Loading...
1/*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20#include <linux/device.h>
21#include <linux/kallsyms.h>
22#include <linux/export.h>
23#include <linux/mutex.h>
24#include <linux/pm.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm-trace.h>
27#include <linux/pm_wakeirq.h>
28#include <linux/interrupt.h>
29#include <linux/sched.h>
30#include <linux/async.h>
31#include <linux/suspend.h>
32#include <trace/events/power.h>
33#include <linux/cpufreq.h>
34#include <linux/cpuidle.h>
35#include <linux/timer.h>
36
37#include "../base.h"
38#include "power.h"
39
40typedef int (*pm_callback_t)(struct device *);
41
42/*
43 * The entries in the dpm_list list are in a depth first order, simply
44 * because children are guaranteed to be discovered after parents, and
45 * are inserted at the back of the list on discovery.
46 *
47 * Since device_pm_add() may be called with a device lock held,
48 * we must never try to acquire a device lock while holding
49 * dpm_list_mutex.
50 */
51
52LIST_HEAD(dpm_list);
53static LIST_HEAD(dpm_prepared_list);
54static LIST_HEAD(dpm_suspended_list);
55static LIST_HEAD(dpm_late_early_list);
56static LIST_HEAD(dpm_noirq_list);
57
58struct suspend_stats suspend_stats;
59static DEFINE_MUTEX(dpm_list_mtx);
60static pm_message_t pm_transition;
61
62static int async_error;
63
64static char *pm_verb(int event)
65{
66 switch (event) {
67 case PM_EVENT_SUSPEND:
68 return "suspend";
69 case PM_EVENT_RESUME:
70 return "resume";
71 case PM_EVENT_FREEZE:
72 return "freeze";
73 case PM_EVENT_QUIESCE:
74 return "quiesce";
75 case PM_EVENT_HIBERNATE:
76 return "hibernate";
77 case PM_EVENT_THAW:
78 return "thaw";
79 case PM_EVENT_RESTORE:
80 return "restore";
81 case PM_EVENT_RECOVER:
82 return "recover";
83 default:
84 return "(unknown PM event)";
85 }
86}
87
88/**
89 * device_pm_sleep_init - Initialize system suspend-related device fields.
90 * @dev: Device object being initialized.
91 */
92void device_pm_sleep_init(struct device *dev)
93{
94 dev->power.is_prepared = false;
95 dev->power.is_suspended = false;
96 dev->power.is_noirq_suspended = false;
97 dev->power.is_late_suspended = false;
98 init_completion(&dev->power.completion);
99 complete_all(&dev->power.completion);
100 dev->power.wakeup = NULL;
101 INIT_LIST_HEAD(&dev->power.entry);
102}
103
104/**
105 * device_pm_lock - Lock the list of active devices used by the PM core.
106 */
107void device_pm_lock(void)
108{
109 mutex_lock(&dpm_list_mtx);
110}
111
112/**
113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
114 */
115void device_pm_unlock(void)
116{
117 mutex_unlock(&dpm_list_mtx);
118}
119
120/**
121 * device_pm_add - Add a device to the PM core's list of active devices.
122 * @dev: Device to add to the list.
123 */
124void device_pm_add(struct device *dev)
125{
126 pr_debug("PM: Adding info for %s:%s\n",
127 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 device_pm_check_callbacks(dev);
129 mutex_lock(&dpm_list_mtx);
130 if (dev->parent && dev->parent->power.is_prepared)
131 dev_warn(dev, "parent %s should not be sleeping\n",
132 dev_name(dev->parent));
133 list_add_tail(&dev->power.entry, &dpm_list);
134 mutex_unlock(&dpm_list_mtx);
135}
136
137/**
138 * device_pm_remove - Remove a device from the PM core's list of active devices.
139 * @dev: Device to be removed from the list.
140 */
141void device_pm_remove(struct device *dev)
142{
143 pr_debug("PM: Removing info for %s:%s\n",
144 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
145 complete_all(&dev->power.completion);
146 mutex_lock(&dpm_list_mtx);
147 list_del_init(&dev->power.entry);
148 mutex_unlock(&dpm_list_mtx);
149 device_wakeup_disable(dev);
150 pm_runtime_remove(dev);
151 device_pm_check_callbacks(dev);
152}
153
154/**
155 * device_pm_move_before - Move device in the PM core's list of active devices.
156 * @deva: Device to move in dpm_list.
157 * @devb: Device @deva should come before.
158 */
159void device_pm_move_before(struct device *deva, struct device *devb)
160{
161 pr_debug("PM: Moving %s:%s before %s:%s\n",
162 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
163 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
164 /* Delete deva from dpm_list and reinsert before devb. */
165 list_move_tail(&deva->power.entry, &devb->power.entry);
166}
167
168/**
169 * device_pm_move_after - Move device in the PM core's list of active devices.
170 * @deva: Device to move in dpm_list.
171 * @devb: Device @deva should come after.
172 */
173void device_pm_move_after(struct device *deva, struct device *devb)
174{
175 pr_debug("PM: Moving %s:%s after %s:%s\n",
176 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178 /* Delete deva from dpm_list and reinsert after devb. */
179 list_move(&deva->power.entry, &devb->power.entry);
180}
181
182/**
183 * device_pm_move_last - Move device to end of the PM core's list of devices.
184 * @dev: Device to move in dpm_list.
185 */
186void device_pm_move_last(struct device *dev)
187{
188 pr_debug("PM: Moving %s:%s to end of list\n",
189 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
190 list_move_tail(&dev->power.entry, &dpm_list);
191}
192
193static ktime_t initcall_debug_start(struct device *dev)
194{
195 ktime_t calltime = ktime_set(0, 0);
196
197 if (pm_print_times_enabled) {
198 pr_info("calling %s+ @ %i, parent: %s\n",
199 dev_name(dev), task_pid_nr(current),
200 dev->parent ? dev_name(dev->parent) : "none");
201 calltime = ktime_get();
202 }
203
204 return calltime;
205}
206
207static void initcall_debug_report(struct device *dev, ktime_t calltime,
208 int error, pm_message_t state, char *info)
209{
210 ktime_t rettime;
211 s64 nsecs;
212
213 rettime = ktime_get();
214 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
215
216 if (pm_print_times_enabled) {
217 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
218 error, (unsigned long long)nsecs >> 10);
219 }
220}
221
222/**
223 * dpm_wait - Wait for a PM operation to complete.
224 * @dev: Device to wait for.
225 * @async: If unset, wait only if the device's power.async_suspend flag is set.
226 */
227static void dpm_wait(struct device *dev, bool async)
228{
229 if (!dev)
230 return;
231
232 if (async || (pm_async_enabled && dev->power.async_suspend))
233 wait_for_completion(&dev->power.completion);
234}
235
236static int dpm_wait_fn(struct device *dev, void *async_ptr)
237{
238 dpm_wait(dev, *((bool *)async_ptr));
239 return 0;
240}
241
242static void dpm_wait_for_children(struct device *dev, bool async)
243{
244 device_for_each_child(dev, &async, dpm_wait_fn);
245}
246
247/**
248 * pm_op - Return the PM operation appropriate for given PM event.
249 * @ops: PM operations to choose from.
250 * @state: PM transition of the system being carried out.
251 */
252static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
253{
254 switch (state.event) {
255#ifdef CONFIG_SUSPEND
256 case PM_EVENT_SUSPEND:
257 return ops->suspend;
258 case PM_EVENT_RESUME:
259 return ops->resume;
260#endif /* CONFIG_SUSPEND */
261#ifdef CONFIG_HIBERNATE_CALLBACKS
262 case PM_EVENT_FREEZE:
263 case PM_EVENT_QUIESCE:
264 return ops->freeze;
265 case PM_EVENT_HIBERNATE:
266 return ops->poweroff;
267 case PM_EVENT_THAW:
268 case PM_EVENT_RECOVER:
269 return ops->thaw;
270 break;
271 case PM_EVENT_RESTORE:
272 return ops->restore;
273#endif /* CONFIG_HIBERNATE_CALLBACKS */
274 }
275
276 return NULL;
277}
278
279/**
280 * pm_late_early_op - Return the PM operation appropriate for given PM event.
281 * @ops: PM operations to choose from.
282 * @state: PM transition of the system being carried out.
283 *
284 * Runtime PM is disabled for @dev while this function is being executed.
285 */
286static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
287 pm_message_t state)
288{
289 switch (state.event) {
290#ifdef CONFIG_SUSPEND
291 case PM_EVENT_SUSPEND:
292 return ops->suspend_late;
293 case PM_EVENT_RESUME:
294 return ops->resume_early;
295#endif /* CONFIG_SUSPEND */
296#ifdef CONFIG_HIBERNATE_CALLBACKS
297 case PM_EVENT_FREEZE:
298 case PM_EVENT_QUIESCE:
299 return ops->freeze_late;
300 case PM_EVENT_HIBERNATE:
301 return ops->poweroff_late;
302 case PM_EVENT_THAW:
303 case PM_EVENT_RECOVER:
304 return ops->thaw_early;
305 case PM_EVENT_RESTORE:
306 return ops->restore_early;
307#endif /* CONFIG_HIBERNATE_CALLBACKS */
308 }
309
310 return NULL;
311}
312
313/**
314 * pm_noirq_op - Return the PM operation appropriate for given PM event.
315 * @ops: PM operations to choose from.
316 * @state: PM transition of the system being carried out.
317 *
318 * The driver of @dev will not receive interrupts while this function is being
319 * executed.
320 */
321static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
322{
323 switch (state.event) {
324#ifdef CONFIG_SUSPEND
325 case PM_EVENT_SUSPEND:
326 return ops->suspend_noirq;
327 case PM_EVENT_RESUME:
328 return ops->resume_noirq;
329#endif /* CONFIG_SUSPEND */
330#ifdef CONFIG_HIBERNATE_CALLBACKS
331 case PM_EVENT_FREEZE:
332 case PM_EVENT_QUIESCE:
333 return ops->freeze_noirq;
334 case PM_EVENT_HIBERNATE:
335 return ops->poweroff_noirq;
336 case PM_EVENT_THAW:
337 case PM_EVENT_RECOVER:
338 return ops->thaw_noirq;
339 case PM_EVENT_RESTORE:
340 return ops->restore_noirq;
341#endif /* CONFIG_HIBERNATE_CALLBACKS */
342 }
343
344 return NULL;
345}
346
347static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
348{
349 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
350 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
351 ", may wakeup" : "");
352}
353
354static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
355 int error)
356{
357 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
358 dev_name(dev), pm_verb(state.event), info, error);
359}
360
361static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
362{
363 ktime_t calltime;
364 u64 usecs64;
365 int usecs;
366
367 calltime = ktime_get();
368 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
369 do_div(usecs64, NSEC_PER_USEC);
370 usecs = usecs64;
371 if (usecs == 0)
372 usecs = 1;
373 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
374 info ?: "", info ? " " : "", pm_verb(state.event),
375 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
376}
377
378static int dpm_run_callback(pm_callback_t cb, struct device *dev,
379 pm_message_t state, char *info)
380{
381 ktime_t calltime;
382 int error;
383
384 if (!cb)
385 return 0;
386
387 calltime = initcall_debug_start(dev);
388
389 pm_dev_dbg(dev, state, info);
390 trace_device_pm_callback_start(dev, info, state.event);
391 error = cb(dev);
392 trace_device_pm_callback_end(dev, error);
393 suspend_report_result(cb, error);
394
395 initcall_debug_report(dev, calltime, error, state, info);
396
397 return error;
398}
399
400#ifdef CONFIG_DPM_WATCHDOG
401struct dpm_watchdog {
402 struct device *dev;
403 struct task_struct *tsk;
404 struct timer_list timer;
405};
406
407#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
408 struct dpm_watchdog wd
409
410/**
411 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
412 * @data: Watchdog object address.
413 *
414 * Called when a driver has timed out suspending or resuming.
415 * There's not much we can do here to recover so panic() to
416 * capture a crash-dump in pstore.
417 */
418static void dpm_watchdog_handler(unsigned long data)
419{
420 struct dpm_watchdog *wd = (void *)data;
421
422 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
423 show_stack(wd->tsk, NULL);
424 panic("%s %s: unrecoverable failure\n",
425 dev_driver_string(wd->dev), dev_name(wd->dev));
426}
427
428/**
429 * dpm_watchdog_set - Enable pm watchdog for given device.
430 * @wd: Watchdog. Must be allocated on the stack.
431 * @dev: Device to handle.
432 */
433static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
434{
435 struct timer_list *timer = &wd->timer;
436
437 wd->dev = dev;
438 wd->tsk = current;
439
440 init_timer_on_stack(timer);
441 /* use same timeout value for both suspend and resume */
442 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
443 timer->function = dpm_watchdog_handler;
444 timer->data = (unsigned long)wd;
445 add_timer(timer);
446}
447
448/**
449 * dpm_watchdog_clear - Disable suspend/resume watchdog.
450 * @wd: Watchdog to disable.
451 */
452static void dpm_watchdog_clear(struct dpm_watchdog *wd)
453{
454 struct timer_list *timer = &wd->timer;
455
456 del_timer_sync(timer);
457 destroy_timer_on_stack(timer);
458}
459#else
460#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
461#define dpm_watchdog_set(x, y)
462#define dpm_watchdog_clear(x)
463#endif
464
465/*------------------------- Resume routines -------------------------*/
466
467/**
468 * device_resume_noirq - Execute an "early resume" callback for given device.
469 * @dev: Device to handle.
470 * @state: PM transition of the system being carried out.
471 * @async: If true, the device is being resumed asynchronously.
472 *
473 * The driver of @dev will not receive interrupts while this function is being
474 * executed.
