Loading...
1/*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12#include <linux/bootmem.h>
13#include <linux/module.h>
14#include <linux/mm.h>
15#include <linux/genalloc.h>
16#include <linux/gfp.h>
17#include <linux/errno.h>
18#include <linux/list.h>
19#include <linux/init.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
22#include <linux/dma-contiguous.h>
23#include <linux/highmem.h>
24#include <linux/memblock.h>
25#include <linux/slab.h>
26#include <linux/iommu.h>
27#include <linux/io.h>
28#include <linux/vmalloc.h>
29#include <linux/sizes.h>
30#include <linux/cma.h>
31
32#include <asm/memory.h>
33#include <asm/highmem.h>
34#include <asm/cacheflush.h>
35#include <asm/tlbflush.h>
36#include <asm/mach/arch.h>
37#include <asm/dma-iommu.h>
38#include <asm/mach/map.h>
39#include <asm/system_info.h>
40#include <asm/dma-contiguous.h>
41
42#include "dma.h"
43#include "mm.h"
44
45struct arm_dma_alloc_args {
46 struct device *dev;
47 size_t size;
48 gfp_t gfp;
49 pgprot_t prot;
50 const void *caller;
51 bool want_vaddr;
52};
53
54struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60};
61
62struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66};
67
68struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
71 struct arm_dma_allocator *allocator;
72};
73
74static LIST_HEAD(arm_dma_bufs);
75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78{
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92}
93
94/*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
105 */
106static void __dma_page_cpu_to_dev(struct page *, unsigned long,
107 size_t, enum dma_data_direction);
108static void __dma_page_dev_to_cpu(struct page *, unsigned long,
109 size_t, enum dma_data_direction);
110
111/**
112 * arm_dma_map_page - map a portion of a page for streaming DMA
113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
114 * @page: page that buffer resides in
115 * @offset: offset into page for start of buffer
116 * @size: size of buffer to map
117 * @dir: DMA transfer direction
118 *
119 * Ensure that any data held in the cache is appropriately discarded
120 * or written back.
121 *
122 * The device owns this memory once this call has completed. The CPU
123 * can regain ownership by calling dma_unmap_page().
124 */
125static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
126 unsigned long offset, size_t size, enum dma_data_direction dir,
127 struct dma_attrs *attrs)
128{
129 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
130 __dma_page_cpu_to_dev(page, offset, size, dir);
131 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
132}
133
134static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
135 unsigned long offset, size_t size, enum dma_data_direction dir,
136 struct dma_attrs *attrs)
137{
138 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
139}
140
141/**
142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
144 * @handle: DMA address of buffer
145 * @size: size of buffer (same as passed to dma_map_page)
146 * @dir: DMA transfer direction (same as passed to dma_map_page)
147 *
148 * Unmap a page streaming mode DMA translation. The handle and size
149 * must match what was provided in the previous dma_map_page() call.
150 * All other usages are undefined.
151 *
152 * After this call, reads by the CPU to the buffer are guaranteed to see
153 * whatever the device wrote there.
154 */
155static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
156 size_t size, enum dma_data_direction dir,
157 struct dma_attrs *attrs)
158{
159 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
160 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
161 handle & ~PAGE_MASK, size, dir);
162}
163
164static void arm_dma_sync_single_for_cpu(struct device *dev,
165 dma_addr_t handle, size_t size, enum dma_data_direction dir)
166{
167 unsigned int offset = handle & (PAGE_SIZE - 1);
168 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
169 __dma_page_dev_to_cpu(page, offset, size, dir);
170}
171
172static void arm_dma_sync_single_for_device(struct device *dev,
173 dma_addr_t handle, size_t size, enum dma_data_direction dir)
174{
175 unsigned int offset = handle & (PAGE_SIZE - 1);
176 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
177 __dma_page_cpu_to_dev(page, offset, size, dir);
178}
179
180struct dma_map_ops arm_dma_ops = {
181 .alloc = arm_dma_alloc,
182 .free = arm_dma_free,
183 .mmap = arm_dma_mmap,
184 .get_sgtable = arm_dma_get_sgtable,
185 .map_page = arm_dma_map_page,
186 .unmap_page = arm_dma_unmap_page,
187 .map_sg = arm_dma_map_sg,
188 .unmap_sg = arm_dma_unmap_sg,
189 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
190 .sync_single_for_device = arm_dma_sync_single_for_device,
191 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
192 .sync_sg_for_device = arm_dma_sync_sg_for_device,
193 .set_dma_mask = arm_dma_set_mask,
194};
195EXPORT_SYMBOL(arm_dma_ops);
196
197static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
198 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
199static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
200 dma_addr_t handle, struct dma_attrs *attrs);
201static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
202 void *cpu_addr, dma_addr_t dma_addr, size_t size,
203 struct dma_attrs *attrs);
204
205struct dma_map_ops arm_coherent_dma_ops = {
206 .alloc = arm_coherent_dma_alloc,
207 .free = arm_coherent_dma_free,
208 .mmap = arm_coherent_dma_mmap,
209 .get_sgtable = arm_dma_get_sgtable,
210 .map_page = arm_coherent_dma_map_page,
211 .map_sg = arm_dma_map_sg,
212 .set_dma_mask = arm_dma_set_mask,
213};
214EXPORT_SYMBOL(arm_coherent_dma_ops);
215
216static int __dma_supported(struct device *dev, u64 mask, bool warn)
217{
218 unsigned long max_dma_pfn;
219
220 /*
221 * If the mask allows for more memory than we can address,
222 * and we actually have that much memory, then we must
223 * indicate that DMA to this device is not supported.
224 */
225 if (sizeof(mask) != sizeof(dma_addr_t) &&
226 mask > (dma_addr_t)~0 &&
227 dma_to_pfn(dev, ~0) < max_pfn - 1) {
228 if (warn) {
229 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
230 mask);
231 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
232 }
233 return 0;
234 }
235
236 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
237
238 /*
239 * Translate the device's DMA mask to a PFN limit. This
240 * PFN number includes the page which we can DMA to.
241 */
242 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
243 if (warn)
244 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
245 mask,
246 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
247 max_dma_pfn + 1);
248 return 0;
249 }
250
251 return 1;
252}
253
254static u64 get_coherent_dma_mask(struct device *dev)
255{
256 u64 mask = (u64)DMA_BIT_MASK(32);
257
258 if (dev) {
259 mask = dev->coherent_dma_mask;
260
261 /*
262 * Sanity check the DMA mask - it must be non-zero, and
263 * must be able to be satisfied by a DMA allocation.
264 */
265 if (mask == 0) {
266 dev_warn(dev, "coherent DMA mask is unset\n");
267 return 0;
268 }
269
270 if (!__dma_supported(dev, mask, true))
271 return 0;
272 }
273
274 return mask;
275}
276
277static void __dma_clear_buffer(struct page *page, size_t size)
278{
279 /*
280 * Ensure that the allocated pages are zeroed, and that any data
281 * lurking in the kernel direct-mapped region is invalidated.
282 */
283 if (PageHighMem(page)) {
284 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
285 phys_addr_t end = base + size;
286 while (size > 0) {
287 void *ptr = kmap_atomic(page);
288 memset(ptr, 0, PAGE_SIZE);
289 dmac_flush_range(ptr, ptr + PAGE_SIZE);
290 kunmap_atomic(ptr);
291 page++;
292 size -= PAGE_SIZE;
293 }
294 outer_flush_range(base, end);
295 } else {
296 void *ptr = page_address(page);
297 memset(ptr, 0, size);
298 dmac_flush_range(ptr, ptr + size);
299 outer_flush_range(__pa(ptr), __pa(ptr) + size);
300 }
301}
302
303/*
304 * Allocate a DMA buffer for 'dev' of size 'size' using the
305 * specified gfp mask. Note that 'size' must be page aligned.
306 */
307static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
308{
309 unsigned long order = get_order(size);
310 struct page *page, *p, *e;
311
312 page = alloc_pages(gfp, order);
313 if (!page)
314 return NULL;
315
316 /*
317 * Now split the huge page and free the excess pages
318 */
319 split_page(page, order);
320 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
321 __free_page(p);
322
323 __dma_clear_buffer(page, size);
324
325 return page;
326}
327
328/*
329 * Free a DMA buffer. 'size' must be page aligned.
330 */
331static void __dma_free_buffer(struct page *page, size_t size)
332{
333 struct page *e = page + (size >> PAGE_SHIFT);
334
335 while (page < e) {
336 __free_page(page);
337 page++;
338 }
339}
340
341#ifdef CONFIG_MMU
342
343static void *__alloc_from_contiguous(struct device *dev, size_t size,
344 pgprot_t prot, struct page **ret_page,
345 const void *caller, bool want_vaddr);
346
347static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
348 pgprot_t prot, struct page **ret_page,
349 const void *caller, bool want_vaddr);
350
351static void *
352__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
353 const void *caller)
354{
355 /*
356 * DMA allocation can be mapped to user space, so lets
357 * set VM_USERMAP flags too.
358 */
359 return dma_common_contiguous_remap(page, size,
360 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
361 prot, caller);
362}
363
364static void __dma_free_remap(void *cpu_addr, size_t size)
365{
366 dma_common_free_remap(cpu_addr, size,
367 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
368}
369
370#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
371static struct gen_pool *atomic_pool;
372
373static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
374
375static int __init early_coherent_pool(char *p)
376{
377 atomic_pool_size = memparse(p, &p);
378 return 0;
379}
380early_param("coherent_pool", early_coherent_pool);
381
382void __init init_dma_coherent_pool_size(unsigned long size)
383{
384 /*
385 * Catch any attempt to set the pool size too late.
386 */
387 BUG_ON(atomic_pool);
388
389 /*
390 * Set architecture specific coherent pool size only if
391 * it has not been changed by kernel command line parameter.
392 */
393 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
394 atomic_pool_size = size;
395}
396
397/*
398 * Initialise the coherent pool for atomic allocations.
399 */
400static int __init atomic_pool_init(void)
401{
402 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
403 gfp_t gfp = GFP_KERNEL | GFP_DMA;
404 struct page *page;
405 void *ptr;
406
407 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
408 if (!atomic_pool)
409 goto out;
410
411 if (dev_get_cma_area(NULL))
412 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
413 &page, atomic_pool_init, true);
414 else
415 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
416 &page, atomic_pool_init, true);
417 if (ptr) {
418 int ret;
419
420 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
421 page_to_phys(page),
422 atomic_pool_size, -1);
423 if (ret)
424 goto destroy_genpool;
425
426 gen_pool_set_algo(atomic_pool,
427 gen_pool_first_fit_order_align,
428 (void *)PAGE_SHIFT);
429 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
430 atomic_pool_size / 1024);
431 return 0;
432 }
433
434destroy_genpool:
435 gen_pool_destroy(atomic_pool);
436 atomic_pool = NULL;
437out:
438 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
439 atomic_pool_size / 1024);
440 return -ENOMEM;
441}
442/*
443 * CMA is activated by core_initcall, so we must be called after it.
444 */
445postcore_initcall(atomic_pool_init);
446
447struct dma_contig_early_reserve {
448 phys_addr_t base;
449 unsigned long size;
450};
451
452static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
453
454static int dma_mmu_remap_num __initdata;
455
456void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
457{
458 dma_mmu_remap[dma_mmu_remap_num].base = base;
459 dma_mmu_remap[dma_mmu_remap_num].size = size;
460 dma_mmu_remap_num++;
461}
462
463void __init dma_contiguous_remap(void)
464{
465 int i;
466 for (i = 0; i < dma_mmu_remap_num; i++) {
467 phys_addr_t start = dma_mmu_remap[i].base;
468 phys_addr_t end = start + dma_mmu_remap[i].size;
469 struct map_desc map;
470 unsigned long addr;
471
472 if (end > arm_lowmem_limit)
473 end = arm_lowmem_limit;
474 if (start >= end)
475 continue;
476
477 map.pfn = __phys_to_pfn(start);
478 map.virtual = __phys_to_virt(start);
479 map.length = end - start;
480 map.type = MT_MEMORY_DMA_READY;
481
482 /*
483 * Clear previous low-memory mapping to ensure that the
484 * TLB does not see any conflicting entries, then flush
485 * the TLB of the old entries before creating new mappings.
486 *
487 * This ensures that any speculatively loaded TLB entries
488 * (even though they may be rare) can not cause any problems,
489 * and ensures that this code is architecturally compliant.
