Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2022 Intel Corporation
  4 */
  5
  6#include "xe_gt_mcr.h"
  7
  8#include "regs/xe_gt_regs.h"
  9#include "xe_gt.h"
 10#include "xe_gt_topology.h"
 11#include "xe_gt_types.h"
 12#include "xe_mmio.h"
 13
 14/**
 15 * DOC: GT Multicast/Replicated (MCR) Register Support
 16 *
 17 * Some GT registers are designed as "multicast" or "replicated" registers:
 18 * multiple instances of the same register share a single MMIO offset.  MCR
 19 * registers are generally used when the hardware needs to potentially track
 20 * independent values of a register per hardware unit (e.g., per-subslice,
 21 * per-L3bank, etc.).  The specific types of replication that exist vary
 22 * per-platform.
 23 *
 24 * MMIO accesses to MCR registers are controlled according to the settings
 25 * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
 26 * registers can be done in either multicast (a single write updates all
 27 * instances of the register to the same value) or unicast (a write updates only
 28 * one specific instance) form.  Reads of MCR registers always operate in a
 29 * unicast manner regardless of how the multicast/unicast bit is set in
 30 * MCR_SELECTOR.  Selection of a specific MCR instance for unicast operations is
 31 * referred to as "steering."
 32 *
 33 * If MCR register operations are steered toward a hardware unit that is
 34 * fused off or currently powered down due to power gating, the MMIO operation
 35 * is "terminated" by the hardware.  Terminated read operations will return a
 36 * value of zero and terminated unicast write operations will be silently
 37 * ignored. During device initialization, the goal of the various
 38 * ``init_steering_*()`` functions is to apply the platform-specific rules for
 39 * each MCR register type to identify a steering target that will select a
 40 * non-terminated instance.
 41 */
 42
 43#define STEER_SEMAPHORE		XE_REG(0xFD0)
 44
 45static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr)
 46{
 47	return reg_mcr.__reg;
 48}
 49
 50enum {
 51	MCR_OP_READ,
 52	MCR_OP_WRITE
 53};
 54
 55static const struct xe_mmio_range xelp_l3bank_steering_table[] = {
 56	{ 0x00B100, 0x00B3FF },
 57	{},
 58};
 59
 60static const struct xe_mmio_range xehp_l3bank_steering_table[] = {
 61	{ 0x008C80, 0x008CFF },
 62	{ 0x00B100, 0x00B3FF },
 63	{},
 64};
 65
 66/*
 67 * Although the bspec lists more "MSLICE" ranges than shown here, some of those
 68 * are of a "GAM" subclass that has special rules and doesn't need to be
 69 * included here.
 70 */
 71static const struct xe_mmio_range xehp_mslice_steering_table[] = {
 72	{ 0x00DD00, 0x00DDFF },
 73	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
 74	{},
 75};
 76
 77static const struct xe_mmio_range xehp_lncf_steering_table[] = {
 78	{ 0x00B000, 0x00B0FF },
 79	{ 0x00D880, 0x00D8FF },
 80	{},
 81};
 82
 83/*
 84 * We have several types of MCR registers where steering to (0,0) will always
 85 * provide us with a non-terminated value.  We'll stick them all in the same
 86 * table for simplicity.
