Loading...
1/*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20#include <linux/device.h>
21#include <linux/kallsyms.h>
22#include <linux/export.h>
23#include <linux/mutex.h>
24#include <linux/pm.h>
25#include <linux/pm_runtime.h>
26#include <linux/pm-trace.h>
27#include <linux/pm_wakeirq.h>
28#include <linux/interrupt.h>
29#include <linux/sched.h>
30#include <linux/async.h>
31#include <linux/suspend.h>
32#include <trace/events/power.h>
33#include <linux/cpufreq.h>
34#include <linux/cpuidle.h>
35#include <linux/timer.h>
36
37#include "../base.h"
38#include "power.h"
39
40typedef int (*pm_callback_t)(struct device *);
41
42/*
43 * The entries in the dpm_list list are in a depth first order, simply
44 * because children are guaranteed to be discovered after parents, and
45 * are inserted at the back of the list on discovery.
46 *
47 * Since device_pm_add() may be called with a device lock held,
48 * we must never try to acquire a device lock while holding
49 * dpm_list_mutex.
50 */
51
52LIST_HEAD(dpm_list);
53static LIST_HEAD(dpm_prepared_list);
54static LIST_HEAD(dpm_suspended_list);
55static LIST_HEAD(dpm_late_early_list);
56static LIST_HEAD(dpm_noirq_list);
57
58struct suspend_stats suspend_stats;
59static DEFINE_MUTEX(dpm_list_mtx);
60static pm_message_t pm_transition;
61
62static int async_error;
63
64static char *pm_verb(int event)
65{
66 switch (event) {
67 case PM_EVENT_SUSPEND:
68 return "suspend";
69 case PM_EVENT_RESUME:
70 return "resume";
71 case PM_EVENT_FREEZE:
72 return "freeze";
73 case PM_EVENT_QUIESCE:
74 return "quiesce";
75 case PM_EVENT_HIBERNATE:
76 return "hibernate";
77 case PM_EVENT_THAW:
78 return "thaw";
79 case PM_EVENT_RESTORE:
80 return "restore";
81 case PM_EVENT_RECOVER:
82 return "recover";
83 default:
84 return "(unknown PM event)";
85 }
86}
87
88/**
89 * device_pm_sleep_init - Initialize system suspend-related device fields.
90 * @dev: Device object being initialized.
91 */
92void device_pm_sleep_init(struct device *dev)
93{
94 dev->power.is_prepared = false;
95 dev->power.is_suspended = false;
96 dev->power.is_noirq_suspended = false;
97 dev->power.is_late_suspended = false;
98 init_completion(&dev->power.completion);
99 complete_all(&dev->power.completion);
100 dev->power.wakeup = NULL;
101 INIT_LIST_HEAD(&dev->power.entry);
102}
103
104/**
105 * device_pm_lock - Lock the list of active devices used by the PM core.
106 */
107void device_pm_lock(void)
108{
109 mutex_lock(&dpm_list_mtx);
110}
111
112/**
113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
114 */
115void device_pm_unlock(void)
116{
117 mutex_unlock(&dpm_list_mtx);
118}
119
120/**
121 * device_pm_add - Add a device to the PM core's list of active devices.
122 * @dev: Device to add to the list.
123 */
124void device_pm_add(struct device *dev)
125{
126 pr_debug("PM: Adding info for %s:%s\n",
127 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 device_pm_check_callbacks(dev);
129 mutex_lock(&dpm_list_mtx);
130 if (dev->parent && dev->parent->power.is_prepared)
131 dev_warn(dev, "parent %s should not be sleeping\n",
132 dev_name(dev->parent));
133 list_add_tail(&dev->power.entry, &dpm_list);
134 mutex_unlock(&dpm_list_mtx);
135}
136
137/**
138 * device_pm_remove - Remove a device from the PM core's list of active devices.
139 * @dev: Device to be removed from the list.
140 */
141void device_pm_remove(struct device *dev)
142{
143 pr_debug("PM: Removing info for %s:%s\n",
144 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
145 complete_all(&dev->power.completion);
146 mutex_lock(&dpm_list_mtx);
147 list_del_init(&dev->power.entry);
148 mutex_unlock(&dpm_list_mtx);
149 device_wakeup_disable(dev);
150 pm_runtime_remove(dev);
151 device_pm_check_callbacks(dev);
152}
153
154/**
155 * device_pm_move_before - Move device in the PM core's list of active devices.
156 * @deva: Device to move in dpm_list.
157 * @devb: Device @deva should come before.
158 */
159void device_pm_move_before(struct device *deva, struct device *devb)
160{
161 pr_debug("PM: Moving %s:%s before %s:%s\n",
162 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
163 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
164 /* Delete deva from dpm_list and reinsert before devb. */
165 list_move_tail(&deva->power.entry, &devb->power.entry);
166}
167
168/**
169 * device_pm_move_after - Move device in the PM core's list of active devices.
170 * @deva: Device to move in dpm_list.
171 * @devb: Device @deva should come after.
172 */
173void device_pm_move_after(struct device *deva, struct device *devb)
174{
175 pr_debug("PM: Moving %s:%s after %s:%s\n",
176 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178 /* Delete deva from dpm_list and reinsert after devb. */
179 list_move(&deva->power.entry, &devb->power.entry);
180}
181
182/**
183 * device_pm_move_last - Move device to end of the PM core's list of devices.
184 * @dev: Device to move in dpm_list.
185 */
186void device_pm_move_last(struct device *dev)
187{
188 pr_debug("PM: Moving %s:%s to end of list\n",
189 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
190 list_move_tail(&dev->power.entry, &dpm_list);
191}
192
193static ktime_t initcall_debug_start(struct device *dev)
194{
195 ktime_t calltime = ktime_set(0, 0);
196
197 if (pm_print_times_enabled) {
198 pr_info("calling %s+ @ %i, parent: %s\n",
199 dev_name(dev), task_pid_nr(current),
200 dev->parent ? dev_name(dev->parent) : "none");
201 calltime = ktime_get();
202 }
203
204 return calltime;
205}
206
207static void initcall_debug_report(struct device *dev, ktime_t calltime,
208 int error, pm_message_t state, char *info)
209{
210 ktime_t rettime;
211 s64 nsecs;
212
213 rettime = ktime_get();
214 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
215
216 if (pm_print_times_enabled) {
217 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
218 error, (unsigned long long)nsecs >> 10);
219 }
220}
221
222/**
223 * dpm_wait - Wait for a PM operation to complete.
224 * @dev: Device to wait for.
225 * @async: If unset, wait only if the device's power.async_suspend flag is set.
226 */
227static void dpm_wait(struct device *dev, bool async)
228{
229 if (!dev)
230 return;
231
232 if (async || (pm_async_enabled && dev->power.async_suspend))
233 wait_for_completion(&dev->power.completion);
234}
235
236static int dpm_wait_fn(struct device *dev, void *async_ptr)
237{
238 dpm_wait(dev, *((bool *)async_ptr));
239 return 0;
240}
241
242static void dpm_wait_for_children(struct device *dev, bool async)
243{
244 device_for_each_child(dev, &async, dpm_wait_fn);
245}
246
247/**
248 * pm_op - Return the PM operation appropriate for given PM event.
249 * @ops: PM operations to choose from.
250 * @state: PM transition of the system being carried out.
251 */
252static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
253{
254 switch (state.event) {
255#ifdef CONFIG_SUSPEND
256 case PM_EVENT_SUSPEND:
257 return ops->suspend;
258 case PM_EVENT_RESUME:
259 return ops->resume;
260#endif /* CONFIG_SUSPEND */
261#ifdef CONFIG_HIBERNATE_CALLBACKS
262 case PM_EVENT_FREEZE:
263 case PM_EVENT_QUIESCE:
264 return ops->freeze;
265 case PM_EVENT_HIBERNATE:
266 return ops->poweroff;
267 case PM_EVENT_THAW:
268 case PM_EVENT_RECOVER:
269 return ops->thaw;
270 break;
271 case PM_EVENT_RESTORE:
272 return ops->restore;
273#endif /* CONFIG_HIBERNATE_CALLBACKS */
274 }
275
276 return NULL;
277}
278
279/**
280 * pm_late_early_op - Return the PM operation appropriate for given PM event.
281 * @ops: PM operations to choose from.
282 * @state: PM transition of the system being carried out.
283 *
284 * Runtime PM is disabled for @dev while this function is being executed.
285 */
286static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
287 pm_message_t state)
288{
289 switch (state.event) {
290#ifdef CONFIG_SUSPEND
291 case PM_EVENT_SUSPEND:
292 return ops->suspend_late;
293 case PM_EVENT_RESUME:
294 return ops->resume_early;
295#endif /* CONFIG_SUSPEND */
296#ifdef CONFIG_HIBERNATE_CALLBACKS
297 case PM_EVENT_FREEZE:
298 case PM_EVENT_QUIESCE:
299 return ops->freeze_late;
300 case PM_EVENT_HIBERNATE:
301 return ops->poweroff_late;
302 case PM_EVENT_THAW:
303 case PM_EVENT_RECOVER:
304 return ops->thaw_early;
305 case PM_EVENT_RESTORE:
306 return ops->restore_early;
307#endif /* CONFIG_HIBERNATE_CALLBACKS */
308 }
309
310 return NULL;
311}
312
313/**
314 * pm_noirq_op - Return the PM operation appropriate for given PM event.
315 * @ops: PM operations to choose from.
316 * @state: PM transition of the system being carried out.
317 *
318 * The driver of @dev will not receive interrupts while this function is being
319 * executed.
320 */
321static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
322{
323 switch (state.event) {
324#ifdef CONFIG_SUSPEND
325 case PM_EVENT_SUSPEND:
326 return ops->suspend_noirq;
327 case PM_EVENT_RESUME:
328 return ops->resume_noirq;
329#endif /* CONFIG_SUSPEND */
330#ifdef CONFIG_HIBERNATE_CALLBACKS
331 case PM_EVENT_FREEZE:
332 case PM_EVENT_QUIESCE:
333 return ops->freeze_noirq;
334 case PM_EVENT_HIBERNATE:
335 return ops->poweroff_noirq;
336 case PM_EVENT_THAW:
337 case PM_EVENT_RECOVER:
338 return ops->thaw_noirq;
339 case PM_EVENT_RESTORE:
340 return ops->restore_noirq;
341#endif /* CONFIG_HIBERNATE_CALLBACKS */
342 }
343
344 return NULL;
345}
346
347static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
348{
349 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
350 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
351 ", may wakeup" : "");
352}
353
354static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
355 int error)
356{
357 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
358 dev_name(dev), pm_verb(state.event), info, error);
359}
360
361static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
362{
363 ktime_t calltime;
364 u64 usecs64;
365 int usecs;
366
367 calltime = ktime_get();
368 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
369 do_div(usecs64, NSEC_PER_USEC);
370 usecs = usecs64;
371 if (usecs == 0)
372 usecs = 1;
373 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
374 info ?: "", info ? " " : "", pm_verb(state.event),
375 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
376}
377
378static int dpm_run_callback(pm_callback_t cb, struct device *dev,
379 pm_message_t state, char *info)
380{
381 ktime_t calltime;
382 int error;
383
384 if (!cb)
385 return 0;
386
387 calltime = initcall_debug_start(dev);
388
389 pm_dev_dbg(dev, state, info);
390 trace_device_pm_callback_start(dev, info, state.event);
391 error = cb(dev);
392 trace_device_pm_callback_end(dev, error);
393 suspend_report_result(cb, error);
394
395 initcall_debug_report(dev, calltime, error, state, info);
396
397 return error;
398}
399
400#ifdef CONFIG_DPM_WATCHDOG
401struct dpm_watchdog {
402 struct device *dev;
403 struct task_struct *tsk;
404 struct timer_list timer;
405};
406
407#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
408 struct dpm_watchdog wd
409
410/**
411 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
412 * @data: Watchdog object address.
413 *
414 * Called when a driver has timed out suspending or resuming.
415 * There's not much we can do here to recover so panic() to
416 * capture a crash-dump in pstore.
417 */
418static void dpm_watchdog_handler(unsigned long data)
419{
420 struct dpm_watchdog *wd = (void *)data;
421
422 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
423 show_stack(wd->tsk, NULL);
424 panic("%s %s: unrecoverable failure\n",
425 dev_driver_string(wd->dev), dev_name(wd->dev));
426}
427
428/**
429 * dpm_watchdog_set - Enable pm watchdog for given device.
430 * @wd: Watchdog. Must be allocated on the stack.
431 * @dev: Device to handle.
432 */
433static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
434{
435 struct timer_list *timer = &wd->timer;
436
437 wd->dev = dev;
438 wd->tsk = current;
439
440 init_timer_on_stack(timer);
441 /* use same timeout value for both suspend and resume */
442 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
443 timer->function = dpm_watchdog_handler;
444 timer->data = (unsigned long)wd;
445 add_timer(timer);
446}
447
448/**
449 * dpm_watchdog_clear - Disable suspend/resume watchdog.
450 * @wd: Watchdog to disable.
451 */
452static void dpm_watchdog_clear(struct dpm_watchdog *wd)
453{
454 struct timer_list *timer = &wd->timer;
455
456 del_timer_sync(timer);
457 destroy_timer_on_stack(timer);
458}
459#else
460#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
461#define dpm_watchdog_set(x, y)
462#define dpm_watchdog_clear(x)
463#endif
464
465/*------------------------- Resume routines -------------------------*/
466
467/**
468 * device_resume_noirq - Execute an "early resume" callback for given device.
469 * @dev: Device to handle.
470 * @state: PM transition of the system being carried out.
471 * @async: If true, the device is being resumed asynchronously.
472 *
473 * The driver of @dev will not receive interrupts while this function is being
474 * executed.
