Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This header defines architecture specific interfaces, x86 version
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2.  See
   7 * the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#ifndef _ASM_X86_KVM_HOST_H
  12#define _ASM_X86_KVM_HOST_H
  13
  14#include <linux/types.h>
  15#include <linux/mm.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/tracepoint.h>
  18#include <linux/cpumask.h>
  19#include <linux/irq_work.h>
 
 
  20
  21#include <linux/kvm.h>
  22#include <linux/kvm_para.h>
  23#include <linux/kvm_types.h>
  24#include <linux/perf_event.h>
  25#include <linux/pvclock_gtod.h>
  26#include <linux/clocksource.h>
  27#include <linux/irqbypass.h>
  28#include <linux/hyperv.h>
 
  29
 
  30#include <asm/pvclock-abi.h>
  31#include <asm/desc.h>
  32#include <asm/mtrr.h>
  33#include <asm/msr-index.h>
  34#include <asm/asm.h>
  35#include <asm/kvm_page_track.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36
  37#define KVM_MAX_VCPUS 255
  38#define KVM_SOFT_MAX_VCPUS 160
  39#define KVM_USER_MEM_SLOTS 509
  40/* memory slots that are not exposed to userspace */
  41#define KVM_PRIVATE_MEM_SLOTS 3
  42#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  43
  44#define KVM_PIO_PAGE_OFFSET 1
  45#define KVM_COALESCED_MMIO_PAGE_OFFSET 2
  46#define KVM_HALT_POLL_NS_DEFAULT 400000
  47
  48#define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
  49
 
 
 
 
 
 
 
 
 
  50/* x86-specific vcpu->requests bit members */
  51#define KVM_REQ_MIGRATE_TIMER      8
  52#define KVM_REQ_REPORT_TPR_ACCESS  9
  53#define KVM_REQ_TRIPLE_FAULT      10
  54#define KVM_REQ_MMU_SYNC          11
  55#define KVM_REQ_CLOCK_UPDATE      12
  56#define KVM_REQ_DEACTIVATE_FPU    13
  57#define KVM_REQ_EVENT             14
  58#define KVM_REQ_APF_HALT          15
  59#define KVM_REQ_STEAL_UPDATE      16
  60#define KVM_REQ_NMI               17
  61#define KVM_REQ_PMU               18
  62#define KVM_REQ_PMI               19
  63#define KVM_REQ_SMI               20
  64#define KVM_REQ_MASTERCLOCK_UPDATE 21
  65#define KVM_REQ_MCLOCK_INPROGRESS 22
  66#define KVM_REQ_SCAN_IOAPIC       23
  67#define KVM_REQ_GLOBAL_CLOCK_UPDATE 24
  68#define KVM_REQ_APIC_PAGE_RELOAD  25
  69#define KVM_REQ_HV_CRASH          26
  70#define KVM_REQ_IOAPIC_EOI_EXIT   27
  71#define KVM_REQ_HV_RESET          28
  72#define KVM_REQ_HV_EXIT           29
  73#define KVM_REQ_HV_STIMER         30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74
  75#define CR0_RESERVED_BITS                                               \
  76	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  77			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  78			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  79
  80#define CR3_L_MODE_RESERVED_BITS 0xFFFFFF0000000000ULL
  81#define CR3_PCID_INVD		 BIT_64(63)
  82#define CR4_RESERVED_BITS                                               \
  83	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  84			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
  85			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
  86			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
  87			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE | X86_CR4_SMAP \
  88			  | X86_CR4_PKE))
 
  89
  90#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  91
  92
  93
  94#define INVALID_PAGE (~(hpa_t)0)
  95#define VALID_PAGE(x) ((x) != INVALID_PAGE)
  96
  97#define UNMAPPED_GVA (~(gpa_t)0)
  98
  99/* KVM Hugepage definitions for x86 */
 100#define KVM_NR_PAGE_SIZES	3
 
 101#define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
 102#define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
 103#define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
 104#define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
 105#define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
 106
 107static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
 108{
 109	/* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */
 110	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
 111		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
 112}
 113
 114#define KVM_PERMILLE_MMU_PAGES 20
 115#define KVM_MIN_ALLOC_MMU_PAGES 64
 116#define KVM_MMU_HASH_SHIFT 10
 117#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
 118#define KVM_MIN_FREE_MMU_PAGES 5
 119#define KVM_REFILL_PAGES 25
 120#define KVM_MAX_CPUID_ENTRIES 80
 121#define KVM_NR_FIXED_MTRR_REGION 88
 122#define KVM_NR_VAR_MTRR 8
 123
 124#define ASYNC_PF_PER_VCPU 64
 125
 126enum kvm_reg {
 127	VCPU_REGS_RAX = 0,
 128	VCPU_REGS_RCX = 1,
 129	VCPU_REGS_RDX = 2,
 130	VCPU_REGS_RBX = 3,
 131	VCPU_REGS_RSP = 4,
 132	VCPU_REGS_RBP = 5,
 133	VCPU_REGS_RSI = 6,
 134	VCPU_REGS_RDI = 7,
 135#ifdef CONFIG_X86_64
 136	VCPU_REGS_R8 = 8,
 137	VCPU_REGS_R9 = 9,
 138	VCPU_REGS_R10 = 10,
 139	VCPU_REGS_R11 = 11,
 140	VCPU_REGS_R12 = 12,
 141	VCPU_REGS_R13 = 13,
 142	VCPU_REGS_R14 = 14,
 143	VCPU_REGS_R15 = 15,
 144#endif
 145	VCPU_REGS_RIP,
 146	NR_VCPU_REGS
 147};
 148
 149enum kvm_reg_ex {
 150	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
 
 151	VCPU_EXREG_CR3,
 
 152	VCPU_EXREG_RFLAGS,
 153	VCPU_EXREG_SEGMENTS,
 
 
 154};
 155
 156enum {
 157	VCPU_SREG_ES,
 158	VCPU_SREG_CS,
 159	VCPU_SREG_SS,
 160	VCPU_SREG_DS,
 161	VCPU_SREG_FS,
 162	VCPU_SREG_GS,
 163	VCPU_SREG_TR,
 164	VCPU_SREG_LDTR,
 165};
 166
 167#include <asm/kvm_emulate.h>
 
 
 
 
 
 168
 169#define KVM_NR_MEM_OBJS 40
 
 
 
 
 170
 171#define KVM_NR_DB_REGS	4
 172
 
 173#define DR6_BD		(1 << 13)
 174#define DR6_BS		(1 << 14)
 
 175#define DR6_RTM		(1 << 16)
 176#define DR6_FIXED_1	0xfffe0ff0
 177#define DR6_INIT	0xffff0ff0
 178#define DR6_VOLATILE	0x0001e00f
 
 
 
 
 
 
 
 
 179
 180#define DR7_BP_EN_MASK	0x000000ff
 181#define DR7_GE		(1 << 9)
 182#define DR7_GD		(1 << 13)
 183#define DR7_FIXED_1	0x00000400
 184#define DR7_VOLATILE	0xffff2bff
 185
 
 
 
 
 
 
 
 
 
 
 186#define PFERR_PRESENT_BIT 0
 187#define PFERR_WRITE_BIT 1
 188#define PFERR_USER_BIT 2
 189#define PFERR_RSVD_BIT 3
 190#define PFERR_FETCH_BIT 4
 191#define PFERR_PK_BIT 5
 192
 193#define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
 194#define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
 195#define PFERR_USER_MASK (1U << PFERR_USER_BIT)
 196#define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
 197#define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
 198#define PFERR_PK_MASK (1U << PFERR_PK_BIT)
 
 
 
 
 
 
 
 
 
 
 
 
 199
 200/* apic attention bits */
 201#define KVM_APIC_CHECK_VAPIC	0
 202/*
 203 * The following bit is set with PV-EOI, unset on EOI.
 204 * We detect PV-EOI changes by guest by comparing
 205 * this bit with PV-EOI in guest memory.
 206 * See the implementation in apic_update_pv_eoi.
 207 */
 208#define KVM_APIC_PV_EOI_PENDING	1
 209
 210struct kvm_kernel_irq_routing_entry;
 211
 212/*
 213 * We don't want allocation failures within the mmu code, so we preallocate
 214 * enough memory for a single page fault in a cache.
 215 */
 216struct kvm_mmu_memory_cache {
 217	int nobjs;
 218	void *objects[KVM_NR_MEM_OBJS];
 219};
 220
 221/*
 222 * the pages used as guest page table on soft mmu are tracked by
 223 * kvm_memory_slot.arch.gfn_track which is 16 bits, so the role bits used
 224 * by indirect shadow page can not be more than 15 bits.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225 *
 226 * Currently, we used 14 bits that are @level, @cr4_pae, @quadrant, @access,
 227 * @nxe, @cr0_wp, @smep_andnot_wp and @smap_andnot_wp.
 
 
 
 228 */
 229union kvm_mmu_page_role {
 230	unsigned word;
 231	struct {
 232		unsigned level:4;
 233		unsigned cr4_pae:1;
 234		unsigned quadrant:2;
 235		unsigned direct:1;
 236		unsigned access:3;
 237		unsigned invalid:1;
 238		unsigned nxe:1;
 239		unsigned cr0_wp:1;
 240		unsigned smep_andnot_wp:1;
 241		unsigned smap_andnot_wp:1;
 242		unsigned :8;
 
 
 
 243
 244		/*
 245		 * This is left at the top of the word so that
 246		 * kvm_memslots_for_spte_role can extract it with a
 247		 * simple shift.  While there is room, give it a whole
 248		 * byte so it is also faster to load it from memory.
 249		 */
 250		unsigned smm:8;
 251	};
 252};
 253
 254struct kvm_rmap_head {
 255	unsigned long val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 256};
 257
 258struct kvm_mmu_page {
 259	struct list_head link;
 260	struct hlist_node hash_link;
 261
 262	/*
 263	 * The following two entries are used to key the shadow page in the
 264	 * hash table.
 265	 */
 266	gfn_t gfn;
 267	union kvm_mmu_page_role role;
 268
 269	u64 *spt;
 270	/* hold the gfn of each spte inside spt */
 271	gfn_t *gfns;
 272	bool unsync;
 273	int root_count;          /* Currently serving as active root */
 274	unsigned int unsync_children;
 275	struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
 276
 277	/* The page is obsolete if mmu_valid_gen != kvm->arch.mmu_valid_gen.  */
 278	unsigned long mmu_valid_gen;
 279
 280	DECLARE_BITMAP(unsync_child_bitmap, 512);
 281
 282#ifdef CONFIG_X86_32
 283	/*
 284	 * Used out of the mmu-lock to avoid reading spte values while an
 285	 * update is in progress; see the comments in __get_spte_lockless().
 286	 */
 287	int clear_spte_count;
 288#endif
 289
 290	/* Number of writes since the last time traversal visited this page.  */
 291	atomic_t write_flooding_count;
 292};
 293
 294struct kvm_pio_request {
 
 295	unsigned long count;
 296	int in;
 297	int port;
 298	int size;
 299};
 300
 
 
 301struct rsvd_bits_validate {
 302	u64 rsvd_bits_mask[2][4];
 303	u64 bad_mt_xwr;
 304};
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306/*
 307 * x86 supports 3 paging modes (4-level 64-bit, 3-level 64-bit, and 2-level
 308 * 32-bit).  The kvm_mmu structure abstracts the details of the current mmu
 309 * mode.
 310 */
 311struct kvm_mmu {
 312	void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root);
 313	unsigned long (*get_cr3)(struct kvm_vcpu *vcpu);
 314	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
 315	int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err,
 316			  bool prefault);
 317	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
 318				  struct x86_exception *fault);
 319	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access,
 
 320			    struct x86_exception *exception);
 321	gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
 322			       struct x86_exception *exception);
 323	int (*sync_page)(struct kvm_vcpu *vcpu,
 324			 struct kvm_mmu_page *sp);
 325	void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva);
 326	void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 327			   u64 *spte, const void *pte);
 328	hpa_t root_hpa;
 329	int root_level;
 330	int shadow_root_level;
 331	union kvm_mmu_page_role base_role;
 332	bool direct_map;
 333
 334	/*
 335	 * Bitmap; bit set = permission fault
 336	 * Byte index: page fault error code [4:1]
 337	 * Bit index: pte permissions in ACC_* format
 338	 */
 339	u8 permissions[16];
 340
 341	/*
 342	* The pkru_mask indicates if protection key checks are needed.  It
 343	* consists of 16 domains indexed by page fault error code bits [4:1],
 344	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
 345	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
 346	*/
 347	u32 pkru_mask;
 348
 
 
 
 
 
 
 
 
 
 349	u64 *pae_root;
 350	u64 *lm_root;
 
 351
 352	/*
 353	 * check zero bits on shadow page table entries, these
 354	 * bits include not only hardware reserved bits but also
 355	 * the bits spte never used.
 356	 */
 357	struct rsvd_bits_validate shadow_zero_check;
 358
 359	struct rsvd_bits_validate guest_rsvd_check;
 360
 361	/* Can have large pages at levels 2..last_nonleaf_level-1. */
 362	u8 last_nonleaf_level;
 363
 364	bool nx;
 365
 366	u64 pdptrs[4]; /* pae */
 367};
 368
 369enum pmc_type {
 370	KVM_PMC_GP = 0,
 371	KVM_PMC_FIXED,
 372};
 373
 374struct kvm_pmc {
 375	enum pmc_type type;
 376	u8 idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 377	u64 counter;
 
 
 
 
 
 378	u64 eventsel;
 379	struct perf_event *perf_event;
 380	struct kvm_vcpu *vcpu;
 
 
 
 
 
 
 381};
 382
 
 
 
 
 
 
 
 383struct kvm_pmu {
 
 384	unsigned nr_arch_gp_counters;
 385	unsigned nr_arch_fixed_counters;
 386	unsigned available_event_types;
 387	u64 fixed_ctr_ctrl;
 
 388	u64 global_ctrl;
 389	u64 global_status;
 390	u64 global_ovf_ctrl;
 391	u64 counter_bitmask[2];
 392	u64 global_ctrl_mask;
 
