Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/arch/arm/mm/dma-mapping.c
   3 *
   4 *  Copyright (C) 2000-2004 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 *  DMA uncached mapping support.
  11 */
  12#include <linux/bootmem.h>
  13#include <linux/module.h>
  14#include <linux/mm.h>
  15#include <linux/genalloc.h>
  16#include <linux/gfp.h>
  17#include <linux/errno.h>
  18#include <linux/list.h>
  19#include <linux/init.h>
  20#include <linux/device.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/dma-contiguous.h>
  23#include <linux/highmem.h>
  24#include <linux/memblock.h>
  25#include <linux/slab.h>
  26#include <linux/iommu.h>
  27#include <linux/io.h>
  28#include <linux/vmalloc.h>
  29#include <linux/sizes.h>
  30#include <linux/cma.h>
  31
  32#include <asm/memory.h>
  33#include <asm/highmem.h>
  34#include <asm/cacheflush.h>
  35#include <asm/tlbflush.h>
  36#include <asm/mach/arch.h>
  37#include <asm/dma-iommu.h>
  38#include <asm/mach/map.h>
  39#include <asm/system_info.h>
  40#include <asm/dma-contiguous.h>
  41
  42#include "dma.h"
  43#include "mm.h"
  44
  45struct arm_dma_alloc_args {
  46	struct device *dev;
  47	size_t size;
  48	gfp_t gfp;
  49	pgprot_t prot;
  50	const void *caller;
  51	bool want_vaddr;
 
  52};
  53
  54struct arm_dma_free_args {
  55	struct device *dev;
  56	size_t size;
  57	void *cpu_addr;
  58	struct page *page;
  59	bool want_vaddr;
  60};
  61
 
 
 
  62struct arm_dma_allocator {
  63	void *(*alloc)(struct arm_dma_alloc_args *args,
  64		       struct page **ret_page);
  65	void (*free)(struct arm_dma_free_args *args);
  66};
  67
  68struct arm_dma_buffer {
  69	struct list_head list;
  70	void *virt;
  71	struct arm_dma_allocator *allocator;
  72};
  73
  74static LIST_HEAD(arm_dma_bufs);
  75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  76
  77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  78{
  79	struct arm_dma_buffer *buf, *found = NULL;
  80	unsigned long flags;
  81
  82	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  83	list_for_each_entry(buf, &arm_dma_bufs, list) {
  84		if (buf->virt == virt) {
  85			list_del(&buf->list);
  86			found = buf;
  87			break;
  88		}
  89	}
  90	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  91	return found;
  92}
  93
  94/*
  95 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  96 * is either exclusively owned by the CPU (and therefore may be accessed
  97 * by it) or exclusively owned by the DMA device.  These helper functions
  98 * represent the transitions between these two ownership states.
  99 *
 100 * Note, however, that on later ARMs, this notion does not work due to
 101 * speculative prefetches.  We model our approach on the assumption that
 102 * the CPU does do speculative prefetches, which means we clean caches
 103 * before transfers and delay cache invalidation until transfer completion.
 104 *
 105 */
 106static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 107		size_t, enum dma_data_direction);
 108static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 109		size_t, enum dma_data_direction);
 110
 111/**
 112 * arm_dma_map_page - map a portion of a page for streaming DMA
 113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 114 * @page: page that buffer resides in
 115 * @offset: offset into page for start of buffer
 116 * @size: size of buffer to map
 117 * @dir: DMA transfer direction
 118 *
 119 * Ensure that any data held in the cache is appropriately discarded
 120 * or written back.
 121 *
 122 * The device owns this memory once this call has completed.  The CPU
 123 * can regain ownership by calling dma_unmap_page().
 124 */
 125static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 126	     unsigned long offset, size_t size, enum dma_data_direction dir,
 127	     struct dma_attrs *attrs)
 128{
 129	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 130		__dma_page_cpu_to_dev(page, offset, size, dir);
 131	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 132}
 133
 134static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 135	     unsigned long offset, size_t size, enum dma_data_direction dir,
 136	     struct dma_attrs *attrs)
 137{
 138	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 139}
 140
 141/**
 142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 144 * @handle: DMA address of buffer
 145 * @size: size of buffer (same as passed to dma_map_page)
 146 * @dir: DMA transfer direction (same as passed to dma_map_page)
 147 *
 148 * Unmap a page streaming mode DMA translation.  The handle and size
 149 * must match what was provided in the previous dma_map_page() call.
 150 * All other usages are undefined.
 151 *
 152 * After this call, reads by the CPU to the buffer are guaranteed to see
 153 * whatever the device wrote there.
 154 */
 155static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 156		size_t size, enum dma_data_direction dir,
 157		struct dma_attrs *attrs)
 158{
 159	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
 160		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 161				      handle & ~PAGE_MASK, size, dir);
 162}
 163
 164static void arm_dma_sync_single_for_cpu(struct device *dev,
 165		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 166{
 167	unsigned int offset = handle & (PAGE_SIZE - 1);
 168	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 169	__dma_page_dev_to_cpu(page, offset, size, dir);
 170}
 171
 172static void arm_dma_sync_single_for_device(struct device *dev,
 173		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 174{
 175	unsigned int offset = handle & (PAGE_SIZE - 1);
 176	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 177	__dma_page_cpu_to_dev(page, offset, size, dir);
 178}
 179
 180struct dma_map_ops arm_dma_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 181	.alloc			= arm_dma_alloc,
 182	.free			= arm_dma_free,
 
 
 183	.mmap			= arm_dma_mmap,
 184	.get_sgtable		= arm_dma_get_sgtable,
 185	.map_page		= arm_dma_map_page,
 186	.unmap_page		= arm_dma_unmap_page,
 187	.map_sg			= arm_dma_map_sg,
 188	.unmap_sg		= arm_dma_unmap_sg,
 
 189	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 190	.sync_single_for_device	= arm_dma_sync_single_for_device,
 191	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 192	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 193	.set_dma_mask		= arm_dma_set_mask,
 
 194};
 195EXPORT_SYMBOL(arm_dma_ops);
 196
 197static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 198	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
 199static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 200				  dma_addr_t handle, struct dma_attrs *attrs);
 201static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 202		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 203		 struct dma_attrs *attrs);
 204
 205struct dma_map_ops arm_coherent_dma_ops = {
 206	.alloc			= arm_coherent_dma_alloc,
 207	.free			= arm_coherent_dma_free,
 
 
 208	.mmap			= arm_coherent_dma_mmap,
 209	.get_sgtable		= arm_dma_get_sgtable,
 210	.map_page		= arm_coherent_dma_map_page,
 211	.map_sg			= arm_dma_map_sg,
 212	.set_dma_mask		= arm_dma_set_mask,
 
 
 213};
 214EXPORT_SYMBOL(arm_coherent_dma_ops);
 215
 216static int __dma_supported(struct device *dev, u64 mask, bool warn)
 217{
 218	unsigned long max_dma_pfn;
 219
 220	/*
 221	 * If the mask allows for more memory than we can address,
 222	 * and we actually have that much memory, then we must
 223	 * indicate that DMA to this device is not supported.
 224	 */
 225	if (sizeof(mask) != sizeof(dma_addr_t) &&
 226	    mask > (dma_addr_t)~0 &&
 227	    dma_to_pfn(dev, ~0) < max_pfn - 1) {
 228		if (warn) {
 229			dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
 230				 mask);
 231			dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
 232		}
 233		return 0;
 234	}
 235
 236	max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
 237
 238	/*
 239	 * Translate the device's DMA mask to a PFN limit.  This
 240	 * PFN number includes the page which we can DMA to.
 241	 */
 242	if (dma_to_pfn(dev, mask) < max_dma_pfn) {
 243		if (warn)
 244			dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
 245				 mask,
 246				 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
 247				 max_dma_pfn + 1);
 248		return 0;
 249	}
 250
 251	return 1;
 252}
 253
 254static u64 get_coherent_dma_mask(struct device *dev)
 255{
 256	u64 mask = (u64)DMA_BIT_MASK(32);
 257
 258	if (dev) {
 259		mask = dev->coherent_dma_mask;
 260
 261		/*
 262		 * Sanity check the DMA mask - it must be non-zero, and
 263		 * must be able to be satisfied by a DMA allocation.
 264		 */
 265		if (mask == 0) {
 266			dev_warn(dev, "coherent DMA mask is unset\n");
 267			return 0;
 268		}
 269
 270		if (!__dma_supported(dev, mask, true))
 271			return 0;
 272	}
 273
 274	return mask;
 275}
 276
 277static void __dma_clear_buffer(struct page *page, size_t size)
 278{
 279	/*
 280	 * Ensure that the allocated pages are zeroed, and that any data
 281	 * lurking in the kernel direct-mapped region is invalidated.
 282	 */
 283	if (PageHighMem(page)) {
 284		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 285		phys_addr_t end = base + size;
 286		while (size > 0) {
 287			void *ptr = kmap_atomic(page);
 288			memset(ptr, 0, PAGE_SIZE);
 289			dmac_flush_range(ptr, ptr + PAGE_SIZE);
 
