Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
  3 * Copyright(c) 2009 Intel Corporation
  4 *
  5 * based on raid6recov.c:
  6 *   Copyright 2002 H. Peter Anvin
  7 *
  8 * This program is free software; you can redistribute it and/or modify it
  9 * under the terms of the GNU General Public License as published by the Free
 10 * Software Foundation; either version 2 of the License, or (at your option)
 11 * any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful, but WITHOUT
 14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 16 * more details.
 17 *
 18 * You should have received a copy of the GNU General Public License along with
 19 * this program; if not, write to the Free Software Foundation, Inc., 51
 20 * Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 21 *
 22 */
 23#include <linux/kernel.h>
 24#include <linux/interrupt.h>
 25#include <linux/module.h>
 26#include <linux/dma-mapping.h>
 27#include <linux/raid/pq.h>
 28#include <linux/async_tx.h>
 29#include <linux/dmaengine.h>
 30
 31static struct dma_async_tx_descriptor *
 32async_sum_product(struct page *dest, struct page **srcs, unsigned char *coef,
 33		  size_t len, struct async_submit_ctl *submit)
 
 34{
 35	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
 36						      &dest, 1, srcs, 2, len);
 37	struct dma_device *dma = chan ? chan->device : NULL;
 38	struct dmaengine_unmap_data *unmap = NULL;
 39	const u8 *amul, *bmul;
 40	u8 ax, bx;
 41	u8 *a, *b, *c;
 42
 43	if (dma)
 44		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
 45
 46	if (unmap) {
 47		struct device *dev = dma->dev;
 48		dma_addr_t pq[2];
 49		struct dma_async_tx_descriptor *tx;
 50		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
 51
 52		if (submit->flags & ASYNC_TX_FENCE)
 53			dma_flags |= DMA_PREP_FENCE;
 54		unmap->addr[0] = dma_map_page(dev, srcs[0], 0, len, DMA_TO_DEVICE);
 55		unmap->addr[1] = dma_map_page(dev, srcs[1], 0, len, DMA_TO_DEVICE);
 
 
 56		unmap->to_cnt = 2;
 57
 58		unmap->addr[2] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
 
 59		unmap->bidi_cnt = 1;
 60		/* engine only looks at Q, but expects it to follow P */
 61		pq[1] = unmap->addr[2];
 62
 63		unmap->len = len;
 64		tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef,
 65					     len, dma_flags);
 66		if (tx) {
 67			dma_set_unmap(tx, unmap);
 68			async_tx_submit(chan, tx, submit);
 69			dmaengine_unmap_put(unmap);
 70			return tx;
 71		}
 72
 73		/* could not get a descriptor, unmap and fall through to
 74		 * the synchronous path
 75		 */
 76		dmaengine_unmap_put(unmap);
 77	}
 78
 79	/* run the operation synchronously */
 80	async_tx_quiesce(&submit->depend_tx);
 81	amul = raid6_gfmul[coef[0]];
 82	bmul = raid6_gfmul[coef[1]];
 83	a = page_address(srcs[0]);
 84	b = page_address(srcs[1]);
 85	c = page_address(dest);
 86
 87	while (len--) {
 88		ax    = amul[*a++];
 89		bx    = bmul[*b++];
 90		*c++ = ax ^ bx;
 91	}
 92
 93	return NULL;
 94}
 95
 96static struct dma_async_tx_descriptor *
 97async_mult(struct page *dest, struct page *src, u8 coef, size_t len,
 98	   struct async_submit_ctl *submit)
 
 99{
100	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
101						      &dest, 1, &src, 1, len);
102	struct dma_device *dma = chan ? chan->device : NULL;
103	struct dmaengine_unmap_data *unmap = NULL;
104	const u8 *qmul; /* Q multiplier table */
105	u8 *d, *s;
106
107	if (dma)
108		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
109
110	if (unmap) {
111		dma_addr_t dma_dest[2];
112		struct device *dev = dma->dev;
113		struct dma_async_tx_descriptor *tx;
114		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
115
116		if (submit->flags & ASYNC_TX_FENCE)
117			dma_flags |= DMA_PREP_FENCE;
118		unmap->addr[0] = dma_map_page(dev, src, 0, len, DMA_TO_DEVICE);
 
119		unmap->to_cnt++;
120		unmap->addr[1] = dma_map_page(dev, dest, 0, len, DMA_BIDIRECTIONAL);
 