 393	u64 reserved_bits;
 394	u8 version;
 395	struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
 396	struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
 397	struct irq_work irq_work;
 398	u64 reprogram_pmi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399};
 400
 401struct kvm_pmu_ops;
 402
 403enum {
 404	KVM_DEBUGREG_BP_ENABLED = 1,
 405	KVM_DEBUGREG_WONT_EXIT = 2,
 406	KVM_DEBUGREG_RELOAD = 4,
 407};
 408
 409struct kvm_mtrr_range {
 410	u64 base;
 411	u64 mask;
 412	struct list_head node;
 413};
 414
 415struct kvm_mtrr {
 416	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
 417	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
 418	u64 deftype;
 419
 420	struct list_head head;
 421};
 422
 423/* Hyper-V SynIC timer */
 424struct kvm_vcpu_hv_stimer {
 425	struct hrtimer timer;
 426	int index;
 427	u64 config;
 428	u64 count;
 429	u64 exp_time;
 430	struct hv_message msg;
 431	bool msg_pending;
 432};
 433
 434/* Hyper-V synthetic interrupt controller (SynIC)*/
 435struct kvm_vcpu_hv_synic {
 436	u64 version;
 437	u64 control;
 438	u64 msg_page;
 439	u64 evt_page;
 440	atomic64_t sint[HV_SYNIC_SINT_COUNT];
 441	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
 442	DECLARE_BITMAP(auto_eoi_bitmap, 256);
 443	DECLARE_BITMAP(vec_bitmap, 256);
 444	bool active;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445};
 446
 447/* Hyper-V per vcpu emulation context */
 448struct kvm_vcpu_hv {
 
 
 449	u64 hv_vapic;
 450	s64 runtime_offset;
 451	struct kvm_vcpu_hv_synic synic;
 452	struct kvm_hyperv_exit exit;
 453	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
 454	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455};
 456
 457struct kvm_vcpu_arch {
 458	/*
 459	 * rip and regs accesses must go through
 460	 * kvm_{register,rip}_{read,write} functions.
 461	 */
 462	unsigned long regs[NR_VCPU_REGS];
 463	u32 regs_avail;
 464	u32 regs_dirty;
 465
 466	unsigned long cr0;
 467	unsigned long cr0_guest_owned_bits;
 468	unsigned long cr2;
 469	unsigned long cr3;
 470	unsigned long cr4;
 471	unsigned long cr4_guest_owned_bits;
 
 472	unsigned long cr8;
 
 
 473	u32 hflags;
 474	u64 efer;
 475	u64 apic_base;
 476	struct kvm_lapic *apic;    /* kernel irqchip context */
 477	bool apicv_active;
 478	DECLARE_BITMAP(ioapic_handled_vectors, 256);
 479	unsigned long apic_attention;
 480	int32_t apic_arb_prio;
 481	int mp_state;
 482	u64 ia32_misc_enable_msr;
 483	u64 smbase;
 
 
 484	bool tpr_access_reporting;
 
 485	u64 ia32_xss;
 
 
 
 486
 487	/*
 488	 * Paging state of the vcpu
 489	 *
 490	 * If the vcpu runs in guest mode with two level paging this still saves
 491	 * the paging mode of the l1 guest. This context is always used to
 492	 * handle faults.
 493	 */
 494	struct kvm_mmu mmu;
 
 
 
 
 
 
 495
 496	/*
 497	 * Paging state of an L2 guest (used for nested npt)
 498	 *
 499	 * This context will save all necessary information to walk page tables
 500	 * of the an L2 guest. This context is only initialized for page table
 501	 * walking and not for faulting since we never handle l2 page faults on
 502	 * the host.
 503	 */
 504	struct kvm_mmu nested_mmu;
 505
 506	/*
 507	 * Pointer to the mmu context currently used for
 508	 * gva_to_gpa translations.
 509	 */
 510	struct kvm_mmu *walk_mmu;
 511
 512	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
 513	struct kvm_mmu_memory_cache mmu_page_cache;
 
 514	struct kvm_mmu_memory_cache mmu_page_header_cache;
 515
 516	struct fpu guest_fpu;
 
 
 
 
 
 
 
 
 
 
 
 
 517	u64 xcr0;
 518	u64 guest_supported_xcr0;
 519	u32 guest_xstate_size;
 520
 521	struct kvm_pio_request pio;
 522	void *pio_data;
 
 
 523
 524	u8 event_exit_inst_len;
 525
 526	struct kvm_queued_exception {
 527		bool pending;
 528		bool has_error_code;
 529		bool reinject;
 530		u8 nr;
 531		u32 error_code;
 532	} exception;
 533
 534	struct kvm_queued_interrupt {
 535		bool pending;
 536		bool soft;
 537		u8 nr;
 538	} interrupt;
 539
 540	int halt_request; /* real mode on Intel only */
 541
 542	int cpuid_nent;
 543	struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES];
 
 544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545	int maxphyaddr;
 546
 547	/* emulate context */
 548
 549	struct x86_emulate_ctxt emulate_ctxt;
 550	bool emulate_regs_need_sync_to_vcpu;
 551	bool emulate_regs_need_sync_from_vcpu;
 552	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
 553
 554	gpa_t time;
 555	struct pvclock_vcpu_time_info hv_clock;
 556	unsigned int hw_tsc_khz;
 557	struct gfn_to_hva_cache pv_time;
 558	bool pv_time_enabled;
 559	/* set guest stopped flag in pvclock flags field */
 560	bool pvclock_set_guest_stopped_request;
 561
 562	struct {
 
 563		u64 msr_val;
 564		u64 last_steal;
 565		u64 accum_steal;
 566		struct gfn_to_hva_cache stime;
 567		struct kvm_steal_time steal;
 568	} st;
 569
 
 
 570	u64 last_guest_tsc;
 571	u64 last_host_tsc;
 572	u64 tsc_offset_adjustment;
 573	u64 this_tsc_nsec;
 574	u64 this_tsc_write;
 575	u64 this_tsc_generation;
 576	bool tsc_catchup;
 577	bool tsc_always_catchup;
 578	s8 virtual_tsc_shift;
 579	u32 virtual_tsc_mult;
 580	u32 virtual_tsc_khz;
 581	s64 ia32_tsc_adjust_msr;
 582	u64 tsc_scaling_ratio;
 
 
 583
 584	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
 585	unsigned nmi_pending; /* NMI queued after currently running handler */
 
 586	bool nmi_injected;    /* Trying to inject an NMI this entry */
 587	bool smi_pending;    /* SMI queued after currently running handler */
 
 588
 589	struct kvm_mtrr mtrr_state;
 590	u64 pat;
 591
 592	unsigned switch_db_regs;
 593	unsigned long db[KVM_NR_DB_REGS];
 594	unsigned long dr6;
 595	unsigned long dr7;
 596	unsigned long eff_db[KVM_NR_DB_REGS];
 597	unsigned long guest_debug_dr7;
 
 
 598
 599	u64 mcg_cap;
 600	u64 mcg_status;
 601	u64 mcg_ctl;
 
 602	u64 *mce_banks;
 
 603
 604	/* Cache MMIO info */
 605	u64 mmio_gva;
 606	unsigned access;
 607	gfn_t mmio_gfn;
 608	u64 mmio_gen;
 609
 610	struct kvm_pmu pmu;
 611
 612	/* used for guest single stepping over the given code position */
 613	unsigned long singlestep_rip;
 614
 615	struct kvm_vcpu_hv hyperv;
 616
 
 
 
 
 
 617	cpumask_var_t wbinvd_dirty_mask;
 618
 619	unsigned long last_retry_eip;
 620	unsigned long last_retry_addr;
 621
 622	struct {
 623		bool halted;
 624		gfn_t gfns[roundup_pow_of_two(ASYNC_PF_PER_VCPU)];
 625		struct gfn_to_hva_cache data;
 626		u64 msr_val;
 
 
 627		u32 id;
 628		bool send_user_only;
 
 
 
 629	} apf;
 630
 631	/* OSVW MSRs (AMD only) */
 632	struct {
 633		u64 length;
 634		u64 status;
 635	} osvw;
 636
 637	struct {
 638		u64 msr_val;
 639		struct gfn_to_hva_cache data;
 640	} pv_eoi;
 641
 642	/*
 643	 * Indicate whether the access faults on its page table in guest
 644	 * which is set when fix page fault and used to detect unhandeable
 645	 * instruction.
 646	 */
 647	bool write_fault_to_shadow_pgtable;
 648
 649	/* set at EPT violation at this point */
 650	unsigned long exit_qualification;
 651
 652	/* pv related host specific info */
 653	struct {
 654		bool pv_unhalted;
 655	} pv;
 656
 657	int pending_ioapic_eoi;
 658	int pending_external_vector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 659};
 660
 661struct kvm_lpage_info {
 662	int disallow_lpage;
 663};
 664
 665struct kvm_arch_memory_slot {
 666	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
 667	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
 668	unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
 669};
 670
 671/*
 672 * We use as the mode the number of bits allocated in the LDR for the
 673 * logical processor ID.  It happens that these are all powers of two.
 674 * This makes it is very easy to detect cases where the APICs are
 675 * configured for multiple modes; in that case, we cannot use the map and
 676 * hence cannot use kvm_irq_delivery_to_apic_fast either.
 677 */
 678#define KVM_APIC_MODE_XAPIC_CLUSTER          4
 679#define KVM_APIC_MODE_XAPIC_FLAT             8
 680#define KVM_APIC_MODE_X2APIC                16
 
 
 
 
 
 
 
 
 
 
 
 
 681
 682struct kvm_apic_map {
 683	struct rcu_head rcu;
 684	u8 mode;
 685	struct kvm_lapic *phys_map[256];
 686	/* first index is cluster id second is cpu id in a cluster */
 687	struct kvm_lapic *logical_map[16][16];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 688};
 689
 
 690/* Hyper-V emulation context */
 691struct kvm_hv {
 
 692	u64 hv_guest_os_id;
 693	u64 hv_hypercall;
 694	u64 hv_tsc_page;
 
 695
 696	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
 697	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
 698	u64 hv_crash_ctl;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 699};
 700
 701struct kvm_arch {
 702	unsigned int n_used_mmu_pages;
 703	unsigned int n_requested_mmu_pages;
 704	unsigned int n_max_mmu_pages;
 
 705	unsigned int indirect_shadow_pages;
 706	unsigned long mmu_valid_gen;
 707	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
 708	/*
 709	 * Hash table of struct kvm_mmu_page.
 710	 */
 711	struct list_head active_mmu_pages;
 712	struct list_head zapped_obsolete_pages;
 713	struct kvm_page_track_notifier_node mmu_sp_tracker;
 
 
 
 
 
 
 
 
 
 
 
 
 714	struct kvm_page_track_notifier_head track_notifier_head;
 
 
 
 
 
 
 
 
 715
 716	struct list_head assigned_dev_head;
 717	struct iommu_domain *iommu_domain;
 718	bool iommu_noncoherent;
 719#define __KVM_HAVE_ARCH_NONCOHERENT_DMA
 720	atomic_t noncoherent_dma_count;
 721#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
 722	atomic_t assigned_device_count;
 723	struct kvm_pic *vpic;
 724	struct kvm_ioapic *vioapic;
 725	struct kvm_pit *vpit;
 726	atomic_t vapics_in_nmi_mode;
 727	struct mutex apic_map_lock;
 728	struct kvm_apic_map *apic_map;
 
 
 
 
 729
 730	unsigned int tss_addr;
 731	bool apic_access_page_done;
 
 732
 733	gpa_t wall_clock;
 734
 735	bool ept_identity_pagetable_done;
 736	gpa_t ept_identity_map_addr;
 
 
 737
 738	unsigned long irq_sources_bitmap;
 739	s64 kvmclock_offset;
 
 
 
 
 
 740	raw_spinlock_t tsc_write_lock;
 741	u64 last_tsc_nsec;
 742	u64 last_tsc_write;
 743	u32 last_tsc_khz;
 
 744	u64 cur_tsc_nsec;
 745	u64 cur_tsc_write;
 746	u64 cur_tsc_offset;
 747	u64 cur_tsc_generation;
 748	int nr_vcpus_matched_tsc;
 749
 750	spinlock_t pvclock_gtod_sync_lock;
 
 
 
 751	bool use_master_clock;
 752	u64 master_kernel_ns;
 753	cycle_t master_cycle_now;
 754	struct delayed_work kvmclock_update_work;
 755	struct delayed_work kvmclock_sync_work;
 756
 757	struct kvm_xen_hvm_config xen_hvm_config;
 758
 759	/* reads protected by irq_srcu, writes by irq_lock */
 760	struct hlist_head mask_notifier_list;
 761
 
 762	struct kvm_hv hyperv;
 
 763
 764	#ifdef CONFIG_KVM_MMU_AUDIT
 765	int audit_point;
 766	#endif
 767
 
 768	bool boot_vcpu_runs_old_kvmclock;
 769	u32 bsp_vcpu_id;
 770
 771	u64 disabled_quirks;
 772
 773	bool irqchip_split;
 774	u8 nr_reserved_ioapic_pins;
 775
 776	bool disabled_lapic_found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777};
 778
 779struct kvm_vm_stat {
 780	u32 mmu_shadow_zapped;
 781	u32 mmu_pte_write;
 782	u32 mmu_pte_updated;
 783	u32 mmu_pde_zapped;
 784	u32 mmu_flooded;
 785	u32 mmu_recycled;
 786	u32 mmu_cache_miss;
 787	u32 mmu_unsync;
 788	u32 remote_tlb_flush;
 789	u32 lpages;
 
 
 
 
 
 
 
 
 
 790};
 791
 792struct kvm_vcpu_stat {
 793	u32 pf_fixed;
 794	u32 pf_guest;
 795	u32 tlb_flush;
 796	u32 invlpg;
 797
 798	u32 exits;
 799	u32 io_exits;
 800	u32 mmio_exits;
 801	u32 signal_exits;
 802	u32 irq_window_exits;
 803	u32 nmi_window_exits;
 804	u32 halt_exits;
 805	u32 halt_successful_poll;
 806	u32 halt_attempted_poll;
 807	u32 halt_wakeup;
 808	u32 request_irq_exits;
 809	u32 irq_exits;
 810	u32 host_state_reload;
 811	u32 efer_reload;
 812	u32 fpu_reload;
 813	u32 insn_emulation;
 814	u32 insn_emulation_fail;
 815	u32 hypercalls;
 816	u32 irq_injections;
 817	u32 nmi_injections;
 
 
 
 
 
 
 
 
 
 
 
 818};
 819
 820struct x86_instruction_info;
 821
 822struct msr_data {
 823	bool host_initiated;
 824	u32 index;
 825	u64 data;
 826};
 827
 828struct kvm_lapic_irq {
 829	u32 vector;
 830	u16 delivery_mode;
 831	u16 dest_mode;
 832	bool level;
 833	u16 trig_mode;
 834	u32 shorthand;
 835	u32 dest_id;
 836	bool msi_redir_hint;
 837};
 838
 
 
 
 
 
 839struct kvm_x86_ops {
 840	int (*cpu_has_kvm_support)(void);          /* __init */
 841	int (*disabled_by_bios)(void);             /* __init */
 
