	struct cache *cache = mg->cache;
 
1099
1100	o_region.bdev = cache->origin_dev->bdev;
1101	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1102	o_region.count = cache->sectors_per_block;
1103
1104	c_region.bdev = cache->cache_dev->bdev;
1105	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1106	c_region.count = cache->sectors_per_block;
1107
1108	if (promote)
1109		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1110	else
1111		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1112}
 
 
 
 
1113
1114static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1115{
1116	struct per_bio_data *pb = get_per_bio_data(bio);
1117
1118	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1119		free_prison_cell(cache, pb->cell);
1120	pb->cell = NULL;
1121}
1122
1123static void overwrite_endio(struct bio *bio)
1124{
1125	struct dm_cache_migration *mg = bio->bi_private;
1126	struct cache *cache = mg->cache;
1127	struct per_bio_data *pb = get_per_bio_data(bio);
 
 
1128
1129	dm_unhook_bio(&pb->hook_info, bio);
1130
1131	if (bio->bi_status)
1132		mg->k.input = bio->bi_status;
1133
1134	queue_continuation(cache->wq, &mg->k);
 
 
 
 
 
 
1135}
1136
1137static void overwrite(struct dm_cache_migration *mg,
1138		      void (*continuation)(struct work_struct *))
1139{
1140	struct bio *bio = mg->overwrite_bio;
1141	struct per_bio_data *pb = get_per_bio_data(bio);
1142
1143	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
 
1144
1145	/*
1146	 * The overwrite bio is part of the copy operation, as such it does
1147	 * not set/clear discard or dirty flags.
1148	 */
1149	if (mg->op->op == POLICY_PROMOTE)
1150		remap_to_cache(mg->cache, bio, mg->op->cblock);
1151	else
1152		remap_to_origin(mg->cache, bio);
1153
1154	init_continuation(&mg->k, continuation);
1155	accounted_request(mg->cache, bio);
 
 
1156}
1157
1158/*
1159 * Migration steps:
1160 *
1161 * 1) exclusive lock preventing WRITEs
1162 * 2) quiesce
1163 * 3) copy or issue overwrite bio
1164 * 4) upgrade to exclusive lock preventing READs and WRITEs
1165 * 5) quiesce
1166 * 6) update metadata and commit
1167 * 7) unlock
1168 */
1169static void mg_complete(struct dm_cache_migration *mg, bool success)
1170{
1171	struct bio_list bios;
1172	struct cache *cache = mg->cache;
1173	struct policy_work *op = mg->op;
1174	dm_cblock_t cblock = op->cblock;
1175
1176	if (success)
1177		update_stats(&cache->stats, op->op);
 
 
 
1178
1179	switch (op->op) {
1180	case POLICY_PROMOTE:
1181		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1182		policy_complete_background_work(cache->policy, op, success);
1183
1184		if (mg->overwrite_bio) {
1185			if (success)
1186				force_set_dirty(cache, cblock);
1187			else if (mg->k.input)
1188				mg->overwrite_bio->bi_status = mg->k.input;
1189			else
1190				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1191			bio_endio(mg->overwrite_bio);
1192		} else {
1193			if (success)
1194				force_clear_dirty(cache, cblock);
1195			dec_io_migrations(cache);
1196		}
1197		break;
1198
1199	case POLICY_DEMOTE:
1200		/*
1201		 * We clear dirty here to update the nr_dirty counter.
1202		 */
1203		if (success)
1204			force_clear_dirty(cache, cblock);
1205		policy_complete_background_work(cache->policy, op, success);
1206		dec_io_migrations(cache);
1207		break;
1208
1209	case POLICY_WRITEBACK:
1210		if (success)
1211			force_clear_dirty(cache, cblock);
1212		policy_complete_background_work(cache->policy, op, success);
1213		dec_io_migrations(cache);
1214		break;
1215	}
1216
1217	bio_list_init(&bios);
1218	if (mg->cell) {
1219		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1220			free_prison_cell(cache, mg->cell);
1221	}
1222
 
 
1223	free_migration(mg);
1224	defer_bios(cache, &bios);
1225	wake_migration_worker(cache);
1226
1227	background_work_end(cache);
1228}
1229
1230static void mg_success(struct work_struct *ws)
1231{
1232	struct dm_cache_migration *mg = ws_to_mg(ws);
 
1233
1234	mg_complete(mg, mg->k.input == 0);
1235}
 
 
1236
1237static void mg_update_metadata(struct work_struct *ws)
1238{
1239	int r;
1240	struct dm_cache_migration *mg = ws_to_mg(ws);
1241	struct cache *cache = mg->cache;
1242	struct policy_work *op = mg->op;
1243
1244	switch (op->op) {
1245	case POLICY_PROMOTE:
1246		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1247		if (r) {
1248			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1249				    cache_device_name(cache));
1250			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1251
1252			mg_complete(mg, false);
 
 
1253			return;
1254		}
1255		mg_complete(mg, true);
1256		break;
 
 
1257
1258	case POLICY_DEMOTE:
1259		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1260		if (r) {
1261			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1262				    cache_device_name(cache));
1263			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
 
1264
1265			mg_complete(mg, false);
1266			return;
1267		}
 
 
 
1268
1269		/*
1270		 * It would be nice if we only had to commit when a REQ_FLUSH
1271		 * comes through.  But there's one scenario that we have to
1272		 * look out for:
1273		 *
1274		 * - vblock x in a cache block
1275		 * - domotion occurs
1276		 * - cache block gets reallocated and over written
1277		 * - crash
1278		 *
1279		 * When we recover, because there was no commit the cache will
1280		 * rollback to having the data for vblock x in the cache block.
1281		 * But the cache block has since been overwritten, so it'll end
1282		 * up pointing to data that was never in 'x' during the history
1283		 * of the device.
1284		 *
1285		 * To avoid this issue we require a commit as part of the
1286		 * demotion operation.
1287		 */
1288		init_continuation(&mg->k, mg_success);
1289		continue_after_commit(&cache->committer, &mg->k);
1290		schedule_commit(&cache->committer);
1291		break;
1292
1293	case POLICY_WRITEBACK:
1294		mg_complete(mg, true);
1295		break;
1296	}
1297}
1298
1299static void mg_update_metadata_after_copy(struct work_struct *ws)
1300{
1301	struct dm_cache_migration *mg = ws_to_mg(ws);
1302
1303	/*
1304	 * Did the copy succeed?
1305	 */
1306	if (mg->k.input)
1307		mg_complete(mg, false);
1308	else
1309		mg_update_metadata(ws);
1310}
1311
1312static void mg_upgrade_lock(struct work_struct *ws)
1313{
1314	int r;
1315	struct dm_cache_migration *mg = ws_to_mg(ws);
 
 
 
 
1316
1317	/*
1318	 * Did the copy succeed?
1319	 */
1320	if (mg->k.input)
1321		mg_complete(mg, false);
1322
1323	else {
1324		/*
1325		 * Now we want the lock to prevent both reads and writes.
1326		 */
1327		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1328					    READ_WRITE_LOCK_LEVEL);
1329		if (r < 0)
1330			mg_complete(mg, false);
1331
1332		else if (r)
1333			quiesce(mg, mg_update_metadata);
 
 
1334
1335		else
1336			mg_update_metadata(ws);
1337	}
1338}
1339
1340static void mg_full_copy(struct work_struct *ws)
 
1341{
1342	struct dm_cache_migration *mg = ws_to_mg(ws);
1343	struct cache *cache = mg->cache;
1344	struct policy_work *op = mg->op;
1345	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1346
1347	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1348	    is_discarded_oblock(cache, op->oblock)) {
1349		mg_upgrade_lock(ws);
1350		return;
1351	}
1352
1353	init_continuation(&mg->k, mg_upgrade_lock);
1354	copy(mg, is_policy_promote);
 
 
 
1355}
1356
1357static void mg_copy(struct work_struct *ws)
1358{
1359	struct dm_cache_migration *mg = ws_to_mg(ws);
 
 
1360
1361	if (mg->overwrite_bio) {
1362		/*
1363		 * No exclusive lock was held when we last checked if the bio
1364		 * was optimisable.  So we have to check again in case things
1365		 * have changed (eg, the block may no longer be discarded).
1366		 */
1367		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1368			/*
1369			 * Fallback to a real full copy after doing some tidying up.
1370			 */
1371			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1372
1373			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1374			mg->overwrite_bio = NULL;
1375			inc_io_migrations(mg->cache);
1376			mg_full_copy(ws);
1377			return;
1378		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379
1380		/*
1381		 * It's safe to do this here, even though it's new data
1382		 * because all IO has been locked out of the block.
1383		 *
1384		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1385		 * so _not_ using mg_upgrade_lock() as continutation.
1386		 */
1387		overwrite(mg, mg_update_metadata_after_copy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388
1389	} else
1390		mg_full_copy(ws);
1391}
1392
1393static int mg_lock_writes(struct dm_cache_migration *mg)
 
