Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Just-In-Time compiler for BPF filters on 32bit ARM
   3 *
 
 
   4 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation; version 2 of the License.
   9 */
  10
 
  11#include <linux/bitops.h>
  12#include <linux/compiler.h>
  13#include <linux/errno.h>
  14#include <linux/filter.h>
  15#include <linux/netdevice.h>
  16#include <linux/string.h>
  17#include <linux/slab.h>
  18#include <linux/if_vlan.h>
 
  19
  20#include <asm/cacheflush.h>
  21#include <asm/hwcap.h>
  22#include <asm/opcodes.h>
 
  23
  24#include "bpf_jit_32.h"
  25
  26/*
  27 * ABI:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  28 *
  29 * r0	scratch register
  30 * r4	BPF register A
  31 * r5	BPF register X
  32 * r6	pointer to the skb
  33 * r7	skb->data
  34 * r8	skb_headlen(skb)
 
 
 
 
 
 
 
 
 
 
  35 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  36
  37#define r_scratch	ARM_R0
  38/* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */
  39#define r_off		ARM_R1
  40#define r_A		ARM_R4
  41#define r_X		ARM_R5
  42#define r_skb		ARM_R6
  43#define r_skb_data	ARM_R7
  44#define r_skb_hl	ARM_R8
  45
  46#define SCRATCH_SP_OFFSET	0
  47#define SCRATCH_OFF(k)		(SCRATCH_SP_OFFSET + 4 * (k))
  48
  49#define SEEN_MEM		((1 << BPF_MEMWORDS) - 1)
  50#define SEEN_MEM_WORD(k)	(1 << (k))
  51#define SEEN_X			(1 << BPF_MEMWORDS)
  52#define SEEN_CALL		(1 << (BPF_MEMWORDS + 1))
  53#define SEEN_SKB		(1 << (BPF_MEMWORDS + 2))
  54#define SEEN_DATA		(1 << (BPF_MEMWORDS + 3))
  55
  56#define FLAG_NEED_X_RESET	(1 << 0)
  57#define FLAG_IMM_OVERFLOW	(1 << 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58
  59struct jit_ctx {
  60	const struct bpf_prog *skf;
  61	unsigned idx;
  62	unsigned prologue_bytes;
  63	int ret0_fp_idx;
  64	u32 seen;
  65	u32 flags;
  66	u32 *offsets;
  67	u32 *target;
 
  68#if __LINUX_ARM_ARCH__ < 7
  69	u16 epilogue_bytes;
  70	u16 imm_count;
  71	u32 *imms;
  72#endif
  73};
  74
  75int bpf_jit_enable __read_mostly;
  76
  77static inline int call_neg_helper(struct sk_buff *skb, int offset, void *ret,
  78		      unsigned int size)
 
  79{
  80	void *ptr = bpf_internal_load_pointer_neg_helper(skb, offset, size);
  81
  82	if (!ptr)
  83		return -EFAULT;
  84	memcpy(ret, ptr, size);
  85	return 0;
  86}
  87
  88static u64 jit_get_skb_b(struct sk_buff *skb, int offset)
  89{
  90	u8 ret;
  91	int err;
  92
  93	if (offset < 0)
  94		err = call_neg_helper(skb, offset, &ret, 1);
  95	else
  96		err = skb_copy_bits(skb, offset, &ret, 1);
  97
  98	return (u64)err << 32 | ret;
  99}
 100
 101static u64 jit_get_skb_h(struct sk_buff *skb, int offset)
 102{
 103	u16 ret;
 104	int err;
 105
 106	if (offset < 0)
 107		err = call_neg_helper(skb, offset, &ret, 2);
 108	else
 109		err = skb_copy_bits(skb, offset, &ret, 2);
 110
 111	return (u64)err << 32 | ntohs(ret);
 
 
 112}
 113
 114static u64 jit_get_skb_w(struct sk_buff *skb, int offset)
 
 115{
 116	u32 ret;
 117	int err;
 118
 119	if (offset < 0)
 120		err = call_neg_helper(skb, offset, &ret, 4);
 121	else
 122		err = skb_copy_bits(skb, offset, &ret, 4);
 123
 124	return (u64)err << 32 | ntohl(ret);
 
 125}
 126
 127/*
 128 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 129 * (where the assembly routines like __aeabi_uidiv could cause problems).
 130 */
 131static u32 jit_udiv(u32 dividend, u32 divisor)
 132{
 133	return dividend / divisor;
 134}
 135
 136static u32 jit_mod(u32 dividend, u32 divisor)
 137{
 138	return dividend % divisor;
 
 
 
 
 139}
 140
 141static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 142{
 143	inst |= (cond << 28);
 144	inst = __opcode_to_mem_arm(inst);
 145
 146	if (ctx->target != NULL)
 147		ctx->target[ctx->idx] = inst;
 148
 149	ctx->idx++;
 150}
 151
 152/*
 153 * Emit an instruction that will be executed unconditionally.
 154 */
 155static inline void emit(u32 inst, struct jit_ctx *ctx)
 156{
 157	_emit(ARM_COND_AL, inst, ctx);
 158}
 159
 160static u16 saved_regs(struct jit_ctx *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161{
 162	u16 ret = 0;
 163
 164	if ((ctx->skf->len > 1) ||
 165	    (ctx->skf->insns[0].code == (BPF_RET | BPF_A)))
 166		ret |= 1 << r_A;
 
 
 167
 168#ifdef CONFIG_FRAME_POINTER
 169	ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC);
 170#else
 171	if (ctx->seen & SEEN_CALL)
 172		ret |= 1 << ARM_LR;
 173#endif
 174	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
 175		ret |= 1 << r_skb;
 176	if (ctx->seen & SEEN_DATA)
 177		ret |= (1 << r_skb_data) | (1 << r_skb_hl);
 178	if (ctx->seen & SEEN_X)
 179		ret |= 1 << r_X;
 180
 181	return ret;
 
 
 
 
 
 
 
 182}
 183
 184static inline int mem_words_used(struct jit_ctx *ctx)
 185{
 186	/* yes, we do waste some stack space IF there are "holes" in the set" */
 187	return fls(ctx->seen & SEEN_MEM);
 
 
 
 
 188}
 189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190static void jit_fill_hole(void *area, unsigned int size)
 191{
 192	u32 *ptr;
 193	/* We are guaranteed to have aligned memory. */
 194	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 195		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 196}
 197
 198static void build_prologue(struct jit_ctx *ctx)
 199{
 200	u16 reg_set = saved_regs(ctx);
 201	u16 off;
 202
 203#ifdef CONFIG_FRAME_POINTER
 204	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
 205	emit(ARM_PUSH(reg_set), ctx);
 206	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
 207#else
 208	if (reg_set)
 209		emit(ARM_PUSH(reg_set), ctx);
 210#endif
 211
 212	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
 213		emit(ARM_MOV_R(r_skb, ARM_R0), ctx);
 214
 215	if (ctx->seen & SEEN_DATA) {
 216		off = offsetof(struct sk_buff, data);
 217		emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx);
 218		/* headlen = len - data_len */
 219		off = offsetof(struct sk_buff, len);
 220		emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx);
 221		off = offsetof(struct sk_buff, data_len);
 222		emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
 223		emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx);
 224	}
 225
 226	if (ctx->flags & FLAG_NEED_X_RESET)
 227		emit(ARM_MOV_I(r_X, 0), ctx);
 228
 229	/* do not leak kernel data to userspace */
 230	if (bpf_needs_clear_a(&ctx->skf->insns[0]))
 231		emit(ARM_MOV_I(r_A, 0), ctx);
 232
 233	/* stack space for the BPF_MEM words */
 234	if (ctx->seen & SEEN_MEM)
 235		emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
 236}
 237
 238static void build_epilogue(struct jit_ctx *ctx)
 239{
 240	u16 reg_set = saved_regs(ctx);
 241
 242	if (ctx->seen & SEEN_MEM)
 243		emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
 244
 245	reg_set &= ~(1 << ARM_LR);
 246
 247#ifdef CONFIG_FRAME_POINTER
 248	/* the first instruction of the prologue was: mov ip, sp */
 249	reg_set &= ~(1 << ARM_IP);
 250	reg_set |= (1 << ARM_SP);
 251	emit(ARM_LDM(ARM_SP, reg_set), ctx);
 252#else
 253	if (reg_set) {
 254		if (ctx->seen & SEEN_CALL)
 255			reg_set |= 1 << ARM_PC;
 256		emit(ARM_POP(reg_set), ctx);
 257	}
 258
 259	if (!(ctx->seen & SEEN_CALL))
 260		emit(ARM_BX(ARM_LR), ctx);
 261#endif
 262}
 263
 264static int16_t imm8m(u32 x)
 265{
 266	u32 rot;
 267
 268	for (rot = 0; rot < 16; rot++)
 269		if ((x & ~ror32(0xff, 2 * rot)) == 0)
 270			return rol32(x, 2 * rot) | (rot << 8);
 271
 272	return -1;
 273}
 
 274
 275#if __LINUX_ARM_ARCH__ < 7
 276
 277static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 278{
 279	unsigned i = 0, offset;
 280	u16 imm;
 281
 282	/* on the "fake" run we just count them (duplicates included) */
 283	if (ctx->target == NULL) {
 284		ctx->imm_count++;
 285		return 0;
 286	}
 287
 288	while ((i < ctx->imm_count) && ctx->imms[i]) {
 289		if (ctx->imms[i] == k)
 290			break;
 291		i++;
 292	}
 293
 294	if (ctx->imms[i] == 0)
 295		ctx->imms[i] = k;
 296
 297	/* constants go just after the epilogue */
 298	offset =  ctx->offsets[ctx->skf->len];
 299	offset += ctx->prologue_bytes;
 300	offset += ctx->epilogue_bytes;
 301	offset += i * 4;
 302
 303	ctx->target[offset / 4] = k;
 304
 305	/* PC in ARM mode == address of the instruction + 8 */
 306	imm = offset - (8 + ctx->idx * 4);
 307
 308	if (imm & ~0xfff) {
 309		/*
 310		 * literal pool is too far, signal it into flags. we
 311		 * can only detect it on the second pass unfortunately.
 312		 */
 313		ctx->flags |= FLAG_IMM_OVERFLOW;
 314		return 0;
 315	}
 316
 317	return imm;
 318}
 319
 320#endif /* __LINUX_ARM_ARCH__ */
 321
 
 
 
 
 
 
 
 
 
 
 
 
 322/*
 323 * Move an immediate that's not an imm8m to a core register.
 324 */
 325static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx)
 326{
 327#if __LINUX_ARM_ARCH__ < 7
 328	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 329#else
 330	emit(ARM_MOVW(rd, val & 0xffff), ctx);
 331	if (val > 0xffff)
 332		emit(ARM_MOVT(rd, val >> 16), ctx);
 333#endif
 334}
 335
 336static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx)
 337{
 338	int imm12 = imm8m(val);
 339
 340	if (imm12 >= 0)
 341		emit(ARM_MOV_I(rd, imm12), ctx);
 342	else
 343		emit_mov_i_no8m(rd, val, ctx);
 344}
 345
 346#if __LINUX_ARM_ARCH__ < 6
 
 
 
 
 
 
 347
 348static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
 349{
 350	_emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx);
 351	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
 352	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx);
 353	_emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx);
 354	_emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx);
 355	_emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx);
 356	_emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx);
 357	_emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx);
 358}
 359
 360static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
 361{
 362	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
 363	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx);
 364	_emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx);
 
 
 
 
 
 365}
 366
 367static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx)
 368{
 369	/* r_dst = (r_src << 8) | (r_src >> 8) */
 370	emit(ARM_LSL_I(ARM_R1, r_src, 8), ctx);
 371	emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSR, 8), ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 372
 373	/*
 374	 * we need to mask out the bits set in r_dst[23:16] due to
 375	 * the first shift instruction.
 376	 *
 377	 * note that 0x8ff is the encoded immediate 0x00ff0000.
 
 
 378	 */
 379	emit(ARM_BIC_I(r_dst, r_dst, 0x8ff), ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 380}
 381
 382#else  /* ARMv6+ */
 
 
 
 
 383
 384static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
 
 
 
 
 385{
 386	_emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx);
 387#ifdef __LITTLE_ENDIAN
 388	_emit(cond, ARM_REV(r_res, r_res), ctx);
 389#endif
 
 390}
 391
 392static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
 
 393{
 394	_emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx);
 395#ifdef __LITTLE_ENDIAN
 396	_emit(cond, ARM_REV16(r_res, r_res), ctx);
 397#endif
 
 
 
 
 
 
 
 
 
 
 398}
 399
 400static inline void emit_swap16(u8 r_dst __maybe_unused,
 401			       u8 r_src __maybe_unused,
 402			       struct jit_ctx *ctx __maybe_unused)
 
 
 403{
 404#ifdef __LITTLE_ENDIAN
 405	emit(ARM_REV16(r_dst, r_src), ctx);
 406#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407}
 408
 409#endif /* __LINUX_ARM_ARCH__ < 6 */
 
 
 
 410
 
 
 
 
 
 
 
 411
 412/* Compute the immediate value for a PC-relative branch. */
 413static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx)
 414{
 415	u32 imm;
 
 416
 417	if (ctx->target == NULL)
 418		return 0;
 419	/*
 420	 * BPF allows only forward jumps and the offset of the target is
 421	 * still the one computed during the first pass.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422	 */
 423	imm  = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424
 425	return imm >> 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426}
 427
 428#define OP_IMM3(op, r1, r2, imm_val, ctx)				\
 429	do {								\
 430		imm12 = imm8m(imm_val);					\
 431		if (imm12 < 0) {					\
 432			emit_mov_i_no8m(r_scratch, imm_val, ctx);	\
 433			emit(op ## _R((r1), (r2), r_scratch), ctx);	\
 434		} else {						\
 435			emit(op ## _I((r1), (r2), imm12), ctx);		\
 436		}							\
 437	} while (0)
 438
 439static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx)
 440{
 441	if (ctx->ret0_fp_idx >= 0) {
 442		_emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx);
 443		/* NOP to keep the size constant between passes */
 444		emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx);
 445	} else {
 446		_emit(cond, ARM_MOV_I(ARM_R0, 0), ctx);
 447		_emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx);
 
 
 
 
 
 
 448	}
 
 
 449}
 450
 451static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 452{
 453#if __LINUX_ARM_ARCH__ < 5
 454	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 
 
 
 
 
 
 
 