 
 842	int (*hardware_enable)(void);
 843	void (*hardware_disable)(void);
 844	void (*check_processor_compatibility)(void *rtn);
 845	int (*hardware_setup)(void);               /* __init */
 846	void (*hardware_unsetup)(void);            /* __exit */
 847	bool (*cpu_has_accelerated_tpr)(void);
 848	bool (*cpu_has_high_real_mode_segbase)(void);
 849	void (*cpuid_update)(struct kvm_vcpu *vcpu);
 
 850
 851	/* Create, but do not attach this VCPU */
 852	struct kvm_vcpu *(*vcpu_create)(struct kvm *kvm, unsigned id);
 
 853	void (*vcpu_free)(struct kvm_vcpu *vcpu);
 854	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
 855
 856	void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
 857	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
 858	void (*vcpu_put)(struct kvm_vcpu *vcpu);
 859
 860	void (*update_bp_intercept)(struct kvm_vcpu *vcpu);
 861	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
 862	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
 863	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
 864	void (*get_segment)(struct kvm_vcpu *vcpu,
 865			    struct kvm_segment *var, int seg);
 866	int (*get_cpl)(struct kvm_vcpu *vcpu);
 867	void (*set_segment)(struct kvm_vcpu *vcpu,
 868			    struct kvm_segment *var, int seg);
 869	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
 870	void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu);
 871	void (*decache_cr3)(struct kvm_vcpu *vcpu);
 872	void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu);
 873	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
 874	void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
 875	int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
 876	void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
 
 877	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
 878	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
 879	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
 880	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
 881	u64 (*get_dr6)(struct kvm_vcpu *vcpu);
 882	void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);
 883	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
 884	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
 885	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
 886	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
 887	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
 888	u32 (*get_pkru)(struct kvm_vcpu *vcpu);
 889	void (*fpu_activate)(struct kvm_vcpu *vcpu);
 890	void (*fpu_deactivate)(struct kvm_vcpu *vcpu);
 891
 892	void (*tlb_flush)(struct kvm_vcpu *vcpu);
 893
 894	void (*run)(struct kvm_vcpu *vcpu);
 895	int (*handle_exit)(struct kvm_vcpu *vcpu);
 896	void (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
 898	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
 899	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
 900				unsigned char *hypercall_addr);
 901	void (*set_irq)(struct kvm_vcpu *vcpu);
 902	void (*set_nmi)(struct kvm_vcpu *vcpu);
 903	void (*queue_exception)(struct kvm_vcpu *vcpu, unsigned nr,
 904				bool has_error_code, u32 error_code,
 905				bool reinject);
 906	void (*cancel_injection)(struct kvm_vcpu *vcpu);
 907	int (*interrupt_allowed)(struct kvm_vcpu *vcpu);
 908	int (*nmi_allowed)(struct kvm_vcpu *vcpu);
 909	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
 910	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
 
 
 
 
 
 
 
 911	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
 912	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
 913	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
 914	bool (*get_enable_apicv)(void);
 
 
 915	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
 916	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
 917	void (*hwapic_isr_update)(struct kvm *kvm, int isr);
 
 918	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
 919	void (*set_virtual_x2apic_mode)(struct kvm_vcpu *vcpu, bool set);
 920	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu, hpa_t hpa);
 921	void (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
 922	void (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
 
 923	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
 924	int (*get_tdp_level)(void);
 925	u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
 926	int (*get_lpage_level)(void);
 927	bool (*rdtscp_supported)(void);
 928	bool (*invpcid_supported)(void);
 929	void (*adjust_tsc_offset_guest)(struct kvm_vcpu *vcpu, s64 adjustment);
 930
 931	void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
 932
 933	void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry);
 934
 935	bool (*has_wbinvd_exit)(void);
 936
 937	u64 (*read_tsc_offset)(struct kvm_vcpu *vcpu);
 938	void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
 939
 940	u64 (*read_l1_tsc)(struct kvm_vcpu *vcpu, u64 host_tsc);
 941
 942	void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2);
 
 
 
 
 
 
 943
 944	int (*check_intercept)(struct kvm_vcpu *vcpu,
 945			       struct x86_instruction_info *info,
 946			       enum x86_intercept_stage stage);
 947	void (*handle_external_intr)(struct kvm_vcpu *vcpu);
 948	bool (*mpx_supported)(void);
 949	bool (*xsaves_supported)(void);
 950
 951	int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr);
 952
 953	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
 954
 955	/*
 956	 * Arch-specific dirty logging hooks. These hooks are only supposed to
 957	 * be valid if the specific arch has hardware-accelerated dirty logging
 958	 * mechanism. Currently only for PML on VMX.
 959	 *
 960	 *  - slot_enable_log_dirty:
 961	 *	called when enabling log dirty mode for the slot.
 962	 *  - slot_disable_log_dirty:
 963	 *	called when disabling log dirty mode for the slot.
 964	 *	also called when slot is created with log dirty disabled.
 965	 *  - flush_log_dirty:
 966	 *	called before reporting dirty_bitmap to userspace.
 967	 *  - enable_log_dirty_pt_masked:
 968	 *	called when reenabling log dirty for the GFNs in the mask after
 969	 *	corresponding bits are cleared in slot->dirty_bitmap.
 970	 */
 971	void (*slot_enable_log_dirty)(struct kvm *kvm,
 972				      struct kvm_memory_slot *slot);
 973	void (*slot_disable_log_dirty)(struct kvm *kvm,
 974				       struct kvm_memory_slot *slot);
 975	void (*flush_log_dirty)(struct kvm *kvm);
 976	void (*enable_log_dirty_pt_masked)(struct kvm *kvm,
 977					   struct kvm_memory_slot *slot,
 978					   gfn_t offset, unsigned long mask);
 979	/* pmu operations of sub-arch */
 980	const struct kvm_pmu_ops *pmu_ops;
 981
 982	/*
 983	 * Architecture specific hooks for vCPU blocking due to
 984	 * HLT instruction.
 985	 * Returns for .pre_block():
 986	 *    - 0 means continue to block the vCPU.
 987	 *    - 1 means we cannot block the vCPU since some event
 988	 *        happens during this period, such as, 'ON' bit in
 989	 *        posted-interrupts descriptor is set.
 990	 */
 991	int (*pre_block)(struct kvm_vcpu *vcpu);
 992	void (*post_block)(struct kvm_vcpu *vcpu);
 993	int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
 994			      uint32_t guest_irq, bool set);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995};
 996
 997struct kvm_arch_async_pf {
 998	u32 token;
 999	gfn_t gfn;
1000	unsigned long cr3;
1001	bool direct_map;
1002};
1003
1004extern struct kvm_x86_ops *kvm_x86_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005
1006int kvm_mmu_module_init(void);
1007void kvm_mmu_module_exit(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008
1009void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1010int kvm_mmu_create(struct kvm_vcpu *vcpu);
1011void kvm_mmu_setup(struct kvm_vcpu *vcpu);
1012void kvm_mmu_init_vm(struct kvm *kvm);
1013void kvm_mmu_uninit_vm(struct kvm *kvm);
1014void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
1015		u64 dirty_mask, u64 nx_mask, u64 x_mask);
1016
 
 
 
 
1017void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1018void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1019				      struct kvm_memory_slot *memslot);
 
 
 
 
 
 
 
 
1020void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1021				   const struct kvm_memory_slot *memslot);
1022void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1023				   struct kvm_memory_slot *memslot);
1024void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
1025					struct kvm_memory_slot *memslot);
1026void kvm_mmu_slot_set_dirty(struct kvm *kvm,
1027			    struct kvm_memory_slot *memslot);
1028void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1029				   struct kvm_memory_slot *slot,
1030				   gfn_t gfn_offset, unsigned long mask);
1031void kvm_mmu_zap_all(struct kvm *kvm);
1032void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots);
1033unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm);
1034void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages);
1035
1036int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1037
1038int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1039			  const void *val, int bytes);
1040
1041struct kvm_irq_mask_notifier {
1042	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1043	int irq;
1044	struct hlist_node link;
1045};
1046
1047void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1048				    struct kvm_irq_mask_notifier *kimn);
1049void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1050				      struct kvm_irq_mask_notifier *kimn);
1051void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1052			     bool mask);
1053
1054extern bool tdp_enabled;
1055
1056u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1057
1058/* control of guest tsc rate supported? */
1059extern bool kvm_has_tsc_control;
1060/* maximum supported tsc_khz for guests */
1061extern u32  kvm_max_guest_tsc_khz;
1062/* number of bits of the fractional part of the TSC scaling ratio */
1063extern u8   kvm_tsc_scaling_ratio_frac_bits;
1064/* maximum allowed value of TSC scaling ratio */
1065extern u64  kvm_max_tsc_scaling_ratio;
1066
1067enum emulation_result {
1068	EMULATE_DONE,         /* no further processing */
1069	EMULATE_USER_EXIT,    /* kvm_run ready for userspace exit */
1070	EMULATE_FAIL,         /* can't emulate this instruction */
1071};
1072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073#define EMULTYPE_NO_DECODE	    (1 << 0)
1074#define EMULTYPE_TRAP_UD	    (1 << 1)
1075#define EMULTYPE_SKIP		    (1 << 2)
1076#define EMULTYPE_RETRY		    (1 << 3)
1077#define EMULTYPE_NO_REEXECUTE	    (1 << 4)
1078int x86_emulate_instruction(struct kvm_vcpu *vcpu, unsigned long cr2,
1079			    int emulation_type, void *insn, int insn_len);
1080
1081static inline int emulate_instruction(struct kvm_vcpu *vcpu,
1082			int emulation_type)
1083{
1084	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
1085}
 
 
 
1086
1087void kvm_enable_efer_bits(u64);
1088bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1089int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
1090int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);
1091
1092struct x86_emulate_ctxt;
 
 
 
 
 
 
1093
1094int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port);
1095void kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1096int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1097int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
 
1098int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1099
1100void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
 
1101int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1102void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1103
1104int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1105		    int reason, bool has_error_code, u32 error_code);
1106
 
 
1107int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1108int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1109int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1110int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1111int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1112int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1113unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1114void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1115void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1116int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr);
1117
1118int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1119int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1120
1121unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1122void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1123bool kvm_rdpmc(struct kvm_vcpu *vcpu);
1124
1125void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1126void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
 
1127void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1128void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1129void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1130int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1131			    gfn_t gfn, void *data, int offset, int len,
1132			    u32 access);
1133bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1134bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1135
1136static inline int __kvm_irq_line_state(unsigned long *irq_state,
1137				       int irq_source_id, int level)
1138{
1139	/* Logical OR for level trig interrupt */
1140	if (level)
1141		__set_bit(irq_source_id, irq_state);
1142	else
1143		__clear_bit(irq_source_id, irq_state);
1144
1145	return !!(*irq_state);
1146}
1147
1148int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1149void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1150
1151void kvm_inject_nmi(struct kvm_vcpu *vcpu);
 
 
 
1152
1153int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1154int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva);
1155void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1156int kvm_mmu_load(struct kvm_vcpu *vcpu);
1157void kvm_mmu_unload(struct kvm_vcpu *vcpu);
1158void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
1159gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1160			   struct x86_exception *exception);
1161gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1162			      struct x86_exception *exception);
1163gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1164			       struct x86_exception *exception);
1165gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1166			       struct x86_exception *exception);
1167gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1168				struct x86_exception *exception);
1169
1170void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1171
1172int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1173
1174int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u32 error_code,
1175		       void *insn, int insn_len);
1176void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1177void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu);
 
 
 
1178
1179void kvm_enable_tdp(void);
1180void kvm_disable_tdp(void);
1181
1182static inline gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1183				  struct x86_exception *exception)
1184{
1185	return gpa;
1186}
1187
1188static inline struct kvm_mmu_page *page_header(hpa_t shadow_page)
1189{
1190	struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);
1191
1192	return (struct kvm_mmu_page *)page_private(page);
1193}
 
 
 
1194
1195static inline u16 kvm_read_ldt(void)
1196{
1197	u16 ldt;
1198	asm("sldt %0" : "=g"(ldt));
1199	return ldt;
1200}
1201
1202static inline void kvm_load_ldt(u16 sel)
1203{
1204	asm("lldt %0" : : "rm"(sel));
1205}
1206
1207#ifdef CONFIG_X86_64
1208static inline unsigned long read_msr(unsigned long msr)
1209{
1210	u64 value;
1211
1212	rdmsrl(msr, value);
1213	return value;
1214}
1215#endif
1216
1217static inline u32 get_rdx_init_val(void)
1218{
1219	return 0x600; /* P6 family */
1220}
1221
1222static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1223{
1224	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1225}
1226
1227static inline u64 get_canonical(u64 la)
1228{
1229	return ((int64_t)la << 16) >> 16;
1230}
1231
1232static inline bool is_noncanonical_address(u64 la)
1233{
1234#ifdef CONFIG_X86_64
1235	return get_canonical(la) != la;
1236#else
1237	return false;
1238#endif
1239}
1240
1241#define TSS_IOPB_BASE_OFFSET 0x66
1242#define TSS_BASE_SIZE 0x68
1243#define TSS_IOPB_SIZE (65536 / 8)
1244#define TSS_REDIRECTION_SIZE (256 / 8)
1245#define RMODE_TSS_SIZE							\
1246	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1247
1248enum {
1249	TASK_SWITCH_CALL = 0,
1250	TASK_SWITCH_IRET = 1,
1251	TASK_SWITCH_JMP = 2,
1252	TASK_SWITCH_GATE = 3,
1253};
1254
1255#define HF_GIF_MASK		(1 << 0)
1256#define HF_HIF_MASK		(1 << 1)
1257#define HF_VINTR_MASK		(1 << 2)
1258#define HF_NMI_MASK		(1 << 3)
1259#define HF_IRET_MASK		(1 << 4)
1260#define HF_GUEST_MASK		(1 << 5) /* VCPU is in guest-mode */
1261#define HF_SMM_MASK		(1 << 6)
1262#define HF_SMM_INSIDE_NMI_MASK	(1 << 7)
1263
1264#define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1265#define KVM_ADDRESS_SPACE_NUM 2
1266
1267#define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1268#define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1269
1270/*
1271 * Hardware virtualization extension instructions may fault if a
1272 * reboot turns off virtualization while processes are running.
1273 * Trap the fault and ignore the instruction if that happens.
1274 */
1275asmlinkage void kvm_spurious_fault(void);
 
 
 