 
 
1394{
1395	int r;
1396	struct dm_cell_key_v2 key;
1397	struct cache *cache = mg->cache;
1398	struct dm_bio_prison_cell_v2 *prealloc;
1399
1400	prealloc = alloc_prison_cell(cache);
 
 
1401
1402	/*
1403	 * Prevent writes to the block, but allow reads to continue.
1404	 * Unless we're using an overwrite bio, in which case we lock
1405	 * everything.
1406	 */
1407	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1408	r = dm_cell_lock_v2(cache->prison, &key,
1409			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1410			    prealloc, &mg->cell);
1411	if (r < 0) {
1412		free_prison_cell(cache, prealloc);
1413		mg_complete(mg, false);
1414		return r;
1415	}
1416
1417	if (mg->cell != prealloc)
1418		free_prison_cell(cache, prealloc);
 
 
1419
1420	if (r == 0)
1421		mg_copy(&mg->k.ws);
 
1422	else
1423		quiesce(mg, mg_copy);
1424
1425	return 0;
 
 
 
 
 
1426}
1427
1428static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
 
1429{
1430	struct dm_cache_migration *mg;
 
 
1431
1432	if (!background_work_begin(cache)) {
1433		policy_complete_background_work(cache->policy, op, false);
1434		return -EPERM;
 
1435	}
1436
1437	mg = alloc_migration(cache);
 
 
 
 
 
1438
1439	mg->op = op;
1440	mg->overwrite_bio = bio;
1441
1442	if (!bio)
1443		inc_io_migrations(cache);
 
 
 
 
1444
1445	return mg_lock_writes(mg);
 
 
 
 
 
 
 
 
 
1446}
1447
1448/*
1449 *--------------------------------------------------------------
1450 * invalidation processing
1451 *--------------------------------------------------------------
1452 */
 
 
 
1453
1454static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1455{
1456	struct bio_list bios;
1457	struct cache *cache = mg->cache;
 
1458
1459	bio_list_init(&bios);
1460	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1461		free_prison_cell(cache, mg->cell);
1462
1463	if (!success && mg->overwrite_bio)
1464		bio_io_error(mg->overwrite_bio);
 
 
 
1465
1466	free_migration(mg);
1467	defer_bios(cache, &bios);
1468
1469	background_work_end(cache);
 
 
1470}
1471
1472static void invalidate_completed(struct work_struct *ws)
 
 
 
1473{
1474	struct dm_cache_migration *mg = ws_to_mg(ws);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1475
1476	invalidate_complete(mg, !mg->k.input);
 
 
 
 
 
1477}
1478
1479static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
 
1480{
1481	int r;
 
 
1482
1483	r = policy_invalidate_mapping(cache->policy, cblock);
1484	if (!r) {
1485		r = dm_cache_remove_mapping(cache->cmd, cblock);
1486		if (r) {
1487			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1488				    cache_device_name(cache));
1489			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1490		}
 
 
 
 
 
 
 
1491
1492	} else if (r == -ENODATA) {
1493		/*
1494		 * Harmless, already unmapped.
1495		 */
1496		r = 0;
1497
1498	} else
1499		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
 
 
1500
1501	return r;
1502}
1503
1504static void invalidate_remove(struct work_struct *ws)
 
 
 
 
 
 
 
 
 
1505{
1506	int r;
1507	struct dm_cache_migration *mg = ws_to_mg(ws);
1508	struct cache *cache = mg->cache;
 
1509
1510	r = invalidate_cblock(cache, mg->invalidate_cblock);
1511	if (r) {
1512		invalidate_complete(mg, false);
1513		return;
1514	}
1515
1516	init_continuation(&mg->k, invalidate_completed);
1517	continue_after_commit(&cache->committer, &mg->k);
1518	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1519	mg->overwrite_bio = NULL;
1520	schedule_commit(&cache->committer);
1521}
1522
1523static int invalidate_lock(struct dm_cache_migration *mg)
 
1524{
1525	int r;
1526	struct dm_cell_key_v2 key;
1527	struct cache *cache = mg->cache;
1528	struct dm_bio_prison_cell_v2 *prealloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529
1530	prealloc = alloc_prison_cell(cache);
1531
1532	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1533	r = dm_cell_lock_v2(cache->prison, &key,
1534			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1535	if (r < 0) {
1536		free_prison_cell(cache, prealloc);
1537		invalidate_complete(mg, false);
1538		return r;
1539	}
1540
1541	if (mg->cell != prealloc)
1542		free_prison_cell(cache, prealloc);
 
 
 
1543
1544	if (r)
1545		quiesce(mg, invalidate_remove);
 
 
 
 
 
 
1546
1547	else {
1548		/*
1549		 * We can't call invalidate_remove() directly here because we
1550		 * might still be in request context.
1551		 */
1552		init_continuation(&mg->k, invalidate_remove);
1553		queue_work(cache->wq, &mg->k.ws);
1554	}
1555
1556	return 0;
 
1557}
1558
1559static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1560			    dm_oblock_t oblock, struct bio *bio)
1561{
1562	struct dm_cache_migration *mg;
 
 
1563
1564	if (!background_work_begin(cache))
1565		return -EPERM;
 
 
 
 
 
 
 
1566
1567	mg = alloc_migration(cache);
 
1568
1569	mg->overwrite_bio = bio;
1570	mg->invalidate_cblock = cblock;
1571	mg->invalidate_oblock = oblock;
1572
1573	return invalidate_lock(mg);
1574}
1575
1576/*
1577 *--------------------------------------------------------------
1578 * bio processing
1579 *--------------------------------------------------------------
1580 */
 
 
 
1581
1582enum busy {
1583	IDLE,
1584	BUSY
1585};
1586
1587static enum busy spare_migration_bandwidth(struct cache *cache)
1588{
1589	bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1590	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1591		cache->sectors_per_block;
1592
1593	if (idle && current_volume <= cache->migration_threshold)
1594		return IDLE;
1595	else
1596		return BUSY;
1597}
1598
1599static void inc_hit_counter(struct cache *cache, struct bio *bio)
1600{
1601	atomic_inc(bio_data_dir(bio) == READ ?
1602		   &cache->stats.read_hit : &cache->stats.write_hit);
 
 
 
 
 
 
 
 
1603}
1604
1605static void inc_miss_counter(struct cache *cache, struct bio *bio)
1606{
1607	atomic_inc(bio_data_dir(bio) == READ ?
1608		   &cache->stats.read_miss : &cache->stats.write_miss);
1609}
 
 
1610
1611/*----------------------------------------------------------------*/
 
1612
1613static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1614		   bool *commit_needed)
1615{
1616	int r, data_dir;
1617	bool rb, background_queued;
1618	dm_cblock_t cblock;
1619
1620	*commit_needed = false;
1621
1622	rb = bio_detain_shared(cache, block, bio);
1623	if (!rb) {
1624		/*
1625		 * An exclusive lock is held for this block, so we have to
1626		 * wait.  We set the commit_needed flag so the current
1627		 * transaction will be committed asap, allowing this lock
1628		 * to be dropped.
1629		 */
1630		*commit_needed = true;
1631		return DM_MAPIO_SUBMITTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1632	}
1633
1634	data_dir = bio_data_dir(bio);
 
 
1635
1636	if (optimisable_bio(cache, bio, block)) {
1637		struct policy_work *op = NULL;
1638
1639		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1640		if (unlikely(r && r != -ENOENT)) {
1641			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1642				    cache_device_name(cache), r);
1643			bio_io_error(bio);
1644			return DM_MAPIO_SUBMITTED;
1645		}
1646
1647		if (r == -ENOENT && op) {
1648			bio_drop_shared_lock(cache, bio);
1649			BUG_ON(op->op != POLICY_PROMOTE);
1650			mg_start(cache, op, bio);
1651			return DM_MAPIO_SUBMITTED;
1652		}
1653	} else {
1654		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1655		if (unlikely(r && r != -ENOENT)) {
1656			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1657				    cache_device_name(cache), r);
1658			bio_io_error(bio);
1659			return DM_MAPIO_SUBMITTED;
1660		}
1661
1662		if (background_queued)
1663			wake_migration_worker(cache);
1664	}
1665
1666	if (r == -ENOENT) {
1667		struct per_bio_data *pb = get_per_bio_data(bio);
1668
1669		/*
1670		 * Miss.
1671		 */
1672		inc_miss_counter(cache, bio);
1673		if (pb->req_nr == 0) {
1674			accounted_begin(cache, bio);
1675			remap_to_origin_clear_discard(cache, bio, block);
1676		} else {
1677			/*
1678			 * This is a duplicate writethrough io that is no
1679			 * longer needed because the block has been demoted.
1680			 */
1681			bio_endio(bio);
1682			return DM_MAPIO_SUBMITTED;
1683		}
1684	} else {
1685		/*
1686		 * Hit.
1687		 */
1688		inc_hit_counter(cache, bio);
1689
 
1690		/*
1691		 * Passthrough always maps to the origin, invalidating any
1692		 * cache blocks that are written to.
 