475 */
476static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
477{
478 pm_callback_t callback = NULL;
479 char *info = NULL;
480 int error = 0;
481
482 TRACE_DEVICE(dev);
483 TRACE_RESUME(0);
484
485 if (dev->power.syscore || dev->power.direct_complete)
486 goto Out;
487
488 if (!dev->power.is_noirq_suspended)
489 goto Out;
490
491 dpm_wait(dev->parent, async);
492
493 if (dev->pm_domain) {
494 info = "noirq power domain ";
495 callback = pm_noirq_op(&dev->pm_domain->ops, state);
496 } else if (dev->type && dev->type->pm) {
497 info = "noirq type ";
498 callback = pm_noirq_op(dev->type->pm, state);
499 } else if (dev->class && dev->class->pm) {
500 info = "noirq class ";
501 callback = pm_noirq_op(dev->class->pm, state);
502 } else if (dev->bus && dev->bus->pm) {
503 info = "noirq bus ";
504 callback = pm_noirq_op(dev->bus->pm, state);
505 }
506
507 if (!callback && dev->driver && dev->driver->pm) {
508 info = "noirq driver ";
509 callback = pm_noirq_op(dev->driver->pm, state);
510 }
511
512 error = dpm_run_callback(callback, dev, state, info);
513 dev->power.is_noirq_suspended = false;
514
515 Out:
516 complete_all(&dev->power.completion);
517 TRACE_RESUME(error);
518 return error;
519}
520
521static bool is_async(struct device *dev)
522{
523 return dev->power.async_suspend && pm_async_enabled
524 && !pm_trace_is_enabled();
525}
526
527static void async_resume_noirq(void *data, async_cookie_t cookie)
528{
529 struct device *dev = (struct device *)data;
530 int error;
531
532 error = device_resume_noirq(dev, pm_transition, true);
533 if (error)
534 pm_dev_err(dev, pm_transition, " async", error);
535
536 put_device(dev);
537}
538
539/**
540 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
541 * @state: PM transition of the system being carried out.
542 *
543 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
544 * enable device drivers to receive interrupts.
545 */
546void dpm_resume_noirq(pm_message_t state)
547{
548 struct device *dev;
549 ktime_t starttime = ktime_get();
550
551 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
552 mutex_lock(&dpm_list_mtx);
553 pm_transition = state;
554
555 /*
556 * Advanced the async threads upfront,
557 * in case the starting of async threads is
558 * delayed by non-async resuming devices.
559 */
560 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
561 reinit_completion(&dev->power.completion);
562 if (is_async(dev)) {
563 get_device(dev);
564 async_schedule(async_resume_noirq, dev);
565 }
566 }
567
568 while (!list_empty(&dpm_noirq_list)) {
569 dev = to_device(dpm_noirq_list.next);
570 get_device(dev);
571 list_move_tail(&dev->power.entry, &dpm_late_early_list);
572 mutex_unlock(&dpm_list_mtx);
573
574 if (!is_async(dev)) {
575 int error;
576
577 error = device_resume_noirq(dev, state, false);
578 if (error) {
579 suspend_stats.failed_resume_noirq++;
580 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
581 dpm_save_failed_dev(dev_name(dev));
582 pm_dev_err(dev, state, " noirq", error);
583 }
584 }
585
586 mutex_lock(&dpm_list_mtx);
587 put_device(dev);
588 }
589 mutex_unlock(&dpm_list_mtx);
590 async_synchronize_full();
591 dpm_show_time(starttime, state, "noirq");
592 resume_device_irqs();
593 device_wakeup_disarm_wake_irqs();
594 cpuidle_resume();
595 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
596}
597
598/**
599 * device_resume_early - Execute an "early resume" callback for given device.
600 * @dev: Device to handle.
601 * @state: PM transition of the system being carried out.
602 * @async: If true, the device is being resumed asynchronously.
603 *
604 * Runtime PM is disabled for @dev while this function is being executed.
605 */
606static int device_resume_early(struct device *dev, pm_message_t state, bool async)
607{
608 pm_callback_t callback = NULL;
609 char *info = NULL;
610 int error = 0;
611
612 TRACE_DEVICE(dev);
613 TRACE_RESUME(0);
614
615 if (dev->power.syscore || dev->power.direct_complete)
616 goto Out;
617
618 if (!dev->power.is_late_suspended)
619 goto Out;
620
621 dpm_wait(dev->parent, async);
622
623 if (dev->pm_domain) {
624 info = "early power domain ";
625 callback = pm_late_early_op(&dev->pm_domain->ops, state);
626 } else if (dev->type && dev->type->pm) {
627 info = "early type ";
628 callback = pm_late_early_op(dev->type->pm, state);
629 } else if (dev->class && dev->class->pm) {
630 info = "early class ";
631 callback = pm_late_early_op(dev->class->pm, state);
632 } else if (dev->bus && dev->bus->pm) {
633 info = "early bus ";
634 callback = pm_late_early_op(dev->bus->pm, state);
635 }
636
637 if (!callback && dev->driver && dev->driver->pm) {
638 info = "early driver ";
639 callback = pm_late_early_op(dev->driver->pm, state);
640 }
641
642 error = dpm_run_callback(callback, dev, state, info);
643 dev->power.is_late_suspended = false;
644
645 Out:
646 TRACE_RESUME(error);
647
648 pm_runtime_enable(dev);
649 complete_all(&dev->power.completion);
650 return error;
651}
652
653static void async_resume_early(void *data, async_cookie_t cookie)
654{
655 struct device *dev = (struct device *)data;
656 int error;
657
658 error = device_resume_early(dev, pm_transition, true);
659 if (error)
660 pm_dev_err(dev, pm_transition, " async", error);
661
662 put_device(dev);
663}
664
665/**
666 * dpm_resume_early - Execute "early resume" callbacks for all devices.
667 * @state: PM transition of the system being carried out.
668 */
669void dpm_resume_early(pm_message_t state)
670{
671 struct device *dev;
672 ktime_t starttime = ktime_get();
673
674 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
675 mutex_lock(&dpm_list_mtx);
676 pm_transition = state;
677
678 /*
679 * Advanced the async threads upfront,
680 * in case the starting of async threads is
681 * delayed by non-async resuming devices.
682 */
683 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
684 reinit_completion(&dev->power.completion);
685 if (is_async(dev)) {
686 get_device(dev);
687 async_schedule(async_resume_early, dev);
688 }
689 }
690
691 while (!list_empty(&dpm_late_early_list)) {
692 dev = to_device(dpm_late_early_list.next);
693 get_device(dev);
694 list_move_tail(&dev->power.entry, &dpm_suspended_list);
695 mutex_unlock(&dpm_list_mtx);
696
697 if (!is_async(dev)) {
698 int error;
699
700 error = device_resume_early(dev, state, false);
701 if (error) {
702 suspend_stats.failed_resume_early++;
703 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
704 dpm_save_failed_dev(dev_name(dev));
705 pm_dev_err(dev, state, " early", error);
706 }
707 }
708 mutex_lock(&dpm_list_mtx);
709 put_device(dev);
710 }
711 mutex_unlock(&dpm_list_mtx);
712 async_synchronize_full();
713 dpm_show_time(starttime, state, "early");
714 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
715}
716
717/**
718 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
719 * @state: PM transition of the system being carried out.
720 */
721void dpm_resume_start(pm_message_t state)
722{
723 dpm_resume_noirq(state);
724 dpm_resume_early(state);
725}
726EXPORT_SYMBOL_GPL(dpm_resume_start);
727
728/**
729 * device_resume - Execute "resume" callbacks for given device.
730 * @dev: Device to handle.
731 * @state: PM transition of the system being carried out.
732 * @async: If true, the device is being resumed asynchronously.
733 */
734static int device_resume(struct device *dev, pm_message_t state, bool async)
735{
736 pm_callback_t callback = NULL;
737 char *info = NULL;
738 int error = 0;
739 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
740
741 TRACE_DEVICE(dev);
742 TRACE_RESUME(0);
743
744 if (dev->power.syscore)
745 goto Complete;
746
747 if (dev->power.direct_complete) {
748 /* Match the pm_runtime_disable() in __device_suspend(). */
749 pm_runtime_enable(dev);
750 goto Complete;
751 }
752
753 dpm_wait(dev->parent, async);
754 dpm_watchdog_set(&wd, dev);
755 device_lock(dev);
756
757 /*
758 * This is a fib. But we'll allow new children to be added below
759 * a resumed device, even if the device hasn't been completed yet.
760 */
761 dev->power.is_prepared = false;
762
763 if (!dev->power.is_suspended)
764 goto Unlock;
765
766 if (dev->pm_domain) {
767 info = "power domain ";
768 callback = pm_op(&dev->pm_domain->ops, state);
769 goto Driver;
770 }
771
772 if (dev->type && dev->type->pm) {
773 info = "type ";
774 callback = pm_op(dev->type->pm, state);
775 goto Driver;
776 }
777
778 if (dev->class) {
779 if (dev->class->pm) {
780 info = "class ";
781 callback = pm_op(dev->class->pm, state);
782 goto Driver;
783 } else if (dev->class->resume) {
784 info = "legacy class ";
785 callback = dev->class->resume;
786 goto End;
787 }
788 }
789
790 if (dev->bus) {
791 if (dev->bus->pm) {
792 info = "bus ";
793 callback = pm_op(dev->bus->pm, state);
794 } else if (dev->bus->resume) {
795 info = "legacy bus ";
796 callback = dev->bus->resume;
797 goto End;
798 }
799 }
800
801 Driver:
802 if (!callback && dev->driver && dev->driver->pm) {
803 info = "driver ";
804 callback = pm_op(dev->driver->pm, state);
805 }
806
807 End:
808 error = dpm_run_callback(callback, dev, state, info);
809 dev->power.is_suspended = false;
810
811 Unlock:
812 device_unlock(dev);
813 dpm_watchdog_clear(&wd);
814
815 Complete:
816 complete_all(&dev->power.completion);
817
818 TRACE_RESUME(error);
819
820 return error;
821}
822
823static void async_resume(void *data, async_cookie_t cookie)
824{
825 struct device *dev = (struct device *)data;
826 int error;
827
828 error = device_resume(dev, pm_transition, true);
829 if (error)
830 pm_dev_err(dev, pm_transition, " async", error);
831 put_device(dev);
832}
833
834/**
835 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
836 * @state: PM transition of the system being carried out.
837 *
838 * Execute the appropriate "resume" callback for all devices whose status
839 * indicates that they are suspended.
840 */
841void dpm_resume(pm_message_t state)
842{
843 struct device *dev;
844 ktime_t starttime = ktime_get();
845
846 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
847 might_sleep();
848
849 mutex_lock(&dpm_list_mtx);
850 pm_transition = state;
851 async_error = 0;
852
853 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
854 reinit_completion(&dev->power.completion);
855 if (is_async(dev)) {
856 get_device(dev);
857 async_schedule(async_resume, dev);
858 }
859 }
860
861 while (!list_empty(&dpm_suspended_list)) {
862 dev = to_device(dpm_suspended_list.next);
863 get_device(dev);
864 if (!is_async(dev)) {
865 int error;
866
867 mutex_unlock(&dpm_list_mtx);
868
869 error = device_resume(dev, state, false);
870 if (error) {
871 suspend_stats.failed_resume++;
872 dpm_save_failed_step(SUSPEND_RESUME);
873 dpm_save_failed_dev(dev_name(dev));
874 pm_dev_err(dev, state, "", error);
875 }
876
877 mutex_lock(&dpm_list_mtx);
878 }
879 if (!list_empty(&dev->power.entry))
880 list_move_tail(&dev->power.entry, &dpm_prepared_list);
881 put_device(dev);
882 }
883 mutex_unlock(&dpm_list_mtx);
884 async_synchronize_full();
885 dpm_show_time(starttime, state, NULL);
886
887 cpufreq_resume();
888 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
889}
890
891/**
892 * device_complete - Complete a PM transition for given device.
893 * @dev: Device to handle.
894 * @state: PM transition of the system being carried out.
895 */
896static void device_complete(struct device *dev, pm_message_t state)
897{
898 void (*callback)(struct device *) = NULL;
899 char *info = NULL;
900
901 if (dev->power.syscore)
902 return;
903
904 device_lock(dev);
905
906 if (dev->pm_domain) {
907 info = "completing power domain ";
908 callback = dev->pm_domain->ops.complete;
909 } else if (dev->type && dev->type->pm) {
910 info = "completing type ";
911 callback = dev->type->pm->complete;
912 } else if (dev->class && dev->class->pm) {
913 info = "completing class ";
914 callback = dev->class->pm->complete;
915 } else if (dev->bus && dev->bus->pm) {
916 info = "completing bus ";
917 callback = dev->bus->pm->complete;
918 }
919
920 if (!callback && dev->driver && dev->driver->pm) {
921 info = "completing driver ";
922 callback = dev->driver->pm->complete;
923 }
924
925 if (callback) {
926 pm_dev_dbg(dev, state, info);
927 callback(dev);
928 }
929
930 device_unlock(dev);
931
932 pm_runtime_put(dev);
933}
934
935/**
936 * dpm_complete - Complete a PM transition for all non-sysdev devices.
937 * @state: PM transition of the system being carried out.
938 *
939 * Execute the ->complete() callbacks for all devices whose PM status is not
940 * DPM_ON (this allows new devices to be registered).
941 */
942void dpm_complete(pm_message_t state)
943{
944 struct list_head list;
945
946 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
947 might_sleep();
948
949 INIT_LIST_HEAD(&list);
950 mutex_lock(&dpm_list_mtx);
951 while (!list_empty(&dpm_prepared_list)) {
952 struct device *dev = to_device(dpm_prepared_list.prev);
953
954 get_device(dev);
955 dev->power.is_prepared = false;
956 list_move(&dev->power.entry, &list);
957 mutex_unlock(&dpm_list_mtx);
958
959 trace_device_pm_callback_start(dev, "", state.event);
960 device_complete(dev, state);
961 trace_device_pm_callback_end(dev, 0);
962
963 mutex_lock(&dpm_list_mtx);
964 put_device(dev);
965 }
966 list_splice(&list, &dpm_list);
967 mutex_unlock(&dpm_list_mtx);
968
969 /* Allow device probing and trigger re-probing of deferred devices */
970 device_unblock_probing();
971 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
972}
973
974/**
975 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
976 * @state: PM transition of the system being carried out.
977 *
978 * Execute "resume" callbacks for all devices and complete the PM transition of
979 * the system.