 
 455
 456	if (elf_hwcap & HWCAP_THUMB)
 457		emit(ARM_BX(tgt_reg), ctx);
 458	else
 459		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 460#else
 461	emit(ARM_BLX_R(tgt_reg), ctx);
 462#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463}
 464
 465static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx,
 466				int bpf_op)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467{
 468#if __LINUX_ARM_ARCH__ == 7
 469	if (elf_hwcap & HWCAP_IDIVA) {
 470		if (bpf_op == BPF_DIV)
 471			emit(ARM_UDIV(rd, rm, rn), ctx);
 472		else {
 473			emit(ARM_UDIV(ARM_R3, rm, rn), ctx);
 474			emit(ARM_MLS(rd, rn, ARM_R3, rm), ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475		}
 476		return;
 477	}
 478#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479
 480	/*
 481	 * For BPF_ALU | BPF_DIV | BPF_K instructions, rm is ARM_R4
 482	 * (r_A) and rn is ARM_R0 (r_scratch) so load rn first into
 483	 * ARM_R1 to avoid accidentally overwriting ARM_R0 with rm
 484	 * before using it as a source for ARM_R1.
 485	 *
 486	 * For BPF_ALU | BPF_DIV | BPF_X rm is ARM_R4 (r_A) and rn is
 487	 * ARM_R5 (r_X) so there is no particular register overlap
 488	 * issues.
 489	 */
 490	if (rn != ARM_R1)
 491		emit(ARM_MOV_R(ARM_R1, rn), ctx);
 492	if (rm != ARM_R0)
 493		emit(ARM_MOV_R(ARM_R0, rm), ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 494
 495	ctx->seen |= SEEN_CALL;
 496	emit_mov_i(ARM_R3, bpf_op == BPF_DIV ? (u32)jit_udiv : (u32)jit_mod,
 497		   ctx);
 498	emit_blx_r(ARM_R3, ctx);
 
 499
 500	if (rd != ARM_R0)
 501		emit(ARM_MOV_R(rd, ARM_R0), ctx);
 
 
 
 
 
 502}
 503
 504static inline void update_on_xread(struct jit_ctx *ctx)
 
 505{
 506	if (!(ctx->seen & SEEN_X))
 507		ctx->flags |= FLAG_NEED_X_RESET;
 
 
 
 
 
 
 
 
 
 
 
 
 508
 509	ctx->seen |= SEEN_X;
 
 
 510}
 511
 512static int build_body(struct jit_ctx *ctx)
 
 513{
 514	void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w};
 515	const struct bpf_prog *prog = ctx->skf;
 516	const struct sock_filter *inst;
 517	unsigned i, load_order, off, condt;
 518	int imm12;
 519	u32 k;
 520
 521	for (i = 0; i < prog->len; i++) {
 522		u16 code;
 523
 524		inst = &(prog->insns[i]);
 525		/* K as an immediate value operand */
 526		k = inst->k;
 527		code = bpf_anc_helper(inst);
 528
 529		/* compute offsets only in the fake pass */
 530		if (ctx->target == NULL)
 531			ctx->offsets[i] = ctx->idx * 4;
 
 
 
 532
 533		switch (code) {
 534		case BPF_LD | BPF_IMM:
 535			emit_mov_i(r_A, k, ctx);
 536			break;
 537		case BPF_LD | BPF_W | BPF_LEN:
 538			ctx->seen |= SEEN_SKB;
 539			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
 540			emit(ARM_LDR_I(r_A, r_skb,
 541				       offsetof(struct sk_buff, len)), ctx);
 542			break;
 543		case BPF_LD | BPF_MEM:
 544			/* A = scratch[k] */
 545			ctx->seen |= SEEN_MEM_WORD(k);
 546			emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
 547			break;
 548		case BPF_LD | BPF_W | BPF_ABS:
 549			load_order = 2;
 550			goto load;
 551		case BPF_LD | BPF_H | BPF_ABS:
 552			load_order = 1;
 553			goto load;
 554		case BPF_LD | BPF_B | BPF_ABS:
 555			load_order = 0;
 556load:
 557			emit_mov_i(r_off, k, ctx);
 558load_common:
 559			ctx->seen |= SEEN_DATA | SEEN_CALL;
 560
 561			if (load_order > 0) {
 562				emit(ARM_SUB_I(r_scratch, r_skb_hl,
 563					       1 << load_order), ctx);
 564				emit(ARM_CMP_R(r_scratch, r_off), ctx);
 565				condt = ARM_COND_GE;
 566			} else {
 567				emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
 568				condt = ARM_COND_HI;
 569			}
 570
 571			/*
 572			 * test for negative offset, only if we are
 573			 * currently scheduled to take the fast
 574			 * path. this will update the flags so that
 575			 * the slowpath instruction are ignored if the
 576			 * offset is negative.
 577			 *
 578			 * for loard_order == 0 the HI condition will
 579			 * make loads at offset 0 take the slow path too.
 580			 */
 581			_emit(condt, ARM_CMP_I(r_off, 0), ctx);
 582
 583			_emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data),
 584			      ctx);
 585
 586			if (load_order == 0)
 587				_emit(condt, ARM_LDRB_I(r_A, r_scratch, 0),
 588				      ctx);
 589			else if (load_order == 1)
 590				emit_load_be16(condt, r_A, r_scratch, ctx);
 591			else if (load_order == 2)
 592				emit_load_be32(condt, r_A, r_scratch, ctx);
 593
 594			_emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx);
 595
 596			/* the slowpath */
 597			emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx);
 598			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
 599			/* the offset is already in R1 */
 600			emit_blx_r(ARM_R3, ctx);
 601			/* check the result of skb_copy_bits */
 602			emit(ARM_CMP_I(ARM_R1, 0), ctx);
 603			emit_err_ret(ARM_COND_NE, ctx);
 604			emit(ARM_MOV_R(r_A, ARM_R0), ctx);
 605			break;
 606		case BPF_LD | BPF_W | BPF_IND:
 607			load_order = 2;
 608			goto load_ind;
 609		case BPF_LD | BPF_H | BPF_IND:
 610			load_order = 1;
 611			goto load_ind;
 612		case BPF_LD | BPF_B | BPF_IND:
 613			load_order = 0;
 614load_ind:
 615			update_on_xread(ctx);
 616			OP_IMM3(ARM_ADD, r_off, r_X, k, ctx);
 617			goto load_common;
 618		case BPF_LDX | BPF_IMM:
 619			ctx->seen |= SEEN_X;
 620			emit_mov_i(r_X, k, ctx);
 621			break;
 622		case BPF_LDX | BPF_W | BPF_LEN:
 623			ctx->seen |= SEEN_X | SEEN_SKB;
 624			emit(ARM_LDR_I(r_X, r_skb,
 625				       offsetof(struct sk_buff, len)), ctx);
 626			break;
 627		case BPF_LDX | BPF_MEM:
 628			ctx->seen |= SEEN_X | SEEN_MEM_WORD(k);
 629			emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
 630			break;
 631		case BPF_LDX | BPF_B | BPF_MSH:
 632			/* x = ((*(frame + k)) & 0xf) << 2; */
 633			ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL;
 634			/* the interpreter should deal with the negative K */
 635			if ((int)k < 0)
 636				return -1;
 637			/* offset in r1: we might have to take the slow path */
 638			emit_mov_i(r_off, k, ctx);
 639			emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
 640
 641			/* load in r0: common with the slowpath */
 642			_emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data,
 643						      ARM_R1), ctx);
 644			/*
 645			 * emit_mov_i() might generate one or two instructions,
 646			 * the same holds for emit_blx_r()
 647			 */
 648			_emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx);
 649
 650			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
 651			/* r_off is r1 */
 652			emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx);
 653			emit_blx_r(ARM_R3, ctx);
 654			/* check the return value of skb_copy_bits */
 655			emit(ARM_CMP_I(ARM_R1, 0), ctx);
 656			emit_err_ret(ARM_COND_NE, ctx);
 657
 658			emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx);
 659			emit(ARM_LSL_I(r_X, r_X, 2), ctx);
 660			break;
 661		case BPF_ST:
 662			ctx->seen |= SEEN_MEM_WORD(k);
 663			emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
 664			break;
 665		case BPF_STX:
 666			update_on_xread(ctx);
 667			ctx->seen |= SEEN_MEM_WORD(k);
 668			emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
 669			break;
 670		case BPF_ALU | BPF_ADD | BPF_K:
 671			/* A += K */
 672			OP_IMM3(ARM_ADD, r_A, r_A, k, ctx);
 673			break;
 674		case BPF_ALU | BPF_ADD | BPF_X:
 675			update_on_xread(ctx);
 676			emit(ARM_ADD_R(r_A, r_A, r_X), ctx);
 677			break;
 678		case BPF_ALU | BPF_SUB | BPF_K:
 679			/* A -= K */
 680			OP_IMM3(ARM_SUB, r_A, r_A, k, ctx);
 681			break;
 682		case BPF_ALU | BPF_SUB | BPF_X:
 683			update_on_xread(ctx);
 684			emit(ARM_SUB_R(r_A, r_A, r_X), ctx);
 685			break;
 686		case BPF_ALU | BPF_MUL | BPF_K:
 687			/* A *= K */
 688			emit_mov_i(r_scratch, k, ctx);
 689			emit(ARM_MUL(r_A, r_A, r_scratch), ctx);
 690			break;
 691		case BPF_ALU | BPF_MUL | BPF_X:
 692			update_on_xread(ctx);
 693			emit(ARM_MUL(r_A, r_A, r_X), ctx);
 694			break;
 695		case BPF_ALU | BPF_DIV | BPF_K:
 696			if (k == 1)
 697				break;
 698			emit_mov_i(r_scratch, k, ctx);
 699			emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_DIV);
 700			break;
 701		case BPF_ALU | BPF_DIV | BPF_X:
 702			update_on_xread(ctx);
 703			emit(ARM_CMP_I(r_X, 0), ctx);
 704			emit_err_ret(ARM_COND_EQ, ctx);
 705			emit_udivmod(r_A, r_A, r_X, ctx, BPF_DIV);
 706			break;
 707		case BPF_ALU | BPF_MOD | BPF_K:
 708			if (k == 1) {
 709				emit_mov_i(r_A, 0, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 710				break;
 711			}
 712			emit_mov_i(r_scratch, k, ctx);
 713			emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_MOD);
 
 
 
 
 