1693		 */
1694		if (passthrough_mode(cache)) {
1695			if (bio_data_dir(bio) == WRITE) {
1696				bio_drop_shared_lock(cache, bio);
1697				atomic_inc(&cache->stats.demotion);
1698				invalidate_start(cache, cblock, block, bio);
1699			} else
1700				remap_to_origin_clear_discard(cache, bio, block);
1701		} else {
1702			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1703			    !is_dirty(cache, cblock)) {
1704				remap_to_origin_and_cache(cache, bio, block, cblock);
1705				accounted_begin(cache, bio);
1706			} else
1707				remap_to_cache_dirty(cache, bio, block, cblock);
1708		}
1709	}
1710
1711	/*
1712	 * dm core turns FUA requests into a separate payload and FLUSH req.
1713	 */
1714	if (bio->bi_opf & REQ_FUA) {
1715		/*
1716		 * issue_after_commit will call accounted_begin a second time.  So
1717		 * we call accounted_complete() to avoid double accounting.
1718		 */
1719		accounted_complete(cache, bio);
1720		issue_after_commit(&cache->committer, bio);
1721		*commit_needed = true;
1722		return DM_MAPIO_SUBMITTED;
1723	}
1724
1725	return DM_MAPIO_REMAPPED;
 
1726}
1727
1728static bool process_bio(struct cache *cache, struct bio *bio)
1729{
1730	bool commit_needed;
 
 
 
 
1731
1732	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1733		dm_submit_bio_remap(bio, NULL);
 
 
1734
1735	return commit_needed;
 
 
 
 
1736}
1737
1738/*
1739 * A non-zero return indicates read_only or fail_io mode.
1740 */
1741static int commit(struct cache *cache, bool clean_shutdown)
1742{
1743	int r;
 
 
1744
1745	if (get_cache_mode(cache) >= CM_READ_ONLY)
1746		return -EINVAL;
1747
1748	atomic_inc(&cache->stats.commit_count);
1749	r = dm_cache_commit(cache->cmd, clean_shutdown);
1750	if (r)
1751		metadata_operation_failed(cache, "dm_cache_commit", r);
1752
1753	return r;
 
 
 
 
1754}
1755
1756/*
1757 * Used by the batcher.
1758 */
1759static blk_status_t commit_op(void *context)
1760{
1761	struct cache *cache = context;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1762
1763	if (dm_cache_changed_this_transaction(cache->cmd))
1764		return errno_to_blk_status(commit(cache, false));
1765
1766	return 0;
 
1767}
1768
1769/*----------------------------------------------------------------*/
 
 
 
1770
1771static bool process_flush_bio(struct cache *cache, struct bio *bio)
1772{
1773	struct per_bio_data *pb = get_per_bio_data(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774
1775	if (!pb->req_nr)
1776		remap_to_origin(cache, bio);
1777	else
1778		remap_to_cache(cache, bio, 0);
1779
1780	issue_after_commit(&cache->committer, bio);
1781	return true;
1782}
1783
1784static bool process_discard_bio(struct cache *cache, struct bio *bio)
1785{
1786	dm_dblock_t b, e;
 
 
 
 
 
 
1787
1788	/*
1789	 * FIXME: do we need to lock the region?  Or can we just assume the
1790	 * user wont be so foolish as to issue discard concurrently with
1791	 * other IO?
1792	 */
1793	calc_discard_block_range(cache, bio, &b, &e);
1794	while (b != e) {
1795		set_discard(cache, b);
1796		b = to_dblock(from_dblock(b) + 1);
1797	}
1798
1799	if (cache->features.discard_passdown) {
1800		remap_to_origin(cache, bio);
1801		dm_submit_bio_remap(bio, NULL);
1802	} else
1803		bio_endio(bio);
 
 
1804
1805	return false;
 
 
 
 
 
1806}
1807
1808static void process_deferred_bios(struct work_struct *ws)
1809{
1810	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
 
1811
1812	bool commit_needed = false;
1813	struct bio_list bios;
1814	struct bio *bio;
 
 
1815
1816	bio_list_init(&bios);
 
 
 
 
1817
1818	spin_lock_irq(&cache->lock);
1819	bio_list_merge(&bios, &cache->deferred_bios);
1820	bio_list_init(&cache->deferred_bios);
1821	spin_unlock_irq(&cache->lock);
1822
1823	while ((bio = bio_list_pop(&bios))) {
1824		if (bio->bi_opf & REQ_PREFLUSH)
1825			commit_needed = process_flush_bio(cache, bio) || commit_needed;
 
 
1826
1827		else if (bio_op(bio) == REQ_OP_DISCARD)
1828			commit_needed = process_discard_bio(cache, bio) || commit_needed;
 
 
 
1829
1830		else
1831			commit_needed = process_bio(cache, bio) || commit_needed;
1832		cond_resched();
1833	}
1834
1835	if (commit_needed)
1836		schedule_commit(&cache->committer);
1837}
1838
1839/*
1840 *--------------------------------------------------------------
1841 * Main worker loop
1842 *--------------------------------------------------------------
1843 */
1844static void requeue_deferred_bios(struct cache *cache)
1845{
1846	struct bio *bio;
1847	struct bio_list bios;
1848
1849	bio_list_init(&bios);
1850	bio_list_merge(&bios, &cache->deferred_bios);
1851	bio_list_init(&cache->deferred_bios);
1852
1853	while ((bio = bio_list_pop(&bios))) {
1854		bio->bi_status = BLK_STS_DM_REQUEUE;
1855		bio_endio(bio);
1856		cond_resched();
1857	}
1858}
1859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1860/*
1861 * We want to commit periodically so that not too much
1862 * unwritten metadata builds up.
1863 */
1864static void do_waker(struct work_struct *ws)
1865{
1866	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1867
1868	policy_tick(cache->policy, true);
1869	wake_migration_worker(cache);
1870	schedule_commit(&cache->committer);
1871	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1872}
1873
1874static void check_migrations(struct work_struct *ws)
 
 
1875{
1876	int r;
1877	struct policy_work *op;
1878	struct cache *cache = container_of(ws, struct cache, migration_worker);
1879	enum busy b;
1880
1881	for (;;) {
1882		b = spare_migration_bandwidth(cache);
1883
1884		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1885		if (r == -ENODATA)
1886			break;
1887
1888		if (r) {
1889			DMERR_LIMIT("%s: policy_background_work failed",
1890				    cache_device_name(cache));
1891			break;
1892		}
1893
1894		r = mg_start(cache, op, NULL);
1895		if (r)
1896			break;
1897
1898		cond_resched();
1899	}
1900}
1901
1902/*
1903 *--------------------------------------------------------------
1904 * Target methods
1905 *--------------------------------------------------------------
1906 */
1907
1908/*
1909 * This function gets called on the error paths of the constructor, so we
1910 * have to cope with a partially initialised struct.
1911 */
1912static void destroy(struct cache *cache)
1913{
1914	unsigned int i;
 
 
1915
1916	mempool_exit(&cache->migration_pool);
 