490 */
491 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
492 addr += PMD_SIZE)
493 pmd_clear(pmd_off_k(addr));
494
495 flush_tlb_kernel_range(__phys_to_virt(start),
496 __phys_to_virt(end));
497
498 iotable_init(&map, 1);
499 }
500}
501
502static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
503 void *data)
504{
505 struct page *page = virt_to_page(addr);
506 pgprot_t prot = *(pgprot_t *)data;
507
508 set_pte_ext(pte, mk_pte(page, prot), 0);
509 return 0;
510}
511
512static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
513{
514 unsigned long start = (unsigned long) page_address(page);
515 unsigned end = start + size;
516
517 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
518 flush_tlb_kernel_range(start, end);
519}
520
521static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
522 pgprot_t prot, struct page **ret_page,
523 const void *caller, bool want_vaddr)
524{
525 struct page *page;
526 void *ptr = NULL;
527 page = __dma_alloc_buffer(dev, size, gfp);
528 if (!page)
529 return NULL;
530 if (!want_vaddr)
531 goto out;
532
533 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
534 if (!ptr) {
535 __dma_free_buffer(page, size);
536 return NULL;
537 }
538
539 out:
540 *ret_page = page;
541 return ptr;
542}
543
544static void *__alloc_from_pool(size_t size, struct page **ret_page)
545{
546 unsigned long val;
547 void *ptr = NULL;
548
549 if (!atomic_pool) {
550 WARN(1, "coherent pool not initialised!\n");
551 return NULL;
552 }
553
554 val = gen_pool_alloc(atomic_pool, size);
555 if (val) {
556 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
557
558 *ret_page = phys_to_page(phys);
559 ptr = (void *)val;
560 }
561
562 return ptr;
563}
564
565static bool __in_atomic_pool(void *start, size_t size)
566{
567 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
568}
569
570static int __free_from_pool(void *start, size_t size)
571{
572 if (!__in_atomic_pool(start, size))
573 return 0;
574
575 gen_pool_free(atomic_pool, (unsigned long)start, size);
576
577 return 1;
578}
579
580static void *__alloc_from_contiguous(struct device *dev, size_t size,
581 pgprot_t prot, struct page **ret_page,
582 const void *caller, bool want_vaddr)
583{
584 unsigned long order = get_order(size);
585 size_t count = size >> PAGE_SHIFT;
586 struct page *page;
587 void *ptr = NULL;
588
589 page = dma_alloc_from_contiguous(dev, count, order);
590 if (!page)
591 return NULL;
592
593 __dma_clear_buffer(page, size);
594
595 if (!want_vaddr)
596 goto out;
597
598 if (PageHighMem(page)) {
599 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
600 if (!ptr) {
601 dma_release_from_contiguous(dev, page, count);
602 return NULL;
603 }
604 } else {
605 __dma_remap(page, size, prot);
606 ptr = page_address(page);
607 }
608
609 out:
610 *ret_page = page;
611 return ptr;
612}
613
614static void __free_from_contiguous(struct device *dev, struct page *page,
615 void *cpu_addr, size_t size, bool want_vaddr)
616{
617 if (want_vaddr) {
618 if (PageHighMem(page))
619 __dma_free_remap(cpu_addr, size);
620 else
621 __dma_remap(page, size, PAGE_KERNEL);
622 }
623 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
624}
625
626static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
627{
628 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
629 pgprot_writecombine(prot) :
630 pgprot_dmacoherent(prot);
631 return prot;
632}
633
634#define nommu() 0
635
636#else /* !CONFIG_MMU */
637
638#define nommu() 1
639
640#define __get_dma_pgprot(attrs, prot) __pgprot(0)
641#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
642#define __alloc_from_pool(size, ret_page) NULL
643#define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
644#define __free_from_pool(cpu_addr, size) do { } while (0)
645#define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
646#define __dma_free_remap(cpu_addr, size) do { } while (0)
647
648#endif /* CONFIG_MMU */
649
650static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
651 struct page **ret_page)
652{
653 struct page *page;
654 page = __dma_alloc_buffer(dev, size, gfp);
655 if (!page)
656 return NULL;
657
658 *ret_page = page;
659 return page_address(page);
660}
661
662static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
663 struct page **ret_page)
664{
665 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
666 ret_page);
667}
668
669static void simple_allocator_free(struct arm_dma_free_args *args)
670{
671 __dma_free_buffer(args->page, args->size);
672}
673
674static struct arm_dma_allocator simple_allocator = {
675 .alloc = simple_allocator_alloc,
676 .free = simple_allocator_free,
677};
678
679static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
680 struct page **ret_page)
681{
682 return __alloc_from_contiguous(args->dev, args->size, args->prot,
683 ret_page, args->caller,
684 args->want_vaddr);
685}
686
687static void cma_allocator_free(struct arm_dma_free_args *args)
688{
689 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
690 args->size, args->want_vaddr);
691}
692
693static struct arm_dma_allocator cma_allocator = {
694 .alloc = cma_allocator_alloc,
695 .free = cma_allocator_free,
696};
697
698static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
699 struct page **ret_page)
700{
701 return __alloc_from_pool(args->size, ret_page);
702}
703
704static void pool_allocator_free(struct arm_dma_free_args *args)
705{
706 __free_from_pool(args->cpu_addr, args->size);
707}
708
709static struct arm_dma_allocator pool_allocator = {
710 .alloc = pool_allocator_alloc,
711 .free = pool_allocator_free,
712};
713
714static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
715 struct page **ret_page)
716{
717 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
718 args->prot, ret_page, args->caller,
719 args->want_vaddr);
720}
721
722static void remap_allocator_free(struct arm_dma_free_args *args)
723{
724 if (args->want_vaddr)
725 __dma_free_remap(args->cpu_addr, args->size);
726
727 __dma_free_buffer(args->page, args->size);
728}
729
730static struct arm_dma_allocator remap_allocator = {
731 .alloc = remap_allocator_alloc,
732 .free = remap_allocator_free,
733};
734
735static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
736 gfp_t gfp, pgprot_t prot, bool is_coherent,
737 struct dma_attrs *attrs, const void *caller)
738{
739 u64 mask = get_coherent_dma_mask(dev);
740 struct page *page = NULL;
741 void *addr;
742 bool allowblock, cma;
743 struct arm_dma_buffer *buf;
744 struct arm_dma_alloc_args args = {
745 .dev = dev,
746 .size = PAGE_ALIGN(size),
747 .gfp = gfp,
748 .prot = prot,
749 .caller = caller,
750 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
751 };
752
753#ifdef CONFIG_DMA_API_DEBUG
754 u64 limit = (mask + 1) & ~mask;
755 if (limit && size >= limit) {
756 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
757 size, mask);
758 return NULL;
759 }
760#endif
761
762 if (!mask)
763 return NULL;
764
765 buf = kzalloc(sizeof(*buf),
766 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
767 if (!buf)
768 return NULL;
769
770 if (mask < 0xffffffffULL)
771 gfp |= GFP_DMA;
772
773 /*
774 * Following is a work-around (a.k.a. hack) to prevent pages
775 * with __GFP_COMP being passed to split_page() which cannot
776 * handle them. The real problem is that this flag probably
777 * should be 0 on ARM as it is not supported on this
778 * platform; see CONFIG_HUGETLBFS.
779 */
780 gfp &= ~(__GFP_COMP);
781 args.gfp = gfp;
782
783 *handle = DMA_ERROR_CODE;
784 allowblock = gfpflags_allow_blocking(gfp);
785 cma = allowblock ? dev_get_cma_area(dev) : false;
786
787 if (cma)
788 buf->allocator = &cma_allocator;
789 else if (nommu() || is_coherent)
790 buf->allocator = &simple_allocator;
791 else if (allowblock)
792 buf->allocator = &remap_allocator;
793 else
794 buf->allocator = &pool_allocator;
795
796 addr = buf->allocator->alloc(&args, &page);
797
798 if (page) {
799 unsigned long flags;
800
801 *handle = pfn_to_dma(dev, page_to_pfn(page));
802 buf->virt = args.want_vaddr ? addr : page;
803
804 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
805 list_add(&buf->list, &arm_dma_bufs);
806 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
807 } else {
808 kfree(buf);
809 }
810
811 return args.want_vaddr ? addr : page;
812}
813
814/*
815 * Allocate DMA-coherent memory space and return both the kernel remapped
816 * virtual and bus address for that space.
817 */
818void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
819 gfp_t gfp, struct dma_attrs *attrs)
820{
821 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
822
823 return __dma_alloc(dev, size, handle, gfp, prot, false,
824 attrs, __builtin_return_address(0));
825}
826
827static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
828 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
829{
830 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
831 attrs, __builtin_return_address(0));
832}
833
834static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
835 void *cpu_addr, dma_addr_t dma_addr, size_t size,
836 struct dma_attrs *attrs)
837{
838 int ret = -ENXIO;
839#ifdef CONFIG_MMU
840 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
841 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
842 unsigned long pfn = dma_to_pfn(dev, dma_addr);
843 unsigned long off = vma->vm_pgoff;
844
845 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
846 return ret;
847
848 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
849 ret = remap_pfn_range(vma, vma->vm_start,
850 pfn + off,
851 vma->vm_end - vma->vm_start,
852 vma->vm_page_prot);
853 }
854#endif /* CONFIG_MMU */
855
856 return ret;
857}
858
859/*
860 * Create userspace mapping for the DMA-coherent memory.
861 */
862static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
863 void *cpu_addr, dma_addr_t dma_addr, size_t size,
864 struct dma_attrs *attrs)
865{
866 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
867}
868
869int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
870 void *cpu_addr, dma_addr_t dma_addr, size_t size,
871 struct dma_attrs *attrs)
872{
873#ifdef CONFIG_MMU
874 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
875#endif /* CONFIG_MMU */
876 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
877}
878
879/*
880 * Free a buffer as defined by the above mapping.
881 */
882static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
883 dma_addr_t handle, struct dma_attrs *attrs,
884 bool is_coherent)
885{
886 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
887 struct arm_dma_buffer *buf;
888 struct arm_dma_free_args args = {
889 .dev = dev,
890 .size = PAGE_ALIGN(size),
891 .cpu_addr = cpu_addr,
892 .page = page,
893 .want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
894 };
895
896 buf = arm_dma_buffer_find(cpu_addr);
897 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
898 return;
899
900 buf->allocator->free(&args);
901 kfree(buf);
902}
903
904void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
905 dma_addr_t handle, struct dma_attrs *attrs)
906{
907 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
908}
909
910static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
911 dma_addr_t handle, struct dma_attrs *attrs)
912{
913 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
914}
915
916int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
917 void *cpu_addr, dma_addr_t handle, size_t size,
918 struct dma_attrs *attrs)
919{
920 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
921 int ret;
922
923 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
924 if (unlikely(ret))
925 return ret;
926
927 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
928 return 0;
929}
930
931static void dma_cache_maint_page(struct page *page, unsigned long offset,
932 size_t size, enum dma_data_direction dir,
933 void (*op)(const void *, size_t, int))
934{
935 unsigned long pfn;
936 size_t left = size;
937
938 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
939 offset %= PAGE_SIZE;
940
941 /*
942 * A single sg entry may refer to multiple physically contiguous
943 * pages. But we still need to process highmem pages individually.
944 * If highmem is not configured then the bulk of this loop gets
945 * optimized out.
946 */
947 do {
948 size_t len = left;
949 void *vaddr;
950
951 page = pfn_to_page(pfn);
952
953 if (PageHighMem(page)) {
954 if (len + offset > PAGE_SIZE)
955 len = PAGE_SIZE - offset;
956
957 if (cache_is_vipt_nonaliasing()) {
958 vaddr = kmap_atomic(page);
959 op(vaddr + offset, len, dir);
960 kunmap_atomic(vaddr);
961 } else {
962 vaddr = kmap_high_get(page);
963 if (vaddr) {
964 op(vaddr + offset, len, dir);
965 kunmap_high(page);
966 }
967 }
968 } else {
969 vaddr = page_address(page) + offset;
970 op(vaddr, len, dir);
971 }
972 offset = 0;
973 pfn++;
974 left -= len;
975 } while (left);
976}
977
978/*
979 * Make an area consistent for devices.
980 * Note: Drivers should NOT use this function directly, as it will break
981 * platforms with CONFIG_DMABOUNCE.
982 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
983 */
984static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
985 size_t size, enum dma_data_direction dir)
986{
987 phys_addr_t paddr;
988
989 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
990
991 paddr = page_to_phys(page) + off;
992 if (dir == DMA_FROM_DEVICE) {
993 outer_inv_range(paddr, paddr + size);
994 } else {
995 outer_clean_range(paddr, paddr + size);
996 }
997 /* FIXME: non-speculating: flush on bidirectional mappings? */
998}
999
1000static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1001 size_t size, enum dma_data_direction dir)
1002{
1003 phys_addr_t paddr = page_to_phys(page) + off;
1004
1005 /* FIXME: non-speculating: not required */
1006 /* in any case, don't bother invalidating if DMA to device */
1007 if (dir != DMA_TO_DEVICE) {
1008 outer_inv_range(paddr, paddr + size);
1009
1010 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1011 }
1012
1013 /*
1014 * Mark the D-cache clean for these pages to avoid extra flushing.
1015 */
1016 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1017 unsigned long pfn;
1018 size_t left = size;
1019
1020 pfn = page_to_pfn(page) + off / PAGE_SIZE;
1021 off %= PAGE_SIZE;
1022 if (off) {
1023 pfn++;
1024 left -= PAGE_SIZE - off;
1025 }
1026 while (left >= PAGE_SIZE) {
1027 page = pfn_to_page(pfn++);
1028 set_bit(PG_dcache_clean, &page->flags);
1029 left -= PAGE_SIZE;
1030 }
1031 }
1032}
1033
1034/**
1035 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1036 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1037 * @sg: list of buffers
1038 * @nents: number of buffers to map
1039 * @dir: DMA transfer direction
1040 *
1041 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1042 * This is the scatter-gather version of the dma_map_single interface.
1043 * Here the scatter gather list elements are each tagged with the
1044 * appropriate dma address and length. They are obtained via
1045 * sg_dma_{address,length}.
1046 *
1047 * Device ownership issues as mentioned for dma_map_single are the same
1048 * here.
