Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  libata-sff.c - helper library for PCI IDE BMDMA
   3 *
   4 *  Maintained by:  Tejun Heo <tj@kernel.org>
   5 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
   6 *		    on emails.
   7 *
   8 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2006 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 */
  34
  35#include <linux/kernel.h>
  36#include <linux/gfp.h>
  37#include <linux/pci.h>
  38#include <linux/module.h>
  39#include <linux/libata.h>
  40#include <linux/highmem.h>
  41
  42#include "libata.h"
  43
  44static struct workqueue_struct *ata_sff_wq;
  45
  46const struct ata_port_operations ata_sff_port_ops = {
  47	.inherits		= &ata_base_port_ops,
  48
  49	.qc_prep		= ata_noop_qc_prep,
  50	.qc_issue		= ata_sff_qc_issue,
  51	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
  52
  53	.freeze			= ata_sff_freeze,
  54	.thaw			= ata_sff_thaw,
  55	.prereset		= ata_sff_prereset,
  56	.softreset		= ata_sff_softreset,
  57	.hardreset		= sata_sff_hardreset,
  58	.postreset		= ata_sff_postreset,
  59	.error_handler		= ata_sff_error_handler,
  60
  61	.sff_dev_select		= ata_sff_dev_select,
  62	.sff_check_status	= ata_sff_check_status,
  63	.sff_tf_load		= ata_sff_tf_load,
  64	.sff_tf_read		= ata_sff_tf_read,
  65	.sff_exec_command	= ata_sff_exec_command,
  66	.sff_data_xfer		= ata_sff_data_xfer,
  67	.sff_drain_fifo		= ata_sff_drain_fifo,
  68
  69	.lost_interrupt		= ata_sff_lost_interrupt,
  70};
  71EXPORT_SYMBOL_GPL(ata_sff_port_ops);
  72
  73/**
  74 *	ata_sff_check_status - Read device status reg & clear interrupt
  75 *	@ap: port where the device is
  76 *
  77 *	Reads ATA taskfile status register for currently-selected device
  78 *	and return its value. This also clears pending interrupts
  79 *      from this device
  80 *
  81 *	LOCKING:
  82 *	Inherited from caller.
  83 */
  84u8 ata_sff_check_status(struct ata_port *ap)
  85{
  86	return ioread8(ap->ioaddr.status_addr);
  87}
  88EXPORT_SYMBOL_GPL(ata_sff_check_status);
  89
  90/**
  91 *	ata_sff_altstatus - Read device alternate status reg
  92 *	@ap: port where the device is
 
  93 *
  94 *	Reads ATA taskfile alternate status register for
  95 *	currently-selected device and return its value.
  96 *
  97 *	Note: may NOT be used as the check_altstatus() entry in
  98 *	ata_port_operations.
  99 *
 100 *	LOCKING:
 101 *	Inherited from caller.
 102 */
 103static u8 ata_sff_altstatus(struct ata_port *ap)
 104{
 105	if (ap->ops->sff_check_altstatus)
 106		return ap->ops->sff_check_altstatus(ap);
 107
 108	return ioread8(ap->ioaddr.altstatus_addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 109}
 110
 111/**
 112 *	ata_sff_irq_status - Check if the device is busy
 113 *	@ap: port where the device is
 114 *
 115 *	Determine if the port is currently busy. Uses altstatus
 116 *	if available in order to avoid clearing shared IRQ status
 117 *	when finding an IRQ source. Non ctl capable devices don't
 118 *	share interrupt lines fortunately for us.
 119 *
 120 *	LOCKING:
 121 *	Inherited from caller.
 122 */
 123static u8 ata_sff_irq_status(struct ata_port *ap)
 124{
 125	u8 status;
 126
 127	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 128		status = ata_sff_altstatus(ap);
 129		/* Not us: We are busy */
 130		if (status & ATA_BUSY)
 131			return status;
 132	}
 133	/* Clear INTRQ latch */
 134	status = ap->ops->sff_check_status(ap);
 135	return status;
 136}
 137
 138/**
 139 *	ata_sff_sync - Flush writes
 140 *	@ap: Port to wait for.
 141 *
 142 *	CAUTION:
 143 *	If we have an mmio device with no ctl and no altstatus
 144 *	method this will fail. No such devices are known to exist.
 145 *
 146 *	LOCKING:
 147 *	Inherited from caller.
 148 */
 149
 150static void ata_sff_sync(struct ata_port *ap)
 151{
 152	if (ap->ops->sff_check_altstatus)
 153		ap->ops->sff_check_altstatus(ap);
 154	else if (ap->ioaddr.altstatus_addr)
 155		ioread8(ap->ioaddr.altstatus_addr);
 156}
 157
 158/**
 159 *	ata_sff_pause		-	Flush writes and wait 400nS
 160 *	@ap: Port to pause for.
 161 *
 162 *	CAUTION:
 163 *	If we have an mmio device with no ctl and no altstatus
 164 *	method this will fail. No such devices are known to exist.
 165 *
 166 *	LOCKING:
 167 *	Inherited from caller.
 168 */
 169
 170void ata_sff_pause(struct ata_port *ap)
 171{
 172	ata_sff_sync(ap);
 173	ndelay(400);
 174}
 175EXPORT_SYMBOL_GPL(ata_sff_pause);
 176
 177/**
 178 *	ata_sff_dma_pause	-	Pause before commencing DMA
 179 *	@ap: Port to pause for.
 180 *
 181 *	Perform I/O fencing and ensure sufficient cycle delays occur
 182 *	for the HDMA1:0 transition
 183 */
 184
 185void ata_sff_dma_pause(struct ata_port *ap)
 186{
 187	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
 188		/* An altstatus read will cause the needed delay without
 189		   messing up the IRQ status */
 190		ata_sff_altstatus(ap);
 
 191		return;
 192	}
 193	/* There are no DMA controllers without ctl. BUG here to ensure
 194	   we never violate the HDMA1:0 transition timing and risk
 195	   corruption. */
 196	BUG();
 197}
 198EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
 199
 200/**
 201 *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
 202 *	@ap: port containing status register to be polled
 203 *	@tmout_pat: impatience timeout in msecs
 204 *	@tmout: overall timeout in msecs
 205 *
 206 *	Sleep until ATA Status register bit BSY clears,
 207 *	or a timeout occurs.
 208 *
 209 *	LOCKING:
 210 *	Kernel thread context (may sleep).
 211 *
 212 *	RETURNS:
 213 *	0 on success, -errno otherwise.
 214 */
 215int ata_sff_busy_sleep(struct ata_port *ap,
 216		       unsigned long tmout_pat, unsigned long tmout)
 217{
 218	unsigned long timer_start, timeout;
 219	u8 status;
 220
 221	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
 222	timer_start = jiffies;
 223	timeout = ata_deadline(timer_start, tmout_pat);
 224	while (status != 0xff && (status & ATA_BUSY) &&
 225	       time_before(jiffies, timeout)) {
 226		ata_msleep(ap, 50);
 227		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
 228	}
 229
 230	if (status != 0xff && (status & ATA_BUSY))
 231		ata_port_warn(ap,
 232			      "port is slow to respond, please be patient (Status 0x%x)\n",
 233			      status);
 234
 235	timeout = ata_deadline(timer_start, tmout);
 236	while (status != 0xff && (status & ATA_BUSY) &&
 237	       time_before(jiffies, timeout)) {
 238		ata_msleep(ap, 50);
 239		status = ap->ops->sff_check_status(ap);
 240	}
 241
 242	if (status == 0xff)
 243		return -ENODEV;
 244
 245	if (status & ATA_BUSY) {
 246		ata_port_err(ap,
 247			     "port failed to respond (%lu secs, Status 0x%x)\n",
 248			     DIV_ROUND_UP(tmout, 1000), status);
 249		return -EBUSY;
 250	}
 251
 252	return 0;
 253}
 254EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
 255
 256static int ata_sff_check_ready(struct ata_link *link)
 257{
 258	u8 status = link->ap->ops->sff_check_status(link->ap);
 259
 260	return ata_check_ready(status);
 261}
 262
 263/**
 264 *	ata_sff_wait_ready - sleep until BSY clears, or timeout
 265 *	@link: SFF link to wait ready status for
 266 *	@deadline: deadline jiffies for the operation
 267 *
 268 *	Sleep until ATA Status register bit BSY clears, or timeout
 269 *	occurs.
 270 *
 271 *	LOCKING:
 272 *	Kernel thread context (may sleep).
 273 *
 274 *	RETURNS:
 275 *	0 on success, -errno otherwise.
 276 */
 277int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
 278{
 279	return ata_wait_ready(link, deadline, ata_sff_check_ready);
 280}
 281EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
 282
 283/**
 284 *	ata_sff_set_devctl - Write device control reg
 285 *	@ap: port where the device is
 286 *	@ctl: value to write
 287 *
 288 *	Writes ATA taskfile device control register.
 289 *
 290 *	Note: may NOT be used as the sff_set_devctl() entry in
 291 *	ata_port_operations.
 292 *
 293 *	LOCKING:
 294 *	Inherited from caller.
 295 */
 296static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
 297{
 298	if (ap->ops->sff_set_devctl)
 299		ap->ops->sff_set_devctl(ap, ctl);
 300	else
 
 
 301		iowrite8(ctl, ap->ioaddr.ctl_addr);
 
 
 
 
 302}
 303
 304/**
 305 *	ata_sff_dev_select - Select device 0/1 on ATA bus
 306 *	@ap: ATA channel to manipulate
 307 *	@device: ATA device (numbered from zero) to select
 308 *
 309 *	Use the method defined in the ATA specification to
 310 *	make either device 0, or device 1, active on the
 311 *	ATA channel.  Works with both PIO and MMIO.
 312 *
 313 *	May be used as the dev_select() entry in ata_port_operations.
 314 *
 315 *	LOCKING:
 316 *	caller.
 317 */
 318void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
 319{
 320	u8 tmp;
 321
 322	if (device == 0)
 323		tmp = ATA_DEVICE_OBS;
 324	else
 325		tmp = ATA_DEVICE_OBS | ATA_DEV1;
 326
 327	iowrite8(tmp, ap->ioaddr.device_addr);
 328	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
 329}
 330EXPORT_SYMBOL_GPL(ata_sff_dev_select);
 331
 332/**
 333 *	ata_dev_select - Select device 0/1 on ATA bus
 334 *	@ap: ATA channel to manipulate
 335 *	@device: ATA device (numbered from zero) to select
 336 *	@wait: non-zero to wait for Status register BSY bit to clear
 337 *	@can_sleep: non-zero if context allows sleeping
 338 *
 339 *	Use the method defined in the ATA specification to
 340 *	make either device 0, or device 1, active on the
 341 *	ATA channel.
 342 *
 343 *	This is a high-level version of ata_sff_dev_select(), which
 344 *	additionally provides the services of inserting the proper
 345 *	pauses and status polling, where needed.
 346 *
 347 *	LOCKING:
 348 *	caller.
 349 */
 350static void ata_dev_select(struct ata_port *ap, unsigned int device,
 351			   unsigned int wait, unsigned int can_sleep)
 352{
 353	if (ata_msg_probe(ap))
 354		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
 355			      device, wait);
 356
 357	if (wait)
 358		ata_wait_idle(ap);
 359
 360	ap->ops->sff_dev_select(ap, device);
 361
 362	if (wait) {
 363		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
 364			ata_msleep(ap, 150);
 365		ata_wait_idle(ap);
 366	}
 367}
 368
 369/**
 370 *	ata_sff_irq_on - Enable interrupts on a port.
 371 *	@ap: Port on which interrupts are enabled.
 372 *
 373 *	Enable interrupts on a legacy IDE device using MMIO or PIO,
 374 *	wait for idle, clear any pending interrupts.
 375 *
 376 *	Note: may NOT be used as the sff_irq_on() entry in
 377 *	ata_port_operations.
 378 *
 379 *	LOCKING:
 380 *	Inherited from caller.
 381 */
 382void ata_sff_irq_on(struct ata_port *ap)
 383{
 384	struct ata_ioports *ioaddr = &ap->ioaddr;
 385
 386	if (ap->ops->sff_irq_on) {
 387		ap->ops->sff_irq_on(ap);
 388		return;
 389	}
 390
 391	ap->ctl &= ~ATA_NIEN;
 392	ap->last_ctl = ap->ctl;
 393
 394	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
 395		ata_sff_set_devctl(ap, ap->ctl);
 396	ata_wait_idle(ap);
 397
 398	if (ap->ops->sff_irq_clear)
 399		ap->ops->sff_irq_clear(ap);
 400}
 401EXPORT_SYMBOL_GPL(ata_sff_irq_on);
 402
 403/**
 404 *	ata_sff_tf_load - send taskfile registers to host controller
 405 *	@ap: Port to which output is sent
 406 *	@tf: ATA taskfile register set
 407 *
 408 *	Outputs ATA taskfile to standard ATA host controller.
 409 *
 410 *	LOCKING:
 411 *	Inherited from caller.
 412 */
 413void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
 414{
 415	struct ata_ioports *ioaddr = &ap->ioaddr;
 416	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 417
 418	if (tf->ctl != ap->last_ctl) {
 419		if (ioaddr->ctl_addr)
 420			iowrite8(tf->ctl, ioaddr->ctl_addr);
 421		ap->last_ctl = tf->ctl;
 422		ata_wait_idle(ap);
 423	}
 424
 425	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 426		WARN_ON_ONCE(!ioaddr->ctl_addr);
 427		iowrite8(tf->hob_feature, ioaddr->feature_addr);
 428		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
 429		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
 430		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
 431		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
 432		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
 433			tf->hob_feature,
 434			tf->hob_nsect,
 435			tf->hob_lbal,
 436			tf->hob_lbam,
 437			tf->hob_lbah);
 438	}
 439
 440	if (is_addr) {
 441		iowrite8(tf->feature, ioaddr->feature_addr);
 442		iowrite8(tf->nsect, ioaddr->nsect_addr);
 443		iowrite8(tf->lbal, ioaddr->lbal_addr);
 444		iowrite8(tf->lbam, ioaddr->lbam_addr);
 445		iowrite8(tf->lbah, ioaddr->lbah_addr);
 446		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
 447			tf->feature,
 448			tf->nsect,
 449			tf->lbal,
 450			tf->lbam,
 451			tf->lbah);
 452	}
 453
 454	if (tf->flags & ATA_TFLAG_DEVICE) {
 455		iowrite8(tf->device, ioaddr->device_addr);
 456		VPRINTK("device 0x%X\n", tf->device);
 457	}
 458
 459	ata_wait_idle(ap);
 460}
 461EXPORT_SYMBOL_GPL(ata_sff_tf_load);
 462
 463/**
 464 *	ata_sff_tf_read - input device's ATA taskfile shadow registers
 465 *	@ap: Port from which input is read
 466 *	@tf: ATA taskfile register set for storing input
 467 *
 468 *	Reads ATA taskfile registers for currently-selected device
 469 *	into @tf. Assumes the device has a fully SFF compliant task file
 470 *	layout and behaviour. If you device does not (eg has a different
 471 *	status method) then you will need to provide a replacement tf_read
 472 *
 473 *	LOCKING:
 474 *	Inherited from caller.
 475 */
 476void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
 477{
 478	struct ata_ioports *ioaddr = &ap->ioaddr;
 479
 480	tf->command = ata_sff_check_status(ap);
 481	tf->feature = ioread8(ioaddr->error_addr);
 482	tf->nsect = ioread8(ioaddr->nsect_addr);
 483	tf->lbal = ioread8(ioaddr->lbal_addr);
 484	tf->lbam = ioread8(ioaddr->lbam_addr);
 485	tf->lbah = ioread8(ioaddr->lbah_addr);
 486	tf->device = ioread8(ioaddr->device_addr);
 487
 488	if (tf->flags & ATA_TFLAG_LBA48) {
 489		if (likely(ioaddr->ctl_addr)) {
 490			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
 491			tf->hob_feature = ioread8(ioaddr->error_addr);
 492			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
 493			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
 494			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
 495			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
 496			iowrite8(tf->ctl, ioaddr->ctl_addr);
 497			ap->last_ctl = tf->ctl;
 498		} else
 499			WARN_ON_ONCE(1);
 500	}
 501}
 502EXPORT_SYMBOL_GPL(ata_sff_tf_read);
 503
 504/**
 505 *	ata_sff_exec_command - issue ATA command to host controller
 506 *	@ap: port to which command is being issued
 507 *	@tf: ATA taskfile register set
 508 *
 509 *	Issues ATA command, with proper synchronization with interrupt
 510 *	handler / other threads.
 511 *
 512 *	LOCKING:
 513 *	spin_lock_irqsave(host lock)
 514 */
 515void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
 516{
 517	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
 518
 519	iowrite8(tf->command, ap->ioaddr.command_addr);
 520	ata_sff_pause(ap);
 521}
 522EXPORT_SYMBOL_GPL(ata_sff_exec_command);
 523
 524/**
 525 *	ata_tf_to_host - issue ATA taskfile to host controller
 526 *	@ap: port to which command is being issued
 527 *	@tf: ATA taskfile register set
 
 528 *
 529 *	Issues ATA taskfile register set to ATA host controller,
 530 *	with proper synchronization with interrupt handler and
 531 *	other threads.
 532 *
 533 *	LOCKING:
 534 *	spin_lock_irqsave(host lock)
 535 */
 536static inline void ata_tf_to_host(struct ata_port *ap,
 537				  const struct ata_taskfile *tf)
 
 538{
 
 539	ap->ops->sff_tf_load(ap, tf);
 
 540	ap->ops->sff_exec_command(ap, tf);
 541}
 542
 543/**
 544 *	ata_sff_data_xfer - Transfer data by PIO
 545 *	@dev: device to target
 546 *	@buf: data buffer
 547 *	@buflen: buffer length
 548 *	@rw: read/write
 549 *
 550 *	Transfer data from/to the device data register by PIO.
 551 *
 552 *	LOCKING:
 553 *	Inherited from caller.
 554 *
 555 *	RETURNS:
 556 *	Bytes consumed.
 557 */
 558unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
 559			       unsigned int buflen, int rw)
 560{
 561	struct ata_port *ap = dev->link->ap;
 562	void __iomem *data_addr = ap->ioaddr.data_addr;
 563	unsigned int words = buflen >> 1;
 564
 565	/* Transfer multiple of 2 bytes */
 566	if (rw == READ)
 567		ioread16_rep(data_addr, buf, words);
 568	else
 569		iowrite16_rep(data_addr, buf, words);
 570
 571	/* Transfer trailing byte, if any. */
 572	if (unlikely(buflen & 0x01)) {
 573		unsigned char pad[2] = { };
 574
 575		/* Point buf to the tail of buffer */
 576		buf += buflen - 1;
 577
 578		/*
 579		 * Use io*16_rep() accessors here as well to avoid pointlessly
 580		 * swapping bytes to and from on the big endian machines...
 581		 */
 582		if (rw == READ) {
 583			ioread16_rep(data_addr, pad, 1);
 584			*buf = pad[0];
 585		} else {
 586			pad[0] = *buf;
 587			iowrite16_rep(data_addr, pad, 1);
 588		}
 589		words++;
 590	}
 591
 592	return words << 1;
 593}
 594EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
 595
 596/**
 597 *	ata_sff_data_xfer32 - Transfer data by PIO
 598 *	@dev: device to target
 599 *	@buf: data buffer
 600 *	@buflen: buffer length
 601 *	@rw: read/write
 602 *
 603 *	Transfer data from/to the device data register by PIO using 32bit
 604 *	I/O operations.
 605 *
 606 *	LOCKING:
 607 *	Inherited from caller.
 608 *
 609 *	RETURNS:
 610 *	Bytes consumed.
 611 */
 612
 613unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
 614			       unsigned int buflen, int rw)
 615{
 
 616	struct ata_port *ap = dev->link->ap;
 617	void __iomem *data_addr = ap->ioaddr.data_addr;
 618	unsigned int words = buflen >> 2;
 619	int slop = buflen & 3;
 620
 621	if (!(ap->pflags & ATA_PFLAG_PIO32))
 622		return ata_sff_data_xfer(dev, buf, buflen, rw);
 623
 624	/* Transfer multiple of 4 bytes */
 625	if (rw == READ)
 626		ioread32_rep(data_addr, buf, words);
 627	else
 628		iowrite32_rep(data_addr, buf, words);
 629
 630	/* Transfer trailing bytes, if any */
 631	if (unlikely(slop)) {
 632		unsigned char pad[4] = { };
 633
 634		/* Point buf to the tail of buffer */
 635		buf += buflen - slop;
 636
 637		/*
 638		 * Use io*_rep() accessors here as well to avoid pointlessly
 639		 * swapping bytes to and from on the big endian machines...
 640		 */
 641		if (rw == READ) {
 642			if (slop < 3)
 643				ioread16_rep(data_addr, pad, 1);
 644			else
 645				ioread32_rep(data_addr, pad, 1);
 646			memcpy(buf, pad, slop);
 647		} else {
 648			memcpy(pad, buf, slop);
 649			if (slop < 3)
 650				iowrite16_rep(data_addr, pad, 1);
 651			else
 652				iowrite32_rep(data_addr, pad, 1);
 653		}
 654	}
 655	return (buflen + 1) & ~1;
 656}
 657EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
 658
 659/**
 660 *	ata_sff_data_xfer_noirq - Transfer data by PIO
 661 *	@dev: device to target
 662 *	@buf: data buffer
 663 *	@buflen: buffer length
 664 *	@rw: read/write
 665 *
 666 *	Transfer data from/to the device data register by PIO. Do the
 667 *	transfer with interrupts disabled.
 668 *
 669 *	LOCKING:
 670 *	Inherited from caller.
 671 *
 672 *	RETURNS:
 673 *	Bytes consumed.
 674 */
 675unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
 676				     unsigned int buflen, int rw)
 677{
 678	unsigned long flags;
 679	unsigned int consumed;
 680
 681	local_irq_save(flags);
 682	consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
 683	local_irq_restore(flags);
 684
 685	return consumed;
 
 686}
 687EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
 688
 689/**
 690 *	ata_pio_sector - Transfer a sector of data.
 691 *	@qc: Command on going
 692 *
 693 *	Transfer qc->sect_size bytes of data from/to the ATA device.
 694 *
 695 *	LOCKING:
 696 *	Inherited from caller.
 697 */
 698static void ata_pio_sector(struct ata_queued_cmd *qc)
 699{
 700	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 701	struct ata_port *ap = qc->ap;
 702	struct page *page;
 703	unsigned int offset;
 704	unsigned char *buf;
 705
 
 
 
 
 706	if (qc->curbytes == qc->nbytes - qc->sect_size)
 707		ap->hsm_task_state = HSM_ST_LAST;
 708
 709	page = sg_page(qc->cursg);
 710	offset = qc->cursg->offset + qc->cursg_ofs;
 711
 712	/* get the current page and offset */
 713	page = nth_page(page, (offset >> PAGE_SHIFT));
 714	offset %= PAGE_SIZE;
 715
 716	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 717
 718	if (PageHighMem(page)) {
 719		unsigned long flags;
 720
 721		/* FIXME: use a bounce buffer */
 722		local_irq_save(flags);
 723		buf = kmap_atomic(page);
 724
 725		/* do the actual data transfer */
 726		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
 727				       do_write);
 728
 729		kunmap_atomic(buf);
 730		local_irq_restore(flags);
 
 
 
 
 
 731	} else {
 732		buf = page_address(page);
 733		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
 734				       do_write);
 735	}
 736
 737	if (!do_write && !PageSlab(page))
 738		flush_dcache_page(page);
 739
 740	qc->curbytes += qc->sect_size;
 741	qc->cursg_ofs += qc->sect_size;
 742
 743	if (qc->cursg_ofs == qc->cursg->length) {
 744		qc->cursg = sg_next(qc->cursg);
 
 
 745		qc->cursg_ofs = 0;
 746	}
 747}
 748
 749/**
 750 *	ata_pio_sectors - Transfer one or many sectors.
 751 *	@qc: Command on going
 752 *
 753 *	Transfer one or many sectors of data from/to the
 754 *	ATA device for the DRQ request.
 755 *
 756 *	LOCKING:
 757 *	Inherited from caller.
 758 */
 759static void ata_pio_sectors(struct ata_queued_cmd *qc)
 760{
 761	if (is_multi_taskfile(&qc->tf)) {
 762		/* READ/WRITE MULTIPLE */
 763		unsigned int nsect;
 764
 765		WARN_ON_ONCE(qc->dev->multi_count == 0);
 766
 767		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
 768			    qc->dev->multi_count);
 769		while (nsect--)
 770			ata_pio_sector(qc);
 771	} else
 772		ata_pio_sector(qc);
 773
 774	ata_sff_sync(qc->ap); /* flush */
 775}
 776
 777/**
 778 *	atapi_send_cdb - Write CDB bytes to hardware
 779 *	@ap: Port to which ATAPI device is attached.
 780 *	@qc: Taskfile currently active
 781 *
 782 *	When device has indicated its readiness to accept
 783 *	a CDB, this function is called.  Send the CDB.
 784 *
 785 *	LOCKING:
 786 *	caller.
 787 */
 788static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
 789{
 790	/* send SCSI cdb */
 791	DPRINTK("send cdb\n");
 792	WARN_ON_ONCE(qc->dev->cdb_len < 12);
 793
 794	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
 795	ata_sff_sync(ap);
 796	/* FIXME: If the CDB is for DMA do we need to do the transition delay
 797	   or is bmdma_start guaranteed to do it ? */
 798	switch (qc->tf.protocol) {
 799	case ATAPI_PROT_PIO:
 800		ap->hsm_task_state = HSM_ST;
 801		break;
 802	case ATAPI_PROT_NODATA:
 803		ap->hsm_task_state = HSM_ST_LAST;
 804		break;
 805#ifdef CONFIG_ATA_BMDMA
 806	case ATAPI_PROT_DMA:
 807		ap->hsm_task_state = HSM_ST_LAST;
 808		/* initiate bmdma */
 