980 */
981void dpm_resume_end(pm_message_t state)
982{
983 dpm_resume(state);
984 dpm_complete(state);
985}
986EXPORT_SYMBOL_GPL(dpm_resume_end);
987
988
989/*------------------------- Suspend routines -------------------------*/
990
991/**
992 * resume_event - Return a "resume" message for given "suspend" sleep state.
993 * @sleep_state: PM message representing a sleep state.
994 *
995 * Return a PM message representing the resume event corresponding to given
996 * sleep state.
997 */
998static pm_message_t resume_event(pm_message_t sleep_state)
999{
1000 switch (sleep_state.event) {
1001 case PM_EVENT_SUSPEND:
1002 return PMSG_RESUME;
1003 case PM_EVENT_FREEZE:
1004 case PM_EVENT_QUIESCE:
1005 return PMSG_RECOVER;
1006 case PM_EVENT_HIBERNATE:
1007 return PMSG_RESTORE;
1008 }
1009 return PMSG_ON;
1010}
1011
1012/**
1013 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1014 * @dev: Device to handle.
1015 * @state: PM transition of the system being carried out.
1016 * @async: If true, the device is being suspended asynchronously.
1017 *
1018 * The driver of @dev will not receive interrupts while this function is being
1019 * executed.
1020 */
1021static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1022{
1023 pm_callback_t callback = NULL;
1024 char *info = NULL;
1025 int error = 0;
1026
1027 TRACE_DEVICE(dev);
1028 TRACE_SUSPEND(0);
1029
1030 if (async_error)
1031 goto Complete;
1032
1033 if (pm_wakeup_pending()) {
1034 async_error = -EBUSY;
1035 goto Complete;
1036 }
1037
1038 if (dev->power.syscore || dev->power.direct_complete)
1039 goto Complete;
1040
1041 dpm_wait_for_children(dev, async);
1042
1043 if (dev->pm_domain) {
1044 info = "noirq power domain ";
1045 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1046 } else if (dev->type && dev->type->pm) {
1047 info = "noirq type ";
1048 callback = pm_noirq_op(dev->type->pm, state);
1049 } else if (dev->class && dev->class->pm) {
1050 info = "noirq class ";
1051 callback = pm_noirq_op(dev->class->pm, state);
1052 } else if (dev->bus && dev->bus->pm) {
1053 info = "noirq bus ";
1054 callback = pm_noirq_op(dev->bus->pm, state);
1055 }
1056
1057 if (!callback && dev->driver && dev->driver->pm) {
1058 info = "noirq driver ";
1059 callback = pm_noirq_op(dev->driver->pm, state);
1060 }
1061
1062 error = dpm_run_callback(callback, dev, state, info);
1063 if (!error)
1064 dev->power.is_noirq_suspended = true;
1065 else
1066 async_error = error;
1067
1068Complete:
1069 complete_all(&dev->power.completion);
1070 TRACE_SUSPEND(error);
1071 return error;
1072}
1073
1074static void async_suspend_noirq(void *data, async_cookie_t cookie)
1075{
1076 struct device *dev = (struct device *)data;
1077 int error;
1078
1079 error = __device_suspend_noirq(dev, pm_transition, true);
1080 if (error) {
1081 dpm_save_failed_dev(dev_name(dev));
1082 pm_dev_err(dev, pm_transition, " async", error);
1083 }
1084
1085 put_device(dev);
1086}
1087
1088static int device_suspend_noirq(struct device *dev)
1089{
1090 reinit_completion(&dev->power.completion);
1091
1092 if (is_async(dev)) {
1093 get_device(dev);
1094 async_schedule(async_suspend_noirq, dev);
1095 return 0;
1096 }
1097 return __device_suspend_noirq(dev, pm_transition, false);
1098}
1099
1100/**
1101 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1102 * @state: PM transition of the system being carried out.
1103 *
1104 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1105 * handlers for all non-sysdev devices.
1106 */
1107int dpm_suspend_noirq(pm_message_t state)
1108{
1109 ktime_t starttime = ktime_get();
1110 int error = 0;
1111
1112 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1113 cpuidle_pause();
1114 device_wakeup_arm_wake_irqs();
1115 suspend_device_irqs();
1116 mutex_lock(&dpm_list_mtx);
1117 pm_transition = state;
1118 async_error = 0;
1119
1120 while (!list_empty(&dpm_late_early_list)) {
1121 struct device *dev = to_device(dpm_late_early_list.prev);
1122
1123 get_device(dev);
1124 mutex_unlock(&dpm_list_mtx);
1125
1126 error = device_suspend_noirq(dev);
1127
1128 mutex_lock(&dpm_list_mtx);
1129 if (error) {
1130 pm_dev_err(dev, state, " noirq", error);
1131 dpm_save_failed_dev(dev_name(dev));
1132 put_device(dev);
1133 break;
1134 }
1135 if (!list_empty(&dev->power.entry))
1136 list_move(&dev->power.entry, &dpm_noirq_list);
1137 put_device(dev);
1138
1139 if (async_error)
1140 break;
1141 }
1142 mutex_unlock(&dpm_list_mtx);
1143 async_synchronize_full();
1144 if (!error)
1145 error = async_error;
1146
1147 if (error) {
1148 suspend_stats.failed_suspend_noirq++;
1149 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1150 dpm_resume_noirq(resume_event(state));
1151 } else {
1152 dpm_show_time(starttime, state, "noirq");
1153 }
1154 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1155 return error;
1156}
1157
1158/**
1159 * device_suspend_late - Execute a "late suspend" callback for given device.
1160 * @dev: Device to handle.
1161 * @state: PM transition of the system being carried out.
1162 * @async: If true, the device is being suspended asynchronously.
1163 *
1164 * Runtime PM is disabled for @dev while this function is being executed.
1165 */
1166static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1167{
1168 pm_callback_t callback = NULL;
1169 char *info = NULL;
1170 int error = 0;
1171
1172 TRACE_DEVICE(dev);
1173 TRACE_SUSPEND(0);
1174
1175 __pm_runtime_disable(dev, false);
1176
1177 if (async_error)
1178 goto Complete;
1179
1180 if (pm_wakeup_pending()) {
1181 async_error = -EBUSY;
1182 goto Complete;
1183 }
1184
1185 if (dev->power.syscore || dev->power.direct_complete)
1186 goto Complete;
1187
1188 dpm_wait_for_children(dev, async);
1189
1190 if (dev->pm_domain) {
1191 info = "late power domain ";
1192 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1193 } else if (dev->type && dev->type->pm) {
1194 info = "late type ";
1195 callback = pm_late_early_op(dev->type->pm, state);
1196 } else if (dev->class && dev->class->pm) {
1197 info = "late class ";
1198 callback = pm_late_early_op(dev->class->pm, state);
1199 } else if (dev->bus && dev->bus->pm) {
1200 info = "late bus ";
1201 callback = pm_late_early_op(dev->bus->pm, state);
1202 }
1203
1204 if (!callback && dev->driver && dev->driver->pm) {
1205 info = "late driver ";
1206 callback = pm_late_early_op(dev->driver->pm, state);
1207 }
1208
1209 error = dpm_run_callback(callback, dev, state, info);
1210 if (!error)
1211 dev->power.is_late_suspended = true;
1212 else
1213 async_error = error;
1214
1215Complete:
1216 TRACE_SUSPEND(error);
1217 complete_all(&dev->power.completion);
1218 return error;
1219}
1220
1221static void async_suspend_late(void *data, async_cookie_t cookie)
1222{
1223 struct device *dev = (struct device *)data;
1224 int error;
1225
1226 error = __device_suspend_late(dev, pm_transition, true);
1227 if (error) {
1228 dpm_save_failed_dev(dev_name(dev));
1229 pm_dev_err(dev, pm_transition, " async", error);
1230 }
1231 put_device(dev);
1232}
1233
1234static int device_suspend_late(struct device *dev)
1235{
1236 reinit_completion(&dev->power.completion);
1237
1238 if (is_async(dev)) {
1239 get_device(dev);
1240 async_schedule(async_suspend_late, dev);
1241 return 0;
1242 }
1243
1244 return __device_suspend_late(dev, pm_transition, false);
1245}
1246
1247/**
1248 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1249 * @state: PM transition of the system being carried out.
1250 */
1251int dpm_suspend_late(pm_message_t state)
1252{
1253 ktime_t starttime = ktime_get();
1254 int error = 0;
1255
1256 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1257 mutex_lock(&dpm_list_mtx);
1258 pm_transition = state;
1259 async_error = 0;
1260
1261 while (!list_empty(&dpm_suspended_list)) {
1262 struct device *dev = to_device(dpm_suspended_list.prev);
1263
1264 get_device(dev);
1265 mutex_unlock(&dpm_list_mtx);
1266
1267 error = device_suspend_late(dev);
1268
1269 mutex_lock(&dpm_list_mtx);
1270 if (error) {
1271 pm_dev_err(dev, state, " late", error);
1272 dpm_save_failed_dev(dev_name(dev));
1273 put_device(dev);
1274 break;
1275 }
1276 if (!list_empty(&dev->power.entry))
1277 list_move(&dev->power.entry, &dpm_late_early_list);
1278 put_device(dev);
1279
1280 if (async_error)
1281 break;
1282 }
1283 mutex_unlock(&dpm_list_mtx);
1284 async_synchronize_full();
1285 if (!error)
1286 error = async_error;
1287 if (error) {
1288 suspend_stats.failed_suspend_late++;
1289 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1290 dpm_resume_early(resume_event(state));
1291 } else {
1292 dpm_show_time(starttime, state, "late");
1293 }
1294 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1295 return error;
1296}
1297
1298/**
1299 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1300 * @state: PM transition of the system being carried out.
1301 */
1302int dpm_suspend_end(pm_message_t state)
1303{
1304 int error = dpm_suspend_late(state);
1305 if (error)
1306 return error;
1307
1308 error = dpm_suspend_noirq(state);
1309 if (error) {
1310 dpm_resume_early(resume_event(state));
1311 return error;
1312 }
1313
1314 return 0;
1315}
1316EXPORT_SYMBOL_GPL(dpm_suspend_end);
1317
1318/**
1319 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1320 * @dev: Device to suspend.
1321 * @state: PM transition of the system being carried out.
1322 * @cb: Suspend callback to execute.
1323 * @info: string description of caller.
1324 */
1325static int legacy_suspend(struct device *dev, pm_message_t state,
1326 int (*cb)(struct device *dev, pm_message_t state),
1327 char *info)
1328{
1329 int error;
1330 ktime_t calltime;
1331
1332 calltime = initcall_debug_start(dev);
1333
1334 trace_device_pm_callback_start(dev, info, state.event);
1335 error = cb(dev, state);
1336 trace_device_pm_callback_end(dev, error);
1337 suspend_report_result(cb, error);
1338
1339 initcall_debug_report(dev, calltime, error, state, info);
1340
1341 return error;
1342}
1343
1344/**
1345 * device_suspend - Execute "suspend" callbacks for given device.
1346 * @dev: Device to handle.
1347 * @state: PM transition of the system being carried out.
1348 * @async: If true, the device is being suspended asynchronously.
1349 */
1350static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1351{
1352 pm_callback_t callback = NULL;
1353 char *info = NULL;
1354 int error = 0;
1355 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1356
1357 TRACE_DEVICE(dev);
1358 TRACE_SUSPEND(0);
1359
1360 dpm_wait_for_children(dev, async);
1361
1362 if (async_error)
1363 goto Complete;
1364
1365 /*
1366 * If a device configured to wake up the system from sleep states
1367 * has been suspended at run time and there's a resume request pending
1368 * for it, this is equivalent to the device signaling wakeup, so the
1369 * system suspend operation should be aborted.
1370 */
1371 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1372 pm_wakeup_event(dev, 0);
1373
1374 if (pm_wakeup_pending()) {
1375 async_error = -EBUSY;
1376 goto Complete;
1377 }
1378
1379 if (dev->power.syscore)
1380 goto Complete;
1381
1382 if (dev->power.direct_complete) {
1383 if (pm_runtime_status_suspended(dev)) {
1384 pm_runtime_disable(dev);
1385 if (pm_runtime_status_suspended(dev))
1386 goto Complete;
1387
1388 pm_runtime_enable(dev);
1389 }
1390 dev->power.direct_complete = false;
1391 }
1392
1393 dpm_watchdog_set(&wd, dev);
1394 device_lock(dev);
1395
1396 if (dev->pm_domain) {
1397 info = "power domain ";
1398 callback = pm_op(&dev->pm_domain->ops, state);
1399 goto Run;
1400 }
1401
1402 if (dev->type && dev->type->pm) {
1403 info = "type ";
1404 callback = pm_op(dev->type->pm, state);
1405 goto Run;
1406 }
1407
1408 if (dev->class) {
1409 if (dev->class->pm) {
1410 info = "class ";
1411 callback = pm_op(dev->class->pm, state);
1412 goto Run;
1413 } else if (dev->class->suspend) {
1414 pm_dev_dbg(dev, state, "legacy class ");
1415 error = legacy_suspend(dev, state, dev->class->suspend,
1416 "legacy class ");
1417 goto End;
1418 }
1419 }
1420
1421 if (dev->bus) {
1422 if (dev->bus->pm) {
1423 info = "bus ";
1424 callback = pm_op(dev->bus->pm, state);
1425 } else if (dev->bus->suspend) {
1426 pm_dev_dbg(dev, state, "legacy bus ");
1427 error = legacy_suspend(dev, state, dev->bus->suspend,
1428 "legacy bus ");
1429 goto End;
1430 }
1431 }
1432
1433 Run:
1434 if (!callback && dev->driver && dev->driver->pm) {
1435 info = "driver ";
1436 callback = pm_op(dev->driver->pm, state);
1437 }
1438
1439 error = dpm_run_callback(callback, dev, state, info);
1440
1441 End:
1442 if (!error) {
1443 struct device *parent = dev->parent;
1444
1445 dev->power.is_suspended = true;
1446 if (parent) {
1447 spin_lock_irq(&parent->power.lock);
1448
1449 dev->parent->power.direct_complete = false;
1450 if (dev->power.wakeup_path
1451 && !dev->parent->power.ignore_children)
1452 dev->parent->power.wakeup_path = true;
1453
1454 spin_unlock_irq(&parent->power.lock);
1455 }
1456 }
1457
1458 device_unlock(dev);
1459 dpm_watchdog_clear(&wd);
1460
1461 Complete:
1462 complete_all(&dev->power.completion);
1463 if (error)
1464 async_error = error;
1465
1466 TRACE_SUSPEND(error);
1467 return error;
1468}
1469
1470static void async_suspend(void *data, async_cookie_t cookie)
1471{
1472 struct device *dev = (struct device *)data;
1473 int error;
1474
1475 error = __device_suspend(dev, pm_transition, true);
1476 if (error) {
1477 dpm_save_failed_dev(dev_name(dev));
1478 pm_dev_err(dev, pm_transition, " async", error);
1479 }
1480
1481 put_device(dev);
1482}
1483
1484static int device_suspend(struct device *dev)
1485{
1486 reinit_completion(&dev->power.completion);
1487
1488 if (is_async(dev)) {
1489 get_device(dev);
1490 async_schedule(async_suspend, dev);
1491 return 0;
1492 }
1493
1494 return __device_suspend(dev, pm_transition, false);
1495}
1496
1497/**
1498 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1499 * @state: PM transition of the system being carried out.
