Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/vmalloc.h>
  20
  21#define DM_MSG_PREFIX "cache"
  22
  23DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  24	"A percentage of time allocated for copying to and/or from cache");
  25
  26/*----------------------------------------------------------------*/
  27
  28#define IOT_RESOLUTION 4
  29
  30struct io_tracker {
  31	spinlock_t lock;
  32
  33	/*
  34	 * Sectors of in-flight IO.
  35	 */
  36	sector_t in_flight;
  37
  38	/*
  39	 * The time, in jiffies, when this device became idle (if it is
  40	 * indeed idle).
  41	 */
  42	unsigned long idle_time;
  43	unsigned long last_update_time;
  44};
  45
  46static void iot_init(struct io_tracker *iot)
  47{
  48	spin_lock_init(&iot->lock);
  49	iot->in_flight = 0ul;
  50	iot->idle_time = 0ul;
  51	iot->last_update_time = jiffies;
  52}
  53
  54static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  55{
  56	if (iot->in_flight)
  57		return false;
  58
  59	return time_after(jiffies, iot->idle_time + jifs);
  60}
  61
  62static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  63{
  64	bool r;
  65	unsigned long flags;
  66
  67	spin_lock_irqsave(&iot->lock, flags);
  68	r = __iot_idle_for(iot, jifs);
  69	spin_unlock_irqrestore(&iot->lock, flags);
  70
  71	return r;
  72}
  73
  74static void iot_io_begin(struct io_tracker *iot, sector_t len)
  75{
  76	unsigned long flags;
  77
  78	spin_lock_irqsave(&iot->lock, flags);
  79	iot->in_flight += len;
  80	spin_unlock_irqrestore(&iot->lock, flags);
  81}
  82
  83static void __iot_io_end(struct io_tracker *iot, sector_t len)
  84{
  85	iot->in_flight -= len;
  86	if (!iot->in_flight)
  87		iot->idle_time = jiffies;
  88}
  89
  90static void iot_io_end(struct io_tracker *iot, sector_t len)
  91{
  92	unsigned long flags;
  93
  94	spin_lock_irqsave(&iot->lock, flags);
  95	__iot_io_end(iot, len);
  96	spin_unlock_irqrestore(&iot->lock, flags);
  97}
  98
  99/*----------------------------------------------------------------*/
 100
 101/*
 102 * Glossary:
 103 *
 104 * oblock: index of an origin block
 105 * cblock: index of a cache block
 106 * promotion: movement of a block from origin to cache
 107 * demotion: movement of a block from cache to origin
 108 * migration: movement of a block between the origin and cache device,
 109 *	      either direction
 110 */
 111
 112/*----------------------------------------------------------------*/
 113
 114/*
 115 * There are a couple of places where we let a bio run, but want to do some
 116 * work before calling its endio function.  We do this by temporarily
 117 * changing the endio fn.
 118 */
 119struct dm_hook_info {
 120	bio_end_io_t *bi_end_io;
 
 121};
 122
 123static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 124			bio_end_io_t *bi_end_io, void *bi_private)
 125{
 126	h->bi_end_io = bio->bi_end_io;
 
 127
 128	bio->bi_end_io = bi_end_io;
 129	bio->bi_private = bi_private;
 130}
 131
 132static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 133{
 134	bio->bi_end_io = h->bi_end_io;
 
 
 
 
 
 
 
 135}
 136
 137/*----------------------------------------------------------------*/
 138
 
 139#define MIGRATION_POOL_SIZE 128
 140#define COMMIT_PERIOD HZ
 141#define MIGRATION_COUNT_WINDOW 10
 142
 143/*
 144 * The block size of the device holding cache data must be
 145 * between 32KB and 1GB.
 146 */
 147#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 148#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 149
 
 
 
 150enum cache_metadata_mode {
 151	CM_WRITE,		/* metadata may be changed */
 152	CM_READ_ONLY,		/* metadata may not be changed */
 153	CM_FAIL
 154};
 155
 156enum cache_io_mode {
 157	/*
 158	 * Data is written to cached blocks only.  These blocks are marked
 159	 * dirty.  If you lose the cache device you will lose data.
 160	 * Potential performance increase for both reads and writes.
 161	 */
 162	CM_IO_WRITEBACK,
 163
 164	/*
 165	 * Data is written to both cache and origin.  Blocks are never
 166	 * dirty.  Potential performance benfit for reads only.
 167	 */
 168	CM_IO_WRITETHROUGH,
 169
 170	/*
 171	 * A degraded mode useful for various cache coherency situations
 172	 * (eg, rolling back snapshots).  Reads and writes always go to the
 173	 * origin.  If a write goes to a cached oblock, then the cache
 174	 * block is invalidated.
 175	 */
 176	CM_IO_PASSTHROUGH
 177};
 178
 179struct cache_features {
 180	enum cache_metadata_mode mode;
 181	enum cache_io_mode io_mode;
 182};
 183
 184struct cache_stats {
 185	atomic_t read_hit;
 186	atomic_t read_miss;
 187	atomic_t write_hit;
 188	atomic_t write_miss;
 189	atomic_t demotion;
 190	atomic_t promotion;
 191	atomic_t copies_avoided;
 192	atomic_t cache_cell_clash;
 193	atomic_t commit_count;
 194	atomic_t discard_count;
 195};
 196
 197/*
 198 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
 199 * the one-past-the-end value.
 200 */
 201struct cblock_range {
 202	dm_cblock_t begin;
 203	dm_cblock_t end;
 204};
 205
 206struct invalidation_request {
 207	struct list_head list;
 208	struct cblock_range *cblocks;
 209
 210	atomic_t complete;
 211	int err;
 212
 213	wait_queue_head_t result_wait;
 214};
 215
 216struct cache {
 217	struct dm_target *ti;
 218	struct dm_target_callbacks callbacks;
 219
 220	struct dm_cache_metadata *cmd;
 221
 222	/*
 223	 * Metadata is written to this device.
 224	 */
 225	struct dm_dev *metadata_dev;
 226
 227	/*
 228	 * The slower of the two data devices.  Typically a spindle.
 229	 */
 230	struct dm_dev *origin_dev;
 231
 232	/*
 233	 * The faster of the two data devices.  Typically an SSD.
 234	 */
 235	struct dm_dev *cache_dev;
 236
 237	/*
 238	 * Size of the origin device in _complete_ blocks and native sectors.
 239	 */
 240	dm_oblock_t origin_blocks;
 241	sector_t origin_sectors;
 242
 243	/*
 244	 * Size of the cache device in blocks.
 245	 */
 246	dm_cblock_t cache_size;
 247
 248	/*
 249	 * Fields for converting from sectors to blocks.
 250	 */
 251	uint32_t sectors_per_block;
 252	int sectors_per_block_shift;
 253
 254	spinlock_t lock;
 255	struct list_head deferred_cells;
 256	struct bio_list deferred_bios;
 257	struct bio_list deferred_flush_bios;
 258	struct bio_list deferred_writethrough_bios;
 259	struct list_head quiesced_migrations;
 260	struct list_head completed_migrations;
 261	struct list_head need_commit_migrations;
 262	sector_t migration_threshold;
 263	wait_queue_head_t migration_wait;
 264	atomic_t nr_allocated_migrations;
 265
 266	/*
 267	 * The number of in flight migrations that are performing
 268	 * background io. eg, promotion, writeback.
 269	 */
 270	atomic_t nr_io_migrations;
 271
 272	wait_queue_head_t quiescing_wait;
 273	atomic_t quiescing;
 274	atomic_t quiescing_ack;
 275
 276	/*
 277	 * cache_size entries, dirty if set
 278	 */
 279	atomic_t nr_dirty;
 280	unsigned long *dirty_bitset;
 281
 282	/*
 283	 * origin_blocks entries, discarded if set.
 284	 */
 285	dm_dblock_t discard_nr_blocks;
 286	unsigned long *discard_bitset;
 287	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 288
 289	/*
 290	 * Rather than reconstructing the table line for the status we just
 291	 * save it and regurgitate.
 292	 */
 293	unsigned nr_ctr_args;
 294	const char **ctr_args;
 295
 296	struct dm_kcopyd_client *copier;
 297	struct workqueue_struct *wq;
 298	struct work_struct worker;
 299
 300	struct delayed_work waker;
 301	unsigned long last_commit_jiffies;
 302
 303	struct dm_bio_prison *prison;
 304	struct dm_deferred_set *all_io_ds;
 305
 306	mempool_t *migration_pool;
 
 307
 308	struct dm_cache_policy *policy;
 309	unsigned policy_nr_args;
 310
 311	bool need_tick_bio:1;
 312	bool sized:1;
 313	bool invalidate:1;
 314	bool commit_requested:1;
 315	bool loaded_mappings:1;
 316	bool loaded_discards:1;
 317
 318	/*
 319	 * Cache features such as write-through.
 320	 */
 321	struct cache_features features;
 322
 323	struct cache_stats stats;
 324
 325	/*
 326	 * Invalidation fields.
 327	 */
 328	spinlock_t invalidation_lock;
 329	struct list_head invalidation_requests;
 330
 331	struct io_tracker origin_tracker;
 332};
 333
 334struct per_bio_data {
 335	bool tick:1;
 336	unsigned req_nr:2;
 337	struct dm_deferred_entry *all_io_entry;
 338	struct dm_hook_info hook_info;
 339	sector_t len;
 340
 341	/*
 342	 * writethrough fields.  These MUST remain at the end of this
 343	 * structure and the 'cache' member must be the first as it
 344	 * is used to determine the offset of the writethrough fields.
 345	 */
 346	struct cache *cache;
 347	dm_cblock_t cblock;
 348	struct dm_bio_details bio_details;
 349};
 350
 351struct dm_cache_migration {
 352	struct list_head list;
 353	struct cache *cache;
 354
 355	unsigned long start_jiffies;
 356	dm_oblock_t old_oblock;
 357	dm_oblock_t new_oblock;
 358	dm_cblock_t cblock;
 359
 360	bool err:1;
 361	bool discard:1;
 362	bool writeback:1;
 363	bool demote:1;
 364	bool promote:1;
 365	bool requeue_holder:1;
 366	bool invalidate:1;
 367
 368	struct dm_bio_prison_cell *old_ocell;
 369	struct dm_bio_prison_cell *new_ocell;
 370};
 371
 372/*
 373 * Processing a bio in the worker thread may require these memory
 374 * allocations.  We prealloc to avoid deadlocks (the same worker thread
 375 * frees them back to the mempool).
 376 */
 377struct prealloc {
 378	struct dm_cache_migration *mg;
 379	struct dm_bio_prison_cell *cell1;
 380	struct dm_bio_prison_cell *cell2;
 381};
 382
 383static enum cache_metadata_mode get_cache_mode(struct cache *cache);
 384
 385static void wake_worker(struct cache *cache)
 386{
 387	queue_work(cache->wq, &cache->worker);
 388}
 389
 390/*----------------------------------------------------------------*/
 391
 392static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
 393{
 394	/* FIXME: change to use a local slab. */
 395	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
 396}
 397
 398static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
 399{
 400	dm_bio_prison_free_cell(cache->prison, cell);
 401}
 402
 403static struct dm_cache_migration *alloc_migration(struct cache *cache)
 404{
 405	struct dm_cache_migration *mg;
 406
 407	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
 408	if (mg) {
 409		mg->cache = cache;
 410		atomic_inc(&mg->cache->nr_allocated_migrations);
 411	}
 412
 413	return mg;
 414}
 415
 416static void free_migration(struct dm_cache_migration *mg)
 417{
 418	struct cache *cache = mg->cache;
 419
 420	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 421		wake_up(&cache->migration_wait);
 422
 423	mempool_free(mg, cache->migration_pool);
 424}
 425
 426static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
 427{
 428	if (!p->mg) {
 429		p->mg = alloc_migration(cache);
 430		if (!p->mg)
 431			return -ENOMEM;
 432	}
 433
 434	if (!p->cell1) {
 435		p->cell1 = alloc_prison_cell(cache);
 436		if (!p->cell1)
 437			return -ENOMEM;
 438	}
 439
 440	if (!p->cell2) {
 441		p->cell2 = alloc_prison_cell(cache);
 442		if (!p->cell2)
 443			return -ENOMEM;
 444	}
 445
 446	return 0;
 447}
 448
 449static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
 450{
 451	if (p->cell2)
 452		free_prison_cell(cache, p->cell2);
 453
 454	if (p->cell1)
 455		free_prison_cell(cache, p->cell1);
 456
 457	if (p->mg)
 458		free_migration(p->mg);
 459}
 460
 461static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
 462{
 463	struct dm_cache_migration *mg = p->mg;
 464
 465	BUG_ON(!mg);
 466	p->mg = NULL;
 467
 468	return mg;
 469}
 470
 471/*
 472 * You must have a cell within the prealloc struct to return.  If not this
 473 * function will BUG() rather than returning NULL.
 474 */
 475static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
 476{
 477	struct dm_bio_prison_cell *r = NULL;
 478
 479	if (p->cell1) {
 480		r = p->cell1;
 481		p->cell1 = NULL;
 482
 483	} else if (p->cell2) {
 484		r = p->cell2;
 485		p->cell2 = NULL;
 486	} else
 487		BUG();
 488
 489	return r;
 490}
 491
 492/*
 493 * You can't have more than two cells in a prealloc struct.  BUG() will be
 494 * called if you try and overfill.
 495 */
 496static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
 497{
 498	if (!p->cell2)
 499		p->cell2 = cell;
 500
 501	else if (!p->cell1)
 502		p->cell1 = cell;
 503
 504	else
 505		BUG();
 506}
 507
 508/*----------------------------------------------------------------*/
 509
 510static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
 511{
 512	key->virtual = 0;
 513	key->dev = 0;
 514	key->block_begin = from_oblock(begin);
 515	key->block_end = from_oblock(end);
 516}
 517
 518/*
 519 * The caller hands in a preallocated cell, and a free function for it.
 520 * The cell will be freed if there's an error, or if it wasn't used because
 521 * a cell with that key already exists.
 522 */
 523typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
 524
 525static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
 526			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 527			    cell_free_fn free_fn, void *free_context,
 528			    struct dm_bio_prison_cell **cell_result)
 529{
 530	int r;
 531	struct dm_cell_key key;
 532
 533	build_key(oblock_begin, oblock_end, &key);
 534	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
 535	if (r)
 536		free_fn(free_context, cell_prealloc);
 537
 538	return r;
 539}
 540
 541static int bio_detain(struct cache *cache, dm_oblock_t oblock,
 542		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 543		      cell_free_fn free_fn, void *free_context,
 544		      struct dm_bio_prison_cell **cell_result)
 545{
 546	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 547	return bio_detain_range(cache, oblock, end, bio,
 548				cell_prealloc, free_fn, free_context, cell_result);
 549}
 550
 551static int get_cell(struct cache *cache,
 552		    dm_oblock_t oblock,
 553		    struct prealloc *structs,
 554		    struct dm_bio_prison_cell **cell_result)
 555{
 556	int r;
 557	struct dm_cell_key key;
 558	struct dm_bio_prison_cell *cell_prealloc;
 559
 560	cell_prealloc = prealloc_get_cell(structs);
 561
 562	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
 563	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
 564	if (r)
 565		prealloc_put_cell(structs, cell_prealloc);
 566
 567	return r;
 568}
 569
 570/*----------------------------------------------------------------*/
 571
 572static bool is_dirty(struct cache *cache, dm_cblock_t b)
 573{
 574	return test_bit(from_cblock(b), cache->dirty_bitset);
 575}
 576
 577static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 578{
 579	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 580		atomic_inc(&cache->nr_dirty);
 581		policy_set_dirty(cache->policy, oblock);
 582	}
 583}
 584
 585static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 586{
 587	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 588		policy_clear_dirty(cache->policy, oblock);
 589		if (atomic_dec_return(&cache->nr_dirty) == 0)
 
 590			dm_table_event(cache->ti->table);
 591	}
 592}
 593
 594/*----------------------------------------------------------------*/
 595
 596static bool block_size_is_power_of_two(struct cache *cache)
 597{
 598	return cache->sectors_per_block_shift >= 0;
 599}
 600
 601/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 602#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 603__always_inline
 604#endif
 605static dm_block_t block_div(dm_block_t b, uint32_t n)
 606{
 607	do_div(b, n);
 608
 609	return b;
 610}
 611
 612static dm_block_t oblocks_per_dblock(struct cache *cache)
 613{
 614	dm_block_t oblocks = cache->discard_block_size;
 615
 616	if (block_size_is_power_of_two(cache))
 617		oblocks >>= cache->sectors_per_block_shift;
 618	else
 619		oblocks = block_div(oblocks, cache->sectors_per_block);
 620
 621	return oblocks;
 622}
 623
 624static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 625{
 626	return to_dblock(block_div(from_oblock(oblock),
 627				   oblocks_per_dblock(cache)));
 628}
 629
 630static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
 631{
 632	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
 633}
 634
 635static void set_discard(struct cache *cache, dm_dblock_t b)
 636{
 637	unsigned long flags;
 638
 639	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 640	atomic_inc(&cache->stats.discard_count);
 641
 642	spin_lock_irqsave(&cache->lock, flags);
 643	set_bit(from_dblock(b), cache->discard_bitset);
 644	spin_unlock_irqrestore(&cache->lock, flags);
 645}
 646
 647static void clear_discard(struct cache *cache, dm_dblock_t b)
 648{
 649	unsigned long flags;
 650
 651	spin_lock_irqsave(&cache->lock, flags);
 652	clear_bit(from_dblock(b), cache->discard_bitset);
 653	spin_unlock_irqrestore(&cache->lock, flags);
 654}
 655
 656static bool is_discarded(struct cache *cache, dm_dblock_t b)
 657{
 658	int r;
 659	unsigned long flags;
 660
 661	spin_lock_irqsave(&cache->lock, flags);
 662	r = test_bit(from_dblock(b), cache->discard_bitset);
 663	spin_unlock_irqrestore(&cache->lock, flags);
 664
 665	return r;
 666}
 667
 668static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 669{
 670	int r;
 671	unsigned long flags;
 672
 673	spin_lock_irqsave(&cache->lock, flags);
 674	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 675		     cache->discard_bitset);
 676	spin_unlock_irqrestore(&cache->lock, flags);
 677
 678	return r;
 679}
 680
 681/*----------------------------------------------------------------*/
 682
 683static void load_stats(struct cache *cache)
 684{
 685	struct dm_cache_statistics stats;
 686
 687	dm_cache_metadata_get_stats(cache->cmd, &stats);
 688	atomic_set(&cache->stats.read_hit, stats.read_hits);
 689	atomic_set(&cache->stats.read_miss, stats.read_misses);
 690	atomic_set(&cache->stats.write_hit, stats.write_hits);
 691	atomic_set(&cache->stats.write_miss, stats.write_misses);
 692}
 693
 694static void save_stats(struct cache *cache)
 695{
 696	struct dm_cache_statistics stats;
 697
 698	if (get_cache_mode(cache) >= CM_READ_ONLY)
 699		return;
 700
 701	stats.read_hits = atomic_read(&cache->stats.read_hit);
 702	stats.read_misses = atomic_read(&cache->stats.read_miss);
 703	stats.write_hits = atomic_read(&cache->stats.write_hit);
 704	stats.write_misses = atomic_read(&cache->stats.write_miss);
 705
 706	dm_cache_metadata_set_stats(cache->cmd, &stats);
 707}
 708
 709/*----------------------------------------------------------------
 710 * Per bio data
 711 *--------------------------------------------------------------*/
 712
 713/*
 714 * If using writeback, leave out struct per_bio_data's writethrough fields.
 715 */
 716#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
 717#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
 718
 719static bool writethrough_mode(struct cache_features *f)
 720{
 721	return f->io_mode == CM_IO_WRITETHROUGH;
 722}
 723
 724static bool writeback_mode(struct cache_features *f)
 725{
 726	return f->io_mode == CM_IO_WRITEBACK;
 727}
 728
 729static bool passthrough_mode(struct cache_features *f)
 730{
 731	return f->io_mode == CM_IO_PASSTHROUGH;
 732}
 733
 734static size_t get_per_bio_data_size(struct cache *cache)
 735{
 736	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
 737}
 738
 739static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
 740{
 741	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
 742	BUG_ON(!pb);
 743	return pb;
 744}
 745
 746static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
 747{
 748	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
 749
 750	pb->tick = false;
 751	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 752	pb->all_io_entry = NULL;
 753	pb->len = 0;
 754
 755	return pb;
 756}
 757
 758/*----------------------------------------------------------------
 759 * Remapping
 760 *--------------------------------------------------------------*/
 761static void remap_to_origin(struct cache *cache, struct bio *bio)
 762{
 763	bio->bi_bdev = cache->origin_dev->bdev;
 764}
 765
 766static void remap_to_cache(struct cache *cache, struct bio *bio,
 767			   dm_cblock_t cblock)
 768{
 769	sector_t bi_sector = bio->bi_iter.bi_sector;
 770	sector_t block = from_cblock(cblock);
 771
 772	bio->bi_bdev = cache->cache_dev->bdev;
 773	if (!block_size_is_power_of_two(cache))
 774		bio->bi_iter.bi_sector =
 775			(block * cache->sectors_per_block) +
 776			sector_div(bi_sector, cache->sectors_per_block);
 777	else
 778		bio->bi_iter.bi_sector =
 779			(block << cache->sectors_per_block_shift) |
 780			(bi_sector & (cache->sectors_per_block - 1));
 781}
 782
 783static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 784{
 785	unsigned long flags;
 786	size_t pb_data_size = get_per_bio_data_size(cache);
 787	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 788
 789	spin_lock_irqsave(&cache->lock, flags);
 790	if (cache->need_tick_bio &&
 791	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
 792		pb->tick = true;
 793		cache->need_tick_bio = false;
 794	}
 795	spin_unlock_irqrestore(&cache->lock, flags);
 796}
 797
 798static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 799				  dm_oblock_t oblock)
 800{
 801	check_if_tick_bio_needed(cache, bio);
 802	remap_to_origin(cache, bio);
 803	if (bio_data_dir(bio) == WRITE)
 804		clear_discard(cache, oblock_to_dblock(cache, oblock));
 805}
 806
 807static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 808				 dm_oblock_t oblock, dm_cblock_t cblock)
 809{
 810	check_if_tick_bio_needed(cache, bio);
 811	remap_to_cache(cache, bio, cblock);
 812	if (bio_data_dir(bio) == WRITE) {
 813		set_dirty(cache, oblock, cblock);
 814		clear_discard(cache, oblock_to_dblock(cache, oblock));
 815	}
 816}
 817
 818static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 819{
 820	sector_t block_nr = bio->bi_iter.bi_sector;
 821
 822	if (!block_size_is_power_of_two(cache))
 823		(void) sector_div(block_nr, cache->sectors_per_block);
 824	else
 825		block_nr >>= cache->sectors_per_block_shift;
 826
 827	return to_oblock(block_nr);
 828}
 829
 830static int bio_triggers_commit(struct cache *cache, struct bio *bio)
 831{
 832	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
 833}
 834
 835/*
 836 * You must increment the deferred set whilst the prison cell is held.  To
 837 * encourage this, we ask for 'cell' to be passed in.
 838 */
 839static void inc_ds(struct cache *cache, struct bio *bio,
 840		   struct dm_bio_prison_cell *cell)
 841{
 842	size_t pb_data_size = get_per_bio_data_size(cache);
 843	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 844
 845	BUG_ON(!cell);
 846	BUG_ON(pb->all_io_entry);
 847
 848	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
 849}
 850
 851static bool accountable_bio(struct cache *cache, struct bio *bio)
 852{
 853	return ((bio->bi_bdev == cache->origin_dev->bdev) &&
 854		!(bio->bi_rw & REQ_DISCARD));
 855}
 856
 857static void accounted_begin(struct cache *cache, struct bio *bio)
 858{
 859	size_t pb_data_size = get_per_bio_data_size(cache);
 860	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 861
 862	if (accountable_bio(cache, bio)) {
 863		pb->len = bio_sectors(bio);
 864		iot_io_begin(&cache->origin_tracker, pb->len);
 865	}
 866}
 867
 868static void accounted_complete(struct cache *cache, struct bio *bio)
 869{
 870	size_t pb_data_size = get_per_bio_data_size(cache);
 871	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 872
 873	iot_io_end(&cache->origin_tracker, pb->len);
 874}
 875
 876static void accounted_request(struct cache *cache, struct bio *bio)
 877{
 878	accounted_begin(cache, bio);
 879	generic_make_request(bio);
 880}
 881
 882static void issue(struct cache *cache, struct bio *bio)
 883{
 884	unsigned long flags;
 885
 886	if (!bio_triggers_commit(cache, bio)) {
 887		accounted_request(cache, bio);
 888		return;
 889	}
 890
 891	/*
 892	 * Batch together any bios that trigger commits and then issue a
 893	 * single commit for them in do_worker().
 894	 */
 895	spin_lock_irqsave(&cache->lock, flags);
 896	cache->commit_requested = true;
 897	bio_list_add(&cache->deferred_flush_bios, bio);
 898	spin_unlock_irqrestore(&cache->lock, flags);
 899}
 900
 901static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
 902{
 903	inc_ds(cache, bio, cell);
 904	issue(cache, bio);
 905}
 906
 907static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
 908{
 909	unsigned long flags;
 910
 911	spin_lock_irqsave(&cache->lock, flags);
 912	bio_list_add(&cache->deferred_writethrough_bios, bio);
 913	spin_unlock_irqrestore(&cache->lock, flags);
 914
 915	wake_worker(cache);
 916}
 917
 918static void writethrough_endio(struct bio *bio)
 919{
 920	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 921
 922	dm_unhook_bio(&pb->hook_info, bio);
 923
 924	if (bio->bi_error) {
 925		bio_endio(bio);
 926		return;
 927	}
 928
 929	dm_bio_restore(&pb->bio_details, bio);
 930	remap_to_cache(pb->cache, bio, pb->cblock);
 931
 932	/*
 933	 * We can't issue this bio directly, since we're in interrupt
 934	 * context.  So it gets put on a bio list for processing by the
 935	 * worker thread.
 936	 */
 937	defer_writethrough_bio(pb->cache, bio);
 938}
 939
 940/*
 941 * When running in writethrough mode we need to send writes to clean blocks
 942 * to both the cache and origin devices.  In future we'd like to clone the
 943 * bio and send them in parallel, but for now we're doing them in
 944 * series as this is easier.
 945 */
 946static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
 947				       dm_oblock_t oblock, dm_cblock_t cblock)
 948{
 949	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 950
 951	pb->cache = cache;
 952	pb->cblock = cblock;
 953	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
 954	dm_bio_record(&pb->bio_details, bio);
 955
 956	remap_to_origin_clear_discard(pb->cache, bio, oblock);
 957}
 958
 959/*----------------------------------------------------------------
 960 * Failure modes
 961 *--------------------------------------------------------------*/
 962static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 963{
 964	return cache->features.mode;
 965}
 966
 967static const char *cache_device_name(struct cache *cache)
 968{
 969	return dm_device_name(dm_table_get_md(cache->ti->table));
 970}
 971
 972static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 973{
 974	const char *descs[] = {
 975		"write",
 976		"read-only",
 977		"fail"
 978	};
 979
 980	dm_table_event(cache->ti->table);
 981	DMINFO("%s: switching cache to %s mode",
 982	       cache_device_name(cache), descs[(int)mode]);
 983}
 984
 985static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 986{
 987	bool needs_check;
 988	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 989
 990	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 991		DMERR("unable to read needs_check flag, setting failure mode");
 992		new_mode = CM_FAIL;
 993	}
 994
 995	if (new_mode == CM_WRITE && needs_check) {
 996		DMERR("%s: unable to switch cache to write mode until repaired.",
 997		      cache_device_name(cache));
 998		if (old_mode != new_mode)
 999			new_mode = old_mode;
1000		else
1001			new_mode = CM_READ_ONLY;
1002	}
1003
1004	/* Never move out of fail mode */
1005	if (old_mode == CM_FAIL)
1006		new_mode = CM_FAIL;
1007
1008	switch (new_mode) {
1009	case CM_FAIL:
1010	case CM_READ_ONLY:
1011		dm_cache_metadata_set_read_only(cache->cmd);
1012		break;
1013
1014	case CM_WRITE:
1015		dm_cache_metadata_set_read_write(cache->cmd);
1016		break;
1017	}
1018
1019	cache->features.mode = new_mode;
1020
1021	if (new_mode != old_mode)
1022		notify_mode_switch(cache, new_mode);
1023}
1024
1025static void abort_transaction(struct cache *cache)
1026{
1027	const char *dev_name = cache_device_name(cache);
1028
1029	if (get_cache_mode(cache) >= CM_READ_ONLY)
1030		return;
1031
1032	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1033		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1034		set_cache_mode(cache, CM_FAIL);
1035	}
1036
1037	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1038	if (dm_cache_metadata_abort(cache->cmd)) {
1039		DMERR("%s: failed to abort metadata transaction", dev_name);
1040		set_cache_mode(cache, CM_FAIL);
1041	}
1042}
1043
1044static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1045{
1046	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1047		    cache_device_name(cache), op, r);
1048	abort_transaction(cache);
1049	set_cache_mode(cache, CM_READ_ONLY);
1050}
1051
1052/*----------------------------------------------------------------
1053 * Migration processing
1054 *
1055 * Migration covers moving data from the origin device to the cache, or
1056 * vice versa.
1057 *--------------------------------------------------------------*/
1058static void inc_io_migrations(struct cache *cache)
1059{
1060	atomic_inc(&cache->nr_io_migrations);
1061}
1062
1063static void dec_io_migrations(struct cache *cache)
1064{
1065	atomic_dec(&cache->nr_io_migrations);
1066}
1067
1068static bool discard_or_flush(struct bio *bio)
1069{
1070	return bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD);
 
