Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 | // SPDX-License-Identifier: MIT /* * Copyright © 2022 Intel Corporation */ #include "xe_gt_mcr.h" #include "regs/xe_gt_regs.h" #include "xe_gt.h" #include "xe_gt_topology.h" #include "xe_gt_types.h" #include "xe_mmio.h" #include "xe_sriov.h" /** * DOC: GT Multicast/Replicated (MCR) Register Support * * Some GT registers are designed as "multicast" or "replicated" registers: * multiple instances of the same register share a single MMIO offset. MCR * registers are generally used when the hardware needs to potentially track * independent values of a register per hardware unit (e.g., per-subslice, * per-L3bank, etc.). The specific types of replication that exist vary * per-platform. * * MMIO accesses to MCR registers are controlled according to the settings * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR * registers can be done in either multicast (a single write updates all * instances of the register to the same value) or unicast (a write updates only * one specific instance) form. Reads of MCR registers always operate in a * unicast manner regardless of how the multicast/unicast bit is set in * MCR_SELECTOR. Selection of a specific MCR instance for unicast operations is * referred to as "steering." * * If MCR register operations are steered toward a hardware unit that is * fused off or currently powered down due to power gating, the MMIO operation * is "terminated" by the hardware. Terminated read operations will return a * value of zero and terminated unicast write operations will be silently * ignored. During device initialization, the goal of the various * ``init_steering_*()`` functions is to apply the platform-specific rules for * each MCR register type to identify a steering target that will select a * non-terminated instance. * * MCR registers are not available on Virtual Function (VF). */ #define STEER_SEMAPHORE XE_REG(0xFD0) static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr) { return reg_mcr.__reg; } enum { MCR_OP_READ, MCR_OP_WRITE }; static const struct xe_mmio_range xelp_l3bank_steering_table[] = { { 0x00B100, 0x00B3FF }, {}, }; static const struct xe_mmio_range xehp_l3bank_steering_table[] = { { 0x008C80, 0x008CFF }, { 0x00B100, 0x00B3FF }, {}, }; /* * Although the bspec lists more "MSLICE" ranges than shown here, some of those * are of a "GAM" subclass that has special rules and doesn't need to be * included here. */ static const struct xe_mmio_range xehp_mslice_steering_table[] = { { 0x00DD00, 0x00DDFF }, { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ {}, }; static const struct xe_mmio_range xehp_lncf_steering_table[] = { { 0x00B000, 0x00B0FF }, { 0x00D880, 0x00D8FF }, {}, }; /* * We have several types of MCR registers where steering to (0,0) will always * provide us with a non-terminated value. We'll stick them all in the same * table for simplicity. */ static const struct xe_mmio_range xehpc_instance0_steering_table[] = { { 0x004000, 0x004AFF }, /* HALF-BSLICE */ { 0x008800, 0x00887F }, /* CC */ { 0x008A80, 0x008AFF }, /* TILEPSMI */ { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ { 0x00B100, 0x00B3FF }, /* L3BANK */ { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ { 0x00DD00, 0x00DDFF }, /* BSLICE */ { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ { 0x024180, 0x0241FF }, /* HALF-BSLICE */ {}, }; static const struct xe_mmio_range xelpg_instance0_steering_table[] = { { 0x000B00, 0x000BFF }, /* SQIDI */ { 0x001000, 0x001FFF }, /* SQIDI */ { 0x004000, 0x0048FF }, /* GAM */ { 0x008700, 0x0087FF }, /* SQIDI */ { 0x00B000, 0x00B0FF }, /* NODE */ { 0x00C800, 0x00CFFF }, /* GAM */ { 0x00D880, 0x00D8FF }, /* NODE */ { 0x00DD00, 0x00DDFF }, /* OAAL2 */ {}, }; static const struct xe_mmio_range xelpg_l3bank_steering_table[] = { { 0x00B100, 0x00B3FF }, {}, }; static const struct xe_mmio_range xelp_dss_steering_table[] = { { 0x008150, 0x00815F }, { 0x009520, 0x00955F }, { 0x00DE80, 0x00E8FF }, { 0x024A00, 0x024A7F }, {}, }; /* DSS steering is used for GSLICE ranges as well */ static const struct xe_mmio_range xehp_dss_steering_table[] = { { 0x005200, 0x0052FF }, /* GSLICE */ { 0x005400, 0x007FFF }, /* GSLICE */ { 0x008140, 0x00815F }, /* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ { 0x008D00, 0x008DFF }, /* DSS */ { 0x0094D0, 0x00955F }, /* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ { 0x009680, 0x0096FF }, /* DSS */ { 0x00D800, 0x00D87F }, /* GSLICE */ { 0x00DC00, 0x00DCFF }, /* GSLICE */ { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved ) */ { 0x017000, 0x017FFF }, /* GSLICE */ { 0x024A00, 0x024A7F }, /* DSS */ {}, }; /* DSS steering is used for COMPUTE ranges as well */ static const struct xe_mmio_range xehpc_dss_steering_table[] = { { 0x008140, 0x00817F }, /* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */ { 0x0094D0, 0x00955F }, /* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */ { 0x009680, 0x0096FF }, /* DSS */ { 0x00DC00, 0x00DCFF }, /* COMPUTE */ { 0x00DE80, 0x00E7FF }, /* DSS (0xDF00-0xE1FF reserved ) */ {}, }; /* DSS steering is used for SLICE ranges as well */ static const struct xe_mmio_range xelpg_dss_steering_table[] = { { 0x005200, 0x0052FF }, /* SLICE */ { 0x005500, 0x007FFF }, /* SLICE */ { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ { 0x009680, 0x0096FF }, /* DSS */ { 0x00D800, 0x00D87F }, /* SLICE */ { 0x00DC00, 0x00DCFF }, /* SLICE */ { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ {}, }; static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = { { 0x393200, 0x39323F }, { 0x393400, 0x3934FF }, {}, }; static const struct xe_mmio_range dg2_implicit_steering_table[] = { { 0x000B00, 0x000BFF }, /* SF (SQIDI replication) */ { 0x001000, 0x001FFF }, /* SF (SQIDI replication) */ { 0x004000, 0x004AFF }, /* GAM (MSLICE replication) */ { 0x008700, 0x0087FF }, /* MCFG (SQIDI replication) */ { 0x00C800, 0x00CFFF }, /* GAM (MSLICE replication) */ { 0x00F000, 0x00FFFF }, /* GAM (MSLICE replication) */ {}, }; static const struct xe_mmio_range xe2lpg_dss_steering_table[] = { { 0x005200, 0x0052FF }, /* SLICE */ { 0x005500, 0x007FFF }, /* SLICE */ { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ { 0x009680, 0x0096FF }, /* DSS */ { 0x00D800, 0x00D87F }, /* SLICE */ { 0x00DC00, 0x00DCFF }, /* SLICE */ { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ { 0x00E980, 0x00E9FF }, /* SLICE */ { 0x013000, 0x0133FF }, /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */ {}, }; static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = { { 0x000B00, 0x000BFF }, { 0x001000, 0x001FFF }, {}, }; static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = { { 0x004000, 0x004AFF }, /* GAM, rsvd, GAMWKR */ { 0x008700, 0x00887F }, /* SQIDI, MEMPIPE */ { 0x00B000, 0x00B3FF }, /* NODE, L3BANK */ { 0x00C800, 0x00CFFF }, /* GAM */ { 0x00D880, 0x00D8FF }, /* NODE */ { 0x00DD00, 0x00DDFF }, /* MEMPIPE */ { 0x00E900, 0x00E97F }, /* MEMPIPE */ { 0x00F000, 0x00FFFF }, /* GAM, GAMWKR */ { 0x013400, 0x0135FF }, /* MEMPIPE */ {}, }; static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = { { 0x388160, 0x38817F }, { 0x389480, 0x3894CF }, {}, }; static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = { { 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */ { 0x384900, 0x384AFF }, /* GAM */ { 0x389560, 0x3895FF }, /* MEDIAINF */ { 0x38B600, 0x38B8FF }, /* L3BANK */ { 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */ { 0x38F000, 0x38F0FF }, /* GAM */ { 0x393C00, 0x393C7F }, /* MEDIAINF */ {}, }; static void init_steering_l3bank(struct xe_gt *gt) { if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, xe_mmio_read32(gt, MIRROR_FUSE3)); u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK, xe_mmio_read32(gt, XEHP_FUSE4)); /* * Group selects mslice, instance selects bank within mslice. * Bank 0 is always valid _except_ when the bank mask is 010b. */ gt->steering[L3BANK].group_target = __ffs(mslice_mask); gt->steering[L3BANK].instance_target = bank_mask & BIT(0) ? 