1917
1918	if (cache->prison)
1919		dm_bio_prison_destroy_v2(cache->prison);
1920
1921	cancel_delayed_work_sync(&cache->waker);
1922	if (cache->wq)
1923		destroy_workqueue(cache->wq);
1924
1925	if (cache->dirty_bitset)
1926		free_bitset(cache->dirty_bitset);
1927
1928	if (cache->discard_bitset)
1929		free_bitset(cache->discard_bitset);
1930
1931	if (cache->copier)
1932		dm_kcopyd_client_destroy(cache->copier);
1933
1934	if (cache->cmd)
1935		dm_cache_metadata_close(cache->cmd);
1936
1937	if (cache->metadata_dev)
1938		dm_put_device(cache->ti, cache->metadata_dev);
1939
1940	if (cache->origin_dev)
1941		dm_put_device(cache->ti, cache->origin_dev);
1942
1943	if (cache->cache_dev)
1944		dm_put_device(cache->ti, cache->cache_dev);
1945
1946	if (cache->policy)
1947		dm_cache_policy_destroy(cache->policy);
1948
1949	for (i = 0; i < cache->nr_ctr_args ; i++)
1950		kfree(cache->ctr_args[i]);
1951	kfree(cache->ctr_args);
1952
1953	bioset_exit(&cache->bs);
1954
1955	kfree(cache);
1956}
1957
1958static void cache_dtr(struct dm_target *ti)
1959{
1960	struct cache *cache = ti->private;
1961
1962	destroy(cache);
1963}
1964
1965static sector_t get_dev_size(struct dm_dev *dev)
1966{
1967	return bdev_nr_sectors(dev->bdev);
1968}
1969
1970/*----------------------------------------------------------------*/
1971
1972/*
1973 * Construct a cache device mapping.
1974 *
1975 * cache <metadata dev> <cache dev> <origin dev> <block size>
1976 *       <#feature args> [<feature arg>]*
1977 *       <policy> <#policy args> [<policy arg>]*
1978 *
1979 * metadata dev    : fast device holding the persistent metadata
1980 * cache dev	   : fast device holding cached data blocks
1981 * origin dev	   : slow device holding original data blocks
1982 * block size	   : cache unit size in sectors
1983 *
1984 * #feature args   : number of feature arguments passed
1985 * feature args    : writethrough.  (The default is writeback.)
1986 *
1987 * policy	   : the replacement policy to use
1988 * #policy args    : an even number of policy arguments corresponding
1989 *		     to key/value pairs passed to the policy
1990 * policy args	   : key/value pairs passed to the policy
1991 *		     E.g. 'sequential_threshold 1024'
1992 *		     See cache-policies.txt for details.
1993 *
1994 * Optional feature arguments are:
1995 *   writethrough  : write through caching that prohibits cache block
1996 *		     content from being different from origin block content.
1997 *		     Without this argument, the default behaviour is to write
1998 *		     back cache block contents later for performance reasons,
1999 *		     so they may differ from the corresponding origin blocks.
2000 */
2001struct cache_args {
2002	struct dm_target *ti;
2003
2004	struct dm_dev *metadata_dev;
2005
2006	struct dm_dev *cache_dev;
2007	sector_t cache_sectors;
2008
2009	struct dm_dev *origin_dev;
2010	sector_t origin_sectors;
2011
2012	uint32_t block_size;
2013
2014	const char *policy_name;
2015	int policy_argc;
2016	const char **policy_argv;
2017
2018	struct cache_features features;
2019};
2020
2021static void destroy_cache_args(struct cache_args *ca)
2022{
2023	if (ca->metadata_dev)
2024		dm_put_device(ca->ti, ca->metadata_dev);
2025
2026	if (ca->cache_dev)
2027		dm_put_device(ca->ti, ca->cache_dev);
2028
2029	if (ca->origin_dev)
2030		dm_put_device(ca->ti, ca->origin_dev);
2031
2032	kfree(ca);
2033}
2034
2035static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2036{
2037	if (!as->argc) {
2038		*error = "Insufficient args";
2039		return false;
2040	}
2041
2042	return true;
2043}
2044
2045static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2046			      char **error)
2047{
2048	int r;
2049	sector_t metadata_dev_size;
 
2050
2051	if (!at_least_one_arg(as, error))
2052		return -EINVAL;
2053
2054	r = dm_get_device(ca->ti, dm_shift_arg(as),
2055			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->metadata_dev);
2056	if (r) {
2057		*error = "Error opening metadata device";
2058		return r;
2059	}
2060
2061	metadata_dev_size = get_dev_size(ca->metadata_dev);
2062	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2063		DMWARN("Metadata device %pg is larger than %u sectors: excess space will not be used.",
2064		       ca->metadata_dev->bdev, THIN_METADATA_MAX_SECTORS);
2065
2066	return 0;
2067}
2068
2069static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2070			   char **error)
2071{
2072	int r;
2073
2074	if (!at_least_one_arg(as, error))
2075		return -EINVAL;
2076
2077	r = dm_get_device(ca->ti, dm_shift_arg(as),
2078			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->cache_dev);
2079	if (r) {
2080		*error = "Error opening cache device";
2081		return r;
2082	}
2083	ca->cache_sectors = get_dev_size(ca->cache_dev);
2084
2085	return 0;
2086}
2087
2088static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2089			    char **error)
2090{
2091	int r;
2092
2093	if (!at_least_one_arg(as, error))
2094		return -EINVAL;
2095
2096	r = dm_get_device(ca->ti, dm_shift_arg(as),
2097			  BLK_OPEN_READ | BLK_OPEN_WRITE, &ca->origin_dev);
2098	if (r) {
2099		*error = "Error opening origin device";
2100		return r;
2101	}
2102
2103	ca->origin_sectors = get_dev_size(ca->origin_dev);
2104	if (ca->ti->len > ca->origin_sectors) {
2105		*error = "Device size larger than cached device";
2106		return -EINVAL;
2107	}
2108
2109	return 0;
2110}
2111
2112static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2113			    char **error)
2114{
2115	unsigned long block_size;
2116
2117	if (!at_least_one_arg(as, error))
2118		return -EINVAL;
2119
2120	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2121	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2122	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2123	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2124		*error = "Invalid data block size";
2125		return -EINVAL;
2126	}
2127
2128	if (block_size > ca->cache_sectors) {
2129		*error = "Data block size is larger than the cache device";
2130		return -EINVAL;
2131	}
2132
2133	ca->block_size = block_size;
2134
2135	return 0;
2136}
2137
2138static void init_features(struct cache_features *cf)
2139{
2140	cf->mode = CM_WRITE;
2141	cf->io_mode = CM_IO_WRITEBACK;
2142	cf->metadata_version = 1;
2143	cf->discard_passdown = true;
2144}
2145
2146static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2147			  char **error)
2148{
2149	static const struct dm_arg _args[] = {
2150		{0, 3, "Invalid number of cache feature arguments"},
2151	};
2152
2153	int r, mode_ctr = 0;
2154	unsigned int argc;
2155	const char *arg;
2156	struct cache_features *cf = &ca->features;
2157
2158	init_features(cf);
2159
2160	r = dm_read_arg_group(_args, as, &argc, error);
2161	if (r)
2162		return -EINVAL;
2163
2164	while (argc--) {
2165		arg = dm_shift_arg(as);
2166
2167		if (!strcasecmp(arg, "writeback")) {
2168			cf->io_mode = CM_IO_WRITEBACK;
2169			mode_ctr++;
2170		}
2171
2172		else if (!strcasecmp(arg, "writethrough")) {
2173			cf->io_mode = CM_IO_WRITETHROUGH;
2174			mode_ctr++;
2175		}
2176
2177		else if (!strcasecmp(arg, "passthrough")) {
2178			cf->io_mode = CM_IO_PASSTHROUGH;
2179			mode_ctr++;
2180		}
2181
2182		else if (!strcasecmp(arg, "metadata2"))
2183			cf->metadata_version = 2;
2184
2185		else if (!strcasecmp(arg, "no_discard_passdown"))
2186			cf->discard_passdown = false;
2187
2188		else {
2189			*error = "Unrecognised cache feature requested";
2190			return -EINVAL;
2191		}
2192	}
2193
2194	if (mode_ctr > 1) {
2195		*error = "Duplicate cache io_mode features requested";
2196		return -EINVAL;
2197	}
2198
2199	return 0;
2200}
2201
2202static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2203			char **error)
2204{
2205	static const struct dm_arg _args[] = {
2206		{0, 1024, "Invalid number of policy arguments"},
2207	};
2208
2209	int r;
2210
2211	if (!at_least_one_arg(as, error))
2212		return -EINVAL;
2213
2214	ca->policy_name = dm_shift_arg(as);
2215
2216	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2217	if (r)
2218		return -EINVAL;
2219
2220	ca->policy_argv = (const char **)as->argv;
2221	dm_consume_args(as, ca->policy_argc);
2222
2223	return 0;
2224}
2225
2226static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2227			    char **error)
2228{
2229	int r;
2230	struct dm_arg_set as;
2231
2232	as.argc = argc;
2233	as.argv = argv;
2234
2235	r = parse_metadata_dev(ca, &as, error);
2236	if (r)
2237		return r;
2238
2239	r = parse_cache_dev(ca, &as, error);
2240	if (r)
2241		return r;
2242
2243	r = parse_origin_dev(ca, &as, error);
2244	if (r)
2245		return r;
2246
2247	r = parse_block_size(ca, &as, error);
2248	if (r)
2249		return r;
2250
2251	r = parse_features(ca, &as, error);
2252	if (r)
2253		return r;
2254
2255	r = parse_policy(ca, &as, error);
2256	if (r)
2257		return r;
2258
2259	return 0;
2260}
2261
2262/*----------------------------------------------------------------*/
2263
2264static struct kmem_cache *migration_cache;
2265
2266#define NOT_CORE_OPTION 1
2267
2268static int process_config_option(struct cache *cache, const char *key, const char *value)
2269{
2270	unsigned long tmp;
2271
2272	if (!strcasecmp(key, "migration_threshold")) {
2273		if (kstrtoul(value, 10, &tmp))
2274			return -EINVAL;
2275
2276		cache->migration_threshold = tmp;
2277		return 0;
2278	}
2279
2280	return NOT_CORE_OPTION;
2281}
2282
2283static int set_config_value(struct cache *cache, const char *key, const char *value)
2284{
2285	int r = process_config_option(cache, key, value);
2286
2287	if (r == NOT_CORE_OPTION)
2288		r = policy_set_config_value(cache->policy, key, value);
2289
2290	if (r)
2291		DMWARN("bad config value for %s: %s", key, value);
2292
2293	return r;
2294}
2295
2296static int set_config_values(struct cache *cache, int argc, const char **argv)
2297{
2298	int r = 0;
2299
2300	if (argc & 1) {
2301		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2302		return -EINVAL;
2303	}
2304
2305	while (argc) {
2306		r = set_config_value(cache, argv[0], argv[1]);
2307		if (r)
2308			break;
2309
2310		argc -= 2;
2311		argv += 2;
2312	}
2313
2314	return r;
2315}
2316
2317static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2318			       char **error)
2319{
2320	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2321							   cache->cache_size,
2322							   cache->origin_sectors,
2323							   cache->sectors_per_block);
2324	if (IS_ERR(p)) {
2325		*error = "Error creating cache's policy";
2326		return PTR_ERR(p);
2327	}
2328	cache->policy = p;
2329	BUG_ON(!cache->policy);
2330
2331	return 0;
2332}
2333
2334/*
2335 * We want the discard block size to be at least the size of the cache
2336 * block size and have no more than 2^14 discard blocks across the origin.
2337 */
2338#define MAX_DISCARD_BLOCKS (1 << 14)
2339
2340static bool too_many_discard_blocks(sector_t discard_block_size,
2341				    sector_t origin_size)
2342{
2343	(void) sector_div(origin_size, discard_block_size);
2344
2345	return origin_size > MAX_DISCARD_BLOCKS;
2346}
2347
2348static sector_t calculate_discard_block_size(sector_t cache_block_size,
2349					     sector_t origin_size)
2350{
2351	sector_t discard_block_size = cache_block_size;
2352
2353	if (origin_size)
2354		while (too_many_discard_blocks(discard_block_size, origin_size))
2355			discard_block_size *= 2;
2356
2357	return discard_block_size;
2358}
2359
2360static void set_cache_size(struct cache *cache, dm_cblock_t size)
2361{
2362	dm_block_t nr_blocks = from_cblock(size);
2363
2364	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2365		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2366			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2367			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2368			     (unsigned long long) nr_blocks);
2369
2370	cache->cache_size = size;
2371}
2372
2373#define DEFAULT_MIGRATION_THRESHOLD 2048
2374
2375static int cache_create(struct cache_args *ca, struct cache **result)
2376{
2377	int r = 0;
2378	char **error = &ca->ti->error;
2379	struct cache *cache;
2380	struct dm_target *ti = ca->ti;
2381	dm_block_t origin_blocks;
2382	struct dm_cache_metadata *cmd;
2383	bool may_format = ca->features.mode == CM_WRITE;
2384
2385	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2386	if (!cache)
2387		return -ENOMEM;
2388
2389	cache->ti = ca->ti;
2390	ti->private = cache;
2391	ti->accounts_remapped_io = true;
2392	ti->num_flush_bios = 2;
2393	ti->flush_supported = true;
2394
2395	ti->num_discard_bios = 1;
2396	ti->discards_supported = true;
 