 
 714			break;
 715		case BPF_ALU | BPF_MOD | BPF_X:
 716			update_on_xread(ctx);
 717			emit(ARM_CMP_I(r_X, 0), ctx);
 718			emit_err_ret(ARM_COND_EQ, ctx);
 719			emit_udivmod(r_A, r_A, r_X, ctx, BPF_MOD);
 720			break;
 721		case BPF_ALU | BPF_OR | BPF_K:
 722			/* A |= K */
 723			OP_IMM3(ARM_ORR, r_A, r_A, k, ctx);
 724			break;
 725		case BPF_ALU | BPF_OR | BPF_X:
 726			update_on_xread(ctx);
 727			emit(ARM_ORR_R(r_A, r_A, r_X), ctx);
 728			break;
 729		case BPF_ALU | BPF_XOR | BPF_K:
 730			/* A ^= K; */
 731			OP_IMM3(ARM_EOR, r_A, r_A, k, ctx);
 732			break;
 733		case BPF_ANC | SKF_AD_ALU_XOR_X:
 734		case BPF_ALU | BPF_XOR | BPF_X:
 735			/* A ^= X */
 736			update_on_xread(ctx);
 737			emit(ARM_EOR_R(r_A, r_A, r_X), ctx);
 738			break;
 739		case BPF_ALU | BPF_AND | BPF_K:
 740			/* A &= K */
 741			OP_IMM3(ARM_AND, r_A, r_A, k, ctx);
 742			break;
 743		case BPF_ALU | BPF_AND | BPF_X:
 744			update_on_xread(ctx);
 745			emit(ARM_AND_R(r_A, r_A, r_X), ctx);
 746			break;
 747		case BPF_ALU | BPF_LSH | BPF_K:
 748			if (unlikely(k > 31))
 749				return -1;
 750			emit(ARM_LSL_I(r_A, r_A, k), ctx);
 751			break;
 752		case BPF_ALU | BPF_LSH | BPF_X:
 753			update_on_xread(ctx);
 754			emit(ARM_LSL_R(r_A, r_A, r_X), ctx);
 755			break;
 756		case BPF_ALU | BPF_RSH | BPF_K:
 757			if (unlikely(k > 31))
 758				return -1;
 759			if (k)
 760				emit(ARM_LSR_I(r_A, r_A, k), ctx);
 761			break;
 762		case BPF_ALU | BPF_RSH | BPF_X:
 763			update_on_xread(ctx);
 764			emit(ARM_LSR_R(r_A, r_A, r_X), ctx);
 765			break;
 766		case BPF_ALU | BPF_NEG:
 767			/* A = -A */
 768			emit(ARM_RSB_I(r_A, r_A, 0), ctx);
 769			break;
 770		case BPF_JMP | BPF_JA:
 771			/* pc += K */
 772			emit(ARM_B(b_imm(i + k + 1, ctx)), ctx);
 773			break;
 774		case BPF_JMP | BPF_JEQ | BPF_K:
 775			/* pc += (A == K) ? pc->jt : pc->jf */
 776			condt  = ARM_COND_EQ;
 777			goto cmp_imm;
 778		case BPF_JMP | BPF_JGT | BPF_K:
 779			/* pc += (A > K) ? pc->jt : pc->jf */
 780			condt  = ARM_COND_HI;
 781			goto cmp_imm;
 782		case BPF_JMP | BPF_JGE | BPF_K:
 783			/* pc += (A >= K) ? pc->jt : pc->jf */
 784			condt  = ARM_COND_HS;
 785cmp_imm:
 786			imm12 = imm8m(k);
 787			if (imm12 < 0) {
 788				emit_mov_i_no8m(r_scratch, k, ctx);
 789				emit(ARM_CMP_R(r_A, r_scratch), ctx);
 790			} else {
 791				emit(ARM_CMP_I(r_A, imm12), ctx);
 792			}
 793cond_jump:
 794			if (inst->jt)
 795				_emit(condt, ARM_B(b_imm(i + inst->jt + 1,
 796						   ctx)), ctx);
 797			if (inst->jf)
 798				_emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1,
 799							     ctx)), ctx);
 800			break;
 801		case BPF_JMP | BPF_JEQ | BPF_X:
 802			/* pc += (A == X) ? pc->jt : pc->jf */
 803			condt   = ARM_COND_EQ;
 804			goto cmp_x;
 805		case BPF_JMP | BPF_JGT | BPF_X:
 806			/* pc += (A > X) ? pc->jt : pc->jf */
 807			condt   = ARM_COND_HI;
 808			goto cmp_x;
 809		case BPF_JMP | BPF_JGE | BPF_X:
 810			/* pc += (A >= X) ? pc->jt : pc->jf */
 811			condt   = ARM_COND_CS;
 812cmp_x:
 813			update_on_xread(ctx);
 814			emit(ARM_CMP_R(r_A, r_X), ctx);
 815			goto cond_jump;
 816		case BPF_JMP | BPF_JSET | BPF_K:
 817			/* pc += (A & K) ? pc->jt : pc->jf */
 818			condt  = ARM_COND_NE;
 819			/* not set iff all zeroes iff Z==1 iff EQ */
 820
 821			imm12 = imm8m(k);
 822			if (imm12 < 0) {
 823				emit_mov_i_no8m(r_scratch, k, ctx);
 824				emit(ARM_TST_R(r_A, r_scratch), ctx);
 825			} else {
 826				emit(ARM_TST_I(r_A, imm12), ctx);
 827			}
 828			goto cond_jump;
 829		case BPF_JMP | BPF_JSET | BPF_X:
 830			/* pc += (A & X) ? pc->jt : pc->jf */
 831			update_on_xread(ctx);
 832			condt  = ARM_COND_NE;
 833			emit(ARM_TST_R(r_A, r_X), ctx);
 834			goto cond_jump;
 835		case BPF_RET | BPF_A:
 836			emit(ARM_MOV_R(ARM_R0, r_A), ctx);
 837			goto b_epilogue;
 838		case BPF_RET | BPF_K:
 839			if ((k == 0) && (ctx->ret0_fp_idx < 0))
 840				ctx->ret0_fp_idx = i;
 841			emit_mov_i(ARM_R0, k, ctx);
 842b_epilogue:
 843			if (i != ctx->skf->len - 1)
 844				emit(ARM_B(b_imm(prog->len, ctx)), ctx);
 845			break;
 846		case BPF_MISC | BPF_TAX:
 847			/* X = A */
 848			ctx->seen |= SEEN_X;
 849			emit(ARM_MOV_R(r_X, r_A), ctx);
 850			break;
 851		case BPF_MISC | BPF_TXA:
 852			/* A = X */
 853			update_on_xread(ctx);
 854			emit(ARM_MOV_R(r_A, r_X), ctx);
 855			break;
 856		case BPF_ANC | SKF_AD_PROTOCOL:
 857			/* A = ntohs(skb->protocol) */
 858			ctx->seen |= SEEN_SKB;
 859			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
 860						  protocol) != 2);
 861			off = offsetof(struct sk_buff, protocol);
 862			emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx);
 863			emit_swap16(r_A, r_scratch, ctx);
 864			break;
 865		case BPF_ANC | SKF_AD_CPU:
 866			/* r_scratch = current_thread_info() */
 867			OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx);
 868			/* A = current_thread_info()->cpu */
 869			BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4);
 870			off = offsetof(struct thread_info, cpu);
 871			emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
 872			break;
 873		case BPF_ANC | SKF_AD_IFINDEX:
 874		case BPF_ANC | SKF_AD_HATYPE:
 875			/* A = skb->dev->ifindex */
 876			/* A = skb->dev->type */
 877			ctx->seen |= SEEN_SKB;
 878			off = offsetof(struct sk_buff, dev);
 879			emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
 880
 881			emit(ARM_CMP_I(r_scratch, 0), ctx);
 882			emit_err_ret(ARM_COND_EQ, ctx);
 883
 884			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
 885						  ifindex) != 4);
 886			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
 887						  type) != 2);
 888
 889			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
 890				off = offsetof(struct net_device, ifindex);
 891				emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
 892			} else {
 893				/*
 894				 * offset of field "type" in "struct
 895				 * net_device" is above what can be
 896				 * used in the ldrh rd, [rn, #imm]
 897				 * instruction, so load the offset in
 898				 * a register and use ldrh rd, [rn, rm]
 899				 */
 900				off = offsetof(struct net_device, type);
 901				emit_mov_i(ARM_R3, off, ctx);
 902				emit(ARM_LDRH_R(r_A, r_scratch, ARM_R3), ctx);
 903			}
 904			break;
 905		case BPF_ANC | SKF_AD_MARK:
 906			ctx->seen |= SEEN_SKB;
 907			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
 908			off = offsetof(struct sk_buff, mark);
 909			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
 910			break;
 911		case BPF_ANC | SKF_AD_RXHASH:
 912			ctx->seen |= SEEN_SKB;
 913			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
 914			off = offsetof(struct sk_buff, hash);
 915			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
 916			break;
 917		case BPF_ANC | SKF_AD_VLAN_TAG:
 918		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
 919			ctx->seen |= SEEN_SKB;
 920			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
 921			off = offsetof(struct sk_buff, vlan_tci);
 922			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
 923			if (code == (BPF_ANC | SKF_AD_VLAN_TAG))
 924				OP_IMM3(ARM_AND, r_A, r_A, ~VLAN_TAG_PRESENT, ctx);
 925			else {
 926				OP_IMM3(ARM_LSR, r_A, r_A, 12, ctx);
 927				OP_IMM3(ARM_AND, r_A, r_A, 0x1, ctx);
 928			}
 929			break;
 930		case BPF_ANC | SKF_AD_PKTTYPE:
 931			ctx->seen |= SEEN_SKB;
 932			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
 933						  __pkt_type_offset[0]) != 1);
 934			off = PKT_TYPE_OFFSET();
 935			emit(ARM_LDRB_I(r_A, r_skb, off), ctx);
 936			emit(ARM_AND_I(r_A, r_A, PKT_TYPE_MAX), ctx);
 937#ifdef __BIG_ENDIAN_BITFIELD
 938			emit(ARM_LSR_I(r_A, r_A, 5), ctx);
 939#endif
 940			break;
 941		case BPF_ANC | SKF_AD_QUEUE:
 942			ctx->seen |= SEEN_SKB;
 943			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
 944						  queue_mapping) != 2);
 945			BUILD_BUG_ON(offsetof(struct sk_buff,
 946					      queue_mapping) > 0xff);
 947			off = offsetof(struct sk_buff, queue_mapping);
 948			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
 949			break;
 950		case BPF_ANC | SKF_AD_PAY_OFFSET:
 951			ctx->seen |= SEEN_SKB | SEEN_CALL;
 952
 953			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
 954			emit_mov_i(ARM_R3, (unsigned int)skb_get_poff, ctx);
 955			emit_blx_r(ARM_R3, ctx);
 956			emit(ARM_MOV_R(r_A, ARM_R0), ctx);
 957			break;
 958		case BPF_LDX | BPF_W | BPF_ABS:
 959			/*
 960			 * load a 32bit word from struct seccomp_data.
 961			 * seccomp_check_filter() will already have checked
 962			 * that k is 32bit aligned and lies within the
 963			 * struct seccomp_data.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964			 */
 965			ctx->seen |= SEEN_SKB;
 966			emit(ARM_LDR_I(r_A, r_skb, k), ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967			break;
 968		default:
 969			return -1;
 970		}
 
 
 
 
 
 
 
 971
 972		if (ctx->flags & FLAG_IMM_OVERFLOW)
 973			/*
 974			 * this instruction generated an overflow when
 975			 * trying to access the literal pool, so
 976			 * delegate this filter to the kernel interpreter.
 977			 */
 978			return -1;
 979	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980
 981	/* compute offsets only during the first pass */
 982	if (ctx->target == NULL)
 983		ctx->offsets[i] = ctx->idx * 4;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984
 
 
 
 
 
 
 
 985	return 0;
 986}
 987
 
 
 
 
 
 
 
 
 988
 989void bpf_jit_compile(struct bpf_prog *fp)
 
 
 
 990{
 
 
 
 
 
 
 991	struct bpf_binary_header *header;
 
 992	struct jit_ctx ctx;
 993	unsigned tmp_idx;
 994	unsigned alloc_size;
 995	u8 *target_ptr;
 996
 997	if (!bpf_jit_enable)
 998		return;
 
 
 
 999
1000	memset(&ctx, 0, sizeof(ctx));
1001	ctx.skf		= fp;
1002	ctx.ret0_fp_idx = -1;
 
 
1003
1004	ctx.offsets = kzalloc(4 * (ctx.skf->len + 1), GFP_KERNEL);
1005	if (ctx.offsets == NULL)
1006		return;
 
 
 
1007
1008	/* fake pass to fill in the ctx->seen */
1009	if (unlikely(build_body(&ctx)))
 
 
 
 
 
 
 
 
1010		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011
1012	tmp_idx = ctx.idx;
1013	build_prologue(&ctx);
1014	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1015
 
 
1016#if __LINUX_ARM_ARCH__ < 7
1017	tmp_idx = ctx.idx;
1018	build_epilogue(&ctx);
1019	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1020
1021	ctx.idx += ctx.imm_count;
1022	if (ctx.imm_count) {
1023		ctx.imms = kzalloc(4 * ctx.imm_count, GFP_KERNEL);
1024		if (ctx.imms == NULL)
1025			goto out;
 
 
1026	}
1027#else
1028	/* there's nothing after the epilogue on ARMv7 */
1029	build_epilogue(&ctx);
1030#endif
1031	alloc_size = 4 * ctx.idx;
1032	header = bpf_jit_binary_alloc(alloc_size, &target_ptr,
1033				      4, jit_fill_hole);
1034	if (header == NULL)
1035		goto out;
 
 
 
 
1036
1037	ctx.target = (u32 *) target_ptr;
 
 
 
 
 
 
 
 
 
 
 
 
1038	ctx.idx = 0;
1039
1040	build_prologue(&ctx);
 
 
 
 
1041	if (build_body(&ctx) < 0) {
1042#if __LINUX_ARM_ARCH__ < 7
1043		if (ctx.imm_count)
1044			kfree(ctx.imms);
1045#endif
1046		bpf_jit_binary_free(header);
1047		goto out;
 
1048	}
1049	build_epilogue(&ctx);
1050
 
 
 
 
 
 
 
1051	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
1052
 
 
 
 
 
 
 
 
 
 
1053#if __LINUX_ARM_ARCH__ < 7
1054	if (ctx.imm_count)
1055		kfree(ctx.imms);
1056#endif
1057
1058	if (bpf_jit_enable > 1)
1059		/* there are 2 passes here */
1060		bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
1061
1062	set_memory_ro((unsigned long)header, header->pages);
1063	fp->bpf_func = (void *)ctx.target;
1064	fp->jited = 1;
1065out:
1066	kfree(ctx.offsets);
1067	return;
 
 
 
 
1068}
1069
1070void bpf_jit_free(struct bpf_prog *fp)
1071{
1072	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1073	struct bpf_binary_header *header = (void *)addr;
1074
1075	if (!fp->jited)
1076		goto free_filter;
1077
1078	set_memory_rw(addr, header->pages);
1079	bpf_jit_binary_free(header);
1080
1081free_filter:
1082	bpf_prog_unlock_free(fp);
1083}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Just-In-Time compiler for eBPF filters on 32bit ARM
   4 *
   5 * Copyright (c) 2023 Puranjay Mohan <puranjay12@gmail.com>
   6 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
   7 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
 
 
 
 
   8 */
   9
  10#include <linux/bpf.h>
  11#include <linux/bitops.h>
  12#include <linux/compiler.h>
  13#include <linux/errno.h>
  14#include <linux/filter.h>
  15#include <linux/netdevice.h>
  16#include <linux/string.h>
  17#include <linux/slab.h>
  18#include <linux/if_vlan.h>
  19#include <linux/math64.h>
  20
  21#include <asm/cacheflush.h>
  22#include <asm/hwcap.h>
  23#include <asm/opcodes.h>
  24#include <asm/system_info.h>
  25
  26#include "bpf_jit_32.h"
  27
  28/*
  29 * eBPF prog stack layout:
  30 *
  31 *                         high
  32 * original ARM_SP =>     +-----+
  33 *                        |     | callee saved registers
  34 *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
  35 *                        | ... | eBPF JIT scratch space
  36 * eBPF fp register =>    +-----+
  37 *   (BPF_FP)             | ... | eBPF prog stack
  38 *                        +-----+
  39 *                        |RSVD | JIT scratchpad
  40 * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
  41 *                        | ... | caller-saved registers
  42 *                        +-----+
  43 *                        | ... | arguments passed on stack
  44 * ARM_SP during call =>  +-----|
  45 *                        |     |
  46 *                        | ... | Function call stack
  47 *                        |     |
  48 *                        +-----+
  49 *                          low
  50 *
  51 * The callee saved registers depends on whether frame pointers are enabled.
  52 * With frame pointers (to be compliant with the ABI):
  53 *
  54 *                              high
  55 * original ARM_SP =>     +--------------+ \
  56 *                        |      pc      | |
  57 * current ARM_FP =>      +--------------+ } callee saved registers
  58 *                        |r4-r9,fp,ip,lr| |
  59 *                        +--------------+ /
  60 *                              low
  61 *
  62 * Without frame pointers:
  63 *
  64 *                              high
  65 * original ARM_SP =>     +--------------+
  66 *                        |  r4-r9,fp,lr | callee saved registers
  67 * current ARM_FP =>      +--------------+
  68 *                              low
  69 *
  70 * When popping registers off the stack at the end of a BPF function, we
  71 * reference them via the current ARM_FP register.
  72 *
  73 * Some eBPF operations are implemented via a call to a helper function.
  74 * Such calls are "invisible" in the eBPF code, so it is up to the calling
  75 * program to preserve any caller-saved ARM registers during the call. The
  76 * JIT emits code to push and pop those registers onto the stack, immediately
  77 * above the callee stack frame.
  78 */
  79#define CALLEE_MASK	(1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
  80			 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
  81			 1 << ARM_FP)
  82#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
  83#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
  84
  85#define CALLER_MASK	(1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
  86
  87enum {
  88	/* Stack layout - these are offsets from (top of stack - 4) */
  89	BPF_R2_HI,
  90	BPF_R2_LO,
  91	BPF_R3_HI,
  92	BPF_R3_LO,
  93	BPF_R4_HI,
  94	BPF_R4_LO,
  95	BPF_R5_HI,
  96	BPF_R5_LO,
  97	BPF_R7_HI,
  98	BPF_R7_LO,
  99	BPF_R8_HI,
 100	BPF_R8_LO,
 101	BPF_R9_HI,
 102	BPF_R9_LO,
 103	BPF_FP_HI,
 104	BPF_FP_LO,
 105	BPF_TC_HI,
 106	BPF_TC_LO,
 107	BPF_AX_HI,
 108	BPF_AX_LO,
 109	/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
 110	 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
 111	 * BPF_REG_FP and Tail call counts.
 112	 */
 113	BPF_JIT_SCRATCH_REGS,
 114};
 115
 116/*
 117 * Negative "register" values indicate the register is stored on the stack
 118 * and are the offset from the top of the eBPF JIT scratch space.
 119 */
 120#define STACK_OFFSET(k)	(-4 - (k) * 4)
 121#define SCRATCH_SIZE	(BPF_JIT_SCRATCH_REGS * 4)
 122
 123#ifdef CONFIG_FRAME_POINTER
 124#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
 125#else
 126#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
 127#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 128
 129#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)	/* TEMP Register 1 */
 130#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)	/* TEMP Register 2 */
 131#define TCALL_CNT	(MAX_BPF_JIT_REG + 2)	/* Tail Call Count */
 132
 133#define FLAG_IMM_OVERFLOW	(1 << 0)
 134
 135/*
 136 * Map eBPF registers to ARM 32bit registers or stack scratch space.
 137 *
 138 * 1. First argument is passed using the arm 32bit registers and rest of the
 139 * arguments are passed on stack scratch space.
 140 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
 141 * arguments are mapped to scratch space on stack.
 142 * 3. We need two 64 bit temp registers to do complex operations on eBPF
 143 * registers.
 144 *
 145 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
 146 * registers, we have to map each eBPF registers with two arm 32 bit regs or
 147 * scratch memory space and we have to build eBPF 64 bit register from those.
 148 *
 149 */
 150static const s8 bpf2a32[][2] = {
 151	/* return value from in-kernel function, and exit value from eBPF */
 152	[BPF_REG_0] = {ARM_R1, ARM_R0},
 153	/* arguments from eBPF program to in-kernel function */
 154	[BPF_REG_1] = {ARM_R3, ARM_R2},
 155	/* Stored on stack scratch space */
 156	[BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
 157	[BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
 158	[BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
 159	[BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
 160	/* callee saved registers that in-kernel function will preserve */
 161	[BPF_REG_6] = {ARM_R5, ARM_R4},
 162	/* Stored on stack scratch space */
 163	[BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
 164	[BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
 165	[BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
 166	/* Read only Frame Pointer to access Stack */
 167	[BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
 168	/* Temporary Register for BPF JIT, can be used
 169	 * for constant blindings and others.
 170	 */
 171	[TMP_REG_1] = {ARM_R7, ARM_R6},
 172	[TMP_REG_2] = {ARM_R9, ARM_R8},
 173	/* Tail call count. Stored on stack scratch space. */
 174	[TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
 175	/* temporary register for blinding constants.
 176	 * Stored on stack scratch space.
 177	 */
 178	[BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
 179};
 180
 181#define	dst_lo	dst[1]
 182#define dst_hi	dst[0]
 183#define src_lo	src[1]
 184#define src_hi	src[0]
 185
 186/*
 187 * JIT Context:
 188 *
 189 * prog			:	bpf_prog
 190 * idx			:	index of current last JITed instruction.
 191 * prologue_bytes	:	bytes used in prologue.
 192 * epilogue_offset	:	offset of epilogue starting.
 193 * offsets		:	array of eBPF instruction offsets in
 194 *				JITed code.
 195 * target		:	final JITed code.
 196 * epilogue_bytes	:	no of bytes used in epilogue.
 197 * imm_count		:	no of immediate counts used for global
 198 *				variables.
 199 * imms			:	array of global variable addresses.
 200 */
 201
 202struct jit_ctx {
 203	const struct bpf_prog *prog;
 204	unsigned int idx;
 205	unsigned int prologue_bytes;
 206	unsigned int epilogue_offset;
 207	unsigned int cpu_architecture;
 208	u32 flags;
 209	u32 *offsets;
 210	u32 *target;
 211	u32 stack_size;
 212#if __LINUX_ARM_ARCH__ < 7
 213	u16 epilogue_bytes;
 214	u16 imm_count;
 215	u32 *imms;
 216#endif
 217};
 218
 219/*
 220 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 221 * (where the assembly routines like __aeabi_uidiv could cause problems).
 222 */
 223static u32 jit_udiv32(u32 dividend, u32 divisor)
 224{
 225	return dividend / divisor;
 