 809		ap->ops->bmdma_start(qc);
 810		break;
 811#endif /* CONFIG_ATA_BMDMA */
 812	default:
 813		BUG();
 814	}
 815}
 816
 817/**
 818 *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
 819 *	@qc: Command on going
 820 *	@bytes: number of bytes
 821 *
 822 *	Transfer Transfer data from/to the ATAPI device.
 823 *
 824 *	LOCKING:
 825 *	Inherited from caller.
 826 *
 827 */
 828static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
 829{
 830	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
 831	struct ata_port *ap = qc->ap;
 832	struct ata_device *dev = qc->dev;
 833	struct ata_eh_info *ehi = &dev->link->eh_info;
 834	struct scatterlist *sg;
 835	struct page *page;
 836	unsigned char *buf;
 837	unsigned int offset, count, consumed;
 838
 839next_sg:
 840	sg = qc->cursg;
 841	if (unlikely(!sg)) {
 842		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
 843				  "buf=%u cur=%u bytes=%u",
 844				  qc->nbytes, qc->curbytes, bytes);
 845		return -1;
 846	}
 847
 848	page = sg_page(sg);
 849	offset = sg->offset + qc->cursg_ofs;
 850
 851	/* get the current page and offset */
 852	page = nth_page(page, (offset >> PAGE_SHIFT));
 853	offset %= PAGE_SIZE;
 854
 855	/* don't overrun current sg */
 856	count = min(sg->length - qc->cursg_ofs, bytes);
 857
 858	/* don't cross page boundaries */
 859	count = min(count, (unsigned int)PAGE_SIZE - offset);
 860
 861	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
 862
 863	if (PageHighMem(page)) {
 864		unsigned long flags;
 865
 866		/* FIXME: use bounce buffer */
 867		local_irq_save(flags);
 868		buf = kmap_atomic(page);
 869
 870		/* do the actual data transfer */
 871		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
 872								count, rw);
 873
 874		kunmap_atomic(buf);
 875		local_irq_restore(flags);
 876	} else {
 877		buf = page_address(page);
 878		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
 879								count, rw);
 880	}
 881
 882	bytes -= min(bytes, consumed);
 883	qc->curbytes += count;
 884	qc->cursg_ofs += count;
 885
 886	if (qc->cursg_ofs == sg->length) {
 887		qc->cursg = sg_next(qc->cursg);
 888		qc->cursg_ofs = 0;
 889	}
 890
 891	/*
 892	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
 893	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
 894	 * check correctly as it doesn't know if it is the last request being
 895	 * made. Somebody should implement a proper sanity check.
 896	 */
 897	if (bytes)
 898		goto next_sg;
 899	return 0;
 900}
 901
 902/**
 903 *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
 904 *	@qc: Command on going
 905 *
 906 *	Transfer Transfer data from/to the ATAPI device.
 907 *
 908 *	LOCKING:
 909 *	Inherited from caller.
 910 */
 911static void atapi_pio_bytes(struct ata_queued_cmd *qc)
 912{
 913	struct ata_port *ap = qc->ap;
 914	struct ata_device *dev = qc->dev;
 915	struct ata_eh_info *ehi = &dev->link->eh_info;
 916	unsigned int ireason, bc_lo, bc_hi, bytes;
 917	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
 918
 919	/* Abuse qc->result_tf for temp storage of intermediate TF
 920	 * here to save some kernel stack usage.
 921	 * For normal completion, qc->result_tf is not relevant. For
 922	 * error, qc->result_tf is later overwritten by ata_qc_complete().
 923	 * So, the correctness of qc->result_tf is not affected.
 924	 */
 925	ap->ops->sff_tf_read(ap, &qc->result_tf);
 926	ireason = qc->result_tf.nsect;
 927	bc_lo = qc->result_tf.lbam;
 928	bc_hi = qc->result_tf.lbah;
 929	bytes = (bc_hi << 8) | bc_lo;
 930
 931	/* shall be cleared to zero, indicating xfer of data */
 932	if (unlikely(ireason & ATAPI_COD))
 933		goto atapi_check;
 934
 935	/* make sure transfer direction matches expected */
 936	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
 937	if (unlikely(do_write != i_write))
 938		goto atapi_check;
 939
 940	if (unlikely(!bytes))
 941		goto atapi_check;
 942
 943	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
 944
 945	if (unlikely(__atapi_pio_bytes(qc, bytes)))
 946		goto err_out;
 947	ata_sff_sync(ap); /* flush */
 948
 949	return;
 950
 951 atapi_check:
 952	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
 953			  ireason, bytes);
 954 err_out:
 955	qc->err_mask |= AC_ERR_HSM;
 956	ap->hsm_task_state = HSM_ST_ERR;
 957}
 958
 959/**
 960 *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
 961 *	@ap: the target ata_port
 962 *	@qc: qc on going
 963 *
 964 *	RETURNS:
 965 *	1 if ok in workqueue, 0 otherwise.
 966 */
 967static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
 968						struct ata_queued_cmd *qc)
 969{
 970	if (qc->tf.flags & ATA_TFLAG_POLLING)
 971		return 1;
 972
 973	if (ap->hsm_task_state == HSM_ST_FIRST) {
 974		if (qc->tf.protocol == ATA_PROT_PIO &&
 975		   (qc->tf.flags & ATA_TFLAG_WRITE))
 976		    return 1;
 977
 978		if (ata_is_atapi(qc->tf.protocol) &&
 979		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 980			return 1;
 981	}
 982
 983	return 0;
 984}
 985
 986/**
 987 *	ata_hsm_qc_complete - finish a qc running on standard HSM
 988 *	@qc: Command to complete
 989 *	@in_wq: 1 if called from workqueue, 0 otherwise
 990 *
 991 *	Finish @qc which is running on standard HSM.
 992 *
 993 *	LOCKING:
 994 *	If @in_wq is zero, spin_lock_irqsave(host lock).
 995 *	Otherwise, none on entry and grabs host lock.
 996 */
 997static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
 998{
 999	struct ata_port *ap = qc->ap;
1000
1001	if (ap->ops->error_handler) {
1002		if (in_wq) {
1003			/* EH might have kicked in while host lock is
1004			 * released.
1005			 */
1006			qc = ata_qc_from_tag(ap, qc->tag);
1007			if (qc) {
1008				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1009					ata_sff_irq_on(ap);
1010					ata_qc_complete(qc);
1011				} else
1012					ata_port_freeze(ap);
1013			}
1014		} else {
1015			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1016				ata_qc_complete(qc);
1017			else
1018				ata_port_freeze(ap);
1019		}
1020	} else {
1021		if (in_wq) {
1022			ata_sff_irq_on(ap);
1023			ata_qc_complete(qc);
1024		} else
1025			ata_qc_complete(qc);
 
 
1026	}
1027}
1028
1029/**
1030 *	ata_sff_hsm_move - move the HSM to the next state.
1031 *	@ap: the target ata_port
1032 *	@qc: qc on going
1033 *	@status: current device status
1034 *	@in_wq: 1 if called from workqueue, 0 otherwise
1035 *
1036 *	RETURNS:
1037 *	1 when poll next status needed, 0 otherwise.
1038 */
1039int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1040		     u8 status, int in_wq)
1041{
1042	struct ata_link *link = qc->dev->link;
1043	struct ata_eh_info *ehi = &link->eh_info;
1044	int poll_next;
1045
1046	lockdep_assert_held(ap->lock);
1047
1048	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1049
1050	/* Make sure ata_sff_qc_issue() does not throw things
1051	 * like DMA polling into the workqueue. Notice that
1052	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1053	 */
1054	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1055
1056fsm_start:
1057	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1058		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1059
1060	switch (ap->hsm_task_state) {
1061	case HSM_ST_FIRST:
1062		/* Send first data block or PACKET CDB */
1063
1064		/* If polling, we will stay in the work queue after
1065		 * sending the data. Otherwise, interrupt handler
1066		 * takes over after sending the data.
1067		 */
1068		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1069
1070		/* check device status */
1071		if (unlikely((status & ATA_DRQ) == 0)) {
1072			/* handle BSY=0, DRQ=0 as error */
1073			if (likely(status & (ATA_ERR | ATA_DF)))
1074				/* device stops HSM for abort/error */
1075				qc->err_mask |= AC_ERR_DEV;
1076			else {
1077				/* HSM violation. Let EH handle this */
1078				ata_ehi_push_desc(ehi,
1079					"ST_FIRST: !(DRQ|ERR|DF)");
1080				qc->err_mask |= AC_ERR_HSM;
1081			}
1082
1083			ap->hsm_task_state = HSM_ST_ERR;
1084			goto fsm_start;
1085		}
1086
1087		/* Device should not ask for data transfer (DRQ=1)
1088		 * when it finds something wrong.
1089		 * We ignore DRQ here and stop the HSM by
1090		 * changing hsm_task_state to HSM_ST_ERR and
1091		 * let the EH abort the command or reset the device.
1092		 */
1093		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1094			/* Some ATAPI tape drives forget to clear the ERR bit
1095			 * when doing the next command (mostly request sense).
1096			 * We ignore ERR here to workaround and proceed sending
1097			 * the CDB.
1098			 */
1099			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1100				ata_ehi_push_desc(ehi, "ST_FIRST: "
1101					"DRQ=1 with device error, "
1102					"dev_stat 0x%X", status);
1103				qc->err_mask |= AC_ERR_HSM;
1104				ap->hsm_task_state = HSM_ST_ERR;
1105				goto fsm_start;
1106			}
1107		}
1108
1109		if (qc->tf.protocol == ATA_PROT_PIO) {
1110			/* PIO data out protocol.
1111			 * send first data block.
1112			 */
1113
1114			/* ata_pio_sectors() might change the state
1115			 * to HSM_ST_LAST. so, the state is changed here
1116			 * before ata_pio_sectors().
1117			 */
1118			ap->hsm_task_state = HSM_ST;
1119			ata_pio_sectors(qc);
1120		} else
1121			/* send CDB */
1122			atapi_send_cdb(ap, qc);
1123
1124		/* if polling, ata_sff_pio_task() handles the rest.
1125		 * otherwise, interrupt handler takes over from here.
1126		 */
1127		break;
1128
1129	case HSM_ST:
1130		/* complete command or read/write the data register */
1131		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1132			/* ATAPI PIO protocol */
1133			if ((status & ATA_DRQ) == 0) {
1134				/* No more data to transfer or device error.
1135				 * Device error will be tagged in HSM_ST_LAST.
1136				 */
1137				ap->hsm_task_state = HSM_ST_LAST;
1138				goto fsm_start;
1139			}
1140
1141			/* Device should not ask for data transfer (DRQ=1)
1142			 * when it finds something wrong.
1143			 * We ignore DRQ here and stop the HSM by
1144			 * changing hsm_task_state to HSM_ST_ERR and
1145			 * let the EH abort the command or reset the device.
1146			 */
1147			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1148				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1149					"DRQ=1 with device error, "
1150					"dev_stat 0x%X", status);
1151				qc->err_mask |= AC_ERR_HSM;
1152				ap->hsm_task_state = HSM_ST_ERR;
1153				goto fsm_start;
1154			}
1155
1156			atapi_pio_bytes(qc);
1157
1158			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1159				/* bad ireason reported by device */
1160				goto fsm_start;
1161
1162		} else {
1163			/* ATA PIO protocol */
1164			if (unlikely((status & ATA_DRQ) == 0)) {
1165				/* handle BSY=0, DRQ=0 as error */
1166				if (likely(status & (ATA_ERR | ATA_DF))) {
1167					/* device stops HSM for abort/error */
1168					qc->err_mask |= AC_ERR_DEV;
1169
1170					/* If diagnostic failed and this is
1171					 * IDENTIFY, it's likely a phantom
1172					 * device.  Mark hint.
1173					 */
1174					if (qc->dev->horkage &
1175					    ATA_HORKAGE_DIAGNOSTIC)
1176						qc->err_mask |=
1177							AC_ERR_NODEV_HINT;
1178				} else {
1179					/* HSM violation. Let EH handle this.
1180					 * Phantom devices also trigger this
1181					 * condition.  Mark hint.
1182					 */
1183					ata_ehi_push_desc(ehi, "ST-ATA: "
1184						"DRQ=0 without device error, "
1185						"dev_stat 0x%X", status);
1186					qc->err_mask |= AC_ERR_HSM |
1187							AC_ERR_NODEV_HINT;
1188				}
1189
1190				ap->hsm_task_state = HSM_ST_ERR;
1191				goto fsm_start;
1192			}
1193
1194			/* For PIO reads, some devices may ask for
1195			 * data transfer (DRQ=1) alone with ERR=1.
1196			 * We respect DRQ here and transfer one
1197			 * block of junk data before changing the
1198			 * hsm_task_state to HSM_ST_ERR.
1199			 *
1200			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1201			 * sense since the data block has been
1202			 * transferred to the device.
1203			 */
1204			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1205				/* data might be corrputed */
1206				qc->err_mask |= AC_ERR_DEV;
1207
1208				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1209					ata_pio_sectors(qc);
1210					status = ata_wait_idle(ap);
1211				}
1212
1213				if (status & (ATA_BUSY | ATA_DRQ)) {
1214					ata_ehi_push_desc(ehi, "ST-ATA: "
1215						"BUSY|DRQ persists on ERR|DF, "
1216						"dev_stat 0x%X", status);
1217					qc->err_mask |= AC_ERR_HSM;
1218				}
1219
1220				/* There are oddball controllers with
1221				 * status register stuck at 0x7f and
1222				 * lbal/m/h at zero which makes it
1223				 * pass all other presence detection
1224				 * mechanisms we have.  Set NODEV_HINT
1225				 * for it.  Kernel bz#7241.
1226				 */
1227				if (status == 0x7f)
1228					qc->err_mask |= AC_ERR_NODEV_HINT;
1229
1230				/* ata_pio_sectors() might change the
1231				 * state to HSM_ST_LAST. so, the state
1232				 * is changed after ata_pio_sectors().
1233				 */
1234				ap->hsm_task_state = HSM_ST_ERR;
1235				goto fsm_start;
1236			}
1237
1238			ata_pio_sectors(qc);
1239
1240			if (ap->hsm_task_state == HSM_ST_LAST &&
1241			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1242				/* all data read */
1243				status = ata_wait_idle(ap);
1244				goto fsm_start;
1245			}
1246		}
1247
1248		poll_next = 1;
1249		break;
1250
1251	case HSM_ST_LAST:
1252		if (unlikely(!ata_ok(status))) {
1253			qc->err_mask |= __ac_err_mask(status);
1254			ap->hsm_task_state = HSM_ST_ERR;
1255			goto fsm_start;
1256		}
1257
1258		/* no more data to transfer */
1259		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1260			ap->print_id, qc->dev->devno, status);
1261
1262		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1263
1264		ap->hsm_task_state = HSM_ST_IDLE;
1265
1266		/* complete taskfile transaction */
1267		ata_hsm_qc_complete(qc, in_wq);
1268
1269		poll_next = 0;
1270		break;
1271
1272	case HSM_ST_ERR:
1273		ap->hsm_task_state = HSM_ST_IDLE;
1274
1275		/* complete taskfile transaction */
1276		ata_hsm_qc_complete(qc, in_wq);
1277
1278		poll_next = 0;
1279		break;
1280	default:
1281		poll_next = 0;
1282		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1283		     ap->print_id, ap->hsm_task_state);
1284	}
1285
1286	return poll_next;
1287}
1288EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1289
1290void ata_sff_queue_work(struct work_struct *work)
1291{
1292	queue_work(ata_sff_wq, work);
1293}
1294EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1295
1296void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1297{
1298	queue_delayed_work(ata_sff_wq, dwork, delay);
1299}
1300EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1301
1302void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1303{
1304	struct ata_port *ap = link->ap;
1305
1306	WARN_ON((ap->sff_pio_task_link != NULL) &&
1307		(ap->sff_pio_task_link != link));
1308	ap->sff_pio_task_link = link;
1309
1310	/* may fail if ata_sff_flush_pio_task() in progress */
1311	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1312}
1313EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1314
1315void ata_sff_flush_pio_task(struct ata_port *ap)
1316{
1317	DPRINTK("ENTER\n");
1318
1319	cancel_delayed_work_sync(&ap->sff_pio_task);
1320
1321	/*
1322	 * We wanna reset the HSM state to IDLE.  If we do so without
1323	 * grabbing the port lock, critical sections protected by it which
1324	 * expect the HSM state to stay stable may get surprised.  For
1325	 * example, we may set IDLE in between the time
1326	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1327	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1328	 */
1329	spin_lock_irq(ap->lock);
1330	ap->hsm_task_state = HSM_ST_IDLE;
1331	spin_unlock_irq(ap->lock);
1332
1333	ap->sff_pio_task_link = NULL;
1334
1335	if (ata_msg_ctl(ap))
1336		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1337}
1338
1339static void ata_sff_pio_task(struct work_struct *work)
1340{
1341	struct ata_port *ap =
1342		container_of(work, struct ata_port, sff_pio_task.work);
1343	struct ata_link *link = ap->sff_pio_task_link;
1344	struct ata_queued_cmd *qc;
1345	u8 status;
1346	int poll_next;
1347
1348	spin_lock_irq(ap->lock);
1349
1350	BUG_ON(ap->sff_pio_task_link == NULL);
1351	/* qc can be NULL if timeout occurred */
1352	qc = ata_qc_from_tag(ap, link->active_tag);
1353	if (!qc) {
1354		ap->sff_pio_task_link = NULL;
1355		goto out_unlock;
1356	}
1357
1358fsm_start:
1359	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1360
1361	/*
1362	 * This is purely heuristic.  This is a fast path.
1363	 * Sometimes when we enter, BSY will be cleared in
1364	 * a chk-status or two.  If not, the drive is probably seeking
1365	 * or something.  Snooze for a couple msecs, then
1366	 * chk-status again.  If still busy, queue delayed work.
1367	 */
1368	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1369	if (status & ATA_BUSY) {
1370		spin_unlock_irq(ap->lock);
1371		ata_msleep(ap, 2);
1372		spin_lock_irq(ap->lock);
1373
1374		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1375		if (status & ATA_BUSY) {
1376			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1377			goto out_unlock;
1378		}
1379	}
1380
1381	/*
1382	 * hsm_move() may trigger another command to be processed.
1383	 * clean the link beforehand.
1384	 */
1385	ap->sff_pio_task_link = NULL;
1386	/* move the HSM */
1387	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1388
1389	/* another command or interrupt handler
1390	 * may be running at this point.
1391	 */
1392	if (poll_next)
1393		goto fsm_start;
1394out_unlock:
1395	spin_unlock_irq(ap->lock);
1396}
1397
1398/**
1399 *	ata_sff_qc_issue - issue taskfile to a SFF controller
1400 *	@qc: command to issue to device
1401 *
1402 *	This function issues a PIO or NODATA command to a SFF
1403 *	controller.
1404 *
1405 *	LOCKING:
1406 *	spin_lock_irqsave(host lock)
1407 *
1408 *	RETURNS:
1409 *	Zero on success, AC_ERR_* mask on failure
1410 */
1411unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1412{
1413	struct ata_port *ap = qc->ap;
1414	struct ata_link *link = qc->dev->link;
1415
1416	/* Use polling pio if the LLD doesn't handle
1417	 * interrupt driven pio and atapi CDB interrupt.
1418	 */
1419	if (ap->flags & ATA_FLAG_PIO_POLLING)
1420		qc->tf.flags |= ATA_TFLAG_POLLING;
1421
1422	/* select the device */
1423	ata_dev_select(ap, qc->dev->devno, 1, 0);
1424
1425	/* start the command */
1426	switch (qc->tf.protocol) {
1427	case ATA_PROT_NODATA:
1428		if (qc->tf.flags & ATA_TFLAG_POLLING)
1429			ata_qc_set_polling(qc);
1430
1431		ata_tf_to_host(ap, &qc->tf);
1432		ap->hsm_task_state = HSM_ST_LAST;
1433
1434		if (qc->tf.flags & ATA_TFLAG_POLLING)
1435			ata_sff_queue_pio_task(link, 0);
1436
1437		break;
1438
1439	case ATA_PROT_PIO:
1440		if (qc->tf.flags & ATA_TFLAG_POLLING)
1441			ata_qc_set_polling(qc);
1442
1443		ata_tf_to_host(ap, &qc->tf);
1444
1445		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1446			/* PIO data out protocol */
1447			ap->hsm_task_state = HSM_ST_FIRST;
1448			ata_sff_queue_pio_task(link, 0);
1449
1450			/* always send first data block using the
1451			 * ata_sff_pio_task() codepath.
1452			 */
1453		} else {
1454			/* PIO data in protocol */
1455			ap->hsm_task_state = HSM_ST;
1456
1457			if (qc->tf.flags & ATA_TFLAG_POLLING)
1458				ata_sff_queue_pio_task(link, 0);
1459
1460			/* if polling, ata_sff_pio_task() handles the
1461			 * rest.  otherwise, interrupt handler takes
1462			 * over from here.
1463			 */
1464		}
1465
1466		break;
1467
1468	case ATAPI_PROT_PIO:
1469	case ATAPI_PROT_NODATA:
1470		if (qc->tf.flags & ATA_TFLAG_POLLING)
1471			ata_qc_set_polling(qc);
1472
1473		ata_tf_to_host(ap, &qc->tf);
1474
1475		ap->hsm_task_state = HSM_ST_FIRST;
1476
1477		/* send cdb by polling if no cdb interrupt */
1478		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1479		    (qc->tf.flags & ATA_TFLAG_POLLING))
1480			ata_sff_queue_pio_task(link, 0);
1481		break;
1482
1483	default:
1484		WARN_ON_ONCE(1);
1485		return AC_ERR_SYSTEM;
1486	}
1487
1488	return 0;
1489}
1490EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1491
1492/**
1493 *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1494 *	@qc: qc to fill result TF for
1495 *
1496 *	@qc is finished and result TF needs to be filled.  Fill it
1497 *	using ->sff_tf_read.
1498 *
1499 *	LOCKING:
1500 *	spin_lock_irqsave(host lock)
1501 *
1502 *	RETURNS:
1503 *	true indicating that result TF is successfully filled.
1504 */
1505bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1506{
1507	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1508	return true;
1509}
1510EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1511
1512static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1513{
1514	ap->stats.idle_irq++;
1515
1516#ifdef ATA_IRQ_TRAP
1517	if ((ap->stats.idle_irq % 1000) == 0) {
1518		ap->ops->sff_check_status(ap);
1519		if (ap->ops->sff_irq_clear)
1520			ap->ops->sff_irq_clear(ap);
1521		ata_port_warn(ap, "irq trap\n");
1522		return 1;
1523	}
1524#endif
1525	return 0;	/* irq not handled */
1526}
1527
1528static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1529					struct ata_queued_cmd *qc,
1530					bool hsmv_on_idle)
1531{
1532	u8 status;
1533
1534	VPRINTK("ata%u: protocol %d task_state %d\n",
1535		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1536
1537	/* Check whether we are expecting interrupt in this state */
1538	switch (ap->hsm_task_state) {
1539	case HSM_ST_FIRST:
1540		/* Some pre-ATAPI-4 devices assert INTRQ
1541		 * at this state when ready to receive CDB.
1542		 */
1543
1544		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1545		 * The flag was turned on only for atapi devices.  No
1546		 * need to check ata_is_atapi(qc->tf.protocol) again.
1547		 */
1548		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1549			return ata_sff_idle_irq(ap);
1550		break;
1551	case HSM_ST_IDLE:
1552		return ata_sff_idle_irq(ap);
1553	default:
1554		break;
1555	}
1556
1557	/* check main status, clearing INTRQ if needed */
1558	status = ata_sff_irq_status(ap);
1559	if (status & ATA_BUSY) {
1560		if (hsmv_on_idle) {
1561			/* BMDMA engine is already stopped, we're screwed */
1562			qc->err_mask |= AC_ERR_HSM;
1563			ap->hsm_task_state = HSM_ST_ERR;
1564		} else
1565			return ata_sff_idle_irq(ap);
1566	}
1567
1568	/* clear irq events */
1569	if (ap->ops->sff_irq_clear)
1570		ap->ops->sff_irq_clear(ap);
1571
1572	ata_sff_hsm_move(ap, qc, status, 0);
1573
1574	return 1;	/* irq handled */
1575}
1576
1577/**
1578 *	ata_sff_port_intr - Handle SFF port interrupt
1579 *	@ap: Port on which interrupt arrived (possibly...)
1580 *	@qc: Taskfile currently active in engine
1581 *
1582 *	Handle port interrupt for given queued command.
1583 *
1584 *	LOCKING:
1585 *	spin_lock_irqsave(host lock)
1586 *
1587 *	RETURNS:
1588 *	One if interrupt was handled, zero if not (shared irq).
1589 */
1590unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1591{
1592	return __ata_sff_port_intr(ap, qc, false);
1593}
1594EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1595
1596static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1597	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1598{
1599	struct ata_host *host = dev_instance;
1600	bool retried = false;
1601	unsigned int i;
1602	unsigned int handled, idle, polling;
1603	unsigned long flags;
1604
1605	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1606	spin_lock_irqsave(&host->lock, flags);
1607
1608retry:
1609	handled = idle = polling = 0;
1610	for (i = 0; i < host->n_ports; i++) {
1611		struct ata_port *ap = host->ports[i];
1612		struct ata_queued_cmd *qc;
1613
1614		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1615		if (qc) {
1616			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1617				handled |= port_intr(ap, qc);
1618			else
1619				polling |= 1 << i;
1620		} else
1621			idle |= 1 << i;
1622	}
1623
1624	/*
1625	 * If no port was expecting IRQ but the controller is actually
1626	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1627	 * pending status if available and clear spurious IRQ.
1628	 */
1629	if (!handled && !retried) {
1630		bool retry = false;
1631
1632		for (i = 0; i < host->n_ports; i++) {
1633			struct ata_port *ap = host->ports[i];
1634
1635			if (polling & (1 << i))
1636				continue;
1637
1638			if (!ap->ops->sff_irq_check ||
1639			    !ap->ops->sff_irq_check(ap))
1640				continue;
1641
1642			if (idle & (1 << i)) {
1643				ap->ops->sff_check_status(ap);
1644				if (ap->ops->sff_irq_clear)
1645					ap->ops->sff_irq_clear(ap);
1646			} else {
1647				/* clear INTRQ and check if BUSY cleared */
1648				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1649					retry |= true;
1650				/*
1651				 * With command in flight, we can't do
1652				 * sff_irq_clear() w/o racing with completion.
1653				 */
1654			}
1655		}
1656
1657		if (retry) {
1658			retried = true;
1659			goto retry;
1660		}
1661	}
1662
1663	spin_unlock_irqrestore(&host->lock, flags);
1664
1665	return IRQ_RETVAL(handled);
1666}
1667
1668/**
1669 *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1670 *	@irq: irq line (unused)
1671 *	@dev_instance: pointer to our ata_host information structure
1672 *
1673 *	Default interrupt handler for PCI IDE devices.  Calls
1674 *	ata_sff_port_intr() for each port that is not disabled.
1675 *
1676 *	LOCKING:
1677 *	Obtains host lock during operation.
1678 *
1679 *	RETURNS:
1680 *	IRQ_NONE or IRQ_HANDLED.
1681 */
1682irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1683{
1684	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1685}
1686EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1687
1688/**
1689 *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1690 *	@ap: port that appears to have timed out
1691 *
1692 *	Called from the libata error handlers when the core code suspects
1693 *	an interrupt has been lost. If it has complete anything we can and
1694 *	then return. Interface must support altstatus for this faster
1695 *	recovery to occur.
1696 *
1697 *	Locking:
1698 *	Caller holds host lock
1699 */
1700
1701void ata_sff_lost_interrupt(struct ata_port *ap)
1702{
1703	u8 status;
1704	struct ata_queued_cmd *qc;
1705
1706	/* Only one outstanding command per SFF channel */
1707	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1708	/* We cannot lose an interrupt on a non-existent or polled command */
1709	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1710		return;
1711	/* See if the controller thinks it is still busy - if so the command
1712	   isn't a lost IRQ but is still in progress */
1713	status = ata_sff_altstatus(ap);
 
