Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * Just-In-Time compiler for BPF filters on 32bit ARM
   3 *
   4 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation; version 2 of the License.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/compiler.h>
  13#include <linux/errno.h>
  14#include <linux/filter.h>
  15#include <linux/netdevice.h>
  16#include <linux/string.h>
  17#include <linux/slab.h>
  18#include <linux/if_vlan.h>
  19
  20#include <asm/cacheflush.h>
  21#include <asm/hwcap.h>
  22#include <asm/opcodes.h>
  23
  24#include "bpf_jit_32.h"
  25
  26/*
  27 * ABI:
  28 *
  29 * r0	scratch register
  30 * r4	BPF register A
  31 * r5	BPF register X
  32 * r6	pointer to the skb
  33 * r7	skb->data
  34 * r8	skb_headlen(skb)
  35 */
  36
  37#define r_scratch	ARM_R0
  38/* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */
  39#define r_off		ARM_R1
  40#define r_A		ARM_R4
  41#define r_X		ARM_R5
  42#define r_skb		ARM_R6
  43#define r_skb_data	ARM_R7
  44#define r_skb_hl	ARM_R8
  45
  46#define SCRATCH_SP_OFFSET	0
  47#define SCRATCH_OFF(k)		(SCRATCH_SP_OFFSET + 4 * (k))
  48
  49#define SEEN_MEM		((1 << BPF_MEMWORDS) - 1)
  50#define SEEN_MEM_WORD(k)	(1 << (k))
  51#define SEEN_X			(1 << BPF_MEMWORDS)
  52#define SEEN_CALL		(1 << (BPF_MEMWORDS + 1))
  53#define SEEN_SKB		(1 << (BPF_MEMWORDS + 2))
  54#define SEEN_DATA		(1 << (BPF_MEMWORDS + 3))
  55
  56#define FLAG_NEED_X_RESET	(1 << 0)
  57#define FLAG_IMM_OVERFLOW	(1 << 1)
  58
  59struct jit_ctx {
  60	const struct bpf_prog *skf;
  61	unsigned idx;
  62	unsigned prologue_bytes;
  63	int ret0_fp_idx;
  64	u32 seen;
  65	u32 flags;
  66	u32 *offsets;
  67	u32 *target;
  68#if __LINUX_ARM_ARCH__ < 7
  69	u16 epilogue_bytes;
  70	u16 imm_count;
  71	u32 *imms;
  72#endif
  73};
  74
  75int bpf_jit_enable __read_mostly;
  76
  77static inline int call_neg_helper(struct sk_buff *skb, int offset, void *ret,
  78		      unsigned int size)
  79{
  80	void *ptr = bpf_internal_load_pointer_neg_helper(skb, offset, size);
  81
  82	if (!ptr)
  83		return -EFAULT;
  84	memcpy(ret, ptr, size);
  85	return 0;
  86}
  87
  88static u64 jit_get_skb_b(struct sk_buff *skb, int offset)
  89{
  90	u8 ret;
  91	int err;
  92
  93	if (offset < 0)
  94		err = call_neg_helper(skb, offset, &ret, 1);
  95	else
  96		err = skb_copy_bits(skb, offset, &ret, 1);
  97
  98	return (u64)err << 32 | ret;
  99}
 100
 101static u64 jit_get_skb_h(struct sk_buff *skb, int offset)
 102{
 103	u16 ret;
 104	int err;
 105
 106	if (offset < 0)
 107		err = call_neg_helper(skb, offset, &ret, 2);
 108	else
 109		err = skb_copy_bits(skb, offset, &ret, 2);
 110
 111	return (u64)err << 32 | ntohs(ret);
 112}
 113
 114static u64 jit_get_skb_w(struct sk_buff *skb, int offset)
 115{
 116	u32 ret;
 117	int err;
 118
 119	if (offset < 0)
 120		err = call_neg_helper(skb, offset, &ret, 4);
 121	else
 122		err = skb_copy_bits(skb, offset, &ret, 4);
 123
 124	return (u64)err << 32 | ntohl(ret);
 125}
 126
 127/*
 128 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 129 * (where the assembly routines like __aeabi_uidiv could cause problems).
 130 */
 131static u32 jit_udiv(u32 dividend, u32 divisor)
 132{
 133	return dividend / divisor;
 134}
 135
 136static u32 jit_mod(u32 dividend, u32 divisor)
 137{
 138	return dividend % divisor;
 139}
 140
 141static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 142{
 143	inst |= (cond << 28);
 144	inst = __opcode_to_mem_arm(inst);
 145
 146	if (ctx->target != NULL)
 147		ctx->target[ctx->idx] = inst;
 148
 149	ctx->idx++;
 150}
 151
 152/*
 153 * Emit an instruction that will be executed unconditionally.
 154 */
 155static inline void emit(u32 inst, struct jit_ctx *ctx)
 156{
 157	_emit(ARM_COND_AL, inst, ctx);
 158}
 159
 160static u16 saved_regs(struct jit_ctx *ctx)
 161{
 162	u16 ret = 0;
 163
 164	if ((ctx->skf->len > 1) ||
 165	    (ctx->skf->insns[0].code == (BPF_RET | BPF_A)))
 166		ret |= 1 << r_A;
 167
 168#ifdef CONFIG_FRAME_POINTER
 169	ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC);
 170#else
 171	if (ctx->seen & SEEN_CALL)
 172		ret |= 1 << ARM_LR;
 173#endif
 174	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
 175		ret |= 1 << r_skb;
 176	if (ctx->seen & SEEN_DATA)
 177		ret |= (1 << r_skb_data) | (1 << r_skb_hl);
 178	if (ctx->seen & SEEN_X)
 179		ret |= 1 << r_X;
 180
 181	return ret;
 182}
 183
 184static inline int mem_words_used(struct jit_ctx *ctx)
 185{
 186	/* yes, we do waste some stack space IF there are "holes" in the set" */
 187	return fls(ctx->seen & SEEN_MEM);
 188}
 189
 190static void jit_fill_hole(void *area, unsigned int size)
 191{
 192	u32 *ptr;
 193	/* We are guaranteed to have aligned memory. */
 194	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 195		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 196}
 197
 198static void build_prologue(struct jit_ctx *ctx)
 199{
 200	u16 reg_set = saved_regs(ctx);
 201	u16 off;
 202
 203#ifdef CONFIG_FRAME_POINTER
 204	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
 205	emit(ARM_PUSH(reg_set), ctx);
 206	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
 207#else
 208	if (reg_set)
 209		emit(ARM_PUSH(reg_set), ctx);
 210#endif
 211
 212	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
 213		emit(ARM_MOV_R(r_skb, ARM_R0), ctx);
 214
 215	if (ctx->seen & SEEN_DATA) {
 216		off = offsetof(struct sk_buff, data);
 217		emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx);
 218		/* headlen = len - data_len */
 219		off = offsetof(struct sk_buff, len);
 220		emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx);
 221		off = offsetof(struct sk_buff, data_len);
 222		emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
 223		emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx);
 224	}
 225
 226	if (ctx->flags & FLAG_NEED_X_RESET)
 227		emit(ARM_MOV_I(r_X, 0), ctx);
 228
 229	/* do not leak kernel data to userspace */
 230	if (bpf_needs_clear_a(&ctx->skf->insns[0]))
 231		emit(ARM_MOV_I(r_A, 0), ctx);
 232
 233	/* stack space for the BPF_MEM words */
 234	if (ctx->seen & SEEN_MEM)
 235		emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
 236}
 237
 238static void build_epilogue(struct jit_ctx *ctx)
 239{
 240	u16 reg_set = saved_regs(ctx);
 241
 242	if (ctx->seen & SEEN_MEM)
 243		emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
 244
 245	reg_set &= ~(1 << ARM_LR);
 246
 247#ifdef CONFIG_FRAME_POINTER
 248	/* the first instruction of the prologue was: mov ip, sp */
 249	reg_set &= ~(1 << ARM_IP);
 250	reg_set |= (1 << ARM_SP);
 251	emit(ARM_LDM(ARM_SP, reg_set), ctx);
 252#else
 253	if (reg_set) {
 254		if (ctx->seen & SEEN_CALL)
 255			reg_set |= 1 << ARM_PC;
 256		emit(ARM_POP(reg_set), ctx);
 257	}
 258
 259	if (!(ctx->seen & SEEN_CALL))
 260		emit(ARM_BX(ARM_LR), ctx);
 261#endif
 262}
 263
 264static int16_t imm8m(u32 x)
 265{
 266	u32 rot;
 267
 268	for (rot = 0; rot < 16; rot++)
 269		if ((x & ~ror32(0xff, 2 * rot)) == 0)
 270			return rol32(x, 2 * rot) | (rot << 8);
 271
 272	return -1;
 273}
 274
 275#if __LINUX_ARM_ARCH__ < 7
 276
 277static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 278{
 279	unsigned i = 0, offset;
 280	u16 imm;
 281
 282	/* on the "fake" run we just count them (duplicates included) */
 283	if (ctx->target == NULL) {
 284		ctx->imm_count++;
 285		return 0;
 286	}
 287
 288	while ((i < ctx->imm_count) && ctx->imms[i]) {
 289		if (ctx->imms[i] == k)
 290			break;
 291		i++;
 292	}
 293
 294	if (ctx->imms[i] == 0)
 295		ctx->imms[i] = k;
 296
 297	/* constants go just after the epilogue */
 298	offset =  ctx->offsets[ctx->skf->len];
 299	offset += ctx->prologue_bytes;
 300	offset += ctx->epilogue_bytes;
 301	offset += i * 4;
 302
 303	ctx->target[offset / 4] = k;
 304
 305	/* PC in ARM mode == address of the instruction + 8 */
 306	imm = offset - (8 + ctx->idx * 4);
 307
 308	if (imm & ~0xfff) {
 309		/*
 310		 * literal pool is too far, signal it into flags. we
 311		 * can only detect it on the second pass unfortunately.
 312		 */
 313		ctx->flags |= FLAG_IMM_OVERFLOW;
 314		return 0;
 315	}
 316
 317	return imm;
 318}
 319
 320#endif /* __LINUX_ARM_ARCH__ */
 321
 322/*
 323 * Move an immediate that's not an imm8m to a core register.