 
 
 
 
 226}
 227
 228static u32 jit_mod32(u32 dividend, u32 divisor)
 229{
 230	return dividend % divisor;
 
 
 
 
 
 
 
 
 231}
 232
 233static s32 jit_sdiv32(s32 dividend, s32 divisor)
 234{
 235	return dividend / divisor;
 236}
 
 
 
 
 
 237
 238static s32 jit_smod32(s32 dividend, s32 divisor)
 239{
 240	return dividend % divisor;
 241}
 242
 243/* Wrappers for 64-bit div/mod */
 244static u64 jit_udiv64(u64 dividend, u64 divisor)
 245{
 246	return div64_u64(dividend, divisor);
 247}
 248
 249static u64 jit_mod64(u64 dividend, u64 divisor)
 250{
 251	u64 rem;
 
 252
 253	div64_u64_rem(dividend, divisor, &rem);
 254	return rem;
 255}
 256
 257static s64 jit_sdiv64(s64 dividend, s64 divisor)
 
 
 
 
 258{
 259	return div64_s64(dividend, divisor);
 260}
 261
 262static s64 jit_smod64(s64 dividend, s64 divisor)
 263{
 264	u64 q;
 265
 266	q = div64_s64(dividend, divisor);
 267
 268	return dividend - q * divisor;
 269}
 270
 271static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 272{
 273	inst |= (cond << 28);
 274	inst = __opcode_to_mem_arm(inst);
 275
 276	if (ctx->target != NULL)
 277		ctx->target[ctx->idx] = inst;
 278
 279	ctx->idx++;
 280}
 281
 282/*
 283 * Emit an instruction that will be executed unconditionally.
 284 */
 285static inline void emit(u32 inst, struct jit_ctx *ctx)
 286{
 287	_emit(ARM_COND_AL, inst, ctx);
 288}
 289
 290/*
 291 * This is rather horrid, but necessary to convert an integer constant
 292 * to an immediate operand for the opcodes, and be able to detect at
 293 * build time whether the constant can't be converted (iow, usable in
 294 * BUILD_BUG_ON()).
 295 */
 296#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
 297#define const_imm8m(x)					\
 298	({ int r;					\
 299	   u32 v = (x);					\
 300	   if (!(v & ~0x000000ff))			\
 301		r = imm12val(v, 0);			\
 302	   else if (!(v & ~0xc000003f))			\
 303		r = imm12val(v, 2);			\
 304	   else if (!(v & ~0xf000000f))			\
 305		r = imm12val(v, 4);			\
 306	   else if (!(v & ~0xfc000003))			\
 307		r = imm12val(v, 6);			\
 308	   else if (!(v & ~0xff000000))			\
 309		r = imm12val(v, 8);			\
 310	   else if (!(v & ~0x3fc00000))			\
 311		r = imm12val(v, 10);			\
 312	   else if (!(v & ~0x0ff00000))			\
 313		r = imm12val(v, 12);			\
 314	   else if (!(v & ~0x03fc0000))			\
 315		r = imm12val(v, 14);			\
 316	   else if (!(v & ~0x00ff0000))			\
 317		r = imm12val(v, 16);			\
 318	   else if (!(v & ~0x003fc000))			\
 319		r = imm12val(v, 18);			\
 320	   else if (!(v & ~0x000ff000))			\
 321		r = imm12val(v, 20);			\
 322	   else if (!(v & ~0x0003fc00))			\
 323		r = imm12val(v, 22);			\
 324	   else if (!(v & ~0x0000ff00))			\
 325		r = imm12val(v, 24);			\
 326	   else if (!(v & ~0x00003fc0))			\
 327		r = imm12val(v, 26);			\
 328	   else if (!(v & ~0x00000ff0))			\
 329		r = imm12val(v, 28);			\
 330	   else if (!(v & ~0x000003fc))			\
 331		r = imm12val(v, 30);			\
 332	   else						\
 333		r = -1;					\
 334	   r; })
 335
 336/*
 337 * Checks if immediate value can be converted to imm12(12 bits) value.
 338 */
 339static int imm8m(u32 x)
 340{
 341	u32 rot;
 342
 343	for (rot = 0; rot < 16; rot++)
 344		if ((x & ~ror32(0xff, 2 * rot)) == 0)
 345			return rol32(x, 2 * rot) | (rot << 8);
 346	return -1;
 347}
 348
 349#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
 
 
 
 
 
 
 
 
 
 
 
 350
 351static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
 352{
 353	op |= rt << 12 | rn << 16;
 354	if (imm12 >= 0)
 355		op |= ARM_INST_LDST__U;
 356	else
 357		imm12 = -imm12;
 358	return op | (imm12 & ARM_INST_LDST__IMM12);
 359}
 360
 361static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
 362{
 363	op |= rt << 12 | rn << 16;
 364	if (imm8 >= 0)
 365		op |= ARM_INST_LDST__U;
 366	else
 367		imm8 = -imm8;
 368	return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
 369}
 370
 371#define ARM_LDR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
 372#define ARM_LDRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
 373#define ARM_LDRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
 374#define ARM_LDRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
 375
 376#define ARM_LDRSH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSH_I, rt, rn, off)
 377#define ARM_LDRSB_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSB_I, rt, rn, off)
 378
 379#define ARM_STR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
 380#define ARM_STRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
 381#define ARM_STRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
 382#define ARM_STRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
 383
 384/*
 385 * Initializes the JIT space with undefined instructions.
 386 */
 387static void jit_fill_hole(void *area, unsigned int size)
 388{
 389	u32 *ptr;
 390	/* We are guaranteed to have aligned memory. */
 391	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 392		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 393}
 394
 395#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
 396/* EABI requires the stack to be aligned to 64-bit boundaries */
 397#define STACK_ALIGNMENT	8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398#else
 399/* Stack must be aligned to 32-bit boundaries */
 400#define STACK_ALIGNMENT	4
 
 
 
 
 
 
 401#endif
 
 
 
 
 
 
 
 
 
 402
 403/* total stack size used in JITed code */
 404#define _STACK_SIZE	(ctx->prog->aux->stack_depth + SCRATCH_SIZE)
 405#define STACK_SIZE	ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
 406
 407#if __LINUX_ARM_ARCH__ < 7
 408
 409static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 410{
 411	unsigned int i = 0, offset;
 412	u16 imm;
 413
 414	/* on the "fake" run we just count them (duplicates included) */
 415	if (ctx->target == NULL) {
 416		ctx->imm_count++;
 417		return 0;
 418	}
 419
 420	while ((i < ctx->imm_count) && ctx->imms[i]) {
 421		if (ctx->imms[i] == k)
 422			break;
 423		i++;
 424	}
 425
 426	if (ctx->imms[i] == 0)
 427		ctx->imms[i] = k;
 428
 429	/* constants go just after the epilogue */
 430	offset =  ctx->offsets[ctx->prog->len - 1] * 4;
 431	offset += ctx->prologue_bytes;
 432	offset += ctx->epilogue_bytes;
 433	offset += i * 4;
 434
 435	ctx->target[offset / 4] = k;
 436
 437	/* PC in ARM mode == address of the instruction + 8 */
 438	imm = offset - (8 + ctx->idx * 4);
 439
 440	if (imm & ~0xfff) {
 441		/*
 442		 * literal pool is too far, signal it into flags. we
 443		 * can only detect it on the second pass unfortunately.
 444		 */
 445		ctx->flags |= FLAG_IMM_OVERFLOW;
 446		return 0;
 447	}
 448
 449	return imm;
 450}
 451
 452#endif /* __LINUX_ARM_ARCH__ */
 453
 454static inline int bpf2a32_offset(int bpf_to, int bpf_from,
 455				 const struct jit_ctx *ctx) {
 456	int to, from;
 457
 458	if (ctx->target == NULL)
 459		return 0;
 460	to = ctx->offsets[bpf_to];
 461	from = ctx->offsets[bpf_from];
 462
 463	return to - from - 1;
 464}
 465
 466/*
 467 * Move an immediate that's not an imm8m to a core register.
 468 */
 469static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
 470{
 471#if __LINUX_ARM_ARCH__ < 7
 472	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 473#else
 474	emit(ARM_MOVW(rd, val & 0xffff), ctx);
 475	if (val > 0xffff)
 476		emit(ARM_MOVT(rd, val >> 16), ctx);
 477#endif
 478}
 479
 480static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
 481{
 482	int imm12 = imm8m(val);
 483
 484	if (imm12 >= 0)
 485		emit(ARM_MOV_I(rd, imm12), ctx);
 486	else
 487		emit_mov_i_no8m(rd, val, ctx);
 488}
 489
 490static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
 491{
 492	if (elf_hwcap & HWCAP_THUMB)
 493		emit(ARM_BX(tgt_reg), ctx);
 494	else
 495		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 496}
 497
 498static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 499{
 500#if __LINUX_ARM_ARCH__ < 5
 501	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 502	emit_bx_r(tgt_reg, ctx);
 503#else
 504	emit(ARM_BLX_R(tgt_reg), ctx);
 505#endif
 