1714	if (status & ATA_BUSY)
1715		return;
1716
1717	/* There was a command running, we are no longer busy and we have
1718	   no interrupt. */
1719	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1720								status);
1721	/* Run the host interrupt logic as if the interrupt had not been
1722	   lost */
1723	ata_sff_port_intr(ap, qc);
1724}
1725EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1726
1727/**
1728 *	ata_sff_freeze - Freeze SFF controller port
1729 *	@ap: port to freeze
1730 *
1731 *	Freeze SFF controller port.
1732 *
1733 *	LOCKING:
1734 *	Inherited from caller.
1735 */
1736void ata_sff_freeze(struct ata_port *ap)
1737{
1738	ap->ctl |= ATA_NIEN;
1739	ap->last_ctl = ap->ctl;
1740
1741	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1742		ata_sff_set_devctl(ap, ap->ctl);
1743
1744	/* Under certain circumstances, some controllers raise IRQ on
1745	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1746	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1747	 */
1748	ap->ops->sff_check_status(ap);
1749
1750	if (ap->ops->sff_irq_clear)
1751		ap->ops->sff_irq_clear(ap);
1752}
1753EXPORT_SYMBOL_GPL(ata_sff_freeze);
1754
1755/**
1756 *	ata_sff_thaw - Thaw SFF controller port
1757 *	@ap: port to thaw
1758 *
1759 *	Thaw SFF controller port.
1760 *
1761 *	LOCKING:
1762 *	Inherited from caller.
1763 */
1764void ata_sff_thaw(struct ata_port *ap)
1765{
1766	/* clear & re-enable interrupts */
1767	ap->ops->sff_check_status(ap);
1768	if (ap->ops->sff_irq_clear)
1769		ap->ops->sff_irq_clear(ap);
1770	ata_sff_irq_on(ap);
1771}
1772EXPORT_SYMBOL_GPL(ata_sff_thaw);
1773
1774/**
1775 *	ata_sff_prereset - prepare SFF link for reset
1776 *	@link: SFF link to be reset
1777 *	@deadline: deadline jiffies for the operation
1778 *
1779 *	SFF link @link is about to be reset.  Initialize it.  It first
1780 *	calls ata_std_prereset() and wait for !BSY if the port is
1781 *	being softreset.
1782 *
1783 *	LOCKING:
1784 *	Kernel thread context (may sleep)
1785 *
1786 *	RETURNS:
1787 *	0 on success, -errno otherwise.
1788 */
1789int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1790{
1791	struct ata_eh_context *ehc = &link->eh_context;
1792	int rc;
1793
1794	rc = ata_std_prereset(link, deadline);
1795	if (rc)
1796		return rc;
1797
1798	/* if we're about to do hardreset, nothing more to do */
1799	if (ehc->i.action & ATA_EH_HARDRESET)
1800		return 0;
1801
1802	/* wait for !BSY if we don't know that no device is attached */
1803	if (!ata_link_offline(link)) {
1804		rc = ata_sff_wait_ready(link, deadline);
1805		if (rc && rc != -ENODEV) {
1806			ata_link_warn(link,
1807				      "device not ready (errno=%d), forcing hardreset\n",
1808				      rc);
1809			ehc->i.action |= ATA_EH_HARDRESET;
1810		}
1811	}
1812
1813	return 0;
1814}
1815EXPORT_SYMBOL_GPL(ata_sff_prereset);
1816
1817/**
1818 *	ata_devchk - PATA device presence detection
1819 *	@ap: ATA channel to examine
1820 *	@device: Device to examine (starting at zero)
1821 *
1822 *	This technique was originally described in
1823 *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1824 *	later found its way into the ATA/ATAPI spec.
1825 *
1826 *	Write a pattern to the ATA shadow registers,
1827 *	and if a device is present, it will respond by
1828 *	correctly storing and echoing back the
1829 *	ATA shadow register contents.
1830 *
 
 
 
1831 *	LOCKING:
1832 *	caller.
1833 */
1834static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1835{
1836	struct ata_ioports *ioaddr = &ap->ioaddr;
1837	u8 nsect, lbal;
1838
1839	ap->ops->sff_dev_select(ap, device);
1840
1841	iowrite8(0x55, ioaddr->nsect_addr);
1842	iowrite8(0xaa, ioaddr->lbal_addr);
1843
1844	iowrite8(0xaa, ioaddr->nsect_addr);
1845	iowrite8(0x55, ioaddr->lbal_addr);
1846
1847	iowrite8(0x55, ioaddr->nsect_addr);
1848	iowrite8(0xaa, ioaddr->lbal_addr);
1849
1850	nsect = ioread8(ioaddr->nsect_addr);
1851	lbal = ioread8(ioaddr->lbal_addr);
1852
1853	if ((nsect == 0x55) && (lbal == 0xaa))
1854		return 1;	/* we found a device */
1855
1856	return 0;		/* nothing found */
1857}
1858
1859/**
1860 *	ata_sff_dev_classify - Parse returned ATA device signature
1861 *	@dev: ATA device to classify (starting at zero)
1862 *	@present: device seems present
1863 *	@r_err: Value of error register on completion
1864 *
1865 *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1866 *	an ATA/ATAPI-defined set of values is placed in the ATA
1867 *	shadow registers, indicating the results of device detection
1868 *	and diagnostics.
1869 *
1870 *	Select the ATA device, and read the values from the ATA shadow
1871 *	registers.  Then parse according to the Error register value,
1872 *	and the spec-defined values examined by ata_dev_classify().
1873 *
1874 *	LOCKING:
1875 *	caller.
1876 *
1877 *	RETURNS:
1878 *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1879 */
1880unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1881				  u8 *r_err)
1882{
1883	struct ata_port *ap = dev->link->ap;
1884	struct ata_taskfile tf;
1885	unsigned int class;
1886	u8 err;
1887
1888	ap->ops->sff_dev_select(ap, dev->devno);
1889
1890	memset(&tf, 0, sizeof(tf));
1891
1892	ap->ops->sff_tf_read(ap, &tf);
1893	err = tf.feature;
1894	if (r_err)
1895		*r_err = err;
1896
1897	/* see if device passed diags: continue and warn later */
1898	if (err == 0)
1899		/* diagnostic fail : do nothing _YET_ */
1900		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1901	else if (err == 1)
1902		/* do nothing */ ;
1903	else if ((dev->devno == 0) && (err == 0x81))
1904		/* do nothing */ ;
1905	else
1906		return ATA_DEV_NONE;
1907
1908	/* determine if device is ATA or ATAPI */
1909	class = ata_dev_classify(&tf);
1910
1911	if (class == ATA_DEV_UNKNOWN) {
1912		/* If the device failed diagnostic, it's likely to
 
1913		 * have reported incorrect device signature too.
1914		 * Assume ATA device if the device seems present but
1915		 * device signature is invalid with diagnostic
1916		 * failure.
1917		 */
1918		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1919			class = ATA_DEV_ATA;
1920		else
1921			class = ATA_DEV_NONE;
1922	} else if ((class == ATA_DEV_ATA) &&
1923		   (ap->ops->sff_check_status(ap) == 0))
1924		class = ATA_DEV_NONE;
1925
 
 
1926	return class;
1927}
1928EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1929
1930/**
1931 *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1932 *	@link: SFF link which is just reset
1933 *	@devmask: mask of present devices
1934 *	@deadline: deadline jiffies for the operation
1935 *
1936 *	Wait devices attached to SFF @link to become ready after
1937 *	reset.  It contains preceding 150ms wait to avoid accessing TF
1938 *	status register too early.
1939 *
1940 *	LOCKING:
1941 *	Kernel thread context (may sleep).
1942 *
1943 *	RETURNS:
1944 *	0 on success, -ENODEV if some or all of devices in @devmask
1945 *	don't seem to exist.  -errno on other errors.
1946 */
1947int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1948			     unsigned long deadline)
1949{
1950	struct ata_port *ap = link->ap;
1951	struct ata_ioports *ioaddr = &ap->ioaddr;
1952	unsigned int dev0 = devmask & (1 << 0);
1953	unsigned int dev1 = devmask & (1 << 1);
1954	int rc, ret = 0;
1955
1956	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1957
1958	/* always check readiness of the master device */
1959	rc = ata_sff_wait_ready(link, deadline);
1960	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1961	 * and TF status is 0xff, bail out on it too.
1962	 */
1963	if (rc)
1964		return rc;
1965
1966	/* if device 1 was found in ata_devchk, wait for register
1967	 * access briefly, then wait for BSY to clear.
1968	 */
1969	if (dev1) {
1970		int i;
1971
1972		ap->ops->sff_dev_select(ap, 1);
1973
1974		/* Wait for register access.  Some ATAPI devices fail
1975		 * to set nsect/lbal after reset, so don't waste too
1976		 * much time on it.  We're gonna wait for !BSY anyway.
1977		 */
1978		for (i = 0; i < 2; i++) {
1979			u8 nsect, lbal;
1980
1981			nsect = ioread8(ioaddr->nsect_addr);
1982			lbal = ioread8(ioaddr->lbal_addr);
1983			if ((nsect == 1) && (lbal == 1))
1984				break;
1985			ata_msleep(ap, 50);	/* give drive a breather */
1986		}
1987
1988		rc = ata_sff_wait_ready(link, deadline);
1989		if (rc) {
1990			if (rc != -ENODEV)
1991				return rc;
1992			ret = rc;
1993		}
1994	}
1995
1996	/* is all this really necessary? */
1997	ap->ops->sff_dev_select(ap, 0);
1998	if (dev1)
1999		ap->ops->sff_dev_select(ap, 1);
2000	if (dev0)
2001		ap->ops->sff_dev_select(ap, 0);
2002
2003	return ret;
2004}
2005EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2006
2007static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2008			     unsigned long deadline)
2009{
2010	struct ata_ioports *ioaddr = &ap->ioaddr;
2011
2012	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2013
2014	if (ap->ioaddr.ctl_addr) {
2015		/* software reset.  causes dev0 to be selected */
2016		iowrite8(ap->ctl, ioaddr->ctl_addr);
2017		udelay(20);	/* FIXME: flush */
2018		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2019		udelay(20);	/* FIXME: flush */
2020		iowrite8(ap->ctl, ioaddr->ctl_addr);
2021		ap->last_ctl = ap->ctl;
2022	}
2023
2024	/* wait the port to become ready */
2025	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2026}
2027
2028/**
2029 *	ata_sff_softreset - reset host port via ATA SRST
2030 *	@link: ATA link to reset
2031 *	@classes: resulting classes of attached devices
2032 *	@deadline: deadline jiffies for the operation
2033 *
2034 *	Reset host port using ATA SRST.
2035 *
2036 *	LOCKING:
2037 *	Kernel thread context (may sleep)
2038 *
2039 *	RETURNS:
2040 *	0 on success, -errno otherwise.
2041 */
2042int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2043		      unsigned long deadline)
2044{
2045	struct ata_port *ap = link->ap;
2046	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2047	unsigned int devmask = 0;
2048	int rc;
2049	u8 err;
2050
2051	DPRINTK("ENTER\n");
2052
2053	/* determine if device 0/1 are present */
2054	if (ata_devchk(ap, 0))
2055		devmask |= (1 << 0);
2056	if (slave_possible && ata_devchk(ap, 1))
2057		devmask |= (1 << 1);
2058
2059	/* select device 0 again */
2060	ap->ops->sff_dev_select(ap, 0);
2061
2062	/* issue bus reset */
2063	DPRINTK("about to softreset, devmask=%x\n", devmask);
2064	rc = ata_bus_softreset(ap, devmask, deadline);
2065	/* if link is occupied, -ENODEV too is an error */
2066	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2067		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2068		return rc;
2069	}
2070
2071	/* determine by signature whether we have ATA or ATAPI devices */
2072	classes[0] = ata_sff_dev_classify(&link->device[0],
2073					  devmask & (1 << 0), &err);
2074	if (slave_possible && err != 0x81)
2075		classes[1] = ata_sff_dev_classify(&link->device[1],
2076						  devmask & (1 << 1), &err);
2077
2078	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2079	return 0;
2080}
2081EXPORT_SYMBOL_GPL(ata_sff_softreset);
2082
2083/**
2084 *	sata_sff_hardreset - reset host port via SATA phy reset
2085 *	@link: link to reset
2086 *	@class: resulting class of attached device
2087 *	@deadline: deadline jiffies for the operation
2088 *
2089 *	SATA phy-reset host port using DET bits of SControl register,
2090 *	wait for !BSY and classify the attached device.
2091 *
2092 *	LOCKING:
2093 *	Kernel thread context (may sleep)
2094 *
2095 *	RETURNS:
2096 *	0 on success, -errno otherwise.
2097 */
2098int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2099		       unsigned long deadline)
2100{
2101	struct ata_eh_context *ehc = &link->eh_context;
2102	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2103	bool online;
2104	int rc;
2105
2106	rc = sata_link_hardreset(link, timing, deadline, &online,
2107				 ata_sff_check_ready);
2108	if (online)
2109		*class = ata_sff_dev_classify(link->device, 1, NULL);
2110
2111	DPRINTK("EXIT, class=%u\n", *class);
2112	return rc;
2113}
2114EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2115
2116/**
2117 *	ata_sff_postreset - SFF postreset callback
2118 *	@link: the target SFF ata_link
2119 *	@classes: classes of attached devices
2120 *
2121 *	This function is invoked after a successful reset.  It first
2122 *	calls ata_std_postreset() and performs SFF specific postreset
2123 *	processing.
2124 *
2125 *	LOCKING:
2126 *	Kernel thread context (may sleep)
2127 */
2128void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2129{
2130	struct ata_port *ap = link->ap;
2131
2132	ata_std_postreset(link, classes);
2133
2134	/* is double-select really necessary? */
2135	if (classes[0] != ATA_DEV_NONE)
2136		ap->ops->sff_dev_select(ap, 1);
2137	if (classes[1] != ATA_DEV_NONE)
2138		ap->ops->sff_dev_select(ap, 0);
2139
2140	/* bail out if no device is present */
2141	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2142		DPRINTK("EXIT, no device\n");
2143		return;
2144	}
2145
2146	/* set up device control */
2147	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2148		ata_sff_set_devctl(ap, ap->ctl);
2149		ap->last_ctl = ap->ctl;
2150	}
2151}
2152EXPORT_SYMBOL_GPL(ata_sff_postreset);
2153
2154/**
2155 *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2156 *	@qc: command
2157 *
2158 *	Drain the FIFO and device of any stuck data following a command
2159 *	failing to complete. In some cases this is necessary before a
2160 *	reset will recover the device.
2161 *
2162 */
2163
2164void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2165{
2166	int count;
2167	struct ata_port *ap;
2168
2169	/* We only need to flush incoming data when a command was running */
2170	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2171		return;
2172
2173	ap = qc->ap;
2174	/* Drain up to 64K of data before we give up this recovery method */
2175	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2176						&& count < 65536; count += 2)
2177		ioread16(ap->ioaddr.data_addr);
2178
2179	/* Can become DEBUG later */
2180	if (count)
2181		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2182
2183}
2184EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2185
2186/**
2187 *	ata_sff_error_handler - Stock error handler for SFF controller
2188 *	@ap: port to handle error for
2189 *
2190 *	Stock error handler for SFF controller.  It can handle both
2191 *	PATA and SATA controllers.  Many controllers should be able to
2192 *	use this EH as-is or with some added handling before and
2193 *	after.
2194 *
2195 *	LOCKING:
2196 *	Kernel thread context (may sleep)
2197 */
2198void ata_sff_error_handler(struct ata_port *ap)
2199{
2200	ata_reset_fn_t softreset = ap->ops->softreset;
2201	ata_reset_fn_t hardreset = ap->ops->hardreset;
2202	struct ata_queued_cmd *qc;
2203	unsigned long flags;
2204
2205	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2206	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2207		qc = NULL;
2208
2209	spin_lock_irqsave(ap->lock, flags);
2210
2211	/*
2212	 * We *MUST* do FIFO draining before we issue a reset as
2213	 * several devices helpfully clear their internal state and
2214	 * will lock solid if we touch the data port post reset. Pass
2215	 * qc in case anyone wants to do different PIO/DMA recovery or
2216	 * has per command fixups
2217	 */
2218	if (ap->ops->sff_drain_fifo)
2219		ap->ops->sff_drain_fifo(qc);
2220
2221	spin_unlock_irqrestore(ap->lock, flags);
2222
2223	/* ignore built-in hardresets if SCR access is not available */
2224	if ((hardreset == sata_std_hardreset ||
2225	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2226		hardreset = NULL;
2227
2228	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2229		  ap->ops->postreset);
2230}
2231EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2232
2233/**
2234 *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2235 *	@ioaddr: IO address structure to be initialized
2236 *
2237 *	Utility function which initializes data_addr, error_addr,
2238 *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2239 *	device_addr, status_addr, and command_addr to standard offsets
2240 *	relative to cmd_addr.
2241 *
2242 *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2243 */
2244void ata_sff_std_ports(struct ata_ioports *ioaddr)
2245{
2246	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2247	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2248	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2249	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2250	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2251	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2252	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2253	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2254	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2255	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2256}
2257EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2258
2259#ifdef CONFIG_PCI
2260
2261static int ata_resources_present(struct pci_dev *pdev, int port)
2262{
2263	int i;
2264
2265	/* Check the PCI resources for this channel are enabled */
2266	port = port * 2;
2267	for (i = 0; i < 2; i++) {
2268		if (pci_resource_start(pdev, port + i) == 0 ||
2269		    pci_resource_len(pdev, port + i) == 0)
2270			return 0;
2271	}
2272	return 1;
2273}
2274
2275/**
2276 *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2277 *	@host: target ATA host
2278 *
2279 *	Acquire native PCI ATA resources for @host and initialize the
2280 *	first two ports of @host accordingly.  Ports marked dummy are
2281 *	skipped and allocation failure makes the port dummy.
2282 *
2283 *	Note that native PCI resources are valid even for legacy hosts
2284 *	as we fix up pdev resources array early in boot, so this
2285 *	function can be used for both native and legacy SFF hosts.
2286 *
2287 *	LOCKING:
2288 *	Inherited from calling layer (may sleep).
2289 *
2290 *	RETURNS:
2291 *	0 if at least one port is initialized, -ENODEV if no port is
2292 *	available.
2293 */
2294int ata_pci_sff_init_host(struct ata_host *host)
2295{
2296	struct device *gdev = host->dev;
2297	struct pci_dev *pdev = to_pci_dev(gdev);
2298	unsigned int mask = 0;
2299	int i, rc;
2300
2301	/* request, iomap BARs and init port addresses accordingly */
2302	for (i = 0; i < 2; i++) {
2303		struct ata_port *ap = host->ports[i];
2304		int base = i * 2;
2305		void __iomem * const *iomap;
2306
2307		if (ata_port_is_dummy(ap))
2308			continue;
2309
2310		/* Discard disabled ports.  Some controllers show
2311		 * their unused channels this way.  Disabled ports are
2312		 * made dummy.
2313		 */
2314		if (!ata_resources_present(pdev, i)) {
2315			ap->ops = &ata_dummy_port_ops;
2316			continue;
2317		}
2318
2319		rc = pcim_iomap_regions(pdev, 0x3 << base,
2320					dev_driver_string(gdev));
2321		if (rc) {
2322			dev_warn(gdev,
2323				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2324				 i, rc);
2325			if (rc == -EBUSY)
2326				pcim_pin_device(pdev);
2327			ap->ops = &ata_dummy_port_ops;
2328			continue;
2329		}
2330		host->iomap = iomap = pcim_iomap_table(pdev);
2331
2332		ap->ioaddr.cmd_addr = iomap[base];
2333		ap->ioaddr.altstatus_addr =
2334		ap->ioaddr.ctl_addr = (void __iomem *)
2335			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2336		ata_sff_std_ports(&ap->ioaddr);
2337
2338		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2339			(unsigned long long)pci_resource_start(pdev, base),
2340			(unsigned long long)pci_resource_start(pdev, base + 1));
2341
2342		mask |= 1 << i;
2343	}
2344
2345	if (!mask) {
2346		dev_err(gdev, "no available native port\n");
2347		return -ENODEV;
2348	}
2349
2350	return 0;
2351}
2352EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2353
2354/**
2355 *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2356 *	@pdev: target PCI device
2357 *	@ppi: array of port_info, must be enough for two ports
2358 *	@r_host: out argument for the initialized ATA host
2359 *
2360 *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2361 *	all PCI resources and initialize it accordingly in one go.
2362 *
2363 *	LOCKING:
2364 *	Inherited from calling layer (may sleep).
2365 *
2366 *	RETURNS:
2367 *	0 on success, -errno otherwise.
2368 */
2369int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2370			     const struct ata_port_info * const *ppi,
2371			     struct ata_host **r_host)
2372{
2373	struct ata_host *host;
2374	int rc;
2375
2376	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2377		return -ENOMEM;
2378
2379	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2380	if (!host) {
2381		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2382		rc = -ENOMEM;
2383		goto err_out;
2384	}
2385
2386	rc = ata_pci_sff_init_host(host);
2387	if (rc)
2388		goto err_out;
2389
2390	devres_remove_group(&pdev->dev, NULL);
2391	*r_host = host;
2392	return 0;
2393
2394err_out:
2395	devres_release_group(&pdev->dev, NULL);
2396	return rc;
2397}
2398EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2399
2400/**
2401 *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2402 *	@host: target SFF ATA host
2403 *	@irq_handler: irq_handler used when requesting IRQ(s)
2404 *	@sht: scsi_host_template to use when registering the host
2405 *
2406 *	This is the counterpart of ata_host_activate() for SFF ATA
2407 *	hosts.  This separate helper is necessary because SFF hosts
2408 *	use two separate interrupts in legacy mode.
2409 *
2410 *	LOCKING:
2411 *	Inherited from calling layer (may sleep).
2412 *
2413 *	RETURNS:
2414 *	0 on success, -errno otherwise.
2415 */
2416int ata_pci_sff_activate_host(struct ata_host *host,
2417			      irq_handler_t irq_handler,
2418			      struct scsi_host_template *sht)
2419{
2420	struct device *dev = host->dev;
2421	struct pci_dev *pdev = to_pci_dev(dev);
2422	const char *drv_name = dev_driver_string(host->dev);
2423	int legacy_mode = 0, rc;
2424
2425	rc = ata_host_start(host);
2426	if (rc)
2427		return rc;
2428
2429	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2430		u8 tmp8, mask;
2431
2432		/* TODO: What if one channel is in native mode ... */
 
 
 
 
 
 
 
2433		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2434		mask = (1 << 2) | (1 << 0);
 
 
 