 
 
 
 
1071}
1072
1073static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
 
1074{
1075	if (discard_or_flush(cell->holder)) {
1076		/*
1077		 * We have to handle these bios individually.
1078		 */
1079		dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1080		free_prison_cell(cache, cell);
1081	} else
1082		list_add_tail(&cell->user_list, &cache->deferred_cells);
1083}
1084
1085static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
 
1086{
1087	unsigned long flags;
1088
1089	if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1090		/*
1091		 * There was no prisoner to promote to holder, the
1092		 * cell has been released.
1093		 */
1094		free_prison_cell(cache, cell);
1095		return;
1096	}
1097
1098	spin_lock_irqsave(&cache->lock, flags);
1099	__cell_defer(cache, cell);
1100	spin_unlock_irqrestore(&cache->lock, flags);
1101
1102	wake_worker(cache);
1103}
1104
1105static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1106{
1107	dm_cell_error(cache->prison, cell, err);
1108	free_prison_cell(cache, cell);
1109}
1110
1111static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1112{
1113	cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
1114}
1115
1116static void free_io_migration(struct dm_cache_migration *mg)
1117{
1118	struct cache *cache = mg->cache;
1119
1120	dec_io_migrations(cache);
1121	free_migration(mg);
1122	wake_worker(cache);
1123}
1124
1125static void migration_failure(struct dm_cache_migration *mg)
1126{
1127	struct cache *cache = mg->cache;
1128	const char *dev_name = cache_device_name(cache);
1129
1130	if (mg->writeback) {
1131		DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1132		set_dirty(cache, mg->old_oblock, mg->cblock);
1133		cell_defer(cache, mg->old_ocell, false);
1134
1135	} else if (mg->demote) {
1136		DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1137		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1138
1139		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1140		if (mg->promote)
1141			cell_defer(cache, mg->new_ocell, true);
1142	} else {
1143		DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1144		policy_remove_mapping(cache->policy, mg->new_oblock);
1145		cell_defer(cache, mg->new_ocell, true);
1146	}
1147
1148	free_io_migration(mg);
1149}
1150
1151static void migration_success_pre_commit(struct dm_cache_migration *mg)
1152{
1153	int r;
1154	unsigned long flags;
1155	struct cache *cache = mg->cache;
1156
1157	if (mg->writeback) {
1158		clear_dirty(cache, mg->old_oblock, mg->cblock);
1159		cell_defer(cache, mg->old_ocell, false);
1160		free_io_migration(mg);
 
1161		return;
1162
1163	} else if (mg->demote) {
1164		r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1165		if (r) {
1166			DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1167				    cache_device_name(cache));
1168			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1169			policy_force_mapping(cache->policy, mg->new_oblock,
1170					     mg->old_oblock);
1171			if (mg->promote)
1172				cell_defer(cache, mg->new_ocell, true);
1173			free_io_migration(mg);
1174			return;
1175		}
1176	} else {
1177		r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1178		if (r) {
1179			DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1180				    cache_device_name(cache));
1181			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1182			policy_remove_mapping(cache->policy, mg->new_oblock);
1183			free_io_migration(mg);
1184			return;
1185		}
1186	}
1187
1188	spin_lock_irqsave(&cache->lock, flags);
1189	list_add_tail(&mg->list, &cache->need_commit_migrations);
1190	cache->commit_requested = true;
1191	spin_unlock_irqrestore(&cache->lock, flags);
1192}
1193
1194static void migration_success_post_commit(struct dm_cache_migration *mg)
1195{
1196	unsigned long flags;
1197	struct cache *cache = mg->cache;
1198
1199	if (mg->writeback) {
1200		DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1201			     cache_device_name(cache));
1202		return;
1203
1204	} else if (mg->demote) {
1205		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1206
1207		if (mg->promote) {
1208			mg->demote = false;
1209
1210			spin_lock_irqsave(&cache->lock, flags);
1211			list_add_tail(&mg->list, &cache->quiesced_migrations);
1212			spin_unlock_irqrestore(&cache->lock, flags);
1213
1214		} else {
1215			if (mg->invalidate)
1216				policy_remove_mapping(cache->policy, mg->old_oblock);
1217			free_io_migration(mg);
1218		}
1219
1220	} else {
1221		if (mg->requeue_holder) {
1222			clear_dirty(cache, mg->new_oblock, mg->cblock);
1223			cell_defer(cache, mg->new_ocell, true);
1224		} else {
1225			/*
1226			 * The block was promoted via an overwrite, so it's dirty.
1227			 */
1228			set_dirty(cache, mg->new_oblock, mg->cblock);
1229			bio_endio(mg->new_ocell->holder);
1230			cell_defer(cache, mg->new_ocell, false);
1231		}
1232		free_io_migration(mg);
 
1233	}
1234}
1235
1236static void copy_complete(int read_err, unsigned long write_err, void *context)
1237{
1238	unsigned long flags;
1239	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1240	struct cache *cache = mg->cache;
1241
1242	if (read_err || write_err)
1243		mg->err = true;
1244
1245	spin_lock_irqsave(&cache->lock, flags);
1246	list_add_tail(&mg->list, &cache->completed_migrations);
1247	spin_unlock_irqrestore(&cache->lock, flags);
1248
1249	wake_worker(cache);
1250}
1251
1252static void issue_copy(struct dm_cache_migration *mg)
1253{
1254	int r;
1255	struct dm_io_region o_region, c_region;
1256	struct cache *cache = mg->cache;
1257	sector_t cblock = from_cblock(mg->cblock);
1258
1259	o_region.bdev = cache->origin_dev->bdev;
1260	o_region.count = cache->sectors_per_block;
1261
1262	c_region.bdev = cache->cache_dev->bdev;
1263	c_region.sector = cblock * cache->sectors_per_block;
1264	c_region.count = cache->sectors_per_block;
1265
1266	if (mg->writeback || mg->demote) {
1267		/* demote */
1268		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1269		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1270	} else {
1271		/* promote */
1272		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1273		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1274	}
1275
1276	if (r < 0) {
1277		DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1278		migration_failure(mg);
1279	}
1280}
1281
1282static void overwrite_endio(struct bio *bio)
1283{
1284	struct dm_cache_migration *mg = bio->bi_private;
1285	struct cache *cache = mg->cache;
1286	size_t pb_data_size = get_per_bio_data_size(cache);
1287	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1288	unsigned long flags;
1289
1290	dm_unhook_bio(&pb->hook_info, bio);
1291
1292	if (bio->bi_error)
1293		mg->err = true;
1294
1295	mg->requeue_holder = false;
1296
1297	spin_lock_irqsave(&cache->lock, flags);
1298	list_add_tail(&mg->list, &cache->completed_migrations);
1299	spin_unlock_irqrestore(&cache->lock, flags);
1300
1301	wake_worker(cache);
1302}
1303
1304static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1305{
1306	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1307	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1308
1309	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1310	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1311
1312	/*
1313	 * No need to inc_ds() here, since the cell will be held for the
1314	 * duration of the io.
1315	 */
1316	accounted_request(mg->cache, bio);
1317}
1318
1319static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1320{
1321	return (bio_data_dir(bio) == WRITE) &&
1322		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1323}
1324
1325static void avoid_copy(struct dm_cache_migration *mg)
1326{
1327	atomic_inc(&mg->cache->stats.copies_avoided);
1328	migration_success_pre_commit(mg);
1329}
1330
1331static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1332				     dm_dblock_t *b, dm_dblock_t *e)
1333{
1334	sector_t sb = bio->bi_iter.bi_sector;
1335	sector_t se = bio_end_sector(bio);
1336
1337	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1338
1339	if (se - sb < cache->discard_block_size)
1340		*e = *b;
1341	else
1342		*e = to_dblock(block_div(se, cache->discard_block_size));
1343}
1344
1345static void issue_discard(struct dm_cache_migration *mg)
1346{
1347	dm_dblock_t b, e;
1348	struct bio *bio = mg->new_ocell->holder;
1349	struct cache *cache = mg->cache;
1350
1351	calc_discard_block_range(cache, bio, &b, &e);
1352	while (b != e) {
1353		set_discard(cache, b);
1354		b = to_dblock(from_dblock(b) + 1);
1355	}
1356
1357	bio_endio(bio);
1358	cell_defer(cache, mg->new_ocell, false);
1359	free_migration(mg);
1360	wake_worker(cache);
1361}
1362
1363static void issue_copy_or_discard(struct dm_cache_migration *mg)
1364{
1365	bool avoid;
1366	struct cache *cache = mg->cache;
1367
1368	if (mg->discard) {
1369		issue_discard(mg);
1370		return;
1371	}
1372
1373	if (mg->writeback || mg->demote)
1374		avoid = !is_dirty(cache, mg->cblock) ||
1375			is_discarded_oblock(cache, mg->old_oblock);
1376	else {
1377		struct bio *bio = mg->new_ocell->holder;
1378
1379		avoid = is_discarded_oblock(cache, mg->new_oblock);
1380
1381		if (writeback_mode(&cache->features) &&
1382		    !avoid && bio_writes_complete_block(cache, bio)) {
1383			issue_overwrite(mg, bio);
1384			return;
1385		}
1386	}
1387
1388	avoid ? avoid_copy(mg) : issue_copy(mg);
1389}
1390
1391static void complete_migration(struct dm_cache_migration *mg)
1392{
1393	if (mg->err)
1394		migration_failure(mg);
1395	else
1396		migration_success_pre_commit(mg);
1397}
1398
1399static void process_migrations(struct cache *cache, struct list_head *head,
1400			       void (*fn)(struct dm_cache_migration *))
1401{
1402	unsigned long flags;
1403	struct list_head list;
1404	struct dm_cache_migration *mg, *tmp;
1405
1406	INIT_LIST_HEAD(&list);
1407	spin_lock_irqsave(&cache->lock, flags);
1408	list_splice_init(head, &list);
1409	spin_unlock_irqrestore(&cache->lock, flags);
1410
1411	list_for_each_entry_safe(mg, tmp, &list, list)
1412		fn(mg);
1413}
1414
1415static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1416{
1417	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1418}
1419
1420static void queue_quiesced_migration(struct dm_cache_migration *mg)
1421{
1422	unsigned long flags;
1423	struct cache *cache = mg->cache;
1424
1425	spin_lock_irqsave(&cache->lock, flags);
1426	__queue_quiesced_migration(mg);
1427	spin_unlock_irqrestore(&cache->lock, flags);
1428
1429	wake_worker(cache);
1430}
1431
1432static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1433{
1434	unsigned long flags;
1435	struct dm_cache_migration *mg, *tmp;
1436
1437	spin_lock_irqsave(&cache->lock, flags);
1438	list_for_each_entry_safe(mg, tmp, work, list)
1439		__queue_quiesced_migration(mg);
1440	spin_unlock_irqrestore(&cache->lock, flags);
1441
1442	wake_worker(cache);
1443}
1444
1445static void check_for_quiesced_migrations(struct cache *cache,
1446					  struct per_bio_data *pb)
1447{
1448	struct list_head work;
1449
1450	if (!pb->all_io_entry)
1451		return;
1452
1453	INIT_LIST_HEAD(&work);
1454	dm_deferred_entry_dec(pb->all_io_entry, &work);
 
1455
1456	if (!list_empty(&work))
1457		queue_quiesced_migrations(cache, &work);
1458}
1459
1460static void quiesce_migration(struct dm_cache_migration *mg)
1461{
1462	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1463		queue_quiesced_migration(mg);
1464}
1465
1466static void promote(struct cache *cache, struct prealloc *structs,
1467		    dm_oblock_t oblock, dm_cblock_t cblock,
1468		    struct dm_bio_prison_cell *cell)
1469{
1470	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1471
1472	mg->err = false;
1473	mg->discard = false;
1474	mg->writeback = false;
1475	mg->demote = false;
1476	mg->promote = true;
1477	mg->requeue_holder = true;
1478	mg->invalidate = false;
1479	mg->cache = cache;
1480	mg->new_oblock = oblock;
1481	mg->cblock = cblock;
1482	mg->old_ocell = NULL;
1483	mg->new_ocell = cell;
1484	mg->start_jiffies = jiffies;
1485
1486	inc_io_migrations(cache);
1487	quiesce_migration(mg);
1488}
1489
1490static void writeback(struct cache *cache, struct prealloc *structs,
1491		      dm_oblock_t oblock, dm_cblock_t cblock,
1492		      struct dm_bio_prison_cell *cell)
1493{
1494	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1495
1496	mg->err = false;
1497	mg->discard = false;
1498	mg->writeback = true;
1499	mg->demote = false;
1500	mg->promote = false;
1501	mg->requeue_holder = true;
1502	mg->invalidate = false;
1503	mg->cache = cache;
1504	mg->old_oblock = oblock;
1505	mg->cblock = cblock;
1506	mg->old_ocell = cell;
1507	mg->new_ocell = NULL;
1508	mg->start_jiffies = jiffies;
1509
1510	inc_io_migrations(cache);
1511	quiesce_migration(mg);
1512}
1513
1514static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1515				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1516				dm_cblock_t cblock,
1517				struct dm_bio_prison_cell *old_ocell,
1518				struct dm_bio_prison_cell *new_ocell)
1519{
1520	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1521
1522	mg->err = false;
1523	mg->discard = false;
1524	mg->writeback = false;
1525	mg->demote = true;
1526	mg->promote = true;
1527	mg->requeue_holder = true;
1528	mg->invalidate = false;
1529	mg->cache = cache;
1530	mg->old_oblock = old_oblock;
1531	mg->new_oblock = new_oblock;
1532	mg->cblock = cblock;
1533	mg->old_ocell = old_ocell;
1534	mg->new_ocell = new_ocell;
1535	mg->start_jiffies = jiffies;
1536
1537	inc_io_migrations(cache);
1538	quiesce_migration(mg);
1539}
1540
1541/*
1542 * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1543 * block are thrown away.
1544 */
1545static void invalidate(struct cache *cache, struct prealloc *structs,
1546		       dm_oblock_t oblock, dm_cblock_t cblock,
1547		       struct dm_bio_prison_cell *cell)
1548{
1549	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1550
1551	mg->err = false;
1552	mg->discard = false;
1553	mg->writeback = false;
1554	mg->demote = true;
1555	mg->promote = false;
1556	mg->requeue_holder = true;
1557	mg->invalidate = true;
1558	mg->cache = cache;
1559	mg->old_oblock = oblock;
1560	mg->cblock = cblock;
1561	mg->old_ocell = cell;
1562	mg->new_ocell = NULL;
1563	mg->start_jiffies = jiffies;
1564
1565	inc_io_migrations(cache);
1566	quiesce_migration(mg);
1567}
1568
1569static void discard(struct cache *cache, struct prealloc *structs,
1570		    struct dm_bio_prison_cell *cell)
1571{
1572	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1573
1574	mg->err = false;
1575	mg->discard = true;
1576	mg->writeback = false;
1577	mg->demote = false;
1578	mg->promote = false;
1579	mg->requeue_holder = false;
1580	mg->invalidate = false;
1581	mg->cache = cache;
1582	mg->old_ocell = NULL;
1583	mg->new_ocell = cell;
1584	mg->start_jiffies = jiffies;
1585
1586	quiesce_migration(mg);
1587}
1588
1589/*----------------------------------------------------------------
1590 * bio processing
1591 *--------------------------------------------------------------*/
1592static void defer_bio(struct cache *cache, struct bio *bio)
1593{
1594	unsigned long flags;
1595
1596	spin_lock_irqsave(&cache->lock, flags);
1597	bio_list_add(&cache->deferred_bios, bio);
1598	spin_unlock_irqrestore(&cache->lock, flags);
1599
1600	wake_worker(cache);
1601}
1602
1603static void process_flush_bio(struct cache *cache, struct bio *bio)
1604{
1605	size_t pb_data_size = get_per_bio_data_size(cache);
1606	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1607
1608	BUG_ON(bio->bi_iter.bi_size);
1609	if (!pb->req_nr)
1610		remap_to_origin(cache, bio);
1611	else
1612		remap_to_cache(cache, bio, 0);
1613
1614	/*
1615	 * REQ_FLUSH is not directed at any particular block so we don't
1616	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_FLUSH
1617	 * by dm-core.
1618	 */
1619	issue(cache, bio);
1620}
1621
1622static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1623				struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
1624{
1625	int r;
1626	dm_dblock_t b, e;
1627	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
 
1628
1629	calc_discard_block_range(cache, bio, &b, &e);
1630	if (b == e) {
1631		bio_endio(bio);
1632		return;
1633	}
1634
1635	cell_prealloc = prealloc_get_cell(structs);
1636	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1637			     (cell_free_fn) prealloc_put_cell,
1638			     structs, &new_ocell);
1639	if (r > 0)
1640		return;
1641
1642	discard(cache, structs, new_ocell);
1643}
1644
1645static bool spare_migration_bandwidth(struct cache *cache)
1646{
1647	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1648		cache->sectors_per_block;
1649	return current_volume < cache->migration_threshold;
1650}
1651
1652static void inc_hit_counter(struct cache *cache, struct bio *bio)
1653{
1654	atomic_inc(bio_data_dir(bio) == READ ?
1655		   &cache->stats.read_hit : &cache->stats.write_hit);
1656}
1657
1658static void inc_miss_counter(struct cache *cache, struct bio *bio)
1659{
1660	atomic_inc(bio_data_dir(bio) == READ ?
1661		   &cache->stats.read_miss : &cache->stats.write_miss);
1662}
1663
1664/*----------------------------------------------------------------*/
1665
1666struct inc_detail {
1667	struct cache *cache;
1668	struct bio_list bios_for_issue;
1669	struct bio_list unhandled_bios;
1670	bool any_writes;
1671};
1672
1673static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1674{
1675	struct bio *bio;
1676	struct inc_detail *detail = context;
1677	struct cache *cache = detail->cache;
1678
1679	inc_ds(cache, cell->holder, cell);
1680	if (bio_data_dir(cell->holder) == WRITE)
1681		detail->any_writes = true;
1682
1683	while ((bio = bio_list_pop(&cell->bios))) {
1684		if (discard_or_flush(bio)) {
1685			bio_list_add(&detail->unhandled_bios, bio);
1686			continue;
1687		}
1688
1689		if (bio_data_dir(bio) == WRITE)
1690			detail->any_writes = true;
1691
1692		bio_list_add(&detail->bios_for_issue, bio);
1693		inc_ds(cache, bio, cell);
1694	}
1695}
1696
1697// FIXME: refactor these two
1698static void remap_cell_to_origin_clear_discard(struct cache *cache,
1699					       struct dm_bio_prison_cell *cell,
1700					       dm_oblock_t oblock, bool issue_holder)
1701{
1702	struct bio *bio;
1703	unsigned long flags;
1704	struct inc_detail detail;
1705
1706	detail.cache = cache;
1707	bio_list_init(&detail.bios_for_issue);
1708	bio_list_init(&detail.unhandled_bios);
1709	detail.any_writes = false;
1710
1711	spin_lock_irqsave(&cache->lock, flags);
1712	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1713	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1714	spin_unlock_irqrestore(&cache->lock, flags);
1715
1716	remap_to_origin(cache, cell->holder);
1717	if (issue_holder)
1718		issue(cache, cell->holder);
1719	else
1720		accounted_begin(cache, cell->holder);
1721
1722	if (detail.any_writes)
1723		clear_discard(cache, oblock_to_dblock(cache, oblock));
1724
1725	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1726		remap_to_origin(cache, bio);
1727		issue(cache, bio);
1728	}
1729
1730	free_prison_cell(cache, cell);
1731}
1732
1733static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1734				      dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1735{
1736	struct bio *bio;
1737	unsigned long flags;
1738	struct inc_detail detail;
1739
1740	detail.cache = cache;
1741	bio_list_init(&detail.bios_for_issue);
1742	bio_list_init(&detail.unhandled_bios);
1743	detail.any_writes = false;
1744
1745	spin_lock_irqsave(&cache->lock, flags);
1746	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1747	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1748	spin_unlock_irqrestore(&cache->lock, flags);
1749
1750	remap_to_cache(cache, cell->holder, cblock);
1751	if (issue_holder)
1752		issue(cache, cell->holder);
1753	else
1754		accounted_begin(cache, cell->holder);
1755
1756	if (detail.any_writes) {
1757		set_dirty(cache, oblock, cblock);
1758		clear_discard(cache, oblock_to_dblock(cache, oblock));
1759	}
1760
1761	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1762		remap_to_cache(cache, bio, cblock);
1763		issue(cache, bio);
1764	}
1765
1766	free_prison_cell(cache, cell);
1767}
1768
1769/*----------------------------------------------------------------*/
1770
1771struct old_oblock_lock {
1772	struct policy_locker locker;
1773	struct cache *cache;
1774	struct prealloc *structs;
1775	struct dm_bio_prison_cell *cell;
1776};
1777
1778static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1779{
1780	/* This should never be called */
1781	BUG();
1782	return 0;
1783}
1784
1785static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1786{
1787	struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1788	struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1789
1790	return bio_detain(l->cache, b, NULL, cell_prealloc,
1791			  (cell_free_fn) prealloc_put_cell,
1792			  l->structs, &l->cell);
1793}
1794
1795static void process_cell(struct cache *cache, struct prealloc *structs,
1796			 struct dm_bio_prison_cell *new_ocell)
1797{
1798	int r;
1799	bool release_cell = true;
1800	struct bio *bio = new_ocell->holder;
1801	dm_oblock_t block = get_bio_block(cache, bio);
 