1049 */
1050int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1051 enum dma_data_direction dir, struct dma_attrs *attrs)
1052{
1053 struct dma_map_ops *ops = get_dma_ops(dev);
1054 struct scatterlist *s;
1055 int i, j;
1056
1057 for_each_sg(sg, s, nents, i) {
1058#ifdef CONFIG_NEED_SG_DMA_LENGTH
1059 s->dma_length = s->length;
1060#endif
1061 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1062 s->length, dir, attrs);
1063 if (dma_mapping_error(dev, s->dma_address))
1064 goto bad_mapping;
1065 }
1066 return nents;
1067
1068 bad_mapping:
1069 for_each_sg(sg, s, i, j)
1070 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1071 return 0;
1072}
1073
1074/**
1075 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1076 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1077 * @sg: list of buffers
1078 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1079 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1080 *
1081 * Unmap a set of streaming mode DMA translations. Again, CPU access
1082 * rules concerning calls here are the same as for dma_unmap_single().
1083 */
1084void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1085 enum dma_data_direction dir, struct dma_attrs *attrs)
1086{
1087 struct dma_map_ops *ops = get_dma_ops(dev);
1088 struct scatterlist *s;
1089
1090 int i;
1091
1092 for_each_sg(sg, s, nents, i)
1093 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1094}
1095
1096/**
1097 * arm_dma_sync_sg_for_cpu
1098 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1099 * @sg: list of buffers
1100 * @nents: number of buffers to map (returned from dma_map_sg)
1101 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1102 */
1103void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1104 int nents, enum dma_data_direction dir)
1105{
1106 struct dma_map_ops *ops = get_dma_ops(dev);
1107 struct scatterlist *s;
1108 int i;
1109
1110 for_each_sg(sg, s, nents, i)
1111 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1112 dir);
1113}
1114
1115/**
1116 * arm_dma_sync_sg_for_device
1117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1118 * @sg: list of buffers
1119 * @nents: number of buffers to map (returned from dma_map_sg)
1120 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1121 */
1122void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1123 int nents, enum dma_data_direction dir)
1124{
1125 struct dma_map_ops *ops = get_dma_ops(dev);
1126 struct scatterlist *s;
1127 int i;
1128
1129 for_each_sg(sg, s, nents, i)
1130 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1131 dir);
1132}
1133
1134/*
1135 * Return whether the given device DMA address mask can be supported
1136 * properly. For example, if your device can only drive the low 24-bits
1137 * during bus mastering, then you would pass 0x00ffffff as the mask
1138 * to this function.
1139 */
1140int dma_supported(struct device *dev, u64 mask)
1141{
1142 return __dma_supported(dev, mask, false);
1143}
1144EXPORT_SYMBOL(dma_supported);
1145
1146int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1147{
1148 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1149 return -EIO;
1150
1151 *dev->dma_mask = dma_mask;
1152
1153 return 0;
1154}
1155
1156#define PREALLOC_DMA_DEBUG_ENTRIES 4096
1157
1158static int __init dma_debug_do_init(void)
1159{
1160 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1161 return 0;
1162}
1163fs_initcall(dma_debug_do_init);
1164
1165#ifdef CONFIG_ARM_DMA_USE_IOMMU
1166
1167/* IOMMU */
1168
1169static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1170
1171static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1172 size_t size)
1173{
1174 unsigned int order = get_order(size);
1175 unsigned int align = 0;
1176 unsigned int count, start;
1177 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1178 unsigned long flags;
1179 dma_addr_t iova;
1180 int i;
1181
1182 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1183 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1184
1185 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1186 align = (1 << order) - 1;
1187
1188 spin_lock_irqsave(&mapping->lock, flags);
1189 for (i = 0; i < mapping->nr_bitmaps; i++) {
1190 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1191 mapping->bits, 0, count, align);
1192
1193 if (start > mapping->bits)
1194 continue;
1195
1196 bitmap_set(mapping->bitmaps[i], start, count);
1197 break;
1198 }
1199
1200 /*
1201 * No unused range found. Try to extend the existing mapping
1202 * and perform a second attempt to reserve an IO virtual
1203 * address range of size bytes.
1204 */
1205 if (i == mapping->nr_bitmaps) {
1206 if (extend_iommu_mapping(mapping)) {
1207 spin_unlock_irqrestore(&mapping->lock, flags);
1208 return DMA_ERROR_CODE;
1209 }
1210
1211 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1212 mapping->bits, 0, count, align);
1213
1214 if (start > mapping->bits) {
1215 spin_unlock_irqrestore(&mapping->lock, flags);
1216 return DMA_ERROR_CODE;
1217 }
1218
1219 bitmap_set(mapping->bitmaps[i], start, count);
1220 }
1221 spin_unlock_irqrestore(&mapping->lock, flags);
1222
1223 iova = mapping->base + (mapping_size * i);
1224 iova += start << PAGE_SHIFT;
1225
1226 return iova;
1227}
1228
1229static inline void __free_iova(struct dma_iommu_mapping *mapping,
1230 dma_addr_t addr, size_t size)
1231{
1232 unsigned int start, count;
1233 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1234 unsigned long flags;
1235 dma_addr_t bitmap_base;
1236 u32 bitmap_index;
1237
1238 if (!size)
1239 return;
1240
1241 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1242 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1243
1244 bitmap_base = mapping->base + mapping_size * bitmap_index;
1245
1246 start = (addr - bitmap_base) >> PAGE_SHIFT;
1247
1248 if (addr + size > bitmap_base + mapping_size) {
1249 /*
1250 * The address range to be freed reaches into the iova
1251 * range of the next bitmap. This should not happen as
1252 * we don't allow this in __alloc_iova (at the
1253 * moment).
1254 */
1255 BUG();
1256 } else
1257 count = size >> PAGE_SHIFT;
1258
1259 spin_lock_irqsave(&mapping->lock, flags);
1260 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1261 spin_unlock_irqrestore(&mapping->lock, flags);
1262}
1263
1264/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1265static const int iommu_order_array[] = { 9, 8, 4, 0 };
1266
1267static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1268 gfp_t gfp, struct dma_attrs *attrs)
1269{
1270 struct page **pages;
1271 int count = size >> PAGE_SHIFT;
1272 int array_size = count * sizeof(struct page *);
1273 int i = 0;
1274 int order_idx = 0;
1275
1276 if (array_size <= PAGE_SIZE)
1277 pages = kzalloc(array_size, GFP_KERNEL);
1278 else
1279 pages = vzalloc(array_size);
1280 if (!pages)
1281 return NULL;
1282
1283 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1284 {
1285 unsigned long order = get_order(size);
1286 struct page *page;
1287
1288 page = dma_alloc_from_contiguous(dev, count, order);
1289 if (!page)
1290 goto error;
1291
1292 __dma_clear_buffer(page, size);
1293
1294 for (i = 0; i < count; i++)
1295 pages[i] = page + i;
1296
1297 return pages;
1298 }
1299
1300 /* Go straight to 4K chunks if caller says it's OK. */
1301 if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1302 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1303
1304 /*
1305 * IOMMU can map any pages, so himem can also be used here
1306 */
1307 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1308
1309 while (count) {
1310 int j, order;
1311
1312 order = iommu_order_array[order_idx];
1313
1314 /* Drop down when we get small */
1315 if (__fls(count) < order) {
1316 order_idx++;
1317 continue;
1318 }
1319
1320 if (order) {
1321 /* See if it's easy to allocate a high-order chunk */
1322 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1323
1324 /* Go down a notch at first sign of pressure */
1325 if (!pages[i]) {
1326 order_idx++;
1327 continue;
1328 }
1329 } else {
1330 pages[i] = alloc_pages(gfp, 0);
1331 if (!pages[i])
1332 goto error;
1333 }
1334
1335 if (order) {
1336 split_page(pages[i], order);
1337 j = 1 << order;
1338 while (--j)
1339 pages[i + j] = pages[i] + j;
1340 }
1341
1342 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1343 i += 1 << order;
1344 count -= 1 << order;
1345 }
1346
1347 return pages;
1348error:
1349 while (i--)
1350 if (pages[i])
1351 __free_pages(pages[i], 0);
1352 kvfree(pages);
1353 return NULL;
1354}
1355
1356static int __iommu_free_buffer(struct device *dev, struct page **pages,
1357 size_t size, struct dma_attrs *attrs)
1358{
1359 int count = size >> PAGE_SHIFT;
1360 int i;
1361
1362 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1363 dma_release_from_contiguous(dev, pages[0], count);
1364 } else {
1365 for (i = 0; i < count; i++)
1366 if (pages[i])
1367 __free_pages(pages[i], 0);
1368 }
1369
1370 kvfree(pages);
1371 return 0;
1372}
1373
1374/*
1375 * Create a CPU mapping for a specified pages
1376 */
1377static void *
1378__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1379 const void *caller)
1380{
1381 return dma_common_pages_remap(pages, size,
1382 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1383}
1384
1385/*
1386 * Create a mapping in device IO address space for specified pages
1387 */
1388static dma_addr_t
1389__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1390{
1391 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1392 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1393 dma_addr_t dma_addr, iova;
1394 int i;
1395
1396 dma_addr = __alloc_iova(mapping, size);
1397 if (dma_addr == DMA_ERROR_CODE)
1398 return dma_addr;
1399
1400 iova = dma_addr;
1401 for (i = 0; i < count; ) {
1402 int ret;
1403
1404 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1405 phys_addr_t phys = page_to_phys(pages[i]);
1406 unsigned int len, j;
1407
1408 for (j = i + 1; j < count; j++, next_pfn++)
1409 if (page_to_pfn(pages[j]) != next_pfn)
1410 break;
1411
1412 len = (j - i) << PAGE_SHIFT;
1413 ret = iommu_map(mapping->domain, iova, phys, len,
1414 IOMMU_READ|IOMMU_WRITE);
1415 if (ret < 0)
1416 goto fail;
1417 iova += len;
1418 i = j;
1419 }
1420 return dma_addr;
1421fail:
1422 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1423 __free_iova(mapping, dma_addr, size);
1424 return DMA_ERROR_CODE;
1425}
1426
1427static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1428{
1429 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1430
1431 /*
1432 * add optional in-page offset from iova to size and align
1433 * result to page size
1434 */
1435 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1436 iova &= PAGE_MASK;
1437
1438 iommu_unmap(mapping->domain, iova, size);
1439 __free_iova(mapping, iova, size);
1440 return 0;
1441}
1442
1443static struct page **__atomic_get_pages(void *addr)
1444{
1445 struct page *page;
1446 phys_addr_t phys;
1447
1448 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1449 page = phys_to_page(phys);
1450
1451 return (struct page **)page;
1452}
1453
1454static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1455{
1456 struct vm_struct *area;
1457
1458 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1459 return __atomic_get_pages(cpu_addr);
1460
1461 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1462 return cpu_addr;
1463
1464 area = find_vm_area(cpu_addr);
1465 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1466 return area->pages;
1467 return NULL;
1468}
1469
1470static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1471 dma_addr_t *handle)
1472{
1473 struct page *page;
1474 void *addr;
1475
1476 addr = __alloc_from_pool(size, &page);
1477 if (!addr)
1478 return NULL;
1479
1480 *handle = __iommu_create_mapping(dev, &page, size);
1481 if (*handle == DMA_ERROR_CODE)
1482 goto err_mapping;
1483
1484 return addr;
1485
1486err_mapping:
1487 __free_from_pool(addr, size);
1488 return NULL;
1489}
1490
1491static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1492 dma_addr_t handle, size_t size)
1493{
1494 __iommu_remove_mapping(dev, handle, size);
1495 __free_from_pool(cpu_addr, size);
1496}
1497
1498static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1499 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1500{
1501 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1502 struct page **pages;
1503 void *addr = NULL;
1504
1505 *handle = DMA_ERROR_CODE;
1506 size = PAGE_ALIGN(size);
1507
1508 if (!gfpflags_allow_blocking(gfp))
1509 return __iommu_alloc_atomic(dev, size, handle);
1510
1511 /*
1512 * Following is a work-around (a.k.a. hack) to prevent pages
1513 * with __GFP_COMP being passed to split_page() which cannot
1514 * handle them. The real problem is that this flag probably
1515 * should be 0 on ARM as it is not supported on this
1516 * platform; see CONFIG_HUGETLBFS.
1517 */
1518 gfp &= ~(__GFP_COMP);
1519
1520 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1521 if (!pages)
1522 return NULL;
1523
1524 *handle = __iommu_create_mapping(dev, pages, size);
1525 if (*handle == DMA_ERROR_CODE)
1526 goto err_buffer;
1527
1528 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1529 return pages;
1530
1531 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1532 __builtin_return_address(0));
1533 if (!addr)
1534 goto err_mapping;
1535
1536 return addr;
1537
1538err_mapping:
1539 __iommu_remove_mapping(dev, *handle, size);
1540err_buffer:
1541 __iommu_free_buffer(dev, pages, size, attrs);
1542 return NULL;
1543}
1544
1545static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1546 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1547 struct dma_attrs *attrs)
1548{
1549 unsigned long uaddr = vma->vm_start;
1550 unsigned long usize = vma->vm_end - vma->vm_start;
1551 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1552 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1553 unsigned long off = vma->vm_pgoff;
1554
1555 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1556
1557 if (!pages)
1558 return -ENXIO;
1559
1560 if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1561 return -ENXIO;
1562
1563 pages += off;
1564
1565 do {
1566 int ret = vm_insert_page(vma, uaddr, *pages++);
1567 if (ret) {
1568 pr_err("Remapping memory failed: %d\n", ret);
1569 return ret;
1570 }
1571 uaddr += PAGE_SIZE;
1572 usize -= PAGE_SIZE;
1573 } while (usize > 0);
1574
1575 return 0;
1576}
1577
1578/*
1579 * free a page as defined by the above mapping.