475 */
476static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
477{
478 pm_callback_t callback = NULL;
479 char *info = NULL;
480 int error = 0;
481
482 TRACE_DEVICE(dev);
483 TRACE_RESUME(0);
484
485 if (dev->power.syscore || dev->power.direct_complete)
486 goto Out;
487
488 if (!dev->power.is_noirq_suspended)
489 goto Out;
490
491 dpm_wait(dev->parent, async);
492
493 if (dev->pm_domain) {
494 info = "noirq power domain ";
495 callback = pm_noirq_op(&dev->pm_domain->ops, state);
496 } else if (dev->type && dev->type->pm) {
497 info = "noirq type ";
498 callback = pm_noirq_op(dev->type->pm, state);
499 } else if (dev->class && dev->class->pm) {
500 info = "noirq class ";
501 callback = pm_noirq_op(dev->class->pm, state);
502 } else if (dev->bus && dev->bus->pm) {
503 info = "noirq bus ";
504 callback = pm_noirq_op(dev->bus->pm, state);
505 }
506
507 if (!callback && dev->driver && dev->driver->pm) {
508 info = "noirq driver ";
509 callback = pm_noirq_op(dev->driver->pm, state);
510 }
511
512 error = dpm_run_callback(callback, dev, state, info);
513 dev->power.is_noirq_suspended = false;
514
515 Out:
516 complete_all(&dev->power.completion);
517 TRACE_RESUME(error);
518 return error;
519}
520
521static bool is_async(struct device *dev)
522{
523 return dev->power.async_suspend && pm_async_enabled
524 && !pm_trace_is_enabled();
525}
526
527static void async_resume_noirq(void *data, async_cookie_t cookie)
528{
529 struct device *dev = (struct device *)data;
530 int error;
531
532 error = device_resume_noirq(dev, pm_transition, true);
533 if (error)
534 pm_dev_err(dev, pm_transition, " async", error);
535
536 put_device(dev);
537}
538
539/**
540 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
541 * @state: PM transition of the system being carried out.
542 *
543 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
544 * enable device drivers to receive interrupts.
545 */
546void dpm_resume_noirq(pm_message_t state)
547{
548 struct device *dev;
549 ktime_t starttime = ktime_get();
550
551 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
552 mutex_lock(&dpm_list_mtx);
553 pm_transition = state;
554
555 /*
556 * Advanced the async threads upfront,
557 * in case the starting of async threads is
558 * delayed by non-async resuming devices.
559 */
560 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
561 reinit_completion(&dev->power.completion);
562 if (is_async(dev)) {
563 get_device(dev);
564 async_schedule(async_resume_noirq, dev);
565 }
566 }
567
568 while (!list_empty(&dpm_noirq_list)) {
569 dev = to_device(dpm_noirq_list.next);
570 get_device(dev);
571 list_move_tail(&dev->power.entry, &dpm_late_early_list);
572 mutex_unlock(&dpm_list_mtx);
573
574 if (!is_async(dev)) {
575 int error;
576
577 error = device_resume_noirq(dev, state, false);
578 if (error) {
579 suspend_stats.failed_resume_noirq++;
580 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
581 dpm_save_failed_dev(dev_name(dev));
582 pm_dev_err(dev, state, " noirq", error);
583 }
584 }
585
586 mutex_lock(&dpm_list_mtx);
587 put_device(dev);
588 }
589 mutex_unlock(&dpm_list_mtx);
590 async_synchronize_full();
591 dpm_show_time(starttime, state, "noirq");
592 resume_device_irqs();
593 device_wakeup_disarm_wake_irqs();
594 cpuidle_resume();
595 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
596}
597
598/**
599 * device_resume_early - Execute an "early resume" callback for given device.
600 * @dev: Device to handle.
601 * @state: PM transition of the system being carried out.
602 * @async: If true, the device is being resumed asynchronously.
603 *
604 * Runtime PM is disabled for @dev while this function is being executed.
605 */
606static int device_resume_early(struct device *dev, pm_message_t state, bool async)
607{
608 pm_callback_t callback = NULL;
609 char *info = NULL;
610 int error = 0;
611
612 TRACE_DEVICE(dev);
613 TRACE_RESUME(0);
614
615 if (dev->power.syscore || dev->power.direct_complete)
616 goto Out;
617
618 if (!dev->power.is_late_suspended)
619 goto Out;
620
621 dpm_wait(dev->parent, async);
622
623 if (dev->pm_domain) {
624 info = "early power domain ";
625 callback = pm_late_early_op(&dev->pm_domain->ops, state);
626 } else if (dev->type && dev->type->pm) {
627 info = "early type ";
628 callback = pm_late_early_op(dev->type->pm, state);
629 } else if (dev->class && dev->class->pm) {
630 info = "early class ";
631 callback = pm_late_early_op(dev->class->pm, state);
632 } else if (dev->bus && dev->bus->pm) {
633 info = "early bus ";
634 callback = pm_late_early_op(dev->bus->pm, state);
635 }
636
637 if (!callback && dev->driver && dev->driver->pm) {
638 info = "early driver ";
639 callback = pm_late_early_op(dev->driver->pm, state);
640 }
641
642 error = dpm_run_callback(callback, dev, state, info);
643 dev->power.is_late_suspended = false;
644
645 Out:
646 TRACE_RESUME(error);
647
648 pm_runtime_enable(dev);
649 complete_all(&dev->power.completion);
650 return error;
651}
652
653static void async_resume_early(void *data, async_cookie_t cookie)
654{
655 struct device *dev = (struct device *)data;
656 int error;
657
658 error = device_resume_early(dev, pm_transition, true);
659 if (error)
660 pm_dev_err(dev, pm_transition, " async", error);
661
662 put_device(dev);
663}
664
665/**
666 * dpm_resume_early - Execute "early resume" callbacks for all devices.
667 * @state: PM transition of the system being carried out.
668 */
669void dpm_resume_early(pm_message_t state)
670{
671 struct device *dev;
672 ktime_t starttime = ktime_get();
673
674 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
675 mutex_lock(&dpm_list_mtx);
676 pm_transition = state;
677
678 /*
679 * Advanced the async threads upfront,
680 * in case the starting of async threads is
681 * delayed by non-async resuming devices.
682 */
683 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
684 reinit_completion(&dev->power.completion);
685 if (is_async(dev)) {
686 get_device(dev);
687 async_schedule(async_resume_early, dev);
688 }
689 }
690
691 while (!list_empty(&dpm_late_early_list)) {
692 dev = to_device(dpm_late_early_list.next);
693 get_device(dev);
694 list_move_tail(&dev->power.entry, &dpm_suspended_list);
695 mutex_unlock(&dpm_list_mtx);
696
697 if (!is_async(dev)) {
698 int error;
699
700 error = device_resume_early(dev, state, false);
701 if (error) {
702 suspend_stats.failed_resume_early++;
703 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
704 dpm_save_failed_dev(dev_name(dev));
705 pm_dev_err(dev, state, " early", error);
706 }
707 }
708 mutex_lock(&dpm_list_mtx);
709 put_device(dev);
710 }
711 mutex_unlock(&dpm_list_mtx);
712 async_synchronize_full();
713 dpm_show_time(starttime, state, "early");
714 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
715}
716
717/**
718 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
719 * @state: PM transition of the system being carried out.
720 */
721void dpm_resume_start(pm_message_t state)
722{
723 dpm_resume_noirq(state);
724 dpm_resume_early(state);
725}
726EXPORT_SYMBOL_GPL(dpm_resume_start);
727
728/**
729 * device_resume - Execute "resume" callbacks for given device.
730 * @dev: Device to handle.
731 * @state: PM transition of the system being carried out.
732 * @async: If true, the device is being resumed asynchronously.
733 */
734static int device_resume(struct device *dev, pm_message_t state, bool async)
735{
736 pm_callback_t callback = NULL;
737 char *info = NULL;
738 int error = 0;
739 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
740
741 TRACE_DEVICE(dev);
742 TRACE_RESUME(0);
743
744 if (dev->power.syscore)
745 goto Complete;
746
747 if (dev->power.direct_complete) {
748 /* Match the pm_runtime_disable() in __device_suspend(). */
749 pm_runtime_enable(dev);
750 goto Complete;
751 }
752
753 dpm_wait(dev->parent, async);
754 dpm_watchdog_set(&wd, dev);
755 device_lock(dev);
756
757 /*
758 * This is a fib. But we'll allow new children to be added below
759 * a resumed device, even if the device hasn't been completed yet.
760 */
761 dev->power.is_prepared = false;
762
763 if (!dev->power.is_suspended)
764 goto Unlock;
765
766 if (dev->pm_domain) {
767 info = "power domain ";
768 callback = pm_op(&dev->pm_domain->ops, state);
769 goto Driver;
770 }
771
772 if (dev->type && dev->type->pm) {
773 info = "type ";
774 callback = pm_op(dev->type->pm, state);
775 goto Driver;
776 }
777
778 if (dev->class) {
779 if (dev->class->pm) {
780 info = "class ";
781 callback = pm_op(dev->class->pm, state);
782 goto Driver;
783 } else if (dev->class->resume) {
784 info = "legacy class ";
785 callback = dev->class->resume;
786 goto End;
787 }
788 }
789
790 if (dev->bus) {
791 if (dev->bus->pm) {
792 info = "bus ";
793 callback = pm_op(dev->bus->pm, state);
794 } else if (dev->bus->resume) {
795 info = "legacy bus ";
796 callback = dev->bus->resume;
797 goto End;
798 }
799 }
800
801 Driver:
802 if (!callback && dev->driver && dev->driver->pm) {
803 info = "driver ";
804 callback = pm_op(dev->driver->pm, state);
805 }
806
807 End:
808 error = dpm_run_callback(callback, dev, state, info);
809 dev->power.is_suspended = false;
810
811 Unlock:
812 device_unlock(dev);
813 dpm_watchdog_clear(&wd);
814
815 Complete:
816 complete_all(&dev->power.completion);
817
818 TRACE_RESUME(error);
819
820 return error;
821}
822
823static void async_resume(void *data, async_cookie_t cookie)
824{
825 struct device *dev = (struct device *)data;
826 int error;
827
828 error = device_resume(dev, pm_transition, true);
829 if (error)
830 pm_dev_err(dev, pm_transition, " async", error);
831 put_device(dev);
832}
833
834/**
835 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
836 * @state: PM transition of the system being carried out.
837 *
838 * Execute the appropriate "resume" callback for all devices whose status
839 * indicates that they are suspended.
840 */
841void dpm_resume(pm_message_t state)
842{
843 struct device *dev;
844 ktime_t starttime = ktime_get();
845
846 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
847 might_sleep();
848
849 mutex_lock(&dpm_list_mtx);
850 pm_transition = state;
851 async_error = 0;
852
853 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
854 reinit_completion(&dev->power.completion);
855 if (is_async(dev)) {
856 get_device(dev);
857 async_schedule(async_resume, dev);
858 }
859 }
860
861 while (!list_empty(&dpm_suspended_list)) {
862 dev = to_device(dpm_suspended_list.next);
863 get_device(dev);
864 if (!is_async(dev)) {
865 int error;
866
867 mutex_unlock(&dpm_list_mtx);
868
869 error = device_resume(dev, state, false);
870 if (error) {
871 suspend_stats.failed_resume++;
872 dpm_save_failed_step(SUSPEND_RESUME);
873 dpm_save_failed_dev(dev_name(dev));
874 pm_dev_err(dev, state, "", error);
875 }
876
877 mutex_lock(&dpm_list_mtx);
878 }
879 if (!list_empty(&dev->power.entry))
880 list_move_tail(&dev->power.entry, &dpm_prepared_list);
881 put_device(dev);
882 }
883 mutex_unlock(&dpm_list_mtx);
884 async_synchronize_full();
885 dpm_show_time(starttime, state, NULL);
886
887 cpufreq_resume();
888 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
889}
890
891/**
892 * device_complete - Complete a PM transition for given device.
893 * @dev: Device to handle.
894 * @state: PM transition of the system being carried out.
895 */
896static void device_complete(struct device *dev, pm_message_t state)
897{
898 void (*callback)(struct device *) = NULL;
899 char *info = NULL;
900
901 if (dev->power.syscore)
902 return;
903
904 device_lock(dev);
905
906 if (dev->pm_domain) {
907 info = "completing power domain ";
908 callback = dev->pm_domain->ops.complete;
909 } else if (dev->type && dev->type->pm) {
910 info = "completing type ";
911 callback = dev->type->pm->complete;
912 } else if (dev->class && dev->class->pm) {
913 info = "completing class ";
914 callback = dev->class->pm->complete;
915 } else if (dev->bus && dev->bus->pm) {
916 info = "completing bus ";
917 callback = dev->bus->pm->complete;
918 }
919
920 if (!callback && dev->driver && dev->driver->pm) {
921 info = "completing driver ";
922 callback = dev->driver->pm->complete;
923 }
924
925 if (callback) {
926 pm_dev_dbg(dev, state, info);
927 callback(dev);
928 }
929
930 device_unlock(dev);
931
932 pm_runtime_put(dev);
933}
934
935/**
936 * dpm_complete - Complete a PM transition for all non-sysdev devices.
937 * @state: PM transition of the system being carried out.
938 *
939 * Execute the ->complete() callbacks for all devices whose PM status is not
940 * DPM_ON (this allows new devices to be registered).
941 */
942void dpm_complete(pm_message_t state)
943{
944 struct list_head list;
945
946 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
947 might_sleep();
948
949 INIT_LIST_HEAD(&list);
950 mutex_lock(&dpm_list_mtx);
951 while (!list_empty(&dpm_prepared_list)) {
952 struct device *dev = to_device(dpm_prepared_list.prev);
953
954 get_device(dev);
955 dev->power.is_prepared = false;
956 list_move(&dev->power.entry, &list);
957 mutex_unlock(&dpm_list_mtx);
958
959 trace_device_pm_callback_start(dev, "", state.event);
960 device_complete(dev, state);
961 trace_device_pm_callback_end(dev, 0);
962
963 mutex_lock(&dpm_list_mtx);
964 put_device(dev);
965 }
966 list_splice(&list, &dpm_list);
967 mutex_unlock(&dpm_list_mtx);
968
969 /* Allow device probing and trigger re-probing of deferred devices */
970 device_unblock_probing();
971 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
972}
973
974/**
975 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
976 * @state: PM transition of the system being carried out.
977 *
978 * Execute "resume" callbacks for all devices and complete the PM transition of
979 * the system.