1802	struct policy_result lookup_result;
 
 
 
1803	bool passthrough = passthrough_mode(&cache->features);
1804	bool fast_promotion, can_migrate;
1805	struct old_oblock_lock ool;
1806
1807	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1808	can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
 
 
 
 
 
 
 
1809
1810	ool.locker.fn = cell_locker;
1811	ool.cache = cache;
1812	ool.structs = structs;
1813	ool.cell = NULL;
1814	r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1815		       bio, &ool.locker, &lookup_result);
1816
1817	if (r == -EWOULDBLOCK)
1818		/* migration has been denied */
1819		lookup_result.op = POLICY_MISS;
1820
1821	switch (lookup_result.op) {
1822	case POLICY_HIT:
1823		if (passthrough) {
1824			inc_miss_counter(cache, bio);
1825
1826			/*
1827			 * Passthrough always maps to the origin,
1828			 * invalidating any cache blocks that are written
1829			 * to.
1830			 */
1831
1832			if (bio_data_dir(bio) == WRITE) {
1833				atomic_inc(&cache->stats.demotion);
1834				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1835				release_cell = false;
1836
1837			} else {
1838				/* FIXME: factor out issue_origin() */
 
1839				remap_to_origin_clear_discard(cache, bio, block);
1840				inc_and_issue(cache, bio, new_ocell);
1841			}
1842		} else {
1843			inc_hit_counter(cache, bio);
1844
1845			if (bio_data_dir(bio) == WRITE &&
1846			    writethrough_mode(&cache->features) &&
1847			    !is_dirty(cache, lookup_result.cblock)) {
 
1848				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1849				inc_and_issue(cache, bio, new_ocell);
1850
1851			} else {
1852				remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1853				release_cell = false;
1854			}
1855		}
1856
1857		break;
1858
1859	case POLICY_MISS:
1860		inc_miss_counter(cache, bio);
1861		remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1862		release_cell = false;
 
1863		break;
1864
1865	case POLICY_NEW:
1866		atomic_inc(&cache->stats.promotion);
1867		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1868		release_cell = false;
1869		break;
1870
1871	case POLICY_REPLACE:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1872		atomic_inc(&cache->stats.demotion);
1873		atomic_inc(&cache->stats.promotion);
 
1874		demote_then_promote(cache, structs, lookup_result.old_oblock,
1875				    block, lookup_result.cblock,
1876				    ool.cell, new_ocell);
1877		release_cell = false;
1878		break;
1879
1880	default:
1881		DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1882			    cache_device_name(cache), __func__,
1883			    (unsigned) lookup_result.op);
1884		bio_io_error(bio);
1885	}
1886
1887	if (release_cell)
1888		cell_defer(cache, new_ocell, false);
1889}
1890
1891static void process_bio(struct cache *cache, struct prealloc *structs,
1892			struct bio *bio)
1893{
1894	int r;
1895	dm_oblock_t block = get_bio_block(cache, bio);
1896	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1897
1898	/*
1899	 * Check to see if that block is currently migrating.
1900	 */
1901	cell_prealloc = prealloc_get_cell(structs);
1902	r = bio_detain(cache, block, bio, cell_prealloc,
1903		       (cell_free_fn) prealloc_put_cell,
1904		       structs, &new_ocell);
1905	if (r > 0)
1906		return;
1907
1908	process_cell(cache, structs, new_ocell);
1909}
1910
1911static int need_commit_due_to_time(struct cache *cache)
1912{
1913	return jiffies < cache->last_commit_jiffies ||
1914	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1915}
1916
1917/*
1918 * A non-zero return indicates read_only or fail_io mode.
1919 */
1920static int commit(struct cache *cache, bool clean_shutdown)
1921{
1922	int r;
1923
1924	if (get_cache_mode(cache) >= CM_READ_ONLY)
1925		return -EINVAL;
1926
1927	atomic_inc(&cache->stats.commit_count);
1928	r = dm_cache_commit(cache->cmd, clean_shutdown);
1929	if (r)
1930		metadata_operation_failed(cache, "dm_cache_commit", r);
1931
1932	return r;
1933}
1934
1935static int commit_if_needed(struct cache *cache)
1936{
1937	int r = 0;
1938
1939	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1940	    dm_cache_changed_this_transaction(cache->cmd)) {
1941		r = commit(cache, false);
1942		cache->commit_requested = false;
 
1943		cache->last_commit_jiffies = jiffies;
1944	}
1945
1946	return r;
1947}
1948
1949static void process_deferred_bios(struct cache *cache)
1950{
1951	bool prealloc_used = false;
1952	unsigned long flags;
1953	struct bio_list bios;
1954	struct bio *bio;
1955	struct prealloc structs;
1956
1957	memset(&structs, 0, sizeof(structs));
1958	bio_list_init(&bios);
1959
1960	spin_lock_irqsave(&cache->lock, flags);
1961	bio_list_merge(&bios, &cache->deferred_bios);
1962	bio_list_init(&cache->deferred_bios);
1963	spin_unlock_irqrestore(&cache->lock, flags);
1964
1965	while (!bio_list_empty(&bios)) {
1966		/*
1967		 * If we've got no free migration structs, and processing
1968		 * this bio might require one, we pause until there are some
1969		 * prepared mappings to process.
1970		 */
1971		prealloc_used = true;
1972		if (prealloc_data_structs(cache, &structs)) {
1973			spin_lock_irqsave(&cache->lock, flags);
1974			bio_list_merge(&cache->deferred_bios, &bios);
1975			spin_unlock_irqrestore(&cache->lock, flags);
1976			break;
1977		}
1978
1979		bio = bio_list_pop(&bios);
1980
1981		if (bio->bi_rw & REQ_FLUSH)
1982			process_flush_bio(cache, bio);
1983		else if (bio->bi_rw & REQ_DISCARD)
1984			process_discard_bio(cache, &structs, bio);
1985		else
1986			process_bio(cache, &structs, bio);
1987	}
1988
1989	if (prealloc_used)
1990		prealloc_free_structs(cache, &structs);
1991}
1992
1993static void process_deferred_cells(struct cache *cache)
1994{
1995	bool prealloc_used = false;
1996	unsigned long flags;
1997	struct dm_bio_prison_cell *cell, *tmp;
1998	struct list_head cells;
1999	struct prealloc structs;
2000
2001	memset(&structs, 0, sizeof(structs));
2002
2003	INIT_LIST_HEAD(&cells);
2004
2005	spin_lock_irqsave(&cache->lock, flags);
2006	list_splice_init(&cache->deferred_cells, &cells);
2007	spin_unlock_irqrestore(&cache->lock, flags);
2008
2009	list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2010		/*
2011		 * If we've got no free migration structs, and processing
2012		 * this bio might require one, we pause until there are some
2013		 * prepared mappings to process.
2014		 */
2015		prealloc_used = true;
2016		if (prealloc_data_structs(cache, &structs)) {
2017			spin_lock_irqsave(&cache->lock, flags);
2018			list_splice(&cells, &cache->deferred_cells);
2019			spin_unlock_irqrestore(&cache->lock, flags);
2020			break;
2021		}
2022
2023		process_cell(cache, &structs, cell);
2024	}
2025
2026	if (prealloc_used)
2027		prealloc_free_structs(cache, &structs);
2028}
2029
2030static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2031{
2032	unsigned long flags;
2033	struct bio_list bios;
2034	struct bio *bio;
2035
2036	bio_list_init(&bios);
2037
2038	spin_lock_irqsave(&cache->lock, flags);
2039	bio_list_merge(&bios, &cache->deferred_flush_bios);
2040	bio_list_init(&cache->deferred_flush_bios);
2041	spin_unlock_irqrestore(&cache->lock, flags);
2042
2043	/*
2044	 * These bios have already been through inc_ds()
2045	 */
2046	while ((bio = bio_list_pop(&bios)))
2047		submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2048}
2049
2050static void process_deferred_writethrough_bios(struct cache *cache)
2051{
2052	unsigned long flags;
2053	struct bio_list bios;
2054	struct bio *bio;
2055
2056	bio_list_init(&bios);
2057
2058	spin_lock_irqsave(&cache->lock, flags);
2059	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2060	bio_list_init(&cache->deferred_writethrough_bios);
2061	spin_unlock_irqrestore(&cache->lock, flags);
2062
2063	/*
2064	 * These bios have already been through inc_ds()
2065	 */
2066	while ((bio = bio_list_pop(&bios)))
2067		accounted_request(cache, bio);
2068}
2069
2070static void writeback_some_dirty_blocks(struct cache *cache)
2071{
2072	bool prealloc_used = false;
2073	dm_oblock_t oblock;
2074	dm_cblock_t cblock;
2075	struct prealloc structs;
2076	struct dm_bio_prison_cell *old_ocell;
2077	bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2078
2079	memset(&structs, 0, sizeof(structs));
2080
2081	while (spare_migration_bandwidth(cache)) {
2082		if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2083			break; /* no work to do */
 
 
 
 
2084
2085		prealloc_used = true;
2086		if (prealloc_data_structs(cache, &structs) ||
2087		    get_cell(cache, oblock, &structs, &old_ocell)) {
2088			policy_set_dirty(cache->policy, oblock);
2089			break;
2090		}
2091
2092		writeback(cache, &structs, oblock, cblock, old_ocell);
2093	}
2094
2095	if (prealloc_used)
2096		prealloc_free_structs(cache, &structs);
2097}
2098
2099/*----------------------------------------------------------------
2100 * Invalidations.
2101 * Dropping something from the cache *without* writing back.
2102 *--------------------------------------------------------------*/
2103
2104static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2105{
2106	int r = 0;
2107	uint64_t begin = from_cblock(req->cblocks->begin);
2108	uint64_t end = from_cblock(req->cblocks->end);
2109
2110	while (begin != end) {
2111		r = policy_remove_cblock(cache->policy, to_cblock(begin));
2112		if (!r) {
2113			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2114			if (r) {
2115				metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2116				break;
2117			}
2118
2119		} else if (r == -ENODATA) {
2120			/* harmless, already unmapped */
2121			r = 0;
2122
2123		} else {
2124			DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2125			break;
2126		}
2127
2128		begin++;
2129        }
2130
2131	cache->commit_requested = true;
2132
2133	req->err = r;
2134	atomic_set(&req->complete, 1);
2135
2136	wake_up(&req->result_wait);
2137}
2138
2139static void process_invalidation_requests(struct cache *cache)
2140{
2141	struct list_head list;
2142	struct invalidation_request *req, *tmp;
2143
2144	INIT_LIST_HEAD(&list);
2145	spin_lock(&cache->invalidation_lock);
2146	list_splice_init(&cache->invalidation_requests, &list);
2147	spin_unlock(&cache->invalidation_lock);
2148
2149	list_for_each_entry_safe (req, tmp, &list, list)
2150		process_invalidation_request(cache, req);
2151}
2152
2153/*----------------------------------------------------------------
2154 * Main worker loop
2155 *--------------------------------------------------------------*/
2156static bool is_quiescing(struct cache *cache)
2157{
2158	return atomic_read(&cache->quiescing);
2159}
2160
2161static void ack_quiescing(struct cache *cache)
2162{
2163	if (is_quiescing(cache)) {
2164		atomic_inc(&cache->quiescing_ack);
2165		wake_up(&cache->quiescing_wait);
2166	}
2167}
2168
2169static void wait_for_quiescing_ack(struct cache *cache)
2170{
2171	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2172}
2173
2174static void start_quiescing(struct cache *cache)
2175{
2176	atomic_inc(&cache->quiescing);
2177	wait_for_quiescing_ack(cache);
2178}
2179
2180static void stop_quiescing(struct cache *cache)
2181{
2182	atomic_set(&cache->quiescing, 0);
2183	atomic_set(&cache->quiescing_ack, 0);
2184}
2185
2186static void wait_for_migrations(struct cache *cache)
2187{
2188	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2189}
2190
2191static void stop_worker(struct cache *cache)
2192{
2193	cancel_delayed_work(&cache->waker);
2194	flush_workqueue(cache->wq);
2195}
2196
2197static void requeue_deferred_cells(struct cache *cache)
2198{
2199	unsigned long flags;
2200	struct list_head cells;
2201	struct dm_bio_prison_cell *cell, *tmp;
2202
2203	INIT_LIST_HEAD(&cells);
2204	spin_lock_irqsave(&cache->lock, flags);
2205	list_splice_init(&cache->deferred_cells, &cells);
2206	spin_unlock_irqrestore(&cache->lock, flags);
2207
2208	list_for_each_entry_safe(cell, tmp, &cells, user_list)
2209		cell_requeue(cache, cell);
2210}
2211
2212static void requeue_deferred_bios(struct cache *cache)
2213{
2214	struct bio *bio;
2215	struct bio_list bios;
2216
2217	bio_list_init(&bios);
2218	bio_list_merge(&bios, &cache->deferred_bios);
2219	bio_list_init(&cache->deferred_bios);
2220
2221	while ((bio = bio_list_pop(&bios))) {
2222		bio->bi_error = DM_ENDIO_REQUEUE;
2223		bio_endio(bio);
2224	}
2225}
2226
2227static int more_work(struct cache *cache)
2228{
2229	if (is_quiescing(cache))
2230		return !list_empty(&cache->quiesced_migrations) ||
2231			!list_empty(&cache->completed_migrations) ||
2232			!list_empty(&cache->need_commit_migrations);
2233	else
2234		return !bio_list_empty(&cache->deferred_bios) ||
2235			!list_empty(&cache->deferred_cells) ||
2236			!bio_list_empty(&cache->deferred_flush_bios) ||
2237			!bio_list_empty(&cache->deferred_writethrough_bios) ||
2238			!list_empty(&cache->quiesced_migrations) ||
2239			!list_empty(&cache->completed_migrations) ||
2240			!list_empty(&cache->need_commit_migrations) ||
2241			cache->invalidate;
2242}
2243
2244static void do_worker(struct work_struct *ws)
2245{
2246	struct cache *cache = container_of(ws, struct cache, worker);
2247
2248	do {
2249		if (!is_quiescing(cache)) {
2250			writeback_some_dirty_blocks(cache);
2251			process_deferred_writethrough_bios(cache);
2252			process_deferred_bios(cache);
2253			process_deferred_cells(cache);
2254			process_invalidation_requests(cache);
2255		}
2256
2257		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2258		process_migrations(cache, &cache->completed_migrations, complete_migration);
2259
2260		if (commit_if_needed(cache)) {
2261			process_deferred_flush_bios(cache, false);
2262			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
 
 
 
 
2263		} else {
2264			process_deferred_flush_bios(cache, true);
2265			process_migrations(cache, &cache->need_commit_migrations,
2266					   migration_success_post_commit);
2267		}
2268
2269		ack_quiescing(cache);
2270
2271	} while (more_work(cache));
2272}
2273
2274/*
2275 * We want to commit periodically so that not too much
2276 * unwritten metadata builds up.
2277 */
2278static void do_waker(struct work_struct *ws)
2279{
2280	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
2281	policy_tick(cache->policy, true);
2282	wake_worker(cache);
2283	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2284}
2285
2286/*----------------------------------------------------------------*/
2287
2288static int is_congested(struct dm_dev *dev, int bdi_bits)
2289{
2290	struct request_queue *q = bdev_get_queue(dev->bdev);
2291	return bdi_congested(&q->backing_dev_info, bdi_bits);
2292}
2293
2294static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2295{
2296	struct cache *cache = container_of(cb, struct cache, callbacks);
2297
2298	return is_congested(cache->origin_dev, bdi_bits) ||
2299		is_congested(cache->cache_dev, bdi_bits);
2300}
2301
2302/*----------------------------------------------------------------
2303 * Target methods
2304 *--------------------------------------------------------------*/
2305
2306/*
2307 * This function gets called on the error paths of the constructor, so we
2308 * have to cope with a partially initialised struct.
2309 */
2310static void destroy(struct cache *cache)
2311{
2312	unsigned i;
2313
2314	mempool_destroy(cache->migration_pool);
 
 
 
 
2315
2316	if (cache->all_io_ds)
2317		dm_deferred_set_destroy(cache->all_io_ds);
2318
2319	if (cache->prison)
2320		dm_bio_prison_destroy(cache->prison);
2321
2322	if (cache->wq)
2323		destroy_workqueue(cache->wq);
2324
2325	if (cache->dirty_bitset)
2326		free_bitset(cache->dirty_bitset);
2327
2328	if (cache->discard_bitset)
2329		free_bitset(cache->discard_bitset);
2330
2331	if (cache->copier)
2332		dm_kcopyd_client_destroy(cache->copier);
2333
2334	if (cache->cmd)
2335		dm_cache_metadata_close(cache->cmd);
2336
2337	if (cache->metadata_dev)
2338		dm_put_device(cache->ti, cache->metadata_dev);
2339
2340	if (cache->origin_dev)
2341		dm_put_device(cache->ti, cache->origin_dev);
2342
2343	if (cache->cache_dev)
2344		dm_put_device(cache->ti, cache->cache_dev);
2345
2346	if (cache->policy)
2347		dm_cache_policy_destroy(cache->policy);
2348
2349	for (i = 0; i < cache->nr_ctr_args ; i++)
2350		kfree(cache->ctr_args[i]);
2351	kfree(cache->ctr_args);
2352
2353	kfree(cache);
2354}
2355
2356static void cache_dtr(struct dm_target *ti)
2357{
2358	struct cache *cache = ti->private;
2359
2360	destroy(cache);
2361}
2362
2363static sector_t get_dev_size(struct dm_dev *dev)
2364{
2365	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2366}
2367
2368/*----------------------------------------------------------------*/
2369
2370/*
2371 * Construct a cache device mapping.
2372 *
2373 * cache <metadata dev> <cache dev> <origin dev> <block size>
2374 *       <#feature args> [<feature arg>]*
2375 *       <policy> <#policy args> [<policy arg>]*
2376 *
2377 * metadata dev    : fast device holding the persistent metadata
2378 * cache dev	   : fast device holding cached data blocks
2379 * origin dev	   : slow device holding original data blocks
2380 * block size	   : cache unit size in sectors
2381 *
2382 * #feature args   : number of feature arguments passed
2383 * feature args    : writethrough.  (The default is writeback.)
2384 *
2385 * policy	   : the replacement policy to use
2386 * #policy args    : an even number of policy arguments corresponding
2387 *		     to key/value pairs passed to the policy
2388 * policy args	   : key/value pairs passed to the policy
2389 *		     E.g. 'sequential_threshold 1024'
2390 *		     See cache-policies.txt for details.
2391 *
2392 * Optional feature arguments are:
2393 *   writethrough  : write through caching that prohibits cache block
2394 *		     content from being different from origin block content.
2395 *		     Without this argument, the default behaviour is to write
2396 *		     back cache block contents later for performance reasons,
2397 *		     so they may differ from the corresponding origin blocks.
2398 */
2399struct cache_args {
2400	struct dm_target *ti;
2401
2402	struct dm_dev *metadata_dev;
2403
2404	struct dm_dev *cache_dev;
2405	sector_t cache_sectors;
2406
2407	struct dm_dev *origin_dev;
2408	sector_t origin_sectors;
2409
2410	uint32_t block_size;
2411
2412	const char *policy_name;
2413	int policy_argc;
2414	const char **policy_argv;
2415
2416	struct cache_features features;
2417};
2418
2419static void destroy_cache_args(struct cache_args *ca)
2420{
2421	if (ca->metadata_dev)
2422		dm_put_device(ca->ti, ca->metadata_dev);
2423
2424	if (ca->cache_dev)
2425		dm_put_device(ca->ti, ca->cache_dev);
2426
2427	if (ca->origin_dev)
2428		dm_put_device(ca->ti, ca->origin_dev);
2429
2430	kfree(ca);
2431}
2432
2433static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2434{
2435	if (!as->argc) {
2436		*error = "Insufficient args";
2437		return false;
2438	}
2439
2440	return true;
2441}
2442
2443static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2444			      char **error)
2445{
2446	int r;
2447	sector_t metadata_dev_size;
2448	char b[BDEVNAME_SIZE];
2449
2450	if (!at_least_one_arg(as, error))
2451		return -EINVAL;
2452
2453	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2454			  &ca->metadata_dev);
2455	if (r) {
2456		*error = "Error opening metadata device";
2457		return r;
2458	}
2459
2460	metadata_dev_size = get_dev_size(ca->metadata_dev);
2461	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2462		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2463		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2464
2465	return 0;
2466}
2467
2468static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2469			   char **error)
2470{
2471	int r;
2472
2473	if (!at_least_one_arg(as, error))
2474		return -EINVAL;
2475
2476	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2477			  &ca->cache_dev);
2478	if (r) {
2479		*error = "Error opening cache device";
2480		return r;
2481	}
2482	ca->cache_sectors = get_dev_size(ca->cache_dev);
2483
2484	return 0;
2485}
2486
2487static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2488			    char **error)
2489{
2490	int r;
2491
2492	if (!at_least_one_arg(as, error))
2493		return -EINVAL;
2494
2495	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2496			  &ca->origin_dev);
2497	if (r) {
2498		*error = "Error opening origin device";
2499		return r;
2500	}
2501
2502	ca->origin_sectors = get_dev_size(ca->origin_dev);
2503	if (ca->ti->len > ca->origin_sectors) {
2504		*error = "Device size larger than cached device";
2505		return -EINVAL;
2506	}
2507
2508	return 0;
2509}
2510
2511static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2512			    char **error)
2513{
2514	unsigned long block_size;
2515
2516	if (!at_least_one_arg(as, error))
2517		return -EINVAL;
2518
2519	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2520	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2521	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2522	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2523		*error = "Invalid data block size";
2524		return -EINVAL;
2525	}
2526
2527	if (block_size > ca->cache_sectors) {
2528		*error = "Data block size is larger than the cache device";
2529		return -EINVAL;
2530	}
2531
2532	ca->block_size = block_size;
2533
2534	return 0;
2535}
2536
2537static void init_features(struct cache_features *cf)
2538{
2539	cf->mode = CM_WRITE;
2540	cf->io_mode = CM_IO_WRITEBACK;
2541}
2542
2543static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2544			  char **error)
2545{
2546	static struct dm_arg _args[] = {
2547		{0, 1, "Invalid number of cache feature arguments"},
2548	};
2549
2550	int r;
2551	unsigned argc;
2552	const char *arg;
2553	struct cache_features *cf = &ca->features;
2554
2555	init_features(cf);
2556
2557	r = dm_read_arg_group(_args, as, &argc, error);
2558	if (r)
2559		return -EINVAL;
2560
2561	while (argc--) {
2562		arg = dm_shift_arg(as);
2563
2564		if (!strcasecmp(arg, "writeback"))
2565			cf->io_mode = CM_IO_WRITEBACK;
2566
2567		else if (!strcasecmp(arg, "writethrough"))
2568			cf->io_mode = CM_IO_WRITETHROUGH;
2569
2570		else if (!strcasecmp(arg, "passthrough"))
2571			cf->io_mode = CM_IO_PASSTHROUGH;
2572
2573		else {
2574			*error = "Unrecognised cache feature requested";
2575			return -EINVAL;
2576		}
2577	}
2578
2579	return 0;
2580}
2581
2582static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2583			char **error)
2584{
2585	static struct dm_arg _args[] = {
2586		{0, 1024, "Invalid number of policy arguments"},
2587	};
2588
2589	int r;
2590
2591	if (!at_least_one_arg(as, error))
2592		return -EINVAL;
2593
2594	ca->policy_name = dm_shift_arg(as);
2595
2596	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2597	if (r)
2598		return -EINVAL;
2599
2600	ca->policy_argv = (const char **)as->argv;
2601	dm_consume_args(as, ca->policy_argc);
2602
2603	return 0;
2604}
2605
2606static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2607			    char **error)
2608{
2609	int r;
2610	struct dm_arg_set as;
2611
2612	as.argc = argc;
2613	as.argv = argv;
2614
2615	r = parse_metadata_dev(ca, &as, error);
2616	if (r)
2617		return r;
2618
2619	r = parse_cache_dev(ca, &as, error);
2620	if (r)
2621		return r;
2622
2623	r = parse_origin_dev(ca, &as, error);
2624	if (r)
2625		return r;
2626
2627	r = parse_block_size(ca, &as, error);
2628	if (r)
2629		return r;
2630
2631	r = parse_features(ca, &as, error);
2632	if (r)
2633		return r;
2634
2635	r = parse_policy(ca, &as, error);
2636	if (r)
2637		return r;
2638
2639	return 0;
2640}
2641
2642/*----------------------------------------------------------------*/
2643
2644static struct kmem_cache *migration_cache;
2645
2646#define NOT_CORE_OPTION 1
2647
2648static int process_config_option(struct cache *cache, const char *key, const char *value)
2649{
2650	unsigned long tmp;
2651
2652	if (!strcasecmp(key, "migration_threshold")) {
2653		if (kstrtoul(value, 10, &tmp))
2654			return -EINVAL;
2655
2656		cache->migration_threshold = tmp;
2657		return 0;
2658	}
2659
2660	return NOT_CORE_OPTION;
2661}
2662
2663static int set_config_value(struct cache *cache, const char *key, const char *value)
2664{
2665	int r = process_config_option(cache, key, value);
2666
2667	if (r == NOT_CORE_OPTION)
2668		r = policy_set_config_value(cache->policy, key, value);
2669
2670	if (r)
2671		DMWARN("bad config value for %s: %s", key, value);
2672
2673	return r;
2674}
2675
2676static int set_config_values(struct cache *cache, int argc, const char **argv)
2677{
2678	int r = 0;
2679
2680	if (argc & 1) {
2681		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2682		return -EINVAL;
2683	}
2684
2685	while (argc) {
2686		r = set_config_value(cache, argv[0], argv[1]);
2687		if (r)
2688			break;
2689
2690		argc -= 2;
2691		argv += 2;
2692	}
2693
2694	return r;
2695}
2696
2697static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2698			       char **error)
2699{
2700	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2701							   cache->cache_size,
2702							   cache->origin_sectors,
2703							   cache->sectors_per_block);
2704	if (IS_ERR(p)) {
2705		*error = "Error creating cache's policy";
2706		return PTR_ERR(p);
2707	}
2708	cache->policy = p;
2709
2710	return 0;
2711}
2712
2713/*
2714 * We want the discard block size to be at least the size of the cache
2715 * block size and have no more than 2^14 discard blocks across the origin.
2716 */
2717#define MAX_DISCARD_BLOCKS (1 << 14)
2718
2719static bool too_many_discard_blocks(sector_t discard_block_size,
2720				    sector_t origin_size)
2721{
2722	(void) sector_div(origin_size, discard_block_size);
2723
2724	return origin_size > MAX_DISCARD_BLOCKS;
2725}
2726
2727static sector_t calculate_discard_block_size(sector_t cache_block_size,
2728					     sector_t origin_size)
2729{
2730	sector_t discard_block_size = cache_block_size;
2731
2732	if (origin_size)
2733		while (too_many_discard_blocks(discard_block_size, origin_size))
2734			discard_block_size *= 2;
2735
2736	return discard_block_size;
2737}
2738
2739static void set_cache_size(struct cache *cache, dm_cblock_t size)
2740{
2741	dm_block_t nr_blocks = from_cblock(size);
2742
2743	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2744		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2745			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2746			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2747			     (unsigned long long) nr_blocks);
2748
2749	cache->cache_size = size;
2750}
2751
2752#define DEFAULT_MIGRATION_THRESHOLD 2048
2753
2754static int cache_create(struct cache_args *ca, struct cache **result)
2755{
2756	int r = 0;
2757	char **error = &ca->ti->error;
2758	struct cache *cache;
2759	struct dm_target *ti = ca->ti;
2760	dm_block_t origin_blocks;
2761	struct dm_cache_metadata *cmd;
2762	bool may_format = ca->features.mode == CM_WRITE;
2763
2764	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2765	if (!cache)
2766		return -ENOMEM;
2767
2768	cache->ti = ca->ti;
2769	ti->private = cache;
2770	ti->num_flush_bios = 2;
2771	ti->flush_supported = true;
2772
2773	ti->num_discard_bios = 1;
2774	ti->discards_supported = true;
2775	ti->discard_zeroes_data_unsupported = true;
2776	ti->split_discard_bios = false;
 