1580 * Must not be called with IRQs disabled.
1581 */
1582void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1583 dma_addr_t handle, struct dma_attrs *attrs)
1584{
1585 struct page **pages;
1586 size = PAGE_ALIGN(size);
1587
1588 if (__in_atomic_pool(cpu_addr, size)) {
1589 __iommu_free_atomic(dev, cpu_addr, handle, size);
1590 return;
1591 }
1592
1593 pages = __iommu_get_pages(cpu_addr, attrs);
1594 if (!pages) {
1595 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1596 return;
1597 }
1598
1599 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1600 dma_common_free_remap(cpu_addr, size,
1601 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1602 }
1603
1604 __iommu_remove_mapping(dev, handle, size);
1605 __iommu_free_buffer(dev, pages, size, attrs);
1606}
1607
1608static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1609 void *cpu_addr, dma_addr_t dma_addr,
1610 size_t size, struct dma_attrs *attrs)
1611{
1612 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1613 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1614
1615 if (!pages)
1616 return -ENXIO;
1617
1618 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1619 GFP_KERNEL);
1620}
1621
1622static int __dma_direction_to_prot(enum dma_data_direction dir)
1623{
1624 int prot;
1625
1626 switch (dir) {
1627 case DMA_BIDIRECTIONAL:
1628 prot = IOMMU_READ | IOMMU_WRITE;
1629 break;
1630 case DMA_TO_DEVICE:
1631 prot = IOMMU_READ;
1632 break;
1633 case DMA_FROM_DEVICE:
1634 prot = IOMMU_WRITE;
1635 break;
1636 default:
1637 prot = 0;
1638 }
1639
1640 return prot;
1641}
1642
1643/*
1644 * Map a part of the scatter-gather list into contiguous io address space
1645 */
1646static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1647 size_t size, dma_addr_t *handle,
1648 enum dma_data_direction dir, struct dma_attrs *attrs,
1649 bool is_coherent)
1650{
1651 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1652 dma_addr_t iova, iova_base;
1653 int ret = 0;
1654 unsigned int count;
1655 struct scatterlist *s;
1656 int prot;
1657
1658 size = PAGE_ALIGN(size);
1659 *handle = DMA_ERROR_CODE;
1660
1661 iova_base = iova = __alloc_iova(mapping, size);
1662 if (iova == DMA_ERROR_CODE)
1663 return -ENOMEM;
1664
1665 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1666 phys_addr_t phys = page_to_phys(sg_page(s));
1667 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1668
1669 if (!is_coherent &&
1670 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1671 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1672
1673 prot = __dma_direction_to_prot(dir);
1674
1675 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1676 if (ret < 0)
1677 goto fail;
1678 count += len >> PAGE_SHIFT;
1679 iova += len;
1680 }
1681 *handle = iova_base;
1682
1683 return 0;
1684fail:
1685 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1686 __free_iova(mapping, iova_base, size);
1687 return ret;
1688}
1689
1690static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1691 enum dma_data_direction dir, struct dma_attrs *attrs,
1692 bool is_coherent)
1693{
1694 struct scatterlist *s = sg, *dma = sg, *start = sg;
1695 int i, count = 0;
1696 unsigned int offset = s->offset;
1697 unsigned int size = s->offset + s->length;
1698 unsigned int max = dma_get_max_seg_size(dev);
1699
1700 for (i = 1; i < nents; i++) {
1701 s = sg_next(s);
1702
1703 s->dma_address = DMA_ERROR_CODE;
1704 s->dma_length = 0;
1705
1706 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1707 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1708 dir, attrs, is_coherent) < 0)
1709 goto bad_mapping;
1710
1711 dma->dma_address += offset;
1712 dma->dma_length = size - offset;
1713
1714 size = offset = s->offset;
1715 start = s;
1716 dma = sg_next(dma);
1717 count += 1;
1718 }
1719 size += s->length;
1720 }
1721 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1722 is_coherent) < 0)
1723 goto bad_mapping;
1724
1725 dma->dma_address += offset;
1726 dma->dma_length = size - offset;
1727
1728 return count+1;
1729
1730bad_mapping:
1731 for_each_sg(sg, s, count, i)
1732 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1733 return 0;
1734}
1735
1736/**
1737 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1738 * @dev: valid struct device pointer
1739 * @sg: list of buffers
1740 * @nents: number of buffers to map
1741 * @dir: DMA transfer direction
1742 *
1743 * Map a set of i/o coherent buffers described by scatterlist in streaming
1744 * mode for DMA. The scatter gather list elements are merged together (if
1745 * possible) and tagged with the appropriate dma address and length. They are
1746 * obtained via sg_dma_{address,length}.
1747 */
1748int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1749 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1750{
1751 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1752}
1753
1754/**
1755 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1756 * @dev: valid struct device pointer
1757 * @sg: list of buffers
1758 * @nents: number of buffers to map
1759 * @dir: DMA transfer direction
1760 *
1761 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1762 * The scatter gather list elements are merged together (if possible) and
1763 * tagged with the appropriate dma address and length. They are obtained via
1764 * sg_dma_{address,length}.
1765 */
1766int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1767 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1768{
1769 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1770}
1771
1772static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1773 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1774 bool is_coherent)
1775{
1776 struct scatterlist *s;
1777 int i;
1778
1779 for_each_sg(sg, s, nents, i) {
1780 if (sg_dma_len(s))
1781 __iommu_remove_mapping(dev, sg_dma_address(s),
1782 sg_dma_len(s));
1783 if (!is_coherent &&
1784 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1785 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1786 s->length, dir);
1787 }
1788}
1789
1790/**
1791 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1792 * @dev: valid struct device pointer
1793 * @sg: list of buffers
1794 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1795 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1796 *
1797 * Unmap a set of streaming mode DMA translations. Again, CPU access
1798 * rules concerning calls here are the same as for dma_unmap_single().
1799 */
1800void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1801 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1802{
1803 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1804}
1805
1806/**
1807 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1808 * @dev: valid struct device pointer
1809 * @sg: list of buffers
1810 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1811 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1812 *
1813 * Unmap a set of streaming mode DMA translations. Again, CPU access
1814 * rules concerning calls here are the same as for dma_unmap_single().
1815 */
1816void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1817 enum dma_data_direction dir, struct dma_attrs *attrs)
1818{
1819 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1820}
1821
1822/**
1823 * arm_iommu_sync_sg_for_cpu
1824 * @dev: valid struct device pointer
1825 * @sg: list of buffers
1826 * @nents: number of buffers to map (returned from dma_map_sg)
1827 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1828 */
1829void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1830 int nents, enum dma_data_direction dir)
1831{
1832 struct scatterlist *s;
1833 int i;
1834
1835 for_each_sg(sg, s, nents, i)
1836 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1837
1838}
1839
1840/**
1841 * arm_iommu_sync_sg_for_device
1842 * @dev: valid struct device pointer
1843 * @sg: list of buffers
1844 * @nents: number of buffers to map (returned from dma_map_sg)
1845 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1846 */
1847void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1848 int nents, enum dma_data_direction dir)
1849{
1850 struct scatterlist *s;
1851 int i;
1852
1853 for_each_sg(sg, s, nents, i)
1854 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1855}
1856
1857
1858/**
1859 * arm_coherent_iommu_map_page
1860 * @dev: valid struct device pointer
1861 * @page: page that buffer resides in
1862 * @offset: offset into page for start of buffer
1863 * @size: size of buffer to map
1864 * @dir: DMA transfer direction
1865 *
1866 * Coherent IOMMU aware version of arm_dma_map_page()
1867 */
1868static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1869 unsigned long offset, size_t size, enum dma_data_direction dir,
1870 struct dma_attrs *attrs)
1871{
1872 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1873 dma_addr_t dma_addr;
1874 int ret, prot, len = PAGE_ALIGN(size + offset);
1875
1876 dma_addr = __alloc_iova(mapping, len);
1877 if (dma_addr == DMA_ERROR_CODE)
1878 return dma_addr;
1879
1880 prot = __dma_direction_to_prot(dir);
1881
1882 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1883 if (ret < 0)
1884 goto fail;
1885
1886 return dma_addr + offset;
1887fail:
1888 __free_iova(mapping, dma_addr, len);
1889 return DMA_ERROR_CODE;
1890}
1891
1892/**
1893 * arm_iommu_map_page
1894 * @dev: valid struct device pointer
1895 * @page: page that buffer resides in
1896 * @offset: offset into page for start of buffer
1897 * @size: size of buffer to map
1898 * @dir: DMA transfer direction
1899 *
1900 * IOMMU aware version of arm_dma_map_page()
1901 */
1902static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1903 unsigned long offset, size_t size, enum dma_data_direction dir,
1904 struct dma_attrs *attrs)
1905{
1906 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1907 __dma_page_cpu_to_dev(page, offset, size, dir);
1908
1909 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1910}
1911
1912/**
1913 * arm_coherent_iommu_unmap_page
1914 * @dev: valid struct device pointer
1915 * @handle: DMA address of buffer
1916 * @size: size of buffer (same as passed to dma_map_page)
1917 * @dir: DMA transfer direction (same as passed to dma_map_page)
1918 *
1919 * Coherent IOMMU aware version of arm_dma_unmap_page()
1920 */
1921static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1922 size_t size, enum dma_data_direction dir,
1923 struct dma_attrs *attrs)
1924{
1925 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1926 dma_addr_t iova = handle & PAGE_MASK;
1927 int offset = handle & ~PAGE_MASK;
1928 int len = PAGE_ALIGN(size + offset);
1929
1930 if (!iova)
1931 return;
1932
1933 iommu_unmap(mapping->domain, iova, len);
1934 __free_iova(mapping, iova, len);
1935}
1936
1937/**
1938 * arm_iommu_unmap_page
1939 * @dev: valid struct device pointer
1940 * @handle: DMA address of buffer
1941 * @size: size of buffer (same as passed to dma_map_page)
1942 * @dir: DMA transfer direction (same as passed to dma_map_page)
1943 *
1944 * IOMMU aware version of arm_dma_unmap_page()
1945 */
1946static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1947 size_t size, enum dma_data_direction dir,
1948 struct dma_attrs *attrs)
1949{
1950 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1951 dma_addr_t iova = handle & PAGE_MASK;
1952 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1953 int offset = handle & ~PAGE_MASK;
1954 int len = PAGE_ALIGN(size + offset);
1955
1956 if (!iova)
1957 return;
1958
1959 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1960 __dma_page_dev_to_cpu(page, offset, size, dir);
1961
1962 iommu_unmap(mapping->domain, iova, len);
1963 __free_iova(mapping, iova, len);
1964}
1965
1966static void arm_iommu_sync_single_for_cpu(struct device *dev,
1967 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1968{
1969 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1970 dma_addr_t iova = handle & PAGE_MASK;
1971 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1972 unsigned int offset = handle & ~PAGE_MASK;
1973
1974 if (!iova)
1975 return;
1976
1977 __dma_page_dev_to_cpu(page, offset, size, dir);
1978}
1979
1980static void arm_iommu_sync_single_for_device(struct device *dev,
1981 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1982{
1983 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1984 dma_addr_t iova = handle & PAGE_MASK;
1985 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1986 unsigned int offset = handle & ~PAGE_MASK;
1987
1988 if (!iova)
1989 return;
1990
1991 __dma_page_cpu_to_dev(page, offset, size, dir);
1992}
1993
1994struct dma_map_ops iommu_ops = {
1995 .alloc = arm_iommu_alloc_attrs,
1996 .free = arm_iommu_free_attrs,
1997 .mmap = arm_iommu_mmap_attrs,
1998 .get_sgtable = arm_iommu_get_sgtable,
1999
2000 .map_page = arm_iommu_map_page,
2001 .unmap_page = arm_iommu_unmap_page,
2002 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2003 .sync_single_for_device = arm_iommu_sync_single_for_device,
2004
2005 .map_sg = arm_iommu_map_sg,
2006 .unmap_sg = arm_iommu_unmap_sg,
2007 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2008 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2009
2010 .set_dma_mask = arm_dma_set_mask,
2011};
2012
2013struct dma_map_ops iommu_coherent_ops = {
2014 .alloc = arm_iommu_alloc_attrs,
2015 .free = arm_iommu_free_attrs,
2016 .mmap = arm_iommu_mmap_attrs,
2017 .get_sgtable = arm_iommu_get_sgtable,
2018
2019 .map_page = arm_coherent_iommu_map_page,
2020 .unmap_page = arm_coherent_iommu_unmap_page,
2021
2022 .map_sg = arm_coherent_iommu_map_sg,
2023 .unmap_sg = arm_coherent_iommu_unmap_sg,
2024
2025 .set_dma_mask = arm_dma_set_mask,
2026};
2027
2028/**
2029 * arm_iommu_create_mapping
2030 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2031 * @base: start address of the valid IO address space
2032 * @size: maximum size of the valid IO address space
2033 *
2034 * Creates a mapping structure which holds information about used/unused
2035 * IO address ranges, which is required to perform memory allocation and
2036 * mapping with IOMMU aware functions.
2037 *
2038 * The client device need to be attached to the mapping with
2039 * arm_iommu_attach_device function.