121		dma_dest[1] = unmap->addr[1];
122		unmap->bidi_cnt++;
123		unmap->len = len;
124
125		/* this looks funny, but the engine looks for Q at
126		 * dma_dest[1] and ignores dma_dest[0] as a dest
127		 * due to DMA_PREP_PQ_DISABLE_P
128		 */
129		tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr,
130					     1, &coef, len, dma_flags);
131
132		if (tx) {
133			dma_set_unmap(tx, unmap);
134			dmaengine_unmap_put(unmap);
135			async_tx_submit(chan, tx, submit);
136			return tx;
137		}
138
139		/* could not get a descriptor, unmap and fall through to
140		 * the synchronous path
141		 */
142		dmaengine_unmap_put(unmap);
143	}
144
145	/* no channel available, or failed to allocate a descriptor, so
146	 * perform the operation synchronously
147	 */
148	async_tx_quiesce(&submit->depend_tx);
149	qmul  = raid6_gfmul[coef];
150	d = page_address(dest);
151	s = page_address(src);
152
153	while (len--)
154		*d++ = qmul[*s++];
155
156	return NULL;
157}
158
159static struct dma_async_tx_descriptor *
160__2data_recov_4(int disks, size_t bytes, int faila, int failb,
161		struct page **blocks, struct async_submit_ctl *submit)
 
162{
163	struct dma_async_tx_descriptor *tx = NULL;
164	struct page *p, *q, *a, *b;
 
165	struct page *srcs[2];
 
166	unsigned char coef[2];
167	enum async_tx_flags flags = submit->flags;
168	dma_async_tx_callback cb_fn = submit->cb_fn;
169	void *cb_param = submit->cb_param;
170	void *scribble = submit->scribble;
171
172	p = blocks[disks-2];
 
173	q = blocks[disks-1];
 
174
175	a = blocks[faila];
 
176	b = blocks[failb];
 
177
178	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
179	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
180	srcs[0] = p;
 
181	srcs[1] = q;
 
182	coef[0] = raid6_gfexi[failb-faila];
183	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
184	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
185	tx = async_sum_product(b, srcs, coef, bytes, submit);
186
187	/* Dy = P+Pxy+Dx */
188	srcs[0] = p;
 
189	srcs[1] = b;
 
190	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
191			  cb_param, scribble);
192	tx = async_xor(a, srcs, 0, 2, bytes, submit);
193
194	return tx;
195
196}
197
198static struct dma_async_tx_descriptor *
199__2data_recov_5(int disks, size_t bytes, int faila, int failb,
200		struct page **blocks, struct async_submit_ctl *submit)
 
201{
202	struct dma_async_tx_descriptor *tx = NULL;
203	struct page *p, *q, *g, *dp, *dq;
 
204	struct page *srcs[2];
 
205	unsigned char coef[2];
206	enum async_tx_flags flags = submit->flags;
207	dma_async_tx_callback cb_fn = submit->cb_fn;
208	void *cb_param = submit->cb_param;
209	void *scribble = submit->scribble;
210	int good_srcs, good, i;
211
212	good_srcs = 0;
213	good = -1;
214	for (i = 0; i < disks-2; i++) {
215		if (blocks[i] == NULL)
216			continue;
217		if (i == faila || i == failb)
218			continue;
219		good = i;
220		good_srcs++;
221	}
222	BUG_ON(good_srcs > 1);
223
224	p = blocks[disks-2];
 
225	q = blocks[disks-1];
 
226	g = blocks[good];
 
227
228	/* Compute syndrome with zero for the missing data pages
229	 * Use the dead data pages as temporary storage for delta p and
230	 * delta q
231	 */
232	dp = blocks[faila];
 
233	dq = blocks[failb];
 
234
235	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
236	tx = async_memcpy(dp, g, 0, 0, bytes, submit);
237	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
238	tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
 
239
240	/* compute P + Pxy */
241	srcs[0] = dp;
 
242	srcs[1] = p;
 
243	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
244			  NULL, NULL, scribble);
245	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
246
247	/* compute Q + Qxy */
248	srcs[0] = dq;
 
249	srcs[1] = q;
 
250	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
251			  NULL, NULL, scribble);
252	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
253
254	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
255	srcs[0] = dp;
 
256	srcs[1] = dq;
 
257	coef[0] = raid6_gfexi[failb-faila];
258	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
259	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
260	tx = async_sum_product(dq, srcs, coef, bytes, submit);
261
262	/* Dy = P+Pxy+Dx */
263	srcs[0] = dp;
 
264	srcs[1] = dq;
 
265	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
266			  cb_param, scribble);
267	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
268
269	return tx;
270}
271
272static struct dma_async_tx_descriptor *
273__2data_recov_n(int disks, size_t bytes, int faila, int failb,
274	      struct page **blocks, struct async_submit_ctl *submit)
 
275{
276	struct dma_async_tx_descriptor *tx = NULL;
277	struct page *p, *q, *dp, *dq;
 
278	struct page *srcs[2];
 
279	unsigned char coef[2];
280	enum async_tx_flags flags = submit->flags;
281	dma_async_tx_callback cb_fn = submit->cb_fn;
282	void *cb_param = submit->cb_param;
283	void *scribble = submit->scribble;
284
285	p = blocks[disks-2];
 
286	q = blocks[disks-1];
 