 290			kunmap_atomic(ptr);
 291			page++;
 292			size -= PAGE_SIZE;
 293		}
 294		outer_flush_range(base, end);
 
 295	} else {
 296		void *ptr = page_address(page);
 297		memset(ptr, 0, size);
 298		dmac_flush_range(ptr, ptr + size);
 299		outer_flush_range(__pa(ptr), __pa(ptr) + size);
 
 
 300	}
 301}
 302
 303/*
 304 * Allocate a DMA buffer for 'dev' of size 'size' using the
 305 * specified gfp mask.  Note that 'size' must be page aligned.
 306 */
 307static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
 
 308{
 309	unsigned long order = get_order(size);
 310	struct page *page, *p, *e;
 311
 312	page = alloc_pages(gfp, order);
 313	if (!page)
 314		return NULL;
 315
 316	/*
 317	 * Now split the huge page and free the excess pages
 318	 */
 319	split_page(page, order);
 320	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 321		__free_page(p);
 322
 323	__dma_clear_buffer(page, size);
 324
 325	return page;
 326}
 327
 328/*
 329 * Free a DMA buffer.  'size' must be page aligned.
 330 */
 331static void __dma_free_buffer(struct page *page, size_t size)
 332{
 333	struct page *e = page + (size >> PAGE_SHIFT);
 334
 335	while (page < e) {
 336		__free_page(page);
 337		page++;
 338	}
 339}
 340
 341#ifdef CONFIG_MMU
 342
 343static void *__alloc_from_contiguous(struct device *dev, size_t size,
 344				     pgprot_t prot, struct page **ret_page,
 345				     const void *caller, bool want_vaddr);
 
 346
 347static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 348				 pgprot_t prot, struct page **ret_page,
 349				 const void *caller, bool want_vaddr);
 350
 351static void *
 352__dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
 353	const void *caller)
 354{
 355	/*
 356	 * DMA allocation can be mapped to user space, so lets
 357	 * set VM_USERMAP flags too.
 358	 */
 359	return dma_common_contiguous_remap(page, size,
 360			VM_ARM_DMA_CONSISTENT | VM_USERMAP,
 361			prot, caller);
 362}
 363
 364static void __dma_free_remap(void *cpu_addr, size_t size)
 365{
 366	dma_common_free_remap(cpu_addr, size,
 367			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
 368}
 369
 370#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 371static struct gen_pool *atomic_pool;
 372
 373static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
 374
 375static int __init early_coherent_pool(char *p)
 376{
 377	atomic_pool_size = memparse(p, &p);
 378	return 0;
 379}
 380early_param("coherent_pool", early_coherent_pool);
 381
 382void __init init_dma_coherent_pool_size(unsigned long size)
 383{
 384	/*
 385	 * Catch any attempt to set the pool size too late.
 386	 */
 387	BUG_ON(atomic_pool);
 388
 389	/*
 390	 * Set architecture specific coherent pool size only if
 391	 * it has not been changed by kernel command line parameter.
 392	 */
 393	if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
 394		atomic_pool_size = size;
 395}
 396
 397/*
 398 * Initialise the coherent pool for atomic allocations.
 399 */
 400static int __init atomic_pool_init(void)
 401{
 402	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 403	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 404	struct page *page;
 405	void *ptr;
 406
 407	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 408	if (!atomic_pool)
 409		goto out;
 410
 
 
 
 411	if (dev_get_cma_area(NULL))
 412		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 413					      &page, atomic_pool_init, true);
 
 414	else
 415		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 416					   &page, atomic_pool_init, true);
 417	if (ptr) {
 418		int ret;
 419
 420		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 421					page_to_phys(page),
 422					atomic_pool_size, -1);
 423		if (ret)
 424			goto destroy_genpool;
 425
 426		gen_pool_set_algo(atomic_pool,
 427				gen_pool_first_fit_order_align,
 428				(void *)PAGE_SHIFT);
 429		pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
 430		       atomic_pool_size / 1024);
 431		return 0;
 432	}
 433
 434destroy_genpool:
 435	gen_pool_destroy(atomic_pool);
 436	atomic_pool = NULL;
 437out:
 438	pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
 439	       atomic_pool_size / 1024);
 440	return -ENOMEM;
 441}
 442/*
 443 * CMA is activated by core_initcall, so we must be called after it.
 444 */
 445postcore_initcall(atomic_pool_init);
 446
 447struct dma_contig_early_reserve {
 448	phys_addr_t base;
 449	unsigned long size;
 450};
 451
 452static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 453
 454static int dma_mmu_remap_num __initdata;
 455
 456void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 457{
 458	dma_mmu_remap[dma_mmu_remap_num].base = base;
 459	dma_mmu_remap[dma_mmu_remap_num].size = size;
 460	dma_mmu_remap_num++;
 461}
 462
 463void __init dma_contiguous_remap(void)
 464{
 465	int i;
 466	for (i = 0; i < dma_mmu_remap_num; i++) {
 467		phys_addr_t start = dma_mmu_remap[i].base;
 468		phys_addr_t end = start + dma_mmu_remap[i].size;
 469		struct map_desc map;
 470		unsigned long addr;
 471
 472		if (end > arm_lowmem_limit)
 473			end = arm_lowmem_limit;
 474		if (start >= end)
 475			continue;
 476
 477		map.pfn = __phys_to_pfn(start);
 478		map.virtual = __phys_to_virt(start);
 479		map.length = end - start;
 480		map.type = MT_MEMORY_DMA_READY;
 481
 482		/*
 483		 * Clear previous low-memory mapping to ensure that the
 484		 * TLB does not see any conflicting entries, then flush
 485		 * the TLB of the old entries before creating new mappings.
 486		 *
 487		 * This ensures that any speculatively loaded TLB entries
 488		 * (even though they may be rare) can not cause any problems,
 489		 * and ensures that this code is architecturally compliant.
 490		 */
 491		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 492		     addr += PMD_SIZE)
 493			pmd_clear(pmd_off_k(addr));
 494
 495		flush_tlb_kernel_range(__phys_to_virt(start),
 496				       __phys_to_virt(end));
 497
 498		iotable_init(&map, 1);
 499	}
 500}
 501
 502static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
 503			    void *data)
 504{
 505	struct page *page = virt_to_page(addr);
 506	pgprot_t prot = *(pgprot_t *)data;
 507
 508	set_pte_ext(pte, mk_pte(page, prot), 0);
 509	return 0;
 510}
 511
 512static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 513{
 514	unsigned long start = (unsigned long) page_address(page);
 515	unsigned end = start + size;
 516
 517	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 518	flush_tlb_kernel_range(start, end);
 519}
 520
 521static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 522				 pgprot_t prot, struct page **ret_page,
 523				 const void *caller, bool want_vaddr)
 524{
 525	struct page *page;
 526	void *ptr = NULL;
 527	page = __dma_alloc_buffer(dev, size, gfp);
 
 
 
 
 528	if (!page)
 529		return NULL;
 530	if (!want_vaddr)
 531		goto out;
 532
 533	ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
 534	if (!ptr) {
 535		__dma_free_buffer(page, size);
 536		return NULL;
 537	}
 538
 539 out:
 540	*ret_page = page;
 541	return ptr;
 542}
 543
 544static void *__alloc_from_pool(size_t size, struct page **ret_page)
 545{
 546	unsigned long val;
 547	void *ptr = NULL;
 548
 549	if (!atomic_pool) {
 550		WARN(1, "coherent pool not initialised!\n");
 551		return NULL;
 552	}
 553
 554	val = gen_pool_alloc(atomic_pool, size);
 555	if (val) {
 556		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 557
 558		*ret_page = phys_to_page(phys);
 559		ptr = (void *)val;
 560	}
 561
 562	return ptr;
 563}
 564
 565static bool __in_atomic_pool(void *start, size_t size)
 566{
 567	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
 568}
 569
 570static int __free_from_pool(void *start, size_t size)
 571{
 572	if (!__in_atomic_pool(start, size))
 573		return 0;
 574
 575	gen_pool_free(atomic_pool, (unsigned long)start, size);
 576
 577	return 1;
 578}
 579
 580static void *__alloc_from_contiguous(struct device *dev, size_t size,
 581				     pgprot_t prot, struct page **ret_page,
 582				     const void *caller, bool want_vaddr)
 