 324 */
 325static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx)
 326{
 327#if __LINUX_ARM_ARCH__ < 7
 328	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 329#else
 330	emit(ARM_MOVW(rd, val & 0xffff), ctx);
 331	if (val > 0xffff)
 332		emit(ARM_MOVT(rd, val >> 16), ctx);
 333#endif
 334}
 335
 336static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx)
 337{
 338	int imm12 = imm8m(val);
 339
 340	if (imm12 >= 0)
 341		emit(ARM_MOV_I(rd, imm12), ctx);
 342	else
 343		emit_mov_i_no8m(rd, val, ctx);
 344}
 345
 346#if __LINUX_ARM_ARCH__ < 6
 347
 348static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
 349{
 350	_emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx);
 351	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
 352	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx);
 353	_emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx);
 354	_emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx);
 355	_emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx);
 356	_emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx);
 357	_emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx);
 358}
 359
 360static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
 361{
 362	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
 363	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx);
 364	_emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx);
 365}
 366
 367static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx)
 368{
 369	/* r_dst = (r_src << 8) | (r_src >> 8) */
 370	emit(ARM_LSL_I(ARM_R1, r_src, 8), ctx);
 371	emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSR, 8), ctx);
 372
 373	/*
 374	 * we need to mask out the bits set in r_dst[23:16] due to
 375	 * the first shift instruction.
 376	 *
 377	 * note that 0x8ff is the encoded immediate 0x00ff0000.
 378	 */
 379	emit(ARM_BIC_I(r_dst, r_dst, 0x8ff), ctx);
 380}
 381
 382#else  /* ARMv6+ */
 383
 384static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
 385{
 386	_emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx);
 387#ifdef __LITTLE_ENDIAN
 388	_emit(cond, ARM_REV(r_res, r_res), ctx);
 389#endif
 390}
 391
 392static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
 393{
 394	_emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx);
 395#ifdef __LITTLE_ENDIAN
 396	_emit(cond, ARM_REV16(r_res, r_res), ctx);
 397#endif
 398}
 399
 400static inline void emit_swap16(u8 r_dst __maybe_unused,
 401			       u8 r_src __maybe_unused,
 402			       struct jit_ctx *ctx __maybe_unused)
 403{
 404#ifdef __LITTLE_ENDIAN
 405	emit(ARM_REV16(r_dst, r_src), ctx);
 406#endif
 407}
 408
 409#endif /* __LINUX_ARM_ARCH__ < 6 */
 410
 411
 412/* Compute the immediate value for a PC-relative branch. */
 413static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx)
 414{
 415	u32 imm;
 416
 417	if (ctx->target == NULL)
 418		return 0;
 419	/*
 420	 * BPF allows only forward jumps and the offset of the target is
 421	 * still the one computed during the first pass.
 422	 */
 423	imm  = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8);
 424
 425	return imm >> 2;
 426}
 427
 428#define OP_IMM3(op, r1, r2, imm_val, ctx)				\
 429	do {								\
 430		imm12 = imm8m(imm_val);					\
 431		if (imm12 < 0) {					\
 432			emit_mov_i_no8m(r_scratch, imm_val, ctx);	\
 433			emit(op ## _R((r1), (r2), r_scratch), ctx);	\
 434		} else {						\
 435			emit(op ## _I((r1), (r2), imm12), ctx);		\
 436		}							\
 437	} while (0)
 438
 439static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx)
 440{
 441	if (ctx->ret0_fp_idx >= 0) {
 442		_emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx);
 443		/* NOP to keep the size constant between passes */
 444		emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx);
 445	} else {
 446		_emit(cond, ARM_MOV_I(ARM_R0, 0), ctx);
 447		_emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx);
 448	}
 449}
 450
 451static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 452{
 453#if __LINUX_ARM_ARCH__ < 5
 454	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 455
 456	if (elf_hwcap & HWCAP_THUMB)
 457		emit(ARM_BX(tgt_reg), ctx);
 458	else
 459		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 460#else
 461	emit(ARM_BLX_R(tgt_reg), ctx);
 462#endif
 463}
 464
 465static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx,
 466				int bpf_op)
 467{
 468#if __LINUX_ARM_ARCH__ == 7
 469	if (elf_hwcap & HWCAP_IDIVA) {
 470		if (bpf_op == BPF_DIV)
 471			emit(ARM_UDIV(rd, rm, rn), ctx);
 472		else {
 473			emit(ARM_UDIV(ARM_R3, rm, rn), ctx);
 474			emit(ARM_MLS(rd, rn, ARM_R3, rm), ctx);
 475		}
 476		return;
 477	}
 478#endif
 479
 480	/*
 481	 * For BPF_ALU | BPF_DIV | BPF_K instructions, rm is ARM_R4
 482	 * (r_A) and rn is ARM_R0 (r_scratch) so load rn first into
 483	 * ARM_R1 to avoid accidentally overwriting ARM_R0 with rm
 484	 * before using it as a source for ARM_R1.
 485	 *
 486	 * For BPF_ALU | BPF_DIV | BPF_X rm is ARM_R4 (r_A) and rn is
 487	 * ARM_R5 (r_X) so there is no particular register overlap
 488	 * issues.
 489	 */
 490	if (rn != ARM_R1)
 491		emit(ARM_MOV_R(ARM_R1, rn), ctx);
 492	if (rm != ARM_R0)
 493		emit(ARM_MOV_R(ARM_R0, rm), ctx);
 494
 495	ctx->seen |= SEEN_CALL;
 496	emit_mov_i(ARM_R3, bpf_op == BPF_DIV ? (u32)jit_udiv : (u32)jit_mod,
 497		   ctx);
 498	emit_blx_r(ARM_R3, ctx);
 499
 500	if (rd != ARM_R0)
 501		emit(ARM_MOV_R(rd, ARM_R0), ctx);
 502}
 503
 504static inline void update_on_xread(struct jit_ctx *ctx)
 505{
 506	if (!(ctx->seen & SEEN_X))
 507		ctx->flags |= FLAG_NEED_X_RESET;
 508
 509	ctx->seen |= SEEN_X;
 510}
 511
 512static int build_body(struct jit_ctx *ctx)
 513{
 514	void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w};
 515	const struct bpf_prog *prog = ctx->skf;
 516	const struct sock_filter *inst;
 517	unsigned i, load_order, off, condt;
 518	int imm12;
 519	u32 k;
 520
 521	for (i = 0; i < prog->len; i++) {
 522		u16 code;
 523
 524		inst = &(prog->insns[i]);
 525		/* K as an immediate value operand */
 526		k = inst->k;
 527		code = bpf_anc_helper(inst);
 528
 529		/* compute offsets only in the fake pass */
 530		if (ctx->target == NULL)
 531			ctx->offsets[i] = ctx->idx * 4;
 532
 533		switch (code) {
 534		case BPF_LD | BPF_IMM:
 535			emit_mov_i(r_A, k, ctx);
 536			break;
 537		case BPF_LD | BPF_W | BPF_LEN:
 538			ctx->seen |= SEEN_SKB;
 539			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
 540			emit(ARM_LDR_I(r_A, r_skb,
 541				       offsetof(struct sk_buff, len)), ctx);
 542			break;
 543		case BPF_LD | BPF_MEM:
 544			/* A = scratch[k] */
 545			ctx->seen |= SEEN_MEM_WORD(k);
 546			emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
 547			break;
 548		case BPF_LD | BPF_W | BPF_ABS:
 549			load_order = 2;
 550			goto load;
 551		case BPF_LD | BPF_H | BPF_ABS:
 552			load_order = 1;
 553			goto load;
 554		case BPF_LD | BPF_B | BPF_ABS:
 555			load_order = 0;
 556load:
 557			emit_mov_i(r_off, k, ctx);
 558load_common:
 559			ctx->seen |= SEEN_DATA | SEEN_CALL;
 560
 561			if (load_order > 0) {
 562				emit(ARM_SUB_I(r_scratch, r_skb_hl,
 563					       1 << load_order), ctx);
 564				emit(ARM_CMP_R(r_scratch, r_off), ctx);
 565				condt = ARM_COND_GE;
 566			} else {
 567				emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
 568				condt = ARM_COND_HI;
 569			}
 570
 571			/*
 572			 * test for negative offset, only if we are
 573			 * currently scheduled to take the fast
 574			 * path. this will update the flags so that
 575			 * the slowpath instruction are ignored if the
 576			 * offset is negative.
 577			 *
 578			 * for loard_order == 0 the HI condition will
 579			 * make loads at offset 0 take the slow path too.