287
288	/* Compute syndrome with zero for the missing data pages
289	 * Use the dead data pages as temporary storage for
290	 * delta p and delta q
291	 */
292	dp = blocks[faila];
 
293	blocks[faila] = NULL;
294	blocks[disks-2] = dp;
 
295	dq = blocks[failb];
 
296	blocks[failb] = NULL;
297	blocks[disks-1] = dq;
 
298
299	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
300	tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
301
302	/* Restore pointer table */
303	blocks[faila]   = dp;
 
304	blocks[failb]   = dq;
 
305	blocks[disks-2] = p;
 
306	blocks[disks-1] = q;
 
307
308	/* compute P + Pxy */
309	srcs[0] = dp;
 
310	srcs[1] = p;
 
311	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
312			  NULL, NULL, scribble);
313	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
314
315	/* compute Q + Qxy */
316	srcs[0] = dq;
 
317	srcs[1] = q;
 
318	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
319			  NULL, NULL, scribble);
320	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
321
322	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
323	srcs[0] = dp;
 
324	srcs[1] = dq;
 
325	coef[0] = raid6_gfexi[failb-faila];
326	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
327	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
328	tx = async_sum_product(dq, srcs, coef, bytes, submit);
329
330	/* Dy = P+Pxy+Dx */
331	srcs[0] = dp;
 
332	srcs[1] = dq;
 
333	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
334			  cb_param, scribble);
335	tx = async_xor(dp, srcs, 0, 2, bytes, submit);
336
337	return tx;
338}
339
340/**
341 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
342 * @disks: number of disks in the RAID-6 array
343 * @bytes: block size
344 * @faila: first failed drive index
345 * @failb: second failed drive index
346 * @blocks: array of source pointers where the last two entries are p and q
 
347 * @submit: submission/completion modifiers
348 */
349struct dma_async_tx_descriptor *
350async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
351			struct page **blocks, struct async_submit_ctl *submit)
 
352{
353	void *scribble = submit->scribble;
354	int non_zero_srcs, i;
355
356	BUG_ON(faila == failb);
357	if (failb < faila)
358		swap(faila, failb);
359
360	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
361
362	/* if a dma resource is not available or a scribble buffer is not
363	 * available punt to the synchronous path.  In the 'dma not
364	 * available' case be sure to use the scribble buffer to
365	 * preserve the content of 'blocks' as the caller intended.
366	 */
367	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
368		void **ptrs = scribble ? scribble : (void **) blocks;
369
370		async_tx_quiesce(&submit->depend_tx);
371		for (i = 0; i < disks; i++)
372			if (blocks[i] == NULL)
373				ptrs[i] = (void *) raid6_empty_zero_page;
374			else
375				ptrs[i] = page_address(blocks[i]);
376
377		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
378
379		async_tx_sync_epilog(submit);
380
381		return NULL;
382	}
383
384	non_zero_srcs = 0;
385	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
386		if (blocks[i])
387			non_zero_srcs++;
388	switch (non_zero_srcs) {
389	case 0:
390	case 1:
391		/* There must be at least 2 sources - the failed devices. */
392		BUG();
393
394	case 2:
395		/* dma devices do not uniformly understand a zero source pq
396		 * operation (in contrast to the synchronous case), so
397		 * explicitly handle the special case of a 4 disk array with
398		 * both data disks missing.
399		 */
400		return __2data_recov_4(disks, bytes, faila, failb, blocks, submit);
 
401	case 3:
402		/* dma devices do not uniformly understand a single
403		 * source pq operation (in contrast to the synchronous
404		 * case), so explicitly handle the special case of a 5 disk
405		 * array with 2 of 3 data disks missing.
406		 */
407		return __2data_recov_5(disks, bytes, faila, failb, blocks, submit);
 
408	default:
409		return __2data_recov_n(disks, bytes, faila, failb, blocks, submit);
 
410	}
411}
412EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
413
414/**
415 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
416 * @disks: number of disks in the RAID-6 array
417 * @bytes: block size
418 * @faila: failed drive index
419 * @blocks: array of source pointers where the last two entries are p and q
 
420 * @submit: submission/completion modifiers
421 */
422struct dma_async_tx_descriptor *
423async_raid6_datap_recov(int disks, size_t bytes, int faila,
424			struct page **blocks, struct async_submit_ctl *submit)
 
425{
426	struct dma_async_tx_descriptor *tx = NULL;
427	struct page *p, *q, *dq;
 
428	u8 coef;
429	enum async_tx_flags flags = submit->flags;
430	dma_async_tx_callback cb_fn = submit->cb_fn;
431	void *cb_param = submit->cb_param;
432	void *scribble = submit->scribble;
433	int good_srcs, good, i;
434	struct page *srcs[2];
 