 87 */
 88static const struct xe_mmio_range xehpc_instance0_steering_table[] = {
 89	{ 0x004000, 0x004AFF },		/* HALF-BSLICE */
 90	{ 0x008800, 0x00887F },		/* CC */
 91	{ 0x008A80, 0x008AFF },		/* TILEPSMI */
 92	{ 0x00B000, 0x00B0FF },		/* HALF-BSLICE */
 93	{ 0x00B100, 0x00B3FF },		/* L3BANK */
 94	{ 0x00C800, 0x00CFFF },		/* HALF-BSLICE */
 95	{ 0x00D800, 0x00D8FF },		/* HALF-BSLICE */
 96	{ 0x00DD00, 0x00DDFF },		/* BSLICE */
 97	{ 0x00E900, 0x00E9FF },		/* HALF-BSLICE */
 98	{ 0x00EC00, 0x00EEFF },		/* HALF-BSLICE */
 99	{ 0x00F000, 0x00FFFF },		/* HALF-BSLICE */
100	{ 0x024180, 0x0241FF },		/* HALF-BSLICE */
101	{},
102};
103
104static const struct xe_mmio_range xelpg_instance0_steering_table[] = {
105	{ 0x000B00, 0x000BFF },         /* SQIDI */
106	{ 0x001000, 0x001FFF },         /* SQIDI */
107	{ 0x004000, 0x0048FF },         /* GAM */
108	{ 0x008700, 0x0087FF },         /* SQIDI */
109	{ 0x00B000, 0x00B0FF },         /* NODE */
110	{ 0x00C800, 0x00CFFF },         /* GAM */
111	{ 0x00D880, 0x00D8FF },         /* NODE */
112	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
113	{},
114};
115
116static const struct xe_mmio_range xelpg_l3bank_steering_table[] = {
117	{ 0x00B100, 0x00B3FF },
118	{},
119};
120
121static const struct xe_mmio_range xelp_dss_steering_table[] = {
122	{ 0x008150, 0x00815F },
123	{ 0x009520, 0x00955F },
124	{ 0x00DE80, 0x00E8FF },
125	{ 0x024A00, 0x024A7F },
126	{},
127};
128
129/* DSS steering is used for GSLICE ranges as well */
130static const struct xe_mmio_range xehp_dss_steering_table[] = {
131	{ 0x005200, 0x0052FF },		/* GSLICE */
132	{ 0x005400, 0x007FFF },		/* GSLICE */
133	{ 0x008140, 0x00815F },		/* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
134	{ 0x008D00, 0x008DFF },		/* DSS */
135	{ 0x0094D0, 0x00955F },		/* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
136	{ 0x009680, 0x0096FF },		/* DSS */
137	{ 0x00D800, 0x00D87F },		/* GSLICE */
138	{ 0x00DC00, 0x00DCFF },		/* GSLICE */
139	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved ) */
140	{ 0x017000, 0x017FFF },		/* GSLICE */
141	{ 0x024A00, 0x024A7F },		/* DSS */
142	{},
143};
144
145/* DSS steering is used for COMPUTE ranges as well */
146static const struct xe_mmio_range xehpc_dss_steering_table[] = {
147	{ 0x008140, 0x00817F },		/* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */
148	{ 0x0094D0, 0x00955F },		/* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */
149	{ 0x009680, 0x0096FF },		/* DSS */
150	{ 0x00DC00, 0x00DCFF },		/* COMPUTE */
151	{ 0x00DE80, 0x00E7FF },		/* DSS (0xDF00-0xE1FF reserved ) */
152	{},
153};
154
155/* DSS steering is used for SLICE ranges as well */
156static const struct xe_mmio_range xelpg_dss_steering_table[] = {
157	{ 0x005200, 0x0052FF },		/* SLICE */
158	{ 0x005500, 0x007FFF },		/* SLICE */
159	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
160	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
161	{ 0x009680, 0x0096FF },		/* DSS */
162	{ 0x00D800, 0x00D87F },		/* SLICE */
163	{ 0x00DC00, 0x00DCFF },		/* SLICE */
164	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
165	{},
166};
167
168static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = {
169	{ 0x393200, 0x39323F },
170	{ 0x393400, 0x3934FF },
171	{},
172};
173
174static const struct xe_mmio_range dg2_implicit_steering_table[] = {
175	{ 0x000B00, 0x000BFF },		/* SF (SQIDI replication) */
176	{ 0x001000, 0x001FFF },		/* SF (SQIDI replication) */
177	{ 0x004000, 0x004AFF },		/* GAM (MSLICE replication) */
178	{ 0x008700, 0x0087FF },		/* MCFG (SQIDI replication) */
179	{ 0x00C800, 0x00CFFF },		/* GAM (MSLICE replication) */
180	{ 0x00F000, 0x00FFFF },		/* GAM (MSLICE replication) */
181	{},
182};
183
184static const struct xe_mmio_range xe2lpg_dss_steering_table[] = {
185	{ 0x005200, 0x0052FF },         /* SLICE */
186	{ 0x005500, 0x007FFF },         /* SLICE */
187	{ 0x008140, 0x00815F },         /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