2777
2778	cache->features = ca->features;
2779	ti->per_io_data_size = get_per_bio_data_size(cache);
2780
2781	cache->callbacks.congested_fn = cache_is_congested;
2782	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2783
2784	cache->metadata_dev = ca->metadata_dev;
2785	cache->origin_dev = ca->origin_dev;
2786	cache->cache_dev = ca->cache_dev;
2787
2788	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2789
2790	/* FIXME: factor out this whole section */
2791	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2792	origin_blocks = block_div(origin_blocks, ca->block_size);
2793	cache->origin_blocks = to_oblock(origin_blocks);
2794
2795	cache->sectors_per_block = ca->block_size;
2796	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2797		r = -EINVAL;
2798		goto bad;
2799	}
2800
2801	if (ca->block_size & (ca->block_size - 1)) {
2802		dm_block_t cache_size = ca->cache_sectors;
2803
2804		cache->sectors_per_block_shift = -1;
2805		cache_size = block_div(cache_size, ca->block_size);
2806		set_cache_size(cache, to_cblock(cache_size));
2807	} else {
2808		cache->sectors_per_block_shift = __ffs(ca->block_size);
2809		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2810	}
2811
2812	r = create_cache_policy(cache, ca, error);
2813	if (r)
2814		goto bad;
2815
2816	cache->policy_nr_args = ca->policy_argc;
2817	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2818
2819	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2820	if (r) {
2821		*error = "Error setting cache policy's config values";
2822		goto bad;
2823	}
2824
2825	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2826				     ca->block_size, may_format,
2827				     dm_cache_policy_get_hint_size(cache->policy));
2828	if (IS_ERR(cmd)) {
2829		*error = "Error creating metadata object";
2830		r = PTR_ERR(cmd);
2831		goto bad;
2832	}
2833	cache->cmd = cmd;
2834	set_cache_mode(cache, CM_WRITE);
2835	if (get_cache_mode(cache) != CM_WRITE) {
2836		*error = "Unable to get write access to metadata, please check/repair metadata.";
2837		r = -EINVAL;
2838		goto bad;
2839	}
2840
2841	if (passthrough_mode(&cache->features)) {
2842		bool all_clean;
2843
2844		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2845		if (r) {
2846			*error = "dm_cache_metadata_all_clean() failed";
2847			goto bad;
2848		}
2849
2850		if (!all_clean) {
2851			*error = "Cannot enter passthrough mode unless all blocks are clean";
2852			r = -EINVAL;
2853			goto bad;
2854		}
2855	}
2856
2857	spin_lock_init(&cache->lock);
2858	INIT_LIST_HEAD(&cache->deferred_cells);
2859	bio_list_init(&cache->deferred_bios);
2860	bio_list_init(&cache->deferred_flush_bios);
2861	bio_list_init(&cache->deferred_writethrough_bios);
2862	INIT_LIST_HEAD(&cache->quiesced_migrations);
2863	INIT_LIST_HEAD(&cache->completed_migrations);
2864	INIT_LIST_HEAD(&cache->need_commit_migrations);
2865	atomic_set(&cache->nr_allocated_migrations, 0);
2866	atomic_set(&cache->nr_io_migrations, 0);
2867	init_waitqueue_head(&cache->migration_wait);
2868
2869	init_waitqueue_head(&cache->quiescing_wait);
2870	atomic_set(&cache->quiescing, 0);
2871	atomic_set(&cache->quiescing_ack, 0);
2872
2873	r = -ENOMEM;
2874	atomic_set(&cache->nr_dirty, 0);
2875	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2876	if (!cache->dirty_bitset) {
2877		*error = "could not allocate dirty bitset";
2878		goto bad;
2879	}
2880	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2881
2882	cache->discard_block_size =
2883		calculate_discard_block_size(cache->sectors_per_block,
2884					     cache->origin_sectors);
2885	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2886							      cache->discard_block_size));
2887	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2888	if (!cache->discard_bitset) {
2889		*error = "could not allocate discard bitset";
2890		goto bad;
2891	}
2892	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2893
2894	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2895	if (IS_ERR(cache->copier)) {
2896		*error = "could not create kcopyd client";
2897		r = PTR_ERR(cache->copier);
2898		goto bad;
2899	}
2900
2901	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2902	if (!cache->wq) {
2903		*error = "could not create workqueue for metadata object";
2904		goto bad;
2905	}
2906	INIT_WORK(&cache->worker, do_worker);
2907	INIT_DELAYED_WORK(&cache->waker, do_waker);
2908	cache->last_commit_jiffies = jiffies;
2909
2910	cache->prison = dm_bio_prison_create();
2911	if (!cache->prison) {
2912		*error = "could not create bio prison";
2913		goto bad;
2914	}
2915
2916	cache->all_io_ds = dm_deferred_set_create();
2917	if (!cache->all_io_ds) {
2918		*error = "could not create all_io deferred set";
2919		goto bad;
2920	}
2921
2922	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2923							 migration_cache);
2924	if (!cache->migration_pool) {
2925		*error = "Error creating cache's migration mempool";
2926		goto bad;
2927	}
2928
 
 
2929	cache->need_tick_bio = true;
2930	cache->sized = false;
2931	cache->invalidate = false;
2932	cache->commit_requested = false;
2933	cache->loaded_mappings = false;
2934	cache->loaded_discards = false;
2935
2936	load_stats(cache);
2937
2938	atomic_set(&cache->stats.demotion, 0);
2939	atomic_set(&cache->stats.promotion, 0);
2940	atomic_set(&cache->stats.copies_avoided, 0);
2941	atomic_set(&cache->stats.cache_cell_clash, 0);
2942	atomic_set(&cache->stats.commit_count, 0);
2943	atomic_set(&cache->stats.discard_count, 0);
2944
2945	spin_lock_init(&cache->invalidation_lock);
2946	INIT_LIST_HEAD(&cache->invalidation_requests);
2947
2948	iot_init(&cache->origin_tracker);
2949
2950	*result = cache;
2951	return 0;
2952
2953bad:
2954	destroy(cache);
2955	return r;
2956}
2957
2958static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2959{
2960	unsigned i;
2961	const char **copy;
2962
2963	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2964	if (!copy)
2965		return -ENOMEM;
2966	for (i = 0; i < argc; i++) {
2967		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2968		if (!copy[i]) {
2969			while (i--)
2970				kfree(copy[i]);
2971			kfree(copy);
2972			return -ENOMEM;
2973		}
2974	}
2975
2976	cache->nr_ctr_args = argc;
2977	cache->ctr_args = copy;
2978
2979	return 0;
2980}
2981
2982static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2983{
2984	int r = -EINVAL;
2985	struct cache_args *ca;
2986	struct cache *cache = NULL;
2987
2988	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2989	if (!ca) {
2990		ti->error = "Error allocating memory for cache";
2991		return -ENOMEM;
2992	}
2993	ca->ti = ti;
2994
2995	r = parse_cache_args(ca, argc, argv, &ti->error);
2996	if (r)
2997		goto out;
2998
2999	r = cache_create(ca, &cache);
3000	if (r)
3001		goto out;
3002
3003	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3004	if (r) {
3005		destroy(cache);
3006		goto out;
3007	}
3008
3009	ti->private = cache;
3010
3011out:
3012	destroy_cache_args(ca);
3013	return r;
3014}
3015
3016/*----------------------------------------------------------------*/
3017
3018static int cache_map(struct dm_target *ti, struct bio *bio)
3019{
3020	struct cache *cache = ti->private;
3021
3022	int r;
3023	struct dm_bio_prison_cell *cell = NULL;
3024	dm_oblock_t block = get_bio_block(cache, bio);
3025	size_t pb_data_size = get_per_bio_data_size(cache);
3026	bool can_migrate = false;
3027	bool fast_promotion;
 
3028	struct policy_result lookup_result;
3029	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3030	struct old_oblock_lock ool;
3031
3032	ool.locker.fn = null_locker;
3033
3034	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3035		/*
3036		 * This can only occur if the io goes to a partial block at
3037		 * the end of the origin device.  We don't cache these.
3038		 * Just remap to the origin and carry on.
3039		 */
3040		remap_to_origin(cache, bio);
3041		accounted_begin(cache, bio);
3042		return DM_MAPIO_REMAPPED;
3043	}
3044
3045	if (discard_or_flush(bio)) {
3046		defer_bio(cache, bio);
3047		return DM_MAPIO_SUBMITTED;
3048	}
3049
3050	/*
3051	 * Check to see if that block is currently migrating.
3052	 */
3053	cell = alloc_prison_cell(cache);
3054	if (!cell) {
3055		defer_bio(cache, bio);
3056		return DM_MAPIO_SUBMITTED;
3057	}
3058
3059	r = bio_detain(cache, block, bio, cell,
3060		       (cell_free_fn) free_prison_cell,
3061		       cache, &cell);
3062	if (r) {
3063		if (r < 0)
3064			defer_bio(cache, bio);
3065
3066		return DM_MAPIO_SUBMITTED;
3067	}
3068
3069	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3070
3071	r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3072		       bio, &ool.locker, &lookup_result);
3073	if (r == -EWOULDBLOCK) {
3074		cell_defer(cache, cell, true);
3075		return DM_MAPIO_SUBMITTED;
3076
3077	} else if (r) {
3078		DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3079			    cache_device_name(cache), r);
3080		cell_defer(cache, cell, false);
3081		bio_io_error(bio);
3082		return DM_MAPIO_SUBMITTED;
3083	}
3084
3085	r = DM_MAPIO_REMAPPED;
3086	switch (lookup_result.op) {
3087	case POLICY_HIT:
3088		if (passthrough_mode(&cache->features)) {
3089			if (bio_data_dir(bio) == WRITE) {
3090				/*
3091				 * We need to invalidate this block, so
3092				 * defer for the worker thread.
3093				 */
3094				cell_defer(cache, cell, true);
3095				r = DM_MAPIO_SUBMITTED;
3096
3097			} else {
 
3098				inc_miss_counter(cache, bio);
3099				remap_to_origin_clear_discard(cache, bio, block);
3100				accounted_begin(cache, bio);
3101				inc_ds(cache, bio, cell);
3102				// FIXME: we want to remap hits or misses straight
3103				// away rather than passing over to the worker.
3104				cell_defer(cache, cell, false);
3105			}
3106
3107		} else {
3108			inc_hit_counter(cache, bio);
 
 
3109			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3110			    !is_dirty(cache, lookup_result.cblock)) {
3111				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3112				accounted_begin(cache, bio);
3113				inc_ds(cache, bio, cell);
3114				cell_defer(cache, cell, false);
3115
3116			} else
3117				remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3118		}
3119		break;
3120
3121	case POLICY_MISS:
3122		inc_miss_counter(cache, bio);
 
 
3123		if (pb->req_nr != 0) {
3124			/*
3125			 * This is a duplicate writethrough io that is no
3126			 * longer needed because the block has been demoted.
3127			 */
3128			bio_endio(bio);
3129			// FIXME: remap everything as a miss
3130			cell_defer(cache, cell, false);
3131			r = DM_MAPIO_SUBMITTED;
3132
3133		} else
3134			remap_cell_to_origin_clear_discard(cache, cell, block, false);
 
3135		break;
3136
3137	default:
3138		DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3139			    cache_device_name(cache), __func__,
3140			    (unsigned) lookup_result.op);
3141		cell_defer(cache, cell, false);
3142		bio_io_error(bio);
3143		r = DM_MAPIO_SUBMITTED;
3144	}
3145
3146	return r;
3147}
3148
3149static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3150{
3151	struct cache *cache = ti->private;
3152	unsigned long flags;
3153	size_t pb_data_size = get_per_bio_data_size(cache);
3154	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3155
3156	if (pb->tick) {
3157		policy_tick(cache->policy, false);
3158
3159		spin_lock_irqsave(&cache->lock, flags);
3160		cache->need_tick_bio = true;
3161		spin_unlock_irqrestore(&cache->lock, flags);
3162	}
3163
3164	check_for_quiesced_migrations(cache, pb);
3165	accounted_complete(cache, bio);
3166
3167	return 0;
3168}
3169
3170static int write_dirty_bitset(struct cache *cache)
3171{
3172	unsigned i, r;
3173
3174	if (get_cache_mode(cache) >= CM_READ_ONLY)
3175		return -EINVAL;
3176
3177	for (i = 0; i < from_cblock(cache->cache_size); i++) {
3178		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3179				       is_dirty(cache, to_cblock(i)));
3180		if (r) {
3181			metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3182			return r;
3183		}
3184	}
3185
3186	return 0;
3187}
3188
3189static int write_discard_bitset(struct cache *cache)
3190{
3191	unsigned i, r;
3192
3193	if (get_cache_mode(cache) >= CM_READ_ONLY)
3194		return -EINVAL;
3195
3196	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3197					   cache->discard_nr_blocks);
3198	if (r) {
3199		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3200		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3201		return r;
3202	}
3203
3204	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3205		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3206					 is_discarded(cache, to_dblock(i)));
3207		if (r) {
3208			metadata_operation_failed(cache, "dm_cache_set_discard", r);
3209			return r;
3210		}
3211	}
3212
3213	return 0;
3214}
3215
3216static int write_hints(struct cache *cache)
3217{
3218	int r;
3219
3220	if (get_cache_mode(cache) >= CM_READ_ONLY)
3221		return -EINVAL;
3222
3223	r = dm_cache_write_hints(cache->cmd, cache->policy);
3224	if (r) {
3225		metadata_operation_failed(cache, "dm_cache_write_hints", r);
3226		return r;
3227	}
3228
3229	return 0;
3230}
3231
3232/*
3233 * returns true on success
3234 */
3235static bool sync_metadata(struct cache *cache)
3236{
3237	int r1, r2, r3, r4;
3238
3239	r1 = write_dirty_bitset(cache);
3240	if (r1)
3241		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3242
3243	r2 = write_discard_bitset(cache);
3244	if (r2)
3245		DMERR("%s: could not write discard bitset", cache_device_name(cache));
3246
3247	save_stats(cache);
3248
3249	r3 = write_hints(cache);
3250	if (r3)
3251		DMERR("%s: could not write hints", cache_device_name(cache));
3252
3253	/*
3254	 * If writing the above metadata failed, we still commit, but don't
3255	 * set the clean shutdown flag.  This will effectively force every
3256	 * dirty bit to be set on reload.
3257	 */
3258	r4 = commit(cache, !r1 && !r2 && !r3);
3259	if (r4)
3260		DMERR("%s: could not write cache metadata", cache_device_name(cache));
3261
3262	return !r1 && !r2 && !r3 && !r4;
3263}
3264
3265static void cache_postsuspend(struct dm_target *ti)
3266{
3267	struct cache *cache = ti->private;
3268
3269	start_quiescing(cache);
3270	wait_for_migrations(cache);
3271	stop_worker(cache);
3272	requeue_deferred_bios(cache);
3273	requeue_deferred_cells(cache);
3274	stop_quiescing(cache);
3275
3276	if (get_cache_mode(cache) == CM_WRITE)
3277		(void) sync_metadata(cache);
3278}
3279
3280static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3281			bool dirty, uint32_t hint, bool hint_valid)
3282{
3283	int r;
3284	struct cache *cache = context;
3285
3286	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
3287	if (r)
3288		return r;
3289
3290	if (dirty)
3291		set_dirty(cache, oblock, cblock);
3292	else
3293		clear_dirty(cache, oblock, cblock);
3294
3295	return 0;
3296}
3297
3298/*
3299 * The discard block size in the on disk metadata is not
3300 * neccessarily the same as we're currently using.  So we have to
3301 * be careful to only set the discarded attribute if we know it
3302 * covers a complete block of the new size.
3303 */
3304struct discard_load_info {
3305	struct cache *cache;
3306
3307	/*
3308	 * These blocks are sized using the on disk dblock size, rather
3309	 * than the current one.
3310	 */
3311	dm_block_t block_size;
3312	dm_block_t discard_begin, discard_end;
3313};
3314
3315static void discard_load_info_init(struct cache *cache,
3316				   struct discard_load_info *li)
3317{
3318	li->cache = cache;
3319	li->discard_begin = li->discard_end = 0;
3320}
3321
3322static void set_discard_range(struct discard_load_info *li)
3323{
3324	sector_t b, e;
3325
3326	if (li->discard_begin == li->discard_end)
3327		return;
3328
3329	/*
3330	 * Convert to sectors.
3331	 */
3332	b = li->discard_begin * li->block_size;
3333	e = li->discard_end * li->block_size;
3334
3335	/*
3336	 * Then convert back to the current dblock size.
3337	 */
3338	b = dm_sector_div_up(b, li->cache->discard_block_size);
3339	sector_div(e, li->cache->discard_block_size);
3340
3341	/*
3342	 * The origin may have shrunk, so we need to check we're still in
3343	 * bounds.
3344	 */
3345	if (e > from_dblock(li->cache->discard_nr_blocks))
3346		e = from_dblock(li->cache->discard_nr_blocks);
3347
3348	for (; b < e; b++)
3349		set_discard(li->cache, to_dblock(b));
3350}
3351
3352static int load_discard(void *context, sector_t discard_block_size,
3353			dm_dblock_t dblock, bool discard)
3354{
3355	struct discard_load_info *li = context;
3356
3357	li->block_size = discard_block_size;
3358
3359	if (discard) {
3360		if (from_dblock(dblock) == li->discard_end)
3361			/*
3362			 * We're already in a discard range, just extend it.
3363			 */
3364			li->discard_end = li->discard_end + 1ULL;
3365
3366		else {
3367			/*
3368			 * Emit the old range and start a new one.
3369			 */
3370			set_discard_range(li);
3371			li->discard_begin = from_dblock(dblock);
3372			li->discard_end = li->discard_begin + 1ULL;
3373		}
3374	} else {
3375		set_discard_range(li);
3376		li->discard_begin = li->discard_end = 0;
3377	}
3378
3379	return 0;
3380}
3381
3382static dm_cblock_t get_cache_dev_size(struct cache *cache)
3383{
3384	sector_t size = get_dev_size(cache->cache_dev);
3385	(void) sector_div(size, cache->sectors_per_block);
3386	return to_cblock(size);
3387}
3388
3389static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3390{
3391	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3392		return true;
3393
3394	/*
3395	 * We can't drop a dirty block when shrinking the cache.
3396	 */
3397	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3398		new_size = to_cblock(from_cblock(new_size) + 1);
3399		if (is_dirty(cache, new_size)) {
3400			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3401			      cache_device_name(cache),
3402			      (unsigned long long) from_cblock(new_size));
3403			return false;
3404		}
3405	}
3406
3407	return true;
3408}
3409
3410static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3411{
3412	int r;
3413
3414	r = dm_cache_resize(cache->cmd, new_size);
3415	if (r) {
3416		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3417		metadata_operation_failed(cache, "dm_cache_resize", r);
3418		return r;
3419	}
3420
3421	set_cache_size(cache, new_size);
3422
3423	return 0;
3424}
3425
3426static int cache_preresume(struct dm_target *ti)
3427{
3428	int r = 0;
3429	struct cache *cache = ti->private;
3430	dm_cblock_t csize = get_cache_dev_size(cache);
3431
3432	/*
3433	 * Check to see if the cache has resized.
3434	 */
3435	if (!cache->sized) {
3436		r = resize_cache_dev(cache, csize);
3437		if (r)
3438			return r;
3439
3440		cache->sized = true;
3441
3442	} else if (csize != cache->cache_size) {
3443		if (!can_resize(cache, csize))
3444			return -EINVAL;
3445
3446		r = resize_cache_dev(cache, csize);
3447		if (r)
3448			return r;
3449	}
3450
3451	if (!cache->loaded_mappings) {
3452		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3453					   load_mapping, cache);
3454		if (r) {
3455			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3456			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3457			return r;
3458		}
3459
3460		cache->loaded_mappings = true;
3461	}
3462
3463	if (!cache->loaded_discards) {
3464		struct discard_load_info li;
3465
3466		/*
3467		 * The discard bitset could have been resized, or the
3468		 * discard block size changed.  To be safe we start by
3469		 * setting every dblock to not discarded.
3470		 */
3471		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3472
3473		discard_load_info_init(cache, &li);
3474		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3475		if (r) {
3476			DMERR("%s: could not load origin discards", cache_device_name(cache));
3477			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3478			return r;
3479		}
3480		set_discard_range(&li);
3481
3482		cache->loaded_discards = true;
3483	}
3484
3485	return r;
3486}
3487
3488static void cache_resume(struct dm_target *ti)
3489{
3490	struct cache *cache = ti->private;
3491
3492	cache->need_tick_bio = true;
3493	do_waker(&cache->waker.work);
3494}
3495
3496/*
3497 * Status format:
3498 *
3499 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3500 * <cache block size> <#used cache blocks>/<#total cache blocks>
3501 * <#read hits> <#read misses> <#write hits> <#write misses>
3502 * <#demotions> <#promotions> <#dirty>
3503 * <#features> <features>*
3504 * <#core args> <core args>
3505 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3506 */
3507static void cache_status(struct dm_target *ti, status_type_t type,
3508			 unsigned status_flags, char *result, unsigned maxlen)
3509{
3510	int r = 0;
3511	unsigned i;
3512	ssize_t sz = 0;
3513	dm_block_t nr_free_blocks_metadata = 0;
3514	dm_block_t nr_blocks_metadata = 0;
3515	char buf[BDEVNAME_SIZE];
3516	struct cache *cache = ti->private;
3517	dm_cblock_t residency;
3518	bool needs_check;
3519
3520	switch (type) {
3521	case STATUSTYPE_INFO:
3522		if (get_cache_mode(cache) == CM_FAIL) {
3523			DMEMIT("Fail");
3524			break;
3525		}
3526
3527		/* Commit to ensure statistics aren't out-of-date */
3528		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3529			(void) commit(cache, false);
 