 580			 */
 581			_emit(condt, ARM_CMP_I(r_off, 0), ctx);
 582
 583			_emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data),
 584			      ctx);
 585
 586			if (load_order == 0)
 587				_emit(condt, ARM_LDRB_I(r_A, r_scratch, 0),
 588				      ctx);
 589			else if (load_order == 1)
 590				emit_load_be16(condt, r_A, r_scratch, ctx);
 591			else if (load_order == 2)
 592				emit_load_be32(condt, r_A, r_scratch, ctx);
 593
 594			_emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx);
 595
 596			/* the slowpath */
 597			emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx);
 598			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
 599			/* the offset is already in R1 */
 600			emit_blx_r(ARM_R3, ctx);
 601			/* check the result of skb_copy_bits */
 602			emit(ARM_CMP_I(ARM_R1, 0), ctx);
 603			emit_err_ret(ARM_COND_NE, ctx);
 604			emit(ARM_MOV_R(r_A, ARM_R0), ctx);
 605			break;
 606		case BPF_LD | BPF_W | BPF_IND:
 607			load_order = 2;
 608			goto load_ind;
 609		case BPF_LD | BPF_H | BPF_IND:
 610			load_order = 1;
 611			goto load_ind;
 612		case BPF_LD | BPF_B | BPF_IND:
 613			load_order = 0;
 614load_ind:
 615			update_on_xread(ctx);
 616			OP_IMM3(ARM_ADD, r_off, r_X, k, ctx);
 617			goto load_common;
 618		case BPF_LDX | BPF_IMM:
 619			ctx->seen |= SEEN_X;
 620			emit_mov_i(r_X, k, ctx);
 621			break;
 622		case BPF_LDX | BPF_W | BPF_LEN:
 623			ctx->seen |= SEEN_X | SEEN_SKB;
 624			emit(ARM_LDR_I(r_X, r_skb,
 625				       offsetof(struct sk_buff, len)), ctx);
 626			break;
 627		case BPF_LDX | BPF_MEM:
 628			ctx->seen |= SEEN_X | SEEN_MEM_WORD(k);
 629			emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
 630			break;
 631		case BPF_LDX | BPF_B | BPF_MSH:
 632			/* x = ((*(frame + k)) & 0xf) << 2; */
 633			ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL;
 634			/* the interpreter should deal with the negative K */
 635			if ((int)k < 0)
 636				return -1;
 637			/* offset in r1: we might have to take the slow path */
 638			emit_mov_i(r_off, k, ctx);
 639			emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
 640
 641			/* load in r0: common with the slowpath */
 642			_emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data,
 643						      ARM_R1), ctx);
 644			/*
 645			 * emit_mov_i() might generate one or two instructions,
 646			 * the same holds for emit_blx_r()
 647			 */
 648			_emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx);
 649
 650			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
 651			/* r_off is r1 */
 652			emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx);
 653			emit_blx_r(ARM_R3, ctx);
 654			/* check the return value of skb_copy_bits */
 655			emit(ARM_CMP_I(ARM_R1, 0), ctx);
 656			emit_err_ret(ARM_COND_NE, ctx);
 657
 658			emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx);
 659			emit(ARM_LSL_I(r_X, r_X, 2), ctx);
 660			break;
 661		case BPF_ST:
 662			ctx->seen |= SEEN_MEM_WORD(k);
 663			emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
 664			break;
 665		case BPF_STX:
 666			update_on_xread(ctx);
 667			ctx->seen |= SEEN_MEM_WORD(k);
 668			emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
 669			break;
 670		case BPF_ALU | BPF_ADD | BPF_K:
 671			/* A += K */
 672			OP_IMM3(ARM_ADD, r_A, r_A, k, ctx);
 673			break;
 674		case BPF_ALU | BPF_ADD | BPF_X:
 675			update_on_xread(ctx);
 676			emit(ARM_ADD_R(r_A, r_A, r_X), ctx);
 677			break;
 678		case BPF_ALU | BPF_SUB | BPF_K:
 679			/* A -= K */
 680			OP_IMM3(ARM_SUB, r_A, r_A, k, ctx);
 681			break;
 682		case BPF_ALU | BPF_SUB | BPF_X:
 683			update_on_xread(ctx);
 684			emit(ARM_SUB_R(r_A, r_A, r_X), ctx);
 685			break;
 686		case BPF_ALU | BPF_MUL | BPF_K:
 687			/* A *= K */
 688			emit_mov_i(r_scratch, k, ctx);
 689			emit(ARM_MUL(r_A, r_A, r_scratch), ctx);
 690			break;
 691		case BPF_ALU | BPF_MUL | BPF_X:
 692			update_on_xread(ctx);
 693			emit(ARM_MUL(r_A, r_A, r_X), ctx);
 694			break;
 695		case BPF_ALU | BPF_DIV | BPF_K:
 696			if (k == 1)
 697				break;
 698			emit_mov_i(r_scratch, k, ctx);
 699			emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_DIV);
 700			break;
 701		case BPF_ALU | BPF_DIV | BPF_X:
 702			update_on_xread(ctx);
 703			emit(ARM_CMP_I(r_X, 0), ctx);
 704			emit_err_ret(ARM_COND_EQ, ctx);
 705			emit_udivmod(r_A, r_A, r_X, ctx, BPF_DIV);
 706			break;
 707		case BPF_ALU | BPF_MOD | BPF_K:
 708			if (k == 1) {
 709				emit_mov_i(r_A, 0, ctx);
 710				break;
 711			}
 712			emit_mov_i(r_scratch, k, ctx);
 713			emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_MOD);
 714			break;
 715		case BPF_ALU | BPF_MOD | BPF_X:
 716			update_on_xread(ctx);
 717			emit(ARM_CMP_I(r_X, 0), ctx);
 718			emit_err_ret(ARM_COND_EQ, ctx);
 719			emit_udivmod(r_A, r_A, r_X, ctx, BPF_MOD);
 720			break;
 721		case BPF_ALU | BPF_OR | BPF_K:
 722			/* A |= K */
 723			OP_IMM3(ARM_ORR, r_A, r_A, k, ctx);
 724			break;
 725		case BPF_ALU | BPF_OR | BPF_X:
 726			update_on_xread(ctx);
 727			emit(ARM_ORR_R(r_A, r_A, r_X), ctx);
 728			break;
 729		case BPF_ALU | BPF_XOR | BPF_K:
 730			/* A ^= K; */
 731			OP_IMM3(ARM_EOR, r_A, r_A, k, ctx);
 732			break;
 733		case BPF_ANC | SKF_AD_ALU_XOR_X:
 734		case BPF_ALU | BPF_XOR | BPF_X:
 735			/* A ^= X */
 736			update_on_xread(ctx);
 737			emit(ARM_EOR_R(r_A, r_A, r_X), ctx);
 738			break;
 739		case BPF_ALU | BPF_AND | BPF_K:
 740			/* A &= K */
 741			OP_IMM3(ARM_AND, r_A, r_A, k, ctx);
 742			break;
 743		case BPF_ALU | BPF_AND | BPF_X:
 744			update_on_xread(ctx);
 745			emit(ARM_AND_R(r_A, r_A, r_X), ctx);
 746			break;
 747		case BPF_ALU | BPF_LSH | BPF_K:
 748			if (unlikely(k > 31))
 749				return -1;
 750			emit(ARM_LSL_I(r_A, r_A, k), ctx);
 751			break;
 752		case BPF_ALU | BPF_LSH | BPF_X:
 753			update_on_xread(ctx);
 754			emit(ARM_LSL_R(r_A, r_A, r_X), ctx);
 755			break;
 756		case BPF_ALU | BPF_RSH | BPF_K:
 757			if (unlikely(k > 31))
 758				return -1;
 759			if (k)
 760				emit(ARM_LSR_I(r_A, r_A, k), ctx);
 761			break;
 762		case BPF_ALU | BPF_RSH | BPF_X:
 763			update_on_xread(ctx);
 764			emit(ARM_LSR_R(r_A, r_A, r_X), ctx);
 765			break;
 766		case BPF_ALU | BPF_NEG:
 767			/* A = -A */
 768			emit(ARM_RSB_I(r_A, r_A, 0), ctx);
 769			break;
 770		case BPF_JMP | BPF_JA:
 771			/* pc += K */
 772			emit(ARM_B(b_imm(i + k + 1, ctx)), ctx);
 773			break;
 774		case BPF_JMP | BPF_JEQ | BPF_K:
 775			/* pc += (A == K) ? pc->jt : pc->jf */
 776			condt  = ARM_COND_EQ;
 777			goto cmp_imm;
 778		case BPF_JMP | BPF_JGT | BPF_K:
 779			/* pc += (A > K) ? pc->jt : pc->jf */
 780			condt  = ARM_COND_HI;
 781			goto cmp_imm;
 782		case BPF_JMP | BPF_JGE | BPF_K:
 783			/* pc += (A >= K) ? pc->jt : pc->jf */
 784			condt  = ARM_COND_HS;
 785cmp_imm:
 786			imm12 = imm8m(k);
 787			if (imm12 < 0) {
 788				emit_mov_i_no8m(r_scratch, k, ctx);
 789				emit(ARM_CMP_R(r_A, r_scratch), ctx);
 790			} else {
 791				emit(ARM_CMP_I(r_A, imm12), ctx);
 792			}
 793cond_jump:
 794			if (inst->jt)
 795				_emit(condt, ARM_B(b_imm(i + inst->jt + 1,
 796						   ctx)), ctx);
 797			if (inst->jf)
 798				_emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1,
 799							     ctx)), ctx);
 800			break;
 801		case BPF_JMP | BPF_JEQ | BPF_X:
 802			/* pc += (A == X) ? pc->jt : pc->jf */
 803			condt   = ARM_COND_EQ;
 804			goto cmp_x;
 805		case BPF_JMP | BPF_JGT | BPF_X:
 806			/* pc += (A > X) ? pc->jt : pc->jf */
 807			condt   = ARM_COND_HI;
 808			goto cmp_x;
 809		case BPF_JMP | BPF_JGE | BPF_X:
 810			/* pc += (A >= X) ? pc->jt : pc->jf */
 811			condt   = ARM_COND_CS;
 812cmp_x:
 813			update_on_xread(ctx);
 814			emit(ARM_CMP_R(r_A, r_X), ctx);
 815			goto cond_jump;
 816		case BPF_JMP | BPF_JSET | BPF_K:
 817			/* pc += (A & K) ? pc->jt : pc->jf */
 818			condt  = ARM_COND_NE;
 819			/* not set iff all zeroes iff Z==1 iff EQ */
 820
 821			imm12 = imm8m(k);
 822			if (imm12 < 0) {
 823				emit_mov_i_no8m(r_scratch, k, ctx);
 824				emit(ARM_TST_R(r_A, r_scratch), ctx);
 825			} else {
 826				emit(ARM_TST_I(r_A, imm12), ctx);
 827			}
 828			goto cond_jump;
 829		case BPF_JMP | BPF_JSET | BPF_X:
 830			/* pc += (A & X) ? pc->jt : pc->jf */
 831			update_on_xread(ctx);
 832			condt  = ARM_COND_NE;
 833			emit(ARM_TST_R(r_A, r_X), ctx);
 834			goto cond_jump;
 835		case BPF_RET | BPF_A:
 836			emit(ARM_MOV_R(ARM_R0, r_A), ctx);
 837			goto b_epilogue;
 838		case BPF_RET | BPF_K:
 839			if ((k == 0) && (ctx->ret0_fp_idx < 0))
 840				ctx->ret0_fp_idx = i;
 841			emit_mov_i(ARM_R0, k, ctx);
 842b_epilogue:
 843			if (i != ctx->skf->len - 1)
 844				emit(ARM_B(b_imm(prog->len, ctx)), ctx);
 845			break;
 846		case BPF_MISC | BPF_TAX:
 847			/* X = A */
 848			ctx->seen |= SEEN_X;
 849			emit(ARM_MOV_R(r_X, r_A), ctx);
 850			break;
 851		case BPF_MISC | BPF_TXA:
 852			/* A = X */
 853			update_on_xread(ctx);
 854			emit(ARM_MOV_R(r_A, r_X), ctx);
 855			break;
 856		case BPF_ANC | SKF_AD_PROTOCOL:
 857			/* A = ntohs(skb->protocol) */
 858			ctx->seen |= SEEN_SKB;
 859			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
 860						  protocol) != 2);
 861			off = offsetof(struct sk_buff, protocol);
 862			emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx);
 863			emit_swap16(r_A, r_scratch, ctx);
 864			break;
 865		case BPF_ANC | SKF_AD_CPU:
 866			/* r_scratch = current_thread_info() */
 867			OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx);
 868			/* A = current_thread_info()->cpu */
 869			BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4);
 870			off = offsetof(struct thread_info, cpu);