 
 506}
 507
 508static inline int epilogue_offset(const struct jit_ctx *ctx)
 509{
 510	int to, from;
 511	/* No need for 1st dummy run */
 512	if (ctx->target == NULL)
 513		return 0;
 514	to = ctx->epilogue_offset;
 515	from = ctx->idx;
 516
 517	return to - from - 2;
 518}
 519
 520static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op, u8 sign)
 521{
 522	const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1);
 523	const s8 *tmp = bpf2a32[TMP_REG_1];
 524	u32 dst;
 525
 526#if __LINUX_ARM_ARCH__ == 7
 527	if (elf_hwcap & HWCAP_IDIVA) {
 528		if (op == BPF_DIV) {
 529			emit(sign ? ARM_SDIV(rd, rm, rn) : ARM_UDIV(rd, rm, rn), ctx);
 530		} else {
 531			emit(sign ? ARM_SDIV(ARM_IP, rm, rn) : ARM_UDIV(ARM_IP, rm, rn), ctx);
 532			emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
 533		}
 534		return;
 535	}
 536#endif
 537
 538	/*
 539	 * For BPF_ALU | BPF_DIV | BPF_K instructions
 540	 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
 541	 * function, we need to save it on caller side to save
 542	 * it from getting destroyed within callee.
 543	 * After the return from the callee, we restore ARM_R0
 544	 * ARM_R1.
 545	 */
 546	if (rn != ARM_R1) {
 547		emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
 548		emit(ARM_MOV_R(ARM_R1, rn), ctx);
 549	}
 550	if (rm != ARM_R0) {
 551		emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
 552		emit(ARM_MOV_R(ARM_R0, rm), ctx);
 553	}
 554
 555	/* Push caller-saved registers on stack */
 556	emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx);
 557
 558	/* Call appropriate function */
 559	if (sign) {
 560		if (op == BPF_DIV)
 561			dst = (u32)jit_sdiv32;
 562		else
 563			dst = (u32)jit_smod32;
 564	} else {
 565		if (op == BPF_DIV)
 566			dst = (u32)jit_udiv32;
 567		else
 568			dst = (u32)jit_mod32;
 569	}
 570
 571	emit_mov_i(ARM_IP, dst, ctx);
 572	emit_blx_r(ARM_IP, ctx);
 573
 574	/* Restore caller-saved registers from stack */
 575	emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx);
 576
 577	/* Save return value */
 578	if (rd != ARM_R0)
 579		emit(ARM_MOV_R(rd, ARM_R0), ctx);
 580
 581	/* Restore ARM_R0 and ARM_R1 */
 582	if (rn != ARM_R1)
 583		emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
 584	if (rm != ARM_R0)
 585		emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
 586}
 587
 588static inline void emit_udivmod64(const s8 *rd, const s8 *rm, const s8 *rn, struct jit_ctx *ctx,
 589				  u8 op, u8 sign)
 590{
 591	u32 dst;
 592
 593	/* Push caller-saved registers on stack */
 594	emit(ARM_PUSH(CALLER_MASK), ctx);
 595
 596	/*
 597	 * As we are implementing 64-bit div/mod as function calls, We need to put the dividend in
 598	 * R0-R1 and the divisor in R2-R3. As we have already pushed these registers on the stack,
 599	 * we can recover them later after returning from the function call.
 600	 */
 601	if (rm[1] != ARM_R0 || rn[1] != ARM_R2) {
 602		/*
 603		 * Move Rm to {R1, R0} if it is not already there.
 604		 */
 605		if (rm[1] != ARM_R0) {
 606			if (rn[1] == ARM_R0)
 607				emit(ARM_PUSH(BIT(ARM_R0) | BIT(ARM_R1)), ctx);
 608			emit(ARM_MOV_R(ARM_R1, rm[0]), ctx);
 609			emit(ARM_MOV_R(ARM_R0, rm[1]), ctx);
 610			if (rn[1] == ARM_R0) {
 611				emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx);
 612				goto cont;
 613			}
 614		}
 615		/*
 616		 * Move Rn to {R3, R2} if it is not already there.
 617		 */
 618		if (rn[1] != ARM_R2) {
 619			emit(ARM_MOV_R(ARM_R3, rn[0]), ctx);
 620			emit(ARM_MOV_R(ARM_R2, rn[1]), ctx);
 621		}
 622	}
 623
 624cont:
 625
 626	/* Call appropriate function */
 627	if (sign) {
 628		if (op == BPF_DIV)
 629			dst = (u32)jit_sdiv64;
 630		else
 631			dst = (u32)jit_smod64;
 632	} else {
 633		if (op == BPF_DIV)
 634			dst = (u32)jit_udiv64;
 635		else
 636			dst = (u32)jit_mod64;
 637	}
 638
 639	emit_mov_i(ARM_IP, dst, ctx);
 640	emit_blx_r(ARM_IP, ctx);
 641
 642	/* Save return value */
 643	if (rd[1] != ARM_R0) {
 644		emit(ARM_MOV_R(rd[0], ARM_R1), ctx);
 645		emit(ARM_MOV_R(rd[1], ARM_R0), ctx);
 646	}
 647
 648	/* Recover {R3, R2} and {R1, R0} from stack if they are not Rd */
 649	if (rd[1] != ARM_R0 && rd[1] != ARM_R2) {
 650		emit(ARM_POP(CALLER_MASK), ctx);
 651	} else if (rd[1] != ARM_R0) {
 652		emit(ARM_POP(BIT(ARM_R0) | BIT(ARM_R1)), ctx);
 653		emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx);
 654	} else {
 655		emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx);
 656		emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx);
 657	}
 658}
 659
 660/* Is the translated BPF register on stack? */
 661static bool is_stacked(s8 reg)
 662{
 663	return reg < 0;
 664}
 665
 666/* If a BPF register is on the stack (stk is true), load it to the
 667 * supplied temporary register and return the temporary register
 668 * for subsequent operations, otherwise just use the CPU register.
 669 */
 670static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
 671{
 672	if (is_stacked(reg)) {
 673		emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 674		reg = tmp;
 675	}
 676	return reg;
 677}
 678
 679static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
 680				   struct jit_ctx *ctx)
 681{
 682	if (is_stacked(reg[1])) {
 683		if (__LINUX_ARM_ARCH__ >= 6 ||
 684		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 685			emit(ARM_LDRD_I(tmp[1], ARM_FP,
 686					EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 687		} else {
 688			emit(ARM_LDR_I(tmp[1], ARM_FP,
 689				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 690			emit(ARM_LDR_I(tmp[0], ARM_FP,
 691				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 692		}
 693		reg = tmp;
 694	}
 695	return reg;
 696}
 697
 698/* If a BPF register is on the stack (stk is true), save the register
 699 * back to the stack.  If the source register is not the same, then
 700 * move it into the correct register.
 701 */
 702static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
 703{
 704	if (is_stacked(reg))
 705		emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 706	else if (reg != src)
 707		emit(ARM_MOV_R(reg, src), ctx);
 708}
 709
 710static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
 711			      struct jit_ctx *ctx)
 712{
 713	if (is_stacked(reg[1])) {
 714		if (__LINUX_ARM_ARCH__ >= 6 ||
 715		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 716			emit(ARM_STRD_I(src[1], ARM_FP,
 717				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 718		} else {
 719			emit(ARM_STR_I(src[1], ARM_FP,
 720				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 721			emit(ARM_STR_I(src[0], ARM_FP,
 722				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 723		}
 724	} else {
 725		if (reg[1] != src[1])
 726			emit(ARM_MOV_R(reg[1], src[1]), ctx);
 727		if (reg[0] != src[0])
 728			emit(ARM_MOV_R(reg[0], src[0]), ctx);
 729	}
 730}
 731
 732static inline void emit_a32_mov_i(const s8 dst, const u32 val,
 733				  struct jit_ctx *ctx)
 734{
 735	const s8 *tmp = bpf2a32[TMP_REG_1];
 736
 737	if (is_stacked(dst)) {
 738		emit_mov_i(tmp[1], val, ctx);
 739		arm_bpf_put_reg32(dst, tmp[1], ctx);
 740	} else {
 741		emit_mov_i(dst, val, ctx);
 742	}
 743}
 744
 745static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
 