2435		if ((tmp8 & mask) != mask)
2436			legacy_mode = 1;
2437	}
2438
2439	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2440		return -ENOMEM;
2441
2442	if (!legacy_mode && pdev->irq) {
2443		int i;
2444
2445		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2446				      IRQF_SHARED, drv_name, host);
2447		if (rc)
2448			goto out;
2449
2450		for (i = 0; i < 2; i++) {
2451			if (ata_port_is_dummy(host->ports[i]))
2452				continue;
2453			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2454		}
2455	} else if (legacy_mode) {
2456		if (!ata_port_is_dummy(host->ports[0])) {
2457			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2458					      irq_handler, IRQF_SHARED,
2459					      drv_name, host);
2460			if (rc)
2461				goto out;
2462
2463			ata_port_desc(host->ports[0], "irq %d",
2464				      ATA_PRIMARY_IRQ(pdev));
2465		}
2466
2467		if (!ata_port_is_dummy(host->ports[1])) {
2468			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2469					      irq_handler, IRQF_SHARED,
2470					      drv_name, host);
2471			if (rc)
2472				goto out;
2473
2474			ata_port_desc(host->ports[1], "irq %d",
2475				      ATA_SECONDARY_IRQ(pdev));
2476		}
2477	}
2478
2479	rc = ata_host_register(host, sht);
2480out:
2481	if (rc == 0)
2482		devres_remove_group(dev, NULL);
2483	else
2484		devres_release_group(dev, NULL);
2485
2486	return rc;
2487}
2488EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2489
2490static const struct ata_port_info *ata_sff_find_valid_pi(
2491					const struct ata_port_info * const *ppi)
2492{
2493	int i;
2494
2495	/* look up the first valid port_info */
2496	for (i = 0; i < 2 && ppi[i]; i++)
2497		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2498			return ppi[i];
2499
2500	return NULL;
2501}
2502
2503static int ata_pci_init_one(struct pci_dev *pdev,
2504		const struct ata_port_info * const *ppi,
2505		struct scsi_host_template *sht, void *host_priv,
2506		int hflags, bool bmdma)
2507{
2508	struct device *dev = &pdev->dev;
2509	const struct ata_port_info *pi;
2510	struct ata_host *host = NULL;
2511	int rc;
2512
2513	DPRINTK("ENTER\n");
2514
2515	pi = ata_sff_find_valid_pi(ppi);
2516	if (!pi) {
2517		dev_err(&pdev->dev, "no valid port_info specified\n");
2518		return -EINVAL;
2519	}
2520
2521	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2522		return -ENOMEM;
2523
2524	rc = pcim_enable_device(pdev);
2525	if (rc)
2526		goto out;
2527
2528#ifdef CONFIG_ATA_BMDMA
2529	if (bmdma)
2530		/* prepare and activate BMDMA host */
2531		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2532	else
2533#endif
2534		/* prepare and activate SFF host */
2535		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2536	if (rc)
2537		goto out;
2538	host->private_data = host_priv;
2539	host->flags |= hflags;
2540
2541#ifdef CONFIG_ATA_BMDMA
2542	if (bmdma) {
2543		pci_set_master(pdev);
2544		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2545	} else
2546#endif
2547		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2548out:
2549	if (rc == 0)
2550		devres_remove_group(&pdev->dev, NULL);
2551	else
2552		devres_release_group(&pdev->dev, NULL);
2553
2554	return rc;
2555}
2556
2557/**
2558 *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2559 *	@pdev: Controller to be initialized
2560 *	@ppi: array of port_info, must be enough for two ports
2561 *	@sht: scsi_host_template to use when registering the host
2562 *	@host_priv: host private_data
2563 *	@hflag: host flags
2564 *
2565 *	This is a helper function which can be called from a driver's
2566 *	xxx_init_one() probe function if the hardware uses traditional
2567 *	IDE taskfile registers and is PIO only.
2568 *
2569 *	ASSUMPTION:
2570 *	Nobody makes a single channel controller that appears solely as
2571 *	the secondary legacy port on PCI.
2572 *
2573 *	LOCKING:
2574 *	Inherited from PCI layer (may sleep).
2575 *
2576 *	RETURNS:
2577 *	Zero on success, negative on errno-based value on error.
2578 */
2579int ata_pci_sff_init_one(struct pci_dev *pdev,
2580		 const struct ata_port_info * const *ppi,
2581		 struct scsi_host_template *sht, void *host_priv, int hflag)
2582{
2583	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2584}
2585EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2586
2587#endif /* CONFIG_PCI */
2588
2589/*
2590 *	BMDMA support
2591 */
2592
2593#ifdef CONFIG_ATA_BMDMA
2594
2595const struct ata_port_operations ata_bmdma_port_ops = {
2596	.inherits		= &ata_sff_port_ops,
2597
2598	.error_handler		= ata_bmdma_error_handler,
2599	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2600
2601	.qc_prep		= ata_bmdma_qc_prep,
2602	.qc_issue		= ata_bmdma_qc_issue,
2603
2604	.sff_irq_clear		= ata_bmdma_irq_clear,
2605	.bmdma_setup		= ata_bmdma_setup,
2606	.bmdma_start		= ata_bmdma_start,
2607	.bmdma_stop		= ata_bmdma_stop,
2608	.bmdma_status		= ata_bmdma_status,
2609
2610	.port_start		= ata_bmdma_port_start,
2611};
2612EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2613
2614const struct ata_port_operations ata_bmdma32_port_ops = {
2615	.inherits		= &ata_bmdma_port_ops,
2616
2617	.sff_data_xfer		= ata_sff_data_xfer32,
2618	.port_start		= ata_bmdma_port_start32,
2619};
2620EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2621
2622/**
2623 *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2624 *	@qc: Metadata associated with taskfile to be transferred
2625 *
2626 *	Fill PCI IDE PRD (scatter-gather) table with segments
2627 *	associated with the current disk command.
2628 *
2629 *	LOCKING:
2630 *	spin_lock_irqsave(host lock)
2631 *
2632 */
2633static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2634{
2635	struct ata_port *ap = qc->ap;
2636	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2637	struct scatterlist *sg;
2638	unsigned int si, pi;
2639
2640	pi = 0;
2641	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2642		u32 addr, offset;
2643		u32 sg_len, len;
2644
2645		/* determine if physical DMA addr spans 64K boundary.
2646		 * Note h/w doesn't support 64-bit, so we unconditionally
2647		 * truncate dma_addr_t to u32.
2648		 */
2649		addr = (u32) sg_dma_address(sg);
2650		sg_len = sg_dma_len(sg);
2651
2652		while (sg_len) {
2653			offset = addr & 0xffff;
2654			len = sg_len;
2655			if ((offset + sg_len) > 0x10000)
2656				len = 0x10000 - offset;
2657
2658			prd[pi].addr = cpu_to_le32(addr);
2659			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2660			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2661
2662			pi++;
2663			sg_len -= len;
2664			addr += len;
2665		}
2666	}
2667
2668	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2669}
2670
2671/**
2672 *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2673 *	@qc: Metadata associated with taskfile to be transferred
2674 *
2675 *	Fill PCI IDE PRD (scatter-gather) table with segments
2676 *	associated with the current disk command. Perform the fill
2677 *	so that we avoid writing any length 64K records for
2678 *	controllers that don't follow the spec.
2679 *
2680 *	LOCKING:
2681 *	spin_lock_irqsave(host lock)
2682 *
2683 */
2684static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2685{
2686	struct ata_port *ap = qc->ap;
2687	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2688	struct scatterlist *sg;
2689	unsigned int si, pi;
2690
2691	pi = 0;
2692	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2693		u32 addr, offset;
2694		u32 sg_len, len, blen;
2695
2696		/* determine if physical DMA addr spans 64K boundary.
2697		 * Note h/w doesn't support 64-bit, so we unconditionally
2698		 * truncate dma_addr_t to u32.
2699		 */
2700		addr = (u32) sg_dma_address(sg);
2701		sg_len = sg_dma_len(sg);
2702
2703		while (sg_len) {
2704			offset = addr & 0xffff;
2705			len = sg_len;
2706			if ((offset + sg_len) > 0x10000)
2707				len = 0x10000 - offset;
2708
2709			blen = len & 0xffff;
2710			prd[pi].addr = cpu_to_le32(addr);
2711			if (blen == 0) {
2712				/* Some PATA chipsets like the CS5530 can't
2713				   cope with 0x0000 meaning 64K as the spec
2714				   says */
2715				prd[pi].flags_len = cpu_to_le32(0x8000);
2716				blen = 0x8000;
2717				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2718			}
2719			prd[pi].flags_len = cpu_to_le32(blen);
2720			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2721
2722			pi++;
2723			sg_len -= len;
2724			addr += len;
2725		}
2726	}
2727
2728	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2729}
2730
2731/**
2732 *	ata_bmdma_qc_prep - Prepare taskfile for submission
2733 *	@qc: Metadata associated with taskfile to be prepared
2734 *
2735 *	Prepare ATA taskfile for submission.
2736 *
2737 *	LOCKING:
2738 *	spin_lock_irqsave(host lock)
2739 */
2740void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2741{
2742	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2743		return;
2744
2745	ata_bmdma_fill_sg(qc);
 
 
2746}
2747EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2748
2749/**
2750 *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2751 *	@qc: Metadata associated with taskfile to be prepared
2752 *
2753 *	Prepare ATA taskfile for submission.
2754 *
2755 *	LOCKING:
2756 *	spin_lock_irqsave(host lock)
2757 */
2758void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2759{
2760	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2761		return;
2762
2763	ata_bmdma_fill_sg_dumb(qc);
 
 
2764}
2765EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2766
2767/**
2768 *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2769 *	@qc: command to issue to device
2770 *
2771 *	This function issues a PIO, NODATA or DMA command to a
2772 *	SFF/BMDMA controller.  PIO and NODATA are handled by
2773 *	ata_sff_qc_issue().
2774 *
2775 *	LOCKING:
2776 *	spin_lock_irqsave(host lock)
2777 *
2778 *	RETURNS:
2779 *	Zero on success, AC_ERR_* mask on failure
2780 */
2781unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2782{
2783	struct ata_port *ap = qc->ap;
2784	struct ata_link *link = qc->dev->link;
2785
2786	/* defer PIO handling to sff_qc_issue */
2787	if (!ata_is_dma(qc->tf.protocol))
2788		return ata_sff_qc_issue(qc);
2789
2790	/* select the device */
2791	ata_dev_select(ap, qc->dev->devno, 1, 0);
2792
2793	/* start the command */
2794	switch (qc->tf.protocol) {
2795	case ATA_PROT_DMA:
2796		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2797
 
2798		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
 
2799		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
 
2800		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2801		ap->hsm_task_state = HSM_ST_LAST;
2802		break;
2803
2804	case ATAPI_PROT_DMA:
2805		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2806
 
2807		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
 
2808		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2809		ap->hsm_task_state = HSM_ST_FIRST;
2810
2811		/* send cdb by polling if no cdb interrupt */
2812		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2813			ata_sff_queue_pio_task(link, 0);
2814		break;
2815
2816	default:
2817		WARN_ON(1);
2818		return AC_ERR_SYSTEM;
2819	}
2820
2821	return 0;
2822}
2823EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2824
2825/**
2826 *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2827 *	@ap: Port on which interrupt arrived (possibly...)
2828 *	@qc: Taskfile currently active in engine
2829 *
2830 *	Handle port interrupt for given queued command.
2831 *
2832 *	LOCKING:
2833 *	spin_lock_irqsave(host lock)
2834 *
2835 *	RETURNS:
2836 *	One if interrupt was handled, zero if not (shared irq).
2837 */
2838unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2839{
2840	struct ata_eh_info *ehi = &ap->link.eh_info;
2841	u8 host_stat = 0;
2842	bool bmdma_stopped = false;
2843	unsigned int handled;
2844
2845	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2846		/* check status of DMA engine */
2847		host_stat = ap->ops->bmdma_status(ap);
2848		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2849
2850		/* if it's not our irq... */
2851		if (!(host_stat & ATA_DMA_INTR))
2852			return ata_sff_idle_irq(ap);
2853
2854		/* before we do anything else, clear DMA-Start bit */
 
2855		ap->ops->bmdma_stop(qc);
2856		bmdma_stopped = true;
2857
2858		if (unlikely(host_stat & ATA_DMA_ERR)) {
2859			/* error when transferring data to/from memory */
2860			qc->err_mask |= AC_ERR_HOST_BUS;
2861			ap->hsm_task_state = HSM_ST_ERR;
2862		}
2863	}
2864
2865	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2866
2867	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2868		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2869
2870	return handled;
2871}
2872EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2873
2874/**
2875 *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2876 *	@irq: irq line (unused)
2877 *	@dev_instance: pointer to our ata_host information structure
2878 *
2879 *	Default interrupt handler for PCI IDE devices.  Calls
2880 *	ata_bmdma_port_intr() for each port that is not disabled.
2881 *
2882 *	LOCKING:
2883 *	Obtains host lock during operation.
2884 *
2885 *	RETURNS:
2886 *	IRQ_NONE or IRQ_HANDLED.
2887 */
2888irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2889{
2890	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2891}
2892EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2893
2894/**
2895 *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2896 *	@ap: port to handle error for
2897 *
2898 *	Stock error handler for BMDMA controller.  It can handle both
2899 *	PATA and SATA controllers.  Most BMDMA controllers should be
2900 *	able to use this EH as-is or with some added handling before
2901 *	and after.
2902 *
2903 *	LOCKING:
2904 *	Kernel thread context (may sleep)
2905 */
2906void ata_bmdma_error_handler(struct ata_port *ap)
2907{
2908	struct ata_queued_cmd *qc;
2909	unsigned long flags;
2910	bool thaw = false;
2911
2912	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2913	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2914		qc = NULL;
2915
2916	/* reset PIO HSM and stop DMA engine */
2917	spin_lock_irqsave(ap->lock, flags);
2918
2919	if (qc && ata_is_dma(qc->tf.protocol)) {
2920		u8 host_stat;
2921
2922		host_stat = ap->ops->bmdma_status(ap);
 
2923
2924		/* BMDMA controllers indicate host bus error by
2925		 * setting DMA_ERR bit and timing out.  As it wasn't
2926		 * really a timeout event, adjust error mask and
2927		 * cancel frozen state.
2928		 */
2929		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2930			qc->err_mask = AC_ERR_HOST_BUS;
2931			thaw = true;
2932		}
2933
 
2934		ap->ops->bmdma_stop(qc);
2935
2936		/* if we're gonna thaw, make sure IRQ is clear */
2937		if (thaw) {
2938			ap->ops->sff_check_status(ap);
2939			if (ap->ops->sff_irq_clear)
2940				ap->ops->sff_irq_clear(ap);
2941		}
2942	}
2943
2944	spin_unlock_irqrestore(ap->lock, flags);
2945
2946	if (thaw)
2947		ata_eh_thaw_port(ap);
2948
2949	ata_sff_error_handler(ap);
2950}
2951EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2952
2953/**
2954 *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2955 *	@qc: internal command to clean up
2956 *
2957 *	LOCKING:
2958 *	Kernel thread context (may sleep)
2959 */
2960void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2961{
2962	struct ata_port *ap = qc->ap;
2963	unsigned long flags;
2964
2965	if (ata_is_dma(qc->tf.protocol)) {
2966		spin_lock_irqsave(ap->lock, flags);
 
2967		ap->ops->bmdma_stop(qc);
2968		spin_unlock_irqrestore(ap->lock, flags);
2969	}
2970}
2971EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2972
2973/**
2974 *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2975 *	@ap: Port associated with this ATA transaction.
2976 *
2977 *	Clear interrupt and error flags in DMA status register.
2978 *
2979 *	May be used as the irq_clear() entry in ata_port_operations.
2980 *
2981 *	LOCKING:
2982 *	spin_lock_irqsave(host lock)
2983 */
2984void ata_bmdma_irq_clear(struct ata_port *ap)
2985{
2986	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2987
2988	if (!mmio)
2989		return;
2990
2991	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2992}
2993EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2994
2995/**
2996 *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2997 *	@qc: Info associated with this ATA transaction.
2998 *
2999 *	LOCKING:
3000 *	spin_lock_irqsave(host lock)
3001 */
3002void ata_bmdma_setup(struct ata_queued_cmd *qc)
3003{
3004	struct ata_port *ap = qc->ap;
3005	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3006	u8 dmactl;
3007
3008	/* load PRD table addr. */
3009	mb();	/* make sure PRD table writes are visible to controller */
3010	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3011
3012	/* specify data direction, triple-check start bit is clear */
3013	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3014	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3015	if (!rw)
3016		dmactl |= ATA_DMA_WR;
3017	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3018
3019	/* issue r/w command */
3020	ap->ops->sff_exec_command(ap, &qc->tf);
3021}
3022EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3023
3024/**
3025 *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
3026 *	@qc: Info associated with this ATA transaction.
3027 *
3028 *	LOCKING:
3029 *	spin_lock_irqsave(host lock)
3030 */
3031void ata_bmdma_start(struct ata_queued_cmd *qc)
3032{
3033	struct ata_port *ap = qc->ap;
3034	u8 dmactl;
3035
3036	/* start host DMA transaction */
3037	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3038	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3039
3040	/* Strictly, one may wish to issue an ioread8() here, to
3041	 * flush the mmio write.  However, control also passes
3042	 * to the hardware at this point, and it will interrupt
3043	 * us when we are to resume control.  So, in effect,
3044	 * we don't care when the mmio write flushes.
3045	 * Further, a read of the DMA status register _immediately_
3046	 * following the write may not be what certain flaky hardware
3047	 * is expected, so I think it is best to not add a readb()
3048	 * without first all the MMIO ATA cards/mobos.
3049	 * Or maybe I'm just being paranoid.
3050	 *
3051	 * FIXME: The posting of this write means I/O starts are
3052	 * unnecessarily delayed for MMIO
3053	 */
3054}
3055EXPORT_SYMBOL_GPL(ata_bmdma_start);
3056
3057/**
3058 *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3059 *	@qc: Command we are ending DMA for
3060 *
3061 *	Clears the ATA_DMA_START flag in the dma control register
3062 *
3063 *	May be used as the bmdma_stop() entry in ata_port_operations.
3064 *
3065 *	LOCKING:
3066 *	spin_lock_irqsave(host lock)
3067 */
3068void ata_bmdma_stop(struct ata_queued_cmd *qc)
3069{
3070	struct ata_port *ap = qc->ap;
3071	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3072
3073	/* clear start/stop bit */
3074	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3075		 mmio + ATA_DMA_CMD);
3076
3077	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3078	ata_sff_dma_pause(ap);
3079}
3080EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3081
3082/**
3083 *	ata_bmdma_status - Read PCI IDE BMDMA status
3084 *	@ap: Port associated with this ATA transaction.
3085 *
3086 *	Read and return BMDMA status register.
3087 *
3088 *	May be used as the bmdma_status() entry in ata_port_operations.
3089 *
3090 *	LOCKING:
3091 *	spin_lock_irqsave(host lock)
3092 */
3093u8 ata_bmdma_status(struct ata_port *ap)
3094{
3095	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3096}
3097EXPORT_SYMBOL_GPL(ata_bmdma_status);
3098
3099
3100/**
3101 *	ata_bmdma_port_start - Set port up for bmdma.
3102 *	@ap: Port to initialize
3103 *
3104 *	Called just after data structures for each port are
3105 *	initialized.  Allocates space for PRD table.
3106 *
3107 *	May be used as the port_start() entry in ata_port_operations.
3108 *
3109 *	LOCKING:
3110 *	Inherited from caller.
3111 */
3112int ata_bmdma_port_start(struct ata_port *ap)
3113{
3114	if (ap->mwdma_mask || ap->udma_mask) {
3115		ap->bmdma_prd =
3116			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3117					    &ap->bmdma_prd_dma, GFP_KERNEL);
3118		if (!ap->bmdma_prd)
3119			return -ENOMEM;
3120	}
3121
3122	return 0;
3123}
3124EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3125
3126/**
3127 *	ata_bmdma_port_start32 - Set port up for dma.
3128 *	@ap: Port to initialize
3129 *
3130 *	Called just after data structures for each port are
3131 *	initialized.  Enables 32bit PIO and allocates space for PRD
3132 *	table.
3133 *
3134 *	May be used as the port_start() entry in ata_port_operations for
3135 *	devices that are capable of 32bit PIO.
3136 *
3137 *	LOCKING:
3138 *	Inherited from caller.
3139 */
3140int ata_bmdma_port_start32(struct ata_port *ap)
3141{
3142	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3143	return ata_bmdma_port_start(ap);
3144}
3145EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3146
3147#ifdef CONFIG_PCI
3148
3149/**
3150 *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3151 *	@pdev: PCI device
3152 *
3153 *	Some PCI ATA devices report simplex mode but in fact can be told to
3154 *	enter non simplex mode. This implements the necessary logic to
3155 *	perform the task on such devices. Calling it on other devices will
3156 *	have -undefined- behaviour.
3157 */
3158int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3159{
3160	unsigned long bmdma = pci_resource_start(pdev, 4);
3161	u8 simplex;
3162
3163	if (bmdma == 0)
3164		return -ENOENT;
3165
3166	simplex = inb(bmdma + 0x02);
3167	outb(simplex & 0x60, bmdma + 0x02);
3168	simplex = inb(bmdma + 0x02);
3169	if (simplex & 0x80)
3170		return -EOPNOTSUPP;
3171	return 0;
3172}
3173EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3174
3175static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3176{
3177	int i;
3178
3179	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3180
3181	for (i = 0; i < 2; i++) {
3182		host->ports[i]->mwdma_mask = 0;
3183		host->ports[i]->udma_mask = 0;
3184	}
3185}
3186
3187/**
3188 *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3189 *	@host: target ATA host
3190 *
3191 *	Acquire PCI BMDMA resources and initialize @host accordingly.
3192 *
3193 *	LOCKING:
3194 *	Inherited from calling layer (may sleep).
3195 */
3196void ata_pci_bmdma_init(struct ata_host *host)
3197{
3198	struct device *gdev = host->dev;
3199	struct pci_dev *pdev = to_pci_dev(gdev);
3200	int i, rc;
3201
3202	/* No BAR4 allocation: No DMA */
3203	if (pci_resource_start(pdev, 4) == 0) {
3204		ata_bmdma_nodma(host, "BAR4 is zero");
3205		return;
3206	}
3207
3208	/*
3209	 * Some controllers require BMDMA region to be initialized
3210	 * even if DMA is not in use to clear IRQ status via
3211	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3212	 * regardless of dma masks.
3213	 */
3214	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3215	if (rc)
3216		ata_bmdma_nodma(host, "failed to set dma mask");
3217	if (!rc) {
3218		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3219		if (rc)
3220			ata_bmdma_nodma(host,
3221					"failed to set consistent dma mask");
3222	}
3223
3224	/* request and iomap DMA region */
3225	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3226	if (rc) {
3227		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3228		return;
3229	}
3230	host->iomap = pcim_iomap_table(pdev);
3231
3232	for (i = 0; i < 2; i++) {
3233		struct ata_port *ap = host->ports[i];
3234		void __iomem *bmdma = host->iomap[4] + 8 * i;
3235
3236		if (ata_port_is_dummy(ap))
3237			continue;
3238
3239		ap->ioaddr.bmdma_addr = bmdma;
3240		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3241		    (ioread8(bmdma + 2) & 0x80))
3242			host->flags |= ATA_HOST_SIMPLEX;
3243
3244		ata_port_desc(ap, "bmdma 0x%llx",
3245		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3246	}
3247}
3248EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3249
3250/**
3251 *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3252 *	@pdev: target PCI device
3253 *	@ppi: array of port_info, must be enough for two ports
3254 *	@r_host: out argument for the initialized ATA host
3255 *
3256 *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3257 *	resources and initialize it accordingly in one go.
3258 *
3259 *	LOCKING:
3260 *	Inherited from calling layer (may sleep).
3261 *
3262 *	RETURNS:
3263 *	0 on success, -errno otherwise.
3264 */
3265int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3266			       const struct ata_port_info * const * ppi,
3267			       struct ata_host **r_host)
3268{
3269	int rc;
3270
3271	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3272	if (rc)
3273		return rc;
3274
3275	ata_pci_bmdma_init(*r_host);
3276	return 0;
3277}
3278EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3279
3280/**
3281 *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3282 *	@pdev: Controller to be initialized
3283 *	@ppi: array of port_info, must be enough for two ports
3284 *	@sht: scsi_host_template to use when registering the host
3285 *	@host_priv: host private_data
3286 *	@hflags: host flags
3287 *
3288 *	This function is similar to ata_pci_sff_init_one() but also
3289 *	takes care of BMDMA initialization.
3290 *
3291 *	LOCKING:
3292 *	Inherited from PCI layer (may sleep).
3293 *
3294 *	RETURNS:
3295 *	Zero on success, negative on errno-based value on error.
3296 */
3297int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3298			   const struct ata_port_info * const * ppi,
3299			   struct scsi_host_template *sht, void *host_priv,
3300			   int hflags)
3301{
3302	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3303}
3304EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3305
3306#endif /* CONFIG_PCI */
3307#endif /* CONFIG_ATA_BMDMA */
3308
3309/**
3310 *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3311 *	@ap: Port to initialize
3312 *
3313 *	Called on port allocation to initialize SFF/BMDMA specific
3314 *	fields.
3315 *
3316 *	LOCKING:
3317 *	None.
3318 */
3319void ata_sff_port_init(struct ata_port *ap)
3320{
3321	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3322	ap->ctl = ATA_DEVCTL_OBS;
3323	ap->last_ctl = 0xFF;
3324}
3325
3326int __init ata_sff_init(void)
3327{
3328	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3329	if (!ata_sff_wq)
3330		return -ENOMEM;
3331
3332	return 0;
3333}
3334
3335void ata_sff_exit(void)
3336{
3337	destroy_workqueue(ata_sff_wq);
3338}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-sff.c - helper library for PCI IDE BMDMA
   4 *
 