980 */
981void dpm_resume_end(pm_message_t state)
982{
983 dpm_resume(state);
984 dpm_complete(state);
985}
986EXPORT_SYMBOL_GPL(dpm_resume_end);
987
988
989/*------------------------- Suspend routines -------------------------*/
990
991/**
992 * resume_event - Return a "resume" message for given "suspend" sleep state.
993 * @sleep_state: PM message representing a sleep state.
994 *
995 * Return a PM message representing the resume event corresponding to given
996 * sleep state.
997 */
998static pm_message_t resume_event(pm_message_t sleep_state)
999{
1000 switch (sleep_state.event) {
1001 case PM_EVENT_SUSPEND:
1002 return PMSG_RESUME;
1003 case PM_EVENT_FREEZE:
1004 case PM_EVENT_QUIESCE:
1005 return PMSG_RECOVER;
1006 case PM_EVENT_HIBERNATE:
1007 return PMSG_RESTORE;
1008 }
1009 return PMSG_ON;
1010}
1011
1012/**
1013 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1014 * @dev: Device to handle.
1015 * @state: PM transition of the system being carried out.
1016 * @async: If true, the device is being suspended asynchronously.
1017 *
1018 * The driver of @dev will not receive interrupts while this function is being
1019 * executed.
1020 */
1021static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1022{
1023 pm_callback_t callback = NULL;
1024 char *info = NULL;
1025 int error = 0;
1026
1027 TRACE_DEVICE(dev);
1028 TRACE_SUSPEND(0);
1029
1030 if (async_error)
1031 goto Complete;
1032
1033 if (pm_wakeup_pending()) {
1034 async_error = -EBUSY;
1035 goto Complete;
1036 }
1037
1038 if (dev->power.syscore || dev->power.direct_complete)
1039 goto Complete;
1040
1041 dpm_wait_for_children(dev, async);
1042
1043 if (dev->pm_domain) {
1044 info = "noirq power domain ";
1045 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1046 } else if (dev->type && dev->type->pm) {
1047 info = "noirq type ";
1048 callback = pm_noirq_op(dev->type->pm, state);
1049 } else if (dev->class && dev->class->pm) {
1050 info = "noirq class ";
1051 callback = pm_noirq_op(dev->class->pm, state);
1052 } else if (dev->bus && dev->bus->pm) {
1053 info = "noirq bus ";
1054 callback = pm_noirq_op(dev->bus->pm, state);
1055 }
1056
1057 if (!callback && dev->driver && dev->driver->pm) {
1058 info = "noirq driver ";
1059 callback = pm_noirq_op(dev->driver->pm, state);
1060 }
1061
1062 error = dpm_run_callback(callback, dev, state, info);
1063 if (!error)
1064 dev->power.is_noirq_suspended = true;
1065 else
1066 async_error = error;
1067
1068Complete:
1069 complete_all(&dev->power.completion);
1070 TRACE_SUSPEND(error);
1071 return error;
1072}
1073
1074static void async_suspend_noirq(void *data, async_cookie_t cookie)
1075{
1076 struct device *dev = (struct device *)data;
1077 int error;
1078
1079 error = __device_suspend_noirq(dev, pm_transition, true);
1080 if (error) {
1081 dpm_save_failed_dev(dev_name(dev));
1082 pm_dev_err(dev, pm_transition, " async", error);
1083 }
1084
1085 put_device(dev);
1086}
1087
1088static int device_suspend_noirq(struct device *dev)
1089{
1090 reinit_completion(&dev->power.completion);
1091
1092 if (is_async(dev)) {
1093 get_device(dev);
1094 async_schedule(async_suspend_noirq, dev);
1095 return 0;
1096 }
1097 return __device_suspend_noirq(dev, pm_transition, false);
1098}
1099
1100/**
1101 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1102 * @state: PM transition of the system being carried out.
1103 *
1104 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1105 * handlers for all non-sysdev devices.
1106 */
1107int dpm_suspend_noirq(pm_message_t state)
1108{
1109 ktime_t starttime = ktime_get();
1110 int error = 0;
1111
1112 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1113 cpuidle_pause();
1114 device_wakeup_arm_wake_irqs();
1115 suspend_device_irqs();
1116 mutex_lock(&dpm_list_mtx);
1117 pm_transition = state;
1118 async_error = 0;
1119
1120 while (!list_empty(&dpm_late_early_list)) {
1121 struct device *dev = to_device(dpm_late_early_list.prev);
1122
1123 get_device(dev);
1124 mutex_unlock(&dpm_list_mtx);
1125
1126 error = device_suspend_noirq(dev);
1127
1128 mutex_lock(&dpm_list_mtx);
1129 if (error) {
1130 pm_dev_err(dev, state, " noirq", error);
1131 dpm_save_failed_dev(dev_name(dev));
1132 put_device(dev);
1133 break;
1134 }
1135 if (!list_empty(&dev->power.entry))
1136 list_move(&dev->power.entry, &dpm_noirq_list);
1137 put_device(dev);
1138
1139 if (async_error)
1140 break;
1141 }
1142 mutex_unlock(&dpm_list_mtx);
1143 async_synchronize_full();
1144 if (!error)
1145 error = async_error;
1146
1147 if (error) {
1148 suspend_stats.failed_suspend_noirq++;
1149 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1150 dpm_resume_noirq(resume_event(state));
1151 } else {
1152 dpm_show_time(starttime, state, "noirq");
1153 }
1154 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1155 return error;
1156}
1157
1158/**
1159 * device_suspend_late - Execute a "late suspend" callback for given device.
1160 * @dev: Device to handle.
1161 * @state: PM transition of the system being carried out.
1162 * @async: If true, the device is being suspended asynchronously.
1163 *
1164 * Runtime PM is disabled for @dev while this function is being executed.
1165 */
1166static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1167{
1168 pm_callback_t callback = NULL;
1169 char *info = NULL;
1170 int error = 0;
1171
1172 TRACE_DEVICE(dev);
1173 TRACE_SUSPEND(0);
1174
1175 __pm_runtime_disable(dev, false);
1176
1177 if (async_error)
1178 goto Complete;
1179
1180 if (pm_wakeup_pending()) {
1181 async_error = -EBUSY;
1182 goto Complete;
1183 }
1184
1185 if (dev->power.syscore || dev->power.direct_complete)
1186 goto Complete;
1187
1188 dpm_wait_for_children(dev, async);
1189
1190 if (dev->pm_domain) {
1191 info = "late power domain ";
1192 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1193 } else if (dev->type && dev->type->pm) {
1194 info = "late type ";
1195 callback = pm_late_early_op(dev->type->pm, state);
1196 } else if (dev->class && dev->class->pm) {
1197 info = "late class ";
1198 callback = pm_late_early_op(dev->class->pm, state);
1199 } else if (dev->bus && dev->bus->pm) {
1200 info = "late bus ";
1201 callback = pm_late_early_op(dev->bus->pm, state);
1202 }
1203
1204 if (!callback && dev->driver && dev->driver->pm) {
1205 info = "late driver ";
1206 callback = pm_late_early_op(dev->driver->pm, state);
1207 }
1208
1209 error = dpm_run_callback(callback, dev, state, info);
1210 if (!error)
1211 dev->power.is_late_suspended = true;
1212 else
1213 async_error = error;
1214
1215Complete:
1216 TRACE_SUSPEND(error);
1217 complete_all(&dev->power.completion);
1218 return error;
1219}
1220
1221static void async_suspend_late(void *data, async_cookie_t cookie)
1222{
1223 struct device *dev = (struct device *)data;
1224 int error;
1225
1226 error = __device_suspend_late(dev, pm_transition, true);
1227 if (error) {
1228 dpm_save_failed_dev(dev_name(dev));
1229 pm_dev_err(dev, pm_transition, " async", error);
1230 }
1231 put_device(dev);
1232}
1233
1234static int device_suspend_late(struct device *dev)
1235{
1236 reinit_completion(&dev->power.completion);
1237
1238 if (is_async(dev)) {
1239 get_device(dev);
1240 async_schedule(async_suspend_late, dev);
1241 return 0;
1242 }
1243
1244 return __device_suspend_late(dev, pm_transition, false);
1245}
1246
1247/**
1248 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1249 * @state: PM transition of the system being carried out.
1250 */
1251int dpm_suspend_late(pm_message_t state)
1252{
1253 ktime_t starttime = ktime_get();
1254 int error = 0;
1255
1256 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1257 mutex_lock(&dpm_list_mtx);
1258 pm_transition = state;
1259 async_error = 0;
1260
1261 while (!list_empty(&dpm_suspended_list)) {
1262 struct device *dev = to_device(dpm_suspended_list.prev);
1263
1264 get_device(dev);
1265 mutex_unlock(&dpm_list_mtx);
1266
1267 error = device_suspend_late(dev);
1268
1269 mutex_lock(&dpm_list_mtx);
1270 if (error) {
1271 pm_dev_err(dev, state, " late", error);
1272 dpm_save_failed_dev(dev_name(dev));
1273 put_device(dev);
1274 break;
1275 }
1276 if (!list_empty(&dev->power.entry))
1277 list_move(&dev->power.entry, &dpm_late_early_list);
1278 put_device(dev);
1279
1280 if (async_error)
1281 break;
1282 }
1283 mutex_unlock(&dpm_list_mtx);
1284 async_synchronize_full();
1285 if (!error)
1286 error = async_error;
1287 if (error) {
1288 suspend_stats.failed_suspend_late++;
1289 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1290 dpm_resume_early(resume_event(state));
1291 } else {
1292 dpm_show_time(starttime, state, "late");
1293 }
1294 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1295 return error;
1296}
1297
1298/**
1299 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1300 * @state: PM transition of the system being carried out.
1301 */
1302int dpm_suspend_end(pm_message_t state)
1303{
1304 int error = dpm_suspend_late(state);
1305 if (error)
1306 return error;
1307
1308 error = dpm_suspend_noirq(state);
1309 if (error) {
1310 dpm_resume_early(resume_event(state));
1311 return error;
1312 }
1313
1314 return 0;
1315}
1316EXPORT_SYMBOL_GPL(dpm_suspend_end);
1317
1318/**
1319 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1320 * @dev: Device to suspend.
1321 * @state: PM transition of the system being carried out.
1322 * @cb: Suspend callback to execute.
1323 * @info: string description of caller.
1324 */
1325static int legacy_suspend(struct device *dev, pm_message_t state,
1326 int (*cb)(struct device *dev, pm_message_t state),
1327 char *info)
1328{
1329 int error;
1330 ktime_t calltime;
1331
1332 calltime = initcall_debug_start(dev);
1333
1334 trace_device_pm_callback_start(dev, info, state.event);
1335 error = cb(dev, state);
1336 trace_device_pm_callback_end(dev, error);
1337 suspend_report_result(cb, error);
1338
1339 initcall_debug_report(dev, calltime, error, state, info);
1340
1341 return error;
1342}
1343
1344/**
1345 * device_suspend - Execute "suspend" callbacks for given device.
1346 * @dev: Device to handle.
1347 * @state: PM transition of the system being carried out.
1348 * @async: If true, the device is being suspended asynchronously.
1349 */
1350static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1351{
1352 pm_callback_t callback = NULL;
1353 char *info = NULL;
1354 int error = 0;
1355 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1356
1357 TRACE_DEVICE(dev);
1358 TRACE_SUSPEND(0);
1359
1360 dpm_wait_for_children(dev, async);
1361
1362 if (async_error)
1363 goto Complete;
1364
1365 /*
1366 * If a device configured to wake up the system from sleep states
1367 * has been suspended at run time and there's a resume request pending
1368 * for it, this is equivalent to the device signaling wakeup, so the
1369 * system suspend operation should be aborted.
1370 */
1371 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1372 pm_wakeup_event(dev, 0);
1373
1374 if (pm_wakeup_pending()) {
1375 async_error = -EBUSY;
1376 goto Complete;
1377 }
1378
1379 if (dev->power.syscore)
1380 goto Complete;
1381
1382 if (dev->power.direct_complete) {
1383 if (pm_runtime_status_suspended(dev)) {
1384 pm_runtime_disable(dev);
1385 if (pm_runtime_status_suspended(dev))
1386 goto Complete;
1387
1388 pm_runtime_enable(dev);
1389 }
1390 dev->power.direct_complete = false;
1391 }
1392
1393 dpm_watchdog_set(&wd, dev);
1394 device_lock(dev);
1395
1396 if (dev->pm_domain) {
1397 info = "power domain ";
1398 callback = pm_op(&dev->pm_domain->ops, state);
1399 goto Run;
1400 }
1401
1402 if (dev->type && dev->type->pm) {
1403 info = "type ";
1404 callback = pm_op(dev->type->pm, state);
1405 goto Run;
1406 }
1407
1408 if (dev->class) {
1409 if (dev->class->pm) {
1410 info = "class ";
1411 callback = pm_op(dev->class->pm, state);
1412 goto Run;
1413 } else if (dev->class->suspend) {
1414 pm_dev_dbg(dev, state, "legacy class ");
1415 error = legacy_suspend(dev, state, dev->class->suspend,
1416 "legacy class ");
1417 goto End;
1418 }
1419 }
1420
1421 if (dev->bus) {
1422 if (dev->bus->pm) {
1423 info = "bus ";
1424 callback = pm_op(dev->bus->pm, state);
1425 } else if (dev->bus->suspend) {
1426 pm_dev_dbg(dev, state, "legacy bus ");
1427 error = legacy_suspend(dev, state, dev->bus->suspend,
1428 "legacy bus ");
1429 goto End;
1430 }
1431 }
1432
1433 Run:
1434 if (!callback && dev->driver && dev->driver->pm) {
1435 info = "driver ";
1436 callback = pm_op(dev->driver->pm, state);
1437 }
1438
1439 error = dpm_run_callback(callback, dev, state, info);
1440
1441 End:
1442 if (!error) {
1443 struct device *parent = dev->parent;
1444
1445 dev->power.is_suspended = true;
1446 if (parent) {
1447 spin_lock_irq(&parent->power.lock);
1448
1449 dev->parent->power.direct_complete = false;
1450 if (dev->power.wakeup_path
1451 && !dev->parent->power.ignore_children)
1452 dev->parent->power.wakeup_path = true;
1453
1454 spin_unlock_irq(&parent->power.lock);
1455 }
1456 }
1457
1458 device_unlock(dev);
1459 dpm_watchdog_clear(&wd);
1460
1461 Complete:
1462 complete_all(&dev->power.completion);
1463 if (error)
1464 async_error = error;
1465
1466 TRACE_SUSPEND(error);
1467 return error;
1468}
1469
1470static void async_suspend(void *data, async_cookie_t cookie)
1471{
1472 struct device *dev = (struct device *)data;
1473 int error;
1474
1475 error = __device_suspend(dev, pm_transition, true);
1476 if (error) {
1477 dpm_save_failed_dev(dev_name(dev));
1478 pm_dev_err(dev, pm_transition, " async", error);
1479 }
1480
1481 put_device(dev);
1482}
1483
1484static int device_suspend(struct device *dev)
1485{
1486 reinit_completion(&dev->power.completion);
1487
1488 if (is_async(dev)) {
1489 get_device(dev);
1490 async_schedule(async_suspend, dev);
1491 return 0;
1492 }
1493
1494 return __device_suspend(dev, pm_transition, false);
1495}
1496
1497/**
1498 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1499 * @state: PM transition of the system being carried out.