1500 */
1501int dpm_suspend(pm_message_t state)
1502{
1503 ktime_t starttime = ktime_get();
1504 int error = 0;
1505
1506 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1507 might_sleep();
1508
1509 cpufreq_suspend();
1510
1511 mutex_lock(&dpm_list_mtx);
1512 pm_transition = state;
1513 async_error = 0;
1514 while (!list_empty(&dpm_prepared_list)) {
1515 struct device *dev = to_device(dpm_prepared_list.prev);
1516
1517 get_device(dev);
1518 mutex_unlock(&dpm_list_mtx);
1519
1520 error = device_suspend(dev);
1521
1522 mutex_lock(&dpm_list_mtx);
1523 if (error) {
1524 pm_dev_err(dev, state, "", error);
1525 dpm_save_failed_dev(dev_name(dev));
1526 put_device(dev);
1527 break;
1528 }
1529 if (!list_empty(&dev->power.entry))
1530 list_move(&dev->power.entry, &dpm_suspended_list);
1531 put_device(dev);
1532 if (async_error)
1533 break;
1534 }
1535 mutex_unlock(&dpm_list_mtx);
1536 async_synchronize_full();
1537 if (!error)
1538 error = async_error;
1539 if (error) {
1540 suspend_stats.failed_suspend++;
1541 dpm_save_failed_step(SUSPEND_SUSPEND);
1542 } else
1543 dpm_show_time(starttime, state, NULL);
1544 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1545 return error;
1546}
1547
1548/**
1549 * device_prepare - Prepare a device for system power transition.
1550 * @dev: Device to handle.
1551 * @state: PM transition of the system being carried out.
1552 *
1553 * Execute the ->prepare() callback(s) for given device. No new children of the
1554 * device may be registered after this function has returned.
1555 */
1556static int device_prepare(struct device *dev, pm_message_t state)
1557{
1558 int (*callback)(struct device *) = NULL;
1559 char *info = NULL;
1560 int ret = 0;
1561
1562 if (dev->power.syscore)
1563 return 0;
1564
1565 /*
1566 * If a device's parent goes into runtime suspend at the wrong time,
1567 * it won't be possible to resume the device. To prevent this we
1568 * block runtime suspend here, during the prepare phase, and allow
1569 * it again during the complete phase.
1570 */
1571 pm_runtime_get_noresume(dev);
1572
1573 device_lock(dev);
1574
1575 dev->power.wakeup_path = device_may_wakeup(dev);
1576
1577 if (dev->power.no_pm_callbacks) {
1578 ret = 1; /* Let device go direct_complete */
1579 goto unlock;
1580 }
1581
1582 if (dev->pm_domain) {
1583 info = "preparing power domain ";
1584 callback = dev->pm_domain->ops.prepare;
1585 } else if (dev->type && dev->type->pm) {
1586 info = "preparing type ";
1587 callback = dev->type->pm->prepare;
1588 } else if (dev->class && dev->class->pm) {
1589 info = "preparing class ";
1590 callback = dev->class->pm->prepare;
1591 } else if (dev->bus && dev->bus->pm) {
1592 info = "preparing bus ";
1593 callback = dev->bus->pm->prepare;
1594 }
1595
1596 if (!callback && dev->driver && dev->driver->pm) {
1597 info = "preparing driver ";
1598 callback = dev->driver->pm->prepare;
1599 }
1600
1601 if (callback)
1602 ret = callback(dev);
1603
1604unlock:
1605 device_unlock(dev);
1606
1607 if (ret < 0) {
1608 suspend_report_result(callback, ret);
1609 pm_runtime_put(dev);
1610 return ret;
1611 }
1612 /*
1613 * A positive return value from ->prepare() means "this device appears
1614 * to be runtime-suspended and its state is fine, so if it really is
1615 * runtime-suspended, you can leave it in that state provided that you
1616 * will do the same thing with all of its descendants". This only
1617 * applies to suspend transitions, however.
1618 */
1619 spin_lock_irq(&dev->power.lock);
1620 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1621 spin_unlock_irq(&dev->power.lock);
1622 return 0;
1623}
1624
1625/**
1626 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1627 * @state: PM transition of the system being carried out.
1628 *
1629 * Execute the ->prepare() callback(s) for all devices.
1630 */
1631int dpm_prepare(pm_message_t state)
1632{
1633 int error = 0;
1634
1635 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1636 might_sleep();
1637
1638 /*
1639 * Give a chance for the known devices to complete their probes, before
1640 * disable probing of devices. This sync point is important at least
1641 * at boot time + hibernation restore.
1642 */
1643 wait_for_device_probe();
1644 /*
1645 * It is unsafe if probing of devices will happen during suspend or
1646 * hibernation and system behavior will be unpredictable in this case.
1647 * So, let's prohibit device's probing here and defer their probes
1648 * instead. The normal behavior will be restored in dpm_complete().
1649 */
1650 device_block_probing();
1651
1652 mutex_lock(&dpm_list_mtx);
1653 while (!list_empty(&dpm_list)) {
1654 struct device *dev = to_device(dpm_list.next);
1655
1656 get_device(dev);
1657 mutex_unlock(&dpm_list_mtx);
1658
1659 trace_device_pm_callback_start(dev, "", state.event);
1660 error = device_prepare(dev, state);
1661 trace_device_pm_callback_end(dev, error);
1662
1663 mutex_lock(&dpm_list_mtx);
1664 if (error) {
1665 if (error == -EAGAIN) {
1666 put_device(dev);
1667 error = 0;
1668 continue;
1669 }
1670 printk(KERN_INFO "PM: Device %s not prepared "
1671 "for power transition: code %d\n",
1672 dev_name(dev), error);
1673 put_device(dev);
1674 break;
1675 }
1676 dev->power.is_prepared = true;
1677 if (!list_empty(&dev->power.entry))
1678 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1679 put_device(dev);
1680 }
1681 mutex_unlock(&dpm_list_mtx);
1682 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1683 return error;
1684}
1685
1686/**
1687 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1688 * @state: PM transition of the system being carried out.
1689 *
1690 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1691 * callbacks for them.
1692 */
1693int dpm_suspend_start(pm_message_t state)
1694{
1695 int error;
1696
1697 error = dpm_prepare(state);
1698 if (error) {
1699 suspend_stats.failed_prepare++;
1700 dpm_save_failed_step(SUSPEND_PREPARE);
1701 } else
1702 error = dpm_suspend(state);
1703 return error;
1704}
1705EXPORT_SYMBOL_GPL(dpm_suspend_start);
1706
1707void __suspend_report_result(const char *function, void *fn, int ret)
1708{
1709 if (ret)
1710 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1711}
1712EXPORT_SYMBOL_GPL(__suspend_report_result);
1713
1714/**
1715 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1716 * @dev: Device to wait for.
1717 * @subordinate: Device that needs to wait for @dev.
1718 */
1719int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1720{
1721 dpm_wait(dev, subordinate->power.async_suspend);
1722 return async_error;
1723}
1724EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1725
1726/**
1727 * dpm_for_each_dev - device iterator.
1728 * @data: data for the callback.
1729 * @fn: function to be called for each device.
1730 *
1731 * Iterate over devices in dpm_list, and call @fn for each device,
1732 * passing it @data.
1733 */
1734void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1735{
1736 struct device *dev;
1737
1738 if (!fn)
1739 return;
1740
1741 device_pm_lock();
1742 list_for_each_entry(dev, &dpm_list, power.entry)
1743 fn(dev, data);
1744 device_pm_unlock();
1745}
1746EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1747
1748static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1749{
1750 if (!ops)
1751 return true;
1752
1753 return !ops->prepare &&
1754 !ops->suspend &&
1755 !ops->suspend_late &&
1756 !ops->suspend_noirq &&
1757 !ops->resume_noirq &&
1758 !ops->resume_early &&
1759 !ops->resume &&
1760 !ops->complete;
1761}
1762
1763void device_pm_check_callbacks(struct device *dev)
1764{
1765 spin_lock_irq(&dev->power.lock);
1766 dev->power.no_pm_callbacks =
1767 (!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
1768 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1769 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1770 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1771 (!dev->driver || pm_ops_is_empty(dev->driver->pm));
1772 spin_unlock_irq(&dev->power.lock);
1773}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/power/main.c - Where the driver meets power management.
4 *
5 * Copyright (c) 2003 Patrick Mochel
6 * Copyright (c) 2003 Open Source Development Lab
7 *
8 * The driver model core calls device_pm_add() when a device is registered.
9 * This will initialize the embedded device_pm_info object in the device
10 * and add it to the list of power-controlled devices. sysfs entries for
11 * controlling device power management will also be added.
12 *
13 * A separate list is used for keeping track of power info, because the power
14 * domain dependencies may differ from the ancestral dependencies that the
15 * subsystem list maintains.
16 */
17
18#define pr_fmt(fmt) "PM: " fmt
19#define dev_fmt pr_fmt
20
21#include <linux/device.h>
22#include <linux/export.h>
23#include <linux/mutex.h>
24#include <linux/pm.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm-trace.h>
27#include <linux/pm_wakeirq.h>
28#include <linux/interrupt.h>
29#include <linux/sched.h>
30#include <linux/sched/debug.h>
31#include <linux/async.h>
32#include <linux/suspend.h>
33#include <trace/events/power.h>
34#include <linux/cpufreq.h>
35#include <linux/devfreq.h>
36#include <linux/timer.h>
37
38#include "../base.h"
39#include "power.h"
40
41typedef int (*pm_callback_t)(struct device *);
42
43#define list_for_each_entry_rcu_locked(pos, head, member) \
44 list_for_each_entry_rcu(pos, head, member, \
45 device_links_read_lock_held())
46
47/*
48 * The entries in the dpm_list list are in a depth first order, simply
49 * because children are guaranteed to be discovered after parents, and
50 * are inserted at the back of the list on discovery.
51 *
52 * Since device_pm_add() may be called with a device lock held,
53 * we must never try to acquire a device lock while holding
54 * dpm_list_mutex.
55 */
56
57LIST_HEAD(dpm_list);
58static LIST_HEAD(dpm_prepared_list);
59static LIST_HEAD(dpm_suspended_list);
60static LIST_HEAD(dpm_late_early_list);
61static LIST_HEAD(dpm_noirq_list);
62
63struct suspend_stats suspend_stats;
64static DEFINE_MUTEX(dpm_list_mtx);
65static pm_message_t pm_transition;
66
67static int async_error;
68
69static const char *pm_verb(int event)
70{
71 switch (event) {
72 case PM_EVENT_SUSPEND:
73 return "suspend";
74 case PM_EVENT_RESUME:
75 return "resume";
76 case PM_EVENT_FREEZE:
77 return "freeze";
78 case PM_EVENT_QUIESCE:
79 return "quiesce";
80 case PM_EVENT_HIBERNATE:
81 return "hibernate";
82 case PM_EVENT_THAW:
83 return "thaw";
84 case PM_EVENT_RESTORE:
85 return "restore";
86 case PM_EVENT_RECOVER:
87 return "recover";
88 default:
89 return "(unknown PM event)";
90 }
91}
92
93/**
94 * device_pm_sleep_init - Initialize system suspend-related device fields.
95 * @dev: Device object being initialized.
96 */
97void device_pm_sleep_init(struct device *dev)
98{
99 dev->power.is_prepared = false;
100 dev->power.is_suspended = false;
101 dev->power.is_noirq_suspended = false;
102 dev->power.is_late_suspended = false;
103 init_completion(&dev->power.completion);
104 complete_all(&dev->power.completion);
105 dev->power.wakeup = NULL;
106 INIT_LIST_HEAD(&dev->power.entry);
107}
108
109/**
110 * device_pm_lock - Lock the list of active devices used by the PM core.
111 */
112void device_pm_lock(void)
113{
114 mutex_lock(&dpm_list_mtx);
115}
116
117/**
118 * device_pm_unlock - Unlock the list of active devices used by the PM core.
119 */
120void device_pm_unlock(void)
121{
122 mutex_unlock(&dpm_list_mtx);
123}
124
125/**
126 * device_pm_add - Add a device to the PM core's list of active devices.
127 * @dev: Device to add to the list.
128 */
129void device_pm_add(struct device *dev)
130{
131 /* Skip PM setup/initialization. */
132 if (device_pm_not_required(dev))
133 return;
134
135 pr_debug("Adding info for %s:%s\n",
136 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
137 device_pm_check_callbacks(dev);
138 mutex_lock(&dpm_list_mtx);
139 if (dev->parent && dev->parent->power.is_prepared)
140 dev_warn(dev, "parent %s should not be sleeping\n",
141 dev_name(dev->parent));
142 list_add_tail(&dev->power.entry, &dpm_list);
143 dev->power.in_dpm_list = true;
144 mutex_unlock(&dpm_list_mtx);
145}
146
147/**
148 * device_pm_remove - Remove a device from the PM core's list of active devices.