 871			emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
 872			break;
 873		case BPF_ANC | SKF_AD_IFINDEX:
 874		case BPF_ANC | SKF_AD_HATYPE:
 875			/* A = skb->dev->ifindex */
 876			/* A = skb->dev->type */
 877			ctx->seen |= SEEN_SKB;
 878			off = offsetof(struct sk_buff, dev);
 879			emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
 880
 881			emit(ARM_CMP_I(r_scratch, 0), ctx);
 882			emit_err_ret(ARM_COND_EQ, ctx);
 883
 884			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
 885						  ifindex) != 4);
 886			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
 887						  type) != 2);
 888
 889			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
 890				off = offsetof(struct net_device, ifindex);
 891				emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
 892			} else {
 893				/*
 894				 * offset of field "type" in "struct
 895				 * net_device" is above what can be
 896				 * used in the ldrh rd, [rn, #imm]
 897				 * instruction, so load the offset in
 898				 * a register and use ldrh rd, [rn, rm]
 899				 */
 900				off = offsetof(struct net_device, type);
 901				emit_mov_i(ARM_R3, off, ctx);
 902				emit(ARM_LDRH_R(r_A, r_scratch, ARM_R3), ctx);
 903			}
 904			break;
 905		case BPF_ANC | SKF_AD_MARK:
 906			ctx->seen |= SEEN_SKB;
 907			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
 908			off = offsetof(struct sk_buff, mark);
 909			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
 910			break;
 911		case BPF_ANC | SKF_AD_RXHASH:
 912			ctx->seen |= SEEN_SKB;
 913			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
 914			off = offsetof(struct sk_buff, hash);
 915			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
 916			break;
 917		case BPF_ANC | SKF_AD_VLAN_TAG:
 918		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
 919			ctx->seen |= SEEN_SKB;
 920			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
 921			off = offsetof(struct sk_buff, vlan_tci);
 922			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
 923			if (code == (BPF_ANC | SKF_AD_VLAN_TAG))
 924				OP_IMM3(ARM_AND, r_A, r_A, ~VLAN_TAG_PRESENT, ctx);
 925			else {
 926				OP_IMM3(ARM_LSR, r_A, r_A, 12, ctx);
 927				OP_IMM3(ARM_AND, r_A, r_A, 0x1, ctx);
 928			}
 929			break;
 930		case BPF_ANC | SKF_AD_PKTTYPE:
 931			ctx->seen |= SEEN_SKB;
 932			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
 933						  __pkt_type_offset[0]) != 1);
 934			off = PKT_TYPE_OFFSET();
 935			emit(ARM_LDRB_I(r_A, r_skb, off), ctx);
 936			emit(ARM_AND_I(r_A, r_A, PKT_TYPE_MAX), ctx);
 937#ifdef __BIG_ENDIAN_BITFIELD
 938			emit(ARM_LSR_I(r_A, r_A, 5), ctx);
 939#endif
 940			break;
 941		case BPF_ANC | SKF_AD_QUEUE:
 942			ctx->seen |= SEEN_SKB;
 943			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
 944						  queue_mapping) != 2);
 945			BUILD_BUG_ON(offsetof(struct sk_buff,
 946					      queue_mapping) > 0xff);
 947			off = offsetof(struct sk_buff, queue_mapping);
 948			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
 949			break;
 950		case BPF_ANC | SKF_AD_PAY_OFFSET:
 951			ctx->seen |= SEEN_SKB | SEEN_CALL;
 952
 953			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
 954			emit_mov_i(ARM_R3, (unsigned int)skb_get_poff, ctx);
 955			emit_blx_r(ARM_R3, ctx);
 956			emit(ARM_MOV_R(r_A, ARM_R0), ctx);
 957			break;
 958		case BPF_LDX | BPF_W | BPF_ABS:
 959			/*
 960			 * load a 32bit word from struct seccomp_data.
 961			 * seccomp_check_filter() will already have checked
 962			 * that k is 32bit aligned and lies within the
 963			 * struct seccomp_data.
 964			 */
 965			ctx->seen |= SEEN_SKB;
 966			emit(ARM_LDR_I(r_A, r_skb, k), ctx);
 967			break;
 968		default:
 969			return -1;
 970		}
 971
 972		if (ctx->flags & FLAG_IMM_OVERFLOW)
 973			/*
 974			 * this instruction generated an overflow when
 975			 * trying to access the literal pool, so
 976			 * delegate this filter to the kernel interpreter.
 977			 */
 978			return -1;
 979	}
 980
 981	/* compute offsets only during the first pass */
 982	if (ctx->target == NULL)
 983		ctx->offsets[i] = ctx->idx * 4;
 984
 985	return 0;
 986}
 987
 988
 989void bpf_jit_compile(struct bpf_prog *fp)
 990{
 991	struct bpf_binary_header *header;
 992	struct jit_ctx ctx;
 993	unsigned tmp_idx;
 994	unsigned alloc_size;
 995	u8 *target_ptr;
 996
 997	if (!bpf_jit_enable)
 998		return;
 999
1000	memset(&ctx, 0, sizeof(ctx));
1001	ctx.skf		= fp;
1002	ctx.ret0_fp_idx = -1;
1003
1004	ctx.offsets = kzalloc(4 * (ctx.skf->len + 1), GFP_KERNEL);
1005	if (ctx.offsets == NULL)
1006		return;
1007
1008	/* fake pass to fill in the ctx->seen */
1009	if (unlikely(build_body(&ctx)))
1010		goto out;
1011
1012	tmp_idx = ctx.idx;
1013	build_prologue(&ctx);
1014	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1015
1016#if __LINUX_ARM_ARCH__ < 7
1017	tmp_idx = ctx.idx;
1018	build_epilogue(&ctx);
1019	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1020
1021	ctx.idx += ctx.imm_count;
1022	if (ctx.imm_count) {
1023		ctx.imms = kzalloc(4 * ctx.imm_count, GFP_KERNEL);
1024		if (ctx.imms == NULL)
1025			goto out;
1026	}
1027#else
1028	/* there's nothing after the epilogue on ARMv7 */
1029	build_epilogue(&ctx);
1030#endif
1031	alloc_size = 4 * ctx.idx;
1032	header = bpf_jit_binary_alloc(alloc_size, &target_ptr,
1033				      4, jit_fill_hole);
1034	if (header == NULL)
1035		goto out;
1036
1037	ctx.target = (u32 *) target_ptr;
1038	ctx.idx = 0;
1039
1040	build_prologue(&ctx);
1041	if (build_body(&ctx) < 0) {
1042#if __LINUX_ARM_ARCH__ < 7
1043		if (ctx.imm_count)
1044			kfree(ctx.imms);
1045#endif
1046		bpf_jit_binary_free(header);
1047		goto out;
1048	}
1049	build_epilogue(&ctx);
1050
1051	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
1052
1053#if __LINUX_ARM_ARCH__ < 7
1054	if (ctx.imm_count)
1055		kfree(ctx.imms);
1056#endif
1057
1058	if (bpf_jit_enable > 1)
1059		/* there are 2 passes here */
1060		bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
1061
1062	set_memory_ro((unsigned long)header, header->pages);
1063	fp->bpf_func = (void *)ctx.target;
1064	fp->jited = 1;
1065out:
1066	kfree(ctx.offsets);
1067	return;
1068}
1069
1070void bpf_jit_free(struct bpf_prog *fp)
1071{
1072	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1073	struct bpf_binary_header *header = (void *)addr;
1074
1075	if (!fp->jited)
1076		goto free_filter;
1077
1078	set_memory_rw(addr, header->pages);
1079	bpf_jit_binary_free(header);
1080
1081free_filter:
1082	bpf_prog_unlock_free(fp);
1083}
v4.10.11
   1/*
   2 * Just-In-Time compiler for BPF filters on 32bit ARM
   3 *
   4 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation; version 2 of the License.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/compiler.h>
  13#include <linux/errno.h>
  14#include <linux/filter.h>
  15#include <linux/netdevice.h>
  16#include <linux/string.h>
  17#include <linux/slab.h>
  18#include <linux/if_vlan.h>
  19
  20#include <asm/cacheflush.h>
  21#include <asm/hwcap.h>
  22#include <asm/opcodes.h>
  23
  24#include "bpf_jit_32.h"
  25
  26/*
  27 * ABI:
  28 *
  29 * r0	scratch register
  30 * r4	BPF register A
  31 * r5	BPF register X
  32 * r6	pointer to the skb
  33 * r7	skb->data
  34 * r8	skb_headlen(skb)
  35 */
  36
  37#define r_scratch	ARM_R0
  38/* r1-r3 are (also) used for the unaligned loads on the non-ARMv7 slowpath */
  39#define r_off		ARM_R1
  40#define r_A		ARM_R4
  41#define r_X		ARM_R5
  42#define r_skb		ARM_R6
  43#define r_skb_data	ARM_R7
  44#define r_skb_hl	ARM_R8
  45
  46#define SCRATCH_SP_OFFSET	0
  47#define SCRATCH_OFF(k)		(SCRATCH_SP_OFFSET + 4 * (k))
  48
  49#define SEEN_MEM		((1 << BPF_MEMWORDS) - 1)
  50#define SEEN_MEM_WORD(k)	(1 << (k))
  51#define SEEN_X			(1 << BPF_MEMWORDS)
  52#define SEEN_CALL		(1 << (BPF_MEMWORDS + 1))
  53#define SEEN_SKB		(1 << (BPF_MEMWORDS + 2))
  54#define SEEN_DATA		(1 << (BPF_MEMWORDS + 3))
  55
  56#define FLAG_NEED_X_RESET	(1 << 0)
  57#define FLAG_IMM_OVERFLOW	(1 << 1)
  58
  59struct jit_ctx {
  60	const struct bpf_prog *skf;
  61	unsigned idx;
  62	unsigned prologue_bytes;
  63	int ret0_fp_idx;
  64	u32 seen;
  65	u32 flags;
  66	u32 *offsets;
  67	u32 *target;
  68#if __LINUX_ARM_ARCH__ < 7
  69	u16 epilogue_bytes;
  70	u16 imm_count;
  71	u32 *imms;
  72#endif
  73};
  74
  75int bpf_jit_enable __read_mostly;
  76
  77static inline int call_neg_helper(struct sk_buff *skb, int offset, void *ret,
  78		      unsigned int size)
  79{
  80	void *ptr = bpf_internal_load_pointer_neg_helper(skb, offset, size);
  81
  82	if (!ptr)
  83		return -EFAULT;
  84	memcpy(ret, ptr, size);
  85	return 0;
  86}
  87
  88static u64 jit_get_skb_b(struct sk_buff *skb, int offset)
  89{
  90	u8 ret;
  91	int err;
  92
  93	if (offset < 0)
  94		err = call_neg_helper(skb, offset, &ret, 1);
  95	else
  96		err = skb_copy_bits(skb, offset, &ret, 1);
  97
  98	return (u64)err << 32 | ret;
  99}
 100
 101static u64 jit_get_skb_h(struct sk_buff *skb, int offset)
 102{
 103	u16 ret;
 104	int err;
 105
 106	if (offset < 0)
 107		err = call_neg_helper(skb, offset, &ret, 2);
 108	else
 109		err = skb_copy_bits(skb, offset, &ret, 2);
 110
 111	return (u64)err << 32 | ntohs(ret);
 112}
 113
 114static u64 jit_get_skb_w(struct sk_buff *skb, int offset)
 115{
 116	u32 ret;
 117	int err;
 118
 119	if (offset < 0)
 120		err = call_neg_helper(skb, offset, &ret, 4);
 121	else
 122		err = skb_copy_bits(skb, offset, &ret, 4);
 123
 124	return (u64)err << 32 | ntohl(ret);
 125}
 126
 127/*
 128 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 129 * (where the assembly routines like __aeabi_uidiv could cause problems).