1500 */
1501int dpm_suspend(pm_message_t state)
1502{
1503 ktime_t starttime = ktime_get();
1504 int error = 0;
1505
1506 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1507 might_sleep();
1508
1509 cpufreq_suspend();
1510
1511 mutex_lock(&dpm_list_mtx);
1512 pm_transition = state;
1513 async_error = 0;
1514 while (!list_empty(&dpm_prepared_list)) {
1515 struct device *dev = to_device(dpm_prepared_list.prev);
1516
1517 get_device(dev);
1518 mutex_unlock(&dpm_list_mtx);
1519
1520 error = device_suspend(dev);
1521
1522 mutex_lock(&dpm_list_mtx);
1523 if (error) {
1524 pm_dev_err(dev, state, "", error);
1525 dpm_save_failed_dev(dev_name(dev));
1526 put_device(dev);
1527 break;
1528 }
1529 if (!list_empty(&dev->power.entry))
1530 list_move(&dev->power.entry, &dpm_suspended_list);
1531 put_device(dev);
1532 if (async_error)
1533 break;
1534 }
1535 mutex_unlock(&dpm_list_mtx);
1536 async_synchronize_full();
1537 if (!error)
1538 error = async_error;
1539 if (error) {
1540 suspend_stats.failed_suspend++;
1541 dpm_save_failed_step(SUSPEND_SUSPEND);
1542 } else
1543 dpm_show_time(starttime, state, NULL);
1544 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1545 return error;
1546}
1547
1548/**
1549 * device_prepare - Prepare a device for system power transition.
1550 * @dev: Device to handle.
1551 * @state: PM transition of the system being carried out.
1552 *
1553 * Execute the ->prepare() callback(s) for given device. No new children of the
1554 * device may be registered after this function has returned.
1555 */
1556static int device_prepare(struct device *dev, pm_message_t state)
1557{
1558 int (*callback)(struct device *) = NULL;
1559 char *info = NULL;
1560 int ret = 0;
1561
1562 if (dev->power.syscore)
1563 return 0;
1564
1565 /*
1566 * If a device's parent goes into runtime suspend at the wrong time,
1567 * it won't be possible to resume the device. To prevent this we
1568 * block runtime suspend here, during the prepare phase, and allow
1569 * it again during the complete phase.
1570 */
1571 pm_runtime_get_noresume(dev);
1572
1573 device_lock(dev);
1574
1575 dev->power.wakeup_path = device_may_wakeup(dev);
1576
1577 if (dev->power.no_pm_callbacks) {
1578 ret = 1; /* Let device go direct_complete */
1579 goto unlock;
1580 }
1581
1582 if (dev->pm_domain) {
1583 info = "preparing power domain ";
1584 callback = dev->pm_domain->ops.prepare;
1585 } else if (dev->type && dev->type->pm) {
1586 info = "preparing type ";
1587 callback = dev->type->pm->prepare;
1588 } else if (dev->class && dev->class->pm) {
1589 info = "preparing class ";
1590 callback = dev->class->pm->prepare;
1591 } else if (dev->bus && dev->bus->pm) {
1592 info = "preparing bus ";
1593 callback = dev->bus->pm->prepare;
1594 }
1595
1596 if (!callback && dev->driver && dev->driver->pm) {
1597 info = "preparing driver ";
1598 callback = dev->driver->pm->prepare;
1599 }
1600
1601 if (callback)
1602 ret = callback(dev);
1603
1604unlock:
1605 device_unlock(dev);
1606
1607 if (ret < 0) {
1608 suspend_report_result(callback, ret);
1609 pm_runtime_put(dev);
1610 return ret;
1611 }
1612 /*
1613 * A positive return value from ->prepare() means "this device appears
1614 * to be runtime-suspended and its state is fine, so if it really is
1615 * runtime-suspended, you can leave it in that state provided that you
1616 * will do the same thing with all of its descendants". This only
1617 * applies to suspend transitions, however.
1618 */
1619 spin_lock_irq(&dev->power.lock);
1620 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1621 spin_unlock_irq(&dev->power.lock);
1622 return 0;
1623}
1624
1625/**
1626 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1627 * @state: PM transition of the system being carried out.
1628 *
1629 * Execute the ->prepare() callback(s) for all devices.
1630 */
1631int dpm_prepare(pm_message_t state)
1632{
1633 int error = 0;
1634
1635 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1636 might_sleep();
1637
1638 /*
1639 * Give a chance for the known devices to complete their probes, before
1640 * disable probing of devices. This sync point is important at least
1641 * at boot time + hibernation restore.
1642 */
1643 wait_for_device_probe();
1644 /*
1645 * It is unsafe if probing of devices will happen during suspend or
1646 * hibernation and system behavior will be unpredictable in this case.
1647 * So, let's prohibit device's probing here and defer their probes
1648 * instead. The normal behavior will be restored in dpm_complete().
1649 */
1650 device_block_probing();
1651
1652 mutex_lock(&dpm_list_mtx);
1653 while (!list_empty(&dpm_list)) {
1654 struct device *dev = to_device(dpm_list.next);
1655
1656 get_device(dev);
1657 mutex_unlock(&dpm_list_mtx);
1658
1659 trace_device_pm_callback_start(dev, "", state.event);
1660 error = device_prepare(dev, state);
1661 trace_device_pm_callback_end(dev, error);
1662
1663 mutex_lock(&dpm_list_mtx);
1664 if (error) {
1665 if (error == -EAGAIN) {
1666 put_device(dev);
1667 error = 0;
1668 continue;
1669 }
1670 printk(KERN_INFO "PM: Device %s not prepared "
1671 "for power transition: code %d\n",
1672 dev_name(dev), error);
1673 put_device(dev);
1674 break;
1675 }
1676 dev->power.is_prepared = true;
1677 if (!list_empty(&dev->power.entry))
1678 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1679 put_device(dev);
1680 }
1681 mutex_unlock(&dpm_list_mtx);
1682 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1683 return error;
1684}
1685
1686/**
1687 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1688 * @state: PM transition of the system being carried out.
1689 *
1690 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1691 * callbacks for them.
1692 */
1693int dpm_suspend_start(pm_message_t state)
1694{
1695 int error;
1696
1697 error = dpm_prepare(state);
1698 if (error) {
1699 suspend_stats.failed_prepare++;
1700 dpm_save_failed_step(SUSPEND_PREPARE);
1701 } else
1702 error = dpm_suspend(state);
1703 return error;
1704}
1705EXPORT_SYMBOL_GPL(dpm_suspend_start);
1706
1707void __suspend_report_result(const char *function, void *fn, int ret)
1708{
1709 if (ret)
1710 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1711}
1712EXPORT_SYMBOL_GPL(__suspend_report_result);
1713
1714/**
1715 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1716 * @dev: Device to wait for.
1717 * @subordinate: Device that needs to wait for @dev.
1718 */
1719int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1720{
1721 dpm_wait(dev, subordinate->power.async_suspend);
1722 return async_error;
1723}
1724EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1725
1726/**
1727 * dpm_for_each_dev - device iterator.
1728 * @data: data for the callback.
1729 * @fn: function to be called for each device.
1730 *
1731 * Iterate over devices in dpm_list, and call @fn for each device,
1732 * passing it @data.
1733 */
1734void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1735{
1736 struct device *dev;
1737
1738 if (!fn)
1739 return;
1740
1741 device_pm_lock();
1742 list_for_each_entry(dev, &dpm_list, power.entry)
1743 fn(dev, data);
1744 device_pm_unlock();
1745}
1746EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1747
1748static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1749{
1750 if (!ops)
1751 return true;
1752
1753 return !ops->prepare &&
1754 !ops->suspend &&
1755 !ops->suspend_late &&
1756 !ops->suspend_noirq &&
1757 !ops->resume_noirq &&
1758 !ops->resume_early &&
1759 !ops->resume &&
1760 !ops->complete;
1761}
1762
1763void device_pm_check_callbacks(struct device *dev)
1764{
1765 spin_lock_irq(&dev->power.lock);
1766 dev->power.no_pm_callbacks =
1767 (!dev->bus || pm_ops_is_empty(dev->bus->pm)) &&
1768 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
1769 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
1770 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
1771 (!dev->driver || pm_ops_is_empty(dev->driver->pm));
1772 spin_unlock_irq(&dev->power.lock);
1773}
1/*
2 * drivers/base/power/main.c - Where the driver meets power management.
3 *
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
6 *
7 * This file is released under the GPLv2
8 *
9 *
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
14 *
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
18 */
19
20#include <linux/device.h>
21#include <linux/export.h>
22#include <linux/mutex.h>
23#include <linux/pm.h>
24#include <linux/pm_runtime.h>
25#include <linux/pm-trace.h>
26#include <linux/pm_wakeirq.h>
27#include <linux/interrupt.h>
28#include <linux/sched.h>
29#include <linux/sched/debug.h>
30#include <linux/async.h>
31#include <linux/suspend.h>
32#include <trace/events/power.h>
33#include <linux/cpufreq.h>
34#include <linux/cpuidle.h>
35#include <linux/timer.h>
36
37#include "../base.h"
38#include "power.h"
39
40typedef int (*pm_callback_t)(struct device *);
41
42/*
43 * The entries in the dpm_list list are in a depth first order, simply
44 * because children are guaranteed to be discovered after parents, and
45 * are inserted at the back of the list on discovery.
46 *
47 * Since device_pm_add() may be called with a device lock held,
48 * we must never try to acquire a device lock while holding
49 * dpm_list_mutex.
50 */
51
52LIST_HEAD(dpm_list);
53static LIST_HEAD(dpm_prepared_list);
54static LIST_HEAD(dpm_suspended_list);
55static LIST_HEAD(dpm_late_early_list);
56static LIST_HEAD(dpm_noirq_list);
57
58struct suspend_stats suspend_stats;
59static DEFINE_MUTEX(dpm_list_mtx);
60static pm_message_t pm_transition;
61
62static int async_error;
63
64static const char *pm_verb(int event)
65{
66 switch (event) {
67 case PM_EVENT_SUSPEND:
68 return "suspend";
69 case PM_EVENT_RESUME:
70 return "resume";
71 case PM_EVENT_FREEZE:
72 return "freeze";
73 case PM_EVENT_QUIESCE:
74 return "quiesce";
75 case PM_EVENT_HIBERNATE:
76 return "hibernate";
77 case PM_EVENT_THAW:
78 return "thaw";
79 case PM_EVENT_RESTORE:
80 return "restore";
81 case PM_EVENT_RECOVER:
82 return "recover";
83 default:
84 return "(unknown PM event)";
85 }
86}
87
88/**
89 * device_pm_sleep_init - Initialize system suspend-related device fields.
90 * @dev: Device object being initialized.
91 */
92void device_pm_sleep_init(struct device *dev)
93{
94 dev->power.is_prepared = false;
95 dev->power.is_suspended = false;
96 dev->power.is_noirq_suspended = false;
97 dev->power.is_late_suspended = false;
98 init_completion(&dev->power.completion);
99 complete_all(&dev->power.completion);
100 dev->power.wakeup = NULL;
101 INIT_LIST_HEAD(&dev->power.entry);
102}
103
104/**
105 * device_pm_lock - Lock the list of active devices used by the PM core.
106 */
107void device_pm_lock(void)
108{
109 mutex_lock(&dpm_list_mtx);
110}
111
112/**
113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
114 */
115void device_pm_unlock(void)
116{
117 mutex_unlock(&dpm_list_mtx);
118}
119
120/**
121 * device_pm_add - Add a device to the PM core's list of active devices.
122 * @dev: Device to add to the list.
123 */
124void device_pm_add(struct device *dev)
125{
126 pr_debug("PM: Adding info for %s:%s\n",
127 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
128 device_pm_check_callbacks(dev);
129 mutex_lock(&dpm_list_mtx);
130 if (dev->parent && dev->parent->power.is_prepared)
131 dev_warn(dev, "parent %s should not be sleeping\n",
132 dev_name(dev->parent));
133 list_add_tail(&dev->power.entry, &dpm_list);
134 dev->power.in_dpm_list = true;
135 mutex_unlock(&dpm_list_mtx);
136}
137
138/**
139 * device_pm_remove - Remove a device from the PM core's list of active devices.
140 * @dev: Device to be removed from the list.
141 */
142void device_pm_remove(struct device *dev)
143{
144 pr_debug("PM: Removing info for %s:%s\n",
145 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
146 complete_all(&dev->power.completion);
147 mutex_lock(&dpm_list_mtx);
148 list_del_init(&dev->power.entry);
149 dev->power.in_dpm_list = false;
150 mutex_unlock(&dpm_list_mtx);
151 device_wakeup_disable(dev);
152 pm_runtime_remove(dev);
153 device_pm_check_callbacks(dev);
154}
155
156/**
157 * device_pm_move_before - Move device in the PM core's list of active devices.
158 * @deva: Device to move in dpm_list.
159 * @devb: Device @deva should come before.