1276
1277#define ____kvm_handle_fault_on_reboot(insn, cleanup_insn)	\
1278	"666: " insn "\n\t" \
1279	"668: \n\t"                           \
1280	".pushsection .fixup, \"ax\" \n" \
1281	"667: \n\t" \
1282	cleanup_insn "\n\t"		      \
1283	"cmpb $0, kvm_rebooting \n\t"	      \
1284	"jne 668b \n\t"      		      \
1285	__ASM_SIZE(push) " $666b \n\t"	      \
1286	"call kvm_spurious_fault \n\t"	      \
1287	".popsection \n\t" \
1288	_ASM_EXTABLE(666b, 667b)
1289
1290#define __kvm_handle_fault_on_reboot(insn)		\
1291	____kvm_handle_fault_on_reboot(insn, "")
1292
1293#define KVM_ARCH_WANT_MMU_NOTIFIER
1294int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
1295int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end);
1296int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
1297int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
1298void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
1299int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1300int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
 
1301int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1302int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1303void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1304void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1305void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
1306					   unsigned long address);
1307
1308void kvm_define_shared_msr(unsigned index, u32 msr);
1309int kvm_set_shared_msr(unsigned index, u64 val, u64 mask);
 
 
 
 
 
1310
1311u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc);
 
 
 
 
 
1312u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
 
 
1313
1314unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1315bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1316
1317void kvm_make_mclock_inprogress_request(struct kvm *kvm);
1318void kvm_make_scan_ioapic_request(struct kvm *kvm);
 
 
1319
1320void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1321				     struct kvm_async_pf *work);
1322void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1323				 struct kvm_async_pf *work);
1324void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1325			       struct kvm_async_pf *work);
1326bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu);
 
1327extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1328
1329void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1330
1331int kvm_is_in_guest(void);
1332
1333int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
1334int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size);
1335bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1336bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1337
1338bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1339			     struct kvm_vcpu **dest_vcpu);
1340
1341void kvm_set_msi_irq(struct kvm_kernel_irq_routing_entry *e,
1342		     struct kvm_lapic_irq *irq);
1343
1344static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu) {}
1345static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu) {}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346
1347#endif /* _ASM_X86_KVM_HOST_H */
v6.8
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This header defines architecture specific interfaces, x86 version
 
 
 
 
   6 */
   7
   8#ifndef _ASM_X86_KVM_HOST_H
   9#define _ASM_X86_KVM_HOST_H
  10
  11#include <linux/types.h>
  12#include <linux/mm.h>
  13#include <linux/mmu_notifier.h>
  14#include <linux/tracepoint.h>
  15#include <linux/cpumask.h>
  16#include <linux/irq_work.h>
  17#include <linux/irq.h>
  18#include <linux/workqueue.h>
  19
  20#include <linux/kvm.h>
  21#include <linux/kvm_para.h>
  22#include <linux/kvm_types.h>
  23#include <linux/perf_event.h>
  24#include <linux/pvclock_gtod.h>
  25#include <linux/clocksource.h>
  26#include <linux/irqbypass.h>
  27#include <linux/hyperv.h>
  28#include <linux/kfifo.h>
  29
  30#include <asm/apic.h>
  31#include <asm/pvclock-abi.h>
  32#include <asm/desc.h>
  33#include <asm/mtrr.h>
  34#include <asm/msr-index.h>
  35#include <asm/asm.h>
  36#include <asm/kvm_page_track.h>
  37#include <asm/kvm_vcpu_regs.h>
  38#include <asm/hyperv-tlfs.h>
  39
  40#define __KVM_HAVE_ARCH_VCPU_DEBUGFS
  41
  42/*
  43 * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
  44 * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
  45 */
  46#ifdef CONFIG_KVM_MAX_NR_VCPUS
  47#define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
  48#else
  49#define KVM_MAX_VCPUS 1024
  50#endif
  51
  52/*
  53 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
  54 * might be larger than the actual number of VCPUs because the
  55 * APIC ID encodes CPU topology information.
  56 *
  57 * In the worst case, we'll need less than one extra bit for the
  58 * Core ID, and less than one extra bit for the Package (Die) ID,
  59 * so ratio of 4 should be enough.
  60 */
  61#define KVM_VCPU_ID_RATIO 4
  62#define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
  63
 
 
 
  64/* memory slots that are not exposed to userspace */
  65#define KVM_INTERNAL_MEM_SLOTS 3
 
  66
  67#define KVM_HALT_POLL_NS_DEFAULT 200000
 
 
  68
  69#define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
  70
  71#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
  72					KVM_DIRTY_LOG_INITIALLY_SET)
  73
  74#define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
  75						 KVM_BUS_LOCK_DETECTION_EXIT)
  76
  77#define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
  78						 KVM_X86_NOTIFY_VMEXIT_USER)
  79
  80/* x86-specific vcpu->requests bit members */
  81#define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
  82#define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
  83#define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
  84#define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
  85#define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
  86#define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
  87#define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
  88#define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
  89#define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
  90#define KVM_REQ_NMI			KVM_ARCH_REQ(9)
  91#define KVM_REQ_PMU			KVM_ARCH_REQ(10)
  92#define KVM_REQ_PMI			KVM_ARCH_REQ(11)
  93#ifdef CONFIG_KVM_SMM
  94#define KVM_REQ_SMI			KVM_ARCH_REQ(12)
  95#endif
  96#define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
  97#define KVM_REQ_MCLOCK_INPROGRESS \
  98	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
  99#define KVM_REQ_SCAN_IOAPIC \
 100	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 101#define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
 102#define KVM_REQ_APIC_PAGE_RELOAD \
 103	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 104#define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
 105#define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
 106#define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
 107#define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
 108#define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
 109#define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
 110#define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
 111#define KVM_REQ_APICV_UPDATE \
 112	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 113#define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
 114#define KVM_REQ_TLB_FLUSH_GUEST \
 115	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 116#define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
 117#define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
 118#define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
 119	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 120#define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
 121	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 122#define KVM_REQ_HV_TLB_FLUSH \
 123	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
 124
 125#define CR0_RESERVED_BITS                                               \
 126	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
 127			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
 128			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
 129
 
 
 130#define CR4_RESERVED_BITS                                               \
 131	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
 132			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
 133			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
 134			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
 135			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
 136			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
 137			  | X86_CR4_LAM_SUP))
 138
 139#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
 140
 141
 142
 143#define INVALID_PAGE (~(hpa_t)0)
 144#define VALID_PAGE(x) ((x) != INVALID_PAGE)
 145
 
 
 146/* KVM Hugepage definitions for x86 */
 147#define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
 148#define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
 149#define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
 150#define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
 151#define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
 152#define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
 153#define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
 154
 155#define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
 156#define KVM_MIN_ALLOC_MMU_PAGES 64UL
 157#define KVM_MMU_HASH_SHIFT 12
 
 
 
 
 
 
 
 158#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
 159#define KVM_MIN_FREE_MMU_PAGES 5
 160#define KVM_REFILL_PAGES 25
 161#define KVM_MAX_CPUID_ENTRIES 256
 162#define KVM_NR_FIXED_MTRR_REGION 88
 163#define KVM_NR_VAR_MTRR 8
 164
 165#define ASYNC_PF_PER_VCPU 64
 166
 167enum kvm_reg {
 168	VCPU_REGS_RAX = __VCPU_REGS_RAX,
 169	VCPU_REGS_RCX = __VCPU_REGS_RCX,
 170	VCPU_REGS_RDX = __VCPU_REGS_RDX,
 171	VCPU_REGS_RBX = __VCPU_REGS_RBX,
 172	VCPU_REGS_RSP = __VCPU_REGS_RSP,
 173	VCPU_REGS_RBP = __VCPU_REGS_RBP,
 174	VCPU_REGS_RSI = __VCPU_REGS_RSI,
 175	VCPU_REGS_RDI = __VCPU_REGS_RDI,
 176#ifdef CONFIG_X86_64
 177	VCPU_REGS_R8  = __VCPU_REGS_R8,
 178	VCPU_REGS_R9  = __VCPU_REGS_R9,
 179	VCPU_REGS_R10 = __VCPU_REGS_R10,
 180	VCPU_REGS_R11 = __VCPU_REGS_R11,
 181	VCPU_REGS_R12 = __VCPU_REGS_R12,
 182	VCPU_REGS_R13 = __VCPU_REGS_R13,
 183	VCPU_REGS_R14 = __VCPU_REGS_R14,
 184	VCPU_REGS_R15 = __VCPU_REGS_R15,
 185#endif
 186	VCPU_REGS_RIP,
 187	NR_VCPU_REGS,
 
 188
 
 189	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
 190	VCPU_EXREG_CR0,
 191	VCPU_EXREG_CR3,
 192	VCPU_EXREG_CR4,
 193	VCPU_EXREG_RFLAGS,
 194	VCPU_EXREG_SEGMENTS,
 195	VCPU_EXREG_EXIT_INFO_1,
 196	VCPU_EXREG_EXIT_INFO_2,
 197};
 198
 199enum {
 200	VCPU_SREG_ES,
 201	VCPU_SREG_CS,
 202	VCPU_SREG_SS,
 203	VCPU_SREG_DS,
 204	VCPU_SREG_FS,
 205	VCPU_SREG_GS,
 206	VCPU_SREG_TR,
 207	VCPU_SREG_LDTR,
 208};
 209
 210enum exit_fastpath_completion {
 211	EXIT_FASTPATH_NONE,
 212	EXIT_FASTPATH_REENTER_GUEST,
 213	EXIT_FASTPATH_EXIT_HANDLED,
 214};
 215typedef enum exit_fastpath_completion fastpath_t;
 216
 217struct x86_emulate_ctxt;
 218struct x86_exception;
 219union kvm_smram;
 220enum x86_intercept;
 221enum x86_intercept_stage;
 222
 223#define KVM_NR_DB_REGS	4
 224
 225#define DR6_BUS_LOCK   (1 << 11)
 226#define DR6_BD		(1 << 13)
 227#define DR6_BS		(1 << 14)
 228#define DR6_BT		(1 << 15)
 229#define DR6_RTM		(1 << 16)
 230/*
 231 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
 232 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
 233 * they will never be 0 for now, but when they are defined
 234 * in the future it will require no code change.
 235 *
 236 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
 237 */
 238#define DR6_ACTIVE_LOW	0xffff0ff0
 239#define DR6_VOLATILE	0x0001e80f
 240#define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
 241
 242#define DR7_BP_EN_MASK	0x000000ff
 243#define DR7_GE		(1 << 9)
 244#define DR7_GD		(1 << 13)
 245#define DR7_FIXED_1	0x00000400
 246#define DR7_VOLATILE	0xffff2bff
 247
 248#define KVM_GUESTDBG_VALID_MASK \
 249	(KVM_GUESTDBG_ENABLE | \
 250	KVM_GUESTDBG_SINGLESTEP | \
 251	KVM_GUESTDBG_USE_HW_BP | \
 252	KVM_GUESTDBG_USE_SW_BP | \
 253	KVM_GUESTDBG_INJECT_BP | \
 254	KVM_GUESTDBG_INJECT_DB | \
 255	KVM_GUESTDBG_BLOCKIRQ)
 256
 257
 258#define PFERR_PRESENT_BIT 0
 259#define PFERR_WRITE_BIT 1
 260#define PFERR_USER_BIT 2
 261#define PFERR_RSVD_BIT 3
 262#define PFERR_FETCH_BIT 4
 263#define PFERR_PK_BIT 5
 264#define PFERR_SGX_BIT 15
 265#define PFERR_GUEST_FINAL_BIT 32
 266#define PFERR_GUEST_PAGE_BIT 33
 267#define PFERR_IMPLICIT_ACCESS_BIT 48
 268
 269#define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
 270#define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
 271#define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
 272#define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
 273#define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
 274#define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
 275#define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
 276#define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
 277#define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
 278#define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
 279
 280#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
 281				 PFERR_WRITE_MASK |		\
 282				 PFERR_PRESENT_MASK)
 283
 284/* apic attention bits */
 285#define KVM_APIC_CHECK_VAPIC	0
 286/*
 287 * The following bit is set with PV-EOI, unset on EOI.
 288 * We detect PV-EOI changes by guest by comparing
 289 * this bit with PV-EOI in guest memory.
 290 * See the implementation in apic_update_pv_eoi.
 291 */
 292#define KVM_APIC_PV_EOI_PENDING	1
 293
 294struct kvm_kernel_irq_routing_entry;
 295
 296/*
 297 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
 298 * also includes TDP pages) to determine whether or not a page can be used in
 299 * the given MMU context.  This is a subset of the overall kvm_cpu_role to
 300 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
 301 * allocating 2 bytes per gfn instead of 4 bytes per gfn.
 302 *
 303 * Upper-level shadow pages having gptes are tracked for write-protection via
 304 * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
 305 * not create more than 2^16-1 upper-level shadow pages at a single gfn,
 306 * otherwise gfn_write_track will overflow and explosions will ensue.
 307 *
 308 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
 309 * cannot be reused.  The ability to reuse a SP is tracked by its role, which
 310 * incorporates various mode bits and properties of the SP.  Roughly speaking,
 311 * the number of unique SPs that can theoretically be created is 2^n, where n
 312 * is the number of bits that are used to compute the role.
 313 *
 314 * But, even though there are 19 bits in the mask below, not all combinations
 315 * of modes and flags are possible:
 316 *
 317 *   - invalid shadow pages are not accounted, so the bits are effectively 18
 318 *
 319 *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
 320 *     execonly and ad_disabled are only used for nested EPT which has
 321 *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
 322 *
 323 *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
 324 *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
 325 *     paging has exactly one upper level, making level completely redundant
 326 *     when has_4_byte_gpte=1.
 327 *
 328 *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
 329 *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
 330 *
 331 * Therefore, the maximum number of possible upper-level shadow pages for a
 332 * single gfn is a bit less than 2^13.
 333 */
 334union kvm_mmu_page_role {
 335	u32 word;
 336	struct {
 337		unsigned level:4;
 338		unsigned has_4_byte_gpte:1;
 339		unsigned quadrant:2;
 340		unsigned direct:1;
 341		unsigned access:3;
 342		unsigned invalid:1;
 343		unsigned efer_nx:1;
 344		unsigned cr0_wp:1;
 345		unsigned smep_andnot_wp:1;
 346		unsigned smap_andnot_wp:1;
 347		unsigned ad_disabled:1;
 348		unsigned guest_mode:1;
 349		unsigned passthrough:1;
 350		unsigned :5;
 351
 352		/*
 353		 * This is left at the top of the word so that
 354		 * kvm_memslots_for_spte_role can extract it with a
 355		 * simple shift.  While there is room, give it a whole
 356		 * byte so it is also faster to load it from memory.
 357		 */
 358		unsigned smm:8;
 359	};
 360};
 361
 362/*
 363 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
 364 * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
 365 * including on nested transitions, if nothing in the full role changes then
 366 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
 367 * don't treat all-zero structure as valid data.
 368 *
 369 * The properties that are tracked in the extended role but not the page role
 370 * are for things that either (a) do not affect the validity of the shadow page
 371 * or (b) are indirectly reflected in the shadow page's role.  For example,
 372 * CR4.PKE only affects permission checks for software walks of the guest page
 373 * tables (because KVM doesn't support Protection Keys with shadow paging), and
 374 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
 375 *
 376 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
 377 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
 378 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
 379 * SMAP aware regardless of CR0.WP.
 380 */
 381union kvm_mmu_extended_role {
 382	u32 word;
 383	struct {
 384		unsigned int valid:1;
 385		unsigned int execonly:1;
 386		unsigned int cr4_pse:1;
 387		unsigned int cr4_pke:1;
 388		unsigned int cr4_smap:1;
 389		unsigned int cr4_smep:1;
 390		unsigned int cr4_la57:1;
 391		unsigned int efer_lma:1;
 392	};
 393};
 394
 395union kvm_cpu_role {
 396	u64 as_u64;
 397	struct {
 398		union kvm_mmu_page_role base;
 399		union kvm_mmu_extended_role ext;
 400	};
 401};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402
 403struct kvm_rmap_head {
 404	unsigned long val;
 405};
 406
 407struct kvm_pio_request {
 408	unsigned long linear_rip;
 409	unsigned long count;
 410	int in;
 411	int port;
 412	int size;
 413};
 414
 415#define PT64_ROOT_MAX_LEVEL 5
 416
 417struct rsvd_bits_validate {
 418	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
 419	u64 bad_mt_xwr;
 420};
 421
 422struct kvm_mmu_root_info {
 423	gpa_t pgd;
 424	hpa_t hpa;
 425};
 426
 427#define KVM_MMU_ROOT_INFO_INVALID \
 428	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
 429
 430#define KVM_MMU_NUM_PREV_ROOTS 3
 431
 432#define KVM_MMU_ROOT_CURRENT		BIT(0)
 433#define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
 434#define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
 435
 436#define KVM_HAVE_MMU_RWLOCK
 437
 438struct kvm_mmu_page;
 439struct kvm_page_fault;
 440
 441/*
 442 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
 443 * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
 444 * current mmu mode.
 445 */
 446struct kvm_mmu {
 447	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
 