149 * @dev: Device to be removed from the list.
150 */
151void device_pm_remove(struct device *dev)
152{
153 if (device_pm_not_required(dev))
154 return;
155
156 pr_debug("Removing info for %s:%s\n",
157 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
158 complete_all(&dev->power.completion);
159 mutex_lock(&dpm_list_mtx);
160 list_del_init(&dev->power.entry);
161 dev->power.in_dpm_list = false;
162 mutex_unlock(&dpm_list_mtx);
163 device_wakeup_disable(dev);
164 pm_runtime_remove(dev);
165 device_pm_check_callbacks(dev);
166}
167
168/**
169 * device_pm_move_before - Move device in the PM core's list of active devices.
170 * @deva: Device to move in dpm_list.
171 * @devb: Device @deva should come before.
172 */
173void device_pm_move_before(struct device *deva, struct device *devb)
174{
175 pr_debug("Moving %s:%s before %s:%s\n",
176 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178 /* Delete deva from dpm_list and reinsert before devb. */
179 list_move_tail(&deva->power.entry, &devb->power.entry);
180}
181
182/**
183 * device_pm_move_after - Move device in the PM core's list of active devices.
184 * @deva: Device to move in dpm_list.
185 * @devb: Device @deva should come after.
186 */
187void device_pm_move_after(struct device *deva, struct device *devb)
188{
189 pr_debug("Moving %s:%s after %s:%s\n",
190 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
191 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
192 /* Delete deva from dpm_list and reinsert after devb. */
193 list_move(&deva->power.entry, &devb->power.entry);
194}
195
196/**
197 * device_pm_move_last - Move device to end of the PM core's list of devices.
198 * @dev: Device to move in dpm_list.
199 */
200void device_pm_move_last(struct device *dev)
201{
202 pr_debug("Moving %s:%s to end of list\n",
203 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
204 list_move_tail(&dev->power.entry, &dpm_list);
205}
206
207static ktime_t initcall_debug_start(struct device *dev, void *cb)
208{
209 if (!pm_print_times_enabled)
210 return 0;
211
212 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
213 task_pid_nr(current),
214 dev->parent ? dev_name(dev->parent) : "none");
215 return ktime_get();
216}
217
218static void initcall_debug_report(struct device *dev, ktime_t calltime,
219 void *cb, int error)
220{
221 ktime_t rettime;
222
223 if (!pm_print_times_enabled)
224 return;
225
226 rettime = ktime_get();
227 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
228 (unsigned long long)ktime_us_delta(rettime, calltime));
229}
230
231/**
232 * dpm_wait - Wait for a PM operation to complete.
233 * @dev: Device to wait for.
234 * @async: If unset, wait only if the device's power.async_suspend flag is set.
235 */
236static void dpm_wait(struct device *dev, bool async)
237{
238 if (!dev)
239 return;
240
241 if (async || (pm_async_enabled && dev->power.async_suspend))
242 wait_for_completion(&dev->power.completion);
243}
244
245static int dpm_wait_fn(struct device *dev, void *async_ptr)
246{
247 dpm_wait(dev, *((bool *)async_ptr));
248 return 0;
249}
250
251static void dpm_wait_for_children(struct device *dev, bool async)
252{
253 device_for_each_child(dev, &async, dpm_wait_fn);
254}
255
256static void dpm_wait_for_suppliers(struct device *dev, bool async)
257{
258 struct device_link *link;
259 int idx;
260
261 idx = device_links_read_lock();
262
263 /*
264 * If the supplier goes away right after we've checked the link to it,
265 * we'll wait for its completion to change the state, but that's fine,
266 * because the only things that will block as a result are the SRCU
267 * callbacks freeing the link objects for the links in the list we're
268 * walking.
269 */
270 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
271 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
272 dpm_wait(link->supplier, async);
273
274 device_links_read_unlock(idx);
275}
276
277static bool dpm_wait_for_superior(struct device *dev, bool async)
278{
279 struct device *parent;
280
281 /*
282 * If the device is resumed asynchronously and the parent's callback
283 * deletes both the device and the parent itself, the parent object may
284 * be freed while this function is running, so avoid that by reference
285 * counting the parent once more unless the device has been deleted
286 * already (in which case return right away).
287 */
288 mutex_lock(&dpm_list_mtx);
289
290 if (!device_pm_initialized(dev)) {
291 mutex_unlock(&dpm_list_mtx);
292 return false;
293 }
294
295 parent = get_device(dev->parent);
296
297 mutex_unlock(&dpm_list_mtx);
298
299 dpm_wait(parent, async);
300 put_device(parent);
301
302 dpm_wait_for_suppliers(dev, async);
303
304 /*
305 * If the parent's callback has deleted the device, attempting to resume
306 * it would be invalid, so avoid doing that then.
307 */
308 return device_pm_initialized(dev);
309}
310
311static void dpm_wait_for_consumers(struct device *dev, bool async)
312{
313 struct device_link *link;
314 int idx;
315
316 idx = device_links_read_lock();
317
318 /*
319 * The status of a device link can only be changed from "dormant" by a
320 * probe, but that cannot happen during system suspend/resume. In
321 * theory it can change to "dormant" at that time, but then it is
322 * reasonable to wait for the target device anyway (eg. if it goes
323 * away, it's better to wait for it to go away completely and then
324 * continue instead of trying to continue in parallel with its
325 * unregistration).
326 */
327 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
328 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
329 dpm_wait(link->consumer, async);
330
331 device_links_read_unlock(idx);
332}
333
334static void dpm_wait_for_subordinate(struct device *dev, bool async)
335{
336 dpm_wait_for_children(dev, async);
337 dpm_wait_for_consumers(dev, async);
338}
339
340/**
341 * pm_op - Return the PM operation appropriate for given PM event.
342 * @ops: PM operations to choose from.
343 * @state: PM transition of the system being carried out.
344 */
345static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
346{
347 switch (state.event) {
348#ifdef CONFIG_SUSPEND
349 case PM_EVENT_SUSPEND:
350 return ops->suspend;
351 case PM_EVENT_RESUME:
352 return ops->resume;
353#endif /* CONFIG_SUSPEND */
354#ifdef CONFIG_HIBERNATE_CALLBACKS
355 case PM_EVENT_FREEZE:
356 case PM_EVENT_QUIESCE:
357 return ops->freeze;
358 case PM_EVENT_HIBERNATE:
359 return ops->poweroff;
360 case PM_EVENT_THAW:
361 case PM_EVENT_RECOVER:
362 return ops->thaw;
363 case PM_EVENT_RESTORE:
364 return ops->restore;
365#endif /* CONFIG_HIBERNATE_CALLBACKS */
366 }
367
368 return NULL;
369}
370
371/**
372 * pm_late_early_op - Return the PM operation appropriate for given PM event.
373 * @ops: PM operations to choose from.
374 * @state: PM transition of the system being carried out.
375 *
376 * Runtime PM is disabled for @dev while this function is being executed.
377 */
378static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
379 pm_message_t state)
380{
381 switch (state.event) {
382#ifdef CONFIG_SUSPEND
383 case PM_EVENT_SUSPEND:
384 return ops->suspend_late;
385 case PM_EVENT_RESUME:
386 return ops->resume_early;
387#endif /* CONFIG_SUSPEND */
388#ifdef CONFIG_HIBERNATE_CALLBACKS
389 case PM_EVENT_FREEZE:
390 case PM_EVENT_QUIESCE:
391 return ops->freeze_late;
392 case PM_EVENT_HIBERNATE:
393 return ops->poweroff_late;
394 case PM_EVENT_THAW:
395 case PM_EVENT_RECOVER:
396 return ops->thaw_early;
397 case PM_EVENT_RESTORE:
398 return ops->restore_early;
399#endif /* CONFIG_HIBERNATE_CALLBACKS */
400 }
401
402 return NULL;
403}
404
405/**
406 * pm_noirq_op - Return the PM operation appropriate for given PM event.
407 * @ops: PM operations to choose from.
408 * @state: PM transition of the system being carried out.
409 *
410 * The driver of @dev will not receive interrupts while this function is being
411 * executed.
412 */
413static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
414{
415 switch (state.event) {
416#ifdef CONFIG_SUSPEND
417 case PM_EVENT_SUSPEND:
418 return ops->suspend_noirq;
419 case PM_EVENT_RESUME:
420 return ops->resume_noirq;
421#endif /* CONFIG_SUSPEND */
422#ifdef CONFIG_HIBERNATE_CALLBACKS
423 case PM_EVENT_FREEZE:
424 case PM_EVENT_QUIESCE:
425 return ops->freeze_noirq;
426 case PM_EVENT_HIBERNATE:
427 return ops->poweroff_noirq;
428 case PM_EVENT_THAW:
429 case PM_EVENT_RECOVER:
430 return ops->thaw_noirq;
431 case PM_EVENT_RESTORE:
432 return ops->restore_noirq;
433#endif /* CONFIG_HIBERNATE_CALLBACKS */
434 }
435
436 return NULL;
437}
438
439static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
440{
441 dev_dbg(dev, "%s%s%s driver flags: %x\n", info, pm_verb(state.event),
442 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
443 ", may wakeup" : "", dev->power.driver_flags);
444}
445
446static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
447 int error)
448{
449 dev_err(dev, "failed to %s%s: error %d\n", pm_verb(state.event), info,
450 error);
451}
452
453static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
454 const char *info)
455{
456 ktime_t calltime;
457 u64 usecs64;
458 int usecs;
459
460 calltime = ktime_get();
461 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
462 do_div(usecs64, NSEC_PER_USEC);
463 usecs = usecs64;
464 if (usecs == 0)
465 usecs = 1;
466
467 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
468 info ?: "", info ? " " : "", pm_verb(state.event),
469 error ? "aborted" : "complete",
470 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
471}
472
473static int dpm_run_callback(pm_callback_t cb, struct device *dev,
474 pm_message_t state, const char *info)
475{
476 ktime_t calltime;
477 int error;
478
479 if (!cb)
480 return 0;
481
482 calltime = initcall_debug_start(dev, cb);
483
484 pm_dev_dbg(dev, state, info);
485 trace_device_pm_callback_start(dev, info, state.event);
486 error = cb(dev);
487 trace_device_pm_callback_end(dev, error);
488 suspend_report_result(dev, cb, error);
489
490 initcall_debug_report(dev, calltime, cb, error);
491
492 return error;
493}
494
495#ifdef CONFIG_DPM_WATCHDOG
496struct dpm_watchdog {
497 struct device *dev;
498 struct task_struct *tsk;
499 struct timer_list timer;
500};
501
502#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
503 struct dpm_watchdog wd
504
505/**
506 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
507 * @t: The timer that PM watchdog depends on.
508 *
509 * Called when a driver has timed out suspending or resuming.
510 * There's not much we can do here to recover so panic() to
511 * capture a crash-dump in pstore.
512 */
513static void dpm_watchdog_handler(struct timer_list *t)
514{
515 struct dpm_watchdog *wd = from_timer(wd, t, timer);
516
517 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
518 show_stack(wd->tsk, NULL, KERN_EMERG);
519 panic("%s %s: unrecoverable failure\n",
520 dev_driver_string(wd->dev), dev_name(wd->dev));
521}
522
523/**
524 * dpm_watchdog_set - Enable pm watchdog for given device.
525 * @wd: Watchdog. Must be allocated on the stack.
526 * @dev: Device to handle.
527 */
528static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
529{
530 struct timer_list *timer = &wd->timer;
531
532 wd->dev = dev;
533 wd->tsk = current;
534
535 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
536 /* use same timeout value for both suspend and resume */
537 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
538 add_timer(timer);
539}
540
541/**
542 * dpm_watchdog_clear - Disable suspend/resume watchdog.
543 * @wd: Watchdog to disable.
544 */
545static void dpm_watchdog_clear(struct dpm_watchdog *wd)
546{
547 struct timer_list *timer = &wd->timer;
548
549 del_timer_sync(timer);
550 destroy_timer_on_stack(timer);
551}
552#else
553#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
554#define dpm_watchdog_set(x, y)
555#define dpm_watchdog_clear(x)
556#endif
557
558/*------------------------- Resume routines -------------------------*/
559
560/**
561 * dev_pm_skip_resume - System-wide device resume optimization check.
562 * @dev: Target device.
563 *
564 * Return:
565 * - %false if the transition under way is RESTORE.
566 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
567 * - The logical negation of %power.must_resume otherwise (that is, when the
568 * transition under way is RESUME).
569 */
570bool dev_pm_skip_resume(struct device *dev)
571{
572 if (pm_transition.event == PM_EVENT_RESTORE)
573 return false;
574
575 if (pm_transition.event == PM_EVENT_THAW)
576 return dev_pm_skip_suspend(dev);
577
578 return !dev->power.must_resume;
579}
580
581/**
582 * device_resume_noirq - Execute a "noirq resume" callback for given device.
583 * @dev: Device to handle.
584 * @state: PM transition of the system being carried out.
585 * @async: If true, the device is being resumed asynchronously.
586 *
587 * The driver of @dev will not receive interrupts while this function is being
588 * executed.
589 */
590static void device_resume_noirq(struct device *dev, pm_message_t state, bool async)
591{
592 pm_callback_t callback = NULL;
593 const char *info = NULL;
594 bool skip_resume;
595 int error = 0;
596
597 TRACE_DEVICE(dev);
598 TRACE_RESUME(0);
599
600 if (dev->power.syscore || dev->power.direct_complete)
601 goto Out;
602
603 if (!dev->power.is_noirq_suspended)
604 goto Out;
605
606 if (!dpm_wait_for_superior(dev, async))
607 goto Out;
608
609 skip_resume = dev_pm_skip_resume(dev);
610 /*
611 * If the driver callback is skipped below or by the middle layer
612 * callback and device_resume_early() also skips the driver callback for
613 * this device later, it needs to appear as "suspended" to PM-runtime,
614 * so change its status accordingly.