2040 */
2041struct dma_iommu_mapping *
2042arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2043{
2044 unsigned int bits = size >> PAGE_SHIFT;
2045 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2046 struct dma_iommu_mapping *mapping;
2047 int extensions = 1;
2048 int err = -ENOMEM;
2049
2050 /* currently only 32-bit DMA address space is supported */
2051 if (size > DMA_BIT_MASK(32) + 1)
2052 return ERR_PTR(-ERANGE);
2053
2054 if (!bitmap_size)
2055 return ERR_PTR(-EINVAL);
2056
2057 if (bitmap_size > PAGE_SIZE) {
2058 extensions = bitmap_size / PAGE_SIZE;
2059 bitmap_size = PAGE_SIZE;
2060 }
2061
2062 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2063 if (!mapping)
2064 goto err;
2065
2066 mapping->bitmap_size = bitmap_size;
2067 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2068 GFP_KERNEL);
2069 if (!mapping->bitmaps)
2070 goto err2;
2071
2072 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2073 if (!mapping->bitmaps[0])
2074 goto err3;
2075
2076 mapping->nr_bitmaps = 1;
2077 mapping->extensions = extensions;
2078 mapping->base = base;
2079 mapping->bits = BITS_PER_BYTE * bitmap_size;
2080
2081 spin_lock_init(&mapping->lock);
2082
2083 mapping->domain = iommu_domain_alloc(bus);
2084 if (!mapping->domain)
2085 goto err4;
2086
2087 kref_init(&mapping->kref);
2088 return mapping;
2089err4:
2090 kfree(mapping->bitmaps[0]);
2091err3:
2092 kfree(mapping->bitmaps);
2093err2:
2094 kfree(mapping);
2095err:
2096 return ERR_PTR(err);
2097}
2098EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2099
2100static void release_iommu_mapping(struct kref *kref)
2101{
2102 int i;
2103 struct dma_iommu_mapping *mapping =
2104 container_of(kref, struct dma_iommu_mapping, kref);
2105
2106 iommu_domain_free(mapping->domain);
2107 for (i = 0; i < mapping->nr_bitmaps; i++)
2108 kfree(mapping->bitmaps[i]);
2109 kfree(mapping->bitmaps);
2110 kfree(mapping);
2111}
2112
2113static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2114{
2115 int next_bitmap;
2116
2117 if (mapping->nr_bitmaps >= mapping->extensions)
2118 return -EINVAL;
2119
2120 next_bitmap = mapping->nr_bitmaps;
2121 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2122 GFP_ATOMIC);
2123 if (!mapping->bitmaps[next_bitmap])
2124 return -ENOMEM;
2125
2126 mapping->nr_bitmaps++;
2127
2128 return 0;
2129}
2130
2131void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2132{
2133 if (mapping)
2134 kref_put(&mapping->kref, release_iommu_mapping);
2135}
2136EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2137
2138static int __arm_iommu_attach_device(struct device *dev,
2139 struct dma_iommu_mapping *mapping)
2140{
2141 int err;
2142
2143 err = iommu_attach_device(mapping->domain, dev);
2144 if (err)
2145 return err;
2146
2147 kref_get(&mapping->kref);
2148 to_dma_iommu_mapping(dev) = mapping;
2149
2150 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2151 return 0;
2152}
2153
2154/**
2155 * arm_iommu_attach_device
2156 * @dev: valid struct device pointer
2157 * @mapping: io address space mapping structure (returned from
2158 * arm_iommu_create_mapping)
2159 *
2160 * Attaches specified io address space mapping to the provided device.
2161 * This replaces the dma operations (dma_map_ops pointer) with the
2162 * IOMMU aware version.
2163 *
2164 * More than one client might be attached to the same io address space
2165 * mapping.
2166 */
2167int arm_iommu_attach_device(struct device *dev,
2168 struct dma_iommu_mapping *mapping)
2169{
2170 int err;
2171
2172 err = __arm_iommu_attach_device(dev, mapping);
2173 if (err)
2174 return err;
2175
2176 set_dma_ops(dev, &iommu_ops);
2177 return 0;
2178}
2179EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2180
2181static void __arm_iommu_detach_device(struct device *dev)
2182{
2183 struct dma_iommu_mapping *mapping;
2184
2185 mapping = to_dma_iommu_mapping(dev);
2186 if (!mapping) {
2187 dev_warn(dev, "Not attached\n");
2188 return;
2189 }
2190
2191 iommu_detach_device(mapping->domain, dev);
2192 kref_put(&mapping->kref, release_iommu_mapping);
2193 to_dma_iommu_mapping(dev) = NULL;
2194
2195 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2196}
2197
2198/**
2199 * arm_iommu_detach_device
2200 * @dev: valid struct device pointer
2201 *
2202 * Detaches the provided device from a previously attached map.
2203 * This voids the dma operations (dma_map_ops pointer)
2204 */
2205void arm_iommu_detach_device(struct device *dev)
2206{
2207 __arm_iommu_detach_device(dev);
2208 set_dma_ops(dev, NULL);
2209}
2210EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2211
2212static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2213{
2214 return coherent ? &iommu_coherent_ops : &iommu_ops;
2215}
2216
2217static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2218 struct iommu_ops *iommu)
2219{
2220 struct dma_iommu_mapping *mapping;
2221
2222 if (!iommu)
2223 return false;
2224
2225 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2226 if (IS_ERR(mapping)) {
2227 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2228 size, dev_name(dev));
2229 return false;
2230 }
2231
2232 if (__arm_iommu_attach_device(dev, mapping)) {
2233 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2234 dev_name(dev));
2235 arm_iommu_release_mapping(mapping);
2236 return false;
2237 }
2238
2239 return true;
2240}
2241
2242static void arm_teardown_iommu_dma_ops(struct device *dev)
2243{
2244 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2245
2246 if (!mapping)
2247 return;
2248
2249 __arm_iommu_detach_device(dev);
2250 arm_iommu_release_mapping(mapping);
2251}
2252
2253#else
2254
2255static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2256 struct iommu_ops *iommu)
2257{
2258 return false;
2259}
2260
2261static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2262
2263#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2264
2265#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2266
2267static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2268{
2269 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2270}
2271
2272void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2273 struct iommu_ops *iommu, bool coherent)
2274{
2275 struct dma_map_ops *dma_ops;
2276
2277 dev->archdata.dma_coherent = coherent;
2278 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2279 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2280 else
2281 dma_ops = arm_get_dma_map_ops(coherent);
2282
2283 set_dma_ops(dev, dma_ops);
2284}
2285
2286void arch_teardown_dma_ops(struct device *dev)
2287{
2288 arm_teardown_iommu_dma_ops(dev);
2289}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/dma-mapping.c
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
7 * DMA uncached mapping support.
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/genalloc.h>
12#include <linux/gfp.h>
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/init.h>
16#include <linux/device.h>
17#include <linux/dma-direct.h>
18#include <linux/dma-map-ops.h>
19#include <linux/highmem.h>
20#include <linux/memblock.h>
21#include <linux/slab.h>
22#include <linux/iommu.h>
23#include <linux/io.h>
24#include <linux/vmalloc.h>
25#include <linux/sizes.h>
26#include <linux/cma.h>
27
28#include <asm/page.h>
29#include <asm/highmem.h>
30#include <asm/cacheflush.h>
31#include <asm/tlbflush.h>
32#include <asm/mach/arch.h>
33#include <asm/dma-iommu.h>
34#include <asm/mach/map.h>
35#include <asm/system_info.h>
36#include <asm/xen/xen-ops.h>
37
38#include "dma.h"
39#include "mm.h"
40
41struct arm_dma_alloc_args {
42 struct device *dev;
43 size_t size;
44 gfp_t gfp;
45 pgprot_t prot;
46 const void *caller;
47 bool want_vaddr;
48 int coherent_flag;
49};
50
51struct arm_dma_free_args {
52 struct device *dev;
53 size_t size;
54 void *cpu_addr;
55 struct page *page;
56 bool want_vaddr;
57};
58
59#define NORMAL 0
60#define COHERENT 1
61
62struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66};
67
68struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
71 struct arm_dma_allocator *allocator;
72};
73
74static LIST_HEAD(arm_dma_bufs);
75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78{
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92}
93
94/*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
105 */
106
107static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
108{
109 /*
110 * Ensure that the allocated pages are zeroed, and that any data
111 * lurking in the kernel direct-mapped region is invalidated.
112 */
113 if (PageHighMem(page)) {
114 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
115 phys_addr_t end = base + size;
116 while (size > 0) {
117 void *ptr = kmap_atomic(page);
118 memset(ptr, 0, PAGE_SIZE);
119 if (coherent_flag != COHERENT)
120 dmac_flush_range(ptr, ptr + PAGE_SIZE);
121 kunmap_atomic(ptr);
122 page++;
123 size -= PAGE_SIZE;
124 }
125 if (coherent_flag != COHERENT)
126 outer_flush_range(base, end);
127 } else {
128 void *ptr = page_address(page);
129 memset(ptr, 0, size);
130 if (coherent_flag != COHERENT) {
131 dmac_flush_range(ptr, ptr + size);
132 outer_flush_range(__pa(ptr), __pa(ptr) + size);
133 }
134 }
135}
136
137/*
138 * Allocate a DMA buffer for 'dev' of size 'size' using the
139 * specified gfp mask. Note that 'size' must be page aligned.
140 */
141static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
142 gfp_t gfp, int coherent_flag)
143{
144 unsigned long order = get_order(size);
145 struct page *page, *p, *e;
146
147 page = alloc_pages(gfp, order);
148 if (!page)
149 return NULL;
150
151 /*
152 * Now split the huge page and free the excess pages
153 */
154 split_page(page, order);
155 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
156 __free_page(p);
157
158 __dma_clear_buffer(page, size, coherent_flag);
159
160 return page;
161}
162
163/*
164 * Free a DMA buffer. 'size' must be page aligned.
165 */
166static void __dma_free_buffer(struct page *page, size_t size)
167{
168 struct page *e = page + (size >> PAGE_SHIFT);
169
170 while (page < e) {
171 __free_page(page);
172 page++;
173 }
174}
175
176static void *__alloc_from_contiguous(struct device *dev, size_t size,
177 pgprot_t prot, struct page **ret_page,
178 const void *caller, bool want_vaddr,
179 int coherent_flag, gfp_t gfp);
180
181static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
182 pgprot_t prot, struct page **ret_page,
183 const void *caller, bool want_vaddr);
184
185#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
186static struct gen_pool *atomic_pool __ro_after_init;
187
188static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
189
190static int __init early_coherent_pool(char *p)
191{
192 atomic_pool_size = memparse(p, &p);
193 return 0;
194}
195early_param("coherent_pool", early_coherent_pool);
196
197/*
198 * Initialise the coherent pool for atomic allocations.
199 */
200static int __init atomic_pool_init(void)
201{
202 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
203 gfp_t gfp = GFP_KERNEL | GFP_DMA;
204 struct page *page;
205 void *ptr;
206
207 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
208 if (!atomic_pool)
209 goto out;
210 /*
211 * The atomic pool is only used for non-coherent allocations
212 * so we must pass NORMAL for coherent_flag.
213 */
214 if (dev_get_cma_area(NULL))
215 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
216 &page, atomic_pool_init, true, NORMAL,
217 GFP_KERNEL);
218 else
219 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
220 &page, atomic_pool_init, true);
221 if (ptr) {
222 int ret;
223
224 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
225 page_to_phys(page),
226 atomic_pool_size, -1);
227 if (ret)
228 goto destroy_genpool;
229
230 gen_pool_set_algo(atomic_pool,
231 gen_pool_first_fit_order_align,
232 NULL);
233 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
234 atomic_pool_size / 1024);
235 return 0;
236 }
237
238destroy_genpool:
239 gen_pool_destroy(atomic_pool);
240 atomic_pool = NULL;
241out:
242 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
243 atomic_pool_size / 1024);
244 return -ENOMEM;
245}
246/*
247 * CMA is activated by core_initcall, so we must be called after it.
248 */
249postcore_initcall(atomic_pool_init);
250
251#ifdef CONFIG_CMA_AREAS
252struct dma_contig_early_reserve {
253 phys_addr_t base;
254 unsigned long size;
255};
256
257static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
258
259static int dma_mmu_remap_num __initdata;
260
261#ifdef CONFIG_DMA_CMA
262void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
263{
264 dma_mmu_remap[dma_mmu_remap_num].base = base;
265 dma_mmu_remap[dma_mmu_remap_num].size = size;
266 dma_mmu_remap_num++;
267}
268#endif
269
270void __init dma_contiguous_remap(void)
271{
272 int i;
273 for (i = 0; i < dma_mmu_remap_num; i++) {
274 phys_addr_t start = dma_mmu_remap[i].base;
275 phys_addr_t end = start + dma_mmu_remap[i].size;
276 struct map_desc map;
277 unsigned long addr;
278
279 if (end > arm_lowmem_limit)
280 end = arm_lowmem_limit;
281 if (start >= end)
282 continue;
283
284 map.pfn = __phys_to_pfn(start);
285 map.virtual = __phys_to_virt(start);
286 map.length = end - start;
287 map.type = MT_MEMORY_DMA_READY;
288
289 /*
290 * Clear previous low-memory mapping to ensure that the
291 * TLB does not see any conflicting entries, then flush
292 * the TLB of the old entries before creating new mappings.
293 *
294 * This ensures that any speculatively loaded TLB entries
295 * (even though they may be rare) can not cause any problems,
296 * and ensures that this code is architecturally compliant.