 448	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
 449	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
 
 450	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
 451				  struct x86_exception *fault);
 452	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 453			    gpa_t gva_or_gpa, u64 access,
 454			    struct x86_exception *exception);
 455	int (*sync_spte)(struct kvm_vcpu *vcpu,
 456			 struct kvm_mmu_page *sp, int i);
 457	struct kvm_mmu_root_info root;
 458	union kvm_cpu_role cpu_role;
 459	union kvm_mmu_page_role root_role;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 460
 461	/*
 462	* The pkru_mask indicates if protection key checks are needed.  It
 463	* consists of 16 domains indexed by page fault error code bits [4:1],
 464	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
 465	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
 466	*/
 467	u32 pkru_mask;
 468
 469	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
 470
 471	/*
 472	 * Bitmap; bit set = permission fault
 473	 * Byte index: page fault error code [4:1]
 474	 * Bit index: pte permissions in ACC_* format
 475	 */
 476	u8 permissions[16];
 477
 478	u64 *pae_root;
 479	u64 *pml4_root;
 480	u64 *pml5_root;
 481
 482	/*
 483	 * check zero bits on shadow page table entries, these
 484	 * bits include not only hardware reserved bits but also
 485	 * the bits spte never used.
 486	 */
 487	struct rsvd_bits_validate shadow_zero_check;
 488
 489	struct rsvd_bits_validate guest_rsvd_check;
 490
 
 
 
 
 
 491	u64 pdptrs[4]; /* pae */
 492};
 493
 494enum pmc_type {
 495	KVM_PMC_GP = 0,
 496	KVM_PMC_FIXED,
 497};
 498
 499struct kvm_pmc {
 500	enum pmc_type type;
 501	u8 idx;
 502	bool is_paused;
 503	bool intr;
 504	/*
 505	 * Base value of the PMC counter, relative to the *consumed* count in
 506	 * the associated perf_event.  This value includes counter updates from
 507	 * the perf_event and emulated_count since the last time the counter
 508	 * was reprogrammed, but it is *not* the current value as seen by the
 509	 * guest or userspace.
 510	 *
 511	 * The count is relative to the associated perf_event so that KVM
 512	 * doesn't need to reprogram the perf_event every time the guest writes
 513	 * to the counter.
 514	 */
 515	u64 counter;
 516	/*
 517	 * PMC events triggered by KVM emulation that haven't been fully
 518	 * processed, i.e. haven't undergone overflow detection.
 519	 */
 520	u64 emulated_counter;
 521	u64 eventsel;
 522	struct perf_event *perf_event;
 523	struct kvm_vcpu *vcpu;
 524	/*
 525	 * only for creating or reusing perf_event,
 526	 * eventsel value for general purpose counters,
 527	 * ctrl value for fixed counters.
 528	 */
 529	u64 current_config;
 530};
 531
 532/* More counters may conflict with other existing Architectural MSRs */
 533#define KVM_INTEL_PMC_MAX_GENERIC	8
 534#define MSR_ARCH_PERFMON_PERFCTR_MAX	(MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
 535#define MSR_ARCH_PERFMON_EVENTSEL_MAX	(MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
 536#define KVM_PMC_MAX_FIXED	3
 537#define MSR_ARCH_PERFMON_FIXED_CTR_MAX	(MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1)
 538#define KVM_AMD_PMC_MAX_GENERIC	6
 539struct kvm_pmu {
 540	u8 version;
 541	unsigned nr_arch_gp_counters;
 542	unsigned nr_arch_fixed_counters;
 543	unsigned available_event_types;
 544	u64 fixed_ctr_ctrl;
 545	u64 fixed_ctr_ctrl_mask;
 546	u64 global_ctrl;
 547	u64 global_status;
 
 548	u64 counter_bitmask[2];
 549	u64 global_ctrl_mask;
 550	u64 global_status_mask;
 551	u64 reserved_bits;
 552	u64 raw_event_mask;
 553	struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC];
 554	struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
 555
 556	/*
 557	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
 558	 * set in a single access, e.g. to reprogram all counters when the PMU
 559	 * filter changes.
 560	 */
 561	union {
 562		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
 563		atomic64_t __reprogram_pmi;
 564	};
 565	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
 566	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
 567
 568	u64 ds_area;
 569	u64 pebs_enable;
 570	u64 pebs_enable_mask;
 571	u64 pebs_data_cfg;
 572	u64 pebs_data_cfg_mask;
 573
 574	/*
 575	 * If a guest counter is cross-mapped to host counter with different
 576	 * index, its PEBS capability will be temporarily disabled.
 577	 *
 578	 * The user should make sure that this mask is updated
 579	 * after disabling interrupts and before perf_guest_get_msrs();
 580	 */
 581	u64 host_cross_mapped_mask;
 582
 583	/*
 584	 * The gate to release perf_events not marked in
 585	 * pmc_in_use only once in a vcpu time slice.
 586	 */
 587	bool need_cleanup;
 588
 589	/*
 590	 * The total number of programmed perf_events and it helps to avoid
 591	 * redundant check before cleanup if guest don't use vPMU at all.
 592	 */
 593	u8 event_count;
 594};
 595
 596struct kvm_pmu_ops;
 597
 598enum {
 599	KVM_DEBUGREG_BP_ENABLED = 1,
 600	KVM_DEBUGREG_WONT_EXIT = 2,
 
 601};
 602
 603struct kvm_mtrr_range {
 604	u64 base;
 605	u64 mask;
 606	struct list_head node;
 607};
 608
 609struct kvm_mtrr {
 610	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
 611	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
 612	u64 deftype;
 613
 614	struct list_head head;
 615};
 616
 617/* Hyper-V SynIC timer */
 618struct kvm_vcpu_hv_stimer {
 619	struct hrtimer timer;
 620	int index;
 621	union hv_stimer_config config;
 622	u64 count;
 623	u64 exp_time;
 624	struct hv_message msg;
 625	bool msg_pending;
 626};
 627
 628/* Hyper-V synthetic interrupt controller (SynIC)*/
 629struct kvm_vcpu_hv_synic {
 630	u64 version;
 631	u64 control;
 632	u64 msg_page;
 633	u64 evt_page;
 634	atomic64_t sint[HV_SYNIC_SINT_COUNT];
 635	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
 636	DECLARE_BITMAP(auto_eoi_bitmap, 256);
 637	DECLARE_BITMAP(vec_bitmap, 256);
 638	bool active;
 639	bool dont_zero_synic_pages;
 640};
 641
 642/* The maximum number of entries on the TLB flush fifo. */
 643#define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
 644/*
 645 * Note: the following 'magic' entry is made up by KVM to avoid putting
 646 * anything besides GVA on the TLB flush fifo. It is theoretically possible
 647 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
 648 * which will look identical. KVM's action to 'flush everything' instead of
 649 * flushing these particular addresses is, however, fully legitimate as
 650 * flushing more than requested is always OK.
 651 */
 652#define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
 653
 654enum hv_tlb_flush_fifos {
 655	HV_L1_TLB_FLUSH_FIFO,
 656	HV_L2_TLB_FLUSH_FIFO,
 657	HV_NR_TLB_FLUSH_FIFOS,
 658};
 659
 660struct kvm_vcpu_hv_tlb_flush_fifo {
 661	spinlock_t write_lock;
 662	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
 663};
 664
 665/* Hyper-V per vcpu emulation context */
 666struct kvm_vcpu_hv {
 667	struct kvm_vcpu *vcpu;
 668	u32 vp_index;
 669	u64 hv_vapic;
 670	s64 runtime_offset;
 671	struct kvm_vcpu_hv_synic synic;
 672	struct kvm_hyperv_exit exit;
 673	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
 674	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
 675	bool enforce_cpuid;
 676	struct {
 677		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
 678		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
 679		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
 680		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
 681		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
 682		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
 683		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
 684		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
 685	} cpuid_cache;
 686
 687	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
 688
 689	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
 690	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
 691
 692	struct hv_vp_assist_page vp_assist_page;
 693
 694	struct {
 695		u64 pa_page_gpa;
 696		u64 vm_id;
 697		u32 vp_id;
 698	} nested;
 699};
 700
 701struct kvm_hypervisor_cpuid {
 702	u32 base;
 703	u32 limit;
 704};
 705
 706#ifdef CONFIG_KVM_XEN
 707/* Xen HVM per vcpu emulation context */
 708struct kvm_vcpu_xen {
 709	u64 hypercall_rip;
 710	u32 current_runstate;
 711	u8 upcall_vector;
 712	struct gfn_to_pfn_cache vcpu_info_cache;
 713	struct gfn_to_pfn_cache vcpu_time_info_cache;
 714	struct gfn_to_pfn_cache runstate_cache;
 715	struct gfn_to_pfn_cache runstate2_cache;
 716	u64 last_steal;
 717	u64 runstate_entry_time;
 718	u64 runstate_times[4];
 719	unsigned long evtchn_pending_sel;
 720	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
 721	u32 timer_virq;
 722	u64 timer_expires; /* In guest epoch */
 723	atomic_t timer_pending;
 724	struct hrtimer timer;
 725	int poll_evtchn;
 726	struct timer_list poll_timer;
 727	struct kvm_hypervisor_cpuid cpuid;
 728};
 729#endif
 730
 731struct kvm_queued_exception {
 732	bool pending;
 733	bool injected;
 734	bool has_error_code;
 735	u8 vector;
 736	u32 error_code;
 737	unsigned long payload;
 738	bool has_payload;
 739};
 740
 741struct kvm_vcpu_arch {
 742	/*
 743	 * rip and regs accesses must go through
 744	 * kvm_{register,rip}_{read,write} functions.
 745	 */
 746	unsigned long regs[NR_VCPU_REGS];
 747	u32 regs_avail;
 748	u32 regs_dirty;
 749
 750	unsigned long cr0;
 751	unsigned long cr0_guest_owned_bits;
 752	unsigned long cr2;
 753	unsigned long cr3;
 754	unsigned long cr4;
 755	unsigned long cr4_guest_owned_bits;
 756	unsigned long cr4_guest_rsvd_bits;
 757	unsigned long cr8;
 758	u32 host_pkru;
 759	u32 pkru;
 760	u32 hflags;
 761	u64 efer;
 762	u64 apic_base;
 763	struct kvm_lapic *apic;    /* kernel irqchip context */
 764	bool load_eoi_exitmap_pending;
 765	DECLARE_BITMAP(ioapic_handled_vectors, 256);
 766	unsigned long apic_attention;
 767	int32_t apic_arb_prio;
 768	int mp_state;
 769	u64 ia32_misc_enable_msr;
 770	u64 smbase;
 771	u64 smi_count;
 772	bool at_instruction_boundary;
 773	bool tpr_access_reporting;
 774	bool xfd_no_write_intercept;
 775	u64 ia32_xss;
 776	u64 microcode_version;
 777	u64 arch_capabilities;
 778	u64 perf_capabilities;
 779
 780	/*
 781	 * Paging state of the vcpu
 782	 *
 783	 * If the vcpu runs in guest mode with two level paging this still saves
 784	 * the paging mode of the l1 guest. This context is always used to
 785	 * handle faults.
 786	 */
 787	struct kvm_mmu *mmu;
 788
 789	/* Non-nested MMU for L1 */
 790	struct kvm_mmu root_mmu;
 791
 792	/* L1 MMU when running nested */
 793	struct kvm_mmu guest_mmu;
 794
 795	/*
 796	 * Paging state of an L2 guest (used for nested npt)
 797	 *
 798	 * This context will save all necessary information to walk page tables
 799	 * of an L2 guest. This context is only initialized for page table
 800	 * walking and not for faulting since we never handle l2 page faults on
 801	 * the host.
 802	 */
 803	struct kvm_mmu nested_mmu;
 804
 805	/*
 806	 * Pointer to the mmu context currently used for
 807	 * gva_to_gpa translations.
 808	 */
 809	struct kvm_mmu *walk_mmu;
 810
 811	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
 812	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
 813	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
 814	struct kvm_mmu_memory_cache mmu_page_header_cache;
 815
 816	/*
 817	 * QEMU userspace and the guest each have their own FPU state.
 818	 * In vcpu_run, we switch between the user and guest FPU contexts.
 819	 * While running a VCPU, the VCPU thread will have the guest FPU
 820	 * context.
 821	 *
 822	 * Note that while the PKRU state lives inside the fpu registers,
 823	 * it is switched out separately at VMENTER and VMEXIT time. The
 824	 * "guest_fpstate" state here contains the guest FPU context, with the
 825	 * host PRKU bits.
 826	 */
 827	struct fpu_guest guest_fpu;
 828
 829	u64 xcr0;
 830	u64 guest_supported_xcr0;
 