 
2397
2398	ti->per_io_data_size = sizeof(struct per_bio_data);
 
2399
2400	cache->features = ca->features;
2401	if (writethrough_mode(cache)) {
2402		/* Create bioset for writethrough bios issued to origin */
2403		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2404		if (r)
2405			goto bad;
2406	}
2407
2408	cache->metadata_dev = ca->metadata_dev;
2409	cache->origin_dev = ca->origin_dev;
2410	cache->cache_dev = ca->cache_dev;
2411
2412	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2413
 
2414	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2415	origin_blocks = block_div(origin_blocks, ca->block_size);
2416	cache->origin_blocks = to_oblock(origin_blocks);
2417
2418	cache->sectors_per_block = ca->block_size;
2419	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2420		r = -EINVAL;
2421		goto bad;
2422	}
2423
2424	if (ca->block_size & (ca->block_size - 1)) {
2425		dm_block_t cache_size = ca->cache_sectors;
2426
2427		cache->sectors_per_block_shift = -1;
2428		cache_size = block_div(cache_size, ca->block_size);
2429		set_cache_size(cache, to_cblock(cache_size));
2430	} else {
2431		cache->sectors_per_block_shift = __ffs(ca->block_size);
2432		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2433	}
2434
2435	r = create_cache_policy(cache, ca, error);
2436	if (r)
2437		goto bad;
2438
2439	cache->policy_nr_args = ca->policy_argc;
2440	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2441
2442	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2443	if (r) {
2444		*error = "Error setting cache policy's config values";
2445		goto bad;
2446	}
2447
2448	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2449				     ca->block_size, may_format,
2450				     dm_cache_policy_get_hint_size(cache->policy),
2451				     ca->features.metadata_version);
2452	if (IS_ERR(cmd)) {
2453		*error = "Error creating metadata object";
2454		r = PTR_ERR(cmd);
2455		goto bad;
2456	}
2457	cache->cmd = cmd;
2458	set_cache_mode(cache, CM_WRITE);
2459	if (get_cache_mode(cache) != CM_WRITE) {
2460		*error = "Unable to get write access to metadata, please check/repair metadata.";
2461		r = -EINVAL;
2462		goto bad;
2463	}
2464
2465	if (passthrough_mode(cache)) {
2466		bool all_clean;
2467
2468		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2469		if (r) {
2470			*error = "dm_cache_metadata_all_clean() failed";
2471			goto bad;
2472		}
2473
2474		if (!all_clean) {
2475			*error = "Cannot enter passthrough mode unless all blocks are clean";
2476			r = -EINVAL;
2477			goto bad;
2478		}
2479
2480		policy_allow_migrations(cache->policy, false);
2481	}
2482
2483	spin_lock_init(&cache->lock);
 
2484	bio_list_init(&cache->deferred_bios);
 
 
 
 
 
2485	atomic_set(&cache->nr_allocated_migrations, 0);
2486	atomic_set(&cache->nr_io_migrations, 0);
2487	init_waitqueue_head(&cache->migration_wait);
2488
 
 
 
 
2489	r = -ENOMEM;
2490	atomic_set(&cache->nr_dirty, 0);
2491	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2492	if (!cache->dirty_bitset) {
2493		*error = "could not allocate dirty bitset";
2494		goto bad;
2495	}
2496	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2497
2498	cache->discard_block_size =
2499		calculate_discard_block_size(cache->sectors_per_block,
2500					     cache->origin_sectors);
2501	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2502							      cache->discard_block_size));
2503	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2504	if (!cache->discard_bitset) {
2505		*error = "could not allocate discard bitset";
2506		goto bad;
2507	}
2508	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2509
2510	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2511	if (IS_ERR(cache->copier)) {
2512		*error = "could not create kcopyd client";
2513		r = PTR_ERR(cache->copier);
2514		goto bad;
2515	}
2516
2517	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2518	if (!cache->wq) {
2519		*error = "could not create workqueue for metadata object";
2520		goto bad;
2521	}
2522	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2523	INIT_WORK(&cache->migration_worker, check_migrations);
2524	INIT_DELAYED_WORK(&cache->waker, do_waker);
 
2525
2526	cache->prison = dm_bio_prison_create_v2(cache->wq);
2527	if (!cache->prison) {
2528		*error = "could not create bio prison";
2529		goto bad;
2530	}
2531
2532	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2533				   migration_cache);
2534	if (r) {
 
 
 
 
 
 
2535		*error = "Error creating cache's migration mempool";
2536		goto bad;
2537	}
2538
2539	cache->need_tick_bio = true;
2540	cache->sized = false;
2541	cache->invalidate = false;
2542	cache->commit_requested = false;
2543	cache->loaded_mappings = false;
2544	cache->loaded_discards = false;
2545
2546	load_stats(cache);
2547
2548	atomic_set(&cache->stats.demotion, 0);
2549	atomic_set(&cache->stats.promotion, 0);
2550	atomic_set(&cache->stats.copies_avoided, 0);
2551	atomic_set(&cache->stats.cache_cell_clash, 0);
2552	atomic_set(&cache->stats.commit_count, 0);
2553	atomic_set(&cache->stats.discard_count, 0);
2554
2555	spin_lock_init(&cache->invalidation_lock);
2556	INIT_LIST_HEAD(&cache->invalidation_requests);
2557
2558	batcher_init(&cache->committer, commit_op, cache,
2559		     issue_op, cache, cache->wq);
2560	dm_iot_init(&cache->tracker);
2561
2562	init_rwsem(&cache->background_work_lock);
2563	prevent_background_work(cache);
2564
2565	*result = cache;
2566	return 0;
 