615 *
616 * Otherwise, the device is going to be resumed, so set its PM-runtime
617 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
618 * to avoid confusing drivers that don't use it.
619 */
620 if (skip_resume)
621 pm_runtime_set_suspended(dev);
622 else if (dev_pm_skip_suspend(dev))
623 pm_runtime_set_active(dev);
624
625 if (dev->pm_domain) {
626 info = "noirq power domain ";
627 callback = pm_noirq_op(&dev->pm_domain->ops, state);
628 } else if (dev->type && dev->type->pm) {
629 info = "noirq type ";
630 callback = pm_noirq_op(dev->type->pm, state);
631 } else if (dev->class && dev->class->pm) {
632 info = "noirq class ";
633 callback = pm_noirq_op(dev->class->pm, state);
634 } else if (dev->bus && dev->bus->pm) {
635 info = "noirq bus ";
636 callback = pm_noirq_op(dev->bus->pm, state);
637 }
638 if (callback)
639 goto Run;
640
641 if (skip_resume)
642 goto Skip;
643
644 if (dev->driver && dev->driver->pm) {
645 info = "noirq driver ";
646 callback = pm_noirq_op(dev->driver->pm, state);
647 }
648
649Run:
650 error = dpm_run_callback(callback, dev, state, info);
651
652Skip:
653 dev->power.is_noirq_suspended = false;
654
655Out:
656 complete_all(&dev->power.completion);
657 TRACE_RESUME(error);
658
659 if (error) {
660 suspend_stats.failed_resume_noirq++;
661 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
662 dpm_save_failed_dev(dev_name(dev));
663 pm_dev_err(dev, state, async ? " async noirq" : " noirq", error);
664 }
665}
666
667static bool is_async(struct device *dev)
668{
669 return dev->power.async_suspend && pm_async_enabled
670 && !pm_trace_is_enabled();
671}
672
673static bool dpm_async_fn(struct device *dev, async_func_t func)
674{
675 reinit_completion(&dev->power.completion);
676
677 if (is_async(dev)) {
678 dev->power.async_in_progress = true;
679
680 get_device(dev);
681
682 if (async_schedule_dev_nocall(func, dev))
683 return true;
684
685 put_device(dev);
686 }
687 /*
688 * Because async_schedule_dev_nocall() above has returned false or it
689 * has not been called at all, func() is not running and it is safe to
690 * update the async_in_progress flag without extra synchronization.
691 */
692 dev->power.async_in_progress = false;
693 return false;
694}
695
696static void async_resume_noirq(void *data, async_cookie_t cookie)
697{
698 struct device *dev = data;
699
700 device_resume_noirq(dev, pm_transition, true);
701 put_device(dev);
702}
703
704static void dpm_noirq_resume_devices(pm_message_t state)
705{
706 struct device *dev;
707 ktime_t starttime = ktime_get();
708
709 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
710 mutex_lock(&dpm_list_mtx);
711 pm_transition = state;
712
713 /*
714 * Trigger the resume of "async" devices upfront so they don't have to
715 * wait for the "non-async" ones they don't depend on.
716 */
717 list_for_each_entry(dev, &dpm_noirq_list, power.entry)
718 dpm_async_fn(dev, async_resume_noirq);
719
720 while (!list_empty(&dpm_noirq_list)) {
721 dev = to_device(dpm_noirq_list.next);
722 list_move_tail(&dev->power.entry, &dpm_late_early_list);
723
724 if (!dev->power.async_in_progress) {
725 get_device(dev);
726
727 mutex_unlock(&dpm_list_mtx);
728
729 device_resume_noirq(dev, state, false);
730
731 put_device(dev);
732
733 mutex_lock(&dpm_list_mtx);
734 }
735 }
736 mutex_unlock(&dpm_list_mtx);
737 async_synchronize_full();
738 dpm_show_time(starttime, state, 0, "noirq");
739 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
740}
741
742/**
743 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
744 * @state: PM transition of the system being carried out.
745 *
746 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
747 * allow device drivers' interrupt handlers to be called.
748 */
749void dpm_resume_noirq(pm_message_t state)
750{
751 dpm_noirq_resume_devices(state);
752
753 resume_device_irqs();
754 device_wakeup_disarm_wake_irqs();
755}
756
757/**
758 * device_resume_early - Execute an "early resume" callback for given device.
759 * @dev: Device to handle.
760 * @state: PM transition of the system being carried out.
761 * @async: If true, the device is being resumed asynchronously.
762 *
763 * Runtime PM is disabled for @dev while this function is being executed.
764 */
765static void device_resume_early(struct device *dev, pm_message_t state, bool async)
766{
767 pm_callback_t callback = NULL;
768 const char *info = NULL;
769 int error = 0;
770
771 TRACE_DEVICE(dev);
772 TRACE_RESUME(0);
773
774 if (dev->power.syscore || dev->power.direct_complete)
775 goto Out;
776
777 if (!dev->power.is_late_suspended)
778 goto Out;
779
780 if (!dpm_wait_for_superior(dev, async))
781 goto Out;
782
783 if (dev->pm_domain) {
784 info = "early power domain ";
785 callback = pm_late_early_op(&dev->pm_domain->ops, state);
786 } else if (dev->type && dev->type->pm) {
787 info = "early type ";
788 callback = pm_late_early_op(dev->type->pm, state);
789 } else if (dev->class && dev->class->pm) {
790 info = "early class ";
791 callback = pm_late_early_op(dev->class->pm, state);
792 } else if (dev->bus && dev->bus->pm) {
793 info = "early bus ";
794 callback = pm_late_early_op(dev->bus->pm, state);
795 }
796 if (callback)
797 goto Run;
798
799 if (dev_pm_skip_resume(dev))
800 goto Skip;
801
802 if (dev->driver && dev->driver->pm) {
803 info = "early driver ";
804 callback = pm_late_early_op(dev->driver->pm, state);
805 }
806
807Run:
808 error = dpm_run_callback(callback, dev, state, info);
809
810Skip:
811 dev->power.is_late_suspended = false;
812
813Out:
814 TRACE_RESUME(error);
815
816 pm_runtime_enable(dev);
817 complete_all(&dev->power.completion);
818
819 if (error) {
820 suspend_stats.failed_resume_early++;
821 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
822 dpm_save_failed_dev(dev_name(dev));
823 pm_dev_err(dev, state, async ? " async early" : " early", error);
824 }
825}
826
827static void async_resume_early(void *data, async_cookie_t cookie)
828{
829 struct device *dev = data;
830
831 device_resume_early(dev, pm_transition, true);
832 put_device(dev);
833}
834
835/**
836 * dpm_resume_early - Execute "early resume" callbacks for all devices.
837 * @state: PM transition of the system being carried out.
838 */
839void dpm_resume_early(pm_message_t state)
840{
841 struct device *dev;
842 ktime_t starttime = ktime_get();
843
844 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
845 mutex_lock(&dpm_list_mtx);
846 pm_transition = state;
847
848 /*
849 * Trigger the resume of "async" devices upfront so they don't have to
850 * wait for the "non-async" ones they don't depend on.
851 */
852 list_for_each_entry(dev, &dpm_late_early_list, power.entry)
853 dpm_async_fn(dev, async_resume_early);
854
855 while (!list_empty(&dpm_late_early_list)) {
856 dev = to_device(dpm_late_early_list.next);
857 list_move_tail(&dev->power.entry, &dpm_suspended_list);
858
859 if (!dev->power.async_in_progress) {
860 get_device(dev);
861
862 mutex_unlock(&dpm_list_mtx);
863
864 device_resume_early(dev, state, false);
865
866 put_device(dev);
867
868 mutex_lock(&dpm_list_mtx);
869 }
870 }
871 mutex_unlock(&dpm_list_mtx);
872 async_synchronize_full();
873 dpm_show_time(starttime, state, 0, "early");
874 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
875}
876
877/**
878 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
879 * @state: PM transition of the system being carried out.
880 */
881void dpm_resume_start(pm_message_t state)
882{
883 dpm_resume_noirq(state);
884 dpm_resume_early(state);
885}
886EXPORT_SYMBOL_GPL(dpm_resume_start);
887
888/**
889 * device_resume - Execute "resume" callbacks for given device.
890 * @dev: Device to handle.
891 * @state: PM transition of the system being carried out.
892 * @async: If true, the device is being resumed asynchronously.
893 */
894static void device_resume(struct device *dev, pm_message_t state, bool async)
895{
896 pm_callback_t callback = NULL;
897 const char *info = NULL;
898 int error = 0;
899 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
900
901 TRACE_DEVICE(dev);
902 TRACE_RESUME(0);
903
904 if (dev->power.syscore)
905 goto Complete;
906
907 if (dev->power.direct_complete) {
908 /* Match the pm_runtime_disable() in __device_suspend(). */
909 pm_runtime_enable(dev);
910 goto Complete;
911 }
912
913 if (!dpm_wait_for_superior(dev, async))
914 goto Complete;
915
916 dpm_watchdog_set(&wd, dev);
917 device_lock(dev);
918
919 /*
920 * This is a fib. But we'll allow new children to be added below
921 * a resumed device, even if the device hasn't been completed yet.
922 */
923 dev->power.is_prepared = false;
924
925 if (!dev->power.is_suspended)
926 goto Unlock;
927
928 if (dev->pm_domain) {
929 info = "power domain ";
930 callback = pm_op(&dev->pm_domain->ops, state);
931 goto Driver;
932 }
933
934 if (dev->type && dev->type->pm) {
935 info = "type ";
936 callback = pm_op(dev->type->pm, state);
937 goto Driver;
938 }
939
940 if (dev->class && dev->class->pm) {
941 info = "class ";
942 callback = pm_op(dev->class->pm, state);
943 goto Driver;
944 }
945
946 if (dev->bus) {
947 if (dev->bus->pm) {
948 info = "bus ";
949 callback = pm_op(dev->bus->pm, state);
950 } else if (dev->bus->resume) {
951 info = "legacy bus ";
952 callback = dev->bus->resume;
953 goto End;
954 }
955 }
956
957 Driver:
958 if (!callback && dev->driver && dev->driver->pm) {
959 info = "driver ";
960 callback = pm_op(dev->driver->pm, state);
961 }
962
963 End:
964 error = dpm_run_callback(callback, dev, state, info);
965 dev->power.is_suspended = false;
966
967 Unlock:
968 device_unlock(dev);
969 dpm_watchdog_clear(&wd);
970
971 Complete:
972 complete_all(&dev->power.completion);
973
974 TRACE_RESUME(error);
975
976 if (error) {
977 suspend_stats.failed_resume++;
978 dpm_save_failed_step(SUSPEND_RESUME);
979 dpm_save_failed_dev(dev_name(dev));
980 pm_dev_err(dev, state, async ? " async" : "", error);
981 }
982}
983
984static void async_resume(void *data, async_cookie_t cookie)
985{
986 struct device *dev = data;
987
988 device_resume(dev, pm_transition, true);
989 put_device(dev);
990}
991
992/**
993 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
994 * @state: PM transition of the system being carried out.
995 *
996 * Execute the appropriate "resume" callback for all devices whose status
997 * indicates that they are suspended.
998 */
999void dpm_resume(pm_message_t state)
1000{
1001 struct device *dev;
1002 ktime_t starttime = ktime_get();
1003
1004 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1005 might_sleep();
1006
1007 mutex_lock(&dpm_list_mtx);
1008 pm_transition = state;
1009 async_error = 0;
1010
1011 /*
1012 * Trigger the resume of "async" devices upfront so they don't have to
1013 * wait for the "non-async" ones they don't depend on.
1014 */
1015 list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1016 dpm_async_fn(dev, async_resume);
1017
1018 while (!list_empty(&dpm_suspended_list)) {
1019 dev = to_device(dpm_suspended_list.next);
1020
1021 get_device(dev);
1022
1023 if (!dev->power.async_in_progress) {
1024 mutex_unlock(&dpm_list_mtx);
1025
1026 device_resume(dev, state, false);
1027
1028 mutex_lock(&dpm_list_mtx);
1029 }
1030
1031 if (!list_empty(&dev->power.entry))
1032 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1033
1034 mutex_unlock(&dpm_list_mtx);
1035
1036 put_device(dev);
1037
1038 mutex_lock(&dpm_list_mtx);
1039 }
1040 mutex_unlock(&dpm_list_mtx);
1041 async_synchronize_full();
1042 dpm_show_time(starttime, state, 0, NULL);
1043
1044 cpufreq_resume();
1045 devfreq_resume();
1046 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1047}
1048
1049/**
1050 * device_complete - Complete a PM transition for given device.
1051 * @dev: Device to handle.
1052 * @state: PM transition of the system being carried out.
1053 */
1054static void device_complete(struct device *dev, pm_message_t state)
1055{
1056 void (*callback)(struct device *) = NULL;
1057 const char *info = NULL;
1058
1059 if (dev->power.syscore)
1060 goto out;
1061
1062 device_lock(dev);
1063
1064 if (dev->pm_domain) {
1065 info = "completing power domain ";
1066 callback = dev->pm_domain->ops.complete;
1067 } else if (dev->type && dev->type->pm) {
1068 info = "completing type ";
1069 callback = dev->type->pm->complete;
1070 } else if (dev->class && dev->class->pm) {
1071 info = "completing class ";
1072 callback = dev->class->pm->complete;
1073 } else if (dev->bus && dev->bus->pm) {
1074 info = "completing bus ";
1075 callback = dev->bus->pm->complete;
1076 }
1077
1078 if (!callback && dev->driver && dev->driver->pm) {
1079 info = "completing driver ";
1080 callback = dev->driver->pm->complete;
1081 }
1082
1083 if (callback) {
1084 pm_dev_dbg(dev, state, info);
1085 callback(dev);
1086 }
1087
1088 device_unlock(dev);
1089
1090out:
1091 pm_runtime_put(dev);
1092}
1093
1094/**
1095 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1096 * @state: PM transition of the system being carried out.
1097 *
1098 * Execute the ->complete() callbacks for all devices whose PM status is not
1099 * DPM_ON (this allows new devices to be registered).