188	{ 0x0094D0, 0x00955F },         /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
189	{ 0x009680, 0x0096FF },         /* DSS */
190	{ 0x00D800, 0x00D87F },         /* SLICE */
191	{ 0x00DC00, 0x00DCFF },         /* SLICE */
192	{ 0x00DE80, 0x00E8FF },         /* DSS (0xE000-0xE0FF reserved) */
193	{ 0x00E980, 0x00E9FF },         /* SLICE */
194	{ 0x013000, 0x0133FF },         /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */
195	{},
196};
197
198static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = {
199	{ 0x000B00, 0x000BFF },
200	{ 0x001000, 0x001FFF },
201	{},
202};
203
204static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = {
205	{ 0x004000, 0x004AFF },         /* GAM, rsvd, GAMWKR */
206	{ 0x008700, 0x00887F },         /* SQIDI, MEMPIPE */
207	{ 0x00B000, 0x00B3FF },         /* NODE, L3BANK */
208	{ 0x00C800, 0x00CFFF },         /* GAM */
209	{ 0x00D880, 0x00D8FF },         /* NODE */
210	{ 0x00DD00, 0x00DDFF },         /* MEMPIPE */
211	{ 0x00E900, 0x00E97F },         /* MEMPIPE */
212	{ 0x00F000, 0x00FFFF },         /* GAM, GAMWKR */
213	{ 0x013400, 0x0135FF },         /* MEMPIPE */
214	{},
215};
216
217static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = {
218	{ 0x388160, 0x38817F },
219	{ 0x389480, 0x3894CF },
220	{},
221};
222
223static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = {
224	{ 0x384000, 0x3847DF },         /* GAM, rsvd, GAM */
225	{ 0x384900, 0x384AFF },         /* GAM */
226	{ 0x389560, 0x3895FF },         /* MEDIAINF */
227	{ 0x38B600, 0x38B8FF },         /* L3BANK */
228	{ 0x38C800, 0x38D07F },         /* GAM, MEDIAINF */
229	{ 0x38F000, 0x38F0FF },         /* GAM */
230	{ 0x393C00, 0x393C7F },         /* MEDIAINF */
231	{},
232};
233
234static void init_steering_l3bank(struct xe_gt *gt)
235{
236	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
237		u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
238						xe_mmio_read32(gt, MIRROR_FUSE3));
239		u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK,
240					      xe_mmio_read32(gt, XEHP_FUSE4));
241
242		/*
243		 * Group selects mslice, instance selects bank within mslice.
244		 * Bank 0 is always valid _except_ when the bank mask is 010b.
245		 */
246		gt->steering[L3BANK].group_target = __ffs(mslice_mask);
247		gt->steering[L3BANK].instance_target =
248			bank_mask & BIT(0) ? 0 : 2;
249	} else if (gt_to_xe(gt)->info.platform == XE_DG2) {
250		u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
251						xe_mmio_read32(gt, MIRROR_FUSE3));
252		u32 bank = __ffs(mslice_mask) * 8;
253
254		/*
255		 * Like mslice registers, look for a valid mslice and steer to
256		 * the first L3BANK of that quad. Access to the Nth L3 bank is
257		 * split between the first bits of group and instance
258		 */
259		gt->steering[L3BANK].group_target = (bank >> 2) & 0x7;
260		gt->steering[L3BANK].instance_target = bank & 0x3;
261	} else {
262		u32 fuse = REG_FIELD_GET(L3BANK_MASK,
263					 ~xe_mmio_read32(gt, MIRROR_FUSE3));
264
265		gt->steering[L3BANK].group_target = 0;	/* unused */
266		gt->steering[L3BANK].instance_target = __ffs(fuse);
267	}
268}
269
270static void init_steering_mslice(struct xe_gt *gt)
271{
272	u32 mask = REG_FIELD_GET(MEML3_EN_MASK,
273				 xe_mmio_read32(gt, MIRROR_FUSE3));
274
275	/*
276	 * mslice registers are valid (not terminated) if either the meml3
277	 * associated with the mslice is present, or at least one DSS associated
278	 * with the mslice is present.  There will always be at least one meml3
279	 * so we can just use that to find a non-terminated mslice and ignore
280	 * the DSS fusing.
281	 */
282	gt->steering[MSLICE].group_target = __ffs(mask);
283	gt->steering[MSLICE].instance_target = 0;	/* unused */
284
285	/*
286	 * LNCF termination is also based on mslice presence, so we'll set
287	 * it up here.  Either LNCF within a non-terminated mslice will work,
288	 * so we just always pick LNCF 0 here.