297 */
298 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
299 addr += PMD_SIZE)
300 pmd_clear(pmd_off_k(addr));
301
302 flush_tlb_kernel_range(__phys_to_virt(start),
303 __phys_to_virt(end));
304
305 iotable_init(&map, 1);
306 }
307}
308#endif
309
310static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
311{
312 struct page *page = virt_to_page((void *)addr);
313 pgprot_t prot = *(pgprot_t *)data;
314
315 set_pte_ext(pte, mk_pte(page, prot), 0);
316 return 0;
317}
318
319static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
320{
321 unsigned long start = (unsigned long) page_address(page);
322 unsigned end = start + size;
323
324 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
325 flush_tlb_kernel_range(start, end);
326}
327
328static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
329 pgprot_t prot, struct page **ret_page,
330 const void *caller, bool want_vaddr)
331{
332 struct page *page;
333 void *ptr = NULL;
334 /*
335 * __alloc_remap_buffer is only called when the device is
336 * non-coherent
337 */
338 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
339 if (!page)
340 return NULL;
341 if (!want_vaddr)
342 goto out;
343
344 ptr = dma_common_contiguous_remap(page, size, prot, caller);
345 if (!ptr) {
346 __dma_free_buffer(page, size);
347 return NULL;
348 }
349
350 out:
351 *ret_page = page;
352 return ptr;
353}
354
355static void *__alloc_from_pool(size_t size, struct page **ret_page)
356{
357 unsigned long val;
358 void *ptr = NULL;
359
360 if (!atomic_pool) {
361 WARN(1, "coherent pool not initialised!\n");
362 return NULL;
363 }
364
365 val = gen_pool_alloc(atomic_pool, size);
366 if (val) {
367 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
368
369 *ret_page = phys_to_page(phys);
370 ptr = (void *)val;
371 }
372
373 return ptr;
374}
375
376static bool __in_atomic_pool(void *start, size_t size)
377{
378 return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
379}
380
381static int __free_from_pool(void *start, size_t size)
382{
383 if (!__in_atomic_pool(start, size))
384 return 0;
385
386 gen_pool_free(atomic_pool, (unsigned long)start, size);
387
388 return 1;
389}
390
391static void *__alloc_from_contiguous(struct device *dev, size_t size,
392 pgprot_t prot, struct page **ret_page,
393 const void *caller, bool want_vaddr,
394 int coherent_flag, gfp_t gfp)
395{
396 unsigned long order = get_order(size);
397 size_t count = size >> PAGE_SHIFT;
398 struct page *page;
399 void *ptr = NULL;
400
401 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
402 if (!page)
403 return NULL;
404
405 __dma_clear_buffer(page, size, coherent_flag);
406
407 if (!want_vaddr)
408 goto out;
409
410 if (PageHighMem(page)) {
411 ptr = dma_common_contiguous_remap(page, size, prot, caller);
412 if (!ptr) {
413 dma_release_from_contiguous(dev, page, count);
414 return NULL;
415 }
416 } else {
417 __dma_remap(page, size, prot);
418 ptr = page_address(page);
419 }
420
421 out:
422 *ret_page = page;
423 return ptr;
424}
425
426static void __free_from_contiguous(struct device *dev, struct page *page,
427 void *cpu_addr, size_t size, bool want_vaddr)
428{
429 if (want_vaddr) {
430 if (PageHighMem(page))
431 dma_common_free_remap(cpu_addr, size);
432 else
433 __dma_remap(page, size, PAGE_KERNEL);
434 }
435 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
436}
437
438static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
439{
440 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
441 pgprot_writecombine(prot) :
442 pgprot_dmacoherent(prot);
443 return prot;
444}
445
446static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
447 struct page **ret_page)
448{
449 struct page *page;
450 /* __alloc_simple_buffer is only called when the device is coherent */
451 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
452 if (!page)
453 return NULL;
454
455 *ret_page = page;
456 return page_address(page);
457}
458
459static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
460 struct page **ret_page)
461{
462 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
463 ret_page);
464}
465
466static void simple_allocator_free(struct arm_dma_free_args *args)
467{
468 __dma_free_buffer(args->page, args->size);
469}
470
471static struct arm_dma_allocator simple_allocator = {
472 .alloc = simple_allocator_alloc,
473 .free = simple_allocator_free,
474};
475
476static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
477 struct page **ret_page)
478{
479 return __alloc_from_contiguous(args->dev, args->size, args->prot,
480 ret_page, args->caller,
481 args->want_vaddr, args->coherent_flag,
482 args->gfp);
483}
484
485static void cma_allocator_free(struct arm_dma_free_args *args)
486{
487 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
488 args->size, args->want_vaddr);
489}
490
491static struct arm_dma_allocator cma_allocator = {
492 .alloc = cma_allocator_alloc,
493 .free = cma_allocator_free,
494};
495
496static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
497 struct page **ret_page)
498{
499 return __alloc_from_pool(args->size, ret_page);
500}
501
502static void pool_allocator_free(struct arm_dma_free_args *args)
503{
504 __free_from_pool(args->cpu_addr, args->size);
505}
506
507static struct arm_dma_allocator pool_allocator = {
508 .alloc = pool_allocator_alloc,
509 .free = pool_allocator_free,
510};
511
512static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
513 struct page **ret_page)
514{
515 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
516 args->prot, ret_page, args->caller,
517 args->want_vaddr);
518}
519
520static void remap_allocator_free(struct arm_dma_free_args *args)
521{
522 if (args->want_vaddr)
523 dma_common_free_remap(args->cpu_addr, args->size);
524
525 __dma_free_buffer(args->page, args->size);
526}
527
528static struct arm_dma_allocator remap_allocator = {
529 .alloc = remap_allocator_alloc,
530 .free = remap_allocator_free,
531};
532
533static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
534 gfp_t gfp, pgprot_t prot, bool is_coherent,
535 unsigned long attrs, const void *caller)
536{
537 u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
538 struct page *page = NULL;
539 void *addr;
540 bool allowblock, cma;
541 struct arm_dma_buffer *buf;
542 struct arm_dma_alloc_args args = {
543 .dev = dev,
544 .size = PAGE_ALIGN(size),
545 .gfp = gfp,
546 .prot = prot,
547 .caller = caller,
548 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
549 .coherent_flag = is_coherent ? COHERENT : NORMAL,
550 };
551
552#ifdef CONFIG_DMA_API_DEBUG
553 u64 limit = (mask + 1) & ~mask;
554 if (limit && size >= limit) {
555 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
556 size, mask);
557 return NULL;
558 }
559#endif
560
561 buf = kzalloc(sizeof(*buf),
562 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
563 if (!buf)
564 return NULL;
565
566 if (mask < 0xffffffffULL)
567 gfp |= GFP_DMA;
568
569 args.gfp = gfp;
570
571 *handle = DMA_MAPPING_ERROR;
572 allowblock = gfpflags_allow_blocking(gfp);
573 cma = allowblock ? dev_get_cma_area(dev) : NULL;
574
575 if (cma)
576 buf->allocator = &cma_allocator;
577 else if (is_coherent)
578 buf->allocator = &simple_allocator;
579 else if (allowblock)
580 buf->allocator = &remap_allocator;
581 else
582 buf->allocator = &pool_allocator;
583
584 addr = buf->allocator->alloc(&args, &page);
585
586 if (page) {
587 unsigned long flags;
588
589 *handle = phys_to_dma(dev, page_to_phys(page));
590 buf->virt = args.want_vaddr ? addr : page;
591
592 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
593 list_add(&buf->list, &arm_dma_bufs);
594 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
595 } else {
596 kfree(buf);
597 }
598
599 return args.want_vaddr ? addr : page;
600}
601
602/*
603 * Free a buffer as defined by the above mapping.
604 */
605static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
606 dma_addr_t handle, unsigned long attrs,
607 bool is_coherent)
608{
609 struct page *page = phys_to_page(dma_to_phys(dev, handle));
610 struct arm_dma_buffer *buf;
611 struct arm_dma_free_args args = {
612 .dev = dev,
613 .size = PAGE_ALIGN(size),
614 .cpu_addr = cpu_addr,
615 .page = page,
616 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
617 };
618
619 buf = arm_dma_buffer_find(cpu_addr);
620 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
621 return;
622
623 buf->allocator->free(&args);
624 kfree(buf);
625}
626
627static void dma_cache_maint_page(struct page *page, unsigned long offset,
628 size_t size, enum dma_data_direction dir,
629 void (*op)(const void *, size_t, int))
630{
631 unsigned long pfn;
632 size_t left = size;
633
634 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
635 offset %= PAGE_SIZE;
636
637 /*
638 * A single sg entry may refer to multiple physically contiguous
639 * pages. But we still need to process highmem pages individually.
640 * If highmem is not configured then the bulk of this loop gets
641 * optimized out.
642 */
643 do {
644 size_t len = left;
645 void *vaddr;
646
647 page = pfn_to_page(pfn);
648
649 if (PageHighMem(page)) {
650 if (len + offset > PAGE_SIZE)
651 len = PAGE_SIZE - offset;
652
653 if (cache_is_vipt_nonaliasing()) {
654 vaddr = kmap_atomic(page);
655 op(vaddr + offset, len, dir);
656 kunmap_atomic(vaddr);
657 } else {
658 vaddr = kmap_high_get(page);
659 if (vaddr) {
660 op(vaddr + offset, len, dir);
661 kunmap_high(page);
662 }
663 }
664 } else {
665 vaddr = page_address(page) + offset;
666 op(vaddr, len, dir);
667 }
668 offset = 0;
669 pfn++;
670 left -= len;
671 } while (left);
672}
673
674/*
675 * Make an area consistent for devices.
676 * Note: Drivers should NOT use this function directly.
677 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
678 */
679static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
680 size_t size, enum dma_data_direction dir)
681{
682 phys_addr_t paddr;
683
684 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
685
686 paddr = page_to_phys(page) + off;
687 if (dir == DMA_FROM_DEVICE) {
688 outer_inv_range(paddr, paddr + size);
689 } else {
690 outer_clean_range(paddr, paddr + size);
691 }
692 /* FIXME: non-speculating: flush on bidirectional mappings? */
693}
694
695static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
696 size_t size, enum dma_data_direction dir)
697{
698 phys_addr_t paddr = page_to_phys(page) + off;
699
700 /* FIXME: non-speculating: not required */
701 /* in any case, don't bother invalidating if DMA to device */
702 if (dir != DMA_TO_DEVICE) {
703 outer_inv_range(paddr, paddr + size);
704
705 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
706 }
707
708 /*
709 * Mark the D-cache clean for these pages to avoid extra flushing.
710 */
711 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
712 struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
713 size_t offset = offset_in_folio(folio, paddr);
714
715 for (;;) {
716 size_t sz = folio_size(folio) - offset;
717
718 if (size < sz)
719 break;
720 if (!offset)
721 set_bit(PG_dcache_clean, &folio->flags);
722 offset = 0;
723 size -= sz;
724 if (!size)
725 break;
726 folio = folio_next(folio);
727 }
728 }
729}
730
731#ifdef CONFIG_ARM_DMA_USE_IOMMU
732
733static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
734{
735 int prot = 0;
736
737 if (attrs & DMA_ATTR_PRIVILEGED)
738 prot |= IOMMU_PRIV;
739
740 switch (dir) {
741 case DMA_BIDIRECTIONAL:
742 return prot | IOMMU_READ | IOMMU_WRITE;
743 case DMA_TO_DEVICE:
744 return prot | IOMMU_READ;
745 case DMA_FROM_DEVICE:
746 return prot | IOMMU_WRITE;
747 default:
748 return prot;
749 }
750}
751
752/* IOMMU */
753
754static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
755
756static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
757 size_t size)
758{
759 unsigned int order = get_order(size);
760 unsigned int align = 0;
761 unsigned int count, start;
762 size_t mapping_size = mapping->bits << PAGE_SHIFT;
763 unsigned long flags;
764 dma_addr_t iova;
765 int i;
766
767 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
768 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
769
770 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
771 align = (1 << order) - 1;
772
773 spin_lock_irqsave(&mapping->lock, flags);
774 for (i = 0; i < mapping->nr_bitmaps; i++) {
775 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
776 mapping->bits, 0, count, align);
777
778 if (start > mapping->bits)
779 continue;
780
781 bitmap_set(mapping->bitmaps[i], start, count);
782 break;
783 }
784
785 /*
786 * No unused range found. Try to extend the existing mapping
787 * and perform a second attempt to reserve an IO virtual
788 * address range of size bytes.
789 */
790 if (i == mapping->nr_bitmaps) {
791 if (extend_iommu_mapping(mapping)) {
792 spin_unlock_irqrestore(&mapping->lock, flags);
793 return DMA_MAPPING_ERROR;
794 }
795
796 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
797 mapping->bits, 0, count, align);
798
799 if (start > mapping->bits) {
800 spin_unlock_irqrestore(&mapping->lock, flags);
801 return DMA_MAPPING_ERROR;
802 }
803
804 bitmap_set(mapping->bitmaps[i], start, count);
805 }
806 spin_unlock_irqrestore(&mapping->lock, flags);
807
808 iova = mapping->base + (mapping_size * i);
809 iova += start << PAGE_SHIFT;
810
811 return iova;
812}
813
814static inline void __free_iova(struct dma_iommu_mapping *mapping,
815 dma_addr_t addr, size_t size)
816{
817 unsigned int start, count;
818 size_t mapping_size = mapping->bits << PAGE_SHIFT;
819 unsigned long flags;
820 dma_addr_t bitmap_base;
821 u32 bitmap_index;
822
823 if (!size)
824 return;
825
826 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
827 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
828
829 bitmap_base = mapping->base + mapping_size * bitmap_index;
830
831 start = (addr - bitmap_base) >> PAGE_SHIFT;
832
833 if (addr + size > bitmap_base + mapping_size) {
834 /*
835 * The address range to be freed reaches into the iova
836 * range of the next bitmap. This should not happen as
837 * we don't allow this in __alloc_iova (at the
838 * moment).