 130 */
 131static u32 jit_udiv(u32 dividend, u32 divisor)
 132{
 133	return dividend / divisor;
 134}
 135
 136static u32 jit_mod(u32 dividend, u32 divisor)
 137{
 138	return dividend % divisor;
 139}
 140
 141static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 142{
 143	inst |= (cond << 28);
 144	inst = __opcode_to_mem_arm(inst);
 145
 146	if (ctx->target != NULL)
 147		ctx->target[ctx->idx] = inst;
 148
 149	ctx->idx++;
 150}
 151
 152/*
 153 * Emit an instruction that will be executed unconditionally.
 154 */
 155static inline void emit(u32 inst, struct jit_ctx *ctx)
 156{
 157	_emit(ARM_COND_AL, inst, ctx);
 158}
 159
 160static u16 saved_regs(struct jit_ctx *ctx)
 161{
 162	u16 ret = 0;
 163
 164	if ((ctx->skf->len > 1) ||
 165	    (ctx->skf->insns[0].code == (BPF_RET | BPF_A)))
 166		ret |= 1 << r_A;
 167
 168#ifdef CONFIG_FRAME_POINTER
 169	ret |= (1 << ARM_FP) | (1 << ARM_IP) | (1 << ARM_LR) | (1 << ARM_PC);
 170#else
 171	if (ctx->seen & SEEN_CALL)
 172		ret |= 1 << ARM_LR;
 173#endif
 174	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
 175		ret |= 1 << r_skb;
 176	if (ctx->seen & SEEN_DATA)
 177		ret |= (1 << r_skb_data) | (1 << r_skb_hl);
 178	if (ctx->seen & SEEN_X)
 179		ret |= 1 << r_X;
 180
 181	return ret;
 182}
 183
 184static inline int mem_words_used(struct jit_ctx *ctx)
 185{
 186	/* yes, we do waste some stack space IF there are "holes" in the set" */
 187	return fls(ctx->seen & SEEN_MEM);
 188}
 189
 190static void jit_fill_hole(void *area, unsigned int size)
 191{
 192	u32 *ptr;
 193	/* We are guaranteed to have aligned memory. */
 194	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 195		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 196}
 197
 198static void build_prologue(struct jit_ctx *ctx)
 199{
 200	u16 reg_set = saved_regs(ctx);
 201	u16 off;
 202
 203#ifdef CONFIG_FRAME_POINTER
 204	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
 205	emit(ARM_PUSH(reg_set), ctx);
 206	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
 207#else
 208	if (reg_set)
 209		emit(ARM_PUSH(reg_set), ctx);
 210#endif
 211
 212	if (ctx->seen & (SEEN_DATA | SEEN_SKB))
 213		emit(ARM_MOV_R(r_skb, ARM_R0), ctx);
 214
 215	if (ctx->seen & SEEN_DATA) {
 216		off = offsetof(struct sk_buff, data);
 217		emit(ARM_LDR_I(r_skb_data, r_skb, off), ctx);
 218		/* headlen = len - data_len */
 219		off = offsetof(struct sk_buff, len);
 220		emit(ARM_LDR_I(r_skb_hl, r_skb, off), ctx);
 221		off = offsetof(struct sk_buff, data_len);
 222		emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
 223		emit(ARM_SUB_R(r_skb_hl, r_skb_hl, r_scratch), ctx);
 224	}
 225
 226	if (ctx->flags & FLAG_NEED_X_RESET)
 227		emit(ARM_MOV_I(r_X, 0), ctx);
 228
 229	/* do not leak kernel data to userspace */
 230	if (bpf_needs_clear_a(&ctx->skf->insns[0]))
 231		emit(ARM_MOV_I(r_A, 0), ctx);
 232
 233	/* stack space for the BPF_MEM words */
 234	if (ctx->seen & SEEN_MEM)
 235		emit(ARM_SUB_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
 236}
 237
 238static void build_epilogue(struct jit_ctx *ctx)
 239{
 240	u16 reg_set = saved_regs(ctx);
 241
 242	if (ctx->seen & SEEN_MEM)
 243		emit(ARM_ADD_I(ARM_SP, ARM_SP, mem_words_used(ctx) * 4), ctx);
 244
 245	reg_set &= ~(1 << ARM_LR);
 246
 247#ifdef CONFIG_FRAME_POINTER
 248	/* the first instruction of the prologue was: mov ip, sp */
 249	reg_set &= ~(1 << ARM_IP);
 250	reg_set |= (1 << ARM_SP);
 251	emit(ARM_LDM(ARM_SP, reg_set), ctx);
 252#else
 253	if (reg_set) {
 254		if (ctx->seen & SEEN_CALL)
 255			reg_set |= 1 << ARM_PC;
 256		emit(ARM_POP(reg_set), ctx);
 257	}
 258
 259	if (!(ctx->seen & SEEN_CALL))
 260		emit(ARM_BX(ARM_LR), ctx);
 261#endif
 262}
 263
 264static int16_t imm8m(u32 x)
 265{
 266	u32 rot;
 267
 268	for (rot = 0; rot < 16; rot++)
 269		if ((x & ~ror32(0xff, 2 * rot)) == 0)
 270			return rol32(x, 2 * rot) | (rot << 8);
 271
 272	return -1;
 273}
 274
 275#if __LINUX_ARM_ARCH__ < 7
 276
 277static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 278{
 279	unsigned i = 0, offset;
 280	u16 imm;
 281
 282	/* on the "fake" run we just count them (duplicates included) */
 283	if (ctx->target == NULL) {
 284		ctx->imm_count++;
 285		return 0;
 286	}
 287
 288	while ((i < ctx->imm_count) && ctx->imms[i]) {
 289		if (ctx->imms[i] == k)
 290			break;
 291		i++;
 292	}
 293
 294	if (ctx->imms[i] == 0)
 295		ctx->imms[i] = k;
 296
 297	/* constants go just after the epilogue */
 298	offset =  ctx->offsets[ctx->skf->len];
 299	offset += ctx->prologue_bytes;
 300	offset += ctx->epilogue_bytes;
 301	offset += i * 4;
 302
 303	ctx->target[offset / 4] = k;
 304
 305	/* PC in ARM mode == address of the instruction + 8 */
 306	imm = offset - (8 + ctx->idx * 4);
 307
 308	if (imm & ~0xfff) {
 309		/*
 310		 * literal pool is too far, signal it into flags. we
 311		 * can only detect it on the second pass unfortunately.
 312		 */
 313		ctx->flags |= FLAG_IMM_OVERFLOW;
 314		return 0;
 315	}
 316
 317	return imm;
 318}
 319
 320#endif /* __LINUX_ARM_ARCH__ */
 321
 322/*
 323 * Move an immediate that's not an imm8m to a core register.
 324 */
 325static inline void emit_mov_i_no8m(int rd, u32 val, struct jit_ctx *ctx)
 326{
 327#if __LINUX_ARM_ARCH__ < 7
 328	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 329#else
 330	emit(ARM_MOVW(rd, val & 0xffff), ctx);
 331	if (val > 0xffff)
 332		emit(ARM_MOVT(rd, val >> 16), ctx);
 333#endif
 334}
 335
 336static inline void emit_mov_i(int rd, u32 val, struct jit_ctx *ctx)
 337{
 338	int imm12 = imm8m(val);
 339
 340	if (imm12 >= 0)
 341		emit(ARM_MOV_I(rd, imm12), ctx);
 342	else
 343		emit_mov_i_no8m(rd, val, ctx);
 344}
 345
 346#if __LINUX_ARM_ARCH__ < 6
 347
 348static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
 349{
 350	_emit(cond, ARM_LDRB_I(ARM_R3, r_addr, 1), ctx);
 351	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
 352	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 3), ctx);
 353	_emit(cond, ARM_LSL_I(ARM_R3, ARM_R3, 16), ctx);
 354	_emit(cond, ARM_LDRB_I(ARM_R0, r_addr, 2), ctx);
 355	_emit(cond, ARM_ORR_S(ARM_R3, ARM_R3, ARM_R1, SRTYPE_LSL, 24), ctx);
 356	_emit(cond, ARM_ORR_R(ARM_R3, ARM_R3, ARM_R2), ctx);
 357	_emit(cond, ARM_ORR_S(r_res, ARM_R3, ARM_R0, SRTYPE_LSL, 8), ctx);
 358}
 359
 360static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
 361{
 362	_emit(cond, ARM_LDRB_I(ARM_R1, r_addr, 0), ctx);
 363	_emit(cond, ARM_LDRB_I(ARM_R2, r_addr, 1), ctx);
 364	_emit(cond, ARM_ORR_S(r_res, ARM_R2, ARM_R1, SRTYPE_LSL, 8), ctx);
 365}
 366
 367static inline void emit_swap16(u8 r_dst, u8 r_src, struct jit_ctx *ctx)
 368{
 369	/* r_dst = (r_src << 8) | (r_src >> 8) */
 370	emit(ARM_LSL_I(ARM_R1, r_src, 8), ctx);
 371	emit(ARM_ORR_S(r_dst, ARM_R1, r_src, SRTYPE_LSR, 8), ctx);
 372
 373	/*
 374	 * we need to mask out the bits set in r_dst[23:16] due to
 375	 * the first shift instruction.