1100 */
1101void dpm_complete(pm_message_t state)
1102{
1103 struct list_head list;
1104
1105 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1106 might_sleep();
1107
1108 INIT_LIST_HEAD(&list);
1109 mutex_lock(&dpm_list_mtx);
1110 while (!list_empty(&dpm_prepared_list)) {
1111 struct device *dev = to_device(dpm_prepared_list.prev);
1112
1113 get_device(dev);
1114 dev->power.is_prepared = false;
1115 list_move(&dev->power.entry, &list);
1116
1117 mutex_unlock(&dpm_list_mtx);
1118
1119 trace_device_pm_callback_start(dev, "", state.event);
1120 device_complete(dev, state);
1121 trace_device_pm_callback_end(dev, 0);
1122
1123 put_device(dev);
1124
1125 mutex_lock(&dpm_list_mtx);
1126 }
1127 list_splice(&list, &dpm_list);
1128 mutex_unlock(&dpm_list_mtx);
1129
1130 /* Allow device probing and trigger re-probing of deferred devices */
1131 device_unblock_probing();
1132 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1133}
1134
1135/**
1136 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1137 * @state: PM transition of the system being carried out.
1138 *
1139 * Execute "resume" callbacks for all devices and complete the PM transition of
1140 * the system.
1141 */
1142void dpm_resume_end(pm_message_t state)
1143{
1144 dpm_resume(state);
1145 dpm_complete(state);
1146}
1147EXPORT_SYMBOL_GPL(dpm_resume_end);
1148
1149
1150/*------------------------- Suspend routines -------------------------*/
1151
1152/**
1153 * resume_event - Return a "resume" message for given "suspend" sleep state.
1154 * @sleep_state: PM message representing a sleep state.
1155 *
1156 * Return a PM message representing the resume event corresponding to given
1157 * sleep state.
1158 */
1159static pm_message_t resume_event(pm_message_t sleep_state)
1160{
1161 switch (sleep_state.event) {
1162 case PM_EVENT_SUSPEND:
1163 return PMSG_RESUME;
1164 case PM_EVENT_FREEZE:
1165 case PM_EVENT_QUIESCE:
1166 return PMSG_RECOVER;
1167 case PM_EVENT_HIBERNATE:
1168 return PMSG_RESTORE;
1169 }
1170 return PMSG_ON;
1171}
1172
1173static void dpm_superior_set_must_resume(struct device *dev)
1174{
1175 struct device_link *link;
1176 int idx;
1177
1178 if (dev->parent)
1179 dev->parent->power.must_resume = true;
1180
1181 idx = device_links_read_lock();
1182
1183 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1184 link->supplier->power.must_resume = true;
1185
1186 device_links_read_unlock(idx);
1187}
1188
1189/**
1190 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1191 * @dev: Device to handle.
1192 * @state: PM transition of the system being carried out.
1193 * @async: If true, the device is being suspended asynchronously.
1194 *
1195 * The driver of @dev will not receive interrupts while this function is being
1196 * executed.
1197 */
1198static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1199{
1200 pm_callback_t callback = NULL;
1201 const char *info = NULL;
1202 int error = 0;
1203
1204 TRACE_DEVICE(dev);
1205 TRACE_SUSPEND(0);
1206
1207 dpm_wait_for_subordinate(dev, async);
1208
1209 if (async_error)
1210 goto Complete;
1211
1212 if (dev->power.syscore || dev->power.direct_complete)
1213 goto Complete;
1214
1215 if (dev->pm_domain) {
1216 info = "noirq power domain ";
1217 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1218 } else if (dev->type && dev->type->pm) {
1219 info = "noirq type ";
1220 callback = pm_noirq_op(dev->type->pm, state);
1221 } else if (dev->class && dev->class->pm) {
1222 info = "noirq class ";
1223 callback = pm_noirq_op(dev->class->pm, state);
1224 } else if (dev->bus && dev->bus->pm) {
1225 info = "noirq bus ";
1226 callback = pm_noirq_op(dev->bus->pm, state);
1227 }
1228 if (callback)
1229 goto Run;
1230
1231 if (dev_pm_skip_suspend(dev))
1232 goto Skip;
1233
1234 if (dev->driver && dev->driver->pm) {
1235 info = "noirq driver ";
1236 callback = pm_noirq_op(dev->driver->pm, state);
1237 }
1238
1239Run:
1240 error = dpm_run_callback(callback, dev, state, info);
1241 if (error) {
1242 async_error = error;
1243 goto Complete;
1244 }
1245
1246Skip:
1247 dev->power.is_noirq_suspended = true;
1248
1249 /*
1250 * Skipping the resume of devices that were in use right before the
1251 * system suspend (as indicated by their PM-runtime usage counters)
1252 * would be suboptimal. Also resume them if doing that is not allowed
1253 * to be skipped.
1254 */
1255 if (atomic_read(&dev->power.usage_count) > 1 ||
1256 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1257 dev->power.may_skip_resume))
1258 dev->power.must_resume = true;
1259
1260 if (dev->power.must_resume)
1261 dpm_superior_set_must_resume(dev);
1262
1263Complete:
1264 complete_all(&dev->power.completion);
1265 TRACE_SUSPEND(error);
1266 return error;
1267}
1268
1269static void async_suspend_noirq(void *data, async_cookie_t cookie)
1270{
1271 struct device *dev = data;
1272 int error;
1273
1274 error = __device_suspend_noirq(dev, pm_transition, true);
1275 if (error) {
1276 dpm_save_failed_dev(dev_name(dev));
1277 pm_dev_err(dev, pm_transition, " async", error);
1278 }
1279
1280 put_device(dev);
1281}
1282
1283static int device_suspend_noirq(struct device *dev)
1284{
1285 if (dpm_async_fn(dev, async_suspend_noirq))
1286 return 0;
1287
1288 return __device_suspend_noirq(dev, pm_transition, false);
1289}
1290
1291static int dpm_noirq_suspend_devices(pm_message_t state)
1292{
1293 ktime_t starttime = ktime_get();
1294 int error = 0;
1295
1296 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1297 mutex_lock(&dpm_list_mtx);
1298 pm_transition = state;
1299 async_error = 0;
1300
1301 while (!list_empty(&dpm_late_early_list)) {
1302 struct device *dev = to_device(dpm_late_early_list.prev);
1303
1304 get_device(dev);
1305 mutex_unlock(&dpm_list_mtx);
1306
1307 error = device_suspend_noirq(dev);
1308
1309 mutex_lock(&dpm_list_mtx);
1310
1311 if (error) {
1312 pm_dev_err(dev, state, " noirq", error);
1313 dpm_save_failed_dev(dev_name(dev));
1314 } else if (!list_empty(&dev->power.entry)) {
1315 list_move(&dev->power.entry, &dpm_noirq_list);
1316 }
1317
1318 mutex_unlock(&dpm_list_mtx);
1319
1320 put_device(dev);
1321
1322 mutex_lock(&dpm_list_mtx);
1323
1324 if (error || async_error)
1325 break;
1326 }
1327 mutex_unlock(&dpm_list_mtx);
1328 async_synchronize_full();
1329 if (!error)
1330 error = async_error;
1331
1332 if (error) {
1333 suspend_stats.failed_suspend_noirq++;
1334 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1335 }
1336 dpm_show_time(starttime, state, error, "noirq");
1337 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1338 return error;
1339}
1340
1341/**
1342 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1343 * @state: PM transition of the system being carried out.
1344 *
1345 * Prevent device drivers' interrupt handlers from being called and invoke
1346 * "noirq" suspend callbacks for all non-sysdev devices.
1347 */
1348int dpm_suspend_noirq(pm_message_t state)
1349{
1350 int ret;
1351
1352 device_wakeup_arm_wake_irqs();
1353 suspend_device_irqs();
1354
1355 ret = dpm_noirq_suspend_devices(state);
1356 if (ret)
1357 dpm_resume_noirq(resume_event(state));
1358
1359 return ret;
1360}
1361
1362static void dpm_propagate_wakeup_to_parent(struct device *dev)
1363{
1364 struct device *parent = dev->parent;
1365
1366 if (!parent)
1367 return;
1368
1369 spin_lock_irq(&parent->power.lock);
1370
1371 if (device_wakeup_path(dev) && !parent->power.ignore_children)
1372 parent->power.wakeup_path = true;
1373
1374 spin_unlock_irq(&parent->power.lock);
1375}
1376
1377/**
1378 * __device_suspend_late - Execute a "late suspend" callback for given device.
1379 * @dev: Device to handle.
1380 * @state: PM transition of the system being carried out.
1381 * @async: If true, the device is being suspended asynchronously.
1382 *
1383 * Runtime PM is disabled for @dev while this function is being executed.
1384 */
1385static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1386{
1387 pm_callback_t callback = NULL;
1388 const char *info = NULL;
1389 int error = 0;
1390
1391 TRACE_DEVICE(dev);
1392 TRACE_SUSPEND(0);
1393
1394 __pm_runtime_disable(dev, false);
1395
1396 dpm_wait_for_subordinate(dev, async);
1397
1398 if (async_error)
1399 goto Complete;
1400
1401 if (pm_wakeup_pending()) {
1402 async_error = -EBUSY;
1403 goto Complete;
1404 }
1405
1406 if (dev->power.syscore || dev->power.direct_complete)
1407 goto Complete;
1408
1409 if (dev->pm_domain) {
1410 info = "late power domain ";
1411 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1412 } else if (dev->type && dev->type->pm) {
1413 info = "late type ";
1414 callback = pm_late_early_op(dev->type->pm, state);
1415 } else if (dev->class && dev->class->pm) {
1416 info = "late class ";
1417 callback = pm_late_early_op(dev->class->pm, state);
1418 } else if (dev->bus && dev->bus->pm) {
1419 info = "late bus ";
1420 callback = pm_late_early_op(dev->bus->pm, state);
1421 }
1422 if (callback)
1423 goto Run;
1424
1425 if (dev_pm_skip_suspend(dev))
1426 goto Skip;
1427
1428 if (dev->driver && dev->driver->pm) {
1429 info = "late driver ";
1430 callback = pm_late_early_op(dev->driver->pm, state);
1431 }
1432
1433Run:
1434 error = dpm_run_callback(callback, dev, state, info);
1435 if (error) {
1436 async_error = error;
1437 goto Complete;
1438 }
1439 dpm_propagate_wakeup_to_parent(dev);
1440
1441Skip:
1442 dev->power.is_late_suspended = true;
1443
1444Complete:
1445 TRACE_SUSPEND(error);
1446 complete_all(&dev->power.completion);
1447 return error;
1448}
1449
1450static void async_suspend_late(void *data, async_cookie_t cookie)
1451{
1452 struct device *dev = data;
1453 int error;
1454
1455 error = __device_suspend_late(dev, pm_transition, true);
1456 if (error) {
1457 dpm_save_failed_dev(dev_name(dev));
1458 pm_dev_err(dev, pm_transition, " async", error);
1459 }
1460 put_device(dev);
1461}
1462
1463static int device_suspend_late(struct device *dev)
1464{
1465 if (dpm_async_fn(dev, async_suspend_late))
1466 return 0;
1467
1468 return __device_suspend_late(dev, pm_transition, false);
1469}
1470
1471/**
1472 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1473 * @state: PM transition of the system being carried out.
1474 */
1475int dpm_suspend_late(pm_message_t state)
1476{
1477 ktime_t starttime = ktime_get();
1478 int error = 0;
1479
1480 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1481 wake_up_all_idle_cpus();
1482 mutex_lock(&dpm_list_mtx);
1483 pm_transition = state;
1484 async_error = 0;
1485
1486 while (!list_empty(&dpm_suspended_list)) {
1487 struct device *dev = to_device(dpm_suspended_list.prev);
1488
1489 get_device(dev);
1490
1491 mutex_unlock(&dpm_list_mtx);
1492
1493 error = device_suspend_late(dev);
1494
1495 mutex_lock(&dpm_list_mtx);
1496
1497 if (!list_empty(&dev->power.entry))
1498 list_move(&dev->power.entry, &dpm_late_early_list);
1499
1500 if (error) {
1501 pm_dev_err(dev, state, " late", error);
1502 dpm_save_failed_dev(dev_name(dev));
1503 }
1504
1505 mutex_unlock(&dpm_list_mtx);
1506
1507 put_device(dev);
1508
1509 mutex_lock(&dpm_list_mtx);
1510
1511 if (error || async_error)
1512 break;
1513 }
1514 mutex_unlock(&dpm_list_mtx);
1515 async_synchronize_full();
1516 if (!error)
1517 error = async_error;
1518 if (error) {
1519 suspend_stats.failed_suspend_late++;
1520 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1521 dpm_resume_early(resume_event(state));
1522 }
1523 dpm_show_time(starttime, state, error, "late");
1524 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1525 return error;
1526}
1527
1528/**
1529 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1530 * @state: PM transition of the system being carried out.
1531 */
1532int dpm_suspend_end(pm_message_t state)
1533{
1534 ktime_t starttime = ktime_get();
1535 int error;
1536
1537 error = dpm_suspend_late(state);
1538 if (error)
1539 goto out;
1540
1541 error = dpm_suspend_noirq(state);
1542 if (error)
1543 dpm_resume_early(resume_event(state));
1544
1545out:
1546 dpm_show_time(starttime, state, error, "end");
1547 return error;
1548}
1549EXPORT_SYMBOL_GPL(dpm_suspend_end);
1550
1551/**
1552 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1553 * @dev: Device to suspend.
1554 * @state: PM transition of the system being carried out.
1555 * @cb: Suspend callback to execute.
1556 * @info: string description of caller.