2567bad:
2568	destroy(cache);
2569	return r;
2570}
2571
2572static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2573{
2574	unsigned int i;
2575	const char **copy;
2576
2577	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2578	if (!copy)
2579		return -ENOMEM;
2580	for (i = 0; i < argc; i++) {
2581		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2582		if (!copy[i]) {
2583			while (i--)
2584				kfree(copy[i]);
2585			kfree(copy);
2586			return -ENOMEM;
2587		}
2588	}
2589
2590	cache->nr_ctr_args = argc;
2591	cache->ctr_args = copy;
2592
2593	return 0;
2594}
2595
2596static int cache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2597{
2598	int r = -EINVAL;
2599	struct cache_args *ca;
2600	struct cache *cache = NULL;
2601
2602	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2603	if (!ca) {
2604		ti->error = "Error allocating memory for cache";
2605		return -ENOMEM;
2606	}
2607	ca->ti = ti;
2608
2609	r = parse_cache_args(ca, argc, argv, &ti->error);
2610	if (r)
2611		goto out;
2612
2613	r = cache_create(ca, &cache);
2614	if (r)
2615		goto out;
2616
2617	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2618	if (r) {
2619		destroy(cache);
2620		goto out;
2621	}
2622
2623	ti->private = cache;
 
2624out:
2625	destroy_cache_args(ca);
2626	return r;
2627}
2628
2629/*----------------------------------------------------------------*/
2630
2631static int cache_map(struct dm_target *ti, struct bio *bio)
2632{
2633	struct cache *cache = ti->private;
2634
2635	int r;
2636	bool commit_needed;
2637	dm_oblock_t block = get_bio_block(cache, bio);
 
 
 
 
 
 
 
 
2638
2639	init_per_bio_data(bio);
2640	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2641		/*
2642		 * This can only occur if the io goes to a partial block at
2643		 * the end of the origin device.  We don't cache these.
2644		 * Just remap to the origin and carry on.
2645		 */
2646		remap_to_origin(cache, bio);
2647		accounted_begin(cache, bio);
2648		return DM_MAPIO_REMAPPED;
2649	}
2650
2651	if (discard_or_flush(bio)) {
2652		defer_bio(cache, bio);
2653		return DM_MAPIO_SUBMITTED;
2654	}
2655
2656	r = map_bio(cache, bio, block, &commit_needed);
2657	if (commit_needed)
2658		schedule_commit(&cache->committer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2659
2660	return r;
2661}
2662
2663static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2664{
2665	struct cache *cache = ti->private;
2666	unsigned long flags;
2667	struct per_bio_data *pb = get_per_bio_data(bio);
 
2668
2669	if (pb->tick) {
2670		policy_tick(cache->policy, false);
2671
2672		spin_lock_irqsave(&cache->lock, flags);
2673		cache->need_tick_bio = true;
2674		spin_unlock_irqrestore(&cache->lock, flags);
2675	}
2676
2677	bio_drop_shared_lock(cache, bio);
2678	accounted_complete(cache, bio);
2679
2680	return DM_ENDIO_DONE;
2681}
2682
2683static int write_dirty_bitset(struct cache *cache)
2684{
2685	int r;
2686
2687	if (get_cache_mode(cache) >= CM_READ_ONLY)
2688		return -EINVAL;
2689
2690	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2691	if (r)
2692		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
 
 
 
 
 
2693
2694	return r;
2695}
2696
2697static int write_discard_bitset(struct cache *cache)
2698{
2699	unsigned int i, r;
2700
2701	if (get_cache_mode(cache) >= CM_READ_ONLY)
2702		return -EINVAL;
2703
2704	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2705					   cache->discard_nr_blocks);
2706	if (r) {
2707		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2708		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2709		return r;
2710	}
2711
2712	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2713		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2714					 is_discarded(cache, to_dblock(i)));
2715		if (r) {
2716			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2717			return r;
2718		}
2719	}
2720
2721	return 0;
2722}
2723
2724static int write_hints(struct cache *cache)
2725{
2726	int r;
2727
2728	if (get_cache_mode(cache) >= CM_READ_ONLY)
2729		return -EINVAL;
2730
2731	r = dm_cache_write_hints(cache->cmd, cache->policy);
2732	if (r) {
2733		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2734		return r;
2735	}
2736
2737	return 0;
2738}
2739
2740/*
2741 * returns true on success
2742 */
2743static bool sync_metadata(struct cache *cache)
2744{
2745	int r1, r2, r3, r4;
2746
2747	r1 = write_dirty_bitset(cache);
2748	if (r1)
2749		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2750
2751	r2 = write_discard_bitset(cache);
2752	if (r2)
2753		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2754
2755	save_stats(cache);
2756
2757	r3 = write_hints(cache);
2758	if (r3)
2759		DMERR("%s: could not write hints", cache_device_name(cache));
2760
2761	/*
2762	 * If writing the above metadata failed, we still commit, but don't
2763	 * set the clean shutdown flag.  This will effectively force every
2764	 * dirty bit to be set on reload.
2765	 */
2766	r4 = commit(cache, !r1 && !r2 && !r3);
2767	if (r4)
2768		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2769
2770	return !r1 && !r2 && !r3 && !r4;
2771}
2772
2773static void cache_postsuspend(struct dm_target *ti)
2774{
2775	struct cache *cache = ti->private;
2776
2777	prevent_background_work(cache);
2778	BUG_ON(atomic_read(&cache->nr_io_migrations));
2779
2780	cancel_delayed_work_sync(&cache->waker);
2781	drain_workqueue(cache->wq);
2782	WARN_ON(cache->tracker.in_flight);
2783
2784	/*
2785	 * If it's a flush suspend there won't be any deferred bios, so this
2786	 * call is harmless.
2787	 */
2788	requeue_deferred_bios(cache);
 
 
2789
2790	if (get_cache_mode(cache) == CM_WRITE)
2791		(void) sync_metadata(cache);
2792}
2793
2794static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2795			bool dirty, uint32_t hint, bool hint_valid)
2796{
 
2797	struct cache *cache = context;
2798
2799	if (dirty) {
2800		set_bit(from_cblock(cblock), cache->dirty_bitset);
2801		atomic_inc(&cache->nr_dirty);
2802	} else
2803		clear_bit(from_cblock(cblock), cache->dirty_bitset);
 
 
 