 376	 *
 377	 * note that 0x8ff is the encoded immediate 0x00ff0000.
 378	 */
 379	emit(ARM_BIC_I(r_dst, r_dst, 0x8ff), ctx);
 380}
 381
 382#else  /* ARMv6+ */
 383
 384static void emit_load_be32(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
 385{
 386	_emit(cond, ARM_LDR_I(r_res, r_addr, 0), ctx);
 387#ifdef __LITTLE_ENDIAN
 388	_emit(cond, ARM_REV(r_res, r_res), ctx);
 389#endif
 390}
 391
 392static void emit_load_be16(u8 cond, u8 r_res, u8 r_addr, struct jit_ctx *ctx)
 393{
 394	_emit(cond, ARM_LDRH_I(r_res, r_addr, 0), ctx);
 395#ifdef __LITTLE_ENDIAN
 396	_emit(cond, ARM_REV16(r_res, r_res), ctx);
 397#endif
 398}
 399
 400static inline void emit_swap16(u8 r_dst __maybe_unused,
 401			       u8 r_src __maybe_unused,
 402			       struct jit_ctx *ctx __maybe_unused)
 403{
 404#ifdef __LITTLE_ENDIAN
 405	emit(ARM_REV16(r_dst, r_src), ctx);
 406#endif
 407}
 408
 409#endif /* __LINUX_ARM_ARCH__ < 6 */
 410
 411
 412/* Compute the immediate value for a PC-relative branch. */
 413static inline u32 b_imm(unsigned tgt, struct jit_ctx *ctx)
 414{
 415	u32 imm;
 416
 417	if (ctx->target == NULL)
 418		return 0;
 419	/*
 420	 * BPF allows only forward jumps and the offset of the target is
 421	 * still the one computed during the first pass.
 422	 */
 423	imm  = ctx->offsets[tgt] + ctx->prologue_bytes - (ctx->idx * 4 + 8);
 424
 425	return imm >> 2;
 426}
 427
 428#define OP_IMM3(op, r1, r2, imm_val, ctx)				\
 429	do {								\
 430		imm12 = imm8m(imm_val);					\
 431		if (imm12 < 0) {					\
 432			emit_mov_i_no8m(r_scratch, imm_val, ctx);	\
 433			emit(op ## _R((r1), (r2), r_scratch), ctx);	\
 434		} else {						\
 435			emit(op ## _I((r1), (r2), imm12), ctx);		\
 436		}							\
 437	} while (0)
 438
 439static inline void emit_err_ret(u8 cond, struct jit_ctx *ctx)
 440{
 441	if (ctx->ret0_fp_idx >= 0) {
 442		_emit(cond, ARM_B(b_imm(ctx->ret0_fp_idx, ctx)), ctx);
 443		/* NOP to keep the size constant between passes */
 444		emit(ARM_MOV_R(ARM_R0, ARM_R0), ctx);
 445	} else {
 446		_emit(cond, ARM_MOV_I(ARM_R0, 0), ctx);
 447		_emit(cond, ARM_B(b_imm(ctx->skf->len, ctx)), ctx);
 448	}
 449}
 450
 451static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 452{
 453#if __LINUX_ARM_ARCH__ < 5
 454	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 455
 456	if (elf_hwcap & HWCAP_THUMB)
 457		emit(ARM_BX(tgt_reg), ctx);
 458	else
 459		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 460#else
 461	emit(ARM_BLX_R(tgt_reg), ctx);
 462#endif
 463}
 464
 465static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx,
 466				int bpf_op)
 467{
 468#if __LINUX_ARM_ARCH__ == 7
 469	if (elf_hwcap & HWCAP_IDIVA) {
 470		if (bpf_op == BPF_DIV)
 471			emit(ARM_UDIV(rd, rm, rn), ctx);
 472		else {
 473			emit(ARM_UDIV(ARM_R3, rm, rn), ctx);
 474			emit(ARM_MLS(rd, rn, ARM_R3, rm), ctx);
 475		}
 476		return;
 477	}
 478#endif
 479
 480	/*
 481	 * For BPF_ALU | BPF_DIV | BPF_K instructions, rm is ARM_R4
 482	 * (r_A) and rn is ARM_R0 (r_scratch) so load rn first into
 483	 * ARM_R1 to avoid accidentally overwriting ARM_R0 with rm
 484	 * before using it as a source for ARM_R1.
 485	 *
 486	 * For BPF_ALU | BPF_DIV | BPF_X rm is ARM_R4 (r_A) and rn is
 487	 * ARM_R5 (r_X) so there is no particular register overlap
 488	 * issues.
 489	 */
 490	if (rn != ARM_R1)
 491		emit(ARM_MOV_R(ARM_R1, rn), ctx);
 492	if (rm != ARM_R0)
 493		emit(ARM_MOV_R(ARM_R0, rm), ctx);
 494
 495	ctx->seen |= SEEN_CALL;
 496	emit_mov_i(ARM_R3, bpf_op == BPF_DIV ? (u32)jit_udiv : (u32)jit_mod,
 497		   ctx);
 498	emit_blx_r(ARM_R3, ctx);
 499
 500	if (rd != ARM_R0)
 501		emit(ARM_MOV_R(rd, ARM_R0), ctx);
 502}
 503
 504static inline void update_on_xread(struct jit_ctx *ctx)
 505{
 506	if (!(ctx->seen & SEEN_X))
 507		ctx->flags |= FLAG_NEED_X_RESET;
 508
 509	ctx->seen |= SEEN_X;
 510}
 511
 512static int build_body(struct jit_ctx *ctx)
 513{
 514	void *load_func[] = {jit_get_skb_b, jit_get_skb_h, jit_get_skb_w};
 515	const struct bpf_prog *prog = ctx->skf;
 516	const struct sock_filter *inst;
 517	unsigned i, load_order, off, condt;
 518	int imm12;
 519	u32 k;
 520
 521	for (i = 0; i < prog->len; i++) {
 522		u16 code;
 523
 524		inst = &(prog->insns[i]);
 525		/* K as an immediate value operand */
 526		k = inst->k;
 527		code = bpf_anc_helper(inst);
 528
 529		/* compute offsets only in the fake pass */
 530		if (ctx->target == NULL)
 531			ctx->offsets[i] = ctx->idx * 4;
 532
 533		switch (code) {
 534		case BPF_LD | BPF_IMM:
 535			emit_mov_i(r_A, k, ctx);
 536			break;
 537		case BPF_LD | BPF_W | BPF_LEN:
 538			ctx->seen |= SEEN_SKB;
 539			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
 540			emit(ARM_LDR_I(r_A, r_skb,
 541				       offsetof(struct sk_buff, len)), ctx);
 542			break;
 543		case BPF_LD | BPF_MEM:
 544			/* A = scratch[k] */
 545			ctx->seen |= SEEN_MEM_WORD(k);
 546			emit(ARM_LDR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
 547			break;
 548		case BPF_LD | BPF_W | BPF_ABS:
 549			load_order = 2;
 550			goto load;
 551		case BPF_LD | BPF_H | BPF_ABS:
 552			load_order = 1;
 553			goto load;
 554		case BPF_LD | BPF_B | BPF_ABS:
 555			load_order = 0;
 556load:
 557			emit_mov_i(r_off, k, ctx);
 558load_common:
 559			ctx->seen |= SEEN_DATA | SEEN_CALL;
 560
 561			if (load_order > 0) {
 562				emit(ARM_SUB_I(r_scratch, r_skb_hl,
 563					       1 << load_order), ctx);
 564				emit(ARM_CMP_R(r_scratch, r_off), ctx);
 565				condt = ARM_COND_GE;
 566			} else {
 567				emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
 568				condt = ARM_COND_HI;
 569			}
 570
 571			/*
 572			 * test for negative offset, only if we are
 573			 * currently scheduled to take the fast
 574			 * path. this will update the flags so that
 575			 * the slowpath instruction are ignored if the
 576			 * offset is negative.
 577			 *
 578			 * for loard_order == 0 the HI condition will
 579			 * make loads at offset 0 take the slow path too.