839 */
840 BUG();
841 } else
842 count = size >> PAGE_SHIFT;
843
844 spin_lock_irqsave(&mapping->lock, flags);
845 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
846 spin_unlock_irqrestore(&mapping->lock, flags);
847}
848
849/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
850static const int iommu_order_array[] = { 9, 8, 4, 0 };
851
852static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
853 gfp_t gfp, unsigned long attrs,
854 int coherent_flag)
855{
856 struct page **pages;
857 int count = size >> PAGE_SHIFT;
858 int array_size = count * sizeof(struct page *);
859 int i = 0;
860 int order_idx = 0;
861
862 pages = kvzalloc(array_size, GFP_KERNEL);
863 if (!pages)
864 return NULL;
865
866 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
867 {
868 unsigned long order = get_order(size);
869 struct page *page;
870
871 page = dma_alloc_from_contiguous(dev, count, order,
872 gfp & __GFP_NOWARN);
873 if (!page)
874 goto error;
875
876 __dma_clear_buffer(page, size, coherent_flag);
877
878 for (i = 0; i < count; i++)
879 pages[i] = page + i;
880
881 return pages;
882 }
883
884 /* Go straight to 4K chunks if caller says it's OK. */
885 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
886 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
887
888 /*
889 * IOMMU can map any pages, so himem can also be used here
890 */
891 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
892
893 while (count) {
894 int j, order;
895
896 order = iommu_order_array[order_idx];
897
898 /* Drop down when we get small */
899 if (__fls(count) < order) {
900 order_idx++;
901 continue;
902 }
903
904 if (order) {
905 /* See if it's easy to allocate a high-order chunk */
906 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
907
908 /* Go down a notch at first sign of pressure */
909 if (!pages[i]) {
910 order_idx++;
911 continue;
912 }
913 } else {
914 pages[i] = alloc_pages(gfp, 0);
915 if (!pages[i])
916 goto error;
917 }
918
919 if (order) {
920 split_page(pages[i], order);
921 j = 1 << order;
922 while (--j)
923 pages[i + j] = pages[i] + j;
924 }
925
926 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
927 i += 1 << order;
928 count -= 1 << order;
929 }
930
931 return pages;
932error:
933 while (i--)
934 if (pages[i])
935 __free_pages(pages[i], 0);
936 kvfree(pages);
937 return NULL;
938}
939
940static int __iommu_free_buffer(struct device *dev, struct page **pages,
941 size_t size, unsigned long attrs)
942{
943 int count = size >> PAGE_SHIFT;
944 int i;
945
946 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
947 dma_release_from_contiguous(dev, pages[0], count);
948 } else {
949 for (i = 0; i < count; i++)
950 if (pages[i])
951 __free_pages(pages[i], 0);
952 }
953
954 kvfree(pages);
955 return 0;
956}
957
958/*
959 * Create a mapping in device IO address space for specified pages
960 */
961static dma_addr_t
962__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
963 unsigned long attrs)
964{
965 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
966 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
967 dma_addr_t dma_addr, iova;
968 int i;
969
970 dma_addr = __alloc_iova(mapping, size);
971 if (dma_addr == DMA_MAPPING_ERROR)
972 return dma_addr;
973
974 iova = dma_addr;
975 for (i = 0; i < count; ) {
976 int ret;
977
978 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
979 phys_addr_t phys = page_to_phys(pages[i]);
980 unsigned int len, j;
981
982 for (j = i + 1; j < count; j++, next_pfn++)
983 if (page_to_pfn(pages[j]) != next_pfn)
984 break;
985
986 len = (j - i) << PAGE_SHIFT;
987 ret = iommu_map(mapping->domain, iova, phys, len,
988 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
989 GFP_KERNEL);
990 if (ret < 0)
991 goto fail;
992 iova += len;
993 i = j;
994 }
995 return dma_addr;
996fail:
997 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
998 __free_iova(mapping, dma_addr, size);
999 return DMA_MAPPING_ERROR;
1000}
1001
1002static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1003{
1004 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1005
1006 /*
1007 * add optional in-page offset from iova to size and align
1008 * result to page size
1009 */
1010 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1011 iova &= PAGE_MASK;
1012
1013 iommu_unmap(mapping->domain, iova, size);
1014 __free_iova(mapping, iova, size);
1015 return 0;
1016}
1017
1018static struct page **__atomic_get_pages(void *addr)
1019{
1020 struct page *page;
1021 phys_addr_t phys;
1022
1023 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1024 page = phys_to_page(phys);
1025
1026 return (struct page **)page;
1027}
1028
1029static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1030{
1031 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1032 return __atomic_get_pages(cpu_addr);
1033
1034 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1035 return cpu_addr;
1036
1037 return dma_common_find_pages(cpu_addr);
1038}
1039
1040static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1041 dma_addr_t *handle, int coherent_flag,
1042 unsigned long attrs)
1043{
1044 struct page *page;
1045 void *addr;
1046
1047 if (coherent_flag == COHERENT)
1048 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1049 else
1050 addr = __alloc_from_pool(size, &page);
1051 if (!addr)
1052 return NULL;
1053
1054 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1055 if (*handle == DMA_MAPPING_ERROR)
1056 goto err_mapping;
1057
1058 return addr;
1059
1060err_mapping:
1061 __free_from_pool(addr, size);
1062 return NULL;
1063}
1064
1065static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1066 dma_addr_t handle, size_t size, int coherent_flag)
1067{
1068 __iommu_remove_mapping(dev, handle, size);
1069 if (coherent_flag == COHERENT)
1070 __dma_free_buffer(virt_to_page(cpu_addr), size);
1071 else
1072 __free_from_pool(cpu_addr, size);
1073}
1074
1075static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1076 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1077{
1078 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1079 struct page **pages;
1080 void *addr = NULL;
1081 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1082
1083 *handle = DMA_MAPPING_ERROR;
1084 size = PAGE_ALIGN(size);
1085
1086 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1087 return __iommu_alloc_simple(dev, size, gfp, handle,
1088 coherent_flag, attrs);
1089
1090 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1091 if (!pages)
1092 return NULL;
1093
1094 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1095 if (*handle == DMA_MAPPING_ERROR)
1096 goto err_buffer;
1097
1098 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1099 return pages;
1100
1101 addr = dma_common_pages_remap(pages, size, prot,
1102 __builtin_return_address(0));
1103 if (!addr)
1104 goto err_mapping;
1105
1106 return addr;
1107
1108err_mapping:
1109 __iommu_remove_mapping(dev, *handle, size);
1110err_buffer:
1111 __iommu_free_buffer(dev, pages, size, attrs);
1112 return NULL;
1113}
1114
1115static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1116 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1117 unsigned long attrs)
1118{
1119 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1120 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1121 int err;
1122
1123 if (!pages)
1124 return -ENXIO;
1125
1126 if (vma->vm_pgoff >= nr_pages)
1127 return -ENXIO;
1128
1129 if (!dev->dma_coherent)
1130 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1131
1132 err = vm_map_pages(vma, pages, nr_pages);
1133 if (err)
1134 pr_err("Remapping memory failed: %d\n", err);
1135
1136 return err;
1137}
1138
1139/*
1140 * free a page as defined by the above mapping.
1141 * Must not be called with IRQs disabled.
1142 */
1143static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1144 dma_addr_t handle, unsigned long attrs)
1145{
1146 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1147 struct page **pages;
1148 size = PAGE_ALIGN(size);
1149
1150 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1151 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1152 return;
1153 }
1154
1155 pages = __iommu_get_pages(cpu_addr, attrs);
1156 if (!pages) {
1157 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1158 return;
1159 }
1160
1161 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1162 dma_common_free_remap(cpu_addr, size);
1163
1164 __iommu_remove_mapping(dev, handle, size);
1165 __iommu_free_buffer(dev, pages, size, attrs);
1166}
1167
1168static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1169 void *cpu_addr, dma_addr_t dma_addr,
1170 size_t size, unsigned long attrs)
1171{
1172 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1173 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1174
1175 if (!pages)
1176 return -ENXIO;
1177
1178 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1179 GFP_KERNEL);
1180}
1181
1182/*
1183 * Map a part of the scatter-gather list into contiguous io address space
1184 */
1185static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1186 size_t size, dma_addr_t *handle,
1187 enum dma_data_direction dir, unsigned long attrs)
1188{
1189 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1190 dma_addr_t iova, iova_base;
1191 int ret = 0;
1192 unsigned int count;
1193 struct scatterlist *s;
1194 int prot;
1195
1196 size = PAGE_ALIGN(size);
1197 *handle = DMA_MAPPING_ERROR;
1198
1199 iova_base = iova = __alloc_iova(mapping, size);
1200 if (iova == DMA_MAPPING_ERROR)
1201 return -ENOMEM;
1202
1203 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1204 phys_addr_t phys = page_to_phys(sg_page(s));
1205 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1206
1207 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1208 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1209
1210 prot = __dma_info_to_prot(dir, attrs);
1211
1212 ret = iommu_map(mapping->domain, iova, phys, len, prot,
1213 GFP_KERNEL);
1214 if (ret < 0)
1215 goto fail;
1216 count += len >> PAGE_SHIFT;
1217 iova += len;
1218 }
1219 *handle = iova_base;
1220
1221 return 0;
1222fail:
1223 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1224 __free_iova(mapping, iova_base, size);
1225 return ret;
1226}
1227
1228/**
1229 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1230 * @dev: valid struct device pointer
1231 * @sg: list of buffers
1232 * @nents: number of buffers to map
1233 * @dir: DMA transfer direction
1234 *
1235 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1236 * The scatter gather list elements are merged together (if possible) and
1237 * tagged with the appropriate dma address and length. They are obtained via
1238 * sg_dma_{address,length}.
1239 */
1240static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1241 int nents, enum dma_data_direction dir, unsigned long attrs)
1242{
1243 struct scatterlist *s = sg, *dma = sg, *start = sg;
1244 int i, count = 0, ret;
1245 unsigned int offset = s->offset;
1246 unsigned int size = s->offset + s->length;
1247 unsigned int max = dma_get_max_seg_size(dev);
1248
1249 for (i = 1; i < nents; i++) {
1250 s = sg_next(s);
1251
1252 s->dma_length = 0;
1253
1254 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1255 ret = __map_sg_chunk(dev, start, size,
1256 &dma->dma_address, dir, attrs);
1257 if (ret < 0)
1258 goto bad_mapping;
1259
1260 dma->dma_address += offset;
1261 dma->dma_length = size - offset;
1262
1263 size = offset = s->offset;
1264 start = s;
1265 dma = sg_next(dma);
1266 count += 1;
1267 }
1268 size += s->length;
1269 }
1270 ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1271 if (ret < 0)
1272 goto bad_mapping;
1273
1274 dma->dma_address += offset;
1275 dma->dma_length = size - offset;
1276
1277 return count+1;
1278
1279bad_mapping:
1280 for_each_sg(sg, s, count, i)
1281 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1282 if (ret == -ENOMEM)
1283 return ret;
1284 return -EINVAL;
1285}
1286
1287/**
1288 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1289 * @dev: valid struct device pointer
1290 * @sg: list of buffers
1291 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1292 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1293 *
1294 * Unmap a set of streaming mode DMA translations. Again, CPU access
1295 * rules concerning calls here are the same as for dma_unmap_single().