 
 
 
   5 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
   6 *  Copyright 2003-2006 Jeff Garzik
   7 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 *  libata documentation is available via 'make {ps|pdf}docs',
   9 *  as Documentation/driver-api/libata.rst
  10 *
  11 *  Hardware documentation available from http://www.t13.org/ and
  12 *  http://www.sata-io.org/
 
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/gfp.h>
  17#include <linux/pci.h>
  18#include <linux/module.h>
  19#include <linux/libata.h>
  20#include <linux/highmem.h>
  21#include <trace/events/libata.h>
  22#include "libata.h"
  23
  24static struct workqueue_struct *ata_sff_wq;
  25
  26const struct ata_port_operations ata_sff_port_ops = {
  27	.inherits		= &ata_base_port_ops,
  28
  29	.qc_prep		= ata_noop_qc_prep,
  30	.qc_issue		= ata_sff_qc_issue,
  31	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
  32
  33	.freeze			= ata_sff_freeze,
  34	.thaw			= ata_sff_thaw,
  35	.prereset		= ata_sff_prereset,
  36	.softreset		= ata_sff_softreset,
  37	.hardreset		= sata_sff_hardreset,
  38	.postreset		= ata_sff_postreset,
  39	.error_handler		= ata_sff_error_handler,
  40
  41	.sff_dev_select		= ata_sff_dev_select,
  42	.sff_check_status	= ata_sff_check_status,
  43	.sff_tf_load		= ata_sff_tf_load,
  44	.sff_tf_read		= ata_sff_tf_read,
  45	.sff_exec_command	= ata_sff_exec_command,
  46	.sff_data_xfer		= ata_sff_data_xfer,
  47	.sff_drain_fifo		= ata_sff_drain_fifo,
  48
  49	.lost_interrupt		= ata_sff_lost_interrupt,
  50};
  51EXPORT_SYMBOL_GPL(ata_sff_port_ops);
  52
  53/**
  54 *	ata_sff_check_status - Read device status reg & clear interrupt
  55 *	@ap: port where the device is
  56 *
  57 *	Reads ATA taskfile status register for currently-selected device
  58 *	and return its value. This also clears pending interrupts
  59 *      from this device
  60 *
  61 *	LOCKING:
  62 *	Inherited from caller.
  63 */
  64u8 ata_sff_check_status(struct ata_port *ap)
  65{
  66	return ioread8(ap->ioaddr.status_addr);
  67}
  68EXPORT_SYMBOL_GPL(ata_sff_check_status);
  69
  70/**
  71 *	ata_sff_altstatus - Read device alternate status reg
  72 *	@ap: port where the device is
  73 *	@status: pointer to a status value
  74 *
  75 *	Reads ATA alternate status register for currently-selected device
  76 *	and return its value.
  77 *
  78 *	RETURN:
  79 *	true if the register exists, false if not.
  80 *
  81 *	LOCKING:
  82 *	Inherited from caller.
  83 */
  84static bool ata_sff_altstatus(struct ata_port *ap, u8 *status)
  85{
  86	u8 tmp;
 
  87
  88	if (ap->ops->sff_check_altstatus) {
  89		tmp = ap->ops->sff_check_altstatus(ap);
  90		goto read;
  91	}
  92	if (ap->ioaddr.altstatus_addr) {
  93		tmp = ioread8(ap->ioaddr.altstatus_addr);
  94		goto read;
  95	}
  96	return false;
  97
  98read:
  99	if (status)
 100		*status = tmp;
 101	return true;
 102}
 103
 104/**
 105 *	ata_sff_irq_status - Check if the device is busy
 106 *	@ap: port where the device is
 107 *
 108 *	Determine if the port is currently busy. Uses altstatus
 109 *	if available in order to avoid clearing shared IRQ status
 110 *	when finding an IRQ source. Non ctl capable devices don't
 111 *	share interrupt lines fortunately for us.
 112 *
 113 *	LOCKING:
 114 *	Inherited from caller.
 115 */
 116static u8 ata_sff_irq_status(struct ata_port *ap)
 117{
 118	u8 status;
 119
 120	/* Not us: We are busy */
 121	if (ata_sff_altstatus(ap, &status) && (status & ATA_BUSY))
 122		return status;
 
 
 
 123	/* Clear INTRQ latch */
 124	status = ap->ops->sff_check_status(ap);
 125	return status;
 126}
 127
 128/**
 129 *	ata_sff_sync - Flush writes
 130 *	@ap: Port to wait for.
 131 *
 132 *	CAUTION:
 133 *	If we have an mmio device with no ctl and no altstatus
 134 *	method this will fail. No such devices are known to exist.
 135 *
 136 *	LOCKING:
 137 *	Inherited from caller.
 138 */
 139
 140static void ata_sff_sync(struct ata_port *ap)
 141{
 142	ata_sff_altstatus(ap, NULL);
 
 
 
 143}
 144
 145/**
 146 *	ata_sff_pause		-	Flush writes and wait 400nS
 147 *	@ap: Port to pause for.
 148 *
 149 *	CAUTION:
 150 *	If we have an mmio device with no ctl and no altstatus
 151 *	method this will fail. No such devices are known to exist.
 152 *
 153 *	LOCKING:
 154 *	Inherited from caller.
 155 */
 156
 157void ata_sff_pause(struct ata_port *ap)
 158{
 159	ata_sff_sync(ap);
 160	ndelay(400);
 161}
 162EXPORT_SYMBOL_GPL(ata_sff_pause);
 163
 164/**
 165 *	ata_sff_dma_pause	-	Pause before commencing DMA
 166 *	@ap: Port to pause for.
 167 *
 168 *	Perform I/O fencing and ensure sufficient cycle delays occur
 169 *	for the HDMA1:0 transition
 170 */
 171
 172void ata_sff_dma_pause(struct ata_port *ap)
 173{
 174	/*
 175	 * An altstatus read will cause the needed delay without
 176	 * messing up the IRQ status
 177	 */
 178	if (ata_sff_altstatus(ap, NULL))
 179		return;
 
 180	/* There are no DMA controllers without ctl. BUG here to ensure
 181	   we never violate the HDMA1:0 transition timing and risk
 182	   corruption. */
 183	BUG();
 184}
 185EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
 186
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187static int ata_sff_check_ready(struct ata_link *link)
 188{
 189	u8 status = link->ap->ops->sff_check_status(link->ap);
 190
 191	return ata_check_ready(status);
 192}
 193
 194/**
 195 *	ata_sff_wait_ready - sleep until BSY clears, or timeout
 196 *	@link: SFF link to wait ready status for
 197 *	@deadline: deadline jiffies for the operation
 198 *
 199 *	Sleep until ATA Status register bit BSY clears, or timeout
 200 *	occurs.
 201 *
 202 *	LOCKING:
 203 *	Kernel thread context (may sleep).
 204 *
 205 *	RETURNS:
 206 *	0 on success, -errno otherwise.
 207 */
 208int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
 209{
 210	return ata_wait_ready(link, deadline, ata_sff_check_ready);
 211}
 212EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
 213
 214/**
 215 *	ata_sff_set_devctl - Write device control reg
 216 *	@ap: port where the device is
 217 *	@ctl: value to write
 218 *
 219 *	Writes ATA device control register.
 220 *
 221 *	RETURN:
 222 *	true if the register exists, false if not.
 223 *
 224 *	LOCKING:
 225 *	Inherited from caller.
 226 */
 227static bool ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
 228{
 229	if (ap->ops->sff_set_devctl) {
 230		ap->ops->sff_set_devctl(ap, ctl);
 231		return true;
 232	}
 233	if (ap->ioaddr.ctl_addr) {
 234		iowrite8(ctl, ap->ioaddr.ctl_addr);
 235		return true;
 236	}
 237
 238	return false;
 239}
 240
 241/**
 242 *	ata_sff_dev_select - Select device 0/1 on ATA bus
 243 *	@ap: ATA channel to manipulate
 244 *	@device: ATA device (numbered from zero) to select
 245 *
 246 *	Use the method defined in the ATA specification to
 247 *	make either device 0, or device 1, active on the
 248 *	ATA channel.  Works with both PIO and MMIO.
 249 *
 250 *	May be used as the dev_select() entry in ata_port_operations.
 251 *
 252 *	LOCKING:
 253 *	caller.
 254 */
 255void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
 256{
 257	u8 tmp;
 258
 259	if (device == 0)
 260		tmp = ATA_DEVICE_OBS;
 261	else
 262		tmp = ATA_DEVICE_OBS | ATA_DEV1;
 263
 264	iowrite8(tmp, ap->ioaddr.device_addr);
 265	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
 266}
 267EXPORT_SYMBOL_GPL(ata_sff_dev_select);
 268
 269/**
 270 *	ata_dev_select - Select device 0/1 on ATA bus
 271 *	@ap: ATA channel to manipulate
 272 *	@device: ATA device (numbered from zero) to select
 273 *	@wait: non-zero to wait for Status register BSY bit to clear
 274 *	@can_sleep: non-zero if context allows sleeping
 275 *
 276 *	Use the method defined in the ATA specification to
 277 *	make either device 0, or device 1, active on the
 278 *	ATA channel.
 279 *
 280 *	This is a high-level version of ata_sff_dev_select(), which
 281 *	additionally provides the services of inserting the proper
 282 *	pauses and status polling, where needed.
 283 *
 284 *	LOCKING:
 285 *	caller.
 286 */
 287static void ata_dev_select(struct ata_port *ap, unsigned int device,
 288			   unsigned int wait, unsigned int can_sleep)
 289{
 
 
 
 
 290	if (wait)
 291		ata_wait_idle(ap);
 292
 293	ap->ops->sff_dev_select(ap, device);
 294
 295	if (wait) {
 296		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
 297			ata_msleep(ap, 150);
 298		ata_wait_idle(ap);
 299	}
 300}
 301
 302/**
 303 *	ata_sff_irq_on - Enable interrupts on a port.
 304 *	@ap: Port on which interrupts are enabled.
 305 *
 306 *	Enable interrupts on a legacy IDE device using MMIO or PIO,
 307 *	wait for idle, clear any pending interrupts.
 308 *
 309 *	Note: may NOT be used as the sff_irq_on() entry in
 310 *	ata_port_operations.
 311 *
 312 *	LOCKING:
 313 *	Inherited from caller.
 314 */
 315void ata_sff_irq_on(struct ata_port *ap)
 316{
 
 
 317	if (ap->ops->sff_irq_on) {
 318		ap->ops->sff_irq_on(ap);
 319		return;
 320	}
 321
 322	ap->ctl &= ~ATA_NIEN;
 323	ap->last_ctl = ap->ctl;
 324
 325	ata_sff_set_devctl(ap, ap->ctl);
 
 326	ata_wait_idle(ap);
 327
 328	if (ap->ops->sff_irq_clear)
 329		ap->ops->sff_irq_clear(ap);
 330}
 331EXPORT_SYMBOL_GPL(ata_sff_irq_on);
 332
 333/**
 334 *	ata_sff_tf_load - send taskfile registers to host controller
 335 *	@ap: Port to which output is sent
 336 *	@tf: ATA taskfile register set
 337 *
 338 *	Outputs ATA taskfile to standard ATA host controller.
 339 *
 340 *	LOCKING:
 341 *	Inherited from caller.
 342 */
 343void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
 344{
 345	struct ata_ioports *ioaddr = &ap->ioaddr;
 346	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
 347
 348	if (tf->ctl != ap->last_ctl) {
 349		if (ioaddr->ctl_addr)
 350			iowrite8(tf->ctl, ioaddr->ctl_addr);
 351		ap->last_ctl = tf->ctl;
 352		ata_wait_idle(ap);
 353	}
 354
 355	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
 356		WARN_ON_ONCE(!ioaddr->ctl_addr);
 357		iowrite8(tf->hob_feature, ioaddr->feature_addr);
 358		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
 359		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
 360		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
 361		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
 
 
 
 
 
 
 362	}
 363
 364	if (is_addr) {
 365		iowrite8(tf->feature, ioaddr->feature_addr);
 366		iowrite8(tf->nsect, ioaddr->nsect_addr);
 367		iowrite8(tf->lbal, ioaddr->lbal_addr);
 368		iowrite8(tf->lbam, ioaddr->lbam_addr);
 369		iowrite8(tf->lbah, ioaddr->lbah_addr);
 
 
 
 
 
 
 370	}
 371
 372	if (tf->flags & ATA_TFLAG_DEVICE)
 373		iowrite8(tf->device, ioaddr->device_addr);
 
 
 374
 375	ata_wait_idle(ap);
 376}
 377EXPORT_SYMBOL_GPL(ata_sff_tf_load);
 378
 379/**
 380 *	ata_sff_tf_read - input device's ATA taskfile shadow registers
 381 *	@ap: Port from which input is read
 382 *	@tf: ATA taskfile register set for storing input
 383 *
 384 *	Reads ATA taskfile registers for currently-selected device
 385 *	into @tf. Assumes the device has a fully SFF compliant task file
 386 *	layout and behaviour. If you device does not (eg has a different
 387 *	status method) then you will need to provide a replacement tf_read
 388 *
 389 *	LOCKING:
 390 *	Inherited from caller.
 391 */
 392void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
 393{
 394	struct ata_ioports *ioaddr = &ap->ioaddr;
 395
 396	tf->status = ata_sff_check_status(ap);
 397	tf->error = ioread8(ioaddr->error_addr);
 398	tf->nsect = ioread8(ioaddr->nsect_addr);
 399	tf->lbal = ioread8(ioaddr->lbal_addr);
 400	tf->lbam = ioread8(ioaddr->lbam_addr);
 401	tf->lbah = ioread8(ioaddr->lbah_addr);
 402	tf->device = ioread8(ioaddr->device_addr);
 403
 404	if (tf->flags & ATA_TFLAG_LBA48) {
 405		if (likely(ioaddr->ctl_addr)) {
 406			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
 407			tf->hob_feature = ioread8(ioaddr->error_addr);
 408			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
 409			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
 410			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
 411			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
 412			iowrite8(tf->ctl, ioaddr->ctl_addr);
 413			ap->last_ctl = tf->ctl;
 414		} else
 415			WARN_ON_ONCE(1);
 416	}
 417}
 418EXPORT_SYMBOL_GPL(ata_sff_tf_read);
 419
 420/**
 421 *	ata_sff_exec_command - issue ATA command to host controller
 422 *	@ap: port to which command is being issued
 423 *	@tf: ATA taskfile register set
 424 *
 425 *	Issues ATA command, with proper synchronization with interrupt
 426 *	handler / other threads.
 427 *
 428 *	LOCKING:
 429 *	spin_lock_irqsave(host lock)
 430 */
 431void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
 432{
 
 
 433	iowrite8(tf->command, ap->ioaddr.command_addr);
 434	ata_sff_pause(ap);
 435}
 436EXPORT_SYMBOL_GPL(ata_sff_exec_command);
 437
 438/**
 439 *	ata_tf_to_host - issue ATA taskfile to host controller
 440 *	@ap: port to which command is being issued
 441 *	@tf: ATA taskfile register set
 442 *	@tag: tag of the associated command
 443 *
 444 *	Issues ATA taskfile register set to ATA host controller,
 445 *	with proper synchronization with interrupt handler and
 446 *	other threads.
 447 *
 448 *	LOCKING:
 449 *	spin_lock_irqsave(host lock)
 450 */
 451static inline void ata_tf_to_host(struct ata_port *ap,
 452				  const struct ata_taskfile *tf,
 453				  unsigned int tag)
 454{
 455	trace_ata_tf_load(ap, tf);
 456	ap->ops->sff_tf_load(ap, tf);
 457	trace_ata_exec_command(ap, tf, tag);
 458	ap->ops->sff_exec_command(ap, tf);
 459}
 460
 461/**
 462 *	ata_sff_data_xfer - Transfer data by PIO
 463 *	@qc: queued command
 464 *	@buf: data buffer
 465 *	@buflen: buffer length
 466 *	@rw: read/write
 467 *
 468 *	Transfer data from/to the device data register by PIO.
 469 *
 470 *	LOCKING:
 471 *	Inherited from caller.
 472 *
 473 *	RETURNS:
 474 *	Bytes consumed.
 475 */
 476unsigned int ata_sff_data_xfer(struct ata_queued_cmd *qc, unsigned char *buf,
 477			       unsigned int buflen, int rw)
 478{
 479	struct ata_port *ap = qc->dev->link->ap;
 480	void __iomem *data_addr = ap->ioaddr.data_addr;
 481	unsigned int words = buflen >> 1;
 482
 483	/* Transfer multiple of 2 bytes */
 484	if (rw == READ)
 485		ioread16_rep(data_addr, buf, words);
 486	else
 487		iowrite16_rep(data_addr, buf, words);
 488
 489	/* Transfer trailing byte, if any. */
 490	if (unlikely(buflen & 0x01)) {
 491		unsigned char pad[2] = { };
 492
 493		/* Point buf to the tail of buffer */
 494		buf += buflen - 1;
 495
 496		/*
 497		 * Use io*16_rep() accessors here as well to avoid pointlessly
 498		 * swapping bytes to and from on the big endian machines...
 499		 */
 500		if (rw == READ) {
 501			ioread16_rep(data_addr, pad, 1);
 502			*buf = pad[0];
 503		} else {
 504			pad[0] = *buf;
 505			iowrite16_rep(data_addr, pad, 1);
 506		}
 507		words++;
 508	}
 509
 510	return words << 1;
 511}
 512EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
 513
 514/**
 515 *	ata_sff_data_xfer32 - Transfer data by PIO
 516 *	@qc: queued command
 517 *	@buf: data buffer
 518 *	@buflen: buffer length
 519 *	@rw: read/write
 520 *
 521 *	Transfer data from/to the device data register by PIO using 32bit
 522 *	I/O operations.
 523 *
 524 *	LOCKING:
 525 *	Inherited from caller.
 526 *
 527 *	RETURNS:
 528 *	Bytes consumed.
 529 */
 530
 531unsigned int ata_sff_data_xfer32(struct ata_queued_cmd *qc, unsigned char *buf,
 532			       unsigned int buflen, int rw)
 533{
 534	struct ata_device *dev = qc->dev;
 535	struct ata_port *ap = dev->link->ap;
 536	void __iomem *data_addr = ap->ioaddr.data_addr;
 537	unsigned int words = buflen >> 2;
 538	int slop = buflen & 3;
 539
 540	if (!(ap->pflags & ATA_PFLAG_PIO32))
 541		return ata_sff_data_xfer(qc, buf, buflen, rw);
 542
 543	/* Transfer multiple of 4 bytes */
 544	if (rw == READ)
 545		ioread32_rep(data_addr, buf, words);
 546	else
 547		iowrite32_rep(data_addr, buf, words);
 548
 549	/* Transfer trailing bytes, if any */
 550	if (unlikely(slop)) {
 551		unsigned char pad[4] = { };
 552
 553		/* Point buf to the tail of buffer */
 554		buf += buflen - slop;
 555
 556		/*
 557		 * Use io*_rep() accessors here as well to avoid pointlessly
 558		 * swapping bytes to and from on the big endian machines...
 559		 */
 560		if (rw == READ) {
 561			if (slop < 3)
 562				ioread16_rep(data_addr, pad, 1);
 563			else
 564				ioread32_rep(data_addr, pad, 1);
 565			memcpy(buf, pad, slop);
 566		} else {
 567			memcpy(pad, buf, slop);
 568			if (slop < 3)
 569				iowrite16_rep(data_addr, pad, 1);
 570			else
 571				iowrite32_rep(data_addr, pad, 1);
 572		}
 573	}
 574	return (buflen + 1) & ~1;
 575}
 576EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
 577
 578static void ata_pio_xfer(struct ata_queued_cmd *qc, struct page *page,
 579		unsigned int offset, size_t xfer_size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580{
 581	bool do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
 582	unsigned char *buf;
 583
 584	buf = kmap_atomic(page);
 585	qc->ap->ops->sff_data_xfer(qc, buf + offset, xfer_size, do_write);
 586	kunmap_atomic(buf);
 587
 588	if (!do_write && !PageSlab(page))
 589		flush_dcache_page(page);
 590}
 
 591
 592/**
 593 *	ata_pio_sector - Transfer a sector of data.
 594 *	@qc: Command on going
 595 *
 596 *	Transfer qc->sect_size bytes of data from/to the ATA device.
 597 *
 598 *	LOCKING:
 599 *	Inherited from caller.
 600 */
 601static void ata_pio_sector(struct ata_queued_cmd *qc)
 602{
 
 603	struct ata_port *ap = qc->ap;
 604	struct page *page;
 605	unsigned int offset;
 
 606
 607	if (!qc->cursg) {
 608		qc->curbytes = qc->nbytes;
 609		return;
 610	}
 611	if (qc->curbytes == qc->nbytes - qc->sect_size)
 612		ap->hsm_task_state = HSM_ST_LAST;
 613
 614	page = sg_page(qc->cursg);
 615	offset = qc->cursg->offset + qc->cursg_ofs;
 616
 617	/* get the current page and offset */
 618	page = nth_page(page, (offset >> PAGE_SHIFT));
 619	offset %= PAGE_SIZE;
 620
 621	trace_ata_sff_pio_transfer_data(qc, offset, qc->sect_size);
 
 
 
 
 
 
 
 622
 623	/*
 624	 * Split the transfer when it splits a page boundary.  Note that the
 625	 * split still has to be dword aligned like all ATA data transfers.
 626	 */
 627	WARN_ON_ONCE(offset % 4);
 628	if (offset + qc->sect_size > PAGE_SIZE) {
 629		unsigned int split_len = PAGE_SIZE - offset;
 630
 631		ata_pio_xfer(qc, page, offset, split_len);
 632		ata_pio_xfer(qc, nth_page(page, 1), 0,
 633			     qc->sect_size - split_len);
 634	} else {
 635		ata_pio_xfer(qc, page, offset, qc->sect_size);
 
 
 636	}
 637
 
 
 
 638	qc->curbytes += qc->sect_size;
 639	qc->cursg_ofs += qc->sect_size;
 640
 641	if (qc->cursg_ofs == qc->cursg->length) {
 642		qc->cursg = sg_next(qc->cursg);
 643		if (!qc->cursg)
 644			ap->hsm_task_state = HSM_ST_LAST;
 645		qc->cursg_ofs = 0;
 646	}
 647}
 648
 649/**
 650 *	ata_pio_sectors - Transfer one or many sectors.
 651 *	@qc: Command on going
 652 *
 653 *	Transfer one or many sectors of data from/to the
 654 *	ATA device for the DRQ request.
 655 *
 656 *	LOCKING:
 657 *	Inherited from caller.
 658 */
 659static void ata_pio_sectors(struct ata_queued_cmd *qc)
 660{
 661	if (is_multi_taskfile(&qc->tf)) {
 662		/* READ/WRITE MULTIPLE */
 663		unsigned int nsect;
 664
 665		WARN_ON_ONCE(qc->dev->multi_count == 0);
 666
 667		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
 668			    qc->dev->multi_count);
 669		while (nsect--)
 670			ata_pio_sector(qc);
 671	} else
 672		ata_pio_sector(qc);
 673
 674	ata_sff_sync(qc->ap); /* flush */
 675}
 676
 677/**
 678 *	atapi_send_cdb - Write CDB bytes to hardware
 679 *	@ap: Port to which ATAPI device is attached.
 680 *	@qc: Taskfile currently active
 681 *
 682 *	When device has indicated its readiness to accept
 683 *	a CDB, this function is called.  Send the CDB.
 684 *
 685 *	LOCKING:
 686 *	caller.
 687 */
 688static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
 689{
 690	/* send SCSI cdb */
 691	trace_atapi_send_cdb(qc, 0, qc->dev->cdb_len);
 692	WARN_ON_ONCE(qc->dev->cdb_len < 12);
 693
 694	ap->ops->sff_data_xfer(qc, qc->cdb, qc->dev->cdb_len, 1);
 695	ata_sff_sync(ap);
 696	/* FIXME: If the CDB is for DMA do we need to do the transition delay
 697	   or is bmdma_start guaranteed to do it ? */
 698	switch (qc->tf.protocol) {
 699	case ATAPI_PROT_PIO:
 700		ap->hsm_task_state = HSM_ST;
 701		break;
 702	case ATAPI_PROT_NODATA:
 703		ap->hsm_task_state = HSM_ST_LAST;
 704		break;
 705#ifdef CONFIG_ATA_BMDMA
 706	case ATAPI_PROT_DMA:
 707		ap->hsm_task_state = HSM_ST_LAST;
 708		/* initiate bmdma */
 709		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
 710		ap->ops->bmdma_start(qc);
 711		break;
 712#endif /* CONFIG_ATA_BMDMA */
 713	default:
 714		BUG();
 715	}
 716}
 717
 718/**
 719 *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
 720 *	@qc: Command on going
 721 *	@bytes: number of bytes
 722 *
 723 *	Transfer data from/to the ATAPI device.
 724 *
 725 *	LOCKING:
 726 *	Inherited from caller.
 727 *
 728 */
 729static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
 730{
 731	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
 732	struct ata_port *ap = qc->ap;
 733	struct ata_device *dev = qc->dev;
 734	struct ata_eh_info *ehi = &dev->link->eh_info;
 735	struct scatterlist *sg;
 736	struct page *page;
 737	unsigned char *buf;
 738	unsigned int offset, count, consumed;
 739
 740next_sg:
 741	sg = qc->cursg;
 742	if (unlikely(!sg)) {
 743		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
 744				  "buf=%u cur=%u bytes=%u",
 745				  qc->nbytes, qc->curbytes, bytes);
 746		return -1;
 747	}
 748
 749	page = sg_page(sg);
 750	offset = sg->offset + qc->cursg_ofs;
 751
 752	/* get the current page and offset */
 753	page = nth_page(page, (offset >> PAGE_SHIFT));
 754	offset %= PAGE_SIZE;
 755
 756	/* don't overrun current sg */
 757	count = min(sg->length - qc->cursg_ofs, bytes);
 758
 759	/* don't cross page boundaries */
 760	count = min(count, (unsigned int)PAGE_SIZE - offset);
 761
 762	trace_atapi_pio_transfer_data(qc, offset, count);
 763
 764	/* do the actual data transfer */
 765	buf = kmap_atomic(page);
 766	consumed = ap->ops->sff_data_xfer(qc, buf + offset, count, rw);
 767	kunmap_atomic(buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768
 769	bytes -= min(bytes, consumed);
 770	qc->curbytes += count;
 771	qc->cursg_ofs += count;
 772
 773	if (qc->cursg_ofs == sg->length) {
 774		qc->cursg = sg_next(qc->cursg);
 775		qc->cursg_ofs = 0;
 776	}
 777
 778	/*
 779	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
 780	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
 781	 * check correctly as it doesn't know if it is the last request being
 782	 * made. Somebody should implement a proper sanity check.
 783	 */
 784	if (bytes)
 785		goto next_sg;
 786	return 0;
 787}
 788
 789/**
 790 *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
 791 *	@qc: Command on going
 792 *
 793 *	Transfer Transfer data from/to the ATAPI device.
 794 *
 795 *	LOCKING:
 796 *	Inherited from caller.
 797 */
 798static void atapi_pio_bytes(struct ata_queued_cmd *qc)
 799{
 800	struct ata_port *ap = qc->ap;
 801	struct ata_device *dev = qc->dev;
 802	struct ata_eh_info *ehi = &dev->link->eh_info;
 803	unsigned int ireason, bc_lo, bc_hi, bytes;
 804	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
 805
 806	/* Abuse qc->result_tf for temp storage of intermediate TF
 807	 * here to save some kernel stack usage.
 808	 * For normal completion, qc->result_tf is not relevant. For
 809	 * error, qc->result_tf is later overwritten by ata_qc_complete().
 810	 * So, the correctness of qc->result_tf is not affected.
 811	 */
 812	ap->ops->sff_tf_read(ap, &qc->result_tf);
 813	ireason = qc->result_tf.nsect;
 814	bc_lo = qc->result_tf.lbam;
 815	bc_hi = qc->result_tf.lbah;
 816	bytes = (bc_hi << 8) | bc_lo;
 817
 818	/* shall be cleared to zero, indicating xfer of data */
 819	if (unlikely(ireason & ATAPI_COD))
 820		goto atapi_check;
 821
 822	/* make sure transfer direction matches expected */
 823	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
 824	if (unlikely(do_write != i_write))
 825		goto atapi_check;
 826
 827	if (unlikely(!bytes))
 828		goto atapi_check;
 829
 