435
436	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
437
438	/* if a dma resource is not available or a scribble buffer is not
439	 * available punt to the synchronous path.  In the 'dma not
440	 * available' case be sure to use the scribble buffer to
441	 * preserve the content of 'blocks' as the caller intended.
442	 */
443	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
444		void **ptrs = scribble ? scribble : (void **) blocks;
445
446		async_tx_quiesce(&submit->depend_tx);
447		for (i = 0; i < disks; i++)
448			if (blocks[i] == NULL)
449				ptrs[i] = (void*)raid6_empty_zero_page;
450			else
451				ptrs[i] = page_address(blocks[i]);
452
453		raid6_datap_recov(disks, bytes, faila, ptrs);
454
455		async_tx_sync_epilog(submit);
456
457		return NULL;
458	}
459
460	good_srcs = 0;
461	good = -1;
462	for (i = 0; i < disks-2; i++) {
463		if (i == faila)
464			continue;
465		if (blocks[i]) {
466			good = i;
467			good_srcs++;
468			if (good_srcs > 1)
469				break;
470		}
471	}
472	BUG_ON(good_srcs == 0);
473
474	p = blocks[disks-2];
 
475	q = blocks[disks-1];
 
476
477	/* Compute syndrome with zero for the missing data page
478	 * Use the dead data page as temporary storage for delta q
479	 */
480	dq = blocks[faila];
 
481	blocks[faila] = NULL;
482	blocks[disks-1] = dq;
 
483
484	/* in the 4-disk case we only need to perform a single source
485	 * multiplication with the one good data block.
486	 */
487	if (good_srcs == 1) {
488		struct page *g = blocks[good];
 
489
490		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
491				  scribble);
492		tx = async_memcpy(p, g, 0, 0, bytes, submit);
493
494		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
495				  scribble);
496		tx = async_mult(dq, g, raid6_gfexp[good], bytes, submit);
 
497	} else {
498		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
499				  scribble);
500		tx = async_gen_syndrome(blocks, 0, disks, bytes, submit);
501	}
502
503	/* Restore pointer table */
504	blocks[faila]   = dq;
 
505	blocks[disks-1] = q;
 
506
507	/* calculate g^{-faila} */
508	coef = raid6_gfinv[raid6_gfexp[faila]];
509
510	srcs[0] = dq;
 
511	srcs[1] = q;
 
512	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
513			  NULL, NULL, scribble);
514	tx = async_xor(dq, srcs, 0, 2, bytes, submit);
515
516	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
517	tx = async_mult(dq, dq, coef, bytes, submit);
518
519	srcs[0] = p;
 
520	srcs[1] = dq;
 