 
 
3530
3531		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
 
3532		if (r) {
3533			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3534			      cache_device_name(cache), r);
3535			goto err;
3536		}
3537
3538		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3539		if (r) {
3540			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3541			      cache_device_name(cache), r);
3542			goto err;
3543		}
3544
3545		residency = policy_residency(cache->policy);
3546
3547		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3548		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3549		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3550		       (unsigned long long)nr_blocks_metadata,
3551		       cache->sectors_per_block,
3552		       (unsigned long long) from_cblock(residency),
3553		       (unsigned long long) from_cblock(cache->cache_size),
3554		       (unsigned) atomic_read(&cache->stats.read_hit),
3555		       (unsigned) atomic_read(&cache->stats.read_miss),
3556		       (unsigned) atomic_read(&cache->stats.write_hit),
3557		       (unsigned) atomic_read(&cache->stats.write_miss),
3558		       (unsigned) atomic_read(&cache->stats.demotion),
3559		       (unsigned) atomic_read(&cache->stats.promotion),
3560		       (unsigned long) atomic_read(&cache->nr_dirty));
3561
3562		if (writethrough_mode(&cache->features))
3563			DMEMIT("1 writethrough ");
3564
3565		else if (passthrough_mode(&cache->features))
3566			DMEMIT("1 passthrough ");
3567
3568		else if (writeback_mode(&cache->features))
3569			DMEMIT("1 writeback ");
3570
3571		else {
3572			DMERR("%s: internal error: unknown io mode: %d",
3573			      cache_device_name(cache), (int) cache->features.io_mode);
3574			goto err;
3575		}
3576
3577		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3578
3579		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3580		if (sz < maxlen) {
3581			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3582			if (r)
3583				DMERR("%s: policy_emit_config_values returned %d",
3584				      cache_device_name(cache), r);
3585		}
3586
3587		if (get_cache_mode(cache) == CM_READ_ONLY)
3588			DMEMIT("ro ");
3589		else
3590			DMEMIT("rw ");
3591
3592		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3593
3594		if (r || needs_check)
3595			DMEMIT("needs_check ");
3596		else
3597			DMEMIT("- ");
3598
3599		break;
3600
3601	case STATUSTYPE_TABLE:
3602		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3603		DMEMIT("%s ", buf);
3604		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3605		DMEMIT("%s ", buf);
3606		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3607		DMEMIT("%s", buf);
3608
3609		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3610			DMEMIT(" %s", cache->ctr_args[i]);
3611		if (cache->nr_ctr_args)
3612			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3613	}
3614
3615	return;
3616
3617err:
3618	DMEMIT("Error");
3619}
3620
3621/*
3622 * A cache block range can take two forms:
3623 *
3624 * i) A single cblock, eg. '3456'
3625 * ii) A begin and end cblock with dots between, eg. 123-234
3626 */
3627static int parse_cblock_range(struct cache *cache, const char *str,
3628			      struct cblock_range *result)
3629{
3630	char dummy;
3631	uint64_t b, e;
3632	int r;
3633
3634	/*
3635	 * Try and parse form (ii) first.
3636	 */
3637	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3638	if (r < 0)
3639		return r;
3640
3641	if (r == 2) {
3642		result->begin = to_cblock(b);
3643		result->end = to_cblock(e);
3644		return 0;
3645	}
3646
3647	/*
3648	 * That didn't work, try form (i).
3649	 */
3650	r = sscanf(str, "%llu%c", &b, &dummy);
3651	if (r < 0)
3652		return r;
3653
3654	if (r == 1) {
3655		result->begin = to_cblock(b);
3656		result->end = to_cblock(from_cblock(result->begin) + 1u);
3657		return 0;
3658	}
3659
3660	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3661	return -EINVAL;
3662}
3663
3664static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3665{
3666	uint64_t b = from_cblock(range->begin);
3667	uint64_t e = from_cblock(range->end);
3668	uint64_t n = from_cblock(cache->cache_size);
3669
3670	if (b >= n) {
3671		DMERR("%s: begin cblock out of range: %llu >= %llu",
3672		      cache_device_name(cache), b, n);
3673		return -EINVAL;
3674	}
3675
3676	if (e > n) {
3677		DMERR("%s: end cblock out of range: %llu > %llu",
3678		      cache_device_name(cache), e, n);
3679		return -EINVAL;
3680	}
3681
3682	if (b >= e) {
3683		DMERR("%s: invalid cblock range: %llu >= %llu",
3684		      cache_device_name(cache), b, e);
3685		return -EINVAL;
3686	}
3687
3688	return 0;
3689}
3690
3691static int request_invalidation(struct cache *cache, struct cblock_range *range)
3692{
3693	struct invalidation_request req;
3694
3695	INIT_LIST_HEAD(&req.list);
3696	req.cblocks = range;
3697	atomic_set(&req.complete, 0);
3698	req.err = 0;
3699	init_waitqueue_head(&req.result_wait);
3700
3701	spin_lock(&cache->invalidation_lock);
3702	list_add(&req.list, &cache->invalidation_requests);
3703	spin_unlock(&cache->invalidation_lock);
3704	wake_worker(cache);
3705
3706	wait_event(req.result_wait, atomic_read(&req.complete));
3707	return req.err;
3708}
3709
3710static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3711					      const char **cblock_ranges)
3712{
3713	int r = 0;
3714	unsigned i;
3715	struct cblock_range range;
3716
3717	if (!passthrough_mode(&cache->features)) {
3718		DMERR("%s: cache has to be in passthrough mode for invalidation",
3719		      cache_device_name(cache));
3720		return -EPERM;
3721	}
3722
3723	for (i = 0; i < count; i++) {
3724		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3725		if (r)
3726			break;
3727
3728		r = validate_cblock_range(cache, &range);
3729		if (r)
3730			break;
3731
3732		/*
3733		 * Pass begin and end origin blocks to the worker and wake it.
3734		 */
3735		r = request_invalidation(cache, &range);
3736		if (r)
3737			break;
3738	}
3739
3740	return r;
3741}
3742
3743/*
3744 * Supports
3745 *	"<key> <value>"
3746 * and
3747 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3748 *
3749 * The key migration_threshold is supported by the cache target core.
3750 */
3751static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3752{
3753	struct cache *cache = ti->private;
3754
3755	if (!argc)
3756		return -EINVAL;
3757
3758	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3759		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3760		      cache_device_name(cache));
3761		return -EOPNOTSUPP;
3762	}
3763
3764	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3765		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3766
3767	if (argc != 2)
3768		return -EINVAL;
3769
3770	return set_config_value(cache, argv[0], argv[1]);
3771}
3772
3773static int cache_iterate_devices(struct dm_target *ti,
3774				 iterate_devices_callout_fn fn, void *data)
3775{
3776	int r = 0;
3777	struct cache *cache = ti->private;
3778
3779	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3780	if (!r)
3781		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3782
3783	return r;
3784}
3785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3786static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3787{
3788	/*
3789	 * FIXME: these limits may be incompatible with the cache device
3790	 */
3791	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3792					    cache->origin_sectors);
3793	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3794}
3795
3796static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3797{
3798	struct cache *cache = ti->private;
3799	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3800
3801	/*
3802	 * If the system-determined stacked limits are compatible with the
3803	 * cache's blocksize (io_opt is a factor) do not override them.
3804	 */
3805	if (io_opt_sectors < cache->sectors_per_block ||
3806	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3807		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3808		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3809	}
3810	set_discard_limits(cache, limits);
3811}
3812
3813/*----------------------------------------------------------------*/
3814
3815static struct target_type cache_target = {
3816	.name = "cache",
3817	.version = {1, 9, 0},
3818	.module = THIS_MODULE,
3819	.ctr = cache_ctr,
3820	.dtr = cache_dtr,
3821	.map = cache_map,
3822	.end_io = cache_end_io,
3823	.postsuspend = cache_postsuspend,
3824	.preresume = cache_preresume,
3825	.resume = cache_resume,
3826	.status = cache_status,
3827	.message = cache_message,
3828	.iterate_devices = cache_iterate_devices,
 
3829	.io_hints = cache_io_hints,
3830};
3831
3832static int __init dm_cache_init(void)
3833{
3834	int r;
3835
3836	r = dm_register_target(&cache_target);
3837	if (r) {
3838		DMERR("cache target registration failed: %d", r);
3839		return r;
3840	}
3841
3842	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3843	if (!migration_cache) {
3844		dm_unregister_target(&cache_target);
3845		return -ENOMEM;
3846	}
3847
3848	return 0;
3849}
3850
3851static void __exit dm_cache_exit(void)
3852{
3853	dm_unregister_target(&cache_target);
3854	kmem_cache_destroy(migration_cache);
3855}
3856
3857module_init(dm_cache_init);
3858module_exit(dm_cache_exit);
3859
3860MODULE_DESCRIPTION(DM_NAME " cache target");
3861MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3862MODULE_LICENSE("GPL");
v3.15
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
 
  14#include <linux/init.h>
  15#include <linux/mempool.h>
  16#include <linux/module.h>
  17#include <linux/slab.h>
  18#include <linux/vmalloc.h>
  19
  20#define DM_MSG_PREFIX "cache"
  21
  22DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  23	"A percentage of time allocated for copying to and/or from cache");
  24
  25/*----------------------------------------------------------------*/
  26
  27/*
  28 * Glossary:
  29 *
  30 * oblock: index of an origin block
  31 * cblock: index of a cache block
  32 * promotion: movement of a block from origin to cache
  33 * demotion: movement of a block from cache to origin
  34 * migration: movement of a block between the origin and cache device,
  35 *	      either direction
  36 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  37
  38/*----------------------------------------------------------------*/
 
  39
  40static size_t bitset_size_in_bytes(unsigned nr_entries)
  41{
  42	return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
 
 
 
 
 
 
 
  43}
  44
  45static unsigned long *alloc_bitset(unsigned nr_entries)
  46{
  47	size_t s = bitset_size_in_bytes(nr_entries);
  48	return vzalloc(s);
 
 
 
  49}
  50
  51static void clear_bitset(void *bitset, unsigned nr_entries)
  52{
  53	size_t s = bitset_size_in_bytes(nr_entries);
  54	memset(bitset, 0, s);
 
  55}
  56
  57static void free_bitset(unsigned long *bits)
  58{
  59	vfree(bits);
 
 
 
 
  60}
  61
  62/*----------------------------------------------------------------*/
  63
  64/*
 
 
 
 
 
 
 
 
 
 
 
 
 
  65 * There are a couple of places where we let a bio run, but want to do some
  66 * work before calling its endio function.  We do this by temporarily
  67 * changing the endio fn.
  68 */
  69struct dm_hook_info {
  70	bio_end_io_t *bi_end_io;
  71	void *bi_private;
  72};
  73
  74static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
  75			bio_end_io_t *bi_end_io, void *bi_private)
  76{
  77	h->bi_end_io = bio->bi_end_io;
  78	h->bi_private = bio->bi_private;
  79
  80	bio->bi_end_io = bi_end_io;
  81	bio->bi_private = bi_private;
  82}
  83
  84static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
  85{
  86	bio->bi_end_io = h->bi_end_io;
  87	bio->bi_private = h->bi_private;
  88
  89	/*
  90	 * Must bump bi_remaining to allow bio to complete with
  91	 * restored bi_end_io.
  92	 */
  93	atomic_inc(&bio->bi_remaining);
  94}
  95
  96/*----------------------------------------------------------------*/
  97
  98#define PRISON_CELLS 1024
  99#define MIGRATION_POOL_SIZE 128
 100#define COMMIT_PERIOD HZ
 101#define MIGRATION_COUNT_WINDOW 10
 102
 103/*
 104 * The block size of the device holding cache data must be
 105 * between 32KB and 1GB.
 106 */
 107#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 108#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 109
 110/*
 111 * FIXME: the cache is read/write for the time being.
 112 */
 113enum cache_metadata_mode {
 114	CM_WRITE,		/* metadata may be changed */
 115	CM_READ_ONLY,		/* metadata may not be changed */
 
 116};
 117
 118enum cache_io_mode {
 119	/*
 120	 * Data is written to cached blocks only.  These blocks are marked
 121	 * dirty.  If you lose the cache device you will lose data.
 122	 * Potential performance increase for both reads and writes.
 123	 */
 124	CM_IO_WRITEBACK,
 125
 126	/*
 127	 * Data is written to both cache and origin.  Blocks are never
 128	 * dirty.  Potential performance benfit for reads only.
 129	 */
 130	CM_IO_WRITETHROUGH,
 131
 132	/*
 133	 * A degraded mode useful for various cache coherency situations
 134	 * (eg, rolling back snapshots).  Reads and writes always go to the
 135	 * origin.  If a write goes to a cached oblock, then the cache
 136	 * block is invalidated.
 137	 */
 138	CM_IO_PASSTHROUGH
 139};
 140
 141struct cache_features {
 142	enum cache_metadata_mode mode;
 143	enum cache_io_mode io_mode;
 144};
 145
 146struct cache_stats {
 147	atomic_t read_hit;
 148	atomic_t read_miss;
 149	atomic_t write_hit;
 150	atomic_t write_miss;
 151	atomic_t demotion;
 152	atomic_t promotion;
 153	atomic_t copies_avoided;
 154	atomic_t cache_cell_clash;
 155	atomic_t commit_count;
 156	atomic_t discard_count;
 157};
 158
 159/*
 160 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
 161 * the one-past-the-end value.
 162 */
 163struct cblock_range {
 164	dm_cblock_t begin;
 165	dm_cblock_t end;
 166};
 167
 168struct invalidation_request {
 169	struct list_head list;
 170	struct cblock_range *cblocks;
 171
 172	atomic_t complete;
 173	int err;
 174
 175	wait_queue_head_t result_wait;
 176};
 177
 178struct cache {
 179	struct dm_target *ti;
 180	struct dm_target_callbacks callbacks;
 181
 182	struct dm_cache_metadata *cmd;
 183
 184	/*
 185	 * Metadata is written to this device.
 186	 */
 187	struct dm_dev *metadata_dev;
 188
 189	/*
 190	 * The slower of the two data devices.  Typically a spindle.
 191	 */
 192	struct dm_dev *origin_dev;
 193
 194	/*
 195	 * The faster of the two data devices.  Typically an SSD.
 196	 */
 197	struct dm_dev *cache_dev;
 198
 199	/*
 200	 * Size of the origin device in _complete_ blocks and native sectors.
 201	 */
 202	dm_oblock_t origin_blocks;
 203	sector_t origin_sectors;
 204
 205	/*
 206	 * Size of the cache device in blocks.
 207	 */
 208	dm_cblock_t cache_size;
 209
 210	/*
 211	 * Fields for converting from sectors to blocks.
 212	 */
 213	uint32_t sectors_per_block;
 214	int sectors_per_block_shift;
 215
 216	spinlock_t lock;
 
 217	struct bio_list deferred_bios;
 218	struct bio_list deferred_flush_bios;
 219	struct bio_list deferred_writethrough_bios;
 220	struct list_head quiesced_migrations;
 221	struct list_head completed_migrations;
 222	struct list_head need_commit_migrations;
 223	sector_t migration_threshold;
 224	wait_queue_head_t migration_wait;
 225	atomic_t nr_migrations;
 
 
 
 
 
 
 226
 227	wait_queue_head_t quiescing_wait;
 228	atomic_t quiescing;
 229	atomic_t quiescing_ack;
 230
 231	/*
 232	 * cache_size entries, dirty if set
 233	 */
 234	dm_cblock_t nr_dirty;
 235	unsigned long *dirty_bitset;
 236
 237	/*
 238	 * origin_blocks entries, discarded if set.
 239	 */
 240	dm_oblock_t discard_nr_blocks;
 241	unsigned long *discard_bitset;
 
 242
 243	/*
 244	 * Rather than reconstructing the table line for the status we just
 245	 * save it and regurgitate.
 246	 */
 247	unsigned nr_ctr_args;
 248	const char **ctr_args;
 249
 250	struct dm_kcopyd_client *copier;
 251	struct workqueue_struct *wq;
 252	struct work_struct worker;
 253
 254	struct delayed_work waker;
 255	unsigned long last_commit_jiffies;
 256
 257	struct dm_bio_prison *prison;
 258	struct dm_deferred_set *all_io_ds;
 259
 260	mempool_t *migration_pool;
 261	struct dm_cache_migration *next_migration;
 262
 263	struct dm_cache_policy *policy;
 264	unsigned policy_nr_args;
 265
 266	bool need_tick_bio:1;
 267	bool sized:1;
 268	bool invalidate:1;
 269	bool commit_requested:1;
 270	bool loaded_mappings:1;
 271	bool loaded_discards:1;
 272
 273	/*
 274	 * Cache features such as write-through.
 275	 */
 276	struct cache_features features;
 277
 278	struct cache_stats stats;
 279
 280	/*
 281	 * Invalidation fields.
 282	 */
 283	spinlock_t invalidation_lock;
 284	struct list_head invalidation_requests;
 
 
 285};
 286
 287struct per_bio_data {
 288	bool tick:1;
 289	unsigned req_nr:2;
 290	struct dm_deferred_entry *all_io_entry;
 291	struct dm_hook_info hook_info;
 
 292
 293	/*
 294	 * writethrough fields.  These MUST remain at the end of this
 295	 * structure and the 'cache' member must be the first as it
 296	 * is used to determine the offset of the writethrough fields.
 297	 */
 298	struct cache *cache;
 299	dm_cblock_t cblock;
 300	struct dm_bio_details bio_details;
 301};
 302
 303struct dm_cache_migration {
 304	struct list_head list;
 305	struct cache *cache;
 306
 307	unsigned long start_jiffies;
 308	dm_oblock_t old_oblock;
 309	dm_oblock_t new_oblock;
 310	dm_cblock_t cblock;
 311
 312	bool err:1;
 
 313	bool writeback:1;
 314	bool demote:1;
 315	bool promote:1;
 316	bool requeue_holder:1;
 317	bool invalidate:1;
 318
 319	struct dm_bio_prison_cell *old_ocell;
 320	struct dm_bio_prison_cell *new_ocell;
 321};
 322
 323/*
 324 * Processing a bio in the worker thread may require these memory
 325 * allocations.  We prealloc to avoid deadlocks (the same worker thread
 326 * frees them back to the mempool).
 327 */
 328struct prealloc {
 329	struct dm_cache_migration *mg;
 330	struct dm_bio_prison_cell *cell1;
 331	struct dm_bio_prison_cell *cell2;
 332};
 333
 
 
 334static void wake_worker(struct cache *cache)
 335{
 336	queue_work(cache->wq, &cache->worker);
 337}
 338
 339/*----------------------------------------------------------------*/
 340
 341static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
 342{
 343	/* FIXME: change to use a local slab. */
 344	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
 345}
 346
 347static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
 348{
 349	dm_bio_prison_free_cell(cache->prison, cell);
 350}
 351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
 353{
 354	if (!p->mg) {
 355		p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
 356		if (!p->mg)
 357			return -ENOMEM;
 358	}
 359
 360	if (!p->cell1) {
 361		p->cell1 = alloc_prison_cell(cache);
 362		if (!p->cell1)
 363			return -ENOMEM;
 364	}
 365
 366	if (!p->cell2) {
 367		p->cell2 = alloc_prison_cell(cache);
 368		if (!p->cell2)
 369			return -ENOMEM;
 370	}
 371
 372	return 0;
 373}
 374
 375static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
 376{
 377	if (p->cell2)
 378		free_prison_cell(cache, p->cell2);
 379
 380	if (p->cell1)
 381		free_prison_cell(cache, p->cell1);
 382
 383	if (p->mg)
 384		mempool_free(p->mg, cache->migration_pool);
 385}
 386
 387static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
 388{
 389	struct dm_cache_migration *mg = p->mg;
 390
 391	BUG_ON(!mg);
 392	p->mg = NULL;
 393
 394	return mg;
 395}
 396
 397/*
 398 * You must have a cell within the prealloc struct to return.  If not this
 399 * function will BUG() rather than returning NULL.
 400 */
 401static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
 402{
 403	struct dm_bio_prison_cell *r = NULL;
 404
 405	if (p->cell1) {
 406		r = p->cell1;
 407		p->cell1 = NULL;
 408
 409	} else if (p->cell2) {
 410		r = p->cell2;
 411		p->cell2 = NULL;
 412	} else
 413		BUG();
 414
 415	return r;
 416}
 417
 418/*
 419 * You can't have more than two cells in a prealloc struct.  BUG() will be
 420 * called if you try and overfill.
 421 */
 422static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
 423{
 424	if (!p->cell2)
 425		p->cell2 = cell;
 426
 427	else if (!p->cell1)
 428		p->cell1 = cell;
 429
 430	else
 431		BUG();
 432}
 433
 434/*----------------------------------------------------------------*/
 435
 436static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
 437{
 438	key->virtual = 0;
 439	key->dev = 0;
 440	key->block = from_oblock(oblock);
 
 441}
 442
 443/*
 444 * The caller hands in a preallocated cell, and a free function for it.
 445 * The cell will be freed if there's an error, or if it wasn't used because
 446 * a cell with that key already exists.
 447 */
 448typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
 449
 450static int bio_detain(struct cache *cache, dm_oblock_t oblock,
 451		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 452		      cell_free_fn free_fn, void *free_context,
 453		      struct dm_bio_prison_cell **cell_result)
 454{
 455	int r;
 456	struct dm_cell_key key;
 457
 458	build_key(oblock, &key);
 459	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
 460	if (r)
 461		free_fn(free_context, cell_prealloc);
 462
 463	return r;
 464}
 465
 
 
 
 
 
 
 
 
 
 
 466static int get_cell(struct cache *cache,
 467		    dm_oblock_t oblock,
 468		    struct prealloc *structs,
 469		    struct dm_bio_prison_cell **cell_result)
 470{
 471	int r;
 472	struct dm_cell_key key;
 473	struct dm_bio_prison_cell *cell_prealloc;
 474
 475	cell_prealloc = prealloc_get_cell(structs);
 476
 477	build_key(oblock, &key);
 478	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
 479	if (r)
 480		prealloc_put_cell(structs, cell_prealloc);
 481
 482	return r;
 483}
 484
 485/*----------------------------------------------------------------*/
 486
 487static bool is_dirty(struct cache *cache, dm_cblock_t b)
 488{
 489	return test_bit(from_cblock(b), cache->dirty_bitset);
 490}
 491
 492static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 493{
 494	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 495		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
 496		policy_set_dirty(cache->policy, oblock);
 497	}
 498}
 499
 500static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 501{
 502	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 503		policy_clear_dirty(cache->policy, oblock);
 504		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
 505		if (!from_cblock(cache->nr_dirty))
 506			dm_table_event(cache->ti->table);
 507	}
 508}
 509
 510/*----------------------------------------------------------------*/
 511
 512static bool block_size_is_power_of_two(struct cache *cache)
 513{
 514	return cache->sectors_per_block_shift >= 0;
 515}
 516
 517/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 518#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 519__always_inline
 520#endif
 521static dm_block_t block_div(dm_block_t b, uint32_t n)
 522{
 523	do_div(b, n);
 524
 525	return b;
 526}
 527
 528static void set_discard(struct cache *cache, dm_oblock_t b)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 529{
 530	unsigned long flags;
 531
 
 532	atomic_inc(&cache->stats.discard_count);
 533
 534	spin_lock_irqsave(&cache->lock, flags);
 535	set_bit(from_oblock(b), cache->discard_bitset);
 536	spin_unlock_irqrestore(&cache->lock, flags);
 537}
 538
 539static void clear_discard(struct cache *cache, dm_oblock_t b)
 540{
 541	unsigned long flags;
 542
 543	spin_lock_irqsave(&cache->lock, flags);
 544	clear_bit(from_oblock(b), cache->discard_bitset);
 545	spin_unlock_irqrestore(&cache->lock, flags);
 546}
 547
 548static bool is_discarded(struct cache *cache, dm_oblock_t b)
 549{
 550	int r;
 551	unsigned long flags;
 552
 553	spin_lock_irqsave(&cache->lock, flags);
 554	r = test_bit(from_oblock(b), cache->discard_bitset);
 555	spin_unlock_irqrestore(&cache->lock, flags);
 556
 557	return r;
 558}
 559
 560static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 561{
 562	int r;
 563	unsigned long flags;
 564
 565	spin_lock_irqsave(&cache->lock, flags);
 566	r = test_bit(from_oblock(b), cache->discard_bitset);
 
 567	spin_unlock_irqrestore(&cache->lock, flags);
 568
 569	return r;
 570}
 571
 572/*----------------------------------------------------------------*/
 573
 574static void load_stats(struct cache *cache)
 575{
 576	struct dm_cache_statistics stats;
 577
 578	dm_cache_metadata_get_stats(cache->cmd, &stats);
 579	atomic_set(&cache->stats.read_hit, stats.read_hits);
 580	atomic_set(&cache->stats.read_miss, stats.read_misses);
 581	atomic_set(&cache->stats.write_hit, stats.write_hits);
 582	atomic_set(&cache->stats.write_miss, stats.write_misses);
 583}
 584
 585static void save_stats(struct cache *cache)
 586{
 587	struct dm_cache_statistics stats;
 588
 