 583{
 584	unsigned long order = get_order(size);
 585	size_t count = size >> PAGE_SHIFT;
 586	struct page *page;
 587	void *ptr = NULL;
 588
 589	page = dma_alloc_from_contiguous(dev, count, order);
 590	if (!page)
 591		return NULL;
 592
 593	__dma_clear_buffer(page, size);
 594
 595	if (!want_vaddr)
 596		goto out;
 597
 598	if (PageHighMem(page)) {
 599		ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
 600		if (!ptr) {
 601			dma_release_from_contiguous(dev, page, count);
 602			return NULL;
 603		}
 604	} else {
 605		__dma_remap(page, size, prot);
 606		ptr = page_address(page);
 607	}
 608
 609 out:
 610	*ret_page = page;
 611	return ptr;
 612}
 613
 614static void __free_from_contiguous(struct device *dev, struct page *page,
 615				   void *cpu_addr, size_t size, bool want_vaddr)
 616{
 617	if (want_vaddr) {
 618		if (PageHighMem(page))
 619			__dma_free_remap(cpu_addr, size);
 620		else
 621			__dma_remap(page, size, PAGE_KERNEL);
 622	}
 623	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 624}
 625
 626static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
 627{
 628	prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
 629			    pgprot_writecombine(prot) :
 630			    pgprot_dmacoherent(prot);
 631	return prot;
 632}
 633
 634#define nommu() 0
 635
 636#else	/* !CONFIG_MMU */
 637
 638#define nommu() 1
 639
 640#define __get_dma_pgprot(attrs, prot)				__pgprot(0)
 641#define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv)	NULL
 642#define __alloc_from_pool(size, ret_page)			NULL
 643#define __alloc_from_contiguous(dev, size, prot, ret, c, wv)	NULL
 644#define __free_from_pool(cpu_addr, size)			do { } while (0)
 645#define __free_from_contiguous(dev, page, cpu_addr, size, wv)	do { } while (0)
 646#define __dma_free_remap(cpu_addr, size)			do { } while (0)
 647
 648#endif	/* CONFIG_MMU */
 649
 650static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 651				   struct page **ret_page)
 652{
 653	struct page *page;
 654	page = __dma_alloc_buffer(dev, size, gfp);
 
 655	if (!page)
 656		return NULL;
 657
 658	*ret_page = page;
 659	return page_address(page);
 660}
 661
 662static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 663				    struct page **ret_page)
 664{
 665	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 666				     ret_page);
 667}
 668
 669static void simple_allocator_free(struct arm_dma_free_args *args)
 670{
 671	__dma_free_buffer(args->page, args->size);
 672}
 673
 674static struct arm_dma_allocator simple_allocator = {
 675	.alloc = simple_allocator_alloc,
 676	.free = simple_allocator_free,
 677};
 678
 679static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 680				 struct page **ret_page)
 681{
 682	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 683				       ret_page, args->caller,
 684				       args->want_vaddr);
 
 685}
 686
 687static void cma_allocator_free(struct arm_dma_free_args *args)
 688{
 689	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 690			       args->size, args->want_vaddr);
 691}
 692
 693static struct arm_dma_allocator cma_allocator = {
 694	.alloc = cma_allocator_alloc,
 695	.free = cma_allocator_free,
 696};
 697
 698static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 699				  struct page **ret_page)
 700{
 701	return __alloc_from_pool(args->size, ret_page);
 702}
 703
 704static void pool_allocator_free(struct arm_dma_free_args *args)
 705{
 706	__free_from_pool(args->cpu_addr, args->size);
 707}
 708
 709static struct arm_dma_allocator pool_allocator = {
 710	.alloc = pool_allocator_alloc,
 711	.free = pool_allocator_free,
 712};
 713
 714static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 715				   struct page **ret_page)
 716{
 717	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 718				    args->prot, ret_page, args->caller,
 719				    args->want_vaddr);
 720}
 721
 722static void remap_allocator_free(struct arm_dma_free_args *args)
 723{
 724	if (args->want_vaddr)
 725		__dma_free_remap(args->cpu_addr, args->size);
 726
 727	__dma_free_buffer(args->page, args->size);
 728}
 729
 730static struct arm_dma_allocator remap_allocator = {
 731	.alloc = remap_allocator_alloc,
 732	.free = remap_allocator_free,
 733};
 734
 735static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 736			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 737			 struct dma_attrs *attrs, const void *caller)
 738{
 739	u64 mask = get_coherent_dma_mask(dev);
 740	struct page *page = NULL;
 741	void *addr;
 742	bool allowblock, cma;
 743	struct arm_dma_buffer *buf;
 744	struct arm_dma_alloc_args args = {
 745		.dev = dev,
 746		.size = PAGE_ALIGN(size),
 747		.gfp = gfp,
 748		.prot = prot,
 749		.caller = caller,
 750		.want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
 
 751	};
 752
 753#ifdef CONFIG_DMA_API_DEBUG
 754	u64 limit = (mask + 1) & ~mask;
 755	if (limit && size >= limit) {
 756		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 757			size, mask);
 758		return NULL;
 759	}
 760#endif
 761
 762	if (!mask)
 763		return NULL;
 764
 765	buf = kzalloc(sizeof(*buf),
 766		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 767	if (!buf)
 768		return NULL;
 769
 770	if (mask < 0xffffffffULL)
 771		gfp |= GFP_DMA;
 772
 773	/*
 774	 * Following is a work-around (a.k.a. hack) to prevent pages
 775	 * with __GFP_COMP being passed to split_page() which cannot
 776	 * handle them.  The real problem is that this flag probably
 777	 * should be 0 on ARM as it is not supported on this
 778	 * platform; see CONFIG_HUGETLBFS.
 779	 */
 780	gfp &= ~(__GFP_COMP);
 781	args.gfp = gfp;
 782
 783	*handle = DMA_ERROR_CODE;
 784	allowblock = gfpflags_allow_blocking(gfp);
 785	cma = allowblock ? dev_get_cma_area(dev) : false;
 786
 787	if (cma)
 788		buf->allocator = &cma_allocator;
 789	else if (nommu() || is_coherent)
 790		buf->allocator = &simple_allocator;
 791	else if (allowblock)
 792		buf->allocator = &remap_allocator;
 793	else
 794		buf->allocator = &pool_allocator;
 795
 796	addr = buf->allocator->alloc(&args, &page);
 797
 798	if (page) {
 799		unsigned long flags;
 800
 801		*handle = pfn_to_dma(dev, page_to_pfn(page));
 802		buf->virt = args.want_vaddr ? addr : page;
 803
 804		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 805		list_add(&buf->list, &arm_dma_bufs);
 806		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 807	} else {
 808		kfree(buf);
 809	}
 810
 811	return args.want_vaddr ? addr : page;
 812}
 813
 814/*
 815 * Allocate DMA-coherent memory space and return both the kernel remapped
 816 * virtual and bus address for that space.
 817 */
 818void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 819		    gfp_t gfp, struct dma_attrs *attrs)
 820{
 821	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 822
 823	return __dma_alloc(dev, size, handle, gfp, prot, false,
 824			   attrs, __builtin_return_address(0));
 825}
 826
 827static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 828	dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 829{
 830	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 831			   attrs, __builtin_return_address(0));
 832}
 833
 834static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 835		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 836		 struct dma_attrs *attrs)
 837{
 838	int ret = -ENXIO;
 839#ifdef CONFIG_MMU
 840	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 841	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 842	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 843	unsigned long off = vma->vm_pgoff;
 844
 845	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 846		return ret;
 847
 848	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 849		ret = remap_pfn_range(vma, vma->vm_start,
 850				      pfn + off,
 851				      vma->vm_end - vma->vm_start,
 852				      vma->vm_page_prot);
 853	}
 854#endif	/* CONFIG_MMU */
 855
 856	return ret;
 857}
 858
 859/*
 860 * Create userspace mapping for the DMA-coherent memory.
 861 */
 862static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 863		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 864		 struct dma_attrs *attrs)
 865{
 866	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 867}
 868
 869int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 870		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 871		 struct dma_attrs *attrs)
 872{
 873#ifdef CONFIG_MMU
 874	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 875#endif	/* CONFIG_MMU */
 876	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 877}
 878
 879/*
 880 * Free a buffer as defined by the above mapping.
 881 */
 882static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 883			   dma_addr_t handle, struct dma_attrs *attrs,
 884			   bool is_coherent)
 885{
 886	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 887	struct arm_dma_buffer *buf;
 888	struct arm_dma_free_args args = {
 889		.dev = dev,
 890		.size = PAGE_ALIGN(size),
 891		.cpu_addr = cpu_addr,
 892		.page = page,
 893		.want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs),
 894	};
 895
 896	buf = arm_dma_buffer_find(cpu_addr);
 897	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 898		return;
 899
 900	buf->allocator->free(&args);
 901	kfree(buf);
 902}
 903
 904void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 905		  dma_addr_t handle, struct dma_attrs *attrs)
 906{
 907	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 908}
 909
 910static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 911				  dma_addr_t handle, struct dma_attrs *attrs)
 912{
 913	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 914}
 915
 916int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 917		 void *cpu_addr, dma_addr_t handle, size_t size,
 918		 struct dma_attrs *attrs)
 919{
 920	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 
 921	int ret;
 922
 
 
 
 
 