160 */
161void device_pm_move_before(struct device *deva, struct device *devb)
162{
163 pr_debug("PM: Moving %s:%s before %s:%s\n",
164 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
165 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
166 /* Delete deva from dpm_list and reinsert before devb. */
167 list_move_tail(&deva->power.entry, &devb->power.entry);
168}
169
170/**
171 * device_pm_move_after - Move device in the PM core's list of active devices.
172 * @deva: Device to move in dpm_list.
173 * @devb: Device @deva should come after.
174 */
175void device_pm_move_after(struct device *deva, struct device *devb)
176{
177 pr_debug("PM: Moving %s:%s after %s:%s\n",
178 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
179 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
180 /* Delete deva from dpm_list and reinsert after devb. */
181 list_move(&deva->power.entry, &devb->power.entry);
182}
183
184/**
185 * device_pm_move_last - Move device to end of the PM core's list of devices.
186 * @dev: Device to move in dpm_list.
187 */
188void device_pm_move_last(struct device *dev)
189{
190 pr_debug("PM: Moving %s:%s to end of list\n",
191 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
192 list_move_tail(&dev->power.entry, &dpm_list);
193}
194
195static ktime_t initcall_debug_start(struct device *dev)
196{
197 ktime_t calltime = 0;
198
199 if (pm_print_times_enabled) {
200 pr_info("calling %s+ @ %i, parent: %s\n",
201 dev_name(dev), task_pid_nr(current),
202 dev->parent ? dev_name(dev->parent) : "none");
203 calltime = ktime_get();
204 }
205
206 return calltime;
207}
208
209static void initcall_debug_report(struct device *dev, ktime_t calltime,
210 int error, pm_message_t state,
211 const char *info)
212{
213 ktime_t rettime;
214 s64 nsecs;
215
216 rettime = ktime_get();
217 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
218
219 if (pm_print_times_enabled) {
220 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
221 error, (unsigned long long)nsecs >> 10);
222 }
223}
224
225/**
226 * dpm_wait - Wait for a PM operation to complete.
227 * @dev: Device to wait for.
228 * @async: If unset, wait only if the device's power.async_suspend flag is set.
229 */
230static void dpm_wait(struct device *dev, bool async)
231{
232 if (!dev)
233 return;
234
235 if (async || (pm_async_enabled && dev->power.async_suspend))
236 wait_for_completion(&dev->power.completion);
237}
238
239static int dpm_wait_fn(struct device *dev, void *async_ptr)
240{
241 dpm_wait(dev, *((bool *)async_ptr));
242 return 0;
243}
244
245static void dpm_wait_for_children(struct device *dev, bool async)
246{
247 device_for_each_child(dev, &async, dpm_wait_fn);
248}
249
250static void dpm_wait_for_suppliers(struct device *dev, bool async)
251{
252 struct device_link *link;
253 int idx;
254
255 idx = device_links_read_lock();
256
257 /*
258 * If the supplier goes away right after we've checked the link to it,
259 * we'll wait for its completion to change the state, but that's fine,
260 * because the only things that will block as a result are the SRCU
261 * callbacks freeing the link objects for the links in the list we're
262 * walking.
263 */
264 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
265 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
266 dpm_wait(link->supplier, async);
267
268 device_links_read_unlock(idx);
269}
270
271static void dpm_wait_for_superior(struct device *dev, bool async)
272{
273 dpm_wait(dev->parent, async);
274 dpm_wait_for_suppliers(dev, async);
275}
276
277static void dpm_wait_for_consumers(struct device *dev, bool async)
278{
279 struct device_link *link;
280 int idx;
281
282 idx = device_links_read_lock();
283
284 /*
285 * The status of a device link can only be changed from "dormant" by a
286 * probe, but that cannot happen during system suspend/resume. In
287 * theory it can change to "dormant" at that time, but then it is
288 * reasonable to wait for the target device anyway (eg. if it goes
289 * away, it's better to wait for it to go away completely and then
290 * continue instead of trying to continue in parallel with its
291 * unregistration).
292 */
293 list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
294 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
295 dpm_wait(link->consumer, async);
296
297 device_links_read_unlock(idx);
298}
299
300static void dpm_wait_for_subordinate(struct device *dev, bool async)
301{
302 dpm_wait_for_children(dev, async);
303 dpm_wait_for_consumers(dev, async);
304}
305
306/**
307 * pm_op - Return the PM operation appropriate for given PM event.
308 * @ops: PM operations to choose from.
309 * @state: PM transition of the system being carried out.
310 */
311static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
312{
313 switch (state.event) {
314#ifdef CONFIG_SUSPEND
315 case PM_EVENT_SUSPEND:
316 return ops->suspend;
317 case PM_EVENT_RESUME:
318 return ops->resume;
319#endif /* CONFIG_SUSPEND */
320#ifdef CONFIG_HIBERNATE_CALLBACKS
321 case PM_EVENT_FREEZE:
322 case PM_EVENT_QUIESCE:
323 return ops->freeze;
324 case PM_EVENT_HIBERNATE:
325 return ops->poweroff;
326 case PM_EVENT_THAW:
327 case PM_EVENT_RECOVER:
328 return ops->thaw;
329 break;
330 case PM_EVENT_RESTORE:
331 return ops->restore;
332#endif /* CONFIG_HIBERNATE_CALLBACKS */
333 }
334
335 return NULL;
336}
337
338/**
339 * pm_late_early_op - Return the PM operation appropriate for given PM event.
340 * @ops: PM operations to choose from.
341 * @state: PM transition of the system being carried out.
342 *
343 * Runtime PM is disabled for @dev while this function is being executed.
344 */
345static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
346 pm_message_t state)
347{
348 switch (state.event) {
349#ifdef CONFIG_SUSPEND
350 case PM_EVENT_SUSPEND:
351 return ops->suspend_late;
352 case PM_EVENT_RESUME:
353 return ops->resume_early;
354#endif /* CONFIG_SUSPEND */
355#ifdef CONFIG_HIBERNATE_CALLBACKS
356 case PM_EVENT_FREEZE:
357 case PM_EVENT_QUIESCE:
358 return ops->freeze_late;
359 case PM_EVENT_HIBERNATE:
360 return ops->poweroff_late;
361 case PM_EVENT_THAW:
362 case PM_EVENT_RECOVER:
363 return ops->thaw_early;
364 case PM_EVENT_RESTORE:
365 return ops->restore_early;
366#endif /* CONFIG_HIBERNATE_CALLBACKS */
367 }
368
369 return NULL;
370}
371
372/**
373 * pm_noirq_op - Return the PM operation appropriate for given PM event.
374 * @ops: PM operations to choose from.
375 * @state: PM transition of the system being carried out.
376 *
377 * The driver of @dev will not receive interrupts while this function is being
378 * executed.
379 */
380static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
381{
382 switch (state.event) {
383#ifdef CONFIG_SUSPEND
384 case PM_EVENT_SUSPEND:
385 return ops->suspend_noirq;
386 case PM_EVENT_RESUME:
387 return ops->resume_noirq;
388#endif /* CONFIG_SUSPEND */
389#ifdef CONFIG_HIBERNATE_CALLBACKS
390 case PM_EVENT_FREEZE:
391 case PM_EVENT_QUIESCE:
392 return ops->freeze_noirq;
393 case PM_EVENT_HIBERNATE:
394 return ops->poweroff_noirq;
395 case PM_EVENT_THAW:
396 case PM_EVENT_RECOVER:
397 return ops->thaw_noirq;
398 case PM_EVENT_RESTORE:
399 return ops->restore_noirq;
400#endif /* CONFIG_HIBERNATE_CALLBACKS */
401 }
402
403 return NULL;
404}
405
406static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
407{
408 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
409 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
410 ", may wakeup" : "");
411}
412
413static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
414 int error)
415{
416 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
417 dev_name(dev), pm_verb(state.event), info, error);
418}
419
420static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
421 const char *info)
422{
423 ktime_t calltime;
424 u64 usecs64;
425 int usecs;
426
427 calltime = ktime_get();
428 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
429 do_div(usecs64, NSEC_PER_USEC);
430 usecs = usecs64;
431 if (usecs == 0)
432 usecs = 1;
433
434 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
435 info ?: "", info ? " " : "", pm_verb(state.event),
436 error ? "aborted" : "complete",
437 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
438}
439
440static int dpm_run_callback(pm_callback_t cb, struct device *dev,
441 pm_message_t state, const char *info)
442{
443 ktime_t calltime;
444 int error;
445
446 if (!cb)
447 return 0;
448
449 calltime = initcall_debug_start(dev);
450
451 pm_dev_dbg(dev, state, info);
452 trace_device_pm_callback_start(dev, info, state.event);
453 error = cb(dev);
454 trace_device_pm_callback_end(dev, error);
455 suspend_report_result(cb, error);
456
457 initcall_debug_report(dev, calltime, error, state, info);
458
459 return error;
460}
461
462#ifdef CONFIG_DPM_WATCHDOG
463struct dpm_watchdog {
464 struct device *dev;
465 struct task_struct *tsk;
466 struct timer_list timer;
467};
468
469#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
470 struct dpm_watchdog wd
471
472/**
473 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
474 * @data: Watchdog object address.
475 *
476 * Called when a driver has timed out suspending or resuming.
477 * There's not much we can do here to recover so panic() to
478 * capture a crash-dump in pstore.
479 */
480static void dpm_watchdog_handler(struct timer_list *t)
481{
482 struct dpm_watchdog *wd = from_timer(wd, t, timer);
483
484 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
485 show_stack(wd->tsk, NULL);
486 panic("%s %s: unrecoverable failure\n",
487 dev_driver_string(wd->dev), dev_name(wd->dev));
488}
489
490/**
491 * dpm_watchdog_set - Enable pm watchdog for given device.
492 * @wd: Watchdog. Must be allocated on the stack.
493 * @dev: Device to handle.
494 */
495static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
496{
497 struct timer_list *timer = &wd->timer;
498
499 wd->dev = dev;
500 wd->tsk = current;
501
502 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
503 /* use same timeout value for both suspend and resume */
504 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
505 add_timer(timer);
506}
507
508/**
509 * dpm_watchdog_clear - Disable suspend/resume watchdog.
510 * @wd: Watchdog to disable.
511 */
512static void dpm_watchdog_clear(struct dpm_watchdog *wd)
513{
514 struct timer_list *timer = &wd->timer;
515
516 del_timer_sync(timer);
517 destroy_timer_on_stack(timer);
518}
519#else
520#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
521#define dpm_watchdog_set(x, y)
522#define dpm_watchdog_clear(x)
523#endif
524
525/*------------------------- Resume routines -------------------------*/
526
527/**
528 * dev_pm_skip_next_resume_phases - Skip next system resume phases for device.
529 * @dev: Target device.
530 *
531 * Make the core skip the "early resume" and "resume" phases for @dev.
532 *
533 * This function can be called by middle-layer code during the "noirq" phase of
534 * system resume if necessary, but not by device drivers.
535 */
536void dev_pm_skip_next_resume_phases(struct device *dev)
537{
538 dev->power.is_late_suspended = false;
539 dev->power.is_suspended = false;
540}
541
542/**
543 * suspend_event - Return a "suspend" message for given "resume" one.
544 * @resume_msg: PM message representing a system-wide resume transition.
545 */
546static pm_message_t suspend_event(pm_message_t resume_msg)
547{
548 switch (resume_msg.event) {
549 case PM_EVENT_RESUME:
550 return PMSG_SUSPEND;
551 case PM_EVENT_THAW:
552 case PM_EVENT_RESTORE:
553 return PMSG_FREEZE;
554 case PM_EVENT_RECOVER:
555 return PMSG_HIBERNATE;
556 }
557 return PMSG_ON;
558}
559
560/**
561 * dev_pm_may_skip_resume - System-wide device resume optimization check.
562 * @dev: Target device.
563 *
564 * Checks whether or not the device may be left in suspend after a system-wide
565 * transition to the working state.
566 */
567bool dev_pm_may_skip_resume(struct device *dev)
568{
569 return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
570}
571
572static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
573 pm_message_t state,
574 const char **info_p)
575{
576 pm_callback_t callback;
577 const char *info;
578
579 if (dev->pm_domain) {
580 info = "noirq power domain ";
581 callback = pm_noirq_op(&dev->pm_domain->ops, state);
582 } else if (dev->type && dev->type->pm) {
583 info = "noirq type ";
584 callback = pm_noirq_op(dev->type->pm, state);
585 } else if (dev->class && dev->class->pm) {
586 info = "noirq class ";
587 callback = pm_noirq_op(dev->class->pm, state);
588 } else if (dev->bus && dev->bus->pm) {
589 info = "noirq bus ";
590 callback = pm_noirq_op(dev->bus->pm, state);
591 } else {
592 return NULL;
593 }
594
595 if (info_p)
596 *info_p = info;
597
598 return callback;
599}
600
601static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
602 pm_message_t state,
603 const char **info_p);
604
605static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
606 pm_message_t state,
607 const char **info_p);
608
609/**
610 * device_resume_noirq - Execute a "noirq resume" callback for given device.
611 * @dev: Device to handle.
612 * @state: PM transition of the system being carried out.
613 * @async: If true, the device is being resumed asynchronously.
614 *
615 * The driver of @dev will not receive interrupts while this function is being
616 * executed.
617 */
618static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
619{
620 pm_callback_t callback;
621 const char *info;
622 bool skip_resume;
623 int error = 0;
624
625 TRACE_DEVICE(dev);
626 TRACE_RESUME(0);
627
628 if (dev->power.syscore || dev->power.direct_complete)
629 goto Out;
630
631 if (!dev->power.is_noirq_suspended)
632 goto Out;
633
634 dpm_wait_for_superior(dev, async);
635
636 skip_resume = dev_pm_may_skip_resume(dev);
637
638 callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
639 if (callback)
640 goto Run;
641
642 if (skip_resume)
643 goto Skip;
644
645 if (dev_pm_smart_suspend_and_suspended(dev)) {
646 pm_message_t suspend_msg = suspend_event(state);
647
648 /*
649 * If "freeze" callbacks have been skipped during a transition
650 * related to hibernation, the subsequent "thaw" callbacks must
651 * be skipped too or bad things may happen. Otherwise, resume
652 * callbacks are going to be run for the device, so its runtime
653 * PM status must be changed to reflect the new state after the
654 * transition under way.