 
 
 589	stats.read_hits = atomic_read(&cache->stats.read_hit);
 590	stats.read_misses = atomic_read(&cache->stats.read_miss);
 591	stats.write_hits = atomic_read(&cache->stats.write_hit);
 592	stats.write_misses = atomic_read(&cache->stats.write_miss);
 593
 594	dm_cache_metadata_set_stats(cache->cmd, &stats);
 595}
 596
 597/*----------------------------------------------------------------
 598 * Per bio data
 599 *--------------------------------------------------------------*/
 600
 601/*
 602 * If using writeback, leave out struct per_bio_data's writethrough fields.
 603 */
 604#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
 605#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
 606
 607static bool writethrough_mode(struct cache_features *f)
 608{
 609	return f->io_mode == CM_IO_WRITETHROUGH;
 610}
 611
 612static bool writeback_mode(struct cache_features *f)
 613{
 614	return f->io_mode == CM_IO_WRITEBACK;
 615}
 616
 617static bool passthrough_mode(struct cache_features *f)
 618{
 619	return f->io_mode == CM_IO_PASSTHROUGH;
 620}
 621
 622static size_t get_per_bio_data_size(struct cache *cache)
 623{
 624	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
 625}
 626
 627static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
 628{
 629	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
 630	BUG_ON(!pb);
 631	return pb;
 632}
 633
 634static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
 635{
 636	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
 637
 638	pb->tick = false;
 639	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 640	pb->all_io_entry = NULL;
 
 641
 642	return pb;
 643}
 644
 645/*----------------------------------------------------------------
 646 * Remapping
 647 *--------------------------------------------------------------*/
 648static void remap_to_origin(struct cache *cache, struct bio *bio)
 649{
 650	bio->bi_bdev = cache->origin_dev->bdev;
 651}
 652
 653static void remap_to_cache(struct cache *cache, struct bio *bio,
 654			   dm_cblock_t cblock)
 655{
 656	sector_t bi_sector = bio->bi_iter.bi_sector;
 657	sector_t block = from_cblock(cblock);
 658
 659	bio->bi_bdev = cache->cache_dev->bdev;
 660	if (!block_size_is_power_of_two(cache))
 661		bio->bi_iter.bi_sector =
 662			(block * cache->sectors_per_block) +
 663			sector_div(bi_sector, cache->sectors_per_block);
 664	else
 665		bio->bi_iter.bi_sector =
 666			(block << cache->sectors_per_block_shift) |
 667			(bi_sector & (cache->sectors_per_block - 1));
 668}
 669
 670static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 671{
 672	unsigned long flags;
 673	size_t pb_data_size = get_per_bio_data_size(cache);
 674	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 675
 676	spin_lock_irqsave(&cache->lock, flags);
 677	if (cache->need_tick_bio &&
 678	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
 679		pb->tick = true;
 680		cache->need_tick_bio = false;
 681	}
 682	spin_unlock_irqrestore(&cache->lock, flags);
 683}
 684
 685static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 686				  dm_oblock_t oblock)
 687{
 688	check_if_tick_bio_needed(cache, bio);
 689	remap_to_origin(cache, bio);
 690	if (bio_data_dir(bio) == WRITE)
 691		clear_discard(cache, oblock);
 692}
 693
 694static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 695				 dm_oblock_t oblock, dm_cblock_t cblock)
 696{
 697	check_if_tick_bio_needed(cache, bio);
 698	remap_to_cache(cache, bio, cblock);
 699	if (bio_data_dir(bio) == WRITE) {
 700		set_dirty(cache, oblock, cblock);
 701		clear_discard(cache, oblock);
 702	}
 703}
 704
 705static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 706{
 707	sector_t block_nr = bio->bi_iter.bi_sector;
 708
 709	if (!block_size_is_power_of_two(cache))
 710		(void) sector_div(block_nr, cache->sectors_per_block);
 711	else
 712		block_nr >>= cache->sectors_per_block_shift;
 713
 714	return to_oblock(block_nr);
 715}
 716
 717static int bio_triggers_commit(struct cache *cache, struct bio *bio)
 718{
 719	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
 720}
 721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722static void issue(struct cache *cache, struct bio *bio)
 723{
 724	unsigned long flags;
 725
 726	if (!bio_triggers_commit(cache, bio)) {
 727		generic_make_request(bio);
 728		return;
 729	}
 730
 731	/*
 732	 * Batch together any bios that trigger commits and then issue a
 733	 * single commit for them in do_worker().
 734	 */
 735	spin_lock_irqsave(&cache->lock, flags);
 736	cache->commit_requested = true;
 737	bio_list_add(&cache->deferred_flush_bios, bio);
 738	spin_unlock_irqrestore(&cache->lock, flags);
 739}
 740
 
 
 
 
 
 
 741static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
 742{
 743	unsigned long flags;
 744
 745	spin_lock_irqsave(&cache->lock, flags);
 746	bio_list_add(&cache->deferred_writethrough_bios, bio);
 747	spin_unlock_irqrestore(&cache->lock, flags);
 748
 749	wake_worker(cache);
 750}
 751
 752static void writethrough_endio(struct bio *bio, int err)
 753{
 754	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 755
 756	dm_unhook_bio(&pb->hook_info, bio);
 757
 758	if (err) {
 759		bio_endio(bio, err);
 760		return;
 761	}
 762
 763	dm_bio_restore(&pb->bio_details, bio);
 764	remap_to_cache(pb->cache, bio, pb->cblock);
 765
 766	/*
 767	 * We can't issue this bio directly, since we're in interrupt
 768	 * context.  So it gets put on a bio list for processing by the
 769	 * worker thread.
 770	 */
 771	defer_writethrough_bio(pb->cache, bio);
 772}
 773
 774/*
 775 * When running in writethrough mode we need to send writes to clean blocks
 776 * to both the cache and origin devices.  In future we'd like to clone the
 777 * bio and send them in parallel, but for now we're doing them in
 778 * series as this is easier.
 779 */
 780static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
 781				       dm_oblock_t oblock, dm_cblock_t cblock)
 782{
 783	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 784
 785	pb->cache = cache;
 786	pb->cblock = cblock;
 787	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
 788	dm_bio_record(&pb->bio_details, bio);
 789
 790	remap_to_origin_clear_discard(pb->cache, bio, oblock);
 791}
 792
 793/*----------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794 * Migration processing
 795 *
 796 * Migration covers moving data from the origin device to the cache, or
 797 * vice versa.
 798 *--------------------------------------------------------------*/
 799static void free_migration(struct dm_cache_migration *mg)
 800{
 801	mempool_free(mg, mg->cache->migration_pool);
 802}
 803
 804static void inc_nr_migrations(struct cache *cache)
 805{
 806	atomic_inc(&cache->nr_migrations);
 807}
 808
 809static void dec_nr_migrations(struct cache *cache)
 810{
 811	atomic_dec(&cache->nr_migrations);
 812
 813	/*
 814	 * Wake the worker in case we're suspending the target.
 815	 */
 816	wake_up(&cache->migration_wait);
 817}
 818
 819static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
 820			 bool holder)
 821{
 822	(holder ? dm_cell_release : dm_cell_release_no_holder)
 823		(cache->prison, cell, &cache->deferred_bios);
 824	free_prison_cell(cache, cell);
 
 
 
 
 
 825}
 826
 827static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
 828		       bool holder)
 829{
 830	unsigned long flags;
 831
 
 
 
 
 
 
 
 
 
 832	spin_lock_irqsave(&cache->lock, flags);
 833	__cell_defer(cache, cell, holder);
 834	spin_unlock_irqrestore(&cache->lock, flags);
 835
 836	wake_worker(cache);
 837}
 838
 839static void cleanup_migration(struct dm_cache_migration *mg)
 
 
 
 
 
 
 
 
 
 
 
 840{
 841	struct cache *cache = mg->cache;
 
 
 842	free_migration(mg);
 843	dec_nr_migrations(cache);
 844}
 845
 846static void migration_failure(struct dm_cache_migration *mg)
 847{
 848	struct cache *cache = mg->cache;
 
 849
 850	if (mg->writeback) {
 851		DMWARN_LIMIT("writeback failed; couldn't copy block");
 852		set_dirty(cache, mg->old_oblock, mg->cblock);
 853		cell_defer(cache, mg->old_ocell, false);
 854
 855	} else if (mg->demote) {
 856		DMWARN_LIMIT("demotion failed; couldn't copy block");
 857		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
 858
 859		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
 860		if (mg->promote)
 861			cell_defer(cache, mg->new_ocell, true);
 862	} else {
 863		DMWARN_LIMIT("promotion failed; couldn't copy block");
 864		policy_remove_mapping(cache->policy, mg->new_oblock);
 865		cell_defer(cache, mg->new_ocell, true);
 866	}
 867
 868	cleanup_migration(mg);
 869}
 870
 871static void migration_success_pre_commit(struct dm_cache_migration *mg)
 872{
 
 873	unsigned long flags;
 874	struct cache *cache = mg->cache;
 875
 876	if (mg->writeback) {
 
 877		cell_defer(cache, mg->old_ocell, false);
 878		clear_dirty(cache, mg->old_oblock, mg->cblock);
 879		cleanup_migration(mg);
 880		return;
 881
 882	} else if (mg->demote) {
 883		if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
 884			DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
 
 
 
 885			policy_force_mapping(cache->policy, mg->new_oblock,
 886					     mg->old_oblock);
 887			if (mg->promote)
 888				cell_defer(cache, mg->new_ocell, true);
 889			cleanup_migration(mg);
 890			return;
 891		}
 892	} else {
 893		if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
 894			DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
 
 
 
 895			policy_remove_mapping(cache->policy, mg->new_oblock);
 896			cleanup_migration(mg);
 897			return;
 898		}
 899	}
 900
 901	spin_lock_irqsave(&cache->lock, flags);
 902	list_add_tail(&mg->list, &cache->need_commit_migrations);
 903	cache->commit_requested = true;
 904	spin_unlock_irqrestore(&cache->lock, flags);
 905}
 906
 907static void migration_success_post_commit(struct dm_cache_migration *mg)
 908{
 909	unsigned long flags;
 910	struct cache *cache = mg->cache;
 911
 912	if (mg->writeback) {
 913		DMWARN("writeback unexpectedly triggered commit");
 
 914		return;
 915
 916	} else if (mg->demote) {
 917		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
 918
 919		if (mg->promote) {
 920			mg->demote = false;
 921
 922			spin_lock_irqsave(&cache->lock, flags);
 923			list_add_tail(&mg->list, &cache->quiesced_migrations);
 924			spin_unlock_irqrestore(&cache->lock, flags);
 925
 926		} else {
 927			if (mg->invalidate)
 928				policy_remove_mapping(cache->policy, mg->old_oblock);
 929			cleanup_migration(mg);
 930		}
 931
 932	} else {
 933		if (mg->requeue_holder)
 
 934			cell_defer(cache, mg->new_ocell, true);
 935		else {
 936			bio_endio(mg->new_ocell->holder, 0);
 
 
 
 
 937			cell_defer(cache, mg->new_ocell, false);
 938		}
 939		clear_dirty(cache, mg->new_oblock, mg->cblock);
 940		cleanup_migration(mg);
 941	}
 942}
 943
 944static void copy_complete(int read_err, unsigned long write_err, void *context)
 945{
 946	unsigned long flags;
 947	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
 948	struct cache *cache = mg->cache;
 949
 950	if (read_err || write_err)
 951		mg->err = true;
 952
 953	spin_lock_irqsave(&cache->lock, flags);
 954	list_add_tail(&mg->list, &cache->completed_migrations);
 955	spin_unlock_irqrestore(&cache->lock, flags);
 956
 957	wake_worker(cache);
 958}
 959
 960static void issue_copy_real(struct dm_cache_migration *mg)
 961{
 962	int r;
 963	struct dm_io_region o_region, c_region;
 964	struct cache *cache = mg->cache;
 965	sector_t cblock = from_cblock(mg->cblock);
 966
 967	o_region.bdev = cache->origin_dev->bdev;
 968	o_region.count = cache->sectors_per_block;
 969
 970	c_region.bdev = cache->cache_dev->bdev;
 971	c_region.sector = cblock * cache->sectors_per_block;
 972	c_region.count = cache->sectors_per_block;
 973
 974	if (mg->writeback || mg->demote) {
 975		/* demote */
 976		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
 977		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
 978	} else {
 979		/* promote */
 980		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
 981		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
 982	}
 983
 984	if (r < 0) {
 985		DMERR_LIMIT("issuing migration failed");
 986		migration_failure(mg);
 987	}
 988}
 989
 990static void overwrite_endio(struct bio *bio, int err)
 991{
 992	struct dm_cache_migration *mg = bio->bi_private;
 993	struct cache *cache = mg->cache;
 994	size_t pb_data_size = get_per_bio_data_size(cache);
 995	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 996	unsigned long flags;
 997
 998	dm_unhook_bio(&pb->hook_info, bio);
 999
1000	if (err)
1001		mg->err = true;
1002
1003	mg->requeue_holder = false;
1004
1005	spin_lock_irqsave(&cache->lock, flags);
1006	list_add_tail(&mg->list, &cache->completed_migrations);
1007	spin_unlock_irqrestore(&cache->lock, flags);
1008
1009	wake_worker(cache);
1010}
1011
1012static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1013{
1014	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1015	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1016
1017	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1018	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1019	generic_make_request(bio);
 
 
 
 
 
1020}
1021
1022static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1023{
1024	return (bio_data_dir(bio) == WRITE) &&
1025		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1026}
1027
1028static void avoid_copy(struct dm_cache_migration *mg)
1029{
1030	atomic_inc(&mg->cache->stats.copies_avoided);
1031	migration_success_pre_commit(mg);
1032}
1033
1034static void issue_copy(struct dm_cache_migration *mg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035{
1036	bool avoid;
1037	struct cache *cache = mg->cache;
1038
 
 
 
 
 
1039	if (mg->writeback || mg->demote)
1040		avoid = !is_dirty(cache, mg->cblock) ||
1041			is_discarded_oblock(cache, mg->old_oblock);
1042	else {
1043		struct bio *bio = mg->new_ocell->holder;
1044
1045		avoid = is_discarded_oblock(cache, mg->new_oblock);
1046
1047		if (!avoid && bio_writes_complete_block(cache, bio)) {
 
1048			issue_overwrite(mg, bio);
1049			return;
1050		}
1051	}
1052
1053	avoid ? avoid_copy(mg) : issue_copy_real(mg);
1054}
1055
1056static void complete_migration(struct dm_cache_migration *mg)
1057{
1058	if (mg->err)
1059		migration_failure(mg);
1060	else
1061		migration_success_pre_commit(mg);
1062}
1063
1064static void process_migrations(struct cache *cache, struct list_head *head,
1065			       void (*fn)(struct dm_cache_migration *))
1066{
1067	unsigned long flags;
1068	struct list_head list;
1069	struct dm_cache_migration *mg, *tmp;
1070
1071	INIT_LIST_HEAD(&list);
1072	spin_lock_irqsave(&cache->lock, flags);
1073	list_splice_init(head, &list);
1074	spin_unlock_irqrestore(&cache->lock, flags);
1075
1076	list_for_each_entry_safe(mg, tmp, &list, list)
1077		fn(mg);
1078}
1079
1080static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1081{
1082	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1083}
1084
1085static void queue_quiesced_migration(struct dm_cache_migration *mg)
1086{
1087	unsigned long flags;
1088	struct cache *cache = mg->cache;
1089
1090	spin_lock_irqsave(&cache->lock, flags);
1091	__queue_quiesced_migration(mg);
1092	spin_unlock_irqrestore(&cache->lock, flags);
1093
1094	wake_worker(cache);
1095}
1096
1097static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1098{
1099	unsigned long flags;
1100	struct dm_cache_migration *mg, *tmp;
1101
1102	spin_lock_irqsave(&cache->lock, flags);
1103	list_for_each_entry_safe(mg, tmp, work, list)
1104		__queue_quiesced_migration(mg);
1105	spin_unlock_irqrestore(&cache->lock, flags);
1106
1107	wake_worker(cache);
1108}
1109
1110static void check_for_quiesced_migrations(struct cache *cache,
1111					  struct per_bio_data *pb)
1112{
1113	struct list_head work;
1114
1115	if (!pb->all_io_entry)
1116		return;
1117
1118	INIT_LIST_HEAD(&work);
1119	if (pb->all_io_entry)
1120		dm_deferred_entry_dec(pb->all_io_entry, &work);
1121
1122	if (!list_empty(&work))
1123		queue_quiesced_migrations(cache, &work);
1124}
1125
1126static void quiesce_migration(struct dm_cache_migration *mg)
1127{
1128	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1129		queue_quiesced_migration(mg);
1130}
1131
1132static void promote(struct cache *cache, struct prealloc *structs,
1133		    dm_oblock_t oblock, dm_cblock_t cblock,
1134		    struct dm_bio_prison_cell *cell)
1135{
1136	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1137
1138	mg->err = false;
 
1139	mg->writeback = false;
1140	mg->demote = false;
1141	mg->promote = true;
1142	mg->requeue_holder = true;
1143	mg->invalidate = false;
1144	mg->cache = cache;
1145	mg->new_oblock = oblock;
1146	mg->cblock = cblock;
1147	mg->old_ocell = NULL;
1148	mg->new_ocell = cell;
1149	mg->start_jiffies = jiffies;
1150
1151	inc_nr_migrations(cache);
1152	quiesce_migration(mg);
1153}
1154
1155static void writeback(struct cache *cache, struct prealloc *structs,
1156		      dm_oblock_t oblock, dm_cblock_t cblock,
1157		      struct dm_bio_prison_cell *cell)
1158{
1159	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1160
1161	mg->err = false;
 
1162	mg->writeback = true;
1163	mg->demote = false;
1164	mg->promote = false;
1165	mg->requeue_holder = true;
1166	mg->invalidate = false;
1167	mg->cache = cache;
1168	mg->old_oblock = oblock;
1169	mg->cblock = cblock;
1170	mg->old_ocell = cell;
1171	mg->new_ocell = NULL;
1172	mg->start_jiffies = jiffies;
1173
1174	inc_nr_migrations(cache);
1175	quiesce_migration(mg);
1176}
1177
1178static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1179				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1180				dm_cblock_t cblock,
1181				struct dm_bio_prison_cell *old_ocell,
1182				struct dm_bio_prison_cell *new_ocell)
1183{
1184	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1185
1186	mg->err = false;
 
1187	mg->writeback = false;
1188	mg->demote = true;
1189	mg->promote = true;
1190	mg->requeue_holder = true;
1191	mg->invalidate = false;
1192	mg->cache = cache;
1193	mg->old_oblock = old_oblock;
1194	mg->new_oblock = new_oblock;
1195	mg->cblock = cblock;
1196	mg->old_ocell = old_ocell;
1197	mg->new_ocell = new_ocell;
1198	mg->start_jiffies = jiffies;
1199
1200	inc_nr_migrations(cache);
1201	quiesce_migration(mg);
1202}
1203
1204/*
1205 * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1206 * block are thrown away.
1207 */
1208static void invalidate(struct cache *cache, struct prealloc *structs,
1209		       dm_oblock_t oblock, dm_cblock_t cblock,
1210		       struct dm_bio_prison_cell *cell)
1211{
1212	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1213
1214	mg->err = false;
 
1215	mg->writeback = false;
1216	mg->demote = true;
1217	mg->promote = false;
1218	mg->requeue_holder = true;
1219	mg->invalidate = true;
1220	mg->cache = cache;
1221	mg->old_oblock = oblock;
1222	mg->cblock = cblock;
1223	mg->old_ocell = cell;
1224	mg->new_ocell = NULL;
1225	mg->start_jiffies = jiffies;
1226
1227	inc_nr_migrations(cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228	quiesce_migration(mg);
1229}
1230
1231/*----------------------------------------------------------------
1232 * bio processing
1233 *--------------------------------------------------------------*/
1234static void defer_bio(struct cache *cache, struct bio *bio)
1235{
1236	unsigned long flags;
1237
1238	spin_lock_irqsave(&cache->lock, flags);
1239	bio_list_add(&cache->deferred_bios, bio);
1240	spin_unlock_irqrestore(&cache->lock, flags);
1241
1242	wake_worker(cache);
1243}
1244
1245static void process_flush_bio(struct cache *cache, struct bio *bio)
1246{
1247	size_t pb_data_size = get_per_bio_data_size(cache);
1248	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1249
1250	BUG_ON(bio->bi_iter.bi_size);
1251	if (!pb->req_nr)
1252		remap_to_origin(cache, bio);
1253	else
1254		remap_to_cache(cache, bio, 0);
1255
 
 
 
 
 
1256	issue(cache, bio);
1257}
1258
1259/*
1260 * People generally discard large parts of a device, eg, the whole device
1261 * when formatting.  Splitting these large discards up into cache block
1262 * sized ios and then quiescing (always neccessary for discard) takes too
1263 * long.
1264 *
1265 * We keep it simple, and allow any size of discard to come in, and just
1266 * mark off blocks on the discard bitset.  No passdown occurs!
1267 *
1268 * To implement passdown we need to change the bio_prison such that a cell
1269 * can have a key that spans many blocks.
1270 */
1271static void process_discard_bio(struct cache *cache, struct bio *bio)
1272{
1273	dm_block_t start_block = dm_sector_div_up(bio->bi_iter.bi_sector,
1274						  cache->sectors_per_block);
1275	dm_block_t end_block = bio_end_sector(bio);
1276	dm_block_t b;
1277
1278	end_block = block_div(end_block, cache->sectors_per_block);
 
 
 
 
1279
1280	for (b = start_block; b < end_block; b++)
1281		set_discard(cache, to_oblock(b));
 
 
 
 
1282
1283	bio_endio(bio, 0);
1284}
1285
1286static bool spare_migration_bandwidth(struct cache *cache)
1287{
1288	sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1289		cache->sectors_per_block;
1290	return current_volume < cache->migration_threshold;
1291}
1292
1293static void inc_hit_counter(struct cache *cache, struct bio *bio)
1294{
1295	atomic_inc(bio_data_dir(bio) == READ ?
1296		   &cache->stats.read_hit : &cache->stats.write_hit);
1297}
1298
1299static void inc_miss_counter(struct cache *cache, struct bio *bio)
1300{
1301	atomic_inc(bio_data_dir(bio) == READ ?
1302		   &cache->stats.read_miss : &cache->stats.write_miss);
1303}
1304
1305static void issue_cache_bio(struct cache *cache, struct bio *bio,
1306			    struct per_bio_data *pb,
1307			    dm_oblock_t oblock, dm_cblock_t cblock)
 
 
 
 
 
 
 
1308{
1309	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1310	remap_to_cache_dirty(cache, bio, oblock, cblock);
1311	issue(cache, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312}
1313
1314static void process_bio(struct cache *cache, struct prealloc *structs,
1315			struct bio *bio)
1316{
1317	int r;
1318	bool release_cell = true;
 
1319	dm_oblock_t block = get_bio_block(cache, bio);
1320	struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1321	struct policy_result lookup_result;
1322	size_t pb_data_size = get_per_bio_data_size(cache);
1323	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1324	bool discarded_block = is_discarded_oblock(cache, block);
1325	bool passthrough = passthrough_mode(&cache->features);
1326	bool can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
 
1327
1328	/*
1329	 * Check to see if that block is currently migrating.
1330	 */
1331	cell_prealloc = prealloc_get_cell(structs);
1332	r = bio_detain(cache, block, bio, cell_prealloc,
1333		       (cell_free_fn) prealloc_put_cell,
1334		       structs, &new_ocell);
1335	if (r > 0)
1336		return;
1337
1338	r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1339		       bio, &lookup_result);
 
 
 
 
1340
1341	if (r == -EWOULDBLOCK)
1342		/* migration has been denied */
1343		lookup_result.op = POLICY_MISS;
1344
1345	switch (lookup_result.op) {
1346	case POLICY_HIT:
1347		if (passthrough) {
1348			inc_miss_counter(cache, bio);
1349
1350			/*
1351			 * Passthrough always maps to the origin,
1352			 * invalidating any cache blocks that are written
1353			 * to.
1354			 */
1355
1356			if (bio_data_dir(bio) == WRITE) {
1357				atomic_inc(&cache->stats.demotion);
1358				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1359				release_cell = false;
1360
1361			} else {
1362				/* FIXME: factor out issue_origin() */
1363				pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1364				remap_to_origin_clear_discard(cache, bio, block);
1365				issue(cache, bio);
1366			}
1367		} else {
1368			inc_hit_counter(cache, bio);
1369
1370			if (bio_data_dir(bio) == WRITE &&
1371			    writethrough_mode(&cache->features) &&
1372			    !is_dirty(cache, lookup_result.cblock)) {
1373				pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1374				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1375				issue(cache, bio);
1376			} else
1377				issue_cache_bio(cache, bio, pb, block, lookup_result.cblock);
 
 
 