 
 830	if (unlikely(__atapi_pio_bytes(qc, bytes)))
 831		goto err_out;
 832	ata_sff_sync(ap); /* flush */
 833
 834	return;
 835
 836 atapi_check:
 837	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
 838			  ireason, bytes);
 839 err_out:
 840	qc->err_mask |= AC_ERR_HSM;
 841	ap->hsm_task_state = HSM_ST_ERR;
 842}
 843
 844/**
 845 *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
 846 *	@ap: the target ata_port
 847 *	@qc: qc on going
 848 *
 849 *	RETURNS:
 850 *	1 if ok in workqueue, 0 otherwise.
 851 */
 852static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
 853						struct ata_queued_cmd *qc)
 854{
 855	if (qc->tf.flags & ATA_TFLAG_POLLING)
 856		return 1;
 857
 858	if (ap->hsm_task_state == HSM_ST_FIRST) {
 859		if (qc->tf.protocol == ATA_PROT_PIO &&
 860		   (qc->tf.flags & ATA_TFLAG_WRITE))
 861		    return 1;
 862
 863		if (ata_is_atapi(qc->tf.protocol) &&
 864		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
 865			return 1;
 866	}
 867
 868	return 0;
 869}
 870
 871/**
 872 *	ata_hsm_qc_complete - finish a qc running on standard HSM
 873 *	@qc: Command to complete
 874 *	@in_wq: 1 if called from workqueue, 0 otherwise
 875 *
 876 *	Finish @qc which is running on standard HSM.
 877 *
 878 *	LOCKING:
 879 *	If @in_wq is zero, spin_lock_irqsave(host lock).
 880 *	Otherwise, none on entry and grabs host lock.
 881 */
 882static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
 883{
 884	struct ata_port *ap = qc->ap;
 885
 886	if (in_wq) {
 887		/* EH might have kicked in while host lock is released. */
 888		qc = ata_qc_from_tag(ap, qc->tag);
 889		if (qc) {
 890			if (likely(!(qc->err_mask & AC_ERR_HSM))) {
 891				ata_sff_irq_on(ap);
 
 
 
 
 
 
 
 
 
 892				ata_qc_complete(qc);
 893			} else
 894				ata_port_freeze(ap);
 895		}
 896	} else {
 897		if (likely(!(qc->err_mask & AC_ERR_HSM)))
 
 
 
 898			ata_qc_complete(qc);
 899		else
 900			ata_port_freeze(ap);
 901	}
 902}
 903
 904/**
 905 *	ata_sff_hsm_move - move the HSM to the next state.
 906 *	@ap: the target ata_port
 907 *	@qc: qc on going
 908 *	@status: current device status
 909 *	@in_wq: 1 if called from workqueue, 0 otherwise
 910 *
 911 *	RETURNS:
 912 *	1 when poll next status needed, 0 otherwise.
 913 */
 914int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
 915		     u8 status, int in_wq)
 916{
 917	struct ata_link *link = qc->dev->link;
 918	struct ata_eh_info *ehi = &link->eh_info;
 919	int poll_next;
 920
 921	lockdep_assert_held(ap->lock);
 922
 923	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
 924
 925	/* Make sure ata_sff_qc_issue() does not throw things
 926	 * like DMA polling into the workqueue. Notice that
 927	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
 928	 */
 929	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
 930
 931fsm_start:
 932	trace_ata_sff_hsm_state(qc, status);
 
 933
 934	switch (ap->hsm_task_state) {
 935	case HSM_ST_FIRST:
 936		/* Send first data block or PACKET CDB */
 937
 938		/* If polling, we will stay in the work queue after
 939		 * sending the data. Otherwise, interrupt handler
 940		 * takes over after sending the data.
 941		 */
 942		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
 943
 944		/* check device status */
 945		if (unlikely((status & ATA_DRQ) == 0)) {
 946			/* handle BSY=0, DRQ=0 as error */
 947			if (likely(status & (ATA_ERR | ATA_DF)))
 948				/* device stops HSM for abort/error */
 949				qc->err_mask |= AC_ERR_DEV;
 950			else {
 951				/* HSM violation. Let EH handle this */
 952				ata_ehi_push_desc(ehi,
 953					"ST_FIRST: !(DRQ|ERR|DF)");
 954				qc->err_mask |= AC_ERR_HSM;
 955			}
 956
 957			ap->hsm_task_state = HSM_ST_ERR;
 958			goto fsm_start;
 959		}
 960
 961		/* Device should not ask for data transfer (DRQ=1)
 962		 * when it finds something wrong.
 963		 * We ignore DRQ here and stop the HSM by
 964		 * changing hsm_task_state to HSM_ST_ERR and
 965		 * let the EH abort the command or reset the device.
 966		 */
 967		if (unlikely(status & (ATA_ERR | ATA_DF))) {
 968			/* Some ATAPI tape drives forget to clear the ERR bit
 969			 * when doing the next command (mostly request sense).
 970			 * We ignore ERR here to workaround and proceed sending
 971			 * the CDB.
 972			 */
 973			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
 974				ata_ehi_push_desc(ehi, "ST_FIRST: "
 975					"DRQ=1 with device error, "
 976					"dev_stat 0x%X", status);
 977				qc->err_mask |= AC_ERR_HSM;
 978				ap->hsm_task_state = HSM_ST_ERR;
 979				goto fsm_start;
 980			}
 981		}
 982
 983		if (qc->tf.protocol == ATA_PROT_PIO) {
 984			/* PIO data out protocol.
 985			 * send first data block.
 986			 */
 987
 988			/* ata_pio_sectors() might change the state
 989			 * to HSM_ST_LAST. so, the state is changed here
 990			 * before ata_pio_sectors().
 991			 */
 992			ap->hsm_task_state = HSM_ST;
 993			ata_pio_sectors(qc);
 994		} else
 995			/* send CDB */
 996			atapi_send_cdb(ap, qc);
 997
 998		/* if polling, ata_sff_pio_task() handles the rest.
 999		 * otherwise, interrupt handler takes over from here.
1000		 */
1001		break;
1002
1003	case HSM_ST:
1004		/* complete command or read/write the data register */
1005		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1006			/* ATAPI PIO protocol */
1007			if ((status & ATA_DRQ) == 0) {
1008				/* No more data to transfer or device error.
1009				 * Device error will be tagged in HSM_ST_LAST.
1010				 */
1011				ap->hsm_task_state = HSM_ST_LAST;
1012				goto fsm_start;
1013			}
1014
1015			/* Device should not ask for data transfer (DRQ=1)
1016			 * when it finds something wrong.
1017			 * We ignore DRQ here and stop the HSM by
1018			 * changing hsm_task_state to HSM_ST_ERR and
1019			 * let the EH abort the command or reset the device.
1020			 */
1021			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1022				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1023					"DRQ=1 with device error, "
1024					"dev_stat 0x%X", status);
1025				qc->err_mask |= AC_ERR_HSM;
1026				ap->hsm_task_state = HSM_ST_ERR;
1027				goto fsm_start;
1028			}
1029
1030			atapi_pio_bytes(qc);
1031
1032			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1033				/* bad ireason reported by device */
1034				goto fsm_start;
1035
1036		} else {
1037			/* ATA PIO protocol */
1038			if (unlikely((status & ATA_DRQ) == 0)) {
1039				/* handle BSY=0, DRQ=0 as error */
1040				if (likely(status & (ATA_ERR | ATA_DF))) {
1041					/* device stops HSM for abort/error */
1042					qc->err_mask |= AC_ERR_DEV;
1043
1044					/* If diagnostic failed and this is
1045					 * IDENTIFY, it's likely a phantom
1046					 * device.  Mark hint.
1047					 */
1048					if (qc->dev->horkage &
1049					    ATA_HORKAGE_DIAGNOSTIC)
1050						qc->err_mask |=
1051							AC_ERR_NODEV_HINT;
1052				} else {
1053					/* HSM violation. Let EH handle this.
1054					 * Phantom devices also trigger this
1055					 * condition.  Mark hint.
1056					 */
1057					ata_ehi_push_desc(ehi, "ST-ATA: "
1058						"DRQ=0 without device error, "
1059						"dev_stat 0x%X", status);
1060					qc->err_mask |= AC_ERR_HSM |
1061							AC_ERR_NODEV_HINT;
1062				}
1063
1064				ap->hsm_task_state = HSM_ST_ERR;
1065				goto fsm_start;
1066			}
1067
1068			/* For PIO reads, some devices may ask for
1069			 * data transfer (DRQ=1) alone with ERR=1.
1070			 * We respect DRQ here and transfer one
1071			 * block of junk data before changing the
1072			 * hsm_task_state to HSM_ST_ERR.
1073			 *
1074			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1075			 * sense since the data block has been
1076			 * transferred to the device.
1077			 */
1078			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1079				/* data might be corrputed */
1080				qc->err_mask |= AC_ERR_DEV;
1081
1082				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1083					ata_pio_sectors(qc);
1084					status = ata_wait_idle(ap);
1085				}
1086
1087				if (status & (ATA_BUSY | ATA_DRQ)) {
1088					ata_ehi_push_desc(ehi, "ST-ATA: "
1089						"BUSY|DRQ persists on ERR|DF, "
1090						"dev_stat 0x%X", status);
1091					qc->err_mask |= AC_ERR_HSM;
1092				}
1093
1094				/* There are oddball controllers with
1095				 * status register stuck at 0x7f and
1096				 * lbal/m/h at zero which makes it
1097				 * pass all other presence detection
1098				 * mechanisms we have.  Set NODEV_HINT
1099				 * for it.  Kernel bz#7241.
1100				 */
1101				if (status == 0x7f)
1102					qc->err_mask |= AC_ERR_NODEV_HINT;
1103
1104				/* ata_pio_sectors() might change the
1105				 * state to HSM_ST_LAST. so, the state
1106				 * is changed after ata_pio_sectors().
1107				 */
1108				ap->hsm_task_state = HSM_ST_ERR;
1109				goto fsm_start;
1110			}
1111
1112			ata_pio_sectors(qc);
1113
1114			if (ap->hsm_task_state == HSM_ST_LAST &&
1115			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1116				/* all data read */
1117				status = ata_wait_idle(ap);
1118				goto fsm_start;
1119			}
1120		}
1121
1122		poll_next = 1;
1123		break;
1124
1125	case HSM_ST_LAST:
1126		if (unlikely(!ata_ok(status))) {
1127			qc->err_mask |= __ac_err_mask(status);
1128			ap->hsm_task_state = HSM_ST_ERR;
1129			goto fsm_start;
1130		}
1131
1132		/* no more data to transfer */
1133		trace_ata_sff_hsm_command_complete(qc, status);
 
1134
1135		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1136
1137		ap->hsm_task_state = HSM_ST_IDLE;
1138
1139		/* complete taskfile transaction */
1140		ata_hsm_qc_complete(qc, in_wq);
1141
1142		poll_next = 0;
1143		break;
1144
1145	case HSM_ST_ERR:
1146		ap->hsm_task_state = HSM_ST_IDLE;
1147
1148		/* complete taskfile transaction */
1149		ata_hsm_qc_complete(qc, in_wq);
1150
1151		poll_next = 0;
1152		break;
1153	default:
1154		poll_next = 0;
1155		WARN(true, "ata%d: SFF host state machine in invalid state %d",
1156		     ap->print_id, ap->hsm_task_state);
1157	}
1158
1159	return poll_next;
1160}
1161EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1162
1163void ata_sff_queue_work(struct work_struct *work)
1164{
1165	queue_work(ata_sff_wq, work);
1166}
1167EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1168
1169void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1170{
1171	queue_delayed_work(ata_sff_wq, dwork, delay);
1172}
1173EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1174
1175void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1176{
1177	struct ata_port *ap = link->ap;
1178
1179	WARN_ON((ap->sff_pio_task_link != NULL) &&
1180		(ap->sff_pio_task_link != link));
1181	ap->sff_pio_task_link = link;
1182
1183	/* may fail if ata_sff_flush_pio_task() in progress */
1184	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1185}
1186EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1187
1188void ata_sff_flush_pio_task(struct ata_port *ap)
1189{
1190	trace_ata_sff_flush_pio_task(ap);
1191
1192	cancel_delayed_work_sync(&ap->sff_pio_task);
1193
1194	/*
1195	 * We wanna reset the HSM state to IDLE.  If we do so without
1196	 * grabbing the port lock, critical sections protected by it which
1197	 * expect the HSM state to stay stable may get surprised.  For
1198	 * example, we may set IDLE in between the time
1199	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1200	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1201	 */
1202	spin_lock_irq(ap->lock);
1203	ap->hsm_task_state = HSM_ST_IDLE;
1204	spin_unlock_irq(ap->lock);
1205
1206	ap->sff_pio_task_link = NULL;
 
 
 
1207}
1208
1209static void ata_sff_pio_task(struct work_struct *work)
1210{
1211	struct ata_port *ap =
1212		container_of(work, struct ata_port, sff_pio_task.work);
1213	struct ata_link *link = ap->sff_pio_task_link;
1214	struct ata_queued_cmd *qc;
1215	u8 status;
1216	int poll_next;
1217
1218	spin_lock_irq(ap->lock);
1219
1220	BUG_ON(ap->sff_pio_task_link == NULL);
1221	/* qc can be NULL if timeout occurred */
1222	qc = ata_qc_from_tag(ap, link->active_tag);
1223	if (!qc) {
1224		ap->sff_pio_task_link = NULL;
1225		goto out_unlock;
1226	}
1227
1228fsm_start:
1229	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1230
1231	/*
1232	 * This is purely heuristic.  This is a fast path.
1233	 * Sometimes when we enter, BSY will be cleared in
1234	 * a chk-status or two.  If not, the drive is probably seeking
1235	 * or something.  Snooze for a couple msecs, then
1236	 * chk-status again.  If still busy, queue delayed work.
1237	 */
1238	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1239	if (status & ATA_BUSY) {
1240		spin_unlock_irq(ap->lock);
1241		ata_msleep(ap, 2);
1242		spin_lock_irq(ap->lock);
1243
1244		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1245		if (status & ATA_BUSY) {
1246			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1247			goto out_unlock;
1248		}
1249	}
1250
1251	/*
1252	 * hsm_move() may trigger another command to be processed.
1253	 * clean the link beforehand.
1254	 */
1255	ap->sff_pio_task_link = NULL;
1256	/* move the HSM */
1257	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1258
1259	/* another command or interrupt handler
1260	 * may be running at this point.
1261	 */
1262	if (poll_next)
1263		goto fsm_start;
1264out_unlock:
1265	spin_unlock_irq(ap->lock);
1266}
1267
1268/**
1269 *	ata_sff_qc_issue - issue taskfile to a SFF controller
1270 *	@qc: command to issue to device
1271 *
1272 *	This function issues a PIO or NODATA command to a SFF
1273 *	controller.
1274 *
1275 *	LOCKING:
1276 *	spin_lock_irqsave(host lock)
1277 *
1278 *	RETURNS:
1279 *	Zero on success, AC_ERR_* mask on failure
1280 */
1281unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1282{
1283	struct ata_port *ap = qc->ap;
1284	struct ata_link *link = qc->dev->link;
1285
1286	/* Use polling pio if the LLD doesn't handle
1287	 * interrupt driven pio and atapi CDB interrupt.
1288	 */
1289	if (ap->flags & ATA_FLAG_PIO_POLLING)
1290		qc->tf.flags |= ATA_TFLAG_POLLING;
1291
1292	/* select the device */
1293	ata_dev_select(ap, qc->dev->devno, 1, 0);
1294
1295	/* start the command */
1296	switch (qc->tf.protocol) {
1297	case ATA_PROT_NODATA:
1298		if (qc->tf.flags & ATA_TFLAG_POLLING)
1299			ata_qc_set_polling(qc);
1300
1301		ata_tf_to_host(ap, &qc->tf, qc->tag);
1302		ap->hsm_task_state = HSM_ST_LAST;
1303
1304		if (qc->tf.flags & ATA_TFLAG_POLLING)
1305			ata_sff_queue_pio_task(link, 0);
1306
1307		break;
1308
1309	case ATA_PROT_PIO:
1310		if (qc->tf.flags & ATA_TFLAG_POLLING)
1311			ata_qc_set_polling(qc);
1312
1313		ata_tf_to_host(ap, &qc->tf, qc->tag);
1314
1315		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1316			/* PIO data out protocol */
1317			ap->hsm_task_state = HSM_ST_FIRST;
1318			ata_sff_queue_pio_task(link, 0);
1319
1320			/* always send first data block using the
1321			 * ata_sff_pio_task() codepath.
1322			 */
1323		} else {
1324			/* PIO data in protocol */
1325			ap->hsm_task_state = HSM_ST;
1326
1327			if (qc->tf.flags & ATA_TFLAG_POLLING)
1328				ata_sff_queue_pio_task(link, 0);
1329
1330			/* if polling, ata_sff_pio_task() handles the
1331			 * rest.  otherwise, interrupt handler takes
1332			 * over from here.
1333			 */
1334		}
1335
1336		break;
1337
1338	case ATAPI_PROT_PIO:
1339	case ATAPI_PROT_NODATA:
1340		if (qc->tf.flags & ATA_TFLAG_POLLING)
1341			ata_qc_set_polling(qc);
1342
1343		ata_tf_to_host(ap, &qc->tf, qc->tag);
1344
1345		ap->hsm_task_state = HSM_ST_FIRST;
1346
1347		/* send cdb by polling if no cdb interrupt */
1348		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1349		    (qc->tf.flags & ATA_TFLAG_POLLING))
1350			ata_sff_queue_pio_task(link, 0);
1351		break;
1352
1353	default:
 
1354		return AC_ERR_SYSTEM;
1355	}
1356
1357	return 0;
1358}
1359EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1360
1361/**
1362 *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1363 *	@qc: qc to fill result TF for
1364 *
1365 *	@qc is finished and result TF needs to be filled.  Fill it
1366 *	using ->sff_tf_read.
1367 *
1368 *	LOCKING:
1369 *	spin_lock_irqsave(host lock)
 
 
 
1370 */
1371void ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1372{
1373	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
 
1374}
1375EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1376
1377static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1378{
1379	ap->stats.idle_irq++;
1380
1381#ifdef ATA_IRQ_TRAP
1382	if ((ap->stats.idle_irq % 1000) == 0) {
1383		ap->ops->sff_check_status(ap);
1384		if (ap->ops->sff_irq_clear)
1385			ap->ops->sff_irq_clear(ap);
1386		ata_port_warn(ap, "irq trap\n");
1387		return 1;
1388	}
1389#endif
1390	return 0;	/* irq not handled */
1391}
1392
1393static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1394					struct ata_queued_cmd *qc,
1395					bool hsmv_on_idle)
1396{
1397	u8 status;
1398
1399	trace_ata_sff_port_intr(qc, hsmv_on_idle);
 
1400
1401	/* Check whether we are expecting interrupt in this state */
1402	switch (ap->hsm_task_state) {
1403	case HSM_ST_FIRST:
1404		/* Some pre-ATAPI-4 devices assert INTRQ
1405		 * at this state when ready to receive CDB.
1406		 */
1407
1408		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1409		 * The flag was turned on only for atapi devices.  No
1410		 * need to check ata_is_atapi(qc->tf.protocol) again.
1411		 */
1412		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1413			return ata_sff_idle_irq(ap);
1414		break;
1415	case HSM_ST_IDLE:
1416		return ata_sff_idle_irq(ap);
1417	default:
1418		break;
1419	}
1420
1421	/* check main status, clearing INTRQ if needed */
1422	status = ata_sff_irq_status(ap);
1423	if (status & ATA_BUSY) {
1424		if (hsmv_on_idle) {
1425			/* BMDMA engine is already stopped, we're screwed */
1426			qc->err_mask |= AC_ERR_HSM;
1427			ap->hsm_task_state = HSM_ST_ERR;
1428		} else
1429			return ata_sff_idle_irq(ap);
1430	}
1431
1432	/* clear irq events */
1433	if (ap->ops->sff_irq_clear)
1434		ap->ops->sff_irq_clear(ap);
1435
1436	ata_sff_hsm_move(ap, qc, status, 0);
1437
1438	return 1;	/* irq handled */
1439}
1440
1441/**
1442 *	ata_sff_port_intr - Handle SFF port interrupt
1443 *	@ap: Port on which interrupt arrived (possibly...)
1444 *	@qc: Taskfile currently active in engine
1445 *
1446 *	Handle port interrupt for given queued command.
1447 *
1448 *	LOCKING:
1449 *	spin_lock_irqsave(host lock)
1450 *
1451 *	RETURNS:
1452 *	One if interrupt was handled, zero if not (shared irq).
1453 */
1454unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1455{
1456	return __ata_sff_port_intr(ap, qc, false);
1457}
1458EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1459
1460static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1461	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1462{
1463	struct ata_host *host = dev_instance;
1464	bool retried = false;
1465	unsigned int i;
1466	unsigned int handled, idle, polling;
1467	unsigned long flags;
1468
1469	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1470	spin_lock_irqsave(&host->lock, flags);
1471
1472retry:
1473	handled = idle = polling = 0;
1474	for (i = 0; i < host->n_ports; i++) {
1475		struct ata_port *ap = host->ports[i];
1476		struct ata_queued_cmd *qc;
1477
1478		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1479		if (qc) {
1480			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1481				handled |= port_intr(ap, qc);
1482			else
1483				polling |= 1 << i;
1484		} else
1485			idle |= 1 << i;
1486	}
1487
1488	/*
1489	 * If no port was expecting IRQ but the controller is actually
1490	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1491	 * pending status if available and clear spurious IRQ.
1492	 */
1493	if (!handled && !retried) {
1494		bool retry = false;
1495
1496		for (i = 0; i < host->n_ports; i++) {
1497			struct ata_port *ap = host->ports[i];
1498
1499			if (polling & (1 << i))
1500				continue;
1501
1502			if (!ap->ops->sff_irq_check ||
1503			    !ap->ops->sff_irq_check(ap))
1504				continue;
1505
1506			if (idle & (1 << i)) {
1507				ap->ops->sff_check_status(ap);
1508				if (ap->ops->sff_irq_clear)
1509					ap->ops->sff_irq_clear(ap);
1510			} else {
1511				/* clear INTRQ and check if BUSY cleared */
1512				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1513					retry |= true;
1514				/*
1515				 * With command in flight, we can't do
1516				 * sff_irq_clear() w/o racing with completion.
1517				 */
1518			}
1519		}
1520
1521		if (retry) {
1522			retried = true;
1523			goto retry;
1524		}
1525	}
1526
1527	spin_unlock_irqrestore(&host->lock, flags);
1528
1529	return IRQ_RETVAL(handled);
1530}
1531
1532/**
1533 *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1534 *	@irq: irq line (unused)
1535 *	@dev_instance: pointer to our ata_host information structure
1536 *
1537 *	Default interrupt handler for PCI IDE devices.  Calls
1538 *	ata_sff_port_intr() for each port that is not disabled.
1539 *
1540 *	LOCKING:
1541 *	Obtains host lock during operation.
1542 *
1543 *	RETURNS:
1544 *	IRQ_NONE or IRQ_HANDLED.
1545 */
1546irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1547{
1548	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1549}
1550EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1551
1552/**
1553 *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1554 *	@ap: port that appears to have timed out
1555 *
1556 *	Called from the libata error handlers when the core code suspects
1557 *	an interrupt has been lost. If it has complete anything we can and
1558 *	then return. Interface must support altstatus for this faster
1559 *	recovery to occur.
1560 *
1561 *	Locking:
1562 *	Caller holds host lock
1563 */
1564
1565void ata_sff_lost_interrupt(struct ata_port *ap)
1566{
1567	u8 status = 0;
1568	struct ata_queued_cmd *qc;
1569
1570	/* Only one outstanding command per SFF channel */
1571	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1572	/* We cannot lose an interrupt on a non-existent or polled command */
1573	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1574		return;
1575	/* See if the controller thinks it is still busy - if so the command
1576	   isn't a lost IRQ but is still in progress */
1577	if (WARN_ON_ONCE(!ata_sff_altstatus(ap, &status)))
1578		return;
1579	if (status & ATA_BUSY)
1580		return;
1581
1582	/* There was a command running, we are no longer busy and we have
1583	   no interrupt. */
1584	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", status);
 