 
 923	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 924	if (unlikely(ret))
 925		return ret;
 926
 927	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 928	return 0;
 929}
 930
 931static void dma_cache_maint_page(struct page *page, unsigned long offset,
 932	size_t size, enum dma_data_direction dir,
 933	void (*op)(const void *, size_t, int))
 934{
 935	unsigned long pfn;
 936	size_t left = size;
 937
 938	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 939	offset %= PAGE_SIZE;
 940
 941	/*
 942	 * A single sg entry may refer to multiple physically contiguous
 943	 * pages.  But we still need to process highmem pages individually.
 944	 * If highmem is not configured then the bulk of this loop gets
 945	 * optimized out.
 946	 */
 947	do {
 948		size_t len = left;
 949		void *vaddr;
 950
 951		page = pfn_to_page(pfn);
 952
 953		if (PageHighMem(page)) {
 954			if (len + offset > PAGE_SIZE)
 955				len = PAGE_SIZE - offset;
 956
 957			if (cache_is_vipt_nonaliasing()) {
 958				vaddr = kmap_atomic(page);
 959				op(vaddr + offset, len, dir);
 960				kunmap_atomic(vaddr);
 961			} else {
 962				vaddr = kmap_high_get(page);
 963				if (vaddr) {
 964					op(vaddr + offset, len, dir);
 965					kunmap_high(page);
 966				}
 967			}
 968		} else {
 969			vaddr = page_address(page) + offset;
 970			op(vaddr, len, dir);
 971		}
 972		offset = 0;
 973		pfn++;
 974		left -= len;
 975	} while (left);
 976}
 977
 978/*
 979 * Make an area consistent for devices.
 980 * Note: Drivers should NOT use this function directly, as it will break
 981 * platforms with CONFIG_DMABOUNCE.
 982 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 983 */
 984static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 985	size_t size, enum dma_data_direction dir)
 986{
 987	phys_addr_t paddr;
 988
 989	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 990
 991	paddr = page_to_phys(page) + off;
 992	if (dir == DMA_FROM_DEVICE) {
 993		outer_inv_range(paddr, paddr + size);
 994	} else {
 995		outer_clean_range(paddr, paddr + size);
 996	}
 997	/* FIXME: non-speculating: flush on bidirectional mappings? */
 998}
 999
1000static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
1001	size_t size, enum dma_data_direction dir)
1002{
1003	phys_addr_t paddr = page_to_phys(page) + off;
1004
1005	/* FIXME: non-speculating: not required */
1006	/* in any case, don't bother invalidating if DMA to device */
1007	if (dir != DMA_TO_DEVICE) {
1008		outer_inv_range(paddr, paddr + size);
1009
1010		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
1011	}
1012
1013	/*
1014	 * Mark the D-cache clean for these pages to avoid extra flushing.
1015	 */
1016	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
1017		unsigned long pfn;
1018		size_t left = size;
1019
1020		pfn = page_to_pfn(page) + off / PAGE_SIZE;
1021		off %= PAGE_SIZE;
1022		if (off) {
1023			pfn++;
1024			left -= PAGE_SIZE - off;
1025		}
1026		while (left >= PAGE_SIZE) {
1027			page = pfn_to_page(pfn++);
1028			set_bit(PG_dcache_clean, &page->flags);
1029			left -= PAGE_SIZE;
1030		}
1031	}
1032}
1033
1034/**
1035 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
1036 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1037 * @sg: list of buffers
1038 * @nents: number of buffers to map
1039 * @dir: DMA transfer direction
1040 *
1041 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1042 * This is the scatter-gather version of the dma_map_single interface.
1043 * Here the scatter gather list elements are each tagged with the
1044 * appropriate dma address and length.  They are obtained via
1045 * sg_dma_{address,length}.
1046 *
1047 * Device ownership issues as mentioned for dma_map_single are the same
1048 * here.
1049 */
1050int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1051		enum dma_data_direction dir, struct dma_attrs *attrs)
1052{
1053	struct dma_map_ops *ops = get_dma_ops(dev);
1054	struct scatterlist *s;
1055	int i, j;
1056
1057	for_each_sg(sg, s, nents, i) {
1058#ifdef CONFIG_NEED_SG_DMA_LENGTH
1059		s->dma_length = s->length;
1060#endif
1061		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1062						s->length, dir, attrs);
1063		if (dma_mapping_error(dev, s->dma_address))
1064			goto bad_mapping;
1065	}
1066	return nents;
1067
1068 bad_mapping:
1069	for_each_sg(sg, s, i, j)
1070		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1071	return 0;
1072}
1073
1074/**
1075 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1076 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1077 * @sg: list of buffers
1078 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1079 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1080 *
1081 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1082 * rules concerning calls here are the same as for dma_unmap_single().
1083 */
1084void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1085		enum dma_data_direction dir, struct dma_attrs *attrs)
1086{
1087	struct dma_map_ops *ops = get_dma_ops(dev);
1088	struct scatterlist *s;
1089
1090	int i;
1091
1092	for_each_sg(sg, s, nents, i)
1093		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1094}
1095
1096/**
1097 * arm_dma_sync_sg_for_cpu
1098 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1099 * @sg: list of buffers
1100 * @nents: number of buffers to map (returned from dma_map_sg)
1101 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1102 */
1103void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1104			int nents, enum dma_data_direction dir)
1105{
1106	struct dma_map_ops *ops = get_dma_ops(dev);
1107	struct scatterlist *s;
1108	int i;
1109
1110	for_each_sg(sg, s, nents, i)
1111		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1112					 dir);
1113}
1114
1115/**
1116 * arm_dma_sync_sg_for_device
1117 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1118 * @sg: list of buffers
1119 * @nents: number of buffers to map (returned from dma_map_sg)
1120 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1121 */
1122void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1123			int nents, enum dma_data_direction dir)
1124{
1125	struct dma_map_ops *ops = get_dma_ops(dev);
1126	struct scatterlist *s;
1127	int i;
1128
1129	for_each_sg(sg, s, nents, i)
1130		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1131					    dir);
1132}
1133
1134/*
1135 * Return whether the given device DMA address mask can be supported
1136 * properly.  For example, if your device can only drive the low 24-bits
1137 * during bus mastering, then you would pass 0x00ffffff as the mask
1138 * to this function.
1139 */
1140int dma_supported(struct device *dev, u64 mask)
1141{
1142	return __dma_supported(dev, mask, false);
 
 
 
 
 
 
 
 
 
1143}
1144EXPORT_SYMBOL(dma_supported);
1145
1146int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1147{
1148	if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1149		return -EIO;
1150
1151	*dev->dma_mask = dma_mask;
1152
1153	return 0;
1154}
 
1155
1156#define PREALLOC_DMA_DEBUG_ENTRIES	4096
 
1157
1158static int __init dma_debug_do_init(void)
1159{
1160	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1161	return 0;
 
 
 
 
 
 
1162}
1163fs_initcall(dma_debug_do_init);
1164
1165#ifdef CONFIG_ARM_DMA_USE_IOMMU
1166
1167/* IOMMU */
1168
1169static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1170
1171static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1172				      size_t size)
1173{
1174	unsigned int order = get_order(size);
1175	unsigned int align = 0;
1176	unsigned int count, start;
1177	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1178	unsigned long flags;
1179	dma_addr_t iova;
1180	int i;
1181
1182	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1183		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1184
1185	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1186	align = (1 << order) - 1;
1187
1188	spin_lock_irqsave(&mapping->lock, flags);
1189	for (i = 0; i < mapping->nr_bitmaps; i++) {
1190		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1191				mapping->bits, 0, count, align);
1192
1193		if (start > mapping->bits)
1194			continue;
1195
1196		bitmap_set(mapping->bitmaps[i], start, count);
1197		break;
1198	}
1199
1200	/*
1201	 * No unused range found. Try to extend the existing mapping
1202	 * and perform a second attempt to reserve an IO virtual
1203	 * address range of size bytes.
1204	 */
1205	if (i == mapping->nr_bitmaps) {
1206		if (extend_iommu_mapping(mapping)) {
1207			spin_unlock_irqrestore(&mapping->lock, flags);
1208			return DMA_ERROR_CODE;
1209		}
1210
1211		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1212				mapping->bits, 0, count, align);
1213
1214		if (start > mapping->bits) {
1215			spin_unlock_irqrestore(&mapping->lock, flags);
1216			return DMA_ERROR_CODE;
1217		}
1218
1219		bitmap_set(mapping->bitmaps[i], start, count);
1220	}
1221	spin_unlock_irqrestore(&mapping->lock, flags);
1222
1223	iova = mapping->base + (mapping_size * i);
1224	iova += start << PAGE_SHIFT;
1225
1226	return iova;
1227}
1228
1229static inline void __free_iova(struct dma_iommu_mapping *mapping,
1230			       dma_addr_t addr, size_t size)
1231{
1232	unsigned int start, count;
1233	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1234	unsigned long flags;
1235	dma_addr_t bitmap_base;
1236	u32 bitmap_index;
1237
1238	if (!size)
1239		return;
1240
1241	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1242	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1243
1244	bitmap_base = mapping->base + mapping_size * bitmap_index;
1245
1246	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1247
1248	if (addr + size > bitmap_base + mapping_size) {
1249		/*
1250		 * The address range to be freed reaches into the iova
1251		 * range of the next bitmap. This should not happen as
1252		 * we don't allow this in __alloc_iova (at the
1253		 * moment).
1254		 */
1255		BUG();
1256	} else
1257		count = size >> PAGE_SHIFT;
1258
1259	spin_lock_irqsave(&mapping->lock, flags);
1260	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1261	spin_unlock_irqrestore(&mapping->lock, flags);
1262}
1263
1264/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1265static const int iommu_order_array[] = { 9, 8, 4, 0 };
1266
1267static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1268					  gfp_t gfp, struct dma_attrs *attrs)
 