 746{
 747	const s8 *tmp = bpf2a32[TMP_REG_1];
 748	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
 749
 750	emit_mov_i(rd[1], (u32)val, ctx);
 751	emit_mov_i(rd[0], val >> 32, ctx);
 752
 753	arm_bpf_put_reg64(dst, rd, ctx);
 754}
 755
 756/* Sign extended move */
 757static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
 758				       const u32 val, struct jit_ctx *ctx) {
 759	u64 val64 = val;
 760
 761	if (is64 && (val & (1<<31)))
 762		val64 |= 0xffffffff00000000ULL;
 763	emit_a32_mov_i64(dst, val64, ctx);
 764}
 765
 766static inline void emit_a32_add_r(const u8 dst, const u8 src,
 767			      const bool is64, const bool hi,
 768			      struct jit_ctx *ctx) {
 769	/* 64 bit :
 770	 *	adds dst_lo, dst_lo, src_lo
 771	 *	adc dst_hi, dst_hi, src_hi
 772	 * 32 bit :
 773	 *	add dst_lo, dst_lo, src_lo
 774	 */
 775	if (!hi && is64)
 776		emit(ARM_ADDS_R(dst, dst, src), ctx);
 777	else if (hi && is64)
 778		emit(ARM_ADC_R(dst, dst, src), ctx);
 779	else
 780		emit(ARM_ADD_R(dst, dst, src), ctx);
 781}
 782
 783static inline void emit_a32_sub_r(const u8 dst, const u8 src,
 784				  const bool is64, const bool hi,
 785				  struct jit_ctx *ctx) {
 786	/* 64 bit :
 787	 *	subs dst_lo, dst_lo, src_lo
 788	 *	sbc dst_hi, dst_hi, src_hi
 789	 * 32 bit :
 790	 *	sub dst_lo, dst_lo, src_lo
 791	 */
 792	if (!hi && is64)
 793		emit(ARM_SUBS_R(dst, dst, src), ctx);
 794	else if (hi && is64)
 795		emit(ARM_SBC_R(dst, dst, src), ctx);
 796	else
 797		emit(ARM_SUB_R(dst, dst, src), ctx);
 798}
 799
 800static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
 801			      const bool hi, const u8 op, struct jit_ctx *ctx){
 802	switch (BPF_OP(op)) {
 803	/* dst = dst + src */
 804	case BPF_ADD:
 805		emit_a32_add_r(dst, src, is64, hi, ctx);
 806		break;
 807	/* dst = dst - src */
 808	case BPF_SUB:
 809		emit_a32_sub_r(dst, src, is64, hi, ctx);
 810		break;
 811	/* dst = dst | src */
 812	case BPF_OR:
 813		emit(ARM_ORR_R(dst, dst, src), ctx);
 814		break;
 815	/* dst = dst & src */
 816	case BPF_AND:
 817		emit(ARM_AND_R(dst, dst, src), ctx);
 818		break;
 819	/* dst = dst ^ src */
 820	case BPF_XOR:
 821		emit(ARM_EOR_R(dst, dst, src), ctx);
 822		break;
 823	/* dst = dst * src */
 824	case BPF_MUL:
 825		emit(ARM_MUL(dst, dst, src), ctx);
 826		break;
 827	/* dst = dst << src */
 828	case BPF_LSH:
 829		emit(ARM_LSL_R(dst, dst, src), ctx);
 830		break;
 831	/* dst = dst >> src */
 832	case BPF_RSH:
 833		emit(ARM_LSR_R(dst, dst, src), ctx);
 834		break;
 835	/* dst = dst >> src (signed)*/
 836	case BPF_ARSH:
 837		emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
 838		break;
 839	}
 840}
 841
 842/* ALU operation (64 bit) */
 843static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
 844				  const s8 src[], struct jit_ctx *ctx,
 845				  const u8 op) {
 846	const s8 *tmp = bpf2a32[TMP_REG_1];
 847	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 848	const s8 *rd;
 849
 850	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 851	if (is64) {
 852		const s8 *rs;
 853
 854		rs = arm_bpf_get_reg64(src, tmp2, ctx);
 855
 856		/* ALU operation */
 857		emit_alu_r(rd[1], rs[1], true, false, op, ctx);
 858		emit_alu_r(rd[0], rs[0], true, true, op, ctx);
 859	} else {
 860		s8 rs;
 861
 862		rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 863
 864		/* ALU operation */
 865		emit_alu_r(rd[1], rs, true, false, op, ctx);
 866		if (!ctx->prog->aux->verifier_zext)
 867			emit_a32_mov_i(rd[0], 0, ctx);
 868	}
 869
 870	arm_bpf_put_reg64(dst, rd, ctx);
 871}
 872
 873/* dst = src (4 bytes)*/
 874static inline void emit_a32_mov_r(const s8 dst, const s8 src, const u8 off,
 875				  struct jit_ctx *ctx) {
 876	const s8 *tmp = bpf2a32[TMP_REG_1];
 877	s8 rt;
 878
 879	rt = arm_bpf_get_reg32(src, tmp[0], ctx);
 880	if (off && off != 32) {
 881		emit(ARM_LSL_I(rt, rt, 32 - off), ctx);
 882		emit(ARM_ASR_I(rt, rt, 32 - off), ctx);
 883	}
 884	arm_bpf_put_reg32(dst, rt, ctx);
 885}
 886
 887/* dst = src */
 888static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
 889				  const s8 src[],
 890				  struct jit_ctx *ctx) {
 891	if (!is64) {
 892		emit_a32_mov_r(dst_lo, src_lo, 0, ctx);
 893		if (!ctx->prog->aux->verifier_zext)
 894			/* Zero out high 4 bytes */
 895			emit_a32_mov_i(dst_hi, 0, ctx);
 896	} else if (__LINUX_ARM_ARCH__ < 6 &&
 897		   ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
 898		/* complete 8 byte move */
 899		emit_a32_mov_r(dst_lo, src_lo, 0, ctx);
 900		emit_a32_mov_r(dst_hi, src_hi, 0, ctx);
 901	} else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
 902		const u8 *tmp = bpf2a32[TMP_REG_1];
 903
 904		emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 905		emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 906	} else if (is_stacked(src_lo)) {
 907		emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 908	} else if (is_stacked(dst_lo)) {
 909		emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 910	} else {
 911		emit(ARM_MOV_R(dst[0], src[0]), ctx);
 912		emit(ARM_MOV_R(dst[1], src[1]), ctx);
 913	}
 914}
 915
 916/* dst = (signed)src */
 917static inline void emit_a32_movsx_r64(const bool is64, const u8 off, const s8 dst[], const s8 src[],
 918				      struct jit_ctx *ctx) {
 919	const s8 *tmp = bpf2a32[TMP_REG_1];
 920	const s8 *rt;
 921
 922	rt = arm_bpf_get_reg64(dst, tmp, ctx);
 923
 924	emit_a32_mov_r(dst_lo, src_lo, off, ctx);
 925	if (!is64) {
 926		if (!ctx->prog->aux->verifier_zext)
 927			/* Zero out high 4 bytes */
 928			emit_a32_mov_i(dst_hi, 0, ctx);
 929	} else {
 930		emit(ARM_ASR_I(rt[0], rt[1], 31), ctx);
 931	}
 932}
 933
 934/* Shift operations */
 935static inline void emit_a32_alu_i(const s8 dst, const u32 val,
 936				struct jit_ctx *ctx, const u8 op) {
 937	const s8 *tmp = bpf2a32[TMP_REG_1];
 938	s8 rd;
 939
 940	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 941
 942	/* Do shift operation */
 943	switch (op) {
 944	case BPF_LSH:
 945		emit(ARM_LSL_I(rd, rd, val), ctx);
 946		break;
 947	case BPF_RSH:
 948		emit(ARM_LSR_I(rd, rd, val), ctx);
 949		break;
 950	case BPF_ARSH:
 951		emit(ARM_ASR_I(rd, rd, val), ctx);
 952		break;
 953	case BPF_NEG:
 954		emit(ARM_RSB_I(rd, rd, val), ctx);
 955		break;
 956	}
 957
 958	arm_bpf_put_reg32(dst, rd, ctx);
 959}
 960
 961/* dst = ~dst (64 bit) */
 962static inline void emit_a32_neg64(const s8 dst[],
 963				struct jit_ctx *ctx){
 964	const s8 *tmp = bpf2a32[TMP_REG_1];
 965	const s8 *rd;
 966
 967	/* Setup Operand */
 968	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 969
 970	/* Do Negate Operation */
 971	emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
 972	emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
 973
 974	arm_bpf_put_reg64(dst, rd, ctx);
 975}
 976
 977/* dst = dst << src */
 978static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
 979				    struct jit_ctx *ctx) {
 980	const s8 *tmp = bpf2a32[TMP_REG_1];
 981	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 982	const s8 *rd;
 983	s8 rt;
 984
 985	/* Setup Operands */
 986	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 987	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 988
 989	/* Do LSH operation */
 990	emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
 991	emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
 992	emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
 993	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
 994	emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
 995	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
 996
 997	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 998	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 999}
1000
1001/* dst = dst >> src (signed)*/
1002static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
1003				     struct jit_ctx *ctx) {
1004	const s8 *tmp = bpf2a32[TMP_REG_1];
1005	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1006	const s8 *rd;
1007	s8 rt;
1008
1009	/* Setup Operands */
1010	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1011	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1012
1013	/* Do the ARSH operation */
1014	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
1015	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
1016	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
1017	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
1018	_emit(ARM_COND_PL,
1019	      ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
1020	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
1021
1022	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
1023	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
1024}
1025
1026/* dst = dst >> src */
1027static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
1028				    struct jit_ctx *ctx) {
1029	const s8 *tmp = bpf2a32[TMP_REG_1];
1030	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1031	const s8 *rd;
1032	s8 rt;
1033
1034	/* Setup Operands */
1035	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1036	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1037
1038	/* Do RSH operation */
1039	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
1040	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
1041	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
1042	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
1043	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
1044	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
1045
1046	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
1047	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
1048}
1049
1050/* dst = dst << val */
1051static inline void emit_a32_lsh_i64(const s8 dst[],
1052				    const u32 val, struct jit_ctx *ctx){
1053	const s8 *tmp = bpf2a32[TMP_REG_1];
1054	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1055	const s8 *rd;
1056
1057	/* Setup operands */
1058	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1059
1060	/* Do LSH operation */
1061	if (val < 32) {
1062		emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
1063		emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
1064		emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
1065	} else {
1066		if (val == 32)
1067			emit(ARM_MOV_R(rd[0], rd[1]), ctx);
1068		else
1069			emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
1070		emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
1071	}
1072
1073	arm_bpf_put_reg64(dst, rd, ctx);
1074}
1075
1076/* dst = dst >> val */
1077static inline void emit_a32_rsh_i64(const s8 dst[],
1078				    const u32 val, struct jit_ctx *ctx) {
1079	const s8 *tmp = bpf2a32[TMP_REG_1];
1080	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1081	const s8 *rd;
1082
1083	/* Setup operands */
1084	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1085
1086	/* Do LSR operation */
1087	if (val == 0) {
1088		/* An immediate value of 0 encodes a shift amount of 32
1089		 * for LSR. To shift by 0, don't do anything.
1090		 */
1091	} else if (val < 32) {
1092		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
1093		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
1094		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
1095	} else if (val == 32) {
1096		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
1097		emit(ARM_MOV_I(rd[0], 0), ctx);
1098	} else {
1099		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
1100		emit(ARM_MOV_I(rd[0], 0), ctx);
1101	}
1102
1103	arm_bpf_put_reg64(dst, rd, ctx);
1104}
1105
1106/* dst = dst >> val (signed) */
1107static inline void emit_a32_arsh_i64(const s8 dst[],
1108				     const u32 val, struct jit_ctx *ctx){
1109	const s8 *tmp = bpf2a32[TMP_REG_1];
1110	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1111	const s8 *rd;
1112
1113	/* Setup operands */
1114	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1115
1116	/* Do ARSH operation */
1117	if (val == 0) {
1118		/* An immediate value of 0 encodes a shift amount of 32
1119		 * for ASR. To shift by 0, don't do anything.
1120		 */
1121	} else if (val < 32) {
1122		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
1123		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
1124		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
1125	} else if (val == 32) {
1126		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
1127		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
1128	} else {
1129		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
1130		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
1131	}
1132
1133	arm_bpf_put_reg64(dst, rd, ctx);
1134}
1135
1136static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
1137				    struct jit_ctx *ctx) {
1138	const s8 *tmp = bpf2a32[TMP_REG_1];
1139	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1140	const s8 *rd, *rt;
1141
1142	/* Setup operands for multiplication */
1143	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1144	rt = arm_bpf_get_reg64(src, tmp2, ctx);
1145
1146	/* Do Multiplication */
1147	emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
1148	emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
1149	emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
1150
1151	emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1152	emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1153
1154	arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1155	arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1156}
1157
1158static bool is_ldst_imm(s16 off, const u8 size)
1159{
1160	s16 off_max = 0;
1161
1162	switch (size) {
1163	case BPF_B:
1164	case BPF_W:
1165		off_max = 0xfff;
1166		break;
1167	case BPF_H:
1168		off_max = 0xff;
1169		break;
1170	case BPF_DW:
1171		/* Need to make sure off+4 does not overflow. */
1172		off_max = 0xfff - 4;
1173		break;
1174	}
1175	return -off_max <= off && off <= off_max;
1176}
1177
1178static bool is_ldst_imm8(s16 off, const u8 size)
1179{
1180	s16 off_max = 0;
1181
1182	switch (size) {
1183	case BPF_B:
1184		off_max = 0xff;
1185		break;
1186	case BPF_W:
1187		off_max = 0xfff;
1188		break;
1189	case BPF_H:
1190		off_max = 0xff;
1191		break;
1192	}
1193	return -off_max <= off && off <= off_max;
1194}
1195
1196/* *(size *)(dst + off) = src */
1197static inline void emit_str_r(const s8 dst, const s8 src[],
1198			      s16 off, struct jit_ctx *ctx, const u8 sz){
1199	const s8 *tmp = bpf2a32[TMP_REG_1];
1200	s8 rd;
1201
1202	rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1203
1204	if (!is_ldst_imm(off, sz)) {
1205		emit_a32_mov_i(tmp[0], off, ctx);
1206		emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1207		rd = tmp[0];
1208		off = 0;
1209	}
1210	switch (sz) {
1211	case BPF_B:
1212		/* Store a Byte */
1213		emit(ARM_STRB_I(src_lo, rd, off), ctx);
1214		break;
1215	case BPF_H:
1216		/* Store a HalfWord */
1217		emit(ARM_STRH_I(src_lo, rd, off), ctx);
1218		break;
1219	case BPF_W:
1220		/* Store a Word */
1221		emit(ARM_STR_I(src_lo, rd, off), ctx);
1222		break;
1223	case BPF_DW:
1224		/* Store a Double Word */
1225		emit(ARM_STR_I(src_lo, rd, off), ctx);
1226		emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1227		break;
1228	}
1229}
1230
1231/* dst = *(size*)(src + off) */
1232static inline void emit_ldx_r(const s8 dst[], const s8 src,
1233			      s16 off, struct jit_ctx *ctx, const u8 sz){
1234	const s8 *tmp = bpf2a32[TMP_REG_1];
1235	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1236	s8 rm = src;
1237
1238	if (!is_ldst_imm(off, sz)) {
1239		emit_a32_mov_i(tmp[0], off, ctx);
1240		emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1241		rm = tmp[0];
1242		off = 0;
1243	} else if (rd[1] == rm) {
1244		emit(ARM_MOV_R(tmp[0], rm), ctx);
1245		rm = tmp[0];
1246	}
1247	switch (sz) {
1248	case BPF_B:
1249		/* Load a Byte */
1250		emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1251		if (!ctx->prog->aux->verifier_zext)
1252			emit_a32_mov_i(rd[0], 0, ctx);
1253		break;
1254	case BPF_H:
1255		/* Load a HalfWord */
1256		emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1257		if (!ctx->prog->aux->verifier_zext)
1258			emit_a32_mov_i(rd[0], 0, ctx);
1259		break;
1260	case BPF_W:
1261		/* Load a Word */
1262		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1263		if (!ctx->prog->aux->verifier_zext)
1264			emit_a32_mov_i(rd[0], 0, ctx);
1265		break;
1266	case BPF_DW:
1267		/* Load a Double Word */
1268		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1269		emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1270		break;
1271	}
1272	arm_bpf_put_reg64(dst, rd, ctx);
1273}
1274
1275/* dst = *(signed size*)(src + off) */
1276static inline void emit_ldsx_r(const s8 dst[], const s8 src,
1277			       s16 off, struct jit_ctx *ctx, const u8 sz){
1278	const s8 *tmp = bpf2a32[TMP_REG_1];
1279	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1280	s8 rm = src;
1281	int add_off;
1282
1283	if (!is_ldst_imm8(off, sz)) {
1284		/*
1285		 * offset does not fit in the load/store immediate,
1286		 * construct an ADD instruction to apply the offset.
1287		 */
1288		add_off = imm8m(off);
1289		if (add_off > 0) {
1290			emit(ARM_ADD_I(tmp[0], src, add_off), ctx);
1291			rm = tmp[0];
1292		} else {
1293			emit_a32_mov_i(tmp[0], off, ctx);
1294			emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1295			rm = tmp[0];
1296		}
1297		off = 0;
1298	}
1299
1300	switch (sz) {
1301	case BPF_B:
1302		/* Load a Byte with sign extension*/
1303		emit(ARM_LDRSB_I(rd[1], rm, off), ctx);
1304		break;
1305	case BPF_H:
1306		/* Load a HalfWord with sign extension*/
1307		emit(ARM_LDRSH_I(rd[1], rm, off), ctx);
1308		break;
1309	case BPF_W:
1310		/* Load a Word*/
1311		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1312		break;
1313	}
1314	/* Carry the sign extension to upper 32 bits */
1315	emit(ARM_ASR_I(rd[0], rd[1], 31), ctx);
1316	arm_bpf_put_reg64(dst, rd, ctx);
1317}
1318
1319/* Arithmatic Operation */
1320static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1321			     const u8 rn, struct jit_ctx *ctx, u8 op,
1322			     bool is_jmp64) {
1323	switch (op) {
1324	case BPF_JSET:
1325		if (is_jmp64) {
1326			emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1327			emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1328			emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1329		} else {
1330			emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1331		}
1332		break;
1333	case BPF_JEQ:
1334	case BPF_JNE:
1335	case BPF_JGT:
1336	case BPF_JGE:
1337	case BPF_JLE:
1338	case BPF_JLT:
1339		if (is_jmp64) {
1340			emit(ARM_CMP_R(rd, rm), ctx);
1341			/* Only compare low halve if high halve are equal. */
1342			_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1343		} else {
1344			emit(ARM_CMP_R(rt, rn), ctx);
1345		}
1346		break;
1347	case BPF_JSLE:
1348	case BPF_JSGT:
1349		emit(ARM_CMP_R(rn, rt), ctx);
1350		if (is_jmp64)
1351			emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1352		break;
1353	case BPF_JSLT:
1354	case BPF_JSGE:
1355		emit(ARM_CMP_R(rt, rn), ctx);
1356		if (is_jmp64)
1357			emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1358		break;
1359	}
1360}
1361
1362static int out_offset = -1; /* initialized on the first pass of build_body() */
1363static int emit_bpf_tail_call(struct jit_ctx *ctx)
1364{
1365
1366	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1367	const s8 *r2 = bpf2a32[BPF_REG_2];
1368	const s8 *r3 = bpf2a32[BPF_REG_3];
1369	const s8 *tmp = bpf2a32[TMP_REG_1];
1370	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1371	const s8 *tcc = bpf2a32[TCALL_CNT];
1372	const s8 *tc;
1373	const int idx0 = ctx->idx;
1374#define cur_offset (ctx->idx - idx0)
1375#define jmp_offset (out_offset - (cur_offset) - 2)
1376	u32 lo, hi;
1377	s8 r_array, r_index;
1378	int off;
1379
1380	/* if (index >= array->map.max_entries)
1381	 *	goto out;
1382	 */
1383	BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1384		     ARM_INST_LDST__IMM12);
1385	off = offsetof(struct bpf_array, map.max_entries);
1386	r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1387	/* index is 32-bit for arrays */
1388	r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1389	/* array->map.max_entries */
1390	emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1391	/* index >= array->map.max_entries */
1392	emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1393	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1394
1395	/* tmp2[0] = array, tmp2[1] = index */
1396
1397	/*
1398	 * if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
1399	 *	goto out;
1400	 * tail_call_cnt++;
 
 
 
 
 
1401	 */
1402	lo = (u32)MAX_TAIL_CALL_CNT;
1403	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1404	tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1405	emit(ARM_CMP_I(tc[0], hi), ctx);
1406	_emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1407	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1408	emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1409	emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1410	arm_bpf_put_reg64(tcc, tmp, ctx);
1411
1412	/* prog = array->ptrs[index]
1413	 * if (prog == NULL)
1414	 *	goto out;
1415	 */
1416	BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1417	off = imm8m(offsetof(struct bpf_array, ptrs));
1418	emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1419	emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1420	emit(ARM_CMP_I(tmp[1], 0), ctx);
1421	_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1422
1423	/* goto *(prog->bpf_func + prologue_size); */
1424	BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1425		     ARM_INST_LDST__IMM12);
1426	off = offsetof(struct bpf_prog, bpf_func);
1427	emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1428	emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1429	emit_bx_r(tmp[1], ctx);
1430
1431	/* out: */
1432	if (out_offset == -1)
1433		out_offset = cur_offset;
1434	if (cur_offset != out_offset) {
1435		pr_err_once("tail_call out_offset = %d, expected %d!\n",
1436			    cur_offset, out_offset);
1437		return -1;
1438	}
1439	return 0;
1440#undef cur_offset
1441#undef jmp_offset
1442}
1443
1444/* 0xabcd => 0xcdab */
1445static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1446{
1447#if __LINUX_ARM_ARCH__ < 6
1448	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1449
1450	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1451	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1452	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1453	emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1454#else /* ARMv6+ */
1455	emit(ARM_REV16(rd, rn), ctx);
1456#endif
1457}
1458
1459/* 0xabcdefgh => 0xghefcdab */
1460static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1461{
1462#if __LINUX_ARM_ARCH__ < 6
1463	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1464
1465	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1466	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1467	emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1468
1469	emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1470	emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1471	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1472	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1473	emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1474	emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1475	emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1476
1477#else /* ARMv6+ */
1478	emit(ARM_REV(rd, rn), ctx);
1479#endif
1480}
1481
1482// push the scratch stack register on top of the stack
1483static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1484{
1485	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1486	const s8 *rt;
1487	u16 reg_set = 0;
 
 
 
1488
1489	rt = arm_bpf_get_reg64(src, tmp2, ctx);
 
1490
1491	reg_set = (1 << rt[1]) | (1 << rt[0]);
1492	emit(ARM_PUSH(reg_set), ctx);
1493}
 