1585	/* Run the host interrupt logic as if the interrupt had not been
1586	   lost */
1587	ata_sff_port_intr(ap, qc);
1588}
1589EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1590
1591/**
1592 *	ata_sff_freeze - Freeze SFF controller port
1593 *	@ap: port to freeze
1594 *
1595 *	Freeze SFF controller port.
1596 *
1597 *	LOCKING:
1598 *	Inherited from caller.
1599 */
1600void ata_sff_freeze(struct ata_port *ap)
1601{
1602	ap->ctl |= ATA_NIEN;
1603	ap->last_ctl = ap->ctl;
1604
1605	ata_sff_set_devctl(ap, ap->ctl);
 
1606
1607	/* Under certain circumstances, some controllers raise IRQ on
1608	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1609	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1610	 */
1611	ap->ops->sff_check_status(ap);
1612
1613	if (ap->ops->sff_irq_clear)
1614		ap->ops->sff_irq_clear(ap);
1615}
1616EXPORT_SYMBOL_GPL(ata_sff_freeze);
1617
1618/**
1619 *	ata_sff_thaw - Thaw SFF controller port
1620 *	@ap: port to thaw
1621 *
1622 *	Thaw SFF controller port.
1623 *
1624 *	LOCKING:
1625 *	Inherited from caller.
1626 */
1627void ata_sff_thaw(struct ata_port *ap)
1628{
1629	/* clear & re-enable interrupts */
1630	ap->ops->sff_check_status(ap);
1631	if (ap->ops->sff_irq_clear)
1632		ap->ops->sff_irq_clear(ap);
1633	ata_sff_irq_on(ap);
1634}
1635EXPORT_SYMBOL_GPL(ata_sff_thaw);
1636
1637/**
1638 *	ata_sff_prereset - prepare SFF link for reset
1639 *	@link: SFF link to be reset
1640 *	@deadline: deadline jiffies for the operation
1641 *
1642 *	SFF link @link is about to be reset.  Initialize it.  It first
1643 *	calls ata_std_prereset() and wait for !BSY if the port is
1644 *	being softreset.
1645 *
1646 *	LOCKING:
1647 *	Kernel thread context (may sleep)
1648 *
1649 *	RETURNS:
1650 *	Always 0.
1651 */
1652int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1653{
1654	struct ata_eh_context *ehc = &link->eh_context;
1655	int rc;
1656
1657	/* The standard prereset is best-effort and always returns 0 */
1658	ata_std_prereset(link, deadline);
 
1659
1660	/* if we're about to do hardreset, nothing more to do */
1661	if (ehc->i.action & ATA_EH_HARDRESET)
1662		return 0;
1663
1664	/* wait for !BSY if we don't know that no device is attached */
1665	if (!ata_link_offline(link)) {
1666		rc = ata_sff_wait_ready(link, deadline);
1667		if (rc && rc != -ENODEV) {
1668			ata_link_warn(link,
1669				      "device not ready (errno=%d), forcing hardreset\n",
1670				      rc);
1671			ehc->i.action |= ATA_EH_HARDRESET;
1672		}
1673	}
1674
1675	return 0;
1676}
1677EXPORT_SYMBOL_GPL(ata_sff_prereset);
1678
1679/**
1680 *	ata_devchk - PATA device presence detection
1681 *	@ap: ATA channel to examine
1682 *	@device: Device to examine (starting at zero)
1683 *
1684 *	This technique was originally described in
1685 *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1686 *	later found its way into the ATA/ATAPI spec.
1687 *
1688 *	Write a pattern to the ATA shadow registers,
1689 *	and if a device is present, it will respond by
1690 *	correctly storing and echoing back the
1691 *	ATA shadow register contents.
1692 *
1693 *	RETURN:
1694 *	true if device is present, false if not.
1695 *
1696 *	LOCKING:
1697 *	caller.
1698 */
1699static bool ata_devchk(struct ata_port *ap, unsigned int device)
1700{
1701	struct ata_ioports *ioaddr = &ap->ioaddr;
1702	u8 nsect, lbal;
1703
1704	ap->ops->sff_dev_select(ap, device);
1705
1706	iowrite8(0x55, ioaddr->nsect_addr);
1707	iowrite8(0xaa, ioaddr->lbal_addr);
1708
1709	iowrite8(0xaa, ioaddr->nsect_addr);
1710	iowrite8(0x55, ioaddr->lbal_addr);
1711
1712	iowrite8(0x55, ioaddr->nsect_addr);
1713	iowrite8(0xaa, ioaddr->lbal_addr);
1714
1715	nsect = ioread8(ioaddr->nsect_addr);
1716	lbal = ioread8(ioaddr->lbal_addr);
1717
1718	if ((nsect == 0x55) && (lbal == 0xaa))
1719		return true;	/* we found a device */
1720
1721	return false;		/* nothing found */
1722}
1723
1724/**
1725 *	ata_sff_dev_classify - Parse returned ATA device signature
1726 *	@dev: ATA device to classify (starting at zero)
1727 *	@present: device seems present
1728 *	@r_err: Value of error register on completion
1729 *
1730 *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1731 *	an ATA/ATAPI-defined set of values is placed in the ATA
1732 *	shadow registers, indicating the results of device detection
1733 *	and diagnostics.
1734 *
1735 *	Select the ATA device, and read the values from the ATA shadow
1736 *	registers.  Then parse according to the Error register value,
1737 *	and the spec-defined values examined by ata_dev_classify().
1738 *
1739 *	LOCKING:
1740 *	caller.
1741 *
1742 *	RETURNS:
1743 *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1744 */
1745unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1746				  u8 *r_err)
1747{
1748	struct ata_port *ap = dev->link->ap;
1749	struct ata_taskfile tf;
1750	unsigned int class;
1751	u8 err;
1752
1753	ap->ops->sff_dev_select(ap, dev->devno);
1754
1755	memset(&tf, 0, sizeof(tf));
1756
1757	ap->ops->sff_tf_read(ap, &tf);
1758	err = tf.error;
1759	if (r_err)
1760		*r_err = err;
1761
1762	/* see if device passed diags: continue and warn later */
1763	if (err == 0)
1764		/* diagnostic fail : do nothing _YET_ */
1765		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1766	else if (err == 1)
1767		/* do nothing */ ;
1768	else if ((dev->devno == 0) && (err == 0x81))
1769		/* do nothing */ ;
1770	else
1771		return ATA_DEV_NONE;
1772
1773	/* determine if device is ATA or ATAPI */
1774	class = ata_port_classify(ap, &tf);
1775	switch (class) {
1776	case ATA_DEV_UNKNOWN:
1777		/*
1778		 * If the device failed diagnostic, it's likely to
1779		 * have reported incorrect device signature too.
1780		 * Assume ATA device if the device seems present but
1781		 * device signature is invalid with diagnostic
1782		 * failure.
1783		 */
1784		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1785			class = ATA_DEV_ATA;
1786		else
1787			class = ATA_DEV_NONE;
1788		break;
1789	case ATA_DEV_ATA:
1790		if (ap->ops->sff_check_status(ap) == 0)
1791			class = ATA_DEV_NONE;
1792		break;
1793	}
1794	return class;
1795}
1796EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1797
1798/**
1799 *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1800 *	@link: SFF link which is just reset
1801 *	@devmask: mask of present devices
1802 *	@deadline: deadline jiffies for the operation
1803 *
1804 *	Wait devices attached to SFF @link to become ready after
1805 *	reset.  It contains preceding 150ms wait to avoid accessing TF
1806 *	status register too early.
1807 *
1808 *	LOCKING:
1809 *	Kernel thread context (may sleep).
1810 *
1811 *	RETURNS:
1812 *	0 on success, -ENODEV if some or all of devices in @devmask
1813 *	don't seem to exist.  -errno on other errors.
1814 */
1815int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1816			     unsigned long deadline)
1817{
1818	struct ata_port *ap = link->ap;
1819	struct ata_ioports *ioaddr = &ap->ioaddr;
1820	unsigned int dev0 = devmask & (1 << 0);
1821	unsigned int dev1 = devmask & (1 << 1);
1822	int rc, ret = 0;
1823
1824	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1825
1826	/* always check readiness of the master device */
1827	rc = ata_sff_wait_ready(link, deadline);
1828	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1829	 * and TF status is 0xff, bail out on it too.
1830	 */
1831	if (rc)
1832		return rc;
1833
1834	/* if device 1 was found in ata_devchk, wait for register
1835	 * access briefly, then wait for BSY to clear.
1836	 */
1837	if (dev1) {
1838		int i;
1839
1840		ap->ops->sff_dev_select(ap, 1);
1841
1842		/* Wait for register access.  Some ATAPI devices fail
1843		 * to set nsect/lbal after reset, so don't waste too
1844		 * much time on it.  We're gonna wait for !BSY anyway.
1845		 */
1846		for (i = 0; i < 2; i++) {
1847			u8 nsect, lbal;
1848
1849			nsect = ioread8(ioaddr->nsect_addr);
1850			lbal = ioread8(ioaddr->lbal_addr);
1851			if ((nsect == 1) && (lbal == 1))
1852				break;
1853			ata_msleep(ap, 50);	/* give drive a breather */
1854		}
1855
1856		rc = ata_sff_wait_ready(link, deadline);
1857		if (rc) {
1858			if (rc != -ENODEV)
1859				return rc;
1860			ret = rc;
1861		}
1862	}
1863
1864	/* is all this really necessary? */
1865	ap->ops->sff_dev_select(ap, 0);
1866	if (dev1)
1867		ap->ops->sff_dev_select(ap, 1);
1868	if (dev0)
1869		ap->ops->sff_dev_select(ap, 0);
1870
1871	return ret;
1872}
1873EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
1874
1875static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
1876			     unsigned long deadline)
1877{
1878	struct ata_ioports *ioaddr = &ap->ioaddr;
1879
 
 
1880	if (ap->ioaddr.ctl_addr) {
1881		/* software reset.  causes dev0 to be selected */
1882		iowrite8(ap->ctl, ioaddr->ctl_addr);
1883		udelay(20);	/* FIXME: flush */
1884		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1885		udelay(20);	/* FIXME: flush */
1886		iowrite8(ap->ctl, ioaddr->ctl_addr);
1887		ap->last_ctl = ap->ctl;
1888	}
1889
1890	/* wait the port to become ready */
1891	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
1892}
1893
1894/**
1895 *	ata_sff_softreset - reset host port via ATA SRST
1896 *	@link: ATA link to reset
1897 *	@classes: resulting classes of attached devices
1898 *	@deadline: deadline jiffies for the operation
1899 *
1900 *	Reset host port using ATA SRST.
1901 *
1902 *	LOCKING:
1903 *	Kernel thread context (may sleep)
1904 *
1905 *	RETURNS:
1906 *	0 on success, -errno otherwise.
1907 */
1908int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
1909		      unsigned long deadline)
1910{
1911	struct ata_port *ap = link->ap;
1912	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1913	unsigned int devmask = 0;
1914	int rc;
1915	u8 err;
1916
 
 
1917	/* determine if device 0/1 are present */
1918	if (ata_devchk(ap, 0))
1919		devmask |= (1 << 0);
1920	if (slave_possible && ata_devchk(ap, 1))
1921		devmask |= (1 << 1);
1922
1923	/* select device 0 again */
1924	ap->ops->sff_dev_select(ap, 0);
1925
1926	/* issue bus reset */
 
1927	rc = ata_bus_softreset(ap, devmask, deadline);
1928	/* if link is occupied, -ENODEV too is an error */
1929	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
1930		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
1931		return rc;
1932	}
1933
1934	/* determine by signature whether we have ATA or ATAPI devices */
1935	classes[0] = ata_sff_dev_classify(&link->device[0],
1936					  devmask & (1 << 0), &err);
1937	if (slave_possible && err != 0x81)
1938		classes[1] = ata_sff_dev_classify(&link->device[1],
1939						  devmask & (1 << 1), &err);
1940
 
1941	return 0;
1942}
1943EXPORT_SYMBOL_GPL(ata_sff_softreset);
1944
1945/**
1946 *	sata_sff_hardreset - reset host port via SATA phy reset
1947 *	@link: link to reset
1948 *	@class: resulting class of attached device
1949 *	@deadline: deadline jiffies for the operation
1950 *
1951 *	SATA phy-reset host port using DET bits of SControl register,
1952 *	wait for !BSY and classify the attached device.
1953 *
1954 *	LOCKING:
1955 *	Kernel thread context (may sleep)
1956 *
1957 *	RETURNS:
1958 *	0 on success, -errno otherwise.
1959 */
1960int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
1961		       unsigned long deadline)
1962{
1963	struct ata_eh_context *ehc = &link->eh_context;
1964	const unsigned int *timing = sata_ehc_deb_timing(ehc);
1965	bool online;
1966	int rc;
1967
1968	rc = sata_link_hardreset(link, timing, deadline, &online,
1969				 ata_sff_check_ready);
1970	if (online)
1971		*class = ata_sff_dev_classify(link->device, 1, NULL);
1972
 
1973	return rc;
1974}
1975EXPORT_SYMBOL_GPL(sata_sff_hardreset);
1976
1977/**
1978 *	ata_sff_postreset - SFF postreset callback
1979 *	@link: the target SFF ata_link
1980 *	@classes: classes of attached devices
1981 *
1982 *	This function is invoked after a successful reset.  It first
1983 *	calls ata_std_postreset() and performs SFF specific postreset
1984 *	processing.
1985 *
1986 *	LOCKING:
1987 *	Kernel thread context (may sleep)
1988 */
1989void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
1990{
1991	struct ata_port *ap = link->ap;
1992
1993	ata_std_postreset(link, classes);
1994
1995	/* is double-select really necessary? */
1996	if (classes[0] != ATA_DEV_NONE)
1997		ap->ops->sff_dev_select(ap, 1);
1998	if (classes[1] != ATA_DEV_NONE)
1999		ap->ops->sff_dev_select(ap, 0);
2000
2001	/* bail out if no device is present */
2002	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE)
 
2003		return;
 
2004
2005	/* set up device control */
2006	if (ata_sff_set_devctl(ap, ap->ctl))
 
2007		ap->last_ctl = ap->ctl;
 
2008}
2009EXPORT_SYMBOL_GPL(ata_sff_postreset);
2010
2011/**
2012 *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2013 *	@qc: command
2014 *
2015 *	Drain the FIFO and device of any stuck data following a command
2016 *	failing to complete. In some cases this is necessary before a
2017 *	reset will recover the device.
2018 *
2019 */
2020
2021void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2022{
2023	int count;
2024	struct ata_port *ap;
2025
2026	/* We only need to flush incoming data when a command was running */
2027	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2028		return;
2029
2030	ap = qc->ap;
2031	/* Drain up to 64K of data before we give up this recovery method */
2032	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2033						&& count < 65536; count += 2)
2034		ioread16(ap->ioaddr.data_addr);
2035
 
2036	if (count)
2037		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2038
2039}
2040EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2041
2042/**
2043 *	ata_sff_error_handler - Stock error handler for SFF controller
2044 *	@ap: port to handle error for
2045 *
2046 *	Stock error handler for SFF controller.  It can handle both
2047 *	PATA and SATA controllers.  Many controllers should be able to
2048 *	use this EH as-is or with some added handling before and
2049 *	after.
2050 *
2051 *	LOCKING:
2052 *	Kernel thread context (may sleep)
2053 */
2054void ata_sff_error_handler(struct ata_port *ap)
2055{
2056	ata_reset_fn_t softreset = ap->ops->softreset;
2057	ata_reset_fn_t hardreset = ap->ops->hardreset;
2058	struct ata_queued_cmd *qc;
2059	unsigned long flags;
2060
2061	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2062	if (qc && !(qc->flags & ATA_QCFLAG_EH))
2063		qc = NULL;
2064
2065	spin_lock_irqsave(ap->lock, flags);
2066
2067	/*
2068	 * We *MUST* do FIFO draining before we issue a reset as
2069	 * several devices helpfully clear their internal state and
2070	 * will lock solid if we touch the data port post reset. Pass
2071	 * qc in case anyone wants to do different PIO/DMA recovery or
2072	 * has per command fixups
2073	 */
2074	if (ap->ops->sff_drain_fifo)
2075		ap->ops->sff_drain_fifo(qc);
2076
2077	spin_unlock_irqrestore(ap->lock, flags);
2078
2079	/* ignore built-in hardresets if SCR access is not available */
2080	if ((hardreset == sata_std_hardreset ||
2081	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2082		hardreset = NULL;
2083
2084	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2085		  ap->ops->postreset);
2086}
2087EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2088
2089/**
2090 *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2091 *	@ioaddr: IO address structure to be initialized
2092 *
2093 *	Utility function which initializes data_addr, error_addr,
2094 *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2095 *	device_addr, status_addr, and command_addr to standard offsets
2096 *	relative to cmd_addr.
2097 *
2098 *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2099 */
2100void ata_sff_std_ports(struct ata_ioports *ioaddr)
2101{
2102	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2103	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2104	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2105	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2106	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2107	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2108	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2109	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2110	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2111	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2112}
2113EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2114
2115#ifdef CONFIG_PCI
2116
2117static bool ata_resources_present(struct pci_dev *pdev, int port)
2118{
2119	int i;
2120
2121	/* Check the PCI resources for this channel are enabled */
2122	port *= 2;
2123	for (i = 0; i < 2; i++) {
2124		if (pci_resource_start(pdev, port + i) == 0 ||
2125		    pci_resource_len(pdev, port + i) == 0)
2126			return false;
2127	}
2128	return true;
2129}
2130
2131/**
2132 *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2133 *	@host: target ATA host
2134 *
2135 *	Acquire native PCI ATA resources for @host and initialize the
2136 *	first two ports of @host accordingly.  Ports marked dummy are
2137 *	skipped and allocation failure makes the port dummy.
2138 *
2139 *	Note that native PCI resources are valid even for legacy hosts
2140 *	as we fix up pdev resources array early in boot, so this
2141 *	function can be used for both native and legacy SFF hosts.
2142 *
2143 *	LOCKING:
2144 *	Inherited from calling layer (may sleep).
2145 *
2146 *	RETURNS:
2147 *	0 if at least one port is initialized, -ENODEV if no port is
2148 *	available.
2149 */
2150int ata_pci_sff_init_host(struct ata_host *host)
2151{
2152	struct device *gdev = host->dev;
2153	struct pci_dev *pdev = to_pci_dev(gdev);
2154	unsigned int mask = 0;
2155	int i, rc;
2156
2157	/* request, iomap BARs and init port addresses accordingly */
2158	for (i = 0; i < 2; i++) {
2159		struct ata_port *ap = host->ports[i];
2160		int base = i * 2;
2161		void __iomem * const *iomap;
2162
2163		if (ata_port_is_dummy(ap))
2164			continue;
2165
2166		/* Discard disabled ports.  Some controllers show
2167		 * their unused channels this way.  Disabled ports are
2168		 * made dummy.
2169		 */
2170		if (!ata_resources_present(pdev, i)) {
2171			ap->ops = &ata_dummy_port_ops;
2172			continue;
2173		}
2174
2175		rc = pcim_iomap_regions(pdev, 0x3 << base,
2176					dev_driver_string(gdev));
2177		if (rc) {
2178			dev_warn(gdev,
2179				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2180				 i, rc);
2181			if (rc == -EBUSY)
2182				pcim_pin_device(pdev);
2183			ap->ops = &ata_dummy_port_ops;
2184			continue;
2185		}
2186		host->iomap = iomap = pcim_iomap_table(pdev);
2187
2188		ap->ioaddr.cmd_addr = iomap[base];
2189		ap->ioaddr.altstatus_addr =
2190		ap->ioaddr.ctl_addr = (void __iomem *)
2191			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2192		ata_sff_std_ports(&ap->ioaddr);
2193
2194		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2195			(unsigned long long)pci_resource_start(pdev, base),
2196			(unsigned long long)pci_resource_start(pdev, base + 1));
2197
2198		mask |= 1 << i;
2199	}
2200
2201	if (!mask) {
2202		dev_err(gdev, "no available native port\n");
2203		return -ENODEV;
2204	}
2205
2206	return 0;
2207}
2208EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2209
2210/**
2211 *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2212 *	@pdev: target PCI device
2213 *	@ppi: array of port_info, must be enough for two ports
2214 *	@r_host: out argument for the initialized ATA host
2215 *
2216 *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2217 *	all PCI resources and initialize it accordingly in one go.
2218 *
2219 *	LOCKING:
2220 *	Inherited from calling layer (may sleep).
2221 *
2222 *	RETURNS:
2223 *	0 on success, -errno otherwise.
2224 */
2225int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2226			     const struct ata_port_info * const *ppi,
2227			     struct ata_host **r_host)
2228{
2229	struct ata_host *host;
2230	int rc;
2231
2232	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2233		return -ENOMEM;
2234
2235	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2236	if (!host) {
2237		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2238		rc = -ENOMEM;
2239		goto err_out;
2240	}
2241
2242	rc = ata_pci_sff_init_host(host);
2243	if (rc)
2244		goto err_out;
2245
2246	devres_remove_group(&pdev->dev, NULL);
2247	*r_host = host;
2248	return 0;
2249
2250err_out:
2251	devres_release_group(&pdev->dev, NULL);
2252	return rc;
2253}
2254EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2255
2256/**
2257 *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2258 *	@host: target SFF ATA host
2259 *	@irq_handler: irq_handler used when requesting IRQ(s)
2260 *	@sht: scsi_host_template to use when registering the host
2261 *
2262 *	This is the counterpart of ata_host_activate() for SFF ATA
2263 *	hosts.  This separate helper is necessary because SFF hosts
2264 *	use two separate interrupts in legacy mode.
2265 *
2266 *	LOCKING:
2267 *	Inherited from calling layer (may sleep).
2268 *
2269 *	RETURNS:
2270 *	0 on success, -errno otherwise.
2271 */
2272int ata_pci_sff_activate_host(struct ata_host *host,
2273			      irq_handler_t irq_handler,
2274			      const struct scsi_host_template *sht)
2275{
2276	struct device *dev = host->dev;
2277	struct pci_dev *pdev = to_pci_dev(dev);
2278	const char *drv_name = dev_driver_string(host->dev);
2279	int legacy_mode = 0, rc;
2280
2281	rc = ata_host_start(host);
2282	if (rc)
2283		return rc;
2284
2285	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2286		u8 tmp8, mask = 0;
2287
2288		/*
2289		 * ATA spec says we should use legacy mode when one
2290		 * port is in legacy mode, but disabled ports on some
2291		 * PCI hosts appear as fixed legacy ports, e.g SB600/700
2292		 * on which the secondary port is not wired, so
2293		 * ignore ports that are marked as 'dummy' during
2294		 * this check
2295		 */
2296		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2297		if (!ata_port_is_dummy(host->ports[0]))
2298			mask |= (1 << 0);
2299		if (!ata_port_is_dummy(host->ports[1]))
2300			mask |= (1 << 2);
2301		if ((tmp8 & mask) != mask)
2302			legacy_mode = 1;
2303	}
2304
2305	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2306		return -ENOMEM;
2307
2308	if (!legacy_mode && pdev->irq) {
2309		int i;
2310
2311		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2312				      IRQF_SHARED, drv_name, host);
2313		if (rc)
2314			goto out;
2315
2316		for (i = 0; i < 2; i++) {
2317			if (ata_port_is_dummy(host->ports[i]))
2318				continue;
2319			ata_port_desc_misc(host->ports[i], pdev->irq);
2320		}
2321	} else if (legacy_mode) {
2322		if (!ata_port_is_dummy(host->ports[0])) {
2323			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2324					      irq_handler, IRQF_SHARED,
2325					      drv_name, host);
2326			if (rc)
2327				goto out;
2328
2329			ata_port_desc_misc(host->ports[0],
2330					   ATA_PRIMARY_IRQ(pdev));
2331		}
2332
2333		if (!ata_port_is_dummy(host->ports[1])) {
2334			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2335					      irq_handler, IRQF_SHARED,
2336					      drv_name, host);
2337			if (rc)
2338				goto out;
2339
2340			ata_port_desc_misc(host->ports[1],
2341					   ATA_SECONDARY_IRQ(pdev));
2342		}
2343	}
2344
2345	rc = ata_host_register(host, sht);
2346out:
2347	if (rc == 0)
2348		devres_remove_group(dev, NULL);
2349	else
2350		devres_release_group(dev, NULL);
2351
2352	return rc;
2353}
2354EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2355
2356static const struct ata_port_info *ata_sff_find_valid_pi(
2357					const struct ata_port_info * const *ppi)
2358{
2359	int i;
2360
2361	/* look up the first valid port_info */
2362	for (i = 0; i < 2 && ppi[i]; i++)
2363		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2364			return ppi[i];
2365
2366	return NULL;
2367}
2368
2369static int ata_pci_init_one(struct pci_dev *pdev,
2370		const struct ata_port_info * const *ppi,
2371		const struct scsi_host_template *sht, void *host_priv,
2372		int hflags, bool bmdma)
2373{
2374	struct device *dev = &pdev->dev;
2375	const struct ata_port_info *pi;
2376	struct ata_host *host = NULL;
2377	int rc;
2378
 