1269{
1270	struct page **pages;
1271	int count = size >> PAGE_SHIFT;
1272	int array_size = count * sizeof(struct page *);
1273	int i = 0;
1274	int order_idx = 0;
1275
1276	if (array_size <= PAGE_SIZE)
1277		pages = kzalloc(array_size, GFP_KERNEL);
1278	else
1279		pages = vzalloc(array_size);
1280	if (!pages)
1281		return NULL;
1282
1283	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1284	{
1285		unsigned long order = get_order(size);
1286		struct page *page;
1287
1288		page = dma_alloc_from_contiguous(dev, count, order);
 
1289		if (!page)
1290			goto error;
1291
1292		__dma_clear_buffer(page, size);
1293
1294		for (i = 0; i < count; i++)
1295			pages[i] = page + i;
1296
1297		return pages;
1298	}
1299
1300	/* Go straight to 4K chunks if caller says it's OK. */
1301	if (dma_get_attr(DMA_ATTR_ALLOC_SINGLE_PAGES, attrs))
1302		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1303
1304	/*
1305	 * IOMMU can map any pages, so himem can also be used here
1306	 */
1307	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1308
1309	while (count) {
1310		int j, order;
1311
1312		order = iommu_order_array[order_idx];
1313
1314		/* Drop down when we get small */
1315		if (__fls(count) < order) {
1316			order_idx++;
1317			continue;
1318		}
1319
1320		if (order) {
1321			/* See if it's easy to allocate a high-order chunk */
1322			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1323
1324			/* Go down a notch at first sign of pressure */
1325			if (!pages[i]) {
1326				order_idx++;
1327				continue;
1328			}
1329		} else {
1330			pages[i] = alloc_pages(gfp, 0);
1331			if (!pages[i])
1332				goto error;
1333		}
1334
1335		if (order) {
1336			split_page(pages[i], order);
1337			j = 1 << order;
1338			while (--j)
1339				pages[i + j] = pages[i] + j;
1340		}
1341
1342		__dma_clear_buffer(pages[i], PAGE_SIZE << order);
1343		i += 1 << order;
1344		count -= 1 << order;
1345	}
1346
1347	return pages;
1348error:
1349	while (i--)
1350		if (pages[i])
1351			__free_pages(pages[i], 0);
1352	kvfree(pages);
1353	return NULL;
1354}
1355
1356static int __iommu_free_buffer(struct device *dev, struct page **pages,
1357			       size_t size, struct dma_attrs *attrs)
1358{
1359	int count = size >> PAGE_SHIFT;
1360	int i;
1361
1362	if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1363		dma_release_from_contiguous(dev, pages[0], count);
1364	} else {
1365		for (i = 0; i < count; i++)
1366			if (pages[i])
1367				__free_pages(pages[i], 0);
1368	}
1369
1370	kvfree(pages);
1371	return 0;
1372}
1373
1374/*
1375 * Create a CPU mapping for a specified pages
1376 */
1377static void *
1378__iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1379		    const void *caller)
1380{
1381	return dma_common_pages_remap(pages, size,
1382			VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1383}
1384
1385/*
1386 * Create a mapping in device IO address space for specified pages
1387 */
1388static dma_addr_t
1389__iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
 
1390{
1391	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1392	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1393	dma_addr_t dma_addr, iova;
1394	int i;
1395
1396	dma_addr = __alloc_iova(mapping, size);
1397	if (dma_addr == DMA_ERROR_CODE)
1398		return dma_addr;
1399
1400	iova = dma_addr;
1401	for (i = 0; i < count; ) {
1402		int ret;
1403
1404		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1405		phys_addr_t phys = page_to_phys(pages[i]);
1406		unsigned int len, j;
1407
1408		for (j = i + 1; j < count; j++, next_pfn++)
1409			if (page_to_pfn(pages[j]) != next_pfn)
1410				break;
1411
1412		len = (j - i) << PAGE_SHIFT;
1413		ret = iommu_map(mapping->domain, iova, phys, len,
1414				IOMMU_READ|IOMMU_WRITE);
1415		if (ret < 0)
1416			goto fail;
1417		iova += len;
1418		i = j;
1419	}
1420	return dma_addr;
1421fail:
1422	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1423	__free_iova(mapping, dma_addr, size);
1424	return DMA_ERROR_CODE;
1425}
1426
1427static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1428{
1429	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1430
1431	/*
1432	 * add optional in-page offset from iova to size and align
1433	 * result to page size
1434	 */
1435	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1436	iova &= PAGE_MASK;
1437
1438	iommu_unmap(mapping->domain, iova, size);
1439	__free_iova(mapping, iova, size);
1440	return 0;
1441}
1442
1443static struct page **__atomic_get_pages(void *addr)
1444{
1445	struct page *page;
1446	phys_addr_t phys;
1447
1448	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1449	page = phys_to_page(phys);
1450
1451	return (struct page **)page;
1452}
1453
1454static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1455{
1456	struct vm_struct *area;
1457
1458	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1459		return __atomic_get_pages(cpu_addr);
1460
1461	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1462		return cpu_addr;
1463
1464	area = find_vm_area(cpu_addr);
1465	if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1466		return area->pages;
1467	return NULL;
1468}
1469
1470static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1471				  dma_addr_t *handle)
 
1472{
1473	struct page *page;
1474	void *addr;
1475
1476	addr = __alloc_from_pool(size, &page);
 
 
 
1477	if (!addr)
1478		return NULL;
1479
1480	*handle = __iommu_create_mapping(dev, &page, size);
1481	if (*handle == DMA_ERROR_CODE)
1482		goto err_mapping;
1483
1484	return addr;
1485
1486err_mapping:
1487	__free_from_pool(addr, size);
1488	return NULL;
1489}
1490
1491static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1492				dma_addr_t handle, size_t size)
1493{
1494	__iommu_remove_mapping(dev, handle, size);
1495	__free_from_pool(cpu_addr, size);
 
 
 
1496}
1497
1498static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1499	    dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
 
1500{
1501	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1502	struct page **pages;
1503	void *addr = NULL;
1504
1505	*handle = DMA_ERROR_CODE;
1506	size = PAGE_ALIGN(size);
1507
1508	if (!gfpflags_allow_blocking(gfp))
1509		return __iommu_alloc_atomic(dev, size, handle);
 
1510
1511	/*
1512	 * Following is a work-around (a.k.a. hack) to prevent pages
1513	 * with __GFP_COMP being passed to split_page() which cannot
1514	 * handle them.  The real problem is that this flag probably
1515	 * should be 0 on ARM as it is not supported on this
1516	 * platform; see CONFIG_HUGETLBFS.
1517	 */
1518	gfp &= ~(__GFP_COMP);
1519
1520	pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1521	if (!pages)
1522		return NULL;
1523
1524	*handle = __iommu_create_mapping(dev, pages, size);
1525	if (*handle == DMA_ERROR_CODE)
1526		goto err_buffer;
1527
1528	if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1529		return pages;
1530
1531	addr = __iommu_alloc_remap(pages, size, gfp, prot,
1532				   __builtin_return_address(0));
1533	if (!addr)
1534		goto err_mapping;
1535
1536	return addr;
1537
1538err_mapping:
1539	__iommu_remove_mapping(dev, *handle, size);
1540err_buffer:
1541	__iommu_free_buffer(dev, pages, size, attrs);
1542	return NULL;
1543}
1544
1545static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
 
 
 
 
 
 
 
 
 
 
 
 
1546		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1547		    struct dma_attrs *attrs)
1548{
1549	unsigned long uaddr = vma->vm_start;
1550	unsigned long usize = vma->vm_end - vma->vm_start;
1551	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1552	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1553	unsigned long off = vma->vm_pgoff;
1554
1555	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1556
1557	if (!pages)
1558		return -ENXIO;
1559
1560	if (off >= nr_pages || (usize >> PAGE_SHIFT) > nr_pages - off)
1561		return -ENXIO;
1562
1563	pages += off;
 
 
1564
1565	do {
1566		int ret = vm_insert_page(vma, uaddr, *pages++);
1567		if (ret) {
1568			pr_err("Remapping memory failed: %d\n", ret);
1569			return ret;
1570		}
1571		uaddr += PAGE_SIZE;
1572		usize -= PAGE_SIZE;
1573	} while (usize > 0);
1574
1575	return 0;
 