1494
1495static void build_prologue(struct jit_ctx *ctx)
1496{
1497	const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1498	const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1499	const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
1500	const s8 *tcc = bpf2a32[TCALL_CNT];
1501
1502	/* Save callee saved registers. */
1503#ifdef CONFIG_FRAME_POINTER
1504	u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1505	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1506	emit(ARM_PUSH(reg_set), ctx);
1507	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1508#else
1509	emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1510	emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1511#endif
1512	/* mov r3, #0 */
1513	/* sub r2, sp, #SCRATCH_SIZE */
1514	emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1515	emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516
1517	ctx->stack_size = imm8m(STACK_SIZE);
 
 
 
 
 
 
 
 
 
 
1518
1519	/* Set up function call stack */
1520	emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1521
1522	/* Set up BPF prog stack base register */
1523	emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524
1525	/* Initialize Tail Count */
1526	emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1527	emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1528
1529	/* Move BPF_CTX to BPF_R1 */
1530	emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1531
1532	/* end of prologue */
1533}
1534
1535/* restore callee saved registers. */
1536static void build_epilogue(struct jit_ctx *ctx)
1537{
1538#ifdef CONFIG_FRAME_POINTER
1539	/* When using frame pointers, some additional registers need to
1540	 * be loaded. */
1541	u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1542	emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1543	emit(ARM_LDM(ARM_SP, reg_set), ctx);
1544#else
1545	/* Restore callee saved registers. */
1546	emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1547	emit(ARM_POP(CALLEE_POP_MASK), ctx);
1548#endif
1549}
1550
1551/*
1552 * Convert an eBPF instruction to native instruction, i.e
1553 * JITs an eBPF instruction.
1554 * Returns :
1555 *	0  - Successfully JITed an 8-byte eBPF instruction
1556 *	>0 - Successfully JITed a 16-byte eBPF instruction
1557 *	<0 - Failed to JIT.
1558 */
1559static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1560{
1561	const u8 code = insn->code;
1562	const s8 *dst = bpf2a32[insn->dst_reg];
1563	const s8 *src = bpf2a32[insn->src_reg];
1564	const s8 *tmp = bpf2a32[TMP_REG_1];
1565	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1566	const s16 off = insn->off;
1567	const s32 imm = insn->imm;
1568	const int i = insn - ctx->prog->insnsi;
1569	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1570	const s8 *rd, *rs;
1571	s8 rd_lo, rt, rm, rn;
1572	s32 jmp_offset;
1573
1574#define check_imm(bits, imm) do {				\
1575	if ((imm) >= (1 << ((bits) - 1)) ||			\
1576	    (imm) < -(1 << ((bits) - 1))) {			\
1577		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
1578			i, imm, imm);				\
1579		return -EINVAL;					\
1580	}							\
1581} while (0)
1582#define check_imm24(imm) check_imm(24, imm)
1583
1584	switch (code) {
1585	/* ALU operations */
1586
1587	/* dst = src */
1588	case BPF_ALU | BPF_MOV | BPF_K:
1589	case BPF_ALU | BPF_MOV | BPF_X:
1590	case BPF_ALU64 | BPF_MOV | BPF_K:
1591	case BPF_ALU64 | BPF_MOV | BPF_X:
1592		switch (BPF_SRC(code)) {
1593		case BPF_X:
1594			if (imm == 1) {
1595				/* Special mov32 for zext */
1596				emit_a32_mov_i(dst_hi, 0, ctx);
1597				break;
1598			}
1599			if (insn->off)
1600				emit_a32_movsx_r64(is64, insn->off, dst, src, ctx);
1601			else
1602				emit_a32_mov_r64(is64, dst, src, ctx);
1603			break;
1604		case BPF_K:
1605			/* Sign-extend immediate value to destination reg */
1606			emit_a32_mov_se_i64(is64, dst, imm, ctx);
1607			break;
1608		}
1609		break;
1610	/* dst = dst + src/imm */
1611	/* dst = dst - src/imm */
1612	/* dst = dst | src/imm */
1613	/* dst = dst & src/imm */
1614	/* dst = dst ^ src/imm */
1615	/* dst = dst * src/imm */
1616	/* dst = dst << src */
1617	/* dst = dst >> src */
1618	case BPF_ALU | BPF_ADD | BPF_K:
1619	case BPF_ALU | BPF_ADD | BPF_X:
1620	case BPF_ALU | BPF_SUB | BPF_K:
1621	case BPF_ALU | BPF_SUB | BPF_X:
1622	case BPF_ALU | BPF_OR | BPF_K:
1623	case BPF_ALU | BPF_OR | BPF_X:
1624	case BPF_ALU | BPF_AND | BPF_K:
1625	case BPF_ALU | BPF_AND | BPF_X:
1626	case BPF_ALU | BPF_XOR | BPF_K:
1627	case BPF_ALU | BPF_XOR | BPF_X:
1628	case BPF_ALU | BPF_MUL | BPF_K:
1629	case BPF_ALU | BPF_MUL | BPF_X:
1630	case BPF_ALU | BPF_LSH | BPF_X:
1631	case BPF_ALU | BPF_RSH | BPF_X:
1632	case BPF_ALU | BPF_ARSH | BPF_X:
1633	case BPF_ALU64 | BPF_ADD | BPF_K:
1634	case BPF_ALU64 | BPF_ADD | BPF_X:
1635	case BPF_ALU64 | BPF_SUB | BPF_K:
1636	case BPF_ALU64 | BPF_SUB | BPF_X:
1637	case BPF_ALU64 | BPF_OR | BPF_K:
1638	case BPF_ALU64 | BPF_OR | BPF_X:
1639	case BPF_ALU64 | BPF_AND | BPF_K:
1640	case BPF_ALU64 | BPF_AND | BPF_X:
1641	case BPF_ALU64 | BPF_XOR | BPF_K:
1642	case BPF_ALU64 | BPF_XOR | BPF_X:
1643		switch (BPF_SRC(code)) {
1644		case BPF_X:
1645			emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1646			break;
1647		case BPF_K:
1648			/* Move immediate value to the temporary register
1649			 * and then do the ALU operation on the temporary
1650			 * register as this will sign-extend the immediate
1651			 * value into temporary reg and then it would be
1652			 * safe to do the operation on it.
1653			 */
1654			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1655			emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1656			break;
1657		}
1658		break;
1659	/* dst = dst / src(imm) */
1660	/* dst = dst % src(imm) */
1661	case BPF_ALU | BPF_DIV | BPF_K:
1662	case BPF_ALU | BPF_DIV | BPF_X:
1663	case BPF_ALU | BPF_MOD | BPF_K:
1664	case BPF_ALU | BPF_MOD | BPF_X:
1665		rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1666		switch (BPF_SRC(code)) {
1667		case BPF_X:
1668			rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1669			break;
1670		case BPF_K:
1671			rt = tmp2[0];
1672			emit_a32_mov_i(rt, imm, ctx);
 
 
 
 
 
 
 
 
1673			break;
1674		default:
1675			rt = src_lo;
 
 
 
 
 
 
 
 
1676			break;
1677		}
1678		emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code), off);
1679		arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1680		if (!ctx->prog->aux->verifier_zext)
1681			emit_a32_mov_i(dst_hi, 0, ctx);
1682		break;
1683	case BPF_ALU64 | BPF_DIV | BPF_K:
1684	case BPF_ALU64 | BPF_DIV | BPF_X:
1685	case BPF_ALU64 | BPF_MOD | BPF_K:
1686	case BPF_ALU64 | BPF_MOD | BPF_X:
1687		rd = arm_bpf_get_reg64(dst, tmp2, ctx);
1688		switch (BPF_SRC(code)) {
1689		case BPF_X:
1690			rs = arm_bpf_get_reg64(src, tmp, ctx);
1691			break;
1692		case BPF_K:
1693			rs = tmp;
1694			emit_a32_mov_se_i64(is64, rs, imm, ctx);
1695			break;
1696		}
1697		emit_udivmod64(rd, rd, rs, ctx, BPF_OP(code), off);
1698		arm_bpf_put_reg64(dst, rd, ctx);
1699		break;
1700	/* dst = dst << imm */
1701	/* dst = dst >> imm */
1702	/* dst = dst >> imm (signed) */
1703	case BPF_ALU | BPF_LSH | BPF_K:
1704	case BPF_ALU | BPF_RSH | BPF_K:
1705	case BPF_ALU | BPF_ARSH | BPF_K:
1706		if (unlikely(imm > 31))
1707			return -EINVAL;
1708		if (imm)
1709			emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1710		if (!ctx->prog->aux->verifier_zext)
1711			emit_a32_mov_i(dst_hi, 0, ctx);
1712		break;
1713	/* dst = dst << imm */
1714	case BPF_ALU64 | BPF_LSH | BPF_K:
1715		if (unlikely(imm > 63))
1716			return -EINVAL;
1717		emit_a32_lsh_i64(dst, imm, ctx);
1718		break;
1719	/* dst = dst >> imm */
1720	case BPF_ALU64 | BPF_RSH | BPF_K:
1721		if (unlikely(imm > 63))
1722			return -EINVAL;
1723		emit_a32_rsh_i64(dst, imm, ctx);
1724		break;
1725	/* dst = dst << src */
1726	case BPF_ALU64 | BPF_LSH | BPF_X:
1727		emit_a32_lsh_r64(dst, src, ctx);
1728		break;
1729	/* dst = dst >> src */
1730	case BPF_ALU64 | BPF_RSH | BPF_X:
1731		emit_a32_rsh_r64(dst, src, ctx);
1732		break;
1733	/* dst = dst >> src (signed) */
1734	case BPF_ALU64 | BPF_ARSH | BPF_X:
1735		emit_a32_arsh_r64(dst, src, ctx);
1736		break;
1737	/* dst = dst >> imm (signed) */
1738	case BPF_ALU64 | BPF_ARSH | BPF_K:
1739		if (unlikely(imm > 63))
1740			return -EINVAL;
1741		emit_a32_arsh_i64(dst, imm, ctx);
1742		break;
1743	/* dst = ~dst */
1744	case BPF_ALU | BPF_NEG:
1745		emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1746		if (!ctx->prog->aux->verifier_zext)
1747			emit_a32_mov_i(dst_hi, 0, ctx);
1748		break;
1749	/* dst = ~dst (64 bit) */
1750	case BPF_ALU64 | BPF_NEG:
1751		emit_a32_neg64(dst, ctx);
1752		break;
1753	/* dst = dst * src/imm */
1754	case BPF_ALU64 | BPF_MUL | BPF_X:
1755	case BPF_ALU64 | BPF_MUL | BPF_K:
1756		switch (BPF_SRC(code)) {
1757		case BPF_X:
1758			emit_a32_mul_r64(dst, src, ctx);
1759			break;
1760		case BPF_K:
1761			/* Move immediate value to the temporary register
1762			 * and then do the multiplication on it as this
1763			 * will sign-extend the immediate value into temp
1764			 * reg then it would be safe to do the operation
1765			 * on it.
1766			 */
1767			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1768			emit_a32_mul_r64(dst, tmp2, ctx);
1769			break;
1770		}
1771		break;
1772	/* dst = htole(dst) */
1773	/* dst = htobe(dst) */
1774	case BPF_ALU | BPF_END | BPF_FROM_LE: /* also BPF_TO_LE */
1775	case BPF_ALU | BPF_END | BPF_FROM_BE: /* also BPF_TO_BE */
1776	/* dst = bswap(dst) */
1777	case BPF_ALU64 | BPF_END | BPF_FROM_LE: /* also BPF_TO_LE */
1778		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1779		if (BPF_SRC(code) == BPF_FROM_LE && BPF_CLASS(code) != BPF_ALU64)
1780			goto emit_bswap_uxt;
1781		switch (imm) {
1782		case 16:
1783			emit_rev16(rd[1], rd[1], ctx);
1784			goto emit_bswap_uxt;
1785		case 32:
1786			emit_rev32(rd[1], rd[1], ctx);
1787			goto emit_bswap_uxt;
1788		case 64:
1789			emit_rev32(ARM_LR, rd[1], ctx);
1790			emit_rev32(rd[1], rd[0], ctx);
1791			emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1792			break;
1793		}
1794		goto exit;
1795emit_bswap_uxt:
1796		switch (imm) {
1797		case 16:
1798			/* zero-extend 16 bits into 64 bits */
1799#if __LINUX_ARM_ARCH__ < 6
1800			emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1801			emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1802#else /* ARMv6+ */
1803			emit(ARM_UXTH(rd[1], rd[1]), ctx);
1804#endif
1805			if (!ctx->prog->aux->verifier_zext)
1806				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1807			break;
1808		case 32:
1809			/* zero-extend 32 bits into 64 bits */
1810			if (!ctx->prog->aux->verifier_zext)
1811				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1812			break;
1813		case 64:
1814			/* nop */
1815			break;
 
 
1816		}
1817exit:
1818		arm_bpf_put_reg64(dst, rd, ctx);
1819		break;
1820	/* dst = imm64 */
1821	case BPF_LD | BPF_IMM | BPF_DW:
1822	{
1823		u64 val = (u32)imm | (u64)insn[1].imm << 32;
1824
1825		emit_a32_mov_i64(dst, val, ctx);
1826
1827		return 1;
 
 
 