0 : 2; } else if (gt_to_xe(gt)->info.platform == XE_DG2) { u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK, xe_mmio_read32(gt, MIRROR_FUSE3)); u32 bank = __ffs(mslice_mask) * 8; /* * Like mslice registers, look for a valid mslice and steer to * the first L3BANK of that quad. Access to the Nth L3 bank is * split between the first bits of group and instance */ gt->steering[L3BANK].group_target = (bank >> 2) & 0x7; gt->steering[L3BANK].instance_target = bank & 0x3; } else { u32 fuse = REG_FIELD_GET(L3BANK_MASK, ~xe_mmio_read32(gt, MIRROR_FUSE3)); gt->steering[L3BANK].group_target = 0; /* unused */ gt->steering[L3BANK].instance_target = __ffs(fuse); } } static void init_steering_mslice(struct xe_gt *gt) { u32 mask = REG_FIELD_GET(MEML3_EN_MASK, xe_mmio_read32(gt, MIRROR_FUSE3)); /* * mslice registers are valid (not terminated) if either the meml3 * associated with the mslice is present, or at least one DSS associated * with the mslice is present. There will always be at least one meml3 * so we can just use that to find a non-terminated mslice and ignore * the DSS fusing. */ gt->steering[MSLICE].group_target = __ffs(mask); gt->steering[MSLICE].instance_target = 0; /* unused */ /* * LNCF termination is also based on mslice presence, so we'll set * it up here. Either LNCF within a non-terminated mslice will work, * so we just always pick LNCF 0 here. */ gt->steering[LNCF].group_target = __ffs(mask) << 1; gt->steering[LNCF].instance_target = 0; /* unused */ } static void init_steering_dss(struct xe_gt *gt) { unsigned int dss = min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0), xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)); unsigned int dss_per_grp = gt_to_xe(gt)->info.platform == XE_PVC ? 8 : 4; gt->steering[DSS].group_target = dss / dss_per_grp; gt->steering[DSS].instance_target = dss % dss_per_grp; } static void init_steering_oaddrm(struct xe_gt *gt) { /* * First instance is only terminated if the entire first media slice * is absent (i.e., no VCS0 or VECS0). */ if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0)) gt->steering[OADDRM].group_target = 0; else gt->steering[OADDRM].group_target = 1; gt->steering[DSS].instance_target = 0; /* unused */ } static void init_steering_sqidi_psmi(struct xe_gt *gt) { u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK, xe_mmio_read32(gt, MIRROR_FUSE3)); u32 select = __ffs(mask); gt->steering[SQIDI_PSMI].group_target = select >> 1; gt->steering[SQIDI_PSMI].instance_target = select & 0x1; } static void init_steering_inst0(struct xe_gt *gt) { gt->steering[DSS].group_target = 0; /* unused */ gt->steering[DSS].instance_target = 0; /* unused */ } static const struct { const char *name; void (*init)(struct xe_gt *gt); } xe_steering_types[] = { [L3BANK] = { "L3BANK", init_steering_l3bank }, [MSLICE] = { "MSLICE", init_steering_mslice }, [LNCF] = { "LNCF", NULL }, /* initialized by mslice init */ [DSS] = { "DSS", init_steering_dss }, [OADDRM] = { "OADDRM / GPMXMT", init_steering_oaddrm }, [SQIDI_PSMI] = { "SQIDI_PSMI", init_steering_sqidi_psmi }, [INSTANCE0] = { "INSTANCE 0", init_steering_inst0 }, [IMPLICIT_STEERING] = { "IMPLICIT", NULL }, }; void xe_gt_mcr_init(struct xe_gt *gt) { struct xe_device *xe = gt_to_xe(gt); BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES); BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES); if (IS_SRIOV_VF(xe)) return; spin_lock_init(>->mcr_lock); if (gt->info.type == XE_GT_TYPE_MEDIA) { drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13); if (MEDIA_VER(xe) >= 20) { gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table; gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table; } else { gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table; } } else { if (GRAPHICS_VER(xe) >= 20) { gt->steering[DSS].ranges = xe2lpg_dss_steering_table; gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table; gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table; } else if (GRAPHICS_VERx100(xe) >= 1270) { gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table; gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table; gt->steering[DSS].ranges = xelpg_dss_steering_table; } else if (xe->info.platform == XE_PVC) { gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table; gt->steering[DSS].ranges = xehpc_dss_steering_table; } else if (xe->info.platform == XE_DG2) { gt->steering[L3BANK].ranges = xehp_l3bank_steering_table; gt->steering[MSLICE].ranges = xehp_mslice_steering_table; gt->steering[LNCF].ranges = xehp_lncf_steering_table; gt->steering[DSS].ranges = xehp_dss_steering_table; gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table; } else { gt->steering[L3BANK].ranges = xelp_l3bank_steering_table; gt->steering[DSS].ranges = xelp_dss_steering_table; } } /* Select non-terminated steering target for each type */ for (int i = 0; i < NUM_STEERING_TYPES; i++) if (gt->steering[i].ranges && xe_steering_types[i].init) xe_steering_types[i].init(gt); } /** * xe_gt_mcr_set_implicit_defaults - Initialize steer control registers * @gt: GT structure * * Some register ranges don't need to have their steering control registers * changed on each access - it's sufficient to set them once on initialization. * This function sets those registers for each platform * */ void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt) { struct xe_device *xe = gt_to_xe(gt); if (IS_SRIOV_VF(xe)) return; if (xe->info.platform == XE_DG2) { u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) | REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2); xe_mmio_write32(gt, MCFG_MCR_SELECTOR, steer_val); xe_mmio_write32(gt, SF_MCR_SELECTOR, steer_val); /* * For GAM registers, all reads should be directed to instance 1 * (unicast reads against other instances are not allowed), * and instance 1 is already the hardware's default steering * target, which we never change */ } } /* * xe_gt_mcr_get_nonterminated_steering - find group/instance values that * will steer a register to a non-terminated instance * @gt: GT structure * @reg: register for which the steering is required * @group: return variable for group steering * @instance: return variable for instance steering * * This function returns a group/instance pair that is guaranteed to work for * read steering of the given register. Note that a value will be returned even * if the register is not replicated and therefore does not actually require * steering. * * Returns true if the caller should steer to the @group/@instance values * returned. Returns false if the caller need not perform any steering */ static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, u8 *group, u8 *instance) { const struct xe_reg reg = to_xe_reg(reg_mcr); const struct xe_mmio_range *implicit_ranges; for (int type = 0; type < IMPLICIT_STEERING; type++) { if (!gt->steering[type].ranges) continue; for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) { if (xe_mmio_in_range(gt, >->steering[type].ranges[i], reg)) { *group = gt->steering[type].group_target; *instance = gt->steering[type].instance_target; return true; } } } implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges; if (implicit_ranges) for (int i = 0; implicit_ranges[i].end > 0; i++) if (xe_mmio_in_range(gt, &implicit_ranges[i], reg)) return false; /* * Not found in a steering table and not a register with implicit * steering. Just steer to 0/0 as a guess and raise a warning. */ drm_WARN(>_to_xe(gt)->drm, true, "Did not find MCR register %#x in any MCR steering table\n", reg.addr); *group = 0; *instance = 0; return true; } /* * Obtain exclusive access to MCR steering. On MTL and beyond we also need * to synchronize with external clients (e.g., firmware), so a semaphore * register will also need to be taken. */ static void mcr_lock(struct xe_gt *gt) __acquires(>->mcr_lock) { struct xe_device *xe = gt_to_xe(gt); int ret = 0; spin_lock(>->mcr_lock); /* * Starting with MTL we also need to grab a semaphore register * to synchronize with external agents (e.g., firmware) that now * shares the same steering control register. The semaphore is obtained * when a read to the relevant register returns 1. */ if (GRAPHICS_VERx100(xe) >= 1270) ret = xe_mmio_wait32(gt, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL, true); drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT); } static void mcr_unlock(struct xe_gt *gt) __releases(>->mcr_lock) { /* Release hardware semaphore - this is done by writing 1 to the register */ if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) xe_mmio_write32(gt, STEER_SEMAPHORE, 0x1); spin_unlock(>->mcr_lock); } /* * Access a register with specific MCR steering * * Caller needs to make sure the relevant forcewake wells are up. */ static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, u8 rw_flag, int group, int instance, u32 value) { const struct xe_reg reg = to_xe_reg(reg_mcr); struct xe_reg steer_reg; u32 steer_val, val = 0; lockdep_assert_held(>->mcr_lock); if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) { steer_reg = MTL_MCR_SELECTOR; steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) | REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance); } else { steer_reg = MCR_SELECTOR; steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) | REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance); } /* * Always leave the hardware in multicast mode when doing reads and only * change it to unicast mode when doing writes of a specific instance. * * The setting of the multicast/unicast bit usually wouldn't matter for * read operations (which always return the value from a single register * instance regardless of how that bit is set), but some platforms may * have workarounds requiring us to remain in multicast mode for reads, * e.g. Wa_22013088509 on PVC. There's no real downside to this, so * we'll just go ahead and do so on all platforms; we'll only clear the * multicast bit from the mask when explicitly doing a write operation. * * No need to save old steering reg value. */ if (rw_flag == MCR_OP_READ) steer_val |= MCR_MULTICAST; xe_mmio_write32(gt, steer_reg, steer_val); if (rw_flag == MCR_OP_READ) val = xe_mmio_read32(gt, reg); else xe_mmio_write32(gt, reg, value); /* * If we turned off the multicast bit (during a write) we're required * to turn it back on before finishing. The group and instance values * don't matter since they'll be re-programmed on the next MCR * operation. */ if (rw_flag == MCR_OP_WRITE) xe_mmio_write32(gt, steer_reg, MCR_MULTICAST); return val; } /** * xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register * @gt: GT structure * @reg_mcr: register to read * * Reads a GT MCR register. The read will be steered to a non-terminated * instance (i.e., one that isn't fused off or powered down by power gating). * This function assumes the caller is already holding any necessary forcewake * domains. * * Returns the value from a non-terminated instance of @reg. */ u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr) { const struct xe_reg reg = to_xe_reg(reg_mcr); u8 group, instance; u32 val; bool steer; xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr, &group, &instance); if (steer) { mcr_lock(gt); val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0); mcr_unlock(gt); } else { val = xe_mmio_read32(gt, reg); } return val; } /** * xe_gt_mcr_unicast_read - read a specific instance of an MCR register * @gt: GT structure * @reg_mcr: the MCR register to read * @group: the MCR group * @instance: the MCR instance * * Returns the value read from an MCR register after steering toward a specific * group/instance. */ u32 xe_gt_mcr_unicast_read(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, int group, int instance) { u32 val; xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); mcr_lock(gt); val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0); mcr_unlock(gt); return val; } /** * xe_gt_mcr_unicast_write - write a specific instance of an MCR register * @gt: GT structure * @reg_mcr: the MCR register to write * @value: value to write * @group: the MCR group * @instance: the MCR instance * * Write an MCR register in unicast mode after steering toward a specific * group/instance. */ void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, u32 value, int group, int instance) { xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); mcr_lock(gt); rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value); mcr_unlock(gt); } /** * xe_gt_mcr_multicast_write - write a value to all instances of an MCR register * @gt: GT structure * @reg_mcr: the MCR register to write * @value: value to write * * Write an MCR register in multicast mode to update all instances. */ void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr, u32 value) { struct xe_reg reg = to_xe_reg(reg_mcr); xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt))); /* * Synchronize with any unicast operations. Once we have exclusive * access, the MULTICAST bit should already be set, so there's no need * to touch the steering register. */ mcr_lock(gt); xe_mmio_write32(gt, reg, value); mcr_unlock(gt); } void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p) { for (int i = 0; i < NUM_STEERING_TYPES; i++) { if (gt->steering[i].ranges) { drm_printf(p, "%s steering: group=%#x, instance=%#x\n", xe_steering_types[i].name, gt->steering[i].group_target, gt->steering[i].instance_target); for (int j = 0; gt->steering[i].ranges[j].end; j++) drm_printf(p, "\t0x%06x - 0x%06x\n", gt->steering[i].ranges[j].start, gt->steering[i].ranges[j].end); } } } |