 580			 */
 581			_emit(condt, ARM_CMP_I(r_off, 0), ctx);
 582
 583			_emit(condt, ARM_ADD_R(r_scratch, r_off, r_skb_data),
 584			      ctx);
 585
 586			if (load_order == 0)
 587				_emit(condt, ARM_LDRB_I(r_A, r_scratch, 0),
 588				      ctx);
 589			else if (load_order == 1)
 590				emit_load_be16(condt, r_A, r_scratch, ctx);
 591			else if (load_order == 2)
 592				emit_load_be32(condt, r_A, r_scratch, ctx);
 593
 594			_emit(condt, ARM_B(b_imm(i + 1, ctx)), ctx);
 595
 596			/* the slowpath */
 597			emit_mov_i(ARM_R3, (u32)load_func[load_order], ctx);
 598			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
 599			/* the offset is already in R1 */
 600			emit_blx_r(ARM_R3, ctx);
 601			/* check the result of skb_copy_bits */
 602			emit(ARM_CMP_I(ARM_R1, 0), ctx);
 603			emit_err_ret(ARM_COND_NE, ctx);
 604			emit(ARM_MOV_R(r_A, ARM_R0), ctx);
 605			break;
 606		case BPF_LD | BPF_W | BPF_IND:
 607			load_order = 2;
 608			goto load_ind;
 609		case BPF_LD | BPF_H | BPF_IND:
 610			load_order = 1;
 611			goto load_ind;
 612		case BPF_LD | BPF_B | BPF_IND:
 613			load_order = 0;
 614load_ind:
 615			update_on_xread(ctx);
 616			OP_IMM3(ARM_ADD, r_off, r_X, k, ctx);
 617			goto load_common;
 618		case BPF_LDX | BPF_IMM:
 619			ctx->seen |= SEEN_X;
 620			emit_mov_i(r_X, k, ctx);
 621			break;
 622		case BPF_LDX | BPF_W | BPF_LEN:
 623			ctx->seen |= SEEN_X | SEEN_SKB;
 624			emit(ARM_LDR_I(r_X, r_skb,
 625				       offsetof(struct sk_buff, len)), ctx);
 626			break;
 627		case BPF_LDX | BPF_MEM:
 628			ctx->seen |= SEEN_X | SEEN_MEM_WORD(k);
 629			emit(ARM_LDR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
 630			break;
 631		case BPF_LDX | BPF_B | BPF_MSH:
 632			/* x = ((*(frame + k)) & 0xf) << 2; */
 633			ctx->seen |= SEEN_X | SEEN_DATA | SEEN_CALL;
 634			/* the interpreter should deal with the negative K */
 635			if ((int)k < 0)
 636				return -1;
 637			/* offset in r1: we might have to take the slow path */
 638			emit_mov_i(r_off, k, ctx);
 639			emit(ARM_CMP_R(r_skb_hl, r_off), ctx);
 640
 641			/* load in r0: common with the slowpath */
 642			_emit(ARM_COND_HI, ARM_LDRB_R(ARM_R0, r_skb_data,
 643						      ARM_R1), ctx);
 644			/*
 645			 * emit_mov_i() might generate one or two instructions,
 646			 * the same holds for emit_blx_r()
 647			 */
 648			_emit(ARM_COND_HI, ARM_B(b_imm(i + 1, ctx) - 2), ctx);
 649
 650			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
 651			/* r_off is r1 */
 652			emit_mov_i(ARM_R3, (u32)jit_get_skb_b, ctx);
 653			emit_blx_r(ARM_R3, ctx);
 654			/* check the return value of skb_copy_bits */
 655			emit(ARM_CMP_I(ARM_R1, 0), ctx);
 656			emit_err_ret(ARM_COND_NE, ctx);
 657
 658			emit(ARM_AND_I(r_X, ARM_R0, 0x00f), ctx);
 659			emit(ARM_LSL_I(r_X, r_X, 2), ctx);
 660			break;
 661		case BPF_ST:
 662			ctx->seen |= SEEN_MEM_WORD(k);
 663			emit(ARM_STR_I(r_A, ARM_SP, SCRATCH_OFF(k)), ctx);
 664			break;
 665		case BPF_STX:
 666			update_on_xread(ctx);
 667			ctx->seen |= SEEN_MEM_WORD(k);
 668			emit(ARM_STR_I(r_X, ARM_SP, SCRATCH_OFF(k)), ctx);
 669			break;
 670		case BPF_ALU | BPF_ADD | BPF_K:
 671			/* A += K */
 672			OP_IMM3(ARM_ADD, r_A, r_A, k, ctx);
 673			break;
 674		case BPF_ALU | BPF_ADD | BPF_X:
 675			update_on_xread(ctx);
 676			emit(ARM_ADD_R(r_A, r_A, r_X), ctx);
 677			break;
 678		case BPF_ALU | BPF_SUB | BPF_K:
 679			/* A -= K */
 680			OP_IMM3(ARM_SUB, r_A, r_A, k, ctx);
 681			break;
 682		case BPF_ALU | BPF_SUB | BPF_X:
 683			update_on_xread(ctx);
 684			emit(ARM_SUB_R(r_A, r_A, r_X), ctx);
 685			break;
 686		case BPF_ALU | BPF_MUL | BPF_K:
 687			/* A *= K */
 688			emit_mov_i(r_scratch, k, ctx);
 689			emit(ARM_MUL(r_A, r_A, r_scratch), ctx);
 690			break;
 691		case BPF_ALU | BPF_MUL | BPF_X:
 692			update_on_xread(ctx);
 693			emit(ARM_MUL(r_A, r_A, r_X), ctx);
 694			break;
 695		case BPF_ALU | BPF_DIV | BPF_K:
 696			if (k == 1)
 697				break;
 698			emit_mov_i(r_scratch, k, ctx);
 699			emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_DIV);
 700			break;
 701		case BPF_ALU | BPF_DIV | BPF_X:
 702			update_on_xread(ctx);
 703			emit(ARM_CMP_I(r_X, 0), ctx);
 704			emit_err_ret(ARM_COND_EQ, ctx);
 705			emit_udivmod(r_A, r_A, r_X, ctx, BPF_DIV);
 706			break;
 707		case BPF_ALU | BPF_MOD | BPF_K:
 708			if (k == 1) {
 709				emit_mov_i(r_A, 0, ctx);
 710				break;
 711			}
 712			emit_mov_i(r_scratch, k, ctx);
 713			emit_udivmod(r_A, r_A, r_scratch, ctx, BPF_MOD);
 714			break;
 715		case BPF_ALU | BPF_MOD | BPF_X:
 716			update_on_xread(ctx);
 717			emit(ARM_CMP_I(r_X, 0), ctx);
 718			emit_err_ret(ARM_COND_EQ, ctx);
 719			emit_udivmod(r_A, r_A, r_X, ctx, BPF_MOD);
 720			break;
 721		case BPF_ALU | BPF_OR | BPF_K:
 722			/* A |= K */
 723			OP_IMM3(ARM_ORR, r_A, r_A, k, ctx);
 724			break;
 725		case BPF_ALU | BPF_OR | BPF_X:
 726			update_on_xread(ctx);
 727			emit(ARM_ORR_R(r_A, r_A, r_X), ctx);
 728			break;
 729		case BPF_ALU | BPF_XOR | BPF_K:
 730			/* A ^= K; */
 731			OP_IMM3(ARM_EOR, r_A, r_A, k, ctx);
 732			break;
 733		case BPF_ANC | SKF_AD_ALU_XOR_X:
 734		case BPF_ALU | BPF_XOR | BPF_X:
 735			/* A ^= X */
 736			update_on_xread(ctx);
 737			emit(ARM_EOR_R(r_A, r_A, r_X), ctx);
 738			break;
 739		case BPF_ALU | BPF_AND | BPF_K:
 740			/* A &= K */
 741			OP_IMM3(ARM_AND, r_A, r_A, k, ctx);
 742			break;
 743		case BPF_ALU | BPF_AND | BPF_X:
 744			update_on_xread(ctx);
 745			emit(ARM_AND_R(r_A, r_A, r_X), ctx);
 746			break;
 747		case BPF_ALU | BPF_LSH | BPF_K:
 748			if (unlikely(k > 31))
 749				return -1;
 750			emit(ARM_LSL_I(r_A, r_A, k), ctx);
 751			break;
 752		case BPF_ALU | BPF_LSH | BPF_X:
 753			update_on_xread(ctx);
 754			emit(ARM_LSL_R(r_A, r_A, r_X), ctx);
 755			break;
 756		case BPF_ALU | BPF_RSH | BPF_K:
 757			if (unlikely(k > 31))
 758				return -1;
 759			if (k)
 760				emit(ARM_LSR_I(r_A, r_A, k), ctx);
 761			break;
 762		case BPF_ALU | BPF_RSH | BPF_X:
 763			update_on_xread(ctx);
 764			emit(ARM_LSR_R(r_A, r_A, r_X), ctx);
 765			break;
 766		case BPF_ALU | BPF_NEG:
 767			/* A = -A */
 768			emit(ARM_RSB_I(r_A, r_A, 0), ctx);
 769			break;
 770		case BPF_JMP | BPF_JA:
 771			/* pc += K */
 772			emit(ARM_B(b_imm(i + k + 1, ctx)), ctx);
 773			break;
 774		case BPF_JMP | BPF_JEQ | BPF_K:
 775			/* pc += (A == K) ? pc->jt : pc->jf */
 776			condt  = ARM_COND_EQ;
 777			goto cmp_imm;
 778		case BPF_JMP | BPF_JGT | BPF_K:
 779			/* pc += (A > K) ? pc->jt : pc->jf */
 780			condt  = ARM_COND_HI;
 781			goto cmp_imm;
 782		case BPF_JMP | BPF_JGE | BPF_K:
 783			/* pc += (A >= K) ? pc->jt : pc->jf */
 784			condt  = ARM_COND_HS;
 785cmp_imm:
 786			imm12 = imm8m(k);
 787			if (imm12 < 0) {
 788				emit_mov_i_no8m(r_scratch, k, ctx);
 789				emit(ARM_CMP_R(r_A, r_scratch), ctx);
 790			} else {
 791				emit(ARM_CMP_I(r_A, imm12), ctx);
 792			}
 793cond_jump:
 794			if (inst->jt)
 795				_emit(condt, ARM_B(b_imm(i + inst->jt + 1,
 796						   ctx)), ctx);
 797			if (inst->jf)
 798				_emit(condt ^ 1, ARM_B(b_imm(i + inst->jf + 1,
 799							     ctx)), ctx);
 800			break;
 801		case BPF_JMP | BPF_JEQ | BPF_X:
 802			/* pc += (A == X) ? pc->jt : pc->jf */
 803			condt   = ARM_COND_EQ;
 804			goto cmp_x;
 805		case BPF_JMP | BPF_JGT | BPF_X:
 806			/* pc += (A > X) ? pc->jt : pc->jf */
 807			condt   = ARM_COND_HI;
 808			goto cmp_x;
 809		case BPF_JMP | BPF_JGE | BPF_X:
 810			/* pc += (A >= X) ? pc->jt : pc->jf */
 811			condt   = ARM_COND_CS;
 812cmp_x:
 813			update_on_xread(ctx);
 814			emit(ARM_CMP_R(r_A, r_X), ctx);
 815			goto cond_jump;
 816		case BPF_JMP | BPF_JSET | BPF_K:
 817			/* pc += (A & K) ? pc->jt : pc->jf */
 818			condt  = ARM_COND_NE;
 819			/* not set iff all zeroes iff Z==1 iff EQ */
 820
 821			imm12 = imm8m(k);
 822			if (imm12 < 0) {
 823				emit_mov_i_no8m(r_scratch, k, ctx);
 824				emit(ARM_TST_R(r_A, r_scratch), ctx);
 825			} else {
 826				emit(ARM_TST_I(r_A, imm12), ctx);