 
1828	}
1829	/* LDX: dst = *(size *)(src + off) */
1830	case BPF_LDX | BPF_MEM | BPF_W:
1831	case BPF_LDX | BPF_MEM | BPF_H:
1832	case BPF_LDX | BPF_MEM | BPF_B:
1833	case BPF_LDX | BPF_MEM | BPF_DW:
1834	/* LDSX: dst = *(signed size *)(src + off) */
1835	case BPF_LDX | BPF_MEMSX | BPF_B:
1836	case BPF_LDX | BPF_MEMSX | BPF_H:
1837	case BPF_LDX | BPF_MEMSX | BPF_W:
1838		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1839		if (BPF_MODE(insn->code) == BPF_MEMSX)
1840			emit_ldsx_r(dst, rn, off, ctx, BPF_SIZE(code));
1841		else
1842			emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1843		break;
1844	/* speculation barrier */
1845	case BPF_ST | BPF_NOSPEC:
1846		break;
1847	/* ST: *(size *)(dst + off) = imm */
1848	case BPF_ST | BPF_MEM | BPF_W:
1849	case BPF_ST | BPF_MEM | BPF_H:
1850	case BPF_ST | BPF_MEM | BPF_B:
1851	case BPF_ST | BPF_MEM | BPF_DW:
1852		switch (BPF_SIZE(code)) {
1853		case BPF_DW:
1854			/* Sign-extend immediate value into temp reg */
1855			emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1856			break;
1857		case BPF_W:
1858		case BPF_H:
1859		case BPF_B:
1860			emit_a32_mov_i(tmp2[1], imm, ctx);
1861			break;
1862		}
1863		emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1864		break;
1865	/* Atomic ops */
1866	case BPF_STX | BPF_ATOMIC | BPF_W:
1867	case BPF_STX | BPF_ATOMIC | BPF_DW:
1868		goto notyet;
1869	/* STX: *(size *)(dst + off) = src */
1870	case BPF_STX | BPF_MEM | BPF_W:
1871	case BPF_STX | BPF_MEM | BPF_H:
1872	case BPF_STX | BPF_MEM | BPF_B:
1873	case BPF_STX | BPF_MEM | BPF_DW:
1874		rs = arm_bpf_get_reg64(src, tmp2, ctx);
1875		emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1876		break;
1877	/* PC += off if dst == src */
1878	/* PC += off if dst > src */
1879	/* PC += off if dst >= src */
1880	/* PC += off if dst < src */
1881	/* PC += off if dst <= src */
1882	/* PC += off if dst != src */
1883	/* PC += off if dst > src (signed) */
1884	/* PC += off if dst >= src (signed) */
1885	/* PC += off if dst < src (signed) */
1886	/* PC += off if dst <= src (signed) */
1887	/* PC += off if dst & src */
1888	case BPF_JMP | BPF_JEQ | BPF_X:
1889	case BPF_JMP | BPF_JGT | BPF_X:
1890	case BPF_JMP | BPF_JGE | BPF_X:
1891	case BPF_JMP | BPF_JNE | BPF_X:
1892	case BPF_JMP | BPF_JSGT | BPF_X:
1893	case BPF_JMP | BPF_JSGE | BPF_X:
1894	case BPF_JMP | BPF_JSET | BPF_X:
1895	case BPF_JMP | BPF_JLE | BPF_X:
1896	case BPF_JMP | BPF_JLT | BPF_X:
1897	case BPF_JMP | BPF_JSLT | BPF_X:
1898	case BPF_JMP | BPF_JSLE | BPF_X:
1899	case BPF_JMP32 | BPF_JEQ | BPF_X:
1900	case BPF_JMP32 | BPF_JGT | BPF_X:
1901	case BPF_JMP32 | BPF_JGE | BPF_X:
1902	case BPF_JMP32 | BPF_JNE | BPF_X:
1903	case BPF_JMP32 | BPF_JSGT | BPF_X:
1904	case BPF_JMP32 | BPF_JSGE | BPF_X:
1905	case BPF_JMP32 | BPF_JSET | BPF_X:
1906	case BPF_JMP32 | BPF_JLE | BPF_X:
1907	case BPF_JMP32 | BPF_JLT | BPF_X:
1908	case BPF_JMP32 | BPF_JSLT | BPF_X:
1909	case BPF_JMP32 | BPF_JSLE | BPF_X:
1910		/* Setup source registers */
1911		rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1912		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1913		goto go_jmp;
1914	/* PC += off if dst == imm */
1915	/* PC += off if dst > imm */
1916	/* PC += off if dst >= imm */
1917	/* PC += off if dst < imm */
1918	/* PC += off if dst <= imm */
1919	/* PC += off if dst != imm */
1920	/* PC += off if dst > imm (signed) */
1921	/* PC += off if dst >= imm (signed) */
1922	/* PC += off if dst < imm (signed) */
1923	/* PC += off if dst <= imm (signed) */
1924	/* PC += off if dst & imm */
1925	case BPF_JMP | BPF_JEQ | BPF_K:
1926	case BPF_JMP | BPF_JGT | BPF_K:
1927	case BPF_JMP | BPF_JGE | BPF_K:
1928	case BPF_JMP | BPF_JNE | BPF_K:
1929	case BPF_JMP | BPF_JSGT | BPF_K:
1930	case BPF_JMP | BPF_JSGE | BPF_K:
1931	case BPF_JMP | BPF_JSET | BPF_K:
1932	case BPF_JMP | BPF_JLT | BPF_K:
1933	case BPF_JMP | BPF_JLE | BPF_K:
1934	case BPF_JMP | BPF_JSLT | BPF_K:
1935	case BPF_JMP | BPF_JSLE | BPF_K:
1936	case BPF_JMP32 | BPF_JEQ | BPF_K:
1937	case BPF_JMP32 | BPF_JGT | BPF_K:
1938	case BPF_JMP32 | BPF_JGE | BPF_K:
1939	case BPF_JMP32 | BPF_JNE | BPF_K:
1940	case BPF_JMP32 | BPF_JSGT | BPF_K:
1941	case BPF_JMP32 | BPF_JSGE | BPF_K:
1942	case BPF_JMP32 | BPF_JSET | BPF_K:
1943	case BPF_JMP32 | BPF_JLT | BPF_K:
1944	case BPF_JMP32 | BPF_JLE | BPF_K:
1945	case BPF_JMP32 | BPF_JSLT | BPF_K:
1946	case BPF_JMP32 | BPF_JSLE | BPF_K:
1947		if (off == 0)
1948			break;
1949		rm = tmp2[0];
1950		rn = tmp2[1];
1951		/* Sign-extend immediate value */
1952		emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1953go_jmp:
1954		/* Setup destination register */
1955		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1956
1957		/* Check for the condition */
1958		emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1959			  BPF_CLASS(code) == BPF_JMP);
1960
1961		/* Setup JUMP instruction */
1962		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1963		switch (BPF_OP(code)) {
1964		case BPF_JNE:
1965		case BPF_JSET:
1966			_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1967			break;
1968		case BPF_JEQ:
1969			_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1970			break;
1971		case BPF_JGT:
1972			_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1973			break;
1974		case BPF_JGE:
1975			_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1976			break;
1977		case BPF_JSGT:
1978			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1979			break;
1980		case BPF_JSGE:
1981			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1982			break;
1983		case BPF_JLE:
1984			_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1985			break;
1986		case BPF_JLT:
1987			_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1988			break;
1989		case BPF_JSLT:
1990			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1991			break;
1992		case BPF_JSLE:
1993			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1994			break;
1995		}
1996		break;
1997	/* JMP OFF */
1998	case BPF_JMP | BPF_JA:
1999	case BPF_JMP32 | BPF_JA:
2000	{
2001		if (BPF_CLASS(code) == BPF_JMP32 && imm != 0)
2002			jmp_offset = bpf2a32_offset(i + imm, i, ctx);
2003		else if (BPF_CLASS(code) == BPF_JMP && off != 0)
2004			jmp_offset = bpf2a32_offset(i + off, i, ctx);
2005		else
2006			break;
2007
2008		check_imm24(jmp_offset);
2009		emit(ARM_B(jmp_offset), ctx);
2010		break;
2011	}
2012	/* tail call */
2013	case BPF_JMP | BPF_TAIL_CALL:
2014		if (emit_bpf_tail_call(ctx))
2015			return -EFAULT;
2016		break;
2017	/* function call */
2018	case BPF_JMP | BPF_CALL:
2019	{
2020		const s8 *r0 = bpf2a32[BPF_REG_0];
2021		const s8 *r1 = bpf2a32[BPF_REG_1];
2022		const s8 *r2 = bpf2a32[BPF_REG_2];
2023		const s8 *r3 = bpf2a32[BPF_REG_3];
2024		const s8 *r4 = bpf2a32[BPF_REG_4];
2025		const s8 *r5 = bpf2a32[BPF_REG_5];
2026		const u32 func = (u32)__bpf_call_base + (u32)imm;
2027
2028		emit_a32_mov_r64(true, r0, r1, ctx);
2029		emit_a32_mov_r64(true, r1, r2, ctx);
2030		emit_push_r64(r5, ctx);
2031		emit_push_r64(r4, ctx);
2032		emit_push_r64(r3, ctx);
2033
2034		emit_a32_mov_i(tmp[1], func, ctx);
2035		emit_blx_r(tmp[1], ctx);
2036
2037		emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
2038		break;
2039	}
2040	/* function return */
2041	case BPF_JMP | BPF_EXIT:
2042		/* Optimization: when last instruction is EXIT
2043		 * simply fallthrough to epilogue.
2044		 */
2045		if (i == ctx->prog->len - 1)
2046			break;
2047		jmp_offset = epilogue_offset(ctx);
2048		check_imm24(jmp_offset);
2049		emit(ARM_B(jmp_offset), ctx);
2050		break;
2051notyet:
2052		pr_info_once("*** NOT YET: opcode %02x ***\n", code);
2053		return -EFAULT;
2054	default:
2055		pr_err_once("unknown opcode %02x\n", code);
2056		return -EINVAL;
2057	}
2058
2059	if (ctx->flags & FLAG_IMM_OVERFLOW)
2060		/*
2061		 * this instruction generated an overflow when
2062		 * trying to access the literal pool, so
2063		 * delegate this filter to the kernel interpreter.
2064		 */
2065		return -1;
2066	return 0;
2067}
2068
2069static int build_body(struct jit_ctx *ctx)
2070{
2071	const struct bpf_prog *prog = ctx->prog;
2072	unsigned int i;
2073
2074	for (i = 0; i < prog->len; i++) {
2075		const struct bpf_insn *insn = &(prog->insnsi[i]);
2076		int ret;
2077
2078		ret = build_insn(insn, ctx);
2079
2080		/* It's used with loading the 64 bit immediate value. */
2081		if (ret > 0) {
2082			i++;
2083			if (ctx->target == NULL)
2084				ctx->offsets[i] = ctx->idx;
2085			continue;
2086		}
2087
2088		if (ctx->target == NULL)
2089			ctx->offsets[i] = ctx->idx;
2090
2091		/* If unsuccesful, return with error code */
2092		if (ret)
2093			return ret;
2094	}
2095	return 0;
2096}
2097
2098static int validate_code(struct jit_ctx *ctx)
2099{
2100	int i;
2101
2102	for (i = 0; i < ctx->idx; i++) {
2103		if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
2104			return -1;
2105	}
2106
2107	return 0;
2108}
2109
2110bool bpf_jit_needs_zext(void)
2111{
2112	return true;
2113}
2114
2115struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2116{
2117	struct bpf_prog *tmp, *orig_prog = prog;
2118	struct bpf_binary_header *header;
2119	bool tmp_blinded = false;
2120	struct jit_ctx ctx;
2121	unsigned int tmp_idx;
2122	unsigned int image_size;
2123	u8 *image_ptr;
2124
2125	/* If BPF JIT was not enabled then we must fall back to
2126	 * the interpreter.
2127	 */
2128	if (!prog->jit_requested)
2129		return orig_prog;
2130
2131	/* If constant blinding was enabled and we failed during blinding
2132	 * then we must fall back to the interpreter. Otherwise, we save
2133	 * the new JITed code.
2134	 */
2135	tmp = bpf_jit_blind_constants(prog);
2136
2137	if (IS_ERR(tmp))
2138		return orig_prog;
2139	if (tmp != prog) {
2140		tmp_blinded = true;
2141		prog = tmp;
2142	}
2143
2144	memset(&ctx, 0, sizeof(ctx));
2145	ctx.prog = prog;
2146	ctx.cpu_architecture = cpu_architecture();
2147
2148	/* Not able to allocate memory for offsets[] , then
2149	 * we must fall back to the interpreter
2150	 */
2151	ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
2152	if (ctx.offsets == NULL) {
2153		prog = orig_prog;
2154		goto out;
2155	}
2156
2157	/* 1) fake pass to find in the length of the JITed code,
2158	 * to compute ctx->offsets and other context variables
2159	 * needed to compute final JITed code.
2160	 * Also, calculate random starting pointer/start of JITed code
2161	 * which is prefixed by random number of fault instructions.
2162	 *
2163	 * If the first pass fails then there is no chance of it
2164	 * being successful in the second pass, so just fall back
2165	 * to the interpreter.
2166	 */
2167	if (build_body(&ctx)) {
2168		prog = orig_prog;
2169		goto out_off;
2170	}
2171
2172	tmp_idx = ctx.idx;
2173	build_prologue(&ctx);
2174	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
2175
2176	ctx.epilogue_offset = ctx.idx;
2177
2178#if __LINUX_ARM_ARCH__ < 7
2179	tmp_idx = ctx.idx;
2180	build_epilogue(&ctx);
2181	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
2182
2183	ctx.idx += ctx.imm_count;
2184	if (ctx.imm_count) {
2185		ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
2186		if (ctx.imms == NULL) {
2187			prog = orig_prog;
2188			goto out_off;
2189		}
2190	}
2191#else
2192	/* there's nothing about the epilogue on ARMv7 */
2193	build_epilogue(&ctx);
2194#endif
2195	/* Now we can get the actual image size of the JITed arm code.
2196	 * Currently, we are not considering the THUMB-2 instructions
2197	 * for jit, although it can decrease the size of the image.
2198	 *
2199	 * As each arm instruction is of length 32bit, we are translating
2200	 * number of JITed instructions into the size required to store these
2201	 * JITed code.
2202	 */
2203	image_size = sizeof(u32) * ctx.idx;
2204
2205	/* Now we know the size of the structure to make */
2206	header = bpf_jit_binary_alloc(image_size, &image_ptr,
2207				      sizeof(u32), jit_fill_hole);
2208	/* Not able to allocate memory for the structure then
2209	 * we must fall back to the interpretation
2210	 */
2211	if (header == NULL) {
2212		prog = orig_prog;
2213		goto out_imms;
2214	}
2215
2216	/* 2.) Actual pass to generate final JIT code */
2217	ctx.target = (u32 *) image_ptr;
2218	ctx.idx = 0;
2219
2220	build_prologue(&ctx);
2221
2222	/* If building the body of the JITed code fails somehow,
2223	 * we fall back to the interpretation.
2224	 */
2225	if (build_body(&ctx) < 0) {
2226		image_ptr = NULL;
 
 
 
2227		bpf_jit_binary_free(header);
2228		prog = orig_prog;
2229		goto out_imms;
2230	}
2231	build_epilogue(&ctx);
2232
2233	/* 3.) Extra pass to validate JITed Code */
2234	if (validate_code(&ctx)) {
2235		image_ptr = NULL;
2236		bpf_jit_binary_free(header);
2237		prog = orig_prog;
2238		goto out_imms;
2239	}
2240	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2241
2242	if (bpf_jit_enable > 1)
2243		/* there are 2 passes here */
2244		bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2245
2246	bpf_jit_binary_lock_ro(header);
2247	prog->bpf_func = (void *)ctx.target;
2248	prog->jited = 1;
2249	prog->jited_len = image_size;
2250
2251out_imms:
2252#if __LINUX_ARM_ARCH__ < 7
2253	if (ctx.imm_count)
2254		kfree(ctx.imms);
2255#endif
2256out_off:
 
 
 
 
 
 
 
 
2257	kfree(ctx.offsets);
2258out:
2259	if (tmp_blinded)
2260		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2261					   tmp : orig_prog);
2262	return prog;
2263}
2264