 
 
 
 
 
 
1576}
1577
1578/*
1579 * free a page as defined by the above mapping.
1580 * Must not be called with IRQs disabled.
1581 */
1582void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1583			  dma_addr_t handle, struct dma_attrs *attrs)
1584{
1585	struct page **pages;
1586	size = PAGE_ALIGN(size);
1587
1588	if (__in_atomic_pool(cpu_addr, size)) {
1589		__iommu_free_atomic(dev, cpu_addr, handle, size);
1590		return;
1591	}
1592
1593	pages = __iommu_get_pages(cpu_addr, attrs);
1594	if (!pages) {
1595		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1596		return;
1597	}
1598
1599	if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1600		dma_common_free_remap(cpu_addr, size,
1601			VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1602	}
1603
1604	__iommu_remove_mapping(dev, handle, size);
1605	__iommu_free_buffer(dev, pages, size, attrs);
1606}
1607
 
 
 
 
 
 
 
 
 
 
 
 
 
1608static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1609				 void *cpu_addr, dma_addr_t dma_addr,
1610				 size_t size, struct dma_attrs *attrs)
1611{
1612	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1613	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1614
1615	if (!pages)
1616		return -ENXIO;
1617
1618	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1619					 GFP_KERNEL);
1620}
1621
1622static int __dma_direction_to_prot(enum dma_data_direction dir)
1623{
1624	int prot;
1625
1626	switch (dir) {
1627	case DMA_BIDIRECTIONAL:
1628		prot = IOMMU_READ | IOMMU_WRITE;
1629		break;
1630	case DMA_TO_DEVICE:
1631		prot = IOMMU_READ;
1632		break;
1633	case DMA_FROM_DEVICE:
1634		prot = IOMMU_WRITE;
1635		break;
1636	default:
1637		prot = 0;
1638	}
1639
1640	return prot;
1641}
1642
1643/*
1644 * Map a part of the scatter-gather list into contiguous io address space
1645 */
1646static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1647			  size_t size, dma_addr_t *handle,
1648			  enum dma_data_direction dir, struct dma_attrs *attrs,
1649			  bool is_coherent)
1650{
1651	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1652	dma_addr_t iova, iova_base;
1653	int ret = 0;
1654	unsigned int count;
1655	struct scatterlist *s;
1656	int prot;
1657
1658	size = PAGE_ALIGN(size);
1659	*handle = DMA_ERROR_CODE;
1660
1661	iova_base = iova = __alloc_iova(mapping, size);
1662	if (iova == DMA_ERROR_CODE)
1663		return -ENOMEM;
1664
1665	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1666		phys_addr_t phys = page_to_phys(sg_page(s));
1667		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1668
1669		if (!is_coherent &&
1670			!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1671			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1672
1673		prot = __dma_direction_to_prot(dir);
1674
1675		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1676		if (ret < 0)
1677			goto fail;
1678		count += len >> PAGE_SHIFT;
1679		iova += len;
1680	}
1681	*handle = iova_base;
1682
1683	return 0;
1684fail:
1685	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1686	__free_iova(mapping, iova_base, size);
1687	return ret;
1688}
1689
1690static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1691		     enum dma_data_direction dir, struct dma_attrs *attrs,
1692		     bool is_coherent)
1693{
1694	struct scatterlist *s = sg, *dma = sg, *start = sg;
1695	int i, count = 0;
1696	unsigned int offset = s->offset;
1697	unsigned int size = s->offset + s->length;
1698	unsigned int max = dma_get_max_seg_size(dev);
1699
1700	for (i = 1; i < nents; i++) {
1701		s = sg_next(s);
1702
1703		s->dma_address = DMA_ERROR_CODE;
1704		s->dma_length = 0;
1705
1706		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1707			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1708			    dir, attrs, is_coherent) < 0)
1709				goto bad_mapping;
1710
1711			dma->dma_address += offset;
1712			dma->dma_length = size - offset;
1713
1714			size = offset = s->offset;
1715			start = s;
1716			dma = sg_next(dma);
1717			count += 1;
1718		}
1719		size += s->length;
1720	}
1721	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1722		is_coherent) < 0)
1723		goto bad_mapping;
1724
1725	dma->dma_address += offset;
1726	dma->dma_length = size - offset;
1727
1728	return count+1;
1729
1730bad_mapping:
1731	for_each_sg(sg, s, count, i)
1732		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1733	return 0;
1734}
1735
1736/**
1737 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1738 * @dev: valid struct device pointer
1739 * @sg: list of buffers
1740 * @nents: number of buffers to map
1741 * @dir: DMA transfer direction
1742 *
1743 * Map a set of i/o coherent buffers described by scatterlist in streaming
1744 * mode for DMA. The scatter gather list elements are merged together (if
1745 * possible) and tagged with the appropriate dma address and length. They are
1746 * obtained via sg_dma_{address,length}.
1747 */
1748int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1749		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1750{
1751	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1752}
1753
1754/**
1755 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1756 * @dev: valid struct device pointer
1757 * @sg: list of buffers
1758 * @nents: number of buffers to map
1759 * @dir: DMA transfer direction
1760 *
1761 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1762 * The scatter gather list elements are merged together (if possible) and
1763 * tagged with the appropriate dma address and length. They are obtained via
1764 * sg_dma_{address,length}.
1765 */
1766int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1767		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1768{
1769	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1770}
1771
1772static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1773		int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1774		bool is_coherent)
1775{
1776	struct scatterlist *s;
1777	int i;
1778
1779	for_each_sg(sg, s, nents, i) {
1780		if (sg_dma_len(s))
1781			__iommu_remove_mapping(dev, sg_dma_address(s),
1782					       sg_dma_len(s));
1783		if (!is_coherent &&
1784		    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1785			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1786					      s->length, dir);
1787	}
1788}
1789
1790/**
1791 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1792 * @dev: valid struct device pointer
1793 * @sg: list of buffers
1794 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1795 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1796 *
1797 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1798 * rules concerning calls here are the same as for dma_unmap_single().
1799 */
1800void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1801		int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
 
1802{
1803	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1804}
1805
1806/**
1807 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1808 * @dev: valid struct device pointer
1809 * @sg: list of buffers
1810 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1811 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1812 *
1813 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1814 * rules concerning calls here are the same as for dma_unmap_single().
1815 */
1816void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1817			enum dma_data_direction dir, struct dma_attrs *attrs)
 
 
1818{
1819	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1820}
1821
1822/**
1823 * arm_iommu_sync_sg_for_cpu
1824 * @dev: valid struct device pointer
1825 * @sg: list of buffers
1826 * @nents: number of buffers to map (returned from dma_map_sg)
1827 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1828 */
1829void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
 
1830			int nents, enum dma_data_direction dir)
1831{
1832	struct scatterlist *s;
1833	int i;
1834
1835	for_each_sg(sg, s, nents, i)
1836		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1837
1838}
1839
1840/**
1841 * arm_iommu_sync_sg_for_device
1842 * @dev: valid struct device pointer
1843 * @sg: list of buffers
1844 * @nents: number of buffers to map (returned from dma_map_sg)
1845 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1846 */
1847void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
 