521	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
522			  cb_param, scribble);
523	tx = async_xor(p, srcs, 0, 2, bytes, submit);
524
525	return tx;
526}
527EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
528
529MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
530MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
531MODULE_LICENSE("GPL");
v6.8
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Asynchronous RAID-6 recovery calculations ASYNC_TX API.
  4 * Copyright(c) 2009 Intel Corporation
  5 *
  6 * based on raid6recov.c:
  7 *   Copyright 2002 H. Peter Anvin
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9#include <linux/kernel.h>
 10#include <linux/interrupt.h>
 11#include <linux/module.h>
 12#include <linux/dma-mapping.h>
 13#include <linux/raid/pq.h>
 14#include <linux/async_tx.h>
 15#include <linux/dmaengine.h>
 16
 17static struct dma_async_tx_descriptor *
 18async_sum_product(struct page *dest, unsigned int d_off,
 19		struct page **srcs, unsigned int *src_offs, unsigned char *coef,
 20		size_t len, struct async_submit_ctl *submit)
 21{
 22	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
 23						      &dest, 1, srcs, 2, len);
 24	struct dma_device *dma = chan ? chan->device : NULL;
 25	struct dmaengine_unmap_data *unmap = NULL;
 26	const u8 *amul, *bmul;
 27	u8 ax, bx;
 28	u8 *a, *b, *c;
 29
 30	if (dma)
 31		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
 32
 33	if (unmap) {
 34		struct device *dev = dma->dev;
 35		dma_addr_t pq[2];
 36		struct dma_async_tx_descriptor *tx;
 37		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
 38
 39		if (submit->flags & ASYNC_TX_FENCE)
 40			dma_flags |= DMA_PREP_FENCE;
 41		unmap->addr[0] = dma_map_page(dev, srcs[0], src_offs[0],
 42						len, DMA_TO_DEVICE);
 43		unmap->addr[1] = dma_map_page(dev, srcs[1], src_offs[1],
 44						len, DMA_TO_DEVICE);
 45		unmap->to_cnt = 2;
 46
 47		unmap->addr[2] = dma_map_page(dev, dest, d_off,
 48						len, DMA_BIDIRECTIONAL);
 49		unmap->bidi_cnt = 1;
 50		/* engine only looks at Q, but expects it to follow P */
 51		pq[1] = unmap->addr[2];
 52
 53		unmap->len = len;
 54		tx = dma->device_prep_dma_pq(chan, pq, unmap->addr, 2, coef,
 55					     len, dma_flags);
 56		if (tx) {
 57			dma_set_unmap(tx, unmap);
 58			async_tx_submit(chan, tx, submit);
 59			dmaengine_unmap_put(unmap);
 60			return tx;
 61		}
 62
 63		/* could not get a descriptor, unmap and fall through to
 64		 * the synchronous path
 65		 */
 66		dmaengine_unmap_put(unmap);
 67	}
 68
 69	/* run the operation synchronously */
 70	async_tx_quiesce(&submit->depend_tx);
 71	amul = raid6_gfmul[coef[0]];
 72	bmul = raid6_gfmul[coef[1]];
 73	a = page_address(srcs[0]) + src_offs[0];
 74	b = page_address(srcs[1]) + src_offs[1];
 75	c = page_address(dest) + d_off;
 76
 77	while (len--) {
 78		ax    = amul[*a++];
 79		bx    = bmul[*b++];
 80		*c++ = ax ^ bx;
 81	}
 82
 83	return NULL;
 84}
 85
 86static struct dma_async_tx_descriptor *
 87async_mult(struct page *dest, unsigned int d_off, struct page *src,
 88		unsigned int s_off, u8 coef, size_t len,
 89		struct async_submit_ctl *submit)
 90{
 91	struct dma_chan *chan = async_tx_find_channel(submit, DMA_PQ,
 92						      &dest, 1, &src, 1, len);
 93	struct dma_device *dma = chan ? chan->device : NULL;
 94	struct dmaengine_unmap_data *unmap = NULL;
 95	const u8 *qmul; /* Q multiplier table */
 96	u8 *d, *s;
 97
 98	if (dma)
 99		unmap = dmaengine_get_unmap_data(dma->dev, 3, GFP_NOWAIT);
100
101	if (unmap) {
102		dma_addr_t dma_dest[2];
103		struct device *dev = dma->dev;
104		struct dma_async_tx_descriptor *tx;
105		enum dma_ctrl_flags dma_flags = DMA_PREP_PQ_DISABLE_P;
106
107		if (submit->flags & ASYNC_TX_FENCE)
108			dma_flags |= DMA_PREP_FENCE;
109		unmap->addr[0] = dma_map_page(dev, src, s_off,
110						len, DMA_TO_DEVICE);
111		unmap->to_cnt++;
112		unmap->addr[1] = dma_map_page(dev, dest, d_off,
113						len, DMA_BIDIRECTIONAL);
114		dma_dest[1] = unmap->addr[1];
115		unmap->bidi_cnt++;
116		unmap->len = len;
117
118		/* this looks funny, but the engine looks for Q at
119		 * dma_dest[1] and ignores dma_dest[0] as a dest
120		 * due to DMA_PREP_PQ_DISABLE_P
121		 */
122		tx = dma->device_prep_dma_pq(chan, dma_dest, unmap->addr,
123					     1, &coef, len, dma_flags);
124
125		if (tx) {
126			dma_set_unmap(tx, unmap);
127			dmaengine_unmap_put(unmap);
128			async_tx_submit(chan, tx, submit);
129			return tx;
130		}
131
132		/* could not get a descriptor, unmap and fall through to
133		 * the synchronous path
134		 */
135		dmaengine_unmap_put(unmap);
136	}
137
138	/* no channel available, or failed to allocate a descriptor, so
139	 * perform the operation synchronously