 827			}
 828			goto cond_jump;
 829		case BPF_JMP | BPF_JSET | BPF_X:
 830			/* pc += (A & X) ? pc->jt : pc->jf */
 831			update_on_xread(ctx);
 832			condt  = ARM_COND_NE;
 833			emit(ARM_TST_R(r_A, r_X), ctx);
 834			goto cond_jump;
 835		case BPF_RET | BPF_A:
 836			emit(ARM_MOV_R(ARM_R0, r_A), ctx);
 837			goto b_epilogue;
 838		case BPF_RET | BPF_K:
 839			if ((k == 0) && (ctx->ret0_fp_idx < 0))
 840				ctx->ret0_fp_idx = i;
 841			emit_mov_i(ARM_R0, k, ctx);
 842b_epilogue:
 843			if (i != ctx->skf->len - 1)
 844				emit(ARM_B(b_imm(prog->len, ctx)), ctx);
 845			break;
 846		case BPF_MISC | BPF_TAX:
 847			/* X = A */
 848			ctx->seen |= SEEN_X;
 849			emit(ARM_MOV_R(r_X, r_A), ctx);
 850			break;
 851		case BPF_MISC | BPF_TXA:
 852			/* A = X */
 853			update_on_xread(ctx);
 854			emit(ARM_MOV_R(r_A, r_X), ctx);
 855			break;
 856		case BPF_ANC | SKF_AD_PROTOCOL:
 857			/* A = ntohs(skb->protocol) */
 858			ctx->seen |= SEEN_SKB;
 859			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
 860						  protocol) != 2);
 861			off = offsetof(struct sk_buff, protocol);
 862			emit(ARM_LDRH_I(r_scratch, r_skb, off), ctx);
 863			emit_swap16(r_A, r_scratch, ctx);
 864			break;
 865		case BPF_ANC | SKF_AD_CPU:
 866			/* r_scratch = current_thread_info() */
 867			OP_IMM3(ARM_BIC, r_scratch, ARM_SP, THREAD_SIZE - 1, ctx);
 868			/* A = current_thread_info()->cpu */
 869			BUILD_BUG_ON(FIELD_SIZEOF(struct thread_info, cpu) != 4);
 870			off = offsetof(struct thread_info, cpu);
 871			emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
 872			break;
 873		case BPF_ANC | SKF_AD_IFINDEX:
 874		case BPF_ANC | SKF_AD_HATYPE:
 875			/* A = skb->dev->ifindex */
 876			/* A = skb->dev->type */
 877			ctx->seen |= SEEN_SKB;
 878			off = offsetof(struct sk_buff, dev);
 879			emit(ARM_LDR_I(r_scratch, r_skb, off), ctx);
 880
 881			emit(ARM_CMP_I(r_scratch, 0), ctx);
 882			emit_err_ret(ARM_COND_EQ, ctx);
 883
 884			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
 885						  ifindex) != 4);
 886			BUILD_BUG_ON(FIELD_SIZEOF(struct net_device,
 887						  type) != 2);
 888
 889			if (code == (BPF_ANC | SKF_AD_IFINDEX)) {
 890				off = offsetof(struct net_device, ifindex);
 891				emit(ARM_LDR_I(r_A, r_scratch, off), ctx);
 892			} else {
 893				/*
 894				 * offset of field "type" in "struct
 895				 * net_device" is above what can be
 896				 * used in the ldrh rd, [rn, #imm]
 897				 * instruction, so load the offset in
 898				 * a register and use ldrh rd, [rn, rm]
 899				 */
 900				off = offsetof(struct net_device, type);
 901				emit_mov_i(ARM_R3, off, ctx);
 902				emit(ARM_LDRH_R(r_A, r_scratch, ARM_R3), ctx);
 903			}
 904			break;
 905		case BPF_ANC | SKF_AD_MARK:
 906			ctx->seen |= SEEN_SKB;
 907			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
 908			off = offsetof(struct sk_buff, mark);
 909			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
 910			break;
 911		case BPF_ANC | SKF_AD_RXHASH:
 912			ctx->seen |= SEEN_SKB;
 913			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
 914			off = offsetof(struct sk_buff, hash);
 915			emit(ARM_LDR_I(r_A, r_skb, off), ctx);
 916			break;
 917		case BPF_ANC | SKF_AD_VLAN_TAG:
 918		case BPF_ANC | SKF_AD_VLAN_TAG_PRESENT:
 919			ctx->seen |= SEEN_SKB;
 920			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
 921			off = offsetof(struct sk_buff, vlan_tci);
 922			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
 923			if (code == (BPF_ANC | SKF_AD_VLAN_TAG))
 924				OP_IMM3(ARM_AND, r_A, r_A, ~VLAN_TAG_PRESENT, ctx);
 925			else {
 926				OP_IMM3(ARM_LSR, r_A, r_A, 12, ctx);
 927				OP_IMM3(ARM_AND, r_A, r_A, 0x1, ctx);
 928			}
 929			break;
 930		case BPF_ANC | SKF_AD_PKTTYPE:
 931			ctx->seen |= SEEN_SKB;
 932			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
 933						  __pkt_type_offset[0]) != 1);
 934			off = PKT_TYPE_OFFSET();
 935			emit(ARM_LDRB_I(r_A, r_skb, off), ctx);
 936			emit(ARM_AND_I(r_A, r_A, PKT_TYPE_MAX), ctx);
 937#ifdef __BIG_ENDIAN_BITFIELD
 938			emit(ARM_LSR_I(r_A, r_A, 5), ctx);
 939#endif
 940			break;
 941		case BPF_ANC | SKF_AD_QUEUE:
 942			ctx->seen |= SEEN_SKB;
 943			BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff,
 944						  queue_mapping) != 2);
 945			BUILD_BUG_ON(offsetof(struct sk_buff,
 946					      queue_mapping) > 0xff);
 947			off = offsetof(struct sk_buff, queue_mapping);
 948			emit(ARM_LDRH_I(r_A, r_skb, off), ctx);
 949			break;
 950		case BPF_ANC | SKF_AD_PAY_OFFSET:
 951			ctx->seen |= SEEN_SKB | SEEN_CALL;
 952
 953			emit(ARM_MOV_R(ARM_R0, r_skb), ctx);
 954			emit_mov_i(ARM_R3, (unsigned int)skb_get_poff, ctx);
 955			emit_blx_r(ARM_R3, ctx);
 956			emit(ARM_MOV_R(r_A, ARM_R0), ctx);
 957			break;
 958		case BPF_LDX | BPF_W | BPF_ABS:
 959			/*
 960			 * load a 32bit word from struct seccomp_data.
 961			 * seccomp_check_filter() will already have checked
 962			 * that k is 32bit aligned and lies within the
 963			 * struct seccomp_data.
 964			 */
 965			ctx->seen |= SEEN_SKB;
 966			emit(ARM_LDR_I(r_A, r_skb, k), ctx);
 967			break;
 968		default:
 969			return -1;
 970		}
 971
 972		if (ctx->flags & FLAG_IMM_OVERFLOW)
 973			/*
 974			 * this instruction generated an overflow when
 975			 * trying to access the literal pool, so
 976			 * delegate this filter to the kernel interpreter.
 977			 */
 978			return -1;
 979	}
 980
 981	/* compute offsets only during the first pass */
 982	if (ctx->target == NULL)
 983		ctx->offsets[i] = ctx->idx * 4;
 984
 985	return 0;
 986}
 987
 988
 989void bpf_jit_compile(struct bpf_prog *fp)
 990{
 991	struct bpf_binary_header *header;
 992	struct jit_ctx ctx;
 993	unsigned tmp_idx;
 994	unsigned alloc_size;
 995	u8 *target_ptr;
 996
 997	if (!bpf_jit_enable)
 998		return;
 999
1000	memset(&ctx, 0, sizeof(ctx));
1001	ctx.skf		= fp;
1002	ctx.ret0_fp_idx = -1;
1003
1004	ctx.offsets = kzalloc(4 * (ctx.skf->len + 1), GFP_KERNEL);
1005	if (ctx.offsets == NULL)
1006		return;
1007
1008	/* fake pass to fill in the ctx->seen */
1009	if (unlikely(build_body(&ctx)))
1010		goto out;
1011
1012	tmp_idx = ctx.idx;
1013	build_prologue(&ctx);
1014	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1015
1016#if __LINUX_ARM_ARCH__ < 7
1017	tmp_idx = ctx.idx;
1018	build_epilogue(&ctx);
1019	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1020
1021	ctx.idx += ctx.imm_count;
1022	if (ctx.imm_count) {
1023		ctx.imms = kzalloc(4 * ctx.imm_count, GFP_KERNEL);
1024		if (ctx.imms == NULL)
1025			goto out;
1026	}
1027#else
1028	/* there's nothing after the epilogue on ARMv7 */
1029	build_epilogue(&ctx);
1030#endif
1031	alloc_size = 4 * ctx.idx;
1032	header = bpf_jit_binary_alloc(alloc_size, &target_ptr,
1033				      4, jit_fill_hole);
1034	if (header == NULL)
1035		goto out;
1036
1037	ctx.target = (u32 *) target_ptr;
1038	ctx.idx = 0;
1039
1040	build_prologue(&ctx);
1041	if (build_body(&ctx) < 0) {
1042#if __LINUX_ARM_ARCH__ < 7
1043		if (ctx.imm_count)
1044			kfree(ctx.imms);
1045#endif
1046		bpf_jit_binary_free(header);
1047		goto out;
1048	}
1049	build_epilogue(&ctx);
1050
1051	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
1052
1053#if __LINUX_ARM_ARCH__ < 7
1054	if (ctx.imm_count)
1055		kfree(ctx.imms);
1056#endif
1057
1058	if (bpf_jit_enable > 1)
1059		/* there are 2 passes here */
1060		bpf_jit_dump(fp->len, alloc_size, 2, ctx.target);
1061
1062	set_memory_ro((unsigned long)header, header->pages);
1063	fp->bpf_func = (void *)ctx.target;
1064	fp->jited = 1;
1065out:
1066	kfree(ctx.offsets);
1067	return;
1068}
1069
1070void bpf_jit_free(struct bpf_prog *fp)
1071{
1072	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1073	struct bpf_binary_header *header = (void *)addr;
1074
1075	if (!fp->jited)
1076		goto free_filter;
1077
1078	set_memory_rw(addr, header->pages);
1079	bpf_jit_binary_free(header);
1080
1081free_filter:
1082	bpf_prog_unlock_free(fp);
1083}