1378		}
1379
1380		break;
1381
1382	case POLICY_MISS:
1383		inc_miss_counter(cache, bio);
1384		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1385		remap_to_origin_clear_discard(cache, bio, block);
1386		issue(cache, bio);
1387		break;
1388
1389	case POLICY_NEW:
1390		atomic_inc(&cache->stats.promotion);
1391		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1392		release_cell = false;
1393		break;
1394
1395	case POLICY_REPLACE:
1396		cell_prealloc = prealloc_get_cell(structs);
1397		r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1398			       (cell_free_fn) prealloc_put_cell,
1399			       structs, &old_ocell);
1400		if (r > 0) {
1401			/*
1402			 * We have to be careful to avoid lock inversion of
1403			 * the cells.  So we back off, and wait for the
1404			 * old_ocell to become free.
1405			 */
1406			policy_force_mapping(cache->policy, block,
1407					     lookup_result.old_oblock);
1408			atomic_inc(&cache->stats.cache_cell_clash);
1409			break;
1410		}
1411		atomic_inc(&cache->stats.demotion);
1412		atomic_inc(&cache->stats.promotion);
1413
1414		demote_then_promote(cache, structs, lookup_result.old_oblock,
1415				    block, lookup_result.cblock,
1416				    old_ocell, new_ocell);
1417		release_cell = false;
1418		break;
1419
1420	default:
1421		DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
 
1422			    (unsigned) lookup_result.op);
1423		bio_io_error(bio);
1424	}
1425
1426	if (release_cell)
1427		cell_defer(cache, new_ocell, false);
1428}
1429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430static int need_commit_due_to_time(struct cache *cache)
1431{
1432	return jiffies < cache->last_commit_jiffies ||
1433	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1434}
1435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1436static int commit_if_needed(struct cache *cache)
1437{
1438	int r = 0;
1439
1440	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1441	    dm_cache_changed_this_transaction(cache->cmd)) {
1442		atomic_inc(&cache->stats.commit_count);
1443		cache->commit_requested = false;
1444		r = dm_cache_commit(cache->cmd, false);
1445		cache->last_commit_jiffies = jiffies;
1446	}
1447
1448	return r;
1449}
1450
1451static void process_deferred_bios(struct cache *cache)
1452{
 
1453	unsigned long flags;
1454	struct bio_list bios;
1455	struct bio *bio;
1456	struct prealloc structs;
1457
1458	memset(&structs, 0, sizeof(structs));
1459	bio_list_init(&bios);
1460
1461	spin_lock_irqsave(&cache->lock, flags);
1462	bio_list_merge(&bios, &cache->deferred_bios);
1463	bio_list_init(&cache->deferred_bios);
1464	spin_unlock_irqrestore(&cache->lock, flags);
1465
1466	while (!bio_list_empty(&bios)) {
1467		/*
1468		 * If we've got no free migration structs, and processing
1469		 * this bio might require one, we pause until there are some
1470		 * prepared mappings to process.
1471		 */
 
1472		if (prealloc_data_structs(cache, &structs)) {
1473			spin_lock_irqsave(&cache->lock, flags);
1474			bio_list_merge(&cache->deferred_bios, &bios);
1475			spin_unlock_irqrestore(&cache->lock, flags);
1476			break;
1477		}
1478
1479		bio = bio_list_pop(&bios);
1480
1481		if (bio->bi_rw & REQ_FLUSH)
1482			process_flush_bio(cache, bio);
1483		else if (bio->bi_rw & REQ_DISCARD)
1484			process_discard_bio(cache, bio);
1485		else
1486			process_bio(cache, &structs, bio);
1487	}
1488
1489	prealloc_free_structs(cache, &structs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1490}
1491
1492static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1493{
1494	unsigned long flags;
1495	struct bio_list bios;
1496	struct bio *bio;
1497
1498	bio_list_init(&bios);
1499
1500	spin_lock_irqsave(&cache->lock, flags);
1501	bio_list_merge(&bios, &cache->deferred_flush_bios);
1502	bio_list_init(&cache->deferred_flush_bios);
1503	spin_unlock_irqrestore(&cache->lock, flags);
1504
 
 
 
1505	while ((bio = bio_list_pop(&bios)))
1506		submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1507}
1508
1509static void process_deferred_writethrough_bios(struct cache *cache)
1510{
1511	unsigned long flags;
1512	struct bio_list bios;
1513	struct bio *bio;
1514
1515	bio_list_init(&bios);
1516
1517	spin_lock_irqsave(&cache->lock, flags);
1518	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1519	bio_list_init(&cache->deferred_writethrough_bios);
1520	spin_unlock_irqrestore(&cache->lock, flags);
1521
 
 
 
1522	while ((bio = bio_list_pop(&bios)))
1523		generic_make_request(bio);
1524}
1525
1526static void writeback_some_dirty_blocks(struct cache *cache)
1527{
1528	int r = 0;
1529	dm_oblock_t oblock;
1530	dm_cblock_t cblock;
1531	struct prealloc structs;
1532	struct dm_bio_prison_cell *old_ocell;
 
1533
1534	memset(&structs, 0, sizeof(structs));
1535
1536	while (spare_migration_bandwidth(cache)) {
1537		if (prealloc_data_structs(cache, &structs))
1538			break;
1539
1540		r = policy_writeback_work(cache->policy, &oblock, &cblock);
1541		if (r)
1542			break;
1543
1544		r = get_cell(cache, oblock, &structs, &old_ocell);
1545		if (r) {
 
1546			policy_set_dirty(cache->policy, oblock);
1547			break;
1548		}
1549
1550		writeback(cache, &structs, oblock, cblock, old_ocell);
1551	}
1552
1553	prealloc_free_structs(cache, &structs);
 
1554}
1555
1556/*----------------------------------------------------------------
1557 * Invalidations.
1558 * Dropping something from the cache *without* writing back.
1559 *--------------------------------------------------------------*/
1560
1561static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1562{
1563	int r = 0;
1564	uint64_t begin = from_cblock(req->cblocks->begin);
1565	uint64_t end = from_cblock(req->cblocks->end);
1566
1567	while (begin != end) {
1568		r = policy_remove_cblock(cache->policy, to_cblock(begin));
1569		if (!r) {
1570			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1571			if (r)
 
1572				break;
 
1573
1574		} else if (r == -ENODATA) {
1575			/* harmless, already unmapped */
1576			r = 0;
1577
1578		} else {
1579			DMERR("policy_remove_cblock failed");
1580			break;
1581		}
1582
1583		begin++;
1584        }
1585
1586	cache->commit_requested = true;
1587
1588	req->err = r;
1589	atomic_set(&req->complete, 1);
1590
1591	wake_up(&req->result_wait);
1592}
1593
1594static void process_invalidation_requests(struct cache *cache)
1595{
1596	struct list_head list;
1597	struct invalidation_request *req, *tmp;
1598
1599	INIT_LIST_HEAD(&list);
1600	spin_lock(&cache->invalidation_lock);
1601	list_splice_init(&cache->invalidation_requests, &list);
1602	spin_unlock(&cache->invalidation_lock);
1603
1604	list_for_each_entry_safe (req, tmp, &list, list)
1605		process_invalidation_request(cache, req);
1606}
1607
1608/*----------------------------------------------------------------
1609 * Main worker loop
1610 *--------------------------------------------------------------*/
1611static bool is_quiescing(struct cache *cache)
1612{
1613	return atomic_read(&cache->quiescing);
1614}
1615
1616static void ack_quiescing(struct cache *cache)
1617{
1618	if (is_quiescing(cache)) {
1619		atomic_inc(&cache->quiescing_ack);
1620		wake_up(&cache->quiescing_wait);
1621	}
1622}
1623
1624static void wait_for_quiescing_ack(struct cache *cache)
1625{
1626	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
1627}
1628
1629static void start_quiescing(struct cache *cache)
1630{
1631	atomic_inc(&cache->quiescing);
1632	wait_for_quiescing_ack(cache);
1633}
1634
1635static void stop_quiescing(struct cache *cache)
1636{
1637	atomic_set(&cache->quiescing, 0);
1638	atomic_set(&cache->quiescing_ack, 0);
1639}
1640
1641static void wait_for_migrations(struct cache *cache)
1642{
1643	wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1644}
1645
1646static void stop_worker(struct cache *cache)
1647{
1648	cancel_delayed_work(&cache->waker);
1649	flush_workqueue(cache->wq);
1650}
1651
1652static void requeue_deferred_io(struct cache *cache)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1653{
1654	struct bio *bio;
1655	struct bio_list bios;
1656
1657	bio_list_init(&bios);
1658	bio_list_merge(&bios, &cache->deferred_bios);
1659	bio_list_init(&cache->deferred_bios);
1660
1661	while ((bio = bio_list_pop(&bios)))
1662		bio_endio(bio, DM_ENDIO_REQUEUE);
 
 
1663}
1664
1665static int more_work(struct cache *cache)
1666{
1667	if (is_quiescing(cache))
1668		return !list_empty(&cache->quiesced_migrations) ||
1669			!list_empty(&cache->completed_migrations) ||
1670			!list_empty(&cache->need_commit_migrations);
1671	else
1672		return !bio_list_empty(&cache->deferred_bios) ||
 
1673			!bio_list_empty(&cache->deferred_flush_bios) ||
1674			!bio_list_empty(&cache->deferred_writethrough_bios) ||
1675			!list_empty(&cache->quiesced_migrations) ||
1676			!list_empty(&cache->completed_migrations) ||
1677			!list_empty(&cache->need_commit_migrations) ||
1678			cache->invalidate;
1679}
1680
1681static void do_worker(struct work_struct *ws)
1682{
1683	struct cache *cache = container_of(ws, struct cache, worker);
1684
1685	do {
1686		if (!is_quiescing(cache)) {
1687			writeback_some_dirty_blocks(cache);
1688			process_deferred_writethrough_bios(cache);
1689			process_deferred_bios(cache);
 
1690			process_invalidation_requests(cache);
1691		}
1692
1693		process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1694		process_migrations(cache, &cache->completed_migrations, complete_migration);
1695
1696		if (commit_if_needed(cache)) {
1697			process_deferred_flush_bios(cache, false);
1698
1699			/*
1700			 * FIXME: rollback metadata or just go into a
1701			 * failure mode and error everything
1702			 */
1703		} else {
1704			process_deferred_flush_bios(cache, true);
1705			process_migrations(cache, &cache->need_commit_migrations,
1706					   migration_success_post_commit);
1707		}
1708
1709		ack_quiescing(cache);
1710
1711	} while (more_work(cache));
1712}
1713
1714/*
1715 * We want to commit periodically so that not too much
1716 * unwritten metadata builds up.
1717 */
1718static void do_waker(struct work_struct *ws)
1719{
1720	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1721	policy_tick(cache->policy);
1722	wake_worker(cache);
1723	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1724}
1725
1726/*----------------------------------------------------------------*/
1727
1728static int is_congested(struct dm_dev *dev, int bdi_bits)
1729{
1730	struct request_queue *q = bdev_get_queue(dev->bdev);
1731	return bdi_congested(&q->backing_dev_info, bdi_bits);
1732}
1733
1734static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1735{
1736	struct cache *cache = container_of(cb, struct cache, callbacks);
1737
1738	return is_congested(cache->origin_dev, bdi_bits) ||
1739		is_congested(cache->cache_dev, bdi_bits);
1740}
1741
1742/*----------------------------------------------------------------
1743 * Target methods
1744 *--------------------------------------------------------------*/
1745
1746/*
1747 * This function gets called on the error paths of the constructor, so we
1748 * have to cope with a partially initialised struct.
1749 */
1750static void destroy(struct cache *cache)
1751{
1752	unsigned i;
1753
1754	if (cache->next_migration)
1755		mempool_free(cache->next_migration, cache->migration_pool);
1756
1757	if (cache->migration_pool)
1758		mempool_destroy(cache->migration_pool);
1759
1760	if (cache->all_io_ds)
1761		dm_deferred_set_destroy(cache->all_io_ds);
1762
1763	if (cache->prison)
1764		dm_bio_prison_destroy(cache->prison);
1765
1766	if (cache->wq)
1767		destroy_workqueue(cache->wq);
1768
1769	if (cache->dirty_bitset)
1770		free_bitset(cache->dirty_bitset);
1771
1772	if (cache->discard_bitset)
1773		free_bitset(cache->discard_bitset);
1774
1775	if (cache->copier)
1776		dm_kcopyd_client_destroy(cache->copier);
1777
1778	if (cache->cmd)
1779		dm_cache_metadata_close(cache->cmd);
1780
1781	if (cache->metadata_dev)
1782		dm_put_device(cache->ti, cache->metadata_dev);
1783
1784	if (cache->origin_dev)
1785		dm_put_device(cache->ti, cache->origin_dev);
1786
1787	if (cache->cache_dev)
1788		dm_put_device(cache->ti, cache->cache_dev);
1789
1790	if (cache->policy)
1791		dm_cache_policy_destroy(cache->policy);
1792
1793	for (i = 0; i < cache->nr_ctr_args ; i++)
1794		kfree(cache->ctr_args[i]);
1795	kfree(cache->ctr_args);
1796
1797	kfree(cache);
1798}
1799
1800static void cache_dtr(struct dm_target *ti)
1801{
1802	struct cache *cache = ti->private;
1803
1804	destroy(cache);
1805}
1806
1807static sector_t get_dev_size(struct dm_dev *dev)
1808{
1809	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1810}
1811
1812/*----------------------------------------------------------------*/
1813
1814/*
1815 * Construct a cache device mapping.
1816 *
1817 * cache <metadata dev> <cache dev> <origin dev> <block size>
1818 *       <#feature args> [<feature arg>]*
1819 *       <policy> <#policy args> [<policy arg>]*
1820 *
1821 * metadata dev    : fast device holding the persistent metadata
1822 * cache dev	   : fast device holding cached data blocks
1823 * origin dev	   : slow device holding original data blocks
1824 * block size	   : cache unit size in sectors
1825 *
1826 * #feature args   : number of feature arguments passed
1827 * feature args    : writethrough.  (The default is writeback.)
1828 *
1829 * policy	   : the replacement policy to use
1830 * #policy args    : an even number of policy arguments corresponding
1831 *		     to key/value pairs passed to the policy
1832 * policy args	   : key/value pairs passed to the policy
1833 *		     E.g. 'sequential_threshold 1024'
1834 *		     See cache-policies.txt for details.
1835 *
1836 * Optional feature arguments are:
1837 *   writethrough  : write through caching that prohibits cache block
1838 *		     content from being different from origin block content.
1839 *		     Without this argument, the default behaviour is to write
1840 *		     back cache block contents later for performance reasons,
1841 *		     so they may differ from the corresponding origin blocks.
1842 */
1843struct cache_args {
1844	struct dm_target *ti;
1845
1846	struct dm_dev *metadata_dev;
1847
1848	struct dm_dev *cache_dev;
1849	sector_t cache_sectors;
1850
1851	struct dm_dev *origin_dev;
1852	sector_t origin_sectors;
1853
1854	uint32_t block_size;
1855
1856	const char *policy_name;
1857	int policy_argc;
1858	const char **policy_argv;
1859
1860	struct cache_features features;
1861};
1862
1863static void destroy_cache_args(struct cache_args *ca)
1864{
1865	if (ca->metadata_dev)
1866		dm_put_device(ca->ti, ca->metadata_dev);
1867
1868	if (ca->cache_dev)
1869		dm_put_device(ca->ti, ca->cache_dev);
1870
1871	if (ca->origin_dev)
1872		dm_put_device(ca->ti, ca->origin_dev);
1873
1874	kfree(ca);
1875}
1876
1877static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1878{
1879	if (!as->argc) {
1880		*error = "Insufficient args";
1881		return false;
1882	}
1883
1884	return true;
1885}
1886
1887static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1888			      char **error)
1889{
1890	int r;
1891	sector_t metadata_dev_size;
1892	char b[BDEVNAME_SIZE];
1893
1894	if (!at_least_one_arg(as, error))
1895		return -EINVAL;
1896
1897	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1898			  &ca->metadata_dev);
1899	if (r) {
1900		*error = "Error opening metadata device";
1901		return r;
1902	}
1903
1904	metadata_dev_size = get_dev_size(ca->metadata_dev);
1905	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1906		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1907		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1908
1909	return 0;
1910}
1911
1912static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1913			   char **error)
1914{
1915	int r;
1916
1917	if (!at_least_one_arg(as, error))
1918		return -EINVAL;
1919
1920	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1921			  &ca->cache_dev);
1922	if (r) {
1923		*error = "Error opening cache device";
1924		return r;
1925	}
1926	ca->cache_sectors = get_dev_size(ca->cache_dev);
1927
1928	return 0;
1929}
1930
1931static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1932			    char **error)
1933{
1934	int r;
1935
1936	if (!at_least_one_arg(as, error))
1937		return -EINVAL;
1938
1939	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1940			  &ca->origin_dev);
1941	if (r) {
1942		*error = "Error opening origin device";
1943		return r;
1944	}
1945
1946	ca->origin_sectors = get_dev_size(ca->origin_dev);
1947	if (ca->ti->len > ca->origin_sectors) {
1948		*error = "Device size larger than cached device";
1949		return -EINVAL;
1950	}
1951
1952	return 0;
1953}
1954
1955static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1956			    char **error)
1957{
1958	unsigned long block_size;
1959
1960	if (!at_least_one_arg(as, error))
1961		return -EINVAL;
1962
1963	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
1964	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1965	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1966	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1967		*error = "Invalid data block size";
1968		return -EINVAL;
1969	}
1970
1971	if (block_size > ca->cache_sectors) {
1972		*error = "Data block size is larger than the cache device";
1973		return -EINVAL;
1974	}
1975
1976	ca->block_size = block_size;
1977
1978	return 0;
1979}
1980
1981static void init_features(struct cache_features *cf)
1982{
1983	cf->mode = CM_WRITE;
1984	cf->io_mode = CM_IO_WRITEBACK;
1985}
1986
1987static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1988			  char **error)
1989{
1990	static struct dm_arg _args[] = {
1991		{0, 1, "Invalid number of cache feature arguments"},
1992	};
1993
1994	int r;
1995	unsigned argc;
1996	const char *arg;
1997	struct cache_features *cf = &ca->features;
1998
1999	init_features(cf);
2000
2001	r = dm_read_arg_group(_args, as, &argc, error);
2002	if (r)
2003		return -EINVAL;
2004
2005	while (argc--) {
2006		arg = dm_shift_arg(as);
2007
2008		if (!strcasecmp(arg, "writeback"))
2009			cf->io_mode = CM_IO_WRITEBACK;
2010
2011		else if (!strcasecmp(arg, "writethrough"))
2012			cf->io_mode = CM_IO_WRITETHROUGH;
2013
2014		else if (!strcasecmp(arg, "passthrough"))
2015			cf->io_mode = CM_IO_PASSTHROUGH;
2016
2017		else {
2018			*error = "Unrecognised cache feature requested";
2019			return -EINVAL;
2020		}
2021	}
2022
2023	return 0;
2024}
2025
2026static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2027			char **error)
2028{
2029	static struct dm_arg _args[] = {
2030		{0, 1024, "Invalid number of policy arguments"},
2031	};
2032
2033	int r;
2034
2035	if (!at_least_one_arg(as, error))
2036		return -EINVAL;
2037
2038	ca->policy_name = dm_shift_arg(as);
2039
2040	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2041	if (r)
2042		return -EINVAL;
2043
2044	ca->policy_argv = (const char **)as->argv;
2045	dm_consume_args(as, ca->policy_argc);
2046
2047	return 0;
2048}
2049
2050static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2051			    char **error)
2052{
2053	int r;
2054	struct dm_arg_set as;
2055
2056	as.argc = argc;
2057	as.argv = argv;
2058
2059	r = parse_metadata_dev(ca, &as, error);
2060	if (r)
2061		return r;
2062
2063	r = parse_cache_dev(ca, &as, error);
2064	if (r)
2065		return r;
2066
2067	r = parse_origin_dev(ca, &as, error);
2068	if (r)
2069		return r;
2070
2071	r = parse_block_size(ca, &as, error);
2072	if (r)
2073		return r;
2074
2075	r = parse_features(ca, &as, error);
2076	if (r)
2077		return r;
2078
2079	r = parse_policy(ca, &as, error);
2080	if (r)
2081		return r;
2082
2083	return 0;
2084}
2085
2086/*----------------------------------------------------------------*/
2087
2088static struct kmem_cache *migration_cache;
2089
2090#define NOT_CORE_OPTION 1
2091
2092static int process_config_option(struct cache *cache, const char *key, const char *value)
2093{
2094	unsigned long tmp;
2095
2096	if (!strcasecmp(key, "migration_threshold")) {
2097		if (kstrtoul(value, 10, &tmp))
2098			return -EINVAL;
2099
2100		cache->migration_threshold = tmp;
2101		return 0;
2102	}
2103
2104	return NOT_CORE_OPTION;
2105}
2106
2107static int set_config_value(struct cache *cache, const char *key, const char *value)
2108{
2109	int r = process_config_option(cache, key, value);
2110
2111	if (r == NOT_CORE_OPTION)
2112		r = policy_set_config_value(cache->policy, key, value);
2113
2114	if (r)
2115		DMWARN("bad config value for %s: %s", key, value);
2116
2117	return r;
2118}
2119
2120static int set_config_values(struct cache *cache, int argc, const char **argv)
2121{
2122	int r = 0;
2123
2124	if (argc & 1) {
2125		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2126		return -EINVAL;
2127	}
2128
2129	while (argc) {
2130		r = set_config_value(cache, argv[0], argv[1]);
2131		if (r)
2132			break;
2133
2134		argc -= 2;
2135		argv += 2;
2136	}
2137
2138	return r;
2139}
2140
2141static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2142			       char **error)
2143{
2144	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2145							   cache->cache_size,
2146							   cache->origin_sectors,
2147							   cache->sectors_per_block);
2148	if (IS_ERR(p)) {
2149		*error = "Error creating cache's policy";
2150		return PTR_ERR(p);
2151	}
2152	cache->policy = p;
2153
2154	return 0;
2155}
2156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157#define DEFAULT_MIGRATION_THRESHOLD 2048
2158
2159static int cache_create(struct cache_args *ca, struct cache **result)
2160{
2161	int r = 0;
2162	char **error = &ca->ti->error;
2163	struct cache *cache;
2164	struct dm_target *ti = ca->ti;
2165	dm_block_t origin_blocks;
2166	struct dm_cache_metadata *cmd;
2167	bool may_format = ca->features.mode == CM_WRITE;
2168
2169	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2170	if (!cache)
2171		return -ENOMEM;
2172
2173	cache->ti = ca->ti;
2174	ti->private = cache;
2175	ti->num_flush_bios = 2;
2176	ti->flush_supported = true;
2177
2178	ti->num_discard_bios = 1;
2179	ti->discards_supported = true;
2180	ti->discard_zeroes_data_unsupported = true;
2181	/* Discard bios must be split on a block boundary */
2182	ti->split_discard_bios = true;
2183
2184	cache->features = ca->features;
2185	ti->per_bio_data_size = get_per_bio_data_size(cache);
2186
2187	cache->callbacks.congested_fn = cache_is_congested;
2188	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2189
2190	cache->metadata_dev = ca->metadata_dev;
2191	cache->origin_dev = ca->origin_dev;
2192	cache->cache_dev = ca->cache_dev;
2193
2194	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2195
2196	/* FIXME: factor out this whole section */
2197	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2198	origin_blocks = block_div(origin_blocks, ca->block_size);
2199	cache->origin_blocks = to_oblock(origin_blocks);
2200
2201	cache->sectors_per_block = ca->block_size;
2202	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2203		r = -EINVAL;
2204		goto bad;
2205	}
2206
2207	if (ca->block_size & (ca->block_size - 1)) {
2208		dm_block_t cache_size = ca->cache_sectors;
2209
2210		cache->sectors_per_block_shift = -1;
2211		cache_size = block_div(cache_size, ca->block_size);
2212		cache->cache_size = to_cblock(cache_size);
2213	} else {
2214		cache->sectors_per_block_shift = __ffs(ca->block_size);
2215		cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
2216	}
2217
2218	r = create_cache_policy(cache, ca, error);
2219	if (r)
2220		goto bad;
2221
2222	cache->policy_nr_args = ca->policy_argc;
2223	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2224
2225	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2226	if (r) {
2227		*error = "Error setting cache policy's config values";
2228		goto bad;
2229	}
2230
2231	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2232				     ca->block_size, may_format,
2233				     dm_cache_policy_get_hint_size(cache->policy));
2234	if (IS_ERR(cmd)) {
2235		*error = "Error creating metadata object";
2236		r = PTR_ERR(cmd);
2237		goto bad;
2238	}
2239	cache->cmd = cmd;
 
 
 
 
 
 
2240
2241	if (passthrough_mode(&cache->features)) {
2242		bool all_clean;
2243
2244		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2245		if (r) {
2246			*error = "dm_cache_metadata_all_clean() failed";
2247			goto bad;
2248		}
2249
2250		if (!all_clean) {
2251			*error = "Cannot enter passthrough mode unless all blocks are clean";
2252			r = -EINVAL;
2253			goto bad;
2254		}
2255	}
2256
2257	spin_lock_init(&cache->lock);
 