140	 */
141	async_tx_quiesce(&submit->depend_tx);
142	qmul  = raid6_gfmul[coef];
143	d = page_address(dest) + d_off;
144	s = page_address(src) + s_off;
145
146	while (len--)
147		*d++ = qmul[*s++];
148
149	return NULL;
150}
151
152static struct dma_async_tx_descriptor *
153__2data_recov_4(int disks, size_t bytes, int faila, int failb,
154		struct page **blocks, unsigned int *offs,
155		struct async_submit_ctl *submit)
156{
157	struct dma_async_tx_descriptor *tx = NULL;
158	struct page *p, *q, *a, *b;
159	unsigned int p_off, q_off, a_off, b_off;
160	struct page *srcs[2];
161	unsigned int src_offs[2];
162	unsigned char coef[2];
163	enum async_tx_flags flags = submit->flags;
164	dma_async_tx_callback cb_fn = submit->cb_fn;
165	void *cb_param = submit->cb_param;
166	void *scribble = submit->scribble;
167
168	p = blocks[disks-2];
169	p_off = offs[disks-2];
170	q = blocks[disks-1];
171	q_off = offs[disks-1];
172
173	a = blocks[faila];
174	a_off = offs[faila];
175	b = blocks[failb];
176	b_off = offs[failb];
177
178	/* in the 4 disk case P + Pxy == P and Q + Qxy == Q */
179	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
180	srcs[0] = p;
181	src_offs[0] = p_off;
182	srcs[1] = q;
183	src_offs[1] = q_off;
184	coef[0] = raid6_gfexi[failb-faila];
185	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
186	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
187	tx = async_sum_product(b, b_off, srcs, src_offs, coef, bytes, submit);
188
189	/* Dy = P+Pxy+Dx */
190	srcs[0] = p;
191	src_offs[0] = p_off;
192	srcs[1] = b;
193	src_offs[1] = b_off;
194	init_async_submit(submit, flags | ASYNC_TX_XOR_ZERO_DST, tx, cb_fn,
195			  cb_param, scribble);
196	tx = async_xor_offs(a, a_off, srcs, src_offs, 2, bytes, submit);
197
198	return tx;
199
200}
201
202static struct dma_async_tx_descriptor *
203__2data_recov_5(int disks, size_t bytes, int faila, int failb,
204		struct page **blocks, unsigned int *offs,
205		struct async_submit_ctl *submit)
206{
207	struct dma_async_tx_descriptor *tx = NULL;
208	struct page *p, *q, *g, *dp, *dq;
209	unsigned int p_off, q_off, g_off, dp_off, dq_off;
210	struct page *srcs[2];
211	unsigned int src_offs[2];
212	unsigned char coef[2];
213	enum async_tx_flags flags = submit->flags;
214	dma_async_tx_callback cb_fn = submit->cb_fn;
215	void *cb_param = submit->cb_param;
216	void *scribble = submit->scribble;
217	int good_srcs, good, i;
218
219	good_srcs = 0;
220	good = -1;
221	for (i = 0; i < disks-2; i++) {
222		if (blocks[i] == NULL)
223			continue;
224		if (i == faila || i == failb)
225			continue;
226		good = i;
227		good_srcs++;
228	}
229	BUG_ON(good_srcs > 1);
230
231	p = blocks[disks-2];
232	p_off = offs[disks-2];
233	q = blocks[disks-1];
234	q_off = offs[disks-1];
235	g = blocks[good];
236	g_off = offs[good];
237
238	/* Compute syndrome with zero for the missing data pages
239	 * Use the dead data pages as temporary storage for delta p and
240	 * delta q
241	 */
242	dp = blocks[faila];
243	dp_off = offs[faila];
244	dq = blocks[failb];
245	dq_off = offs[failb];
246
247	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
248	tx = async_memcpy(dp, g, dp_off, g_off, bytes, submit);
249	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
250	tx = async_mult(dq, dq_off, g, g_off,
251			raid6_gfexp[good], bytes, submit);
252
253	/* compute P + Pxy */
254	srcs[0] = dp;
255	src_offs[0] = dp_off;
256	srcs[1] = p;
257	src_offs[1] = p_off;
258	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
259			  NULL, NULL, scribble);
260	tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit);
261
262	/* compute Q + Qxy */
263	srcs[0] = dq;
264	src_offs[0] = dq_off;
265	srcs[1] = q;
266	src_offs[1] = q_off;
267	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
268			  NULL, NULL, scribble);
269	tx = async_xor_offs(dq, dq_off, srcs, src_offs, 2, bytes, submit);
270
271	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
272	srcs[0] = dp;
273	src_offs[0] = dp_off;
274	srcs[1] = dq;
275	src_offs[1] = dq_off;
276	coef[0] = raid6_gfexi[failb-faila];
277	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
278	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
279	tx = async_sum_product(dq, dq_off, srcs, src_offs, coef, bytes, submit);
280
281	/* Dy = P+Pxy+Dx */
282	srcs[0] = dp;
283	src_offs[0] = dp_off;
284	srcs[1] = dq;
285	src_offs[1] = dq_off;
286	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
287			  cb_param, scribble);
288	tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit);
289
290	return tx;
291}
292
293static struct dma_async_tx_descriptor *
294__2data_recov_n(int disks, size_t bytes, int faila, int failb,
295	      struct page **blocks, unsigned int *offs,