655 */
656 if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
657 !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
658 if (state.event == PM_EVENT_THAW) {
659 skip_resume = true;
660 goto Skip;
661 } else {
662 pm_runtime_set_active(dev);
663 }
664 }
665 }
666
667 if (dev->driver && dev->driver->pm) {
668 info = "noirq driver ";
669 callback = pm_noirq_op(dev->driver->pm, state);
670 }
671
672Run:
673 error = dpm_run_callback(callback, dev, state, info);
674
675Skip:
676 dev->power.is_noirq_suspended = false;
677
678 if (skip_resume) {
679 /*
680 * The device is going to be left in suspend, but it might not
681 * have been in runtime suspend before the system suspended, so
682 * its runtime PM status needs to be updated to avoid confusing
683 * the runtime PM framework when runtime PM is enabled for the
684 * device again.
685 */
686 pm_runtime_set_suspended(dev);
687 dev_pm_skip_next_resume_phases(dev);
688 }
689
690Out:
691 complete_all(&dev->power.completion);
692 TRACE_RESUME(error);
693 return error;
694}
695
696static bool is_async(struct device *dev)
697{
698 return dev->power.async_suspend && pm_async_enabled
699 && !pm_trace_is_enabled();
700}
701
702static void async_resume_noirq(void *data, async_cookie_t cookie)
703{
704 struct device *dev = (struct device *)data;
705 int error;
706
707 error = device_resume_noirq(dev, pm_transition, true);
708 if (error)
709 pm_dev_err(dev, pm_transition, " async", error);
710
711 put_device(dev);
712}
713
714void dpm_noirq_resume_devices(pm_message_t state)
715{
716 struct device *dev;
717 ktime_t starttime = ktime_get();
718
719 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
720 mutex_lock(&dpm_list_mtx);
721 pm_transition = state;
722
723 /*
724 * Advanced the async threads upfront,
725 * in case the starting of async threads is
726 * delayed by non-async resuming devices.
727 */
728 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
729 reinit_completion(&dev->power.completion);
730 if (is_async(dev)) {
731 get_device(dev);
732 async_schedule(async_resume_noirq, dev);
733 }
734 }
735
736 while (!list_empty(&dpm_noirq_list)) {
737 dev = to_device(dpm_noirq_list.next);
738 get_device(dev);
739 list_move_tail(&dev->power.entry, &dpm_late_early_list);
740 mutex_unlock(&dpm_list_mtx);
741
742 if (!is_async(dev)) {
743 int error;
744
745 error = device_resume_noirq(dev, state, false);
746 if (error) {
747 suspend_stats.failed_resume_noirq++;
748 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
749 dpm_save_failed_dev(dev_name(dev));
750 pm_dev_err(dev, state, " noirq", error);
751 }
752 }
753
754 mutex_lock(&dpm_list_mtx);
755 put_device(dev);
756 }
757 mutex_unlock(&dpm_list_mtx);
758 async_synchronize_full();
759 dpm_show_time(starttime, state, 0, "noirq");
760 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
761}
762
763void dpm_noirq_end(void)
764{
765 resume_device_irqs();
766 device_wakeup_disarm_wake_irqs();
767 cpuidle_resume();
768}
769
770/**
771 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
772 * @state: PM transition of the system being carried out.
773 *
774 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
775 * allow device drivers' interrupt handlers to be called.
776 */
777void dpm_resume_noirq(pm_message_t state)
778{
779 dpm_noirq_resume_devices(state);
780 dpm_noirq_end();
781}
782
783static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
784 pm_message_t state,
785 const char **info_p)
786{
787 pm_callback_t callback;
788 const char *info;
789
790 if (dev->pm_domain) {
791 info = "early power domain ";
792 callback = pm_late_early_op(&dev->pm_domain->ops, state);
793 } else if (dev->type && dev->type->pm) {
794 info = "early type ";
795 callback = pm_late_early_op(dev->type->pm, state);
796 } else if (dev->class && dev->class->pm) {
797 info = "early class ";
798 callback = pm_late_early_op(dev->class->pm, state);
799 } else if (dev->bus && dev->bus->pm) {
800 info = "early bus ";
801 callback = pm_late_early_op(dev->bus->pm, state);
802 } else {
803 return NULL;
804 }
805
806 if (info_p)
807 *info_p = info;
808
809 return callback;
810}
811
812/**
813 * device_resume_early - Execute an "early resume" callback for given device.
814 * @dev: Device to handle.
815 * @state: PM transition of the system being carried out.
816 * @async: If true, the device is being resumed asynchronously.
817 *
818 * Runtime PM is disabled for @dev while this function is being executed.
819 */
820static int device_resume_early(struct device *dev, pm_message_t state, bool async)
821{
822 pm_callback_t callback;
823 const char *info;
824 int error = 0;
825
826 TRACE_DEVICE(dev);
827 TRACE_RESUME(0);
828
829 if (dev->power.syscore || dev->power.direct_complete)
830 goto Out;
831
832 if (!dev->power.is_late_suspended)
833 goto Out;
834
835 dpm_wait_for_superior(dev, async);
836
837 callback = dpm_subsys_resume_early_cb(dev, state, &info);
838
839 if (!callback && dev->driver && dev->driver->pm) {
840 info = "early driver ";
841 callback = pm_late_early_op(dev->driver->pm, state);
842 }
843
844 error = dpm_run_callback(callback, dev, state, info);
845 dev->power.is_late_suspended = false;
846
847 Out:
848 TRACE_RESUME(error);
849
850 pm_runtime_enable(dev);
851 complete_all(&dev->power.completion);
852 return error;
853}
854
855static void async_resume_early(void *data, async_cookie_t cookie)
856{
857 struct device *dev = (struct device *)data;
858 int error;
859
860 error = device_resume_early(dev, pm_transition, true);
861 if (error)
862 pm_dev_err(dev, pm_transition, " async", error);
863
864 put_device(dev);
865}
866
867/**
868 * dpm_resume_early - Execute "early resume" callbacks for all devices.
869 * @state: PM transition of the system being carried out.
870 */
871void dpm_resume_early(pm_message_t state)
872{
873 struct device *dev;
874 ktime_t starttime = ktime_get();
875
876 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
877 mutex_lock(&dpm_list_mtx);
878 pm_transition = state;
879
880 /*
881 * Advanced the async threads upfront,
882 * in case the starting of async threads is
883 * delayed by non-async resuming devices.
884 */
885 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
886 reinit_completion(&dev->power.completion);
887 if (is_async(dev)) {
888 get_device(dev);
889 async_schedule(async_resume_early, dev);
890 }
891 }
892
893 while (!list_empty(&dpm_late_early_list)) {
894 dev = to_device(dpm_late_early_list.next);
895 get_device(dev);
896 list_move_tail(&dev->power.entry, &dpm_suspended_list);
897 mutex_unlock(&dpm_list_mtx);
898
899 if (!is_async(dev)) {
900 int error;
901
902 error = device_resume_early(dev, state, false);
903 if (error) {
904 suspend_stats.failed_resume_early++;
905 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
906 dpm_save_failed_dev(dev_name(dev));
907 pm_dev_err(dev, state, " early", error);
908 }
909 }
910 mutex_lock(&dpm_list_mtx);
911 put_device(dev);
912 }
913 mutex_unlock(&dpm_list_mtx);
914 async_synchronize_full();
915 dpm_show_time(starttime, state, 0, "early");
916 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
917}
918
919/**
920 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
921 * @state: PM transition of the system being carried out.
922 */
923void dpm_resume_start(pm_message_t state)
924{
925 dpm_resume_noirq(state);
926 dpm_resume_early(state);
927}
928EXPORT_SYMBOL_GPL(dpm_resume_start);
929
930/**
931 * device_resume - Execute "resume" callbacks for given device.
932 * @dev: Device to handle.
933 * @state: PM transition of the system being carried out.
934 * @async: If true, the device is being resumed asynchronously.
935 */
936static int device_resume(struct device *dev, pm_message_t state, bool async)
937{
938 pm_callback_t callback = NULL;
939 const char *info = NULL;
940 int error = 0;
941 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
942
943 TRACE_DEVICE(dev);
944 TRACE_RESUME(0);
945
946 if (dev->power.syscore)
947 goto Complete;
948
949 if (dev->power.direct_complete) {
950 /* Match the pm_runtime_disable() in __device_suspend(). */
951 pm_runtime_enable(dev);
952 goto Complete;
953 }
954
955 dpm_wait_for_superior(dev, async);
956 dpm_watchdog_set(&wd, dev);
957 device_lock(dev);
958
959 /*
960 * This is a fib. But we'll allow new children to be added below
961 * a resumed device, even if the device hasn't been completed yet.
962 */
963 dev->power.is_prepared = false;
964
965 if (!dev->power.is_suspended)
966 goto Unlock;
967
968 if (dev->pm_domain) {
969 info = "power domain ";
970 callback = pm_op(&dev->pm_domain->ops, state);
971 goto Driver;
972 }
973
974 if (dev->type && dev->type->pm) {
975 info = "type ";
976 callback = pm_op(dev->type->pm, state);
977 goto Driver;
978 }
979
980 if (dev->class && dev->class->pm) {
981 info = "class ";
982 callback = pm_op(dev->class->pm, state);
983 goto Driver;
984 }
985
986 if (dev->bus) {
987 if (dev->bus->pm) {
988 info = "bus ";
989 callback = pm_op(dev->bus->pm, state);
990 } else if (dev->bus->resume) {
991 info = "legacy bus ";
992 callback = dev->bus->resume;
993 goto End;
994 }
995 }
996
997 Driver:
998 if (!callback && dev->driver && dev->driver->pm) {
999 info = "driver ";
1000 callback = pm_op(dev->driver->pm, state);
1001 }
1002
1003 End:
1004 error = dpm_run_callback(callback, dev, state, info);
1005 dev->power.is_suspended = false;
1006
1007 Unlock:
1008 device_unlock(dev);
1009 dpm_watchdog_clear(&wd);
1010
1011 Complete:
1012 complete_all(&dev->power.completion);
1013
1014 TRACE_RESUME(error);
1015
1016 return error;
1017}
1018
1019static void async_resume(void *data, async_cookie_t cookie)
1020{
1021 struct device *dev = (struct device *)data;
1022 int error;
1023
1024 error = device_resume(dev, pm_transition, true);
1025 if (error)
1026 pm_dev_err(dev, pm_transition, " async", error);
1027 put_device(dev);
1028}
1029
1030/**
1031 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1032 * @state: PM transition of the system being carried out.
1033 *
1034 * Execute the appropriate "resume" callback for all devices whose status
1035 * indicates that they are suspended.
1036 */
1037void dpm_resume(pm_message_t state)
1038{
1039 struct device *dev;
1040 ktime_t starttime = ktime_get();
1041
1042 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1043 might_sleep();
1044
1045 mutex_lock(&dpm_list_mtx);
1046 pm_transition = state;
1047 async_error = 0;
1048
1049 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
1050 reinit_completion(&dev->power.completion);
1051 if (is_async(dev)) {
1052 get_device(dev);
1053 async_schedule(async_resume, dev);
1054 }
1055 }
1056
1057 while (!list_empty(&dpm_suspended_list)) {
1058 dev = to_device(dpm_suspended_list.next);
1059 get_device(dev);
1060 if (!is_async(dev)) {
1061 int error;
1062
1063 mutex_unlock(&dpm_list_mtx);
1064
1065 error = device_resume(dev, state, false);
1066 if (error) {
1067 suspend_stats.failed_resume++;
1068 dpm_save_failed_step(SUSPEND_RESUME);
1069 dpm_save_failed_dev(dev_name(dev));
1070 pm_dev_err(dev, state, "", error);
1071 }
1072
1073 mutex_lock(&dpm_list_mtx);
1074 }
1075 if (!list_empty(&dev->power.entry))
1076 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1077 put_device(dev);
1078 }
1079 mutex_unlock(&dpm_list_mtx);
1080 async_synchronize_full();
1081 dpm_show_time(starttime, state, 0, NULL);
1082
1083 cpufreq_resume();
1084 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1085}
1086
1087/**
1088 * device_complete - Complete a PM transition for given device.
1089 * @dev: Device to handle.
1090 * @state: PM transition of the system being carried out.
1091 */
1092static void device_complete(struct device *dev, pm_message_t state)
1093{
1094 void (*callback)(struct device *) = NULL;
1095 const char *info = NULL;
1096
1097 if (dev->power.syscore)
1098 return;
1099
1100 device_lock(dev);
1101
1102 if (dev->pm_domain) {
1103 info = "completing power domain ";
1104 callback = dev->pm_domain->ops.complete;
1105 } else if (dev->type && dev->type->pm) {
1106 info = "completing type ";
1107 callback = dev->type->pm->complete;
1108 } else if (dev->class && dev->class->pm) {
1109 info = "completing class ";
1110 callback = dev->class->pm->complete;
1111 } else if (dev->bus && dev->bus->pm) {
1112 info = "completing bus ";
1113 callback = dev->bus->pm->complete;
1114 }
1115
1116 if (!callback && dev->driver && dev->driver->pm) {
1117 info = "completing driver ";
1118 callback = dev->driver->pm->complete;
1119 }
1120
1121 if (callback) {
1122 pm_dev_dbg(dev, state, info);
1123 callback(dev);
1124 }
1125
1126 device_unlock(dev);
1127
1128 pm_runtime_put(dev);
1129}
1130
1131/**
1132 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1133 * @state: PM transition of the system being carried out.
1134 *
1135 * Execute the ->complete() callbacks for all devices whose PM status is not
1136 * DPM_ON (this allows new devices to be registered).