2804
2805	return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2806}
2807
2808/*
2809 * The discard block size in the on disk metadata is not
2810 * necessarily the same as we're currently using.  So we have to
2811 * be careful to only set the discarded attribute if we know it
2812 * covers a complete block of the new size.
2813 */
2814struct discard_load_info {
2815	struct cache *cache;
2816
2817	/*
2818	 * These blocks are sized using the on disk dblock size, rather
2819	 * than the current one.
2820	 */
2821	dm_block_t block_size;
2822	dm_block_t discard_begin, discard_end;
2823};
2824
2825static void discard_load_info_init(struct cache *cache,
2826				   struct discard_load_info *li)
2827{
2828	li->cache = cache;
2829	li->discard_begin = li->discard_end = 0;
2830}
2831
2832static void set_discard_range(struct discard_load_info *li)
2833{
2834	sector_t b, e;
2835
2836	if (li->discard_begin == li->discard_end)
2837		return;
2838
2839	/*
2840	 * Convert to sectors.
2841	 */
2842	b = li->discard_begin * li->block_size;
2843	e = li->discard_end * li->block_size;
2844
2845	/*
2846	 * Then convert back to the current dblock size.
2847	 */
2848	b = dm_sector_div_up(b, li->cache->discard_block_size);
2849	sector_div(e, li->cache->discard_block_size);
2850
2851	/*
2852	 * The origin may have shrunk, so we need to check we're still in
2853	 * bounds.
2854	 */
2855	if (e > from_dblock(li->cache->discard_nr_blocks))
2856		e = from_dblock(li->cache->discard_nr_blocks);
2857
2858	for (; b < e; b++)
2859		set_discard(li->cache, to_dblock(b));
2860}
2861
2862static int load_discard(void *context, sector_t discard_block_size,
2863			dm_dblock_t dblock, bool discard)
2864{
2865	struct discard_load_info *li = context;
2866
2867	li->block_size = discard_block_size;
2868
2869	if (discard) {
2870		if (from_dblock(dblock) == li->discard_end)
2871			/*
2872			 * We're already in a discard range, just extend it.
2873			 */
2874			li->discard_end = li->discard_end + 1ULL;
2875
2876		else {
2877			/*
2878			 * Emit the old range and start a new one.
2879			 */
2880			set_discard_range(li);
2881			li->discard_begin = from_dblock(dblock);
2882			li->discard_end = li->discard_begin + 1ULL;
2883		}
2884	} else {
2885		set_discard_range(li);
2886		li->discard_begin = li->discard_end = 0;
2887	}
2888
2889	return 0;
2890}
2891
2892static dm_cblock_t get_cache_dev_size(struct cache *cache)
2893{
2894	sector_t size = get_dev_size(cache->cache_dev);
2895	(void) sector_div(size, cache->sectors_per_block);
2896	return to_cblock(size);
2897}
2898
2899static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2900{
2901	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2902		if (cache->sized) {
2903			DMERR("%s: unable to extend cache due to missing cache table reload",
2904			      cache_device_name(cache));
2905			return false;
2906		}
2907	}
2908
2909	/*
2910	 * We can't drop a dirty block when shrinking the cache.
2911	 */
2912	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2913		new_size = to_cblock(from_cblock(new_size) + 1);
2914		if (is_dirty(cache, new_size)) {
2915			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2916			      cache_device_name(cache),
2917			      (unsigned long long) from_cblock(new_size));
2918			return false;
2919		}
2920	}
2921
2922	return true;
2923}
2924
2925static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2926{
2927	int r;
2928
2929	r = dm_cache_resize(cache->cmd, new_size);
2930	if (r) {
2931		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2932		metadata_operation_failed(cache, "dm_cache_resize", r);
2933		return r;
2934	}
2935
2936	set_cache_size(cache, new_size);
2937
2938	return 0;
2939}
2940
2941static int cache_preresume(struct dm_target *ti)
2942{
2943	int r = 0;
2944	struct cache *cache = ti->private;
2945	dm_cblock_t csize = get_cache_dev_size(cache);
2946
2947	/*
2948	 * Check to see if the cache has resized.
2949	 */
2950	if (!cache->sized) {
2951		r = resize_cache_dev(cache, csize);
2952		if (r)
2953			return r;
2954
2955		cache->sized = true;
2956
2957	} else if (csize != cache->cache_size) {
2958		if (!can_resize(cache, csize))
2959			return -EINVAL;
2960
2961		r = resize_cache_dev(cache, csize);
2962		if (r)
2963			return r;
2964	}
2965
2966	if (!cache->loaded_mappings) {
2967		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2968					   load_mapping, cache);
2969		if (r) {
2970			DMERR("%s: could not load cache mappings", cache_device_name(cache));
2971			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2972			return r;
2973		}
2974
2975		cache->loaded_mappings = true;
2976	}
2977
2978	if (!cache->loaded_discards) {
2979		struct discard_load_info li;
2980
2981		/*
2982		 * The discard bitset could have been resized, or the
2983		 * discard block size changed.  To be safe we start by
2984		 * setting every dblock to not discarded.
2985		 */
2986		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2987
2988		discard_load_info_init(cache, &li);
2989		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2990		if (r) {
2991			DMERR("%s: could not load origin discards", cache_device_name(cache));
2992			metadata_operation_failed(cache, "dm_cache_load_discards", r);
2993			return r;
2994		}
2995		set_discard_range(&li);
2996
2997		cache->loaded_discards = true;
2998	}
2999
3000	return r;
3001}
3002
3003static void cache_resume(struct dm_target *ti)
3004{
3005	struct cache *cache = ti->private;
3006
3007	cache->need_tick_bio = true;
3008	allow_background_work(cache);
3009	do_waker(&cache->waker.work);
3010}
3011
3012static void emit_flags(struct cache *cache, char *result,
3013		       unsigned int maxlen, ssize_t *sz_ptr)
3014{
3015	ssize_t sz = *sz_ptr;
3016	struct cache_features *cf = &cache->features;
3017	unsigned int count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3018
3019	DMEMIT("%u ", count);
3020
3021	if (cf->metadata_version == 2)
3022		DMEMIT("metadata2 ");
3023
3024	if (writethrough_mode(cache))
3025		DMEMIT("writethrough ");
3026
3027	else if (passthrough_mode(cache))
3028		DMEMIT("passthrough ");
3029
3030	else if (writeback_mode(cache))
3031		DMEMIT("writeback ");
3032
3033	else {
3034		DMEMIT("unknown ");
3035		DMERR("%s: internal error: unknown io mode: %d",
3036		      cache_device_name(cache), (int) cf->io_mode);
3037	}
3038
3039	if (!cf->discard_passdown)
3040		DMEMIT("no_discard_passdown ");
3041
3042	*sz_ptr = sz;
3043}
3044
3045/*
3046 * Status format:
3047 *
3048 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3049 * <cache block size> <#used cache blocks>/<#total cache blocks>
3050 * <#read hits> <#read misses> <#write hits> <#write misses>
3051 * <#demotions> <#promotions> <#dirty>
3052 * <#features> <features>*
3053 * <#core args> <core args>
3054 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3055 */
3056static void cache_status(struct dm_target *ti, status_type_t type,
3057			 unsigned int status_flags, char *result, unsigned int maxlen)
3058{
3059	int r = 0;
3060	unsigned int i;
3061	ssize_t sz = 0;
3062	dm_block_t nr_free_blocks_metadata = 0;
3063	dm_block_t nr_blocks_metadata = 0;
3064	char buf[BDEVNAME_SIZE];
3065	struct cache *cache = ti->private;
3066	dm_cblock_t residency;
3067	bool needs_check;
3068
3069	switch (type) {
3070	case STATUSTYPE_INFO:
3071		if (get_cache_mode(cache) == CM_FAIL) {
3072			DMEMIT("Fail");
3073			break;
3074		}
3075
3076		/* Commit to ensure statistics aren't out-of-date */
3077		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3078			(void) commit(cache, false);
3079
3080		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3081		if (r) {
3082			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3083			      cache_device_name(cache), r);
3084			goto err;
3085		}
3086
3087		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3088		if (r) {
3089			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3090			      cache_device_name(cache), r);
3091			goto err;
3092		}
3093
3094		residency = policy_residency(cache->policy);
3095
3096		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3097		       (unsigned int)DM_CACHE_METADATA_BLOCK_SIZE,
3098		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3099		       (unsigned long long)nr_blocks_metadata,
3100		       (unsigned long long)cache->sectors_per_block,
3101		       (unsigned long long) from_cblock(residency),
3102		       (unsigned long long) from_cblock(cache->cache_size),
3103		       (unsigned int) atomic_read(&cache->stats.read_hit),
3104		       (unsigned int) atomic_read(&cache->stats.read_miss),
3105		       (unsigned int) atomic_read(&cache->stats.write_hit),
3106		       (unsigned int) atomic_read(&cache->stats.write_miss),
3107		       (unsigned int) atomic_read(&cache->stats.demotion),
3108		       (unsigned int) atomic_read(&cache->stats.promotion),
3109		       (unsigned long) atomic_read(&cache->nr_dirty));
3110
3111		emit_flags(cache, result, maxlen, &sz);
 
 
 
 
 
 
 
 
 
 
 
 
 