1557 */
1558static int legacy_suspend(struct device *dev, pm_message_t state,
1559 int (*cb)(struct device *dev, pm_message_t state),
1560 const char *info)
1561{
1562 int error;
1563 ktime_t calltime;
1564
1565 calltime = initcall_debug_start(dev, cb);
1566
1567 trace_device_pm_callback_start(dev, info, state.event);
1568 error = cb(dev, state);
1569 trace_device_pm_callback_end(dev, error);
1570 suspend_report_result(dev, cb, error);
1571
1572 initcall_debug_report(dev, calltime, cb, error);
1573
1574 return error;
1575}
1576
1577static void dpm_clear_superiors_direct_complete(struct device *dev)
1578{
1579 struct device_link *link;
1580 int idx;
1581
1582 if (dev->parent) {
1583 spin_lock_irq(&dev->parent->power.lock);
1584 dev->parent->power.direct_complete = false;
1585 spin_unlock_irq(&dev->parent->power.lock);
1586 }
1587
1588 idx = device_links_read_lock();
1589
1590 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1591 spin_lock_irq(&link->supplier->power.lock);
1592 link->supplier->power.direct_complete = false;
1593 spin_unlock_irq(&link->supplier->power.lock);
1594 }
1595
1596 device_links_read_unlock(idx);
1597}
1598
1599/**
1600 * __device_suspend - Execute "suspend" callbacks for given device.
1601 * @dev: Device to handle.
1602 * @state: PM transition of the system being carried out.
1603 * @async: If true, the device is being suspended asynchronously.
1604 */
1605static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1606{
1607 pm_callback_t callback = NULL;
1608 const char *info = NULL;
1609 int error = 0;
1610 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1611
1612 TRACE_DEVICE(dev);
1613 TRACE_SUSPEND(0);
1614
1615 dpm_wait_for_subordinate(dev, async);
1616
1617 if (async_error) {
1618 dev->power.direct_complete = false;
1619 goto Complete;
1620 }
1621
1622 /*
1623 * Wait for possible runtime PM transitions of the device in progress
1624 * to complete and if there's a runtime resume request pending for it,
1625 * resume it before proceeding with invoking the system-wide suspend
1626 * callbacks for it.
1627 *
1628 * If the system-wide suspend callbacks below change the configuration
1629 * of the device, they must disable runtime PM for it or otherwise
1630 * ensure that its runtime-resume callbacks will not be confused by that
1631 * change in case they are invoked going forward.
1632 */
1633 pm_runtime_barrier(dev);
1634
1635 if (pm_wakeup_pending()) {
1636 dev->power.direct_complete = false;
1637 async_error = -EBUSY;
1638 goto Complete;
1639 }
1640
1641 if (dev->power.syscore)
1642 goto Complete;
1643
1644 /* Avoid direct_complete to let wakeup_path propagate. */
1645 if (device_may_wakeup(dev) || device_wakeup_path(dev))
1646 dev->power.direct_complete = false;
1647
1648 if (dev->power.direct_complete) {
1649 if (pm_runtime_status_suspended(dev)) {
1650 pm_runtime_disable(dev);
1651 if (pm_runtime_status_suspended(dev)) {
1652 pm_dev_dbg(dev, state, "direct-complete ");
1653 goto Complete;
1654 }
1655
1656 pm_runtime_enable(dev);
1657 }
1658 dev->power.direct_complete = false;
1659 }
1660
1661 dev->power.may_skip_resume = true;
1662 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1663
1664 dpm_watchdog_set(&wd, dev);
1665 device_lock(dev);
1666
1667 if (dev->pm_domain) {
1668 info = "power domain ";
1669 callback = pm_op(&dev->pm_domain->ops, state);
1670 goto Run;
1671 }
1672
1673 if (dev->type && dev->type->pm) {
1674 info = "type ";
1675 callback = pm_op(dev->type->pm, state);
1676 goto Run;
1677 }
1678
1679 if (dev->class && dev->class->pm) {
1680 info = "class ";
1681 callback = pm_op(dev->class->pm, state);
1682 goto Run;
1683 }
1684
1685 if (dev->bus) {
1686 if (dev->bus->pm) {
1687 info = "bus ";
1688 callback = pm_op(dev->bus->pm, state);
1689 } else if (dev->bus->suspend) {
1690 pm_dev_dbg(dev, state, "legacy bus ");
1691 error = legacy_suspend(dev, state, dev->bus->suspend,
1692 "legacy bus ");
1693 goto End;
1694 }
1695 }
1696
1697 Run:
1698 if (!callback && dev->driver && dev->driver->pm) {
1699 info = "driver ";
1700 callback = pm_op(dev->driver->pm, state);
1701 }
1702
1703 error = dpm_run_callback(callback, dev, state, info);
1704
1705 End:
1706 if (!error) {
1707 dev->power.is_suspended = true;
1708 if (device_may_wakeup(dev))
1709 dev->power.wakeup_path = true;
1710
1711 dpm_propagate_wakeup_to_parent(dev);
1712 dpm_clear_superiors_direct_complete(dev);
1713 }
1714
1715 device_unlock(dev);
1716 dpm_watchdog_clear(&wd);
1717
1718 Complete:
1719 if (error)
1720 async_error = error;
1721
1722 complete_all(&dev->power.completion);
1723 TRACE_SUSPEND(error);
1724 return error;
1725}
1726
1727static void async_suspend(void *data, async_cookie_t cookie)
1728{
1729 struct device *dev = data;
1730 int error;
1731
1732 error = __device_suspend(dev, pm_transition, true);
1733 if (error) {
1734 dpm_save_failed_dev(dev_name(dev));
1735 pm_dev_err(dev, pm_transition, " async", error);
1736 }
1737
1738 put_device(dev);
1739}
1740
1741static int device_suspend(struct device *dev)
1742{
1743 if (dpm_async_fn(dev, async_suspend))
1744 return 0;
1745
1746 return __device_suspend(dev, pm_transition, false);
1747}
1748
1749/**
1750 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1751 * @state: PM transition of the system being carried out.
1752 */
1753int dpm_suspend(pm_message_t state)
1754{
1755 ktime_t starttime = ktime_get();
1756 int error = 0;
1757
1758 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1759 might_sleep();
1760
1761 devfreq_suspend();
1762 cpufreq_suspend();
1763
1764 mutex_lock(&dpm_list_mtx);
1765 pm_transition = state;
1766 async_error = 0;
1767 while (!list_empty(&dpm_prepared_list)) {
1768 struct device *dev = to_device(dpm_prepared_list.prev);
1769
1770 get_device(dev);
1771
1772 mutex_unlock(&dpm_list_mtx);
1773
1774 error = device_suspend(dev);
1775
1776 mutex_lock(&dpm_list_mtx);
1777
1778 if (error) {
1779 pm_dev_err(dev, state, "", error);
1780 dpm_save_failed_dev(dev_name(dev));
1781 } else if (!list_empty(&dev->power.entry)) {
1782 list_move(&dev->power.entry, &dpm_suspended_list);
1783 }
1784
1785 mutex_unlock(&dpm_list_mtx);
1786
1787 put_device(dev);
1788
1789 mutex_lock(&dpm_list_mtx);
1790
1791 if (error || async_error)
1792 break;
1793 }
1794 mutex_unlock(&dpm_list_mtx);
1795 async_synchronize_full();
1796 if (!error)
1797 error = async_error;
1798 if (error) {
1799 suspend_stats.failed_suspend++;
1800 dpm_save_failed_step(SUSPEND_SUSPEND);
1801 }
1802 dpm_show_time(starttime, state, error, NULL);
1803 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1804 return error;
1805}
1806
1807/**
1808 * device_prepare - Prepare a device for system power transition.
1809 * @dev: Device to handle.
1810 * @state: PM transition of the system being carried out.
1811 *
1812 * Execute the ->prepare() callback(s) for given device. No new children of the
1813 * device may be registered after this function has returned.
1814 */
1815static int device_prepare(struct device *dev, pm_message_t state)
1816{
1817 int (*callback)(struct device *) = NULL;
1818 int ret = 0;
1819
1820 /*
1821 * If a device's parent goes into runtime suspend at the wrong time,
1822 * it won't be possible to resume the device. To prevent this we
1823 * block runtime suspend here, during the prepare phase, and allow
1824 * it again during the complete phase.
1825 */
1826 pm_runtime_get_noresume(dev);
1827
1828 if (dev->power.syscore)
1829 return 0;
1830
1831 device_lock(dev);
1832
1833 dev->power.wakeup_path = false;
1834
1835 if (dev->power.no_pm_callbacks)
1836 goto unlock;
1837
1838 if (dev->pm_domain)
1839 callback = dev->pm_domain->ops.prepare;
1840 else if (dev->type && dev->type->pm)
1841 callback = dev->type->pm->prepare;
1842 else if (dev->class && dev->class->pm)
1843 callback = dev->class->pm->prepare;
1844 else if (dev->bus && dev->bus->pm)
1845 callback = dev->bus->pm->prepare;
1846
1847 if (!callback && dev->driver && dev->driver->pm)
1848 callback = dev->driver->pm->prepare;
1849
1850 if (callback)
1851 ret = callback(dev);
1852
1853unlock:
1854 device_unlock(dev);
1855
1856 if (ret < 0) {
1857 suspend_report_result(dev, callback, ret);
1858 pm_runtime_put(dev);
1859 return ret;
1860 }
1861 /*
1862 * A positive return value from ->prepare() means "this device appears
1863 * to be runtime-suspended and its state is fine, so if it really is
1864 * runtime-suspended, you can leave it in that state provided that you
1865 * will do the same thing with all of its descendants". This only
1866 * applies to suspend transitions, however.
1867 */
1868 spin_lock_irq(&dev->power.lock);
1869 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1870 (ret > 0 || dev->power.no_pm_callbacks) &&
1871 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1872 spin_unlock_irq(&dev->power.lock);
1873 return 0;
1874}
1875
1876/**
1877 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1878 * @state: PM transition of the system being carried out.
1879 *
1880 * Execute the ->prepare() callback(s) for all devices.
1881 */
1882int dpm_prepare(pm_message_t state)
1883{
1884 int error = 0;
1885
1886 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1887 might_sleep();
1888
1889 /*
1890 * Give a chance for the known devices to complete their probes, before
1891 * disable probing of devices. This sync point is important at least
1892 * at boot time + hibernation restore.
1893 */
1894 wait_for_device_probe();
1895 /*
1896 * It is unsafe if probing of devices will happen during suspend or
1897 * hibernation and system behavior will be unpredictable in this case.
1898 * So, let's prohibit device's probing here and defer their probes
1899 * instead. The normal behavior will be restored in dpm_complete().
1900 */
1901 device_block_probing();
1902
1903 mutex_lock(&dpm_list_mtx);
1904 while (!list_empty(&dpm_list) && !error) {
1905 struct device *dev = to_device(dpm_list.next);
1906
1907 get_device(dev);
1908
1909 mutex_unlock(&dpm_list_mtx);
1910
1911 trace_device_pm_callback_start(dev, "", state.event);
1912 error = device_prepare(dev, state);
1913 trace_device_pm_callback_end(dev, error);
1914
1915 mutex_lock(&dpm_list_mtx);
1916
1917 if (!error) {
1918 dev->power.is_prepared = true;
1919 if (!list_empty(&dev->power.entry))
1920 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1921 } else if (error == -EAGAIN) {
1922 error = 0;
1923 } else {
1924 dev_info(dev, "not prepared for power transition: code %d\n",
1925 error);
1926 }
1927
1928 mutex_unlock(&dpm_list_mtx);
1929
1930 put_device(dev);
1931
1932 mutex_lock(&dpm_list_mtx);
1933 }
1934 mutex_unlock(&dpm_list_mtx);
1935 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1936 return error;
1937}
1938
1939/**
1940 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1941 * @state: PM transition of the system being carried out.
1942 *
1943 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1944 * callbacks for them.
1945 */
1946int dpm_suspend_start(pm_message_t state)
1947{
1948 ktime_t starttime = ktime_get();
1949 int error;
1950
1951 error = dpm_prepare(state);
1952 if (error) {
1953 suspend_stats.failed_prepare++;
1954 dpm_save_failed_step(SUSPEND_PREPARE);
1955 } else
1956 error = dpm_suspend(state);
1957 dpm_show_time(starttime, state, error, "start");
1958 return error;
1959}
1960EXPORT_SYMBOL_GPL(dpm_suspend_start);
1961
1962void __suspend_report_result(const char *function, struct device *dev, void *fn, int ret)
1963{
1964 if (ret)
1965 dev_err(dev, "%s(): %pS returns %d\n", function, fn, ret);
1966}
1967EXPORT_SYMBOL_GPL(__suspend_report_result);
1968
1969/**
1970 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1971 * @subordinate: Device that needs to wait for @dev.
1972 * @dev: Device to wait for.
1973 */
1974int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1975{
1976 dpm_wait(dev, subordinate->power.async_suspend);
1977 return async_error;
1978}
1979EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1980
1981/**
1982 * dpm_for_each_dev - device iterator.
1983 * @data: data for the callback.
1984 * @fn: function to be called for each device.
1985 *
1986 * Iterate over devices in dpm_list, and call @fn for each device,
1987 * passing it @data.
1988 */
1989void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1990{
1991 struct device *dev;
1992
1993 if (!fn)
1994 return;
1995
1996 device_pm_lock();
1997 list_for_each_entry(dev, &dpm_list, power.entry)
1998 fn(dev, data);
1999 device_pm_unlock();
2000}
2001EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2002
2003static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2004{
2005 if (!ops)
2006 return true;
2007
2008 return !ops->prepare &&
2009 !ops->suspend &&
2010 !ops->suspend_late &&
2011 !ops->suspend_noirq &&
2012 !ops->resume_noirq &&
2013 !ops->resume_early &&
2014 !ops->resume &&
2015 !ops->complete;
2016}
2017
2018void device_pm_check_callbacks(struct device *dev)
2019{
2020 unsigned long flags;
2021
2022 spin_lock_irqsave(&dev->power.lock, flags);
2023 dev->power.no_pm_callbacks =
2024 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2025 !dev->bus->suspend && !dev->bus->resume)) &&
2026 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2027 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2028 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2029 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2030 !dev->driver->suspend && !dev->driver->resume));
2031 spin_unlock_irqrestore(&dev->power.lock, flags);
2032}
2033
2034bool dev_pm_skip_suspend(struct device *dev)
2035{
2036 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2037 pm_runtime_status_suspended(dev);
2038}