1848			int nents, enum dma_data_direction dir)
1849{
1850	struct scatterlist *s;
1851	int i;
1852
1853	for_each_sg(sg, s, nents, i)
1854		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1855}
1856
1857
1858/**
1859 * arm_coherent_iommu_map_page
1860 * @dev: valid struct device pointer
1861 * @page: page that buffer resides in
1862 * @offset: offset into page for start of buffer
1863 * @size: size of buffer to map
1864 * @dir: DMA transfer direction
1865 *
1866 * Coherent IOMMU aware version of arm_dma_map_page()
1867 */
1868static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1869	     unsigned long offset, size_t size, enum dma_data_direction dir,
1870	     struct dma_attrs *attrs)
1871{
1872	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1873	dma_addr_t dma_addr;
1874	int ret, prot, len = PAGE_ALIGN(size + offset);
1875
1876	dma_addr = __alloc_iova(mapping, len);
1877	if (dma_addr == DMA_ERROR_CODE)
1878		return dma_addr;
1879
1880	prot = __dma_direction_to_prot(dir);
1881
1882	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1883	if (ret < 0)
1884		goto fail;
1885
1886	return dma_addr + offset;
1887fail:
1888	__free_iova(mapping, dma_addr, len);
1889	return DMA_ERROR_CODE;
1890}
1891
1892/**
1893 * arm_iommu_map_page
1894 * @dev: valid struct device pointer
1895 * @page: page that buffer resides in
1896 * @offset: offset into page for start of buffer
1897 * @size: size of buffer to map
1898 * @dir: DMA transfer direction
1899 *
1900 * IOMMU aware version of arm_dma_map_page()
1901 */
1902static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1903	     unsigned long offset, size_t size, enum dma_data_direction dir,
1904	     struct dma_attrs *attrs)
1905{
1906	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1907		__dma_page_cpu_to_dev(page, offset, size, dir);
1908
1909	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1910}
1911
1912/**
1913 * arm_coherent_iommu_unmap_page
1914 * @dev: valid struct device pointer
1915 * @handle: DMA address of buffer
1916 * @size: size of buffer (same as passed to dma_map_page)
1917 * @dir: DMA transfer direction (same as passed to dma_map_page)
1918 *
1919 * Coherent IOMMU aware version of arm_dma_unmap_page()
1920 */
1921static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1922		size_t size, enum dma_data_direction dir,
1923		struct dma_attrs *attrs)
1924{
1925	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1926	dma_addr_t iova = handle & PAGE_MASK;
1927	int offset = handle & ~PAGE_MASK;
1928	int len = PAGE_ALIGN(size + offset);
1929
1930	if (!iova)
1931		return;
1932
1933	iommu_unmap(mapping->domain, iova, len);
1934	__free_iova(mapping, iova, len);
1935}
1936
1937/**
1938 * arm_iommu_unmap_page
1939 * @dev: valid struct device pointer
1940 * @handle: DMA address of buffer
1941 * @size: size of buffer (same as passed to dma_map_page)
1942 * @dir: DMA transfer direction (same as passed to dma_map_page)
1943 *
1944 * IOMMU aware version of arm_dma_unmap_page()
1945 */
1946static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1947		size_t size, enum dma_data_direction dir,
1948		struct dma_attrs *attrs)
1949{
1950	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1951	dma_addr_t iova = handle & PAGE_MASK;
1952	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1953	int offset = handle & ~PAGE_MASK;
1954	int len = PAGE_ALIGN(size + offset);
1955
1956	if (!iova)
1957		return;
1958
1959	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1960		__dma_page_dev_to_cpu(page, offset, size, dir);
1961
1962	iommu_unmap(mapping->domain, iova, len);
1963	__free_iova(mapping, iova, len);
1964}
1965
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1966static void arm_iommu_sync_single_for_cpu(struct device *dev,
1967		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1968{
1969	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1970	dma_addr_t iova = handle & PAGE_MASK;
1971	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1972	unsigned int offset = handle & ~PAGE_MASK;
1973
1974	if (!iova)
1975		return;
1976
1977	__dma_page_dev_to_cpu(page, offset, size, dir);
1978}
1979
1980static void arm_iommu_sync_single_for_device(struct device *dev,
1981		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1982{
1983	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1984	dma_addr_t iova = handle & PAGE_MASK;
1985	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1986	unsigned int offset = handle & ~PAGE_MASK;
1987
1988	if (!iova)
1989		return;
1990
1991	__dma_page_cpu_to_dev(page, offset, size, dir);
1992}
1993
1994struct dma_map_ops iommu_ops = {
1995	.alloc		= arm_iommu_alloc_attrs,
1996	.free		= arm_iommu_free_attrs,
1997	.mmap		= arm_iommu_mmap_attrs,
1998	.get_sgtable	= arm_iommu_get_sgtable,
1999
2000	.map_page		= arm_iommu_map_page,
2001	.unmap_page		= arm_iommu_unmap_page,
2002	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
2003	.sync_single_for_device	= arm_iommu_sync_single_for_device,
2004
2005	.map_sg			= arm_iommu_map_sg,
2006	.unmap_sg		= arm_iommu_unmap_sg,
2007	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
2008	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
2009
2010	.set_dma_mask		= arm_dma_set_mask,
 
 
 
2011};
2012
2013struct dma_map_ops iommu_coherent_ops = {
2014	.alloc		= arm_iommu_alloc_attrs,
2015	.free		= arm_iommu_free_attrs,
2016	.mmap		= arm_iommu_mmap_attrs,
2017	.get_sgtable	= arm_iommu_get_sgtable,
2018
2019	.map_page	= arm_coherent_iommu_map_page,
2020	.unmap_page	= arm_coherent_iommu_unmap_page,
2021
2022	.map_sg		= arm_coherent_iommu_map_sg,
2023	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2024
2025	.set_dma_mask	= arm_dma_set_mask,
 
 
 
2026};
2027
2028/**
2029 * arm_iommu_create_mapping
2030 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2031 * @base: start address of the valid IO address space
2032 * @size: maximum size of the valid IO address space
2033 *
2034 * Creates a mapping structure which holds information about used/unused
2035 * IO address ranges, which is required to perform memory allocation and
2036 * mapping with IOMMU aware functions.
2037 *
2038 * The client device need to be attached to the mapping with
2039 * arm_iommu_attach_device function.
2040 */
2041struct dma_iommu_mapping *
2042arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2043{
2044	unsigned int bits = size >> PAGE_SHIFT;
2045	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2046	struct dma_iommu_mapping *mapping;
2047	int extensions = 1;
2048	int err = -ENOMEM;
2049
2050	/* currently only 32-bit DMA address space is supported */
2051	if (size > DMA_BIT_MASK(32) + 1)
2052		return ERR_PTR(-ERANGE);
2053
2054	if (!bitmap_size)
2055		return ERR_PTR(-EINVAL);
2056
2057	if (bitmap_size > PAGE_SIZE) {
2058		extensions = bitmap_size / PAGE_SIZE;
2059		bitmap_size = PAGE_SIZE;
2060	}
2061
2062	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2063	if (!mapping)
2064		goto err;
2065
2066	mapping->bitmap_size = bitmap_size;
2067	mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
2068				GFP_KERNEL);
2069	if (!mapping->bitmaps)
2070		goto err2;
2071
2072	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2073	if (!mapping->bitmaps[0])
2074		goto err3;
2075
2076	mapping->nr_bitmaps = 1;
2077	mapping->extensions = extensions;
2078	mapping->base = base;
2079	mapping->bits = BITS_PER_BYTE * bitmap_size;
2080
2081	spin_lock_init(&mapping->lock);
2082
2083	mapping->domain = iommu_domain_alloc(bus);
2084	if (!mapping->domain)
2085		goto err4;
2086
2087	kref_init(&mapping->kref);
2088	return mapping;
2089err4:
2090	kfree(mapping->bitmaps[0]);
2091err3:
2092	kfree(mapping->bitmaps);
2093err2:
2094	kfree(mapping);
2095err:
2096	return ERR_PTR(err);
2097}
2098EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2099
2100static void release_iommu_mapping(struct kref *kref)
2101{
2102	int i;
2103	struct dma_iommu_mapping *mapping =
2104		container_of(kref, struct dma_iommu_mapping, kref);
2105
2106	iommu_domain_free(mapping->domain);
2107	for (i = 0; i < mapping->nr_bitmaps; i++)
2108		kfree(mapping->bitmaps[i]);
2109	kfree(mapping->bitmaps);
2110	kfree(mapping);
2111}
2112
2113static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2114{
2115	int next_bitmap;
2116
2117	if (mapping->nr_bitmaps >= mapping->extensions)
2118		return -EINVAL;
2119
2120	next_bitmap = mapping->nr_bitmaps;
2121	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2122						GFP_ATOMIC);
2123	if (!mapping->bitmaps[next_bitmap])
2124		return -ENOMEM;
2125
2126	mapping->nr_bitmaps++;
2127
2128	return 0;
2129}
2130
2131void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2132{
2133	if (mapping)
2134		kref_put(&mapping->kref, release_iommu_mapping);
2135}
2136EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2137
2138static int __arm_iommu_attach_device(struct device *dev,
2139				     struct dma_iommu_mapping *mapping)
2140{
2141	int err;
2142
2143	err = iommu_attach_device(mapping->domain, dev);
2144	if (err)
2145		return err;
2146
2147	kref_get(&mapping->kref);
2148	to_dma_iommu_mapping(dev) = mapping;
2149
2150	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2151	return 0;
2152}
2153
2154/**
2155 * arm_iommu_attach_device
2156 * @dev: valid struct device pointer
2157 * @mapping: io address space mapping structure (returned from
2158 *	arm_iommu_create_mapping)
2159 *
2160 * Attaches specified io address space mapping to the provided device.
2161 * This replaces the dma operations (dma_map_ops pointer) with the
2162 * IOMMU aware version.
2163 *
2164 * More than one client might be attached to the same io address space
2165 * mapping.
2166 */
2167int arm_iommu_attach_device(struct device *dev,
2168			    struct dma_iommu_mapping *mapping)
2169{
2170	int err;
2171
2172	err = __arm_iommu_attach_device(dev, mapping);
2173	if (err)
2174		return err;
2175
2176	set_dma_ops(dev, &iommu_ops);
2177	return 0;
2178}
2179EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2180
2181static void __arm_iommu_detach_device(struct device *dev)
 
 
 
 
 
 
 