3112
3113		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3114
3115		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3116		if (sz < maxlen) {
3117			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3118			if (r)
3119				DMERR("%s: policy_emit_config_values returned %d",
3120				      cache_device_name(cache), r);
3121		}
3122
3123		if (get_cache_mode(cache) == CM_READ_ONLY)
3124			DMEMIT("ro ");
3125		else
3126			DMEMIT("rw ");
3127
3128		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3129
3130		if (r || needs_check)
3131			DMEMIT("needs_check ");
3132		else
3133			DMEMIT("- ");
3134
3135		break;
3136
3137	case STATUSTYPE_TABLE:
3138		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3139		DMEMIT("%s ", buf);
3140		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3141		DMEMIT("%s ", buf);
3142		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3143		DMEMIT("%s", buf);
3144
3145		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3146			DMEMIT(" %s", cache->ctr_args[i]);
3147		if (cache->nr_ctr_args)
3148			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3149		break;
3150
3151	case STATUSTYPE_IMA:
3152		DMEMIT_TARGET_NAME_VERSION(ti->type);
3153		if (get_cache_mode(cache) == CM_FAIL)
3154			DMEMIT(",metadata_mode=fail");
3155		else if (get_cache_mode(cache) == CM_READ_ONLY)
3156			DMEMIT(",metadata_mode=ro");
3157		else
3158			DMEMIT(",metadata_mode=rw");
3159
3160		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3161		DMEMIT(",cache_metadata_device=%s", buf);
3162		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3163		DMEMIT(",cache_device=%s", buf);
3164		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3165		DMEMIT(",cache_origin_device=%s", buf);
3166		DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3167		DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3168		DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3169		DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3170		DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3171		DMEMIT(";");
3172		break;
3173	}
3174
3175	return;
3176
3177err:
3178	DMEMIT("Error");
3179}
3180
3181/*
3182 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3183 * the one-past-the-end value.
3184 */
3185struct cblock_range {
3186	dm_cblock_t begin;
3187	dm_cblock_t end;
3188};
3189
3190/*
3191 * A cache block range can take two forms:
3192 *
3193 * i) A single cblock, eg. '3456'
3194 * ii) A begin and end cblock with a dash between, eg. 123-234
3195 */
3196static int parse_cblock_range(struct cache *cache, const char *str,
3197			      struct cblock_range *result)
3198{
3199	char dummy;
3200	uint64_t b, e;
3201	int r;
3202
3203	/*
3204	 * Try and parse form (ii) first.
3205	 */
3206	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3207	if (r < 0)
3208		return r;
3209
3210	if (r == 2) {
3211		result->begin = to_cblock(b);
3212		result->end = to_cblock(e);
3213		return 0;
3214	}
3215
3216	/*
3217	 * That didn't work, try form (i).
3218	 */
3219	r = sscanf(str, "%llu%c", &b, &dummy);
3220	if (r < 0)
3221		return r;
3222
3223	if (r == 1) {
3224		result->begin = to_cblock(b);
3225		result->end = to_cblock(from_cblock(result->begin) + 1u);
3226		return 0;
3227	}
3228
3229	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3230	return -EINVAL;
3231}
3232
3233static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3234{
3235	uint64_t b = from_cblock(range->begin);
3236	uint64_t e = from_cblock(range->end);
3237	uint64_t n = from_cblock(cache->cache_size);
3238
3239	if (b >= n) {
3240		DMERR("%s: begin cblock out of range: %llu >= %llu",
3241		      cache_device_name(cache), b, n);
3242		return -EINVAL;
3243	}
3244
3245	if (e > n) {
3246		DMERR("%s: end cblock out of range: %llu > %llu",
3247		      cache_device_name(cache), e, n);
3248		return -EINVAL;
3249	}
3250
3251	if (b >= e) {
3252		DMERR("%s: invalid cblock range: %llu >= %llu",
3253		      cache_device_name(cache), b, e);
3254		return -EINVAL;
3255	}
3256
3257	return 0;
3258}
3259
3260static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3261{
3262	return to_cblock(from_cblock(b) + 1);
3263}
3264
3265static int request_invalidation(struct cache *cache, struct cblock_range *range)
3266{
3267	int r = 0;
3268
3269	/*
3270	 * We don't need to do any locking here because we know we're in
3271	 * passthrough mode.  There's is potential for a race between an
3272	 * invalidation triggered by an io and an invalidation message.  This
3273	 * is harmless, we must not worry if the policy call fails.
3274	 */
3275	while (range->begin != range->end) {
3276		r = invalidate_cblock(cache, range->begin);
3277		if (r)
3278			return r;
3279
3280		range->begin = cblock_succ(range->begin);
3281	}
 
 
3282
3283	cache->commit_requested = true;
3284	return r;
3285}
3286
3287static int process_invalidate_cblocks_message(struct cache *cache, unsigned int count,
3288					      const char **cblock_ranges)
3289{
3290	int r = 0;
3291	unsigned int i;
3292	struct cblock_range range;
3293
3294	if (!passthrough_mode(cache)) {
3295		DMERR("%s: cache has to be in passthrough mode for invalidation",
3296		      cache_device_name(cache));
3297		return -EPERM;
3298	}
3299
3300	for (i = 0; i < count; i++) {
3301		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3302		if (r)
3303			break;
3304
3305		r = validate_cblock_range(cache, &range);
3306		if (r)
3307			break;
3308
3309		/*
3310		 * Pass begin and end origin blocks to the worker and wake it.
3311		 */
3312		r = request_invalidation(cache, &range);
3313		if (r)
3314			break;
3315	}
3316
3317	return r;
3318}
3319
3320/*
3321 * Supports
3322 *	"<key> <value>"
3323 * and
3324 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3325 *
3326 * The key migration_threshold is supported by the cache target core.
3327 */
3328static int cache_message(struct dm_target *ti, unsigned int argc, char **argv,
3329			 char *result, unsigned int maxlen)
3330{
3331	struct cache *cache = ti->private;
3332
3333	if (!argc)
3334		return -EINVAL;
3335
3336	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3337		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3338		      cache_device_name(cache));
3339		return -EOPNOTSUPP;
3340	}
3341
3342	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3343		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3344
3345	if (argc != 2)
3346		return -EINVAL;
3347
3348	return set_config_value(cache, argv[0], argv[1]);
3349}
3350
3351static int cache_iterate_devices(struct dm_target *ti,
3352				 iterate_devices_callout_fn fn, void *data)
3353{
3354	int r = 0;
3355	struct cache *cache = ti->private;
3356
3357	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3358	if (!r)
3359		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3360
3361	return r;
3362}
3363
3364/*
3365 * If discard_passdown was enabled verify that the origin device
3366 * supports discards.  Disable discard_passdown if not.
3367 */
3368static void disable_passdown_if_not_supported(struct cache *cache)
3369{
3370	struct block_device *origin_bdev = cache->origin_dev->bdev;
3371	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3372	const char *reason = NULL;
3373
3374	if (!cache->features.discard_passdown)
3375		return;
3376
3377	if (!bdev_max_discard_sectors(origin_bdev))
3378		reason = "discard unsupported";
3379
3380	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3381		reason = "max discard sectors smaller than a block";
3382
3383	if (reason) {
3384		DMWARN("Origin device (%pg) %s: Disabling discard passdown.",
3385		       origin_bdev, reason);
3386		cache->features.discard_passdown = false;
3387	}
3388}
3389
3390static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3391{
3392	struct block_device *origin_bdev = cache->origin_dev->bdev;
3393	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3394
3395	if (!cache->features.discard_passdown) {
3396		/* No passdown is done so setting own virtual limits */
3397		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3398						    cache->origin_sectors);
3399		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3400		return;
3401	}
3402
3403	/*
3404	 * cache_iterate_devices() is stacking both origin and fast device limits
3405	 * but discards aren't passed to fast device, so inherit origin's limits.
3406	 */
3407	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3408	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3409	limits->discard_granularity = origin_limits->discard_granularity;
3410	limits->discard_alignment = origin_limits->discard_alignment;
3411	limits->discard_misaligned = origin_limits->discard_misaligned;
3412}
3413
3414static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3415{
3416	struct cache *cache = ti->private;
3417	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3418
3419	/*
3420	 * If the system-determined stacked limits are compatible with the
3421	 * cache's blocksize (io_opt is a factor) do not override them.
3422	 */
3423	if (io_opt_sectors < cache->sectors_per_block ||
3424	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3425		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3426		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3427	}
3428
3429	disable_passdown_if_not_supported(cache);
3430	set_discard_limits(cache, limits);
3431}
3432
3433/*----------------------------------------------------------------*/
3434
3435static struct target_type cache_target = {
3436	.name = "cache",
3437	.version = {2, 2, 0},
3438	.module = THIS_MODULE,
3439	.ctr = cache_ctr,
3440	.dtr = cache_dtr,
3441	.map = cache_map,
3442	.end_io = cache_end_io,
3443	.postsuspend = cache_postsuspend,
3444	.preresume = cache_preresume,
3445	.resume = cache_resume,
3446	.status = cache_status,
3447	.message = cache_message,
3448	.iterate_devices = cache_iterate_devices,
3449	.io_hints = cache_io_hints,
3450};
3451
3452static int __init dm_cache_init(void)
3453{
3454	int r;
3455
3456	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3457	if (!migration_cache)
3458		return -ENOMEM;
3459
3460	r = dm_register_target(&cache_target);
3461	if (r) {
3462		kmem_cache_destroy(migration_cache);
3463		return r;
 
 
 
 
 
 
3464	}
3465
3466	return 0;
3467}
3468
3469static void __exit dm_cache_exit(void)
3470{
3471	dm_unregister_target(&cache_target);
3472	kmem_cache_destroy(migration_cache);
3473}
3474
3475module_init(dm_cache_init);
3476module_exit(dm_cache_exit);
3477
3478MODULE_DESCRIPTION(DM_NAME " cache target");
3479MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3480MODULE_LICENSE("GPL");