 831
 832	struct kvm_pio_request pio;
 833	void *pio_data;
 834	void *sev_pio_data;
 835	unsigned sev_pio_count;
 836
 837	u8 event_exit_inst_len;
 838
 839	bool exception_from_userspace;
 840
 841	/* Exceptions to be injected to the guest. */
 842	struct kvm_queued_exception exception;
 843	/* Exception VM-Exits to be synthesized to L1. */
 844	struct kvm_queued_exception exception_vmexit;
 
 845
 846	struct kvm_queued_interrupt {
 847		bool injected;
 848		bool soft;
 849		u8 nr;
 850	} interrupt;
 851
 852	int halt_request; /* real mode on Intel only */
 853
 854	int cpuid_nent;
 855	struct kvm_cpuid_entry2 *cpuid_entries;
 856	struct kvm_hypervisor_cpuid kvm_cpuid;
 857
 858	/*
 859	 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly
 860	 * when "struct kvm_vcpu_arch" is no longer defined in an
 861	 * arch/x86/include/asm header.  The max is mostly arbitrary, i.e.
 862	 * can be increased as necessary.
 863	 */
 864#define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG
 865
 866	/*
 867	 * Track whether or not the guest is allowed to use features that are
 868	 * governed by KVM, where "governed" means KVM needs to manage state
 869	 * and/or explicitly enable the feature in hardware.  Typically, but
 870	 * not always, governed features can be used by the guest if and only
 871	 * if both KVM and userspace want to expose the feature to the guest.
 872	 */
 873	struct {
 874		DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES);
 875	} governed_features;
 876
 877	u64 reserved_gpa_bits;
 878	int maxphyaddr;
 879
 880	/* emulate context */
 881
 882	struct x86_emulate_ctxt *emulate_ctxt;
 883	bool emulate_regs_need_sync_to_vcpu;
 884	bool emulate_regs_need_sync_from_vcpu;
 885	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
 886
 887	gpa_t time;
 888	struct pvclock_vcpu_time_info hv_clock;
 889	unsigned int hw_tsc_khz;
 890	struct gfn_to_pfn_cache pv_time;
 
 891	/* set guest stopped flag in pvclock flags field */
 892	bool pvclock_set_guest_stopped_request;
 893
 894	struct {
 895		u8 preempted;
 896		u64 msr_val;
 897		u64 last_steal;
 898		struct gfn_to_hva_cache cache;
 
 
 899	} st;
 900
 901	u64 l1_tsc_offset;
 902	u64 tsc_offset; /* current tsc offset */
 903	u64 last_guest_tsc;
 904	u64 last_host_tsc;
 905	u64 tsc_offset_adjustment;
 906	u64 this_tsc_nsec;
 907	u64 this_tsc_write;
 908	u64 this_tsc_generation;
 909	bool tsc_catchup;
 910	bool tsc_always_catchup;
 911	s8 virtual_tsc_shift;
 912	u32 virtual_tsc_mult;
 913	u32 virtual_tsc_khz;
 914	s64 ia32_tsc_adjust_msr;
 915	u64 msr_ia32_power_ctl;
 916	u64 l1_tsc_scaling_ratio;
 917	u64 tsc_scaling_ratio; /* current scaling ratio */
 918
 919	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
 920	/* Number of NMIs pending injection, not including hardware vNMIs. */
 921	unsigned int nmi_pending;
 922	bool nmi_injected;    /* Trying to inject an NMI this entry */
 923	bool smi_pending;    /* SMI queued after currently running handler */
 924	u8 handling_intr_from_guest;
 925
 926	struct kvm_mtrr mtrr_state;
 927	u64 pat;
 928
 929	unsigned switch_db_regs;
 930	unsigned long db[KVM_NR_DB_REGS];
 931	unsigned long dr6;
 932	unsigned long dr7;
 933	unsigned long eff_db[KVM_NR_DB_REGS];
 934	unsigned long guest_debug_dr7;
 935	u64 msr_platform_info;
 936	u64 msr_misc_features_enables;
 937
 938	u64 mcg_cap;
 939	u64 mcg_status;
 940	u64 mcg_ctl;
 941	u64 mcg_ext_ctl;
 942	u64 *mce_banks;
 943	u64 *mci_ctl2_banks;
 944
 945	/* Cache MMIO info */
 946	u64 mmio_gva;
 947	unsigned mmio_access;
 948	gfn_t mmio_gfn;
 949	u64 mmio_gen;
 950
 951	struct kvm_pmu pmu;
 952
 953	/* used for guest single stepping over the given code position */
 954	unsigned long singlestep_rip;
 955
 956#ifdef CONFIG_KVM_HYPERV
 957	bool hyperv_enabled;
 958	struct kvm_vcpu_hv *hyperv;
 959#endif
 960#ifdef CONFIG_KVM_XEN
 961	struct kvm_vcpu_xen xen;
 962#endif
 963	cpumask_var_t wbinvd_dirty_mask;
 964
 965	unsigned long last_retry_eip;
 966	unsigned long last_retry_addr;
 967
 968	struct {
 969		bool halted;
 970		gfn_t gfns[ASYNC_PF_PER_VCPU];
 971		struct gfn_to_hva_cache data;
 972		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
 973		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
 974		u16 vec;
 975		u32 id;
 976		bool send_user_only;
 977		u32 host_apf_flags;
 978		bool delivery_as_pf_vmexit;
 979		bool pageready_pending;
 980	} apf;
 981
 982	/* OSVW MSRs (AMD only) */
 983	struct {
 984		u64 length;
 985		u64 status;
 986	} osvw;
 987
 988	struct {
 989		u64 msr_val;
 990		struct gfn_to_hva_cache data;
 991	} pv_eoi;
 992
 993	u64 msr_kvm_poll_control;
 
 
 
 
 
 994
 995	/* set at EPT violation at this point */
 996	unsigned long exit_qualification;
 997
 998	/* pv related host specific info */
 999	struct {
1000		bool pv_unhalted;
1001	} pv;
1002
1003	int pending_ioapic_eoi;
1004	int pending_external_vector;
1005
1006	/* be preempted when it's in kernel-mode(cpl=0) */
1007	bool preempted_in_kernel;
1008
1009	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
1010	bool l1tf_flush_l1d;
1011
1012	/* Host CPU on which VM-entry was most recently attempted */
1013	int last_vmentry_cpu;
1014
1015	/* AMD MSRC001_0015 Hardware Configuration */
1016	u64 msr_hwcr;
1017
1018	/* pv related cpuid info */
1019	struct {
1020		/*
1021		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
1022		 * leaf.
1023		 */
1024		u32 features;
1025
1026		/*
1027		 * indicates whether pv emulation should be disabled if features
1028		 * are not present in the guest's cpuid
1029		 */
1030		bool enforce;
1031	} pv_cpuid;
1032
1033	/* Protected Guests */
1034	bool guest_state_protected;
1035
1036	/*
1037	 * Set when PDPTS were loaded directly by the userspace without
1038	 * reading the guest memory
1039	 */
1040	bool pdptrs_from_userspace;
1041
1042#if IS_ENABLED(CONFIG_HYPERV)
1043	hpa_t hv_root_tdp;
1044#endif
1045};
1046
1047struct kvm_lpage_info {
1048	int disallow_lpage;
1049};
1050
1051struct kvm_arch_memory_slot {
1052	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1053	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1054	unsigned short *gfn_write_track;
1055};
1056
1057/*
1058 * Track the mode of the optimized logical map, as the rules for decoding the
1059 * destination vary per mode.  Enabling the optimized logical map requires all
1060 * software-enabled local APIs to be in the same mode, each addressable APIC to
1061 * be mapped to only one MDA, and each MDA to map to at most one APIC.
 
1062 */
1063enum kvm_apic_logical_mode {
1064	/* All local APICs are software disabled. */
1065	KVM_APIC_MODE_SW_DISABLED,
1066	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1067	KVM_APIC_MODE_XAPIC_CLUSTER,
1068	/* All software enabled local APICs in xAPIC flat addressing mode. */
1069	KVM_APIC_MODE_XAPIC_FLAT,
1070	/* All software enabled local APICs in x2APIC mode. */
1071	KVM_APIC_MODE_X2APIC,
1072	/*
1073	 * Optimized map disabled, e.g. not all local APICs in the same logical
1074	 * mode, same logical ID assigned to multiple APICs, etc.
1075	 */
1076	KVM_APIC_MODE_MAP_DISABLED,
1077};
1078
1079struct kvm_apic_map {
1080	struct rcu_head rcu;
1081	enum kvm_apic_logical_mode logical_mode;
1082	u32 max_apic_id;
1083	union {
1084		struct kvm_lapic *xapic_flat_map[8];
1085		struct kvm_lapic *xapic_cluster_map[16][4];
1086	};
1087	struct kvm_lapic *phys_map[];
1088};
1089
1090/* Hyper-V synthetic debugger (SynDbg)*/
1091struct kvm_hv_syndbg {
1092	struct {
1093		u64 control;
1094		u64 status;
1095		u64 send_page;
1096		u64 recv_page;
1097		u64 pending_page;
1098	} control;
1099	u64 options;
1100};
1101
1102/* Current state of Hyper-V TSC page clocksource */
1103enum hv_tsc_page_status {
1104	/* TSC page was not set up or disabled */
1105	HV_TSC_PAGE_UNSET = 0,
1106	/* TSC page MSR was written by the guest, update pending */
1107	HV_TSC_PAGE_GUEST_CHANGED,
1108	/* TSC page update was triggered from the host side */
1109	HV_TSC_PAGE_HOST_CHANGED,
1110	/* TSC page was properly set up and is currently active  */
1111	HV_TSC_PAGE_SET,
1112	/* TSC page was set up with an inaccessible GPA */
1113	HV_TSC_PAGE_BROKEN,
1114};
1115
1116#ifdef CONFIG_KVM_HYPERV
1117/* Hyper-V emulation context */
1118struct kvm_hv {
1119	struct mutex hv_lock;
1120	u64 hv_guest_os_id;
1121	u64 hv_hypercall;
1122	u64 hv_tsc_page;
1123	enum hv_tsc_page_status hv_tsc_page_status;
1124
1125	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1126	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1127	u64 hv_crash_ctl;
1128
1129	struct ms_hyperv_tsc_page tsc_ref;
1130
1131	struct idr conn_to_evt;
1132
1133	u64 hv_reenlightenment_control;
1134	u64 hv_tsc_emulation_control;
1135	u64 hv_tsc_emulation_status;
1136	u64 hv_invtsc_control;
1137
1138	/* How many vCPUs have VP index != vCPU index */
1139	atomic_t num_mismatched_vp_indexes;
1140
1141	/*
1142	 * How many SynICs use 'AutoEOI' feature
1143	 * (protected by arch.apicv_update_lock)
1144	 */
1145	unsigned int synic_auto_eoi_used;
1146
1147	struct kvm_hv_syndbg hv_syndbg;
1148
1149	bool xsaves_xsavec_checked;
1150};
1151#endif
1152
1153struct msr_bitmap_range {
1154	u32 flags;
1155	u32 nmsrs;
1156	u32 base;
1157	unsigned long *bitmap;
1158};
1159
1160#ifdef CONFIG_KVM_XEN
1161/* Xen emulation context */
1162struct kvm_xen {
1163	struct mutex xen_lock;
1164	u32 xen_version;
1165	bool long_mode;
1166	bool runstate_update_flag;
1167	u8 upcall_vector;
1168	struct gfn_to_pfn_cache shinfo_cache;
1169	struct idr evtchn_ports;
1170	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1171};
1172#endif
1173
1174enum kvm_irqchip_mode {
1175	KVM_IRQCHIP_NONE,
1176	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1177	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1178};
1179
1180struct kvm_x86_msr_filter {
1181	u8 count;
1182	bool default_allow:1;
1183	struct msr_bitmap_range ranges[16];
1184};
1185
1186struct kvm_x86_pmu_event_filter {
1187	__u32 action;
1188	__u32 nevents;
1189	__u32 fixed_counter_bitmap;
1190	__u32 flags;
1191	__u32 nr_includes;
1192	__u32 nr_excludes;
1193	__u64 *includes;
1194	__u64 *excludes;
1195	__u64 events[];
1196};
1197
1198enum kvm_apicv_inhibit {
1199
1200	/********************************************************************/
1201	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1202	/********************************************************************/
1203
1204	/*
1205	 * APIC acceleration is disabled by a module parameter
1206	 * and/or not supported in hardware.
1207	 */
1208	APICV_INHIBIT_REASON_DISABLE,
1209
1210	/*
1211	 * APIC acceleration is inhibited because AutoEOI feature is
1212	 * being used by a HyperV guest.
1213	 */
1214	APICV_INHIBIT_REASON_HYPERV,
1215
1216	/*
1217	 * APIC acceleration is inhibited because the userspace didn't yet
1218	 * enable the kernel/split irqchip.
1219	 */
1220	APICV_INHIBIT_REASON_ABSENT,
1221
1222	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1223	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1224	 * was enabled, to avoid AVIC/APICv bypassing it.
1225	 */
1226	APICV_INHIBIT_REASON_BLOCKIRQ,
1227
1228	/*
1229	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1230	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1231	 */
1232	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1233
1234	/*
1235	 * For simplicity, the APIC acceleration is inhibited
1236	 * first time either APIC ID or APIC base are changed by the guest
1237	 * from their reset values.
1238	 */
1239	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1240	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1241
1242	/******************************************************/
1243	/* INHIBITs that are relevant only to the AMD's AVIC. */
1244	/******************************************************/
1245
1246	/*
1247	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1248	 *
1249	 * This is needed because unlike APICv, the peers of this vCPU
1250	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1251	 * a vCPU runs nested.
1252	 */
1253	APICV_INHIBIT_REASON_NESTED,
1254
1255	/*
1256	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1257	 * which cannot be injected when the AVIC is enabled, thus AVIC
1258	 * is inhibited while KVM waits for IRQ window.
1259	 */
1260	APICV_INHIBIT_REASON_IRQWIN,
1261
1262	/*
1263	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1264	 * which AVIC doesn't support for edge triggered interrupts.
1265	 */
1266	APICV_INHIBIT_REASON_PIT_REINJ,
1267
1268	/*
1269	 * AVIC is disabled because SEV doesn't support it.
1270	 */
1271	APICV_INHIBIT_REASON_SEV,
1272
1273	/*
1274	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1275	 * mapping between logical ID and vCPU.
1276	 */
1277	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1278};
1279
1280struct kvm_arch {
1281	unsigned long vm_type;
1282	unsigned long n_used_mmu_pages;
1283	unsigned long n_requested_mmu_pages;
1284	unsigned long n_max_mmu_pages;
1285	unsigned int indirect_shadow_pages;
1286	u8 mmu_valid_gen;
1287	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
 