 
2379	pi = ata_sff_find_valid_pi(ppi);
2380	if (!pi) {
2381		dev_err(&pdev->dev, "no valid port_info specified\n");
2382		return -EINVAL;
2383	}
2384
2385	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2386		return -ENOMEM;
2387
2388	rc = pcim_enable_device(pdev);
2389	if (rc)
2390		goto out;
2391
2392#ifdef CONFIG_ATA_BMDMA
2393	if (bmdma)
2394		/* prepare and activate BMDMA host */
2395		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2396	else
2397#endif
2398		/* prepare and activate SFF host */
2399		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2400	if (rc)
2401		goto out;
2402	host->private_data = host_priv;
2403	host->flags |= hflags;
2404
2405#ifdef CONFIG_ATA_BMDMA
2406	if (bmdma) {
2407		pci_set_master(pdev);
2408		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2409	} else
2410#endif
2411		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2412out:
2413	if (rc == 0)
2414		devres_remove_group(&pdev->dev, NULL);
2415	else
2416		devres_release_group(&pdev->dev, NULL);
2417
2418	return rc;
2419}
2420
2421/**
2422 *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2423 *	@pdev: Controller to be initialized
2424 *	@ppi: array of port_info, must be enough for two ports
2425 *	@sht: scsi_host_template to use when registering the host
2426 *	@host_priv: host private_data
2427 *	@hflag: host flags
2428 *
2429 *	This is a helper function which can be called from a driver's
2430 *	xxx_init_one() probe function if the hardware uses traditional
2431 *	IDE taskfile registers and is PIO only.
2432 *
2433 *	ASSUMPTION:
2434 *	Nobody makes a single channel controller that appears solely as
2435 *	the secondary legacy port on PCI.
2436 *
2437 *	LOCKING:
2438 *	Inherited from PCI layer (may sleep).
2439 *
2440 *	RETURNS:
2441 *	Zero on success, negative on errno-based value on error.
2442 */
2443int ata_pci_sff_init_one(struct pci_dev *pdev,
2444		 const struct ata_port_info * const *ppi,
2445		 const struct scsi_host_template *sht, void *host_priv, int hflag)
2446{
2447	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2448}
2449EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2450
2451#endif /* CONFIG_PCI */
2452
2453/*
2454 *	BMDMA support
2455 */
2456
2457#ifdef CONFIG_ATA_BMDMA
2458
2459const struct ata_port_operations ata_bmdma_port_ops = {
2460	.inherits		= &ata_sff_port_ops,
2461
2462	.error_handler		= ata_bmdma_error_handler,
2463	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2464
2465	.qc_prep		= ata_bmdma_qc_prep,
2466	.qc_issue		= ata_bmdma_qc_issue,
2467
2468	.sff_irq_clear		= ata_bmdma_irq_clear,
2469	.bmdma_setup		= ata_bmdma_setup,
2470	.bmdma_start		= ata_bmdma_start,
2471	.bmdma_stop		= ata_bmdma_stop,
2472	.bmdma_status		= ata_bmdma_status,
2473
2474	.port_start		= ata_bmdma_port_start,
2475};
2476EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2477
2478const struct ata_port_operations ata_bmdma32_port_ops = {
2479	.inherits		= &ata_bmdma_port_ops,
2480
2481	.sff_data_xfer		= ata_sff_data_xfer32,
2482	.port_start		= ata_bmdma_port_start32,
2483};
2484EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2485
2486/**
2487 *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2488 *	@qc: Metadata associated with taskfile to be transferred
2489 *
2490 *	Fill PCI IDE PRD (scatter-gather) table with segments
2491 *	associated with the current disk command.
2492 *
2493 *	LOCKING:
2494 *	spin_lock_irqsave(host lock)
2495 *
2496 */
2497static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2498{
2499	struct ata_port *ap = qc->ap;
2500	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2501	struct scatterlist *sg;
2502	unsigned int si, pi;
2503
2504	pi = 0;
2505	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2506		u32 addr, offset;
2507		u32 sg_len, len;
2508
2509		/* determine if physical DMA addr spans 64K boundary.
2510		 * Note h/w doesn't support 64-bit, so we unconditionally
2511		 * truncate dma_addr_t to u32.
2512		 */
2513		addr = (u32) sg_dma_address(sg);
2514		sg_len = sg_dma_len(sg);
2515
2516		while (sg_len) {
2517			offset = addr & 0xffff;
2518			len = sg_len;
2519			if ((offset + sg_len) > 0x10000)
2520				len = 0x10000 - offset;
2521
2522			prd[pi].addr = cpu_to_le32(addr);
2523			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
 
2524
2525			pi++;
2526			sg_len -= len;
2527			addr += len;
2528		}
2529	}
2530
2531	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2532}
2533
2534/**
2535 *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2536 *	@qc: Metadata associated with taskfile to be transferred
2537 *
2538 *	Fill PCI IDE PRD (scatter-gather) table with segments
2539 *	associated with the current disk command. Perform the fill
2540 *	so that we avoid writing any length 64K records for
2541 *	controllers that don't follow the spec.
2542 *
2543 *	LOCKING:
2544 *	spin_lock_irqsave(host lock)
2545 *
2546 */
2547static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2548{
2549	struct ata_port *ap = qc->ap;
2550	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2551	struct scatterlist *sg;
2552	unsigned int si, pi;
2553
2554	pi = 0;
2555	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2556		u32 addr, offset;
2557		u32 sg_len, len, blen;
2558
2559		/* determine if physical DMA addr spans 64K boundary.
2560		 * Note h/w doesn't support 64-bit, so we unconditionally
2561		 * truncate dma_addr_t to u32.
2562		 */
2563		addr = (u32) sg_dma_address(sg);
2564		sg_len = sg_dma_len(sg);
2565
2566		while (sg_len) {
2567			offset = addr & 0xffff;
2568			len = sg_len;
2569			if ((offset + sg_len) > 0x10000)
2570				len = 0x10000 - offset;
2571
2572			blen = len & 0xffff;
2573			prd[pi].addr = cpu_to_le32(addr);
2574			if (blen == 0) {
2575				/* Some PATA chipsets like the CS5530 can't
2576				   cope with 0x0000 meaning 64K as the spec
2577				   says */
2578				prd[pi].flags_len = cpu_to_le32(0x8000);
2579				blen = 0x8000;
2580				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2581			}
2582			prd[pi].flags_len = cpu_to_le32(blen);
 
2583
2584			pi++;
2585			sg_len -= len;
2586			addr += len;
2587		}
2588	}
2589
2590	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2591}
2592
2593/**
2594 *	ata_bmdma_qc_prep - Prepare taskfile for submission
2595 *	@qc: Metadata associated with taskfile to be prepared
2596 *
2597 *	Prepare ATA taskfile for submission.
2598 *
2599 *	LOCKING:
2600 *	spin_lock_irqsave(host lock)
2601 */
2602enum ata_completion_errors ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2603{
2604	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2605		return AC_ERR_OK;
2606
2607	ata_bmdma_fill_sg(qc);
2608
2609	return AC_ERR_OK;
2610}
2611EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2612
2613/**
2614 *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2615 *	@qc: Metadata associated with taskfile to be prepared
2616 *
2617 *	Prepare ATA taskfile for submission.
2618 *
2619 *	LOCKING:
2620 *	spin_lock_irqsave(host lock)
2621 */
2622enum ata_completion_errors ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2623{
2624	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2625		return AC_ERR_OK;
2626
2627	ata_bmdma_fill_sg_dumb(qc);
2628
2629	return AC_ERR_OK;
2630}
2631EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2632
2633/**
2634 *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2635 *	@qc: command to issue to device
2636 *
2637 *	This function issues a PIO, NODATA or DMA command to a
2638 *	SFF/BMDMA controller.  PIO and NODATA are handled by
2639 *	ata_sff_qc_issue().
2640 *
2641 *	LOCKING:
2642 *	spin_lock_irqsave(host lock)
2643 *
2644 *	RETURNS:
2645 *	Zero on success, AC_ERR_* mask on failure
2646 */
2647unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2648{
2649	struct ata_port *ap = qc->ap;
2650	struct ata_link *link = qc->dev->link;
2651
2652	/* defer PIO handling to sff_qc_issue */
2653	if (!ata_is_dma(qc->tf.protocol))
2654		return ata_sff_qc_issue(qc);
2655
2656	/* select the device */
2657	ata_dev_select(ap, qc->dev->devno, 1, 0);
2658
2659	/* start the command */
2660	switch (qc->tf.protocol) {
2661	case ATA_PROT_DMA:
2662		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2663
2664		trace_ata_tf_load(ap, &qc->tf);
2665		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2666		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2667		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2668		trace_ata_bmdma_start(ap, &qc->tf, qc->tag);
2669		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2670		ap->hsm_task_state = HSM_ST_LAST;
2671		break;
2672
2673	case ATAPI_PROT_DMA:
2674		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2675
2676		trace_ata_tf_load(ap, &qc->tf);
2677		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2678		trace_ata_bmdma_setup(ap, &qc->tf, qc->tag);
2679		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2680		ap->hsm_task_state = HSM_ST_FIRST;
2681
2682		/* send cdb by polling if no cdb interrupt */
2683		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2684			ata_sff_queue_pio_task(link, 0);
2685		break;
2686
2687	default:
2688		WARN_ON(1);
2689		return AC_ERR_SYSTEM;
2690	}
2691
2692	return 0;
2693}
2694EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2695
2696/**
2697 *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2698 *	@ap: Port on which interrupt arrived (possibly...)
2699 *	@qc: Taskfile currently active in engine
2700 *
2701 *	Handle port interrupt for given queued command.
2702 *
2703 *	LOCKING:
2704 *	spin_lock_irqsave(host lock)
2705 *
2706 *	RETURNS:
2707 *	One if interrupt was handled, zero if not (shared irq).
2708 */
2709unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2710{
2711	struct ata_eh_info *ehi = &ap->link.eh_info;
2712	u8 host_stat = 0;
2713	bool bmdma_stopped = false;
2714	unsigned int handled;
2715
2716	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2717		/* check status of DMA engine */
2718		host_stat = ap->ops->bmdma_status(ap);
2719		trace_ata_bmdma_status(ap, host_stat);
2720
2721		/* if it's not our irq... */
2722		if (!(host_stat & ATA_DMA_INTR))
2723			return ata_sff_idle_irq(ap);
2724
2725		/* before we do anything else, clear DMA-Start bit */
2726		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2727		ap->ops->bmdma_stop(qc);
2728		bmdma_stopped = true;
2729
2730		if (unlikely(host_stat & ATA_DMA_ERR)) {
2731			/* error when transferring data to/from memory */
2732			qc->err_mask |= AC_ERR_HOST_BUS;
2733			ap->hsm_task_state = HSM_ST_ERR;
2734		}
2735	}
2736
2737	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2738
2739	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2740		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2741
2742	return handled;
2743}
2744EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2745
2746/**
2747 *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2748 *	@irq: irq line (unused)
2749 *	@dev_instance: pointer to our ata_host information structure
2750 *
2751 *	Default interrupt handler for PCI IDE devices.  Calls
2752 *	ata_bmdma_port_intr() for each port that is not disabled.
2753 *
2754 *	LOCKING:
2755 *	Obtains host lock during operation.
2756 *
2757 *	RETURNS:
2758 *	IRQ_NONE or IRQ_HANDLED.
2759 */
2760irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2761{
2762	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2763}
2764EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2765
2766/**
2767 *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2768 *	@ap: port to handle error for
2769 *
2770 *	Stock error handler for BMDMA controller.  It can handle both
2771 *	PATA and SATA controllers.  Most BMDMA controllers should be
2772 *	able to use this EH as-is or with some added handling before
2773 *	and after.
2774 *
2775 *	LOCKING:
2776 *	Kernel thread context (may sleep)
2777 */
2778void ata_bmdma_error_handler(struct ata_port *ap)
2779{
2780	struct ata_queued_cmd *qc;
2781	unsigned long flags;
2782	bool thaw = false;
2783
2784	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2785	if (qc && !(qc->flags & ATA_QCFLAG_EH))
2786		qc = NULL;
2787
2788	/* reset PIO HSM and stop DMA engine */
2789	spin_lock_irqsave(ap->lock, flags);
2790
2791	if (qc && ata_is_dma(qc->tf.protocol)) {
2792		u8 host_stat;
2793
2794		host_stat = ap->ops->bmdma_status(ap);
2795		trace_ata_bmdma_status(ap, host_stat);
2796
2797		/* BMDMA controllers indicate host bus error by
2798		 * setting DMA_ERR bit and timing out.  As it wasn't
2799		 * really a timeout event, adjust error mask and
2800		 * cancel frozen state.
2801		 */
2802		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2803			qc->err_mask = AC_ERR_HOST_BUS;
2804			thaw = true;
2805		}
2806
2807		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2808		ap->ops->bmdma_stop(qc);
2809
2810		/* if we're gonna thaw, make sure IRQ is clear */
2811		if (thaw) {
2812			ap->ops->sff_check_status(ap);
2813			if (ap->ops->sff_irq_clear)
2814				ap->ops->sff_irq_clear(ap);
2815		}
2816	}
2817
2818	spin_unlock_irqrestore(ap->lock, flags);
2819
2820	if (thaw)
2821		ata_eh_thaw_port(ap);
2822
2823	ata_sff_error_handler(ap);
2824}
2825EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2826
2827/**
2828 *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2829 *	@qc: internal command to clean up
2830 *
2831 *	LOCKING:
2832 *	Kernel thread context (may sleep)
2833 */
2834void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2835{
2836	struct ata_port *ap = qc->ap;
2837	unsigned long flags;
2838
2839	if (ata_is_dma(qc->tf.protocol)) {
2840		spin_lock_irqsave(ap->lock, flags);
2841		trace_ata_bmdma_stop(ap, &qc->tf, qc->tag);
2842		ap->ops->bmdma_stop(qc);
2843		spin_unlock_irqrestore(ap->lock, flags);
2844	}
2845}
2846EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2847
2848/**
2849 *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2850 *	@ap: Port associated with this ATA transaction.
2851 *
2852 *	Clear interrupt and error flags in DMA status register.
2853 *
2854 *	May be used as the irq_clear() entry in ata_port_operations.
2855 *
2856 *	LOCKING:
2857 *	spin_lock_irqsave(host lock)
2858 */
2859void ata_bmdma_irq_clear(struct ata_port *ap)
2860{
2861	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2862
2863	if (!mmio)
2864		return;
2865
2866	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2867}
2868EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2869
2870/**
2871 *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2872 *	@qc: Info associated with this ATA transaction.
2873 *
2874 *	LOCKING:
2875 *	spin_lock_irqsave(host lock)
2876 */
2877void ata_bmdma_setup(struct ata_queued_cmd *qc)
2878{
2879	struct ata_port *ap = qc->ap;
2880	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
2881	u8 dmactl;
2882
2883	/* load PRD table addr. */
2884	mb();	/* make sure PRD table writes are visible to controller */
2885	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
2886
2887	/* specify data direction, triple-check start bit is clear */
2888	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2889	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
2890	if (!rw)
2891		dmactl |= ATA_DMA_WR;
2892	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2893
2894	/* issue r/w command */
2895	ap->ops->sff_exec_command(ap, &qc->tf);
2896}
2897EXPORT_SYMBOL_GPL(ata_bmdma_setup);
2898
2899/**
2900 *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
2901 *	@qc: Info associated with this ATA transaction.
2902 *
2903 *	LOCKING:
2904 *	spin_lock_irqsave(host lock)
2905 */
2906void ata_bmdma_start(struct ata_queued_cmd *qc)
2907{
2908	struct ata_port *ap = qc->ap;
2909	u8 dmactl;
2910
2911	/* start host DMA transaction */
2912	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2913	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
2914
2915	/* Strictly, one may wish to issue an ioread8() here, to
2916	 * flush the mmio write.  However, control also passes
2917	 * to the hardware at this point, and it will interrupt
2918	 * us when we are to resume control.  So, in effect,
2919	 * we don't care when the mmio write flushes.
2920	 * Further, a read of the DMA status register _immediately_
2921	 * following the write may not be what certain flaky hardware
2922	 * is expected, so I think it is best to not add a readb()
2923	 * without first all the MMIO ATA cards/mobos.
2924	 * Or maybe I'm just being paranoid.
2925	 *
2926	 * FIXME: The posting of this write means I/O starts are
2927	 * unnecessarily delayed for MMIO
2928	 */
2929}
2930EXPORT_SYMBOL_GPL(ata_bmdma_start);
2931
2932/**
2933 *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
2934 *	@qc: Command we are ending DMA for
2935 *
2936 *	Clears the ATA_DMA_START flag in the dma control register
2937 *
2938 *	May be used as the bmdma_stop() entry in ata_port_operations.
2939 *
2940 *	LOCKING:
2941 *	spin_lock_irqsave(host lock)
2942 */
2943void ata_bmdma_stop(struct ata_queued_cmd *qc)
2944{
2945	struct ata_port *ap = qc->ap;
2946	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2947
2948	/* clear start/stop bit */
2949	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
2950		 mmio + ATA_DMA_CMD);
2951
2952	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
2953	ata_sff_dma_pause(ap);
2954}
2955EXPORT_SYMBOL_GPL(ata_bmdma_stop);
2956
2957/**
2958 *	ata_bmdma_status - Read PCI IDE BMDMA status
2959 *	@ap: Port associated with this ATA transaction.
2960 *
2961 *	Read and return BMDMA status register.
2962 *
2963 *	May be used as the bmdma_status() entry in ata_port_operations.
2964 *
2965 *	LOCKING:
2966 *	spin_lock_irqsave(host lock)
2967 */
2968u8 ata_bmdma_status(struct ata_port *ap)
2969{
2970	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
2971}
2972EXPORT_SYMBOL_GPL(ata_bmdma_status);
2973
2974
2975/**
2976 *	ata_bmdma_port_start - Set port up for bmdma.
2977 *	@ap: Port to initialize
2978 *
2979 *	Called just after data structures for each port are
2980 *	initialized.  Allocates space for PRD table.
2981 *
2982 *	May be used as the port_start() entry in ata_port_operations.
2983 *
2984 *	LOCKING:
2985 *	Inherited from caller.
2986 */
2987int ata_bmdma_port_start(struct ata_port *ap)
2988{
2989	if (ap->mwdma_mask || ap->udma_mask) {
2990		ap->bmdma_prd =
2991			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
2992					    &ap->bmdma_prd_dma, GFP_KERNEL);
2993		if (!ap->bmdma_prd)
2994			return -ENOMEM;
2995	}
2996
2997	return 0;
2998}
2999EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3000
3001/**
3002 *	ata_bmdma_port_start32 - Set port up for dma.
3003 *	@ap: Port to initialize
3004 *
3005 *	Called just after data structures for each port are
3006 *	initialized.  Enables 32bit PIO and allocates space for PRD
3007 *	table.
3008 *
3009 *	May be used as the port_start() entry in ata_port_operations for
3010 *	devices that are capable of 32bit PIO.
3011 *
3012 *	LOCKING:
3013 *	Inherited from caller.
3014 */
3015int ata_bmdma_port_start32(struct ata_port *ap)
3016{
3017	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3018	return ata_bmdma_port_start(ap);
3019}
3020EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3021
3022#ifdef CONFIG_PCI
3023
3024/**
3025 *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3026 *	@pdev: PCI device
3027 *
3028 *	Some PCI ATA devices report simplex mode but in fact can be told to
3029 *	enter non simplex mode. This implements the necessary logic to
3030 *	perform the task on such devices. Calling it on other devices will
3031 *	have -undefined- behaviour.
3032 */
3033int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3034{
3035	unsigned long bmdma = pci_resource_start(pdev, 4);
3036	u8 simplex;
3037
3038	if (bmdma == 0)
3039		return -ENOENT;
3040
3041	simplex = inb(bmdma + 0x02);
3042	outb(simplex & 0x60, bmdma + 0x02);
3043	simplex = inb(bmdma + 0x02);
3044	if (simplex & 0x80)
3045		return -EOPNOTSUPP;
3046	return 0;
3047}
3048EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3049
3050static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3051{
3052	int i;
3053
3054	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3055
3056	for (i = 0; i < 2; i++) {
3057		host->ports[i]->mwdma_mask = 0;
3058		host->ports[i]->udma_mask = 0;
3059	}
3060}
3061
3062/**
3063 *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3064 *	@host: target ATA host
3065 *
3066 *	Acquire PCI BMDMA resources and initialize @host accordingly.
3067 *
3068 *	LOCKING:
3069 *	Inherited from calling layer (may sleep).
3070 */
3071void ata_pci_bmdma_init(struct ata_host *host)
3072{
3073	struct device *gdev = host->dev;
3074	struct pci_dev *pdev = to_pci_dev(gdev);
3075	int i, rc;
3076
3077	/* No BAR4 allocation: No DMA */
3078	if (pci_resource_start(pdev, 4) == 0) {
3079		ata_bmdma_nodma(host, "BAR4 is zero");
3080		return;
3081	}
3082
3083	/*
3084	 * Some controllers require BMDMA region to be initialized
3085	 * even if DMA is not in use to clear IRQ status via
3086	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3087	 * regardless of dma masks.
3088	 */
3089	rc = dma_set_mask_and_coherent(&pdev->dev, ATA_DMA_MASK);
3090	if (rc)
3091		ata_bmdma_nodma(host, "failed to set dma mask");
 
 
 
 
 
 
3092
3093	/* request and iomap DMA region */
3094	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3095	if (rc) {
3096		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3097		return;
3098	}
3099	host->iomap = pcim_iomap_table(pdev);
3100
3101	for (i = 0; i < 2; i++) {
3102		struct ata_port *ap = host->ports[i];
3103		void __iomem *bmdma = host->iomap[4] + 8 * i;
3104
3105		if (ata_port_is_dummy(ap))
3106			continue;
3107
3108		ap->ioaddr.bmdma_addr = bmdma;
3109		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3110		    (ioread8(bmdma + 2) & 0x80))
3111			host->flags |= ATA_HOST_SIMPLEX;
3112
3113		ata_port_desc(ap, "bmdma 0x%llx",
3114		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3115	}
3116}
3117EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3118
3119/**
3120 *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3121 *	@pdev: target PCI device
3122 *	@ppi: array of port_info, must be enough for two ports
3123 *	@r_host: out argument for the initialized ATA host
3124 *
3125 *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3126 *	resources and initialize it accordingly in one go.
3127 *
3128 *	LOCKING:
3129 *	Inherited from calling layer (may sleep).
3130 *
3131 *	RETURNS:
3132 *	0 on success, -errno otherwise.
3133 */
3134int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3135			       const struct ata_port_info * const * ppi,
3136			       struct ata_host **r_host)
3137{
3138	int rc;
3139
3140	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3141	if (rc)
3142		return rc;
3143
3144	ata_pci_bmdma_init(*r_host);
3145	return 0;
3146}
3147EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3148
3149/**
3150 *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3151 *	@pdev: Controller to be initialized
3152 *	@ppi: array of port_info, must be enough for two ports
3153 *	@sht: scsi_host_template to use when registering the host
3154 *	@host_priv: host private_data
3155 *	@hflags: host flags
3156 *
3157 *	This function is similar to ata_pci_sff_init_one() but also
3158 *	takes care of BMDMA initialization.
3159 *
3160 *	LOCKING:
3161 *	Inherited from PCI layer (may sleep).
3162 *
3163 *	RETURNS:
3164 *	Zero on success, negative on errno-based value on error.
3165 */
3166int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3167			   const struct ata_port_info * const * ppi,
3168			   const struct scsi_host_template *sht, void *host_priv,
3169			   int hflags)
3170{
3171	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3172}
3173EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3174
3175#endif /* CONFIG_PCI */
3176#endif /* CONFIG_ATA_BMDMA */
3177
3178/**
3179 *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3180 *	@ap: Port to initialize
3181 *
3182 *	Called on port allocation to initialize SFF/BMDMA specific
3183 *	fields.
3184 *
3185 *	LOCKING:
3186 *	None.
3187 */
3188void ata_sff_port_init(struct ata_port *ap)
3189{
3190	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3191	ap->ctl = ATA_DEVCTL_OBS;
3192	ap->last_ctl = 0xFF;
3193}
3194
3195int __init ata_sff_init(void)
3196{
3197	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3198	if (!ata_sff_wq)
3199		return -ENOMEM;
3200
3201	return 0;
3202}
3203
3204void ata_sff_exit(void)
3205{
3206	destroy_workqueue(ata_sff_wq);
3207}