1137 */
1138void dpm_complete(pm_message_t state)
1139{
1140 struct list_head list;
1141
1142 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1143 might_sleep();
1144
1145 INIT_LIST_HEAD(&list);
1146 mutex_lock(&dpm_list_mtx);
1147 while (!list_empty(&dpm_prepared_list)) {
1148 struct device *dev = to_device(dpm_prepared_list.prev);
1149
1150 get_device(dev);
1151 dev->power.is_prepared = false;
1152 list_move(&dev->power.entry, &list);
1153 mutex_unlock(&dpm_list_mtx);
1154
1155 trace_device_pm_callback_start(dev, "", state.event);
1156 device_complete(dev, state);
1157 trace_device_pm_callback_end(dev, 0);
1158
1159 mutex_lock(&dpm_list_mtx);
1160 put_device(dev);
1161 }
1162 list_splice(&list, &dpm_list);
1163 mutex_unlock(&dpm_list_mtx);
1164
1165 /* Allow device probing and trigger re-probing of deferred devices */
1166 device_unblock_probing();
1167 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1168}
1169
1170/**
1171 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1172 * @state: PM transition of the system being carried out.
1173 *
1174 * Execute "resume" callbacks for all devices and complete the PM transition of
1175 * the system.
1176 */
1177void dpm_resume_end(pm_message_t state)
1178{
1179 dpm_resume(state);
1180 dpm_complete(state);
1181}
1182EXPORT_SYMBOL_GPL(dpm_resume_end);
1183
1184
1185/*------------------------- Suspend routines -------------------------*/
1186
1187/**
1188 * resume_event - Return a "resume" message for given "suspend" sleep state.
1189 * @sleep_state: PM message representing a sleep state.
1190 *
1191 * Return a PM message representing the resume event corresponding to given
1192 * sleep state.
1193 */
1194static pm_message_t resume_event(pm_message_t sleep_state)
1195{
1196 switch (sleep_state.event) {
1197 case PM_EVENT_SUSPEND:
1198 return PMSG_RESUME;
1199 case PM_EVENT_FREEZE:
1200 case PM_EVENT_QUIESCE:
1201 return PMSG_RECOVER;
1202 case PM_EVENT_HIBERNATE:
1203 return PMSG_RESTORE;
1204 }
1205 return PMSG_ON;
1206}
1207
1208static void dpm_superior_set_must_resume(struct device *dev)
1209{
1210 struct device_link *link;
1211 int idx;
1212
1213 if (dev->parent)
1214 dev->parent->power.must_resume = true;
1215
1216 idx = device_links_read_lock();
1217
1218 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1219 link->supplier->power.must_resume = true;
1220
1221 device_links_read_unlock(idx);
1222}
1223
1224static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1225 pm_message_t state,
1226 const char **info_p)
1227{
1228 pm_callback_t callback;
1229 const char *info;
1230
1231 if (dev->pm_domain) {
1232 info = "noirq power domain ";
1233 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1234 } else if (dev->type && dev->type->pm) {
1235 info = "noirq type ";
1236 callback = pm_noirq_op(dev->type->pm, state);
1237 } else if (dev->class && dev->class->pm) {
1238 info = "noirq class ";
1239 callback = pm_noirq_op(dev->class->pm, state);
1240 } else if (dev->bus && dev->bus->pm) {
1241 info = "noirq bus ";
1242 callback = pm_noirq_op(dev->bus->pm, state);
1243 } else {
1244 return NULL;
1245 }
1246
1247 if (info_p)
1248 *info_p = info;
1249
1250 return callback;
1251}
1252
1253static bool device_must_resume(struct device *dev, pm_message_t state,
1254 bool no_subsys_suspend_noirq)
1255{
1256 pm_message_t resume_msg = resume_event(state);
1257
1258 /*
1259 * If all of the device driver's "noirq", "late" and "early" callbacks
1260 * are invoked directly by the core, the decision to allow the device to
1261 * stay in suspend can be based on its current runtime PM status and its
1262 * wakeup settings.
1263 */
1264 if (no_subsys_suspend_noirq &&
1265 !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1266 !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1267 !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1268 return !pm_runtime_status_suspended(dev) &&
1269 (resume_msg.event != PM_EVENT_RESUME ||
1270 (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1271
1272 /*
1273 * The only safe strategy here is to require that if the device may not
1274 * be left in suspend, resume callbacks must be invoked for it.
1275 */
1276 return !dev->power.may_skip_resume;
1277}
1278
1279/**
1280 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1281 * @dev: Device to handle.
1282 * @state: PM transition of the system being carried out.
1283 * @async: If true, the device is being suspended asynchronously.
1284 *
1285 * The driver of @dev will not receive interrupts while this function is being
1286 * executed.
1287 */
1288static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1289{
1290 pm_callback_t callback;
1291 const char *info;
1292 bool no_subsys_cb = false;
1293 int error = 0;
1294
1295 TRACE_DEVICE(dev);
1296 TRACE_SUSPEND(0);
1297
1298 dpm_wait_for_subordinate(dev, async);
1299
1300 if (async_error)
1301 goto Complete;
1302
1303 if (pm_wakeup_pending()) {
1304 async_error = -EBUSY;
1305 goto Complete;
1306 }
1307
1308 if (dev->power.syscore || dev->power.direct_complete)
1309 goto Complete;
1310
1311 callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1312 if (callback)
1313 goto Run;
1314
1315 no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1316
1317 if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1318 goto Skip;
1319
1320 if (dev->driver && dev->driver->pm) {
1321 info = "noirq driver ";
1322 callback = pm_noirq_op(dev->driver->pm, state);
1323 }
1324
1325Run:
1326 error = dpm_run_callback(callback, dev, state, info);
1327 if (error) {
1328 async_error = error;
1329 goto Complete;
1330 }
1331
1332Skip:
1333 dev->power.is_noirq_suspended = true;
1334
1335 if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1336 dev->power.must_resume = dev->power.must_resume ||
1337 atomic_read(&dev->power.usage_count) > 1 ||
1338 device_must_resume(dev, state, no_subsys_cb);
1339 } else {
1340 dev->power.must_resume = true;
1341 }
1342
1343 if (dev->power.must_resume)
1344 dpm_superior_set_must_resume(dev);
1345
1346Complete:
1347 complete_all(&dev->power.completion);
1348 TRACE_SUSPEND(error);
1349 return error;
1350}
1351
1352static void async_suspend_noirq(void *data, async_cookie_t cookie)
1353{
1354 struct device *dev = (struct device *)data;
1355 int error;
1356
1357 error = __device_suspend_noirq(dev, pm_transition, true);
1358 if (error) {
1359 dpm_save_failed_dev(dev_name(dev));
1360 pm_dev_err(dev, pm_transition, " async", error);
1361 }
1362
1363 put_device(dev);
1364}
1365
1366static int device_suspend_noirq(struct device *dev)
1367{
1368 reinit_completion(&dev->power.completion);
1369
1370 if (is_async(dev)) {
1371 get_device(dev);
1372 async_schedule(async_suspend_noirq, dev);
1373 return 0;
1374 }
1375 return __device_suspend_noirq(dev, pm_transition, false);
1376}
1377
1378void dpm_noirq_begin(void)
1379{
1380 cpuidle_pause();
1381 device_wakeup_arm_wake_irqs();
1382 suspend_device_irqs();
1383}
1384
1385int dpm_noirq_suspend_devices(pm_message_t state)
1386{
1387 ktime_t starttime = ktime_get();
1388 int error = 0;
1389
1390 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1391 mutex_lock(&dpm_list_mtx);
1392 pm_transition = state;
1393 async_error = 0;
1394
1395 while (!list_empty(&dpm_late_early_list)) {
1396 struct device *dev = to_device(dpm_late_early_list.prev);
1397
1398 get_device(dev);
1399 mutex_unlock(&dpm_list_mtx);
1400
1401 error = device_suspend_noirq(dev);
1402
1403 mutex_lock(&dpm_list_mtx);
1404 if (error) {
1405 pm_dev_err(dev, state, " noirq", error);
1406 dpm_save_failed_dev(dev_name(dev));
1407 put_device(dev);
1408 break;
1409 }
1410 if (!list_empty(&dev->power.entry))
1411 list_move(&dev->power.entry, &dpm_noirq_list);
1412 put_device(dev);
1413
1414 if (async_error)
1415 break;
1416 }
1417 mutex_unlock(&dpm_list_mtx);
1418 async_synchronize_full();
1419 if (!error)
1420 error = async_error;
1421
1422 if (error) {
1423 suspend_stats.failed_suspend_noirq++;
1424 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1425 }
1426 dpm_show_time(starttime, state, error, "noirq");
1427 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1428 return error;
1429}
1430
1431/**
1432 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1433 * @state: PM transition of the system being carried out.
1434 *
1435 * Prevent device drivers' interrupt handlers from being called and invoke
1436 * "noirq" suspend callbacks for all non-sysdev devices.
1437 */
1438int dpm_suspend_noirq(pm_message_t state)
1439{
1440 int ret;
1441
1442 dpm_noirq_begin();
1443 ret = dpm_noirq_suspend_devices(state);
1444 if (ret)
1445 dpm_resume_noirq(resume_event(state));
1446
1447 return ret;
1448}
1449
1450static void dpm_propagate_wakeup_to_parent(struct device *dev)
1451{
1452 struct device *parent = dev->parent;
1453
1454 if (!parent)
1455 return;
1456
1457 spin_lock_irq(&parent->power.lock);
1458
1459 if (dev->power.wakeup_path && !parent->power.ignore_children)
1460 parent->power.wakeup_path = true;
1461
1462 spin_unlock_irq(&parent->power.lock);
1463}
1464
1465static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1466 pm_message_t state,
1467 const char **info_p)
1468{
1469 pm_callback_t callback;
1470 const char *info;
1471
1472 if (dev->pm_domain) {
1473 info = "late power domain ";
1474 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1475 } else if (dev->type && dev->type->pm) {
1476 info = "late type ";
1477 callback = pm_late_early_op(dev->type->pm, state);
1478 } else if (dev->class && dev->class->pm) {
1479 info = "late class ";
1480 callback = pm_late_early_op(dev->class->pm, state);
1481 } else if (dev->bus && dev->bus->pm) {
1482 info = "late bus ";
1483 callback = pm_late_early_op(dev->bus->pm, state);
1484 } else {
1485 return NULL;
1486 }
1487
1488 if (info_p)
1489 *info_p = info;
1490
1491 return callback;
1492}
1493
1494/**
1495 * __device_suspend_late - Execute a "late suspend" callback for given device.
1496 * @dev: Device to handle.
1497 * @state: PM transition of the system being carried out.
1498 * @async: If true, the device is being suspended asynchronously.
1499 *
1500 * Runtime PM is disabled for @dev while this function is being executed.
1501 */
1502static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1503{
1504 pm_callback_t callback;
1505 const char *info;
1506 int error = 0;
1507
1508 TRACE_DEVICE(dev);
1509 TRACE_SUSPEND(0);
1510
1511 __pm_runtime_disable(dev, false);
1512
1513 dpm_wait_for_subordinate(dev, async);
1514
1515 if (async_error)
1516 goto Complete;
1517
1518 if (pm_wakeup_pending()) {
1519 async_error = -EBUSY;
1520 goto Complete;
1521 }
1522
1523 if (dev->power.syscore || dev->power.direct_complete)
1524 goto Complete;
1525
1526 callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1527 if (callback)
1528 goto Run;
1529
1530 if (dev_pm_smart_suspend_and_suspended(dev) &&
1531 !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1532 goto Skip;
1533
1534 if (dev->driver && dev->driver->pm) {
1535 info = "late driver ";
1536 callback = pm_late_early_op(dev->driver->pm, state);
1537 }
1538
1539Run:
1540 error = dpm_run_callback(callback, dev, state, info);
1541 if (error) {
1542 async_error = error;
1543 goto Complete;
1544 }
1545 dpm_propagate_wakeup_to_parent(dev);
1546
1547Skip:
1548 dev->power.is_late_suspended = true;
1549
1550Complete:
1551 TRACE_SUSPEND(error);
1552 complete_all(&dev->power.completion);
1553 return error;
1554}
1555
1556static void async_suspend_late(void *data, async_cookie_t cookie)
1557{
1558 struct device *dev = (struct device *)data;
1559 int error;
1560
1561 error = __device_suspend_late(dev, pm_transition, true);
1562 if (error) {
1563 dpm_save_failed_dev(dev_name(dev));
1564 pm_dev_err(dev, pm_transition, " async", error);
1565 }
1566 put_device(dev);
1567}
1568
1569static int device_suspend_late(struct device *dev)
1570{
1571 reinit_completion(&dev->power.completion);
1572
1573 if (is_async(dev)) {
1574 get_device(dev);
1575 async_schedule(async_suspend_late, dev);
1576 return 0;
1577 }
1578
1579 return __device_suspend_late(dev, pm_transition, false);
1580}
1581
1582/**
1583 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1584 * @state: PM transition of the system being carried out.
1585 */
1586int dpm_suspend_late(pm_message_t state)
1587{
1588 ktime_t starttime = ktime_get();
1589 int error = 0;
1590
1591 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1592 mutex_lock(&dpm_list_mtx);
1593 pm_transition = state;
1594 async_error = 0;
1595
1596 while (!list_empty(&dpm_suspended_list)) {
1597 struct device *dev = to_device(dpm_suspended_list.prev);
1598
1599 get_device(dev);
1600 mutex_unlock(&dpm_list_mtx);
1601
1602 error = device_suspend_late(dev);
1603
1604 mutex_lock(&dpm_list_mtx);
1605 if (!list_empty(&dev->power.entry))
1606 list_move(&dev->power.entry, &dpm_late_early_list);
1607
1608 if (error) {
1609 pm_dev_err(dev, state, " late", error);
1610 dpm_save_failed_dev(dev_name(dev));
1611 put_device(dev);
1612 break;
1613 }
1614 put_device(dev);
1615
1616 if (async_error)
1617 break;
1618 }
1619 mutex_unlock(&dpm_list_mtx);
1620 async_synchronize_full();
1621 if (!error)
1622 error = async_error;
1623 if (error) {
1624 suspend_stats.failed_suspend_late++;
1625 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1626 dpm_resume_early(resume_event(state));
1627 }
1628 dpm_show_time(starttime, state, error, "late");
1629 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1630 return error;
1631}
1632
1633/**
1634 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1635 * @state: PM transition of the system being carried out.
1636 */
1637int dpm_suspend_end(pm_message_t state)
1638{
1639 int error = dpm_suspend_late(state);
1640 if (error)
1641 return error;
1642
1643 error = dpm_suspend_noirq(state);
1644 if (error) {
1645 dpm_resume_early(resume_event(state));
1646 return error;
1647 }
1648
1649 return 0;
1650}
1651EXPORT_SYMBOL_GPL(dpm_suspend_end);
1652
1653/**
1654 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1655 * @dev: Device to suspend.