 
 
1288	struct list_head active_mmu_pages;
1289	struct list_head zapped_obsolete_pages;
1290	/*
1291	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1292	 * replaced by an NX huge page.  A shadow page is on this list if its
1293	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1294	 * and there are no other conditions that prevent a huge page, e.g.
1295	 * the backing host page is huge, dirtly logging is not enabled for its
1296	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1297	 * guarantee an NX huge page will be created in its stead, e.g. if the
1298	 * guest attempts to execute from the region then KVM obviously can't
1299	 * create an NX huge page (without hanging the guest).
1300	 */
1301	struct list_head possible_nx_huge_pages;
1302#ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1303	struct kvm_page_track_notifier_head track_notifier_head;
1304#endif
1305	/*
1306	 * Protects marking pages unsync during page faults, as TDP MMU page
1307	 * faults only take mmu_lock for read.  For simplicity, the unsync
1308	 * pages lock is always taken when marking pages unsync regardless of
1309	 * whether mmu_lock is held for read or write.
1310	 */
1311	spinlock_t mmu_unsync_pages_lock;
1312
 
1313	struct iommu_domain *iommu_domain;
1314	bool iommu_noncoherent;
1315#define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1316	atomic_t noncoherent_dma_count;
1317#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1318	atomic_t assigned_device_count;
1319	struct kvm_pic *vpic;
1320	struct kvm_ioapic *vioapic;
1321	struct kvm_pit *vpit;
1322	atomic_t vapics_in_nmi_mode;
1323	struct mutex apic_map_lock;
1324	struct kvm_apic_map __rcu *apic_map;
1325	atomic_t apic_map_dirty;
1326
1327	bool apic_access_memslot_enabled;
1328	bool apic_access_memslot_inhibited;
1329
1330	/* Protects apicv_inhibit_reasons */
1331	struct rw_semaphore apicv_update_lock;
1332	unsigned long apicv_inhibit_reasons;
1333
1334	gpa_t wall_clock;
1335
1336	bool mwait_in_guest;
1337	bool hlt_in_guest;
1338	bool pause_in_guest;
1339	bool cstate_in_guest;
1340
1341	unsigned long irq_sources_bitmap;
1342	s64 kvmclock_offset;
1343
1344	/*
1345	 * This also protects nr_vcpus_matched_tsc which is read from a
1346	 * preemption-disabled region, so it must be a raw spinlock.
1347	 */
1348	raw_spinlock_t tsc_write_lock;
1349	u64 last_tsc_nsec;
1350	u64 last_tsc_write;
1351	u32 last_tsc_khz;
1352	u64 last_tsc_offset;
1353	u64 cur_tsc_nsec;
1354	u64 cur_tsc_write;
1355	u64 cur_tsc_offset;
1356	u64 cur_tsc_generation;
1357	int nr_vcpus_matched_tsc;
1358
1359	u32 default_tsc_khz;
1360	bool user_set_tsc;
1361
1362	seqcount_raw_spinlock_t pvclock_sc;
1363	bool use_master_clock;
1364	u64 master_kernel_ns;
1365	u64 master_cycle_now;
1366	struct delayed_work kvmclock_update_work;
1367	struct delayed_work kvmclock_sync_work;
1368
1369	struct kvm_xen_hvm_config xen_hvm_config;
1370
1371	/* reads protected by irq_srcu, writes by irq_lock */
1372	struct hlist_head mask_notifier_list;
1373
1374#ifdef CONFIG_KVM_HYPERV
1375	struct kvm_hv hyperv;
1376#endif
1377
1378#ifdef CONFIG_KVM_XEN
1379	struct kvm_xen xen;
1380#endif
1381
1382	bool backwards_tsc_observed;
1383	bool boot_vcpu_runs_old_kvmclock;
1384	u32 bsp_vcpu_id;
1385
1386	u64 disabled_quirks;
1387
1388	enum kvm_irqchip_mode irqchip_mode;
1389	u8 nr_reserved_ioapic_pins;
1390
1391	bool disabled_lapic_found;
1392
1393	bool x2apic_format;
1394	bool x2apic_broadcast_quirk_disabled;
1395
1396	bool guest_can_read_msr_platform_info;
1397	bool exception_payload_enabled;
1398
1399	bool triple_fault_event;
1400
1401	bool bus_lock_detection_enabled;
1402	bool enable_pmu;
1403
1404	u32 notify_window;
1405	u32 notify_vmexit_flags;
1406	/*
1407	 * If exit_on_emulation_error is set, and the in-kernel instruction
1408	 * emulator fails to emulate an instruction, allow userspace
1409	 * the opportunity to look at it.
1410	 */
1411	bool exit_on_emulation_error;
1412
1413	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1414	u32 user_space_msr_mask;
1415	struct kvm_x86_msr_filter __rcu *msr_filter;
1416
1417	u32 hypercall_exit_enabled;
1418
1419	/* Guest can access the SGX PROVISIONKEY. */
1420	bool sgx_provisioning_allowed;
1421
1422	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1423	struct task_struct *nx_huge_page_recovery_thread;
1424
1425#ifdef CONFIG_X86_64
1426	/* The number of TDP MMU pages across all roots. */
1427	atomic64_t tdp_mmu_pages;
1428
1429	/*
1430	 * List of struct kvm_mmu_pages being used as roots.
1431	 * All struct kvm_mmu_pages in the list should have
1432	 * tdp_mmu_page set.
1433	 *
1434	 * For reads, this list is protected by:
1435	 *	the MMU lock in read mode + RCU or
1436	 *	the MMU lock in write mode
1437	 *
1438	 * For writes, this list is protected by tdp_mmu_pages_lock; see
1439	 * below for the details.
1440	 *
1441	 * Roots will remain in the list until their tdp_mmu_root_count
1442	 * drops to zero, at which point the thread that decremented the
1443	 * count to zero should removed the root from the list and clean
1444	 * it up, freeing the root after an RCU grace period.
1445	 */
1446	struct list_head tdp_mmu_roots;
1447
1448	/*
1449	 * Protects accesses to the following fields when the MMU lock
1450	 * is held in read mode:
1451	 *  - tdp_mmu_roots (above)
1452	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1453	 *  - possible_nx_huge_pages;
1454	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1455	 *    by the TDP MMU
1456	 * Because the lock is only taken within the MMU lock, strictly
1457	 * speaking it is redundant to acquire this lock when the thread
1458	 * holds the MMU lock in write mode.  However it often simplifies
1459	 * the code to do so.
1460	 */
1461	spinlock_t tdp_mmu_pages_lock;
1462#endif /* CONFIG_X86_64 */
1463
1464	/*
1465	 * If set, at least one shadow root has been allocated. This flag
1466	 * is used as one input when determining whether certain memslot
1467	 * related allocations are necessary.
1468	 */
1469	bool shadow_root_allocated;
1470
1471#if IS_ENABLED(CONFIG_HYPERV)
1472	hpa_t	hv_root_tdp;
1473	spinlock_t hv_root_tdp_lock;
1474	struct hv_partition_assist_pg *hv_pa_pg;
1475#endif
1476	/*
1477	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1478	 * that increase along with the maximum vCPU ID, in which case, using
1479	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1480	 */
1481	u32 max_vcpu_ids;
1482
1483	bool disable_nx_huge_pages;
1484
1485	/*
1486	 * Memory caches used to allocate shadow pages when performing eager
1487	 * page splitting. No need for a shadowed_info_cache since eager page
1488	 * splitting only allocates direct shadow pages.
1489	 *
1490	 * Protected by kvm->slots_lock.
1491	 */
1492	struct kvm_mmu_memory_cache split_shadow_page_cache;
1493	struct kvm_mmu_memory_cache split_page_header_cache;
1494
1495	/*
1496	 * Memory cache used to allocate pte_list_desc structs while splitting
1497	 * huge pages. In the worst case, to split one huge page, 512
1498	 * pte_list_desc structs are needed to add each lower level leaf sptep
1499	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1500	 * page table.
1501	 *
1502	 * Protected by kvm->slots_lock.
1503	 */
1504#define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1505	struct kvm_mmu_memory_cache split_desc_cache;
1506};
1507
1508struct kvm_vm_stat {
1509	struct kvm_vm_stat_generic generic;
1510	u64 mmu_shadow_zapped;
1511	u64 mmu_pte_write;
1512	u64 mmu_pde_zapped;
1513	u64 mmu_flooded;
1514	u64 mmu_recycled;
1515	u64 mmu_cache_miss;
1516	u64 mmu_unsync;
1517	union {
1518		struct {
1519			atomic64_t pages_4k;
1520			atomic64_t pages_2m;
1521			atomic64_t pages_1g;
1522		};
1523		atomic64_t pages[KVM_NR_PAGE_SIZES];
1524	};
1525	u64 nx_lpage_splits;
1526	u64 max_mmu_page_hash_collisions;
1527	u64 max_mmu_rmap_size;
1528};
1529
1530struct kvm_vcpu_stat {
1531	struct kvm_vcpu_stat_generic generic;
1532	u64 pf_taken;
1533	u64 pf_fixed;
1534	u64 pf_emulate;
1535	u64 pf_spurious;
1536	u64 pf_fast;
1537	u64 pf_mmio_spte_created;
1538	u64 pf_guest;
1539	u64 tlb_flush;
1540	u64 invlpg;
1541
1542	u64 exits;
1543	u64 io_exits;
1544	u64 mmio_exits;
1545	u64 signal_exits;
1546	u64 irq_window_exits;
1547	u64 nmi_window_exits;
1548	u64 l1d_flush;
1549	u64 halt_exits;
1550	u64 request_irq_exits;
1551	u64 irq_exits;
1552	u64 host_state_reload;
1553	u64 fpu_reload;
1554	u64 insn_emulation;
1555	u64 insn_emulation_fail;
1556	u64 hypercalls;
1557	u64 irq_injections;
1558	u64 nmi_injections;
1559	u64 req_event;
1560	u64 nested_run;
1561	u64 directed_yield_attempted;
1562	u64 directed_yield_successful;
1563	u64 preemption_reported;
1564	u64 preemption_other;
1565	u64 guest_mode;
1566	u64 notify_window_exits;
1567};
1568
1569struct x86_instruction_info;
1570
1571struct msr_data {
1572	bool host_initiated;
1573	u32 index;
1574	u64 data;
1575};
1576
1577struct kvm_lapic_irq {
1578	u32 vector;
1579	u16 delivery_mode;
1580	u16 dest_mode;
1581	bool level;
1582	u16 trig_mode;
1583	u32 shorthand;
1584	u32 dest_id;
1585	bool msi_redir_hint;
1586};
1587
1588static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1589{
1590	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1591}
1592
1593struct kvm_x86_ops {
1594	const char *name;
1595
1596	int (*check_processor_compatibility)(void);
1597
1598	int (*hardware_enable)(void);
1599	void (*hardware_disable)(void);
1600	void (*hardware_unsetup)(void);
1601	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1602	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1603
1604	unsigned int vm_size;
1605	int (*vm_init)(struct kvm *kvm);
1606	void (*vm_destroy)(struct kvm *kvm);
1607
1608	/* Create, but do not attach this VCPU */
1609	int (*vcpu_precreate)(struct kvm *kvm);
1610	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1611	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1612	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1613
1614	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1615	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1616	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1617
1618	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1619	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1620	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1621	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1622	void (*get_segment)(struct kvm_vcpu *vcpu,
1623			    struct kvm_segment *var, int seg);
1624	int (*get_cpl)(struct kvm_vcpu *vcpu);
1625	void (*set_segment)(struct kvm_vcpu *vcpu,
1626			    struct kvm_segment *var, int seg);
1627	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1628	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
 
 
1629	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1630	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1631	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1632	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1633	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1634	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1635	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1636	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1637	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
 
 
1638	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1639	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1640	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1641	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1642	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1643	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1644
1645	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1646	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1647#if IS_ENABLED(CONFIG_HYPERV)
1648	int  (*flush_remote_tlbs)(struct kvm *kvm);
1649	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1650					gfn_t nr_pages);
1651#endif
1652
1653	/*
1654	 * Flush any TLB entries associated with the given GVA.
1655	 * Does not need to flush GPA->HPA mappings.
1656	 * Can potentially get non-canonical addresses through INVLPGs, which
1657	 * the implementation may choose to ignore if appropriate.
1658	 */
1659	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1660
1661	/*
1662	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1663	 * does not need to flush GPA->HPA mappings.
1664	 */
1665	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1666
1667	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1668	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
1669	int (*handle_exit)(struct kvm_vcpu *vcpu,
1670		enum exit_fastpath_completion exit_fastpath);
1671	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1672	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1673	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1674	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1675	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1676				unsigned char *hypercall_addr);
1677	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1678	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1679	void (*inject_exception)(struct kvm_vcpu *vcpu);
 
 
1680	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1681	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1682	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1683	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1684	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1685	/* Whether or not a virtual NMI is pending in hardware. */
1686	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1687	/*
1688	 * Attempt to pend a virtual NMI in hardware.  Returns %true on success
1689	 * to allow using static_call_ret0 as the fallback.
1690	 */
1691	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1692	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1693	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1694	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1695	bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1696	const unsigned long required_apicv_inhibits;
1697	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1698	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1699	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1700	void (*hwapic_isr_update)(int isr);
1701	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1702	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1703	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1704	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1705	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1706				  int trig_mode, int vector);
1707	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1708	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1709	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1710	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
 
 
 
 
1711
1712	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1713			     int root_level);
 
1714
1715	bool (*has_wbinvd_exit)(void);
1716
1717	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1718	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1719	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1720	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1721
1722	/*
1723	 * Retrieve somewhat arbitrary exit information.  Intended to
1724	 * be used only from within tracepoints or error paths.
1725	 */
1726	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1727			      u64 *info1, u64 *info2,
1728			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1729
1730	int (*check_intercept)(struct kvm_vcpu *vcpu,
1731			       struct x86_instruction_info *info,
1732			       enum x86_intercept_stage stage,
1733			       struct x86_exception *exception);
1734	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
 