296		  struct async_submit_ctl *submit)
297{
298	struct dma_async_tx_descriptor *tx = NULL;
299	struct page *p, *q, *dp, *dq;
300	unsigned int p_off, q_off, dp_off, dq_off;
301	struct page *srcs[2];
302	unsigned int src_offs[2];
303	unsigned char coef[2];
304	enum async_tx_flags flags = submit->flags;
305	dma_async_tx_callback cb_fn = submit->cb_fn;
306	void *cb_param = submit->cb_param;
307	void *scribble = submit->scribble;
308
309	p = blocks[disks-2];
310	p_off = offs[disks-2];
311	q = blocks[disks-1];
312	q_off = offs[disks-1];
313
314	/* Compute syndrome with zero for the missing data pages
315	 * Use the dead data pages as temporary storage for
316	 * delta p and delta q
317	 */
318	dp = blocks[faila];
319	dp_off = offs[faila];
320	blocks[faila] = NULL;
321	blocks[disks-2] = dp;
322	offs[disks-2] = dp_off;
323	dq = blocks[failb];
324	dq_off = offs[failb];
325	blocks[failb] = NULL;
326	blocks[disks-1] = dq;
327	offs[disks-1] = dq_off;
328
329	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
330	tx = async_gen_syndrome(blocks, offs, disks, bytes, submit);
331
332	/* Restore pointer table */
333	blocks[faila]   = dp;
334	offs[faila] = dp_off;
335	blocks[failb]   = dq;
336	offs[failb] = dq_off;
337	blocks[disks-2] = p;
338	offs[disks-2] = p_off;
339	blocks[disks-1] = q;
340	offs[disks-1] = q_off;
341
342	/* compute P + Pxy */
343	srcs[0] = dp;
344	src_offs[0] = dp_off;
345	srcs[1] = p;
346	src_offs[1] = p_off;
347	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
348			  NULL, NULL, scribble);
349	tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit);
350
351	/* compute Q + Qxy */
352	srcs[0] = dq;
353	src_offs[0] = dq_off;
354	srcs[1] = q;
355	src_offs[1] = q_off;
356	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
357			  NULL, NULL, scribble);
358	tx = async_xor_offs(dq, dq_off, srcs, src_offs, 2, bytes, submit);
359
360	/* Dx = A*(P+Pxy) + B*(Q+Qxy) */
361	srcs[0] = dp;
362	src_offs[0] = dp_off;
363	srcs[1] = dq;
364	src_offs[1] = dq_off;
365	coef[0] = raid6_gfexi[failb-faila];
366	coef[1] = raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]];
367	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
368	tx = async_sum_product(dq, dq_off, srcs, src_offs, coef, bytes, submit);
369
370	/* Dy = P+Pxy+Dx */
371	srcs[0] = dp;
372	src_offs[0] = dp_off;
373	srcs[1] = dq;
374	src_offs[1] = dq_off;
375	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
376			  cb_param, scribble);
377	tx = async_xor_offs(dp, dp_off, srcs, src_offs, 2, bytes, submit);
378
379	return tx;
380}
381
382/**
383 * async_raid6_2data_recov - asynchronously calculate two missing data blocks
384 * @disks: number of disks in the RAID-6 array
385 * @bytes: block size
386 * @faila: first failed drive index
387 * @failb: second failed drive index
388 * @blocks: array of source pointers where the last two entries are p and q
389 * @offs: array of offset for pages in blocks
390 * @submit: submission/completion modifiers
391 */
392struct dma_async_tx_descriptor *
393async_raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
394			struct page **blocks, unsigned int *offs,
395			struct async_submit_ctl *submit)
396{
397	void *scribble = submit->scribble;
398	int non_zero_srcs, i;
399
400	BUG_ON(faila == failb);
401	if (failb < faila)
402		swap(faila, failb);
403
404	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
405
406	/* if a dma resource is not available or a scribble buffer is not
407	 * available punt to the synchronous path.  In the 'dma not
408	 * available' case be sure to use the scribble buffer to
409	 * preserve the content of 'blocks' as the caller intended.
410	 */
411	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
412		void **ptrs = scribble ? scribble : (void **) blocks;
413
414		async_tx_quiesce(&submit->depend_tx);
415		for (i = 0; i < disks; i++)
416			if (blocks[i] == NULL)
417				ptrs[i] = (void *) raid6_empty_zero_page;
418			else
419				ptrs[i] = page_address(blocks[i]) + offs[i];
420
421		raid6_2data_recov(disks, bytes, faila, failb, ptrs);
422
423		async_tx_sync_epilog(submit);
424
425		return NULL;
426	}
427
428	non_zero_srcs = 0;
429	for (i = 0; i < disks-2 && non_zero_srcs < 4; i++)
430		if (blocks[i])
431			non_zero_srcs++;
432	switch (non_zero_srcs) {
433	case 0:
434	case 1:
435		/* There must be at least 2 sources - the failed devices. */
436		BUG();
437
438	case 2:
439		/* dma devices do not uniformly understand a zero source pq
440		 * operation (in contrast to the synchronous case), so
441		 * explicitly handle the special case of a 4 disk array with
442		 * both data disks missing.
443		 */
444		return __2data_recov_4(disks, bytes, faila, failb,
445				blocks, offs, submit);