289	 */
290	gt->steering[LNCF].group_target = __ffs(mask) << 1;
291	gt->steering[LNCF].instance_target = 0;		/* unused */
292}
293
294static void init_steering_dss(struct xe_gt *gt)
295{
296	unsigned int dss = min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0),
297			       xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0));
298	unsigned int dss_per_grp = gt_to_xe(gt)->info.platform == XE_PVC ? 8 : 4;
299
300	gt->steering[DSS].group_target = dss / dss_per_grp;
301	gt->steering[DSS].instance_target = dss % dss_per_grp;
302}
303
304static void init_steering_oaddrm(struct xe_gt *gt)
305{
306	/*
307	 * First instance is only terminated if the entire first media slice
308	 * is absent (i.e., no VCS0 or VECS0).
309	 */
310	if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0))
311		gt->steering[OADDRM].group_target = 0;
312	else
313		gt->steering[OADDRM].group_target = 1;
314
315	gt->steering[DSS].instance_target = 0;		/* unused */
316}
317
318static void init_steering_sqidi_psmi(struct xe_gt *gt)
319{
320	u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK,
321				 xe_mmio_read32(gt, MIRROR_FUSE3));
322	u32 select = __ffs(mask);
323
324	gt->steering[SQIDI_PSMI].group_target = select >> 1;
325	gt->steering[SQIDI_PSMI].instance_target = select & 0x1;
326}
327
328static void init_steering_inst0(struct xe_gt *gt)
329{
330	gt->steering[DSS].group_target = 0;		/* unused */
331	gt->steering[DSS].instance_target = 0;		/* unused */
332}
333
334static const struct {
335	const char *name;
336	void (*init)(struct xe_gt *gt);
337} xe_steering_types[] = {
338	[L3BANK] =	{ "L3BANK",	init_steering_l3bank },
339	[MSLICE] =	{ "MSLICE",	init_steering_mslice },
340	[LNCF] =	{ "LNCF",	NULL }, /* initialized by mslice init */
341	[DSS] =		{ "DSS",	init_steering_dss },
342	[OADDRM] =	{ "OADDRM / GPMXMT", init_steering_oaddrm },
343	[SQIDI_PSMI] =  { "SQIDI_PSMI", init_steering_sqidi_psmi },
344	[INSTANCE0] =	{ "INSTANCE 0",	init_steering_inst0 },
345	[IMPLICIT_STEERING] = { "IMPLICIT", NULL },
346};
347
348void xe_gt_mcr_init(struct xe_gt *gt)
349{
350	struct xe_device *xe = gt_to_xe(gt);
351
352	BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES);
353	BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES);
354
355	spin_lock_init(&gt->mcr_lock);
356
357	if (gt->info.type == XE_GT_TYPE_MEDIA) {
358		drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13);
359
360		if (MEDIA_VER(xe) >= 20) {
361			gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table;
362			gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table;
363		} else {
364			gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table;
365		}
366	} else {
367		if (GRAPHICS_VER(xe) >= 20) {
368			gt->steering[DSS].ranges = xe2lpg_dss_steering_table;
369			gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table;
370			gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table;
371		} else if (GRAPHICS_VERx100(xe) >= 1270) {
372			gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table;
373			gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table;
374			gt->steering[DSS].ranges = xelpg_dss_steering_table;
375		} else if (xe->info.platform == XE_PVC) {
376			gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table;
377			gt->steering[DSS].ranges = xehpc_dss_steering_table;
378		} else if (xe->info.platform == XE_DG2) {
379			gt->steering[L3BANK].ranges = xehp_l3bank_steering_table;
380			gt->steering[MSLICE].ranges = xehp_mslice_steering_table;
381			gt->steering[LNCF].ranges = xehp_lncf_steering_table;
382			gt->steering[DSS].ranges = xehp_dss_steering_table;
383			gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table;
384		} else {
385			gt->steering[L3BANK].ranges = xelp_l3bank_steering_table;
386			gt->steering[DSS].ranges = xelp_dss_steering_table;
387		}
388	}
389
390	/* Select non-terminated steering target for each type */
391	for (int i = 0; i < NUM_STEERING_TYPES; i++)
392		if (gt->steering[i].ranges && xe_steering_types[i].init)
393			xe_steering_types[i].init(gt);
394}
395
396/**
397 * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers
398 * @gt: GT structure
399 *
400 * Some register ranges don't need to have their steering control registers
401 * changed on each access - it's sufficient to set them once on initialization.