1735
1736	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1737
1738	void (*sched_in)(struct kvm_vcpu *vcpu, int cpu);
1739
1740	/*
1741	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1742	 * value indicates CPU dirty logging is unsupported or disabled.
1743	 */
1744	int cpu_dirty_log_size;
1745	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1746
1747	const struct kvm_x86_nested_ops *nested_ops;
1748
1749	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1750	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1751
1752	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1753			      uint32_t guest_irq, bool set);
1754	void (*pi_start_assignment)(struct kvm *kvm);
1755	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1756	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1757	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1758
1759	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1760			    bool *expired);
1761	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1762
1763	void (*setup_mce)(struct kvm_vcpu *vcpu);
1764
1765#ifdef CONFIG_KVM_SMM
1766	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1767	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1768	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1769	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1770#endif
1771
1772	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1773	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1774	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1775	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1776	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1777	void (*guest_memory_reclaimed)(struct kvm *kvm);
1778
1779	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1780
1781	int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1782					 void *insn, int insn_len);
1783
1784	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1785	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1786
1787	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1788	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1789	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1790
1791	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1792
1793	/*
1794	 * Returns vCPU specific APICv inhibit reasons
1795	 */
1796	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1797
1798	gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
1799};
1800
1801struct kvm_x86_nested_ops {
1802	void (*leave_nested)(struct kvm_vcpu *vcpu);
1803	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1804				    u32 error_code);
1805	int (*check_events)(struct kvm_vcpu *vcpu);
1806	bool (*has_events)(struct kvm_vcpu *vcpu);
1807	void (*triple_fault)(struct kvm_vcpu *vcpu);
1808	int (*get_state)(struct kvm_vcpu *vcpu,
1809			 struct kvm_nested_state __user *user_kvm_nested_state,
1810			 unsigned user_data_size);
1811	int (*set_state)(struct kvm_vcpu *vcpu,
1812			 struct kvm_nested_state __user *user_kvm_nested_state,
1813			 struct kvm_nested_state *kvm_state);
1814	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1815	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1816
1817	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1818			    uint16_t *vmcs_version);
1819	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1820	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1821};
1822
1823struct kvm_x86_init_ops {
1824	int (*hardware_setup)(void);
1825	unsigned int (*handle_intel_pt_intr)(void);
1826
1827	struct kvm_x86_ops *runtime_ops;
1828	struct kvm_pmu_ops *pmu_ops;
1829};
1830
1831struct kvm_arch_async_pf {
1832	u32 token;
1833	gfn_t gfn;
1834	unsigned long cr3;
1835	bool direct_map;
1836};
1837
1838extern u32 __read_mostly kvm_nr_uret_msrs;
1839extern u64 __read_mostly host_efer;
1840extern bool __read_mostly allow_smaller_maxphyaddr;
1841extern bool __read_mostly enable_apicv;
1842extern struct kvm_x86_ops kvm_x86_ops;
1843
1844#define KVM_X86_OP(func) \
1845	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1846#define KVM_X86_OP_OPTIONAL KVM_X86_OP
1847#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1848#include <asm/kvm-x86-ops.h>
1849
1850int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1851void kvm_x86_vendor_exit(void);
1852
1853#define __KVM_HAVE_ARCH_VM_ALLOC
1854static inline struct kvm *kvm_arch_alloc_vm(void)
1855{
1856	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1857}
1858
1859#define __KVM_HAVE_ARCH_VM_FREE
1860void kvm_arch_free_vm(struct kvm *kvm);
1861
1862#if IS_ENABLED(CONFIG_HYPERV)
1863#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1864static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1865{
1866	if (kvm_x86_ops.flush_remote_tlbs &&
1867	    !static_call(kvm_x86_flush_remote_tlbs)(kvm))
1868		return 0;
1869	else
1870		return -ENOTSUPP;
1871}
1872
1873#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1874static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
1875						   u64 nr_pages)
1876{
1877	if (!kvm_x86_ops.flush_remote_tlbs_range)
1878		return -EOPNOTSUPP;
1879
1880	return static_call(kvm_x86_flush_remote_tlbs_range)(kvm, gfn, nr_pages);
1881}
1882#endif /* CONFIG_HYPERV */
1883
1884#define kvm_arch_pmi_in_guest(vcpu) \
1885	((vcpu) && (vcpu)->arch.handling_intr_from_guest)
1886
1887void __init kvm_mmu_x86_module_init(void);
1888int kvm_mmu_vendor_module_init(void);
1889void kvm_mmu_vendor_module_exit(void);
1890
1891void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1892int kvm_mmu_create(struct kvm_vcpu *vcpu);
 
1893void kvm_mmu_init_vm(struct kvm *kvm);
1894void kvm_mmu_uninit_vm(struct kvm *kvm);
 
 
1895
1896void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
1897					    struct kvm_memory_slot *slot);
1898
1899void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1900void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1901void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1902				      const struct kvm_memory_slot *memslot,
1903				      int start_level);
1904void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1905				       const struct kvm_memory_slot *memslot,
1906				       int target_level);
1907void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1908				  const struct kvm_memory_slot *memslot,
1909				  u64 start, u64 end,
1910				  int target_level);
1911void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1912				   const struct kvm_memory_slot *memslot);
1913void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1914				   const struct kvm_memory_slot *memslot);
1915void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1916void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
 
 
 
 
 
 
 
 
 
1917
1918int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1919
1920int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1921			  const void *val, int bytes);
1922
1923struct kvm_irq_mask_notifier {
1924	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1925	int irq;
1926	struct hlist_node link;
1927};
1928
1929void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1930				    struct kvm_irq_mask_notifier *kimn);
1931void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1932				      struct kvm_irq_mask_notifier *kimn);
1933void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1934			     bool mask);
1935
1936extern bool tdp_enabled;
1937
1938u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1939
1940/*
1941 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1942 *			userspace I/O) to indicate that the emulation context
1943 *			should be reused as is, i.e. skip initialization of
1944 *			emulation context, instruction fetch and decode.
1945 *
1946 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1947 *		      Indicates that only select instructions (tagged with
1948 *		      EmulateOnUD) should be emulated (to minimize the emulator
1949 *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1950 *
1951 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1952 *		   decode the instruction length.  For use *only* by
1953 *		   kvm_x86_ops.skip_emulated_instruction() implementations if
1954 *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
1955 *
1956 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1957 *			     retry native execution under certain conditions,
1958 *			     Can only be set in conjunction with EMULTYPE_PF.
1959 *
1960 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1961 *			     triggered by KVM's magic "force emulation" prefix,
1962 *			     which is opt in via module param (off by default).
1963 *			     Bypasses EmulateOnUD restriction despite emulating
1964 *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1965 *			     Used to test the full emulator from userspace.
1966 *
1967 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1968 *			backdoor emulation, which is opt in via module param.
1969 *			VMware backdoor emulation handles select instructions
1970 *			and reinjects the #GP for all other cases.
1971 *
1972 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1973 *		 case the CR2/GPA value pass on the stack is valid.
1974 *
1975 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1976 *				 state and inject single-step #DBs after skipping
1977 *				 an instruction (after completing userspace I/O).
1978 *
1979 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
1980 *			     is attempting to write a gfn that contains one or
1981 *			     more of the PTEs used to translate the write itself,
1982 *			     and the owning page table is being shadowed by KVM.
1983 *			     If emulation of the faulting instruction fails and
1984 *			     this flag is set, KVM will exit to userspace instead
1985 *			     of retrying emulation as KVM cannot make forward
1986 *			     progress.
1987 *
1988 *			     If emulation fails for a write to guest page tables,
1989 *			     KVM unprotects (zaps) the shadow page for the target
1990 *			     gfn and resumes the guest to retry the non-emulatable
1991 *			     instruction (on hardware).  Unprotecting the gfn
1992 *			     doesn't allow forward progress for a self-changing
1993 *			     access because doing so also zaps the translation for
1994 *			     the gfn, i.e. retrying the instruction will hit a
1995 *			     !PRESENT fault, which results in a new shadow page
1996 *			     and sends KVM back to square one.
1997 */
1998#define EMULTYPE_NO_DECODE	    (1 << 0)
1999#define EMULTYPE_TRAP_UD	    (1 << 1)
2000#define EMULTYPE_SKIP		    (1 << 2)
2001#define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
2002#define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
2003#define EMULTYPE_VMWARE_GP	    (1 << 5)
2004#define EMULTYPE_PF		    (1 << 6)
2005#define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
2006#define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
2007
2008int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
2009int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
2010					void *insn, int insn_len);
2011void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
2012					  u64 *data, u8 ndata);
2013void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
2014
2015void kvm_enable_efer_bits(u64);
2016bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
2017int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
2018int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
2019int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
2020int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
2021int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
2022int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
2023int kvm_emulate_invd(struct kvm_vcpu *vcpu);
2024int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
2025int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
2026int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
2027
2028int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
2029int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
2030int kvm_emulate_halt(struct kvm_vcpu *vcpu);
2031int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
2032int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
2033int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
2034
2035void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2036void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
2037int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
2038void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
2039
2040int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
2041		    int reason, bool has_error_code, u32 error_code);
2042
2043void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
2044void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
2045int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
2046int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
2047int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2048int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
2049int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
2050void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
2051unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
2052void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
2053int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
 
2054
2055int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2056int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
2057
2058unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2059void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2060int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2061
2062void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2063void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2064void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2065void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2066void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2067void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2068void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2069				    struct x86_exception *fault);
 
2070bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2071bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2072
2073static inline int __kvm_irq_line_state(unsigned long *irq_state,
2074				       int irq_source_id, int level)
2075{
2076	/* Logical OR for level trig interrupt */
2077	if (level)
2078		__set_bit(irq_source_id, irq_state);
2079	else
2080		__clear_bit(irq_source_id, irq_state);
2081
2082	return !!(*irq_state);
2083}
2084
2085int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2086void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2087
2088void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2089int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2090
2091void kvm_update_dr7(struct kvm_vcpu *vcpu);
2092
2093int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
2094void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2095			ulong roots_to_free);
2096void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
 
 
 
 
2097gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2098			      struct x86_exception *exception);
 
 
2099gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2100			       struct x86_exception *exception);
2101gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2102				struct x86_exception *exception);
2103
2104bool kvm_apicv_activated(struct kvm *kvm);
2105bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2106void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2107void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2108				      enum kvm_apicv_inhibit reason, bool set);
2109void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2110				    enum kvm_apicv_inhibit reason, bool set);
2111
2112static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2113					 enum kvm_apicv_inhibit reason)
2114{
2115	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2116}
2117
2118static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2119					   enum kvm_apicv_inhibit reason)
2120{
2121	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2122}
2123
2124int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2125
2126int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2127		       void *insn, int insn_len);
2128void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2129void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2130			     u64 addr, unsigned long roots);
2131void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2132void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2133
2134void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2135		       int tdp_max_root_level, int tdp_huge_page_level);
 
 
 
 
 
 
 
 
 
 
2136
2137#ifdef CONFIG_KVM_PRIVATE_MEM
2138#define kvm_arch_has_private_mem(kvm) ((kvm)->arch.vm_type != KVM_X86_DEFAULT_VM)
2139#else
2140#define kvm_arch_has_private_mem(kvm) false
2141#endif
2142
2143static inline u16 kvm_read_ldt(void)
2144{
2145	u16 ldt;
2146	asm("sldt %0" : "=g"(ldt));
2147	return ldt;
2148}
2149
2150static inline void kvm_load_ldt(u16 sel)
2151{
2152	asm("lldt %0" : : "rm"(sel));
2153}
2154
2155#ifdef CONFIG_X86_64
2156static inline unsigned long read_msr(unsigned long msr)
2157{
2158	u64 value;
2159
2160	rdmsrl(msr, value);
2161	return value;
2162}
2163#endif
2164
 
 
 
 
 
2165static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2166{
2167	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2168}
2169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2170#define TSS_IOPB_BASE_OFFSET 0x66
2171#define TSS_BASE_SIZE 0x68
2172#define TSS_IOPB_SIZE (65536 / 8)
2173#define TSS_REDIRECTION_SIZE (256 / 8)
2174#define RMODE_TSS_SIZE							\
2175	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2176
2177enum {
2178	TASK_SWITCH_CALL = 0,
2179	TASK_SWITCH_IRET = 1,
2180	TASK_SWITCH_JMP = 2,
2181	TASK_SWITCH_GATE = 3,
2182};
2183
2184#define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
 
 
 
 
 
 
 
 
 
 
2185
2186#ifdef CONFIG_KVM_SMM
2187#define HF_SMM_MASK		(1 << 1)
2188#define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2189
2190# define KVM_MAX_NR_ADDRESS_SPACES	2
2191/* SMM is currently unsupported for guests with private memory. */
2192# define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
2193# define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2194# define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2195#else
2196# define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2197#endif
2198
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2199int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2200int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2201int kvm_cpu_has_extint(struct kvm_vcpu *v);
2202int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2203int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2204void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
 
 
 
2205
2206int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2207		    unsigned long ipi_bitmap_high, u32 min,
2208		    unsigned long icr, int op_64_bit);
2209
2210int kvm_add_user_return_msr(u32 msr);
2211int kvm_find_user_return_msr(u32 msr);
2212int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2213
2214static inline bool kvm_is_supported_user_return_msr(u32 msr)
2215{
2216	return kvm_find_user_return_msr(msr) >= 0;
2217}
2218
2219u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2220u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2221u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2222u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2223
2224unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2225bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2226
 
2227void kvm_make_scan_ioapic_request(struct kvm *kvm);
2228void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2229				       unsigned long *vcpu_bitmap);
2230
2231bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2232				     struct kvm_async_pf *work);
2233void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2234				 struct kvm_async_pf *work);
2235void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2236			       struct kvm_async_pf *work);
2237void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2238bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2239extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2240
2241int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2242int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2243void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
2244
2245void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2246				     u32 size);
2247bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2248bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2249
2250bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2251			     struct kvm_vcpu **dest_vcpu);
2252
2253void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2254		     struct kvm_lapic_irq *irq);
2255
2256static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2257{
2258	/* We can only post Fixed and LowPrio IRQs */
2259	return (irq->delivery_mode == APIC_DM_FIXED ||
2260		irq->delivery_mode == APIC_DM_LOWEST);
2261}
2262
2263static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2264{
2265	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2266}
2267
2268static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2269{
2270	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2271}
2272
2273static inline int kvm_cpu_get_apicid(int mps_cpu)
2274{
2275#ifdef CONFIG_X86_LOCAL_APIC
2276	return default_cpu_present_to_apicid(mps_cpu);
2277#else
2278	WARN_ON_ONCE(1);
2279	return BAD_APICID;
2280#endif
2281}
2282
2283int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2284
2285#define KVM_CLOCK_VALID_FLAGS						\
2286	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2287
2288#define KVM_X86_VALID_QUIRKS			\
2289	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2290	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2291	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2292	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2293	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2294	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2295	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2296
2297/*
2298 * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2299 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2300 * remaining 31 lower bits must be 0 to preserve ABI.
2301 */
2302#define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2303
2304#endif /* _ASM_X86_KVM_HOST_H */