446	case 3:
447		/* dma devices do not uniformly understand a single
448		 * source pq operation (in contrast to the synchronous
449		 * case), so explicitly handle the special case of a 5 disk
450		 * array with 2 of 3 data disks missing.
451		 */
452		return __2data_recov_5(disks, bytes, faila, failb,
453				blocks, offs, submit);
454	default:
455		return __2data_recov_n(disks, bytes, faila, failb,
456				blocks, offs, submit);
457	}
458}
459EXPORT_SYMBOL_GPL(async_raid6_2data_recov);
460
461/**
462 * async_raid6_datap_recov - asynchronously calculate a data and the 'p' block
463 * @disks: number of disks in the RAID-6 array
464 * @bytes: block size
465 * @faila: failed drive index
466 * @blocks: array of source pointers where the last two entries are p and q
467 * @offs: array of offset for pages in blocks
468 * @submit: submission/completion modifiers
469 */
470struct dma_async_tx_descriptor *
471async_raid6_datap_recov(int disks, size_t bytes, int faila,
472			struct page **blocks, unsigned int *offs,
473			struct async_submit_ctl *submit)
474{
475	struct dma_async_tx_descriptor *tx = NULL;
476	struct page *p, *q, *dq;
477	unsigned int p_off, q_off, dq_off;
478	u8 coef;
479	enum async_tx_flags flags = submit->flags;
480	dma_async_tx_callback cb_fn = submit->cb_fn;
481	void *cb_param = submit->cb_param;
482	void *scribble = submit->scribble;
483	int good_srcs, good, i;
484	struct page *srcs[2];
485	unsigned int src_offs[2];
486
487	pr_debug("%s: disks: %d len: %zu\n", __func__, disks, bytes);
488
489	/* if a dma resource is not available or a scribble buffer is not
490	 * available punt to the synchronous path.  In the 'dma not
491	 * available' case be sure to use the scribble buffer to
492	 * preserve the content of 'blocks' as the caller intended.
493	 */
494	if (!async_dma_find_channel(DMA_PQ) || !scribble) {
495		void **ptrs = scribble ? scribble : (void **) blocks;
496
497		async_tx_quiesce(&submit->depend_tx);
498		for (i = 0; i < disks; i++)
499			if (blocks[i] == NULL)
500				ptrs[i] = (void*)raid6_empty_zero_page;
501			else
502				ptrs[i] = page_address(blocks[i]) + offs[i];
503
504		raid6_datap_recov(disks, bytes, faila, ptrs);
505
506		async_tx_sync_epilog(submit);
507
508		return NULL;
509	}
510
511	good_srcs = 0;
512	good = -1;
513	for (i = 0; i < disks-2; i++) {
514		if (i == faila)
515			continue;
516		if (blocks[i]) {
517			good = i;
518			good_srcs++;
519			if (good_srcs > 1)
520				break;
521		}
522	}
523	BUG_ON(good_srcs == 0);
524
525	p = blocks[disks-2];
526	p_off = offs[disks-2];
527	q = blocks[disks-1];
528	q_off = offs[disks-1];
529
530	/* Compute syndrome with zero for the missing data page
531	 * Use the dead data page as temporary storage for delta q
532	 */
533	dq = blocks[faila];
534	dq_off = offs[faila];
535	blocks[faila] = NULL;
536	blocks[disks-1] = dq;
537	offs[disks-1] = dq_off;
538
539	/* in the 4-disk case we only need to perform a single source
540	 * multiplication with the one good data block.
541	 */
542	if (good_srcs == 1) {
543		struct page *g = blocks[good];
544		unsigned int g_off = offs[good];
545
546		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
547				  scribble);
548		tx = async_memcpy(p, g, p_off, g_off, bytes, submit);
549
550		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
551				  scribble);
552		tx = async_mult(dq, dq_off, g, g_off,
553				raid6_gfexp[good], bytes, submit);
554	} else {
555		init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL,
556				  scribble);
557		tx = async_gen_syndrome(blocks, offs, disks, bytes, submit);
558	}
559
560	/* Restore pointer table */
561	blocks[faila]   = dq;
562	offs[faila] = dq_off;
563	blocks[disks-1] = q;
564	offs[disks-1] = q_off;
565
566	/* calculate g^{-faila} */
567	coef = raid6_gfinv[raid6_gfexp[faila]];
568
569	srcs[0] = dq;
570	src_offs[0] = dq_off;
571	srcs[1] = q;
572	src_offs[1] = q_off;
573	init_async_submit(submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
574			  NULL, NULL, scribble);
575	tx = async_xor_offs(dq, dq_off, srcs, src_offs, 2, bytes, submit);
576
577	init_async_submit(submit, ASYNC_TX_FENCE, tx, NULL, NULL, scribble);
578	tx = async_mult(dq, dq_off, dq, dq_off, coef, bytes, submit);
579
580	srcs[0] = p;
581	src_offs[0] = p_off;
582	srcs[1] = dq;
583	src_offs[1] = dq_off;
584	init_async_submit(submit, flags | ASYNC_TX_XOR_DROP_DST, tx, cb_fn,
585			  cb_param, scribble);
586	tx = async_xor_offs(p, p_off, srcs, src_offs, 2, bytes, submit);
587
588	return tx;
589}
590EXPORT_SYMBOL_GPL(async_raid6_datap_recov);
591
592MODULE_AUTHOR("Dan Williams <dan.j.williams@intel.com>");
593MODULE_DESCRIPTION("asynchronous RAID-6 recovery api");
594MODULE_LICENSE("GPL");