1656 * @state: PM transition of the system being carried out.
1657 * @cb: Suspend callback to execute.
1658 * @info: string description of caller.
1659 */
1660static int legacy_suspend(struct device *dev, pm_message_t state,
1661 int (*cb)(struct device *dev, pm_message_t state),
1662 const char *info)
1663{
1664 int error;
1665 ktime_t calltime;
1666
1667 calltime = initcall_debug_start(dev);
1668
1669 trace_device_pm_callback_start(dev, info, state.event);
1670 error = cb(dev, state);
1671 trace_device_pm_callback_end(dev, error);
1672 suspend_report_result(cb, error);
1673
1674 initcall_debug_report(dev, calltime, error, state, info);
1675
1676 return error;
1677}
1678
1679static void dpm_clear_superiors_direct_complete(struct device *dev)
1680{
1681 struct device_link *link;
1682 int idx;
1683
1684 if (dev->parent) {
1685 spin_lock_irq(&dev->parent->power.lock);
1686 dev->parent->power.direct_complete = false;
1687 spin_unlock_irq(&dev->parent->power.lock);
1688 }
1689
1690 idx = device_links_read_lock();
1691
1692 list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1693 spin_lock_irq(&link->supplier->power.lock);
1694 link->supplier->power.direct_complete = false;
1695 spin_unlock_irq(&link->supplier->power.lock);
1696 }
1697
1698 device_links_read_unlock(idx);
1699}
1700
1701/**
1702 * __device_suspend - Execute "suspend" callbacks for given device.
1703 * @dev: Device to handle.
1704 * @state: PM transition of the system being carried out.
1705 * @async: If true, the device is being suspended asynchronously.
1706 */
1707static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1708{
1709 pm_callback_t callback = NULL;
1710 const char *info = NULL;
1711 int error = 0;
1712 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1713
1714 TRACE_DEVICE(dev);
1715 TRACE_SUSPEND(0);
1716
1717 dpm_wait_for_subordinate(dev, async);
1718
1719 if (async_error)
1720 goto Complete;
1721
1722 /*
1723 * If a device configured to wake up the system from sleep states
1724 * has been suspended at run time and there's a resume request pending
1725 * for it, this is equivalent to the device signaling wakeup, so the
1726 * system suspend operation should be aborted.
1727 */
1728 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1729 pm_wakeup_event(dev, 0);
1730
1731 if (pm_wakeup_pending()) {
1732 async_error = -EBUSY;
1733 goto Complete;
1734 }
1735
1736 if (dev->power.syscore)
1737 goto Complete;
1738
1739 if (dev->power.direct_complete) {
1740 if (pm_runtime_status_suspended(dev)) {
1741 pm_runtime_disable(dev);
1742 if (pm_runtime_status_suspended(dev))
1743 goto Complete;
1744
1745 pm_runtime_enable(dev);
1746 }
1747 dev->power.direct_complete = false;
1748 }
1749
1750 dev->power.may_skip_resume = false;
1751 dev->power.must_resume = false;
1752
1753 dpm_watchdog_set(&wd, dev);
1754 device_lock(dev);
1755
1756 if (dev->pm_domain) {
1757 info = "power domain ";
1758 callback = pm_op(&dev->pm_domain->ops, state);
1759 goto Run;
1760 }
1761
1762 if (dev->type && dev->type->pm) {
1763 info = "type ";
1764 callback = pm_op(dev->type->pm, state);
1765 goto Run;
1766 }
1767
1768 if (dev->class && dev->class->pm) {
1769 info = "class ";
1770 callback = pm_op(dev->class->pm, state);
1771 goto Run;
1772 }
1773
1774 if (dev->bus) {
1775 if (dev->bus->pm) {
1776 info = "bus ";
1777 callback = pm_op(dev->bus->pm, state);
1778 } else if (dev->bus->suspend) {
1779 pm_dev_dbg(dev, state, "legacy bus ");
1780 error = legacy_suspend(dev, state, dev->bus->suspend,
1781 "legacy bus ");
1782 goto End;
1783 }
1784 }
1785
1786 Run:
1787 if (!callback && dev->driver && dev->driver->pm) {
1788 info = "driver ";
1789 callback = pm_op(dev->driver->pm, state);
1790 }
1791
1792 error = dpm_run_callback(callback, dev, state, info);
1793
1794 End:
1795 if (!error) {
1796 dev->power.is_suspended = true;
1797 if (device_may_wakeup(dev))
1798 dev->power.wakeup_path = true;
1799
1800 dpm_propagate_wakeup_to_parent(dev);
1801 dpm_clear_superiors_direct_complete(dev);
1802 }
1803
1804 device_unlock(dev);
1805 dpm_watchdog_clear(&wd);
1806
1807 Complete:
1808 if (error)
1809 async_error = error;
1810
1811 complete_all(&dev->power.completion);
1812 TRACE_SUSPEND(error);
1813 return error;
1814}
1815
1816static void async_suspend(void *data, async_cookie_t cookie)
1817{
1818 struct device *dev = (struct device *)data;
1819 int error;
1820
1821 error = __device_suspend(dev, pm_transition, true);
1822 if (error) {
1823 dpm_save_failed_dev(dev_name(dev));
1824 pm_dev_err(dev, pm_transition, " async", error);
1825 }
1826
1827 put_device(dev);
1828}
1829
1830static int device_suspend(struct device *dev)
1831{
1832 reinit_completion(&dev->power.completion);
1833
1834 if (is_async(dev)) {
1835 get_device(dev);
1836 async_schedule(async_suspend, dev);
1837 return 0;
1838 }
1839
1840 return __device_suspend(dev, pm_transition, false);
1841}
1842
1843/**
1844 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1845 * @state: PM transition of the system being carried out.
1846 */
1847int dpm_suspend(pm_message_t state)
1848{
1849 ktime_t starttime = ktime_get();
1850 int error = 0;
1851
1852 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1853 might_sleep();
1854
1855 cpufreq_suspend();
1856
1857 mutex_lock(&dpm_list_mtx);
1858 pm_transition = state;
1859 async_error = 0;
1860 while (!list_empty(&dpm_prepared_list)) {
1861 struct device *dev = to_device(dpm_prepared_list.prev);
1862
1863 get_device(dev);
1864 mutex_unlock(&dpm_list_mtx);
1865
1866 error = device_suspend(dev);
1867
1868 mutex_lock(&dpm_list_mtx);
1869 if (error) {
1870 pm_dev_err(dev, state, "", error);
1871 dpm_save_failed_dev(dev_name(dev));
1872 put_device(dev);
1873 break;
1874 }
1875 if (!list_empty(&dev->power.entry))
1876 list_move(&dev->power.entry, &dpm_suspended_list);
1877 put_device(dev);
1878 if (async_error)
1879 break;
1880 }
1881 mutex_unlock(&dpm_list_mtx);
1882 async_synchronize_full();
1883 if (!error)
1884 error = async_error;
1885 if (error) {
1886 suspend_stats.failed_suspend++;
1887 dpm_save_failed_step(SUSPEND_SUSPEND);
1888 }
1889 dpm_show_time(starttime, state, error, NULL);
1890 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1891 return error;
1892}
1893
1894/**
1895 * device_prepare - Prepare a device for system power transition.
1896 * @dev: Device to handle.
1897 * @state: PM transition of the system being carried out.
1898 *
1899 * Execute the ->prepare() callback(s) for given device. No new children of the
1900 * device may be registered after this function has returned.
1901 */
1902static int device_prepare(struct device *dev, pm_message_t state)
1903{
1904 int (*callback)(struct device *) = NULL;
1905 int ret = 0;
1906
1907 if (dev->power.syscore)
1908 return 0;
1909
1910 WARN_ON(!pm_runtime_enabled(dev) &&
1911 dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1912 DPM_FLAG_LEAVE_SUSPENDED));
1913
1914 /*
1915 * If a device's parent goes into runtime suspend at the wrong time,
1916 * it won't be possible to resume the device. To prevent this we
1917 * block runtime suspend here, during the prepare phase, and allow
1918 * it again during the complete phase.
1919 */
1920 pm_runtime_get_noresume(dev);
1921
1922 device_lock(dev);
1923
1924 dev->power.wakeup_path = false;
1925
1926 if (dev->power.no_pm_callbacks)
1927 goto unlock;
1928
1929 if (dev->pm_domain)
1930 callback = dev->pm_domain->ops.prepare;
1931 else if (dev->type && dev->type->pm)
1932 callback = dev->type->pm->prepare;
1933 else if (dev->class && dev->class->pm)
1934 callback = dev->class->pm->prepare;
1935 else if (dev->bus && dev->bus->pm)
1936 callback = dev->bus->pm->prepare;
1937
1938 if (!callback && dev->driver && dev->driver->pm)
1939 callback = dev->driver->pm->prepare;
1940
1941 if (callback)
1942 ret = callback(dev);
1943
1944unlock:
1945 device_unlock(dev);
1946
1947 if (ret < 0) {
1948 suspend_report_result(callback, ret);
1949 pm_runtime_put(dev);
1950 return ret;
1951 }
1952 /*
1953 * A positive return value from ->prepare() means "this device appears
1954 * to be runtime-suspended and its state is fine, so if it really is
1955 * runtime-suspended, you can leave it in that state provided that you
1956 * will do the same thing with all of its descendants". This only
1957 * applies to suspend transitions, however.
1958 */
1959 spin_lock_irq(&dev->power.lock);
1960 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1961 ((pm_runtime_suspended(dev) && ret > 0) ||
1962 dev->power.no_pm_callbacks) &&
1963 !dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1964 spin_unlock_irq(&dev->power.lock);
1965 return 0;
1966}
1967
1968/**
1969 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1970 * @state: PM transition of the system being carried out.
1971 *
1972 * Execute the ->prepare() callback(s) for all devices.
1973 */
1974int dpm_prepare(pm_message_t state)
1975{
1976 int error = 0;
1977
1978 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1979 might_sleep();
1980
1981 /*
1982 * Give a chance for the known devices to complete their probes, before
1983 * disable probing of devices. This sync point is important at least
1984 * at boot time + hibernation restore.
1985 */
1986 wait_for_device_probe();
1987 /*
1988 * It is unsafe if probing of devices will happen during suspend or
1989 * hibernation and system behavior will be unpredictable in this case.
1990 * So, let's prohibit device's probing here and defer their probes
1991 * instead. The normal behavior will be restored in dpm_complete().
1992 */
1993 device_block_probing();
1994
1995 mutex_lock(&dpm_list_mtx);
1996 while (!list_empty(&dpm_list)) {
1997 struct device *dev = to_device(dpm_list.next);
1998
1999 get_device(dev);
2000 mutex_unlock(&dpm_list_mtx);
2001
2002 trace_device_pm_callback_start(dev, "", state.event);
2003 error = device_prepare(dev, state);
2004 trace_device_pm_callback_end(dev, error);
2005
2006 mutex_lock(&dpm_list_mtx);
2007 if (error) {
2008 if (error == -EAGAIN) {
2009 put_device(dev);
2010 error = 0;
2011 continue;
2012 }
2013 printk(KERN_INFO "PM: Device %s not prepared "
2014 "for power transition: code %d\n",
2015 dev_name(dev), error);
2016 put_device(dev);
2017 break;
2018 }
2019 dev->power.is_prepared = true;
2020 if (!list_empty(&dev->power.entry))
2021 list_move_tail(&dev->power.entry, &dpm_prepared_list);
2022 put_device(dev);
2023 }
2024 mutex_unlock(&dpm_list_mtx);
2025 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2026 return error;
2027}
2028
2029/**
2030 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2031 * @state: PM transition of the system being carried out.
2032 *
2033 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2034 * callbacks for them.
2035 */
2036int dpm_suspend_start(pm_message_t state)
2037{
2038 int error;
2039
2040 error = dpm_prepare(state);
2041 if (error) {
2042 suspend_stats.failed_prepare++;
2043 dpm_save_failed_step(SUSPEND_PREPARE);
2044 } else
2045 error = dpm_suspend(state);
2046 return error;
2047}
2048EXPORT_SYMBOL_GPL(dpm_suspend_start);
2049
2050void __suspend_report_result(const char *function, void *fn, int ret)
2051{
2052 if (ret)
2053 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
2054}
2055EXPORT_SYMBOL_GPL(__suspend_report_result);
2056
2057/**
2058 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2059 * @dev: Device to wait for.
2060 * @subordinate: Device that needs to wait for @dev.
2061 */
2062int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2063{
2064 dpm_wait(dev, subordinate->power.async_suspend);
2065 return async_error;
2066}
2067EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2068
2069/**
2070 * dpm_for_each_dev - device iterator.
2071 * @data: data for the callback.
2072 * @fn: function to be called for each device.
2073 *
2074 * Iterate over devices in dpm_list, and call @fn for each device,
2075 * passing it @data.
2076 */
2077void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2078{
2079 struct device *dev;
2080
2081 if (!fn)
2082 return;
2083
2084 device_pm_lock();
2085 list_for_each_entry(dev, &dpm_list, power.entry)
2086 fn(dev, data);
2087 device_pm_unlock();
2088}
2089EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2090
2091static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2092{
2093 if (!ops)
2094 return true;
2095
2096 return !ops->prepare &&
2097 !ops->suspend &&
2098 !ops->suspend_late &&
2099 !ops->suspend_noirq &&
2100 !ops->resume_noirq &&
2101 !ops->resume_early &&
2102 !ops->resume &&
2103 !ops->complete;
2104}
2105
2106void device_pm_check_callbacks(struct device *dev)
2107{
2108 spin_lock_irq(&dev->power.lock);
2109 dev->power.no_pm_callbacks =
2110 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2111 !dev->bus->suspend && !dev->bus->resume)) &&
2112 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2113 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2114 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2115 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2116 !dev->driver->suspend && !dev->driver->resume));
2117 spin_unlock_irq(&dev->power.lock);
2118}
2119
2120bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2121{
2122 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2123 pm_runtime_status_suspended(dev);
2124}