402 * This function sets those registers for each platform *
403 */
404void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt)
405{
406	struct xe_device *xe = gt_to_xe(gt);
407
408	if (xe->info.platform == XE_DG2) {
409		u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) |
410			REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2);
411
412		xe_mmio_write32(gt, MCFG_MCR_SELECTOR, steer_val);
413		xe_mmio_write32(gt, SF_MCR_SELECTOR, steer_val);
414		/*
415		 * For GAM registers, all reads should be directed to instance 1
416		 * (unicast reads against other instances are not allowed),
417		 * and instance 1 is already the hardware's default steering
418		 * target, which we never change
419		 */
420	}
421}
422
423/*
424 * xe_gt_mcr_get_nonterminated_steering - find group/instance values that
425 *    will steer a register to a non-terminated instance
426 * @gt: GT structure
427 * @reg: register for which the steering is required
428 * @group: return variable for group steering
429 * @instance: return variable for instance steering
430 *
431 * This function returns a group/instance pair that is guaranteed to work for
432 * read steering of the given register. Note that a value will be returned even
433 * if the register is not replicated and therefore does not actually require
434 * steering.
435 *
436 * Returns true if the caller should steer to the @group/@instance values
437 * returned.  Returns false if the caller need not perform any steering
438 */
439static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt,
440						 struct xe_reg_mcr reg_mcr,
441						 u8 *group, u8 *instance)
442{
443	const struct xe_reg reg = to_xe_reg(reg_mcr);
444	const struct xe_mmio_range *implicit_ranges;
445
446	for (int type = 0; type < IMPLICIT_STEERING; type++) {
447		if (!gt->steering[type].ranges)
448			continue;
449
450		for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) {
451			if (xe_mmio_in_range(gt, &gt->steering[type].ranges[i], reg)) {
452				*group = gt->steering[type].group_target;
453				*instance = gt->steering[type].instance_target;
454				return true;
455			}
456		}
457	}
458
459	implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges;
460	if (implicit_ranges)
461		for (int i = 0; implicit_ranges[i].end > 0; i++)
462			if (xe_mmio_in_range(gt, &implicit_ranges[i], reg))
463				return false;
464
465	/*
466	 * Not found in a steering table and not a register with implicit
467	 * steering. Just steer to 0/0 as a guess and raise a warning.
468	 */
469	drm_WARN(&gt_to_xe(gt)->drm, true,
470		 "Did not find MCR register %#x in any MCR steering table\n",
471		 reg.addr);
472	*group = 0;
473	*instance = 0;
474
475	return true;
476}
477
478/*
479 * Obtain exclusive access to MCR steering.  On MTL and beyond we also need
480 * to synchronize with external clients (e.g., firmware), so a semaphore
481 * register will also need to be taken.
482 */
483static void mcr_lock(struct xe_gt *gt) __acquires(&gt->mcr_lock)
484{
485	struct xe_device *xe = gt_to_xe(gt);
486	int ret = 0;
487
488	spin_lock(&gt->mcr_lock);
489
490	/*
491	 * Starting with MTL we also need to grab a semaphore register
492	 * to synchronize with external agents (e.g., firmware) that now
493	 * shares the same steering control register. The semaphore is obtained
494	 * when a read to the relevant register returns 1.
495	 */
496	if (GRAPHICS_VERx100(xe) >= 1270)
497		ret = xe_mmio_wait32(gt, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL,
498				     true);
499
500	drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT);
501}
502
503static void mcr_unlock(struct xe_gt *gt) __releases(&gt->mcr_lock)
504{
505	/* Release hardware semaphore - this is done by writing 1 to the register */
506	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
507		xe_mmio_write32(gt, STEER_SEMAPHORE, 0x1);
508
509	spin_unlock(&gt->mcr_lock);
510}
511
512/*
513 * Access a register with specific MCR steering
514 *
515 * Caller needs to make sure the relevant forcewake wells are up.
516 */
517static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
518				u8 rw_flag, int group, int instance, u32 value)
519{
520	const struct xe_reg reg = to_xe_reg(reg_mcr);
521	struct xe_reg steer_reg;
522	u32 steer_val, val = 0;
523
524	lockdep_assert_held(&gt->mcr_lock);
525
526	if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
527		steer_reg = MTL_MCR_SELECTOR;
528		steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
529			REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance);
530	} else {
531		steer_reg = MCR_SELECTOR;
532		steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) |
533			REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance);
534	}
535
536	/*
537	 * Always leave the hardware in multicast mode when doing reads and only
538	 * change it to unicast mode when doing writes of a specific instance.