1296 */
1297static void arm_iommu_unmap_sg(struct device *dev,
1298 struct scatterlist *sg, int nents,
1299 enum dma_data_direction dir,
1300 unsigned long attrs)
1301{
1302 struct scatterlist *s;
1303 int i;
1304
1305 for_each_sg(sg, s, nents, i) {
1306 if (sg_dma_len(s))
1307 __iommu_remove_mapping(dev, sg_dma_address(s),
1308 sg_dma_len(s));
1309 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1310 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1311 s->length, dir);
1312 }
1313}
1314
1315/**
1316 * arm_iommu_sync_sg_for_cpu
1317 * @dev: valid struct device pointer
1318 * @sg: list of buffers
1319 * @nents: number of buffers to map (returned from dma_map_sg)
1320 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1321 */
1322static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1323 struct scatterlist *sg,
1324 int nents, enum dma_data_direction dir)
1325{
1326 struct scatterlist *s;
1327 int i;
1328
1329 if (dev->dma_coherent)
1330 return;
1331
1332 for_each_sg(sg, s, nents, i)
1333 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1334
1335}
1336
1337/**
1338 * arm_iommu_sync_sg_for_device
1339 * @dev: valid struct device pointer
1340 * @sg: list of buffers
1341 * @nents: number of buffers to map (returned from dma_map_sg)
1342 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1343 */
1344static void arm_iommu_sync_sg_for_device(struct device *dev,
1345 struct scatterlist *sg,
1346 int nents, enum dma_data_direction dir)
1347{
1348 struct scatterlist *s;
1349 int i;
1350
1351 if (dev->dma_coherent)
1352 return;
1353
1354 for_each_sg(sg, s, nents, i)
1355 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1356}
1357
1358/**
1359 * arm_iommu_map_page
1360 * @dev: valid struct device pointer
1361 * @page: page that buffer resides in
1362 * @offset: offset into page for start of buffer
1363 * @size: size of buffer to map
1364 * @dir: DMA transfer direction
1365 *
1366 * IOMMU aware version of arm_dma_map_page()
1367 */
1368static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1369 unsigned long offset, size_t size, enum dma_data_direction dir,
1370 unsigned long attrs)
1371{
1372 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1373 dma_addr_t dma_addr;
1374 int ret, prot, len = PAGE_ALIGN(size + offset);
1375
1376 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1377 __dma_page_cpu_to_dev(page, offset, size, dir);
1378
1379 dma_addr = __alloc_iova(mapping, len);
1380 if (dma_addr == DMA_MAPPING_ERROR)
1381 return dma_addr;
1382
1383 prot = __dma_info_to_prot(dir, attrs);
1384
1385 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len,
1386 prot, GFP_KERNEL);
1387 if (ret < 0)
1388 goto fail;
1389
1390 return dma_addr + offset;
1391fail:
1392 __free_iova(mapping, dma_addr, len);
1393 return DMA_MAPPING_ERROR;
1394}
1395
1396/**
1397 * arm_iommu_unmap_page
1398 * @dev: valid struct device pointer
1399 * @handle: DMA address of buffer
1400 * @size: size of buffer (same as passed to dma_map_page)
1401 * @dir: DMA transfer direction (same as passed to dma_map_page)
1402 *
1403 * IOMMU aware version of arm_dma_unmap_page()
1404 */
1405static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1406 size_t size, enum dma_data_direction dir, unsigned long attrs)
1407{
1408 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1409 dma_addr_t iova = handle & PAGE_MASK;
1410 struct page *page;
1411 int offset = handle & ~PAGE_MASK;
1412 int len = PAGE_ALIGN(size + offset);
1413
1414 if (!iova)
1415 return;
1416
1417 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1418 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1419 __dma_page_dev_to_cpu(page, offset, size, dir);
1420 }
1421
1422 iommu_unmap(mapping->domain, iova, len);
1423 __free_iova(mapping, iova, len);
1424}
1425
1426/**
1427 * arm_iommu_map_resource - map a device resource for DMA
1428 * @dev: valid struct device pointer
1429 * @phys_addr: physical address of resource
1430 * @size: size of resource to map
1431 * @dir: DMA transfer direction
1432 */
1433static dma_addr_t arm_iommu_map_resource(struct device *dev,
1434 phys_addr_t phys_addr, size_t size,
1435 enum dma_data_direction dir, unsigned long attrs)
1436{
1437 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438 dma_addr_t dma_addr;
1439 int ret, prot;
1440 phys_addr_t addr = phys_addr & PAGE_MASK;
1441 unsigned int offset = phys_addr & ~PAGE_MASK;
1442 size_t len = PAGE_ALIGN(size + offset);
1443
1444 dma_addr = __alloc_iova(mapping, len);
1445 if (dma_addr == DMA_MAPPING_ERROR)
1446 return dma_addr;
1447
1448 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1449
1450 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
1451 if (ret < 0)
1452 goto fail;
1453
1454 return dma_addr + offset;
1455fail:
1456 __free_iova(mapping, dma_addr, len);
1457 return DMA_MAPPING_ERROR;
1458}
1459
1460/**
1461 * arm_iommu_unmap_resource - unmap a device DMA resource
1462 * @dev: valid struct device pointer
1463 * @dma_handle: DMA address to resource
1464 * @size: size of resource to map
1465 * @dir: DMA transfer direction
1466 */
1467static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1468 size_t size, enum dma_data_direction dir,
1469 unsigned long attrs)
1470{
1471 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1472 dma_addr_t iova = dma_handle & PAGE_MASK;
1473 unsigned int offset = dma_handle & ~PAGE_MASK;
1474 size_t len = PAGE_ALIGN(size + offset);
1475
1476 if (!iova)
1477 return;
1478
1479 iommu_unmap(mapping->domain, iova, len);
1480 __free_iova(mapping, iova, len);
1481}
1482
1483static void arm_iommu_sync_single_for_cpu(struct device *dev,
1484 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1485{
1486 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1487 dma_addr_t iova = handle & PAGE_MASK;
1488 struct page *page;
1489 unsigned int offset = handle & ~PAGE_MASK;
1490
1491 if (dev->dma_coherent || !iova)
1492 return;
1493
1494 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1495 __dma_page_dev_to_cpu(page, offset, size, dir);
1496}
1497
1498static void arm_iommu_sync_single_for_device(struct device *dev,
1499 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1500{
1501 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1502 dma_addr_t iova = handle & PAGE_MASK;
1503 struct page *page;
1504 unsigned int offset = handle & ~PAGE_MASK;
1505
1506 if (dev->dma_coherent || !iova)
1507 return;
1508
1509 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1510 __dma_page_cpu_to_dev(page, offset, size, dir);
1511}
1512
1513static const struct dma_map_ops iommu_ops = {
1514 .alloc = arm_iommu_alloc_attrs,
1515 .free = arm_iommu_free_attrs,
1516 .mmap = arm_iommu_mmap_attrs,
1517 .get_sgtable = arm_iommu_get_sgtable,
1518
1519 .map_page = arm_iommu_map_page,
1520 .unmap_page = arm_iommu_unmap_page,
1521 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1522 .sync_single_for_device = arm_iommu_sync_single_for_device,
1523
1524 .map_sg = arm_iommu_map_sg,
1525 .unmap_sg = arm_iommu_unmap_sg,
1526 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1527 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1528
1529 .map_resource = arm_iommu_map_resource,
1530 .unmap_resource = arm_iommu_unmap_resource,
1531};
1532
1533/**
1534 * arm_iommu_create_mapping
1535 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1536 * @base: start address of the valid IO address space
1537 * @size: maximum size of the valid IO address space
1538 *
1539 * Creates a mapping structure which holds information about used/unused
1540 * IO address ranges, which is required to perform memory allocation and
1541 * mapping with IOMMU aware functions.
1542 *
1543 * The client device need to be attached to the mapping with
1544 * arm_iommu_attach_device function.
1545 */
1546struct dma_iommu_mapping *
1547arm_iommu_create_mapping(const struct bus_type *bus, dma_addr_t base, u64 size)
1548{
1549 unsigned int bits = size >> PAGE_SHIFT;
1550 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1551 struct dma_iommu_mapping *mapping;
1552 int extensions = 1;
1553 int err = -ENOMEM;
1554
1555 /* currently only 32-bit DMA address space is supported */
1556 if (size > DMA_BIT_MASK(32) + 1)
1557 return ERR_PTR(-ERANGE);
1558
1559 if (!bitmap_size)
1560 return ERR_PTR(-EINVAL);
1561
1562 if (bitmap_size > PAGE_SIZE) {
1563 extensions = bitmap_size / PAGE_SIZE;
1564 bitmap_size = PAGE_SIZE;
1565 }
1566
1567 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1568 if (!mapping)
1569 goto err;
1570
1571 mapping->bitmap_size = bitmap_size;
1572 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1573 GFP_KERNEL);
1574 if (!mapping->bitmaps)
1575 goto err2;
1576
1577 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1578 if (!mapping->bitmaps[0])
1579 goto err3;
1580
1581 mapping->nr_bitmaps = 1;
1582 mapping->extensions = extensions;
1583 mapping->base = base;
1584 mapping->bits = BITS_PER_BYTE * bitmap_size;
1585
1586 spin_lock_init(&mapping->lock);
1587
1588 mapping->domain = iommu_domain_alloc(bus);
1589 if (!mapping->domain)
1590 goto err4;
1591
1592 kref_init(&mapping->kref);
1593 return mapping;
1594err4:
1595 kfree(mapping->bitmaps[0]);
1596err3:
1597 kfree(mapping->bitmaps);
1598err2:
1599 kfree(mapping);
1600err:
1601 return ERR_PTR(err);
1602}
1603EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1604
1605static void release_iommu_mapping(struct kref *kref)
1606{
1607 int i;
1608 struct dma_iommu_mapping *mapping =
1609 container_of(kref, struct dma_iommu_mapping, kref);
1610
1611 iommu_domain_free(mapping->domain);
1612 for (i = 0; i < mapping->nr_bitmaps; i++)
1613 kfree(mapping->bitmaps[i]);
1614 kfree(mapping->bitmaps);
1615 kfree(mapping);
1616}
1617
1618static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1619{
1620 int next_bitmap;
1621
1622 if (mapping->nr_bitmaps >= mapping->extensions)
1623 return -EINVAL;
1624
1625 next_bitmap = mapping->nr_bitmaps;
1626 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1627 GFP_ATOMIC);
1628 if (!mapping->bitmaps[next_bitmap])
1629 return -ENOMEM;
1630
1631 mapping->nr_bitmaps++;
1632
1633 return 0;
1634}
1635
1636void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1637{
1638 if (mapping)
1639 kref_put(&mapping->kref, release_iommu_mapping);
1640}
1641EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1642
1643static int __arm_iommu_attach_device(struct device *dev,
1644 struct dma_iommu_mapping *mapping)
1645{
1646 int err;
1647
1648 err = iommu_attach_device(mapping->domain, dev);
1649 if (err)
1650 return err;
1651
1652 kref_get(&mapping->kref);
1653 to_dma_iommu_mapping(dev) = mapping;
1654
1655 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1656 return 0;
1657}
1658
1659/**
1660 * arm_iommu_attach_device
1661 * @dev: valid struct device pointer
1662 * @mapping: io address space mapping structure (returned from
1663 * arm_iommu_create_mapping)
1664 *
1665 * Attaches specified io address space mapping to the provided device.
1666 * This replaces the dma operations (dma_map_ops pointer) with the
1667 * IOMMU aware version.
1668 *
1669 * More than one client might be attached to the same io address space
1670 * mapping.
1671 */
1672int arm_iommu_attach_device(struct device *dev,
1673 struct dma_iommu_mapping *mapping)
1674{
1675 int err;
1676
1677 err = __arm_iommu_attach_device(dev, mapping);
1678 if (err)
1679 return err;
1680
1681 set_dma_ops(dev, &iommu_ops);
1682 return 0;
1683}
1684EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1685
1686/**
1687 * arm_iommu_detach_device
1688 * @dev: valid struct device pointer
1689 *
1690 * Detaches the provided device from a previously attached map.
1691 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1692 */
1693void arm_iommu_detach_device(struct device *dev)
1694{
1695 struct dma_iommu_mapping *mapping;
1696
1697 mapping = to_dma_iommu_mapping(dev);
1698 if (!mapping) {
1699 dev_warn(dev, "Not attached\n");
1700 return;
1701 }
1702
1703 iommu_detach_device(mapping->domain, dev);
1704 kref_put(&mapping->kref, release_iommu_mapping);
1705 to_dma_iommu_mapping(dev) = NULL;
1706 set_dma_ops(dev, NULL);
1707
1708 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1709}
1710EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1711
1712static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1713 bool coherent)
1714{
1715 struct dma_iommu_mapping *mapping;
1716
1717 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
1718 if (IS_ERR(mapping)) {
1719 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1720 size, dev_name(dev));
1721 return;
1722 }
1723
1724 if (__arm_iommu_attach_device(dev, mapping)) {
1725 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1726 dev_name(dev));
1727 arm_iommu_release_mapping(mapping);
1728 return;
1729 }
1730
1731 set_dma_ops(dev, &iommu_ops);
1732}
1733
1734static void arm_teardown_iommu_dma_ops(struct device *dev)
1735{
1736 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1737
1738 if (!mapping)
1739 return;
1740
1741 arm_iommu_detach_device(dev);
1742 arm_iommu_release_mapping(mapping);
1743}
1744
1745#else
1746
1747static void arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
1748 bool coherent)
1749{
1750}
1751
1752static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1753
1754#endif /* CONFIG_ARM_DMA_USE_IOMMU */
1755
1756void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
1757 bool coherent)
1758{
1759 /*
1760 * Due to legacy code that sets the ->dma_coherent flag from a bus
1761 * notifier we can't just assign coherent to the ->dma_coherent flag
1762 * here, but instead have to make sure we only set but never clear it
1763 * for now.
1764 */
1765 if (coherent)
1766 dev->dma_coherent = true;
1767
1768 /*
1769 * Don't override the dma_ops if they have already been set. Ideally
1770 * this should be the only location where dma_ops are set, remove this
1771 * check when all other callers of set_dma_ops will have disappeared.
1772 */
1773 if (dev->dma_ops)
1774 return;
1775
1776 if (device_iommu_mapped(dev))
1777 arm_setup_iommu_dma_ops(dev, dma_base, size, coherent);
1778
1779 xen_setup_dma_ops(dev);
1780 dev->archdata.dma_ops_setup = true;
1781}
1782
1783void arch_teardown_dma_ops(struct device *dev)
1784{
1785 if (!dev->archdata.dma_ops_setup)
1786 return;
1787
1788 arm_teardown_iommu_dma_ops(dev);
1789 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1790 set_dma_ops(dev, NULL);
1791}
1792
1793void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1794 enum dma_data_direction dir)
1795{
1796 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1797 size, dir);
1798}
1799
1800void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1801 enum dma_data_direction dir)
1802{
1803 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1804 size, dir);
1805}
1806
1807void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1808 gfp_t gfp, unsigned long attrs)
1809{
1810 return __dma_alloc(dev, size, dma_handle, gfp,
1811 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1812 attrs, __builtin_return_address(0));
1813}
1814
1815void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1816 dma_addr_t dma_handle, unsigned long attrs)
1817{
1818 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1819}