2258	bio_list_init(&cache->deferred_bios);
2259	bio_list_init(&cache->deferred_flush_bios);
2260	bio_list_init(&cache->deferred_writethrough_bios);
2261	INIT_LIST_HEAD(&cache->quiesced_migrations);
2262	INIT_LIST_HEAD(&cache->completed_migrations);
2263	INIT_LIST_HEAD(&cache->need_commit_migrations);
2264	atomic_set(&cache->nr_migrations, 0);
 
2265	init_waitqueue_head(&cache->migration_wait);
2266
2267	init_waitqueue_head(&cache->quiescing_wait);
2268	atomic_set(&cache->quiescing, 0);
2269	atomic_set(&cache->quiescing_ack, 0);
2270
2271	r = -ENOMEM;
2272	cache->nr_dirty = 0;
2273	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2274	if (!cache->dirty_bitset) {
2275		*error = "could not allocate dirty bitset";
2276		goto bad;
2277	}
2278	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2279
2280	cache->discard_nr_blocks = cache->origin_blocks;
2281	cache->discard_bitset = alloc_bitset(from_oblock(cache->discard_nr_blocks));
 
 
 
 
2282	if (!cache->discard_bitset) {
2283		*error = "could not allocate discard bitset";
2284		goto bad;
2285	}
2286	clear_bitset(cache->discard_bitset, from_oblock(cache->discard_nr_blocks));
2287
2288	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2289	if (IS_ERR(cache->copier)) {
2290		*error = "could not create kcopyd client";
2291		r = PTR_ERR(cache->copier);
2292		goto bad;
2293	}
2294
2295	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2296	if (!cache->wq) {
2297		*error = "could not create workqueue for metadata object";
2298		goto bad;
2299	}
2300	INIT_WORK(&cache->worker, do_worker);
2301	INIT_DELAYED_WORK(&cache->waker, do_waker);
2302	cache->last_commit_jiffies = jiffies;
2303
2304	cache->prison = dm_bio_prison_create(PRISON_CELLS);
2305	if (!cache->prison) {
2306		*error = "could not create bio prison";
2307		goto bad;
2308	}
2309
2310	cache->all_io_ds = dm_deferred_set_create();
2311	if (!cache->all_io_ds) {
2312		*error = "could not create all_io deferred set";
2313		goto bad;
2314	}
2315
2316	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2317							 migration_cache);
2318	if (!cache->migration_pool) {
2319		*error = "Error creating cache's migration mempool";
2320		goto bad;
2321	}
2322
2323	cache->next_migration = NULL;
2324
2325	cache->need_tick_bio = true;
2326	cache->sized = false;
2327	cache->invalidate = false;
2328	cache->commit_requested = false;
2329	cache->loaded_mappings = false;
2330	cache->loaded_discards = false;
2331
2332	load_stats(cache);
2333
2334	atomic_set(&cache->stats.demotion, 0);
2335	atomic_set(&cache->stats.promotion, 0);
2336	atomic_set(&cache->stats.copies_avoided, 0);
2337	atomic_set(&cache->stats.cache_cell_clash, 0);
2338	atomic_set(&cache->stats.commit_count, 0);
2339	atomic_set(&cache->stats.discard_count, 0);
2340
2341	spin_lock_init(&cache->invalidation_lock);
2342	INIT_LIST_HEAD(&cache->invalidation_requests);
2343
 
 
2344	*result = cache;
2345	return 0;
2346
2347bad:
2348	destroy(cache);
2349	return r;
2350}
2351
2352static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2353{
2354	unsigned i;
2355	const char **copy;
2356
2357	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2358	if (!copy)
2359		return -ENOMEM;
2360	for (i = 0; i < argc; i++) {
2361		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2362		if (!copy[i]) {
2363			while (i--)
2364				kfree(copy[i]);
2365			kfree(copy);
2366			return -ENOMEM;
2367		}
2368	}
2369
2370	cache->nr_ctr_args = argc;
2371	cache->ctr_args = copy;
2372
2373	return 0;
2374}
2375
2376static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2377{
2378	int r = -EINVAL;
2379	struct cache_args *ca;
2380	struct cache *cache = NULL;
2381
2382	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2383	if (!ca) {
2384		ti->error = "Error allocating memory for cache";
2385		return -ENOMEM;
2386	}
2387	ca->ti = ti;
2388
2389	r = parse_cache_args(ca, argc, argv, &ti->error);
2390	if (r)
2391		goto out;
2392
2393	r = cache_create(ca, &cache);
2394	if (r)
2395		goto out;
2396
2397	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2398	if (r) {
2399		destroy(cache);
2400		goto out;
2401	}
2402
2403	ti->private = cache;
2404
2405out:
2406	destroy_cache_args(ca);
2407	return r;
2408}
2409
 
 
2410static int cache_map(struct dm_target *ti, struct bio *bio)
2411{
2412	struct cache *cache = ti->private;
2413
2414	int r;
 
2415	dm_oblock_t block = get_bio_block(cache, bio);
2416	size_t pb_data_size = get_per_bio_data_size(cache);
2417	bool can_migrate = false;
2418	bool discarded_block;
2419	struct dm_bio_prison_cell *cell;
2420	struct policy_result lookup_result;
2421	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
 
 
 
2422
2423	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2424		/*
2425		 * This can only occur if the io goes to a partial block at
2426		 * the end of the origin device.  We don't cache these.
2427		 * Just remap to the origin and carry on.
2428		 */
2429		remap_to_origin(cache, bio);
 
2430		return DM_MAPIO_REMAPPED;
2431	}
2432
2433	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2434		defer_bio(cache, bio);
2435		return DM_MAPIO_SUBMITTED;
2436	}
2437
2438	/*
2439	 * Check to see if that block is currently migrating.
2440	 */
2441	cell = alloc_prison_cell(cache);
2442	if (!cell) {
2443		defer_bio(cache, bio);
2444		return DM_MAPIO_SUBMITTED;
2445	}
2446
2447	r = bio_detain(cache, block, bio, cell,
2448		       (cell_free_fn) free_prison_cell,
2449		       cache, &cell);
2450	if (r) {
2451		if (r < 0)
2452			defer_bio(cache, bio);
2453
2454		return DM_MAPIO_SUBMITTED;
2455	}
2456
2457	discarded_block = is_discarded_oblock(cache, block);
2458
2459	r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2460		       bio, &lookup_result);
2461	if (r == -EWOULDBLOCK) {
2462		cell_defer(cache, cell, true);
2463		return DM_MAPIO_SUBMITTED;
2464
2465	} else if (r) {
2466		DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
 
 
2467		bio_io_error(bio);
2468		return DM_MAPIO_SUBMITTED;
2469	}
2470
2471	r = DM_MAPIO_REMAPPED;
2472	switch (lookup_result.op) {
2473	case POLICY_HIT:
2474		if (passthrough_mode(&cache->features)) {
2475			if (bio_data_dir(bio) == WRITE) {
2476				/*
2477				 * We need to invalidate this block, so
2478				 * defer for the worker thread.
2479				 */
2480				cell_defer(cache, cell, true);
2481				r = DM_MAPIO_SUBMITTED;
2482
2483			} else {
2484				pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2485				inc_miss_counter(cache, bio);
2486				remap_to_origin_clear_discard(cache, bio, block);
2487
 
 
 
2488				cell_defer(cache, cell, false);
2489			}
2490
2491		} else {
2492			inc_hit_counter(cache, bio);
2493			pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2494
2495			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2496			    !is_dirty(cache, lookup_result.cblock))
2497				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2498			else
2499				remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
 
2500
2501			cell_defer(cache, cell, false);
 
2502		}
2503		break;
2504
2505	case POLICY_MISS:
2506		inc_miss_counter(cache, bio);
2507		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2508
2509		if (pb->req_nr != 0) {
2510			/*
2511			 * This is a duplicate writethrough io that is no
2512			 * longer needed because the block has been demoted.
2513			 */
2514			bio_endio(bio, 0);
 
2515			cell_defer(cache, cell, false);
2516			return DM_MAPIO_SUBMITTED;
2517		} else {
2518			remap_to_origin_clear_discard(cache, bio, block);
2519			cell_defer(cache, cell, false);
2520		}
2521		break;
2522
2523	default:
2524		DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
 
2525			    (unsigned) lookup_result.op);
 
2526		bio_io_error(bio);
2527		r = DM_MAPIO_SUBMITTED;
2528	}
2529
2530	return r;
2531}
2532
2533static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2534{
2535	struct cache *cache = ti->private;
2536	unsigned long flags;
2537	size_t pb_data_size = get_per_bio_data_size(cache);
2538	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2539
2540	if (pb->tick) {
2541		policy_tick(cache->policy);
2542
2543		spin_lock_irqsave(&cache->lock, flags);
2544		cache->need_tick_bio = true;
2545		spin_unlock_irqrestore(&cache->lock, flags);
2546	}
2547
2548	check_for_quiesced_migrations(cache, pb);
 
2549
2550	return 0;
2551}
2552
2553static int write_dirty_bitset(struct cache *cache)
2554{
2555	unsigned i, r;
2556
 
 
 
2557	for (i = 0; i < from_cblock(cache->cache_size); i++) {
2558		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2559				       is_dirty(cache, to_cblock(i)));
2560		if (r)
 
2561			return r;
 
2562	}
2563
2564	return 0;
2565}
2566
2567static int write_discard_bitset(struct cache *cache)
2568{
2569	unsigned i, r;
2570
2571	r = dm_cache_discard_bitset_resize(cache->cmd, cache->sectors_per_block,
2572					   cache->origin_blocks);
 
 
 
2573	if (r) {
2574		DMERR("could not resize on-disk discard bitset");
 
2575		return r;
2576	}
2577
2578	for (i = 0; i < from_oblock(cache->discard_nr_blocks); i++) {
2579		r = dm_cache_set_discard(cache->cmd, to_oblock(i),
2580					 is_discarded(cache, to_oblock(i)));
2581		if (r)
 
2582			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583	}
2584
2585	return 0;
2586}
2587
2588/*
2589 * returns true on success
2590 */
2591static bool sync_metadata(struct cache *cache)
2592{
2593	int r1, r2, r3, r4;
2594
2595	r1 = write_dirty_bitset(cache);
2596	if (r1)
2597		DMERR("could not write dirty bitset");
2598
2599	r2 = write_discard_bitset(cache);
2600	if (r2)
2601		DMERR("could not write discard bitset");
2602
2603	save_stats(cache);
2604
2605	r3 = dm_cache_write_hints(cache->cmd, cache->policy);
2606	if (r3)
2607		DMERR("could not write hints");
2608
2609	/*
2610	 * If writing the above metadata failed, we still commit, but don't
2611	 * set the clean shutdown flag.  This will effectively force every
2612	 * dirty bit to be set on reload.
2613	 */
2614	r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2615	if (r4)
2616		DMERR("could not write cache metadata.  Data loss may occur.");
2617
2618	return !r1 && !r2 && !r3 && !r4;
2619}
2620
2621static void cache_postsuspend(struct dm_target *ti)
2622{
2623	struct cache *cache = ti->private;
2624
2625	start_quiescing(cache);
2626	wait_for_migrations(cache);
2627	stop_worker(cache);
2628	requeue_deferred_io(cache);
 
2629	stop_quiescing(cache);
2630
2631	(void) sync_metadata(cache);
 
2632}
2633
2634static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2635			bool dirty, uint32_t hint, bool hint_valid)
2636{
2637	int r;
2638	struct cache *cache = context;
2639
2640	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2641	if (r)
2642		return r;
2643
2644	if (dirty)
2645		set_dirty(cache, oblock, cblock);
2646	else
2647		clear_dirty(cache, oblock, cblock);
2648
2649	return 0;
2650}
2651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2652static int load_discard(void *context, sector_t discard_block_size,
2653			dm_oblock_t oblock, bool discard)
2654{
2655	struct cache *cache = context;
 
 
 
 
 
 
 
 
 
2656
2657	if (discard)
2658		set_discard(cache, oblock);
2659	else
2660		clear_discard(cache, oblock);
 
 
 
 
 
 
 
 
2661
2662	return 0;
2663}
2664
2665static dm_cblock_t get_cache_dev_size(struct cache *cache)
2666{
2667	sector_t size = get_dev_size(cache->cache_dev);
2668	(void) sector_div(size, cache->sectors_per_block);
2669	return to_cblock(size);
2670}
2671
2672static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2673{
2674	if (from_cblock(new_size) > from_cblock(cache->cache_size))
2675		return true;
2676
2677	/*
2678	 * We can't drop a dirty block when shrinking the cache.
2679	 */
2680	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2681		new_size = to_cblock(from_cblock(new_size) + 1);
2682		if (is_dirty(cache, new_size)) {
2683			DMERR("unable to shrink cache; cache block %llu is dirty",
 
2684			      (unsigned long long) from_cblock(new_size));
2685			return false;
2686		}
2687	}
2688
2689	return true;
2690}
2691
2692static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2693{
2694	int r;
2695
2696	r = dm_cache_resize(cache->cmd, new_size);
2697	if (r) {
2698		DMERR("could not resize cache metadata");
 
2699		return r;
2700	}
2701
2702	cache->cache_size = new_size;
2703
2704	return 0;
2705}
2706
2707static int cache_preresume(struct dm_target *ti)
2708{
2709	int r = 0;
2710	struct cache *cache = ti->private;
2711	dm_cblock_t csize = get_cache_dev_size(cache);
2712
2713	/*
2714	 * Check to see if the cache has resized.
2715	 */
2716	if (!cache->sized) {
2717		r = resize_cache_dev(cache, csize);
2718		if (r)
2719			return r;
2720
2721		cache->sized = true;
2722
2723	} else if (csize != cache->cache_size) {
2724		if (!can_resize(cache, csize))
2725			return -EINVAL;
2726
2727		r = resize_cache_dev(cache, csize);
2728		if (r)
2729			return r;
2730	}
2731
2732	if (!cache->loaded_mappings) {
2733		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2734					   load_mapping, cache);
2735		if (r) {
2736			DMERR("could not load cache mappings");
 
2737			return r;
2738		}
2739
2740		cache->loaded_mappings = true;
2741	}
2742
2743	if (!cache->loaded_discards) {
2744		r = dm_cache_load_discards(cache->cmd, load_discard, cache);
 
 
 
 
 
 
 
 
 
 
2745		if (r) {
2746			DMERR("could not load origin discards");
 
2747			return r;
2748		}
 
2749
2750		cache->loaded_discards = true;
2751	}
2752
2753	return r;
2754}
2755
2756static void cache_resume(struct dm_target *ti)
2757{
2758	struct cache *cache = ti->private;
2759
2760	cache->need_tick_bio = true;
2761	do_waker(&cache->waker.work);
2762}
2763
2764/*
2765 * Status format:
2766 *
2767 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
2768 * <cache block size> <#used cache blocks>/<#total cache blocks>
2769 * <#read hits> <#read misses> <#write hits> <#write misses>
2770 * <#demotions> <#promotions> <#dirty>
2771 * <#features> <features>*
2772 * <#core args> <core args>
2773 * <policy name> <#policy args> <policy args>*
2774 */
2775static void cache_status(struct dm_target *ti, status_type_t type,
2776			 unsigned status_flags, char *result, unsigned maxlen)
2777{
2778	int r = 0;
2779	unsigned i;
2780	ssize_t sz = 0;
2781	dm_block_t nr_free_blocks_metadata = 0;
2782	dm_block_t nr_blocks_metadata = 0;
2783	char buf[BDEVNAME_SIZE];
2784	struct cache *cache = ti->private;
2785	dm_cblock_t residency;
 
2786
2787	switch (type) {
2788	case STATUSTYPE_INFO:
 
 
 
 
 
2789		/* Commit to ensure statistics aren't out-of-date */
2790		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2791			r = dm_cache_commit(cache->cmd, false);
2792			if (r)
2793				DMERR("could not commit metadata for accurate status");
2794		}
2795
2796		r = dm_cache_get_free_metadata_block_count(cache->cmd,
2797							   &nr_free_blocks_metadata);
2798		if (r) {
2799			DMERR("could not get metadata free block count");
 
2800			goto err;
2801		}
2802
2803		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2804		if (r) {
2805			DMERR("could not get metadata device size");
 
2806			goto err;
2807		}
2808
2809		residency = policy_residency(cache->policy);
2810
2811		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %llu ",
2812		       (unsigned)(DM_CACHE_METADATA_BLOCK_SIZE >> SECTOR_SHIFT),
2813		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2814		       (unsigned long long)nr_blocks_metadata,
2815		       cache->sectors_per_block,
2816		       (unsigned long long) from_cblock(residency),
2817		       (unsigned long long) from_cblock(cache->cache_size),
2818		       (unsigned) atomic_read(&cache->stats.read_hit),
2819		       (unsigned) atomic_read(&cache->stats.read_miss),
2820		       (unsigned) atomic_read(&cache->stats.write_hit),
2821		       (unsigned) atomic_read(&cache->stats.write_miss),
2822		       (unsigned) atomic_read(&cache->stats.demotion),
2823		       (unsigned) atomic_read(&cache->stats.promotion),
2824		       (unsigned long long) from_cblock(cache->nr_dirty));
2825
2826		if (writethrough_mode(&cache->features))
2827			DMEMIT("1 writethrough ");
2828
2829		else if (passthrough_mode(&cache->features))
2830			DMEMIT("1 passthrough ");
2831
2832		else if (writeback_mode(&cache->features))
2833			DMEMIT("1 writeback ");
2834
2835		else {
2836			DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
 
2837			goto err;
2838		}
2839
2840		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2841
2842		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
2843		if (sz < maxlen) {
2844			r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2845			if (r)
2846				DMERR("policy_emit_config_values returned %d", r);
 
2847		}
2848
 
 
 
 
 
 
 
 
 
 
 
 
2849		break;
2850
2851	case STATUSTYPE_TABLE:
2852		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2853		DMEMIT("%s ", buf);
2854		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2855		DMEMIT("%s ", buf);
2856		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2857		DMEMIT("%s", buf);
2858
2859		for (i = 0; i < cache->nr_ctr_args - 1; i++)
2860			DMEMIT(" %s", cache->ctr_args[i]);
2861		if (cache->nr_ctr_args)
2862			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2863	}
2864
2865	return;
2866
2867err:
2868	DMEMIT("Error");
2869}
2870
2871/*
2872 * A cache block range can take two forms:
2873 *
2874 * i) A single cblock, eg. '3456'
2875 * ii) A begin and end cblock with dots between, eg. 123-234
2876 */
2877static int parse_cblock_range(struct cache *cache, const char *str,
2878			      struct cblock_range *result)
2879{
2880	char dummy;
2881	uint64_t b, e;
2882	int r;
2883
2884	/*
2885	 * Try and parse form (ii) first.
2886	 */
2887	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
2888	if (r < 0)
2889		return r;
2890
2891	if (r == 2) {
2892		result->begin = to_cblock(b);
2893		result->end = to_cblock(e);
2894		return 0;
2895	}
2896
2897	/*
2898	 * That didn't work, try form (i).
2899	 */
2900	r = sscanf(str, "%llu%c", &b, &dummy);
2901	if (r < 0)
2902		return r;
2903
2904	if (r == 1) {
2905		result->begin = to_cblock(b);
2906		result->end = to_cblock(from_cblock(result->begin) + 1u);
2907		return 0;
2908	}
2909
2910	DMERR("invalid cblock range '%s'", str);
2911	return -EINVAL;
2912}
2913
2914static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
2915{
2916	uint64_t b = from_cblock(range->begin);
2917	uint64_t e = from_cblock(range->end);
2918	uint64_t n = from_cblock(cache->cache_size);
2919
2920	if (b >= n) {
2921		DMERR("begin cblock out of range: %llu >= %llu", b, n);
 
2922		return -EINVAL;
2923	}
2924
2925	if (e > n) {
2926		DMERR("end cblock out of range: %llu > %llu", e, n);
 
2927		return -EINVAL;
2928	}
2929
2930	if (b >= e) {
2931		DMERR("invalid cblock range: %llu >= %llu", b, e);
 
2932		return -EINVAL;
2933	}
2934
2935	return 0;
2936}
2937
2938static int request_invalidation(struct cache *cache, struct cblock_range *range)
2939{
2940	struct invalidation_request req;
2941
2942	INIT_LIST_HEAD(&req.list);
2943	req.cblocks = range;
2944	atomic_set(&req.complete, 0);
2945	req.err = 0;
2946	init_waitqueue_head(&req.result_wait);
2947
2948	spin_lock(&cache->invalidation_lock);
2949	list_add(&req.list, &cache->invalidation_requests);
2950	spin_unlock(&cache->invalidation_lock);
2951	wake_worker(cache);
2952
2953	wait_event(req.result_wait, atomic_read(&req.complete));
2954	return req.err;
2955}
2956
2957static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
2958					      const char **cblock_ranges)
2959{
2960	int r = 0;
2961	unsigned i;
2962	struct cblock_range range;
2963
2964	if (!passthrough_mode(&cache->features)) {
2965		DMERR("cache has to be in passthrough mode for invalidation");
 
2966		return -EPERM;
2967	}
2968
2969	for (i = 0; i < count; i++) {
2970		r = parse_cblock_range(cache, cblock_ranges[i], &range);
2971		if (r)
2972			break;
2973
2974		r = validate_cblock_range(cache, &range);
2975		if (r)
2976			break;
2977
2978		/*
2979		 * Pass begin and end origin blocks to the worker and wake it.
2980		 */
2981		r = request_invalidation(cache, &range);
2982		if (r)
2983			break;
2984	}
2985
2986	return r;
2987}
2988
2989/*
2990 * Supports
2991 *	"<key> <value>"
2992 * and
2993 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
2994 *
2995 * The key migration_threshold is supported by the cache target core.
2996 */
2997static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
2998{
2999	struct cache *cache = ti->private;
3000
3001	if (!argc)
3002		return -EINVAL;
3003
 
 
 
 
 
 
3004	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3005		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3006
3007	if (argc != 2)
3008		return -EINVAL;
3009
3010	return set_config_value(cache, argv[0], argv[1]);
3011}
3012
3013static int cache_iterate_devices(struct dm_target *ti,
3014				 iterate_devices_callout_fn fn, void *data)
3015{
3016	int r = 0;
3017	struct cache *cache = ti->private;
3018
3019	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3020	if (!r)
3021		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3022
3023	return r;
3024}
3025
3026/*
3027 * We assume I/O is going to the origin (which is the volume
3028 * more likely to have restrictions e.g. by being striped).
3029 * (Looking up the exact location of the data would be expensive
3030 * and could always be out of date by the time the bio is submitted.)
3031 */
3032static int cache_bvec_merge(struct dm_target *ti,
3033			    struct bvec_merge_data *bvm,
3034			    struct bio_vec *biovec, int max_size)
3035{
3036	struct cache *cache = ti->private;
3037	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3038
3039	if (!q->merge_bvec_fn)
3040		return max_size;
3041
3042	bvm->bi_bdev = cache->origin_dev->bdev;
3043	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3044}
3045
3046static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3047{
3048	/*
3049	 * FIXME: these limits may be incompatible with the cache device
3050	 */
3051	limits->max_discard_sectors = cache->sectors_per_block;
3052	limits->discard_granularity = cache->sectors_per_block << SECTOR_SHIFT;
 
3053}
3054
3055static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3056{
3057	struct cache *cache = ti->private;
3058	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3059
3060	/*
3061	 * If the system-determined stacked limits are compatible with the
3062	 * cache's blocksize (io_opt is a factor) do not override them.
3063	 */
3064	if (io_opt_sectors < cache->sectors_per_block ||
3065	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3066		blk_limits_io_min(limits, 0);
3067		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3068	}
3069	set_discard_limits(cache, limits);
3070}
3071
3072/*----------------------------------------------------------------*/
3073
3074static struct target_type cache_target = {
3075	.name = "cache",
3076	.version = {1, 4, 0},
3077	.module = THIS_MODULE,
3078	.ctr = cache_ctr,
3079	.dtr = cache_dtr,
3080	.map = cache_map,
3081	.end_io = cache_end_io,
3082	.postsuspend = cache_postsuspend,
3083	.preresume = cache_preresume,
3084	.resume = cache_resume,
3085	.status = cache_status,
3086	.message = cache_message,
3087	.iterate_devices = cache_iterate_devices,
3088	.merge = cache_bvec_merge,
3089	.io_hints = cache_io_hints,
3090};
3091
3092static int __init dm_cache_init(void)
3093{
3094	int r;
3095
3096	r = dm_register_target(&cache_target);
3097	if (r) {
3098		DMERR("cache target registration failed: %d", r);
3099		return r;
3100	}
3101
3102	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3103	if (!migration_cache) {
3104		dm_unregister_target(&cache_target);
3105		return -ENOMEM;
3106	}
3107
3108	return 0;
3109}
3110
3111static void __exit dm_cache_exit(void)
3112{
3113	dm_unregister_target(&cache_target);
3114	kmem_cache_destroy(migration_cache);
3115}
3116
3117module_init(dm_cache_init);
3118module_exit(dm_cache_exit);
3119
3120MODULE_DESCRIPTION(DM_NAME " cache target");
3121MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3122MODULE_LICENSE("GPL");