539	 *
540	 * The setting of the multicast/unicast bit usually wouldn't matter for
541	 * read operations (which always return the value from a single register
542	 * instance regardless of how that bit is set), but some platforms may
543	 * have workarounds requiring us to remain in multicast mode for reads,
544	 * e.g. Wa_22013088509 on PVC.  There's no real downside to this, so
545	 * we'll just go ahead and do so on all platforms; we'll only clear the
546	 * multicast bit from the mask when explicitly doing a write operation.
547	 *
548	 * No need to save old steering reg value.
549	 */
550	if (rw_flag == MCR_OP_READ)
551		steer_val |= MCR_MULTICAST;
552
553	xe_mmio_write32(gt, steer_reg, steer_val);
554
555	if (rw_flag == MCR_OP_READ)
556		val = xe_mmio_read32(gt, reg);
557	else
558		xe_mmio_write32(gt, reg, value);
559
560	/*
561	 * If we turned off the multicast bit (during a write) we're required
562	 * to turn it back on before finishing.  The group and instance values
563	 * don't matter since they'll be re-programmed on the next MCR
564	 * operation.
565	 */
566	if (rw_flag == MCR_OP_WRITE)
567		xe_mmio_write32(gt, steer_reg, MCR_MULTICAST);
568
569	return val;
570}
571
572/**
573 * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register
574 * @gt: GT structure
575 * @reg_mcr: register to read
576 *
577 * Reads a GT MCR register.  The read will be steered to a non-terminated
578 * instance (i.e., one that isn't fused off or powered down by power gating).
579 * This function assumes the caller is already holding any necessary forcewake
580 * domains.
581 *
582 * Returns the value from a non-terminated instance of @reg.
583 */
584u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr)
585{
586	const struct xe_reg reg = to_xe_reg(reg_mcr);
587	u8 group, instance;
588	u32 val;
589	bool steer;
590
591	steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr,
592						     &group, &instance);
593
594	if (steer) {
595		mcr_lock(gt);
596		val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ,
597					   group, instance, 0);
598		mcr_unlock(gt);
599	} else {
600		val = xe_mmio_read32(gt, reg);
601	}
602
603	return val;
604}
605
606/**
607 * xe_gt_mcr_unicast_read - read a specific instance of an MCR register
608 * @gt: GT structure
609 * @reg_mcr: the MCR register to read
610 * @group: the MCR group
611 * @instance: the MCR instance
612 *
613 * Returns the value read from an MCR register after steering toward a specific
614 * group/instance.
615 */
616u32 xe_gt_mcr_unicast_read(struct xe_gt *gt,
617			   struct xe_reg_mcr reg_mcr,
618			   int group, int instance)
619{
620	u32 val;
621
622	mcr_lock(gt);
623	val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0);
624	mcr_unlock(gt);
625
626	return val;
627}
628
629/**
630 * xe_gt_mcr_unicast_write - write a specific instance of an MCR register
631 * @gt: GT structure
632 * @reg_mcr: the MCR register to write
633 * @value: value to write
634 * @group: the MCR group
635 * @instance: the MCR instance
636 *
637 * Write an MCR register in unicast mode after steering toward a specific
638 * group/instance.
639 */
640void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
641			     u32 value, int group, int instance)
642{
643	mcr_lock(gt);
644	rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value);
645	mcr_unlock(gt);
646}
647
648/**
649 * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register
650 * @gt: GT structure
651 * @reg_mcr: the MCR register to write
652 * @value: value to write
653 *
654 * Write an MCR register in multicast mode to update all instances.
655 */
656void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
657			       u32 value)
658{
659	struct xe_reg reg = to_xe_reg(reg_mcr);
660
661	/*
662	 * Synchronize with any unicast operations.  Once we have exclusive
663	 * access, the MULTICAST bit should already be set, so there's no need
664	 * to touch the steering register.
665	 */
666	mcr_lock(gt);
667	xe_mmio_write32(gt, reg, value);
668	mcr_unlock(gt);
669}
670
671void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p)
672{
673	for (int i = 0; i < NUM_STEERING_TYPES; i++) {
674		if (gt->steering[i].ranges) {
675			drm_printf(p, "%s steering: group=%#x, instance=%#x\n",
676				   xe_steering_types[i].name,
677				   gt->steering[i].group_target,
678				   gt->steering[i].instance_target);
679			for (int j = 0; gt->steering[i].ranges[j].end; j++)
680				drm_printf(p, "\t0x%06x - 0x%06x\n",
681					   gt->steering[i].ranges[j].start,
682					   gt->steering[i].ranges[j].end);
683		}
684	}
685}