2182{
2183	struct dma_iommu_mapping *mapping;
2184
2185	mapping = to_dma_iommu_mapping(dev);
2186	if (!mapping) {
2187		dev_warn(dev, "Not attached\n");
2188		return;
2189	}
2190
2191	iommu_detach_device(mapping->domain, dev);
2192	kref_put(&mapping->kref, release_iommu_mapping);
2193	to_dma_iommu_mapping(dev) = NULL;
 
2194
2195	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2196}
2197
2198/**
2199 * arm_iommu_detach_device
2200 * @dev: valid struct device pointer
2201 *
2202 * Detaches the provided device from a previously attached map.
2203 * This voids the dma operations (dma_map_ops pointer)
2204 */
2205void arm_iommu_detach_device(struct device *dev)
2206{
2207	__arm_iommu_detach_device(dev);
2208	set_dma_ops(dev, NULL);
2209}
2210EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2211
2212static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2213{
2214	return coherent ? &iommu_coherent_ops : &iommu_ops;
2215}
2216
2217static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2218				    struct iommu_ops *iommu)
2219{
2220	struct dma_iommu_mapping *mapping;
2221
2222	if (!iommu)
2223		return false;
2224
2225	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2226	if (IS_ERR(mapping)) {
2227		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2228				size, dev_name(dev));
2229		return false;
2230	}
2231
2232	if (__arm_iommu_attach_device(dev, mapping)) {
2233		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2234				dev_name(dev));
2235		arm_iommu_release_mapping(mapping);
2236		return false;
2237	}
2238
2239	return true;
2240}
2241
2242static void arm_teardown_iommu_dma_ops(struct device *dev)
2243{
2244	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2245
2246	if (!mapping)
2247		return;
2248
2249	__arm_iommu_detach_device(dev);
2250	arm_iommu_release_mapping(mapping);
2251}
2252
2253#else
2254
2255static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2256				    struct iommu_ops *iommu)
2257{
2258	return false;
2259}
2260
2261static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2262
2263#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2264
2265#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2266
2267static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2268{
2269	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2270}
2271
2272void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2273			struct iommu_ops *iommu, bool coherent)
2274{
2275	struct dma_map_ops *dma_ops;
2276
2277	dev->archdata.dma_coherent = coherent;
 
 
 
 
 
 
 
 
 
 
 
 
2278	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2279		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2280	else
2281		dma_ops = arm_get_dma_map_ops(coherent);
2282
2283	set_dma_ops(dev, dma_ops);
 
 
 
 
 
 
2284}
2285
2286void arch_teardown_dma_ops(struct device *dev)
2287{
 
 
 
2288	arm_teardown_iommu_dma_ops(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2289}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/dma-mapping.c
   4 *
   5 *  Copyright (C) 2000-2004 Russell King
   6 *
 
 
 
 
   7 *  DMA uncached mapping support.
   8 */
 
   9#include <linux/module.h>
  10#include <linux/mm.h>
  11#include <linux/genalloc.h>
  12#include <linux/gfp.h>
  13#include <linux/errno.h>
  14#include <linux/list.h>
  15#include <linux/init.h>
  16#include <linux/device.h>
  17#include <linux/dma-direct.h>
  18#include <linux/dma-map-ops.h>
  19#include <linux/highmem.h>
  20#include <linux/memblock.h>
  21#include <linux/slab.h>
  22#include <linux/iommu.h>
  23#include <linux/io.h>
  24#include <linux/vmalloc.h>
  25#include <linux/sizes.h>
  26#include <linux/cma.h>
  27
  28#include <asm/memory.h>
  29#include <asm/highmem.h>
  30#include <asm/cacheflush.h>
  31#include <asm/tlbflush.h>
  32#include <asm/mach/arch.h>
  33#include <asm/dma-iommu.h>
  34#include <asm/mach/map.h>
  35#include <asm/system_info.h>
  36#include <xen/swiotlb-xen.h>
  37
  38#include "dma.h"
  39#include "mm.h"
  40
  41struct arm_dma_alloc_args {
  42	struct device *dev;
  43	size_t size;
  44	gfp_t gfp;
  45	pgprot_t prot;
  46	const void *caller;
  47	bool want_vaddr;
  48	int coherent_flag;
  49};
  50
  51struct arm_dma_free_args {
  52	struct device *dev;
  53	size_t size;
  54	void *cpu_addr;
  55	struct page *page;
  56	bool want_vaddr;
  57};
  58
  59#define NORMAL	    0
  60#define COHERENT    1
  61
  62struct arm_dma_allocator {
  63	void *(*alloc)(struct arm_dma_alloc_args *args,
  64		       struct page **ret_page);
  65	void (*free)(struct arm_dma_free_args *args);
  66};
  67
  68struct arm_dma_buffer {
  69	struct list_head list;
  70	void *virt;
  71	struct arm_dma_allocator *allocator;
  72};
  73
  74static LIST_HEAD(arm_dma_bufs);
  75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
  76
  77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
  78{
  79	struct arm_dma_buffer *buf, *found = NULL;
  80	unsigned long flags;
  81
  82	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
  83	list_for_each_entry(buf, &arm_dma_bufs, list) {
  84		if (buf->virt == virt) {
  85			list_del(&buf->list);
  86			found = buf;
  87			break;
  88		}
  89	}
  90	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
  91	return found;
  92}
  93
  94/*
  95 * The DMA API is built upon the notion of "buffer ownership".  A buffer
  96 * is either exclusively owned by the CPU (and therefore may be accessed
  97 * by it) or exclusively owned by the DMA device.  These helper functions
  98 * represent the transitions between these two ownership states.
  99 *
 100 * Note, however, that on later ARMs, this notion does not work due to
 101 * speculative prefetches.  We model our approach on the assumption that
 102 * the CPU does do speculative prefetches, which means we clean caches
 103 * before transfers and delay cache invalidation until transfer completion.
 104 *
 105 */
 106static void __dma_page_cpu_to_dev(struct page *, unsigned long,
 107		size_t, enum dma_data_direction);
 108static void __dma_page_dev_to_cpu(struct page *, unsigned long,
 109		size_t, enum dma_data_direction);
 110
 111/**
 112 * arm_dma_map_page - map a portion of a page for streaming DMA
 113 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 114 * @page: page that buffer resides in
 115 * @offset: offset into page for start of buffer
 116 * @size: size of buffer to map
 117 * @dir: DMA transfer direction
 118 *
 119 * Ensure that any data held in the cache is appropriately discarded
 120 * or written back.
 121 *
 122 * The device owns this memory once this call has completed.  The CPU
 123 * can regain ownership by calling dma_unmap_page().
 124 */
 125static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
 126	     unsigned long offset, size_t size, enum dma_data_direction dir,
 127	     unsigned long attrs)
 128{
 129	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 130		__dma_page_cpu_to_dev(page, offset, size, dir);
 131	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 132}
 133
 134static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
 135	     unsigned long offset, size_t size, enum dma_data_direction dir,
 136	     unsigned long attrs)
 137{
 138	return pfn_to_dma(dev, page_to_pfn(page)) + offset;
 139}
 140
 141/**
 142 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
 143 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 144 * @handle: DMA address of buffer
 145 * @size: size of buffer (same as passed to dma_map_page)
 146 * @dir: DMA transfer direction (same as passed to dma_map_page)
 147 *
 148 * Unmap a page streaming mode DMA translation.  The handle and size
 149 * must match what was provided in the previous dma_map_page() call.
 150 * All other usages are undefined.
 151 *
 152 * After this call, reads by the CPU to the buffer are guaranteed to see
 153 * whatever the device wrote there.
 154 */
 155static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
 156		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
 157{
 158	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 159		__dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
 160				      handle & ~PAGE_MASK, size, dir);
 161}
 162
 163static void arm_dma_sync_single_for_cpu(struct device *dev,
 164		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 165{
 166	unsigned int offset = handle & (PAGE_SIZE - 1);
 167	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 168	__dma_page_dev_to_cpu(page, offset, size, dir);
 169}
 170
 171static void arm_dma_sync_single_for_device(struct device *dev,
 172		dma_addr_t handle, size_t size, enum dma_data_direction dir)
 173{
 174	unsigned int offset = handle & (PAGE_SIZE - 1);
 175	struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
 176	__dma_page_cpu_to_dev(page, offset, size, dir);
 177}
 178
 179/*
 180 * Return whether the given device DMA address mask can be supported
 181 * properly.  For example, if your device can only drive the low 24-bits
 182 * during bus mastering, then you would pass 0x00ffffff as the mask
 183 * to this function.
 184 */
 185static int arm_dma_supported(struct device *dev, u64 mask)
 186{
 187	unsigned long max_dma_pfn = min(max_pfn - 1, arm_dma_pfn_limit);
 188
 189	/*
 190	 * Translate the device's DMA mask to a PFN limit.  This
 191	 * PFN number includes the page which we can DMA to.
 192	 */
 193	return dma_to_pfn(dev, mask) >= max_dma_pfn;
 194}
 195
 196const struct dma_map_ops arm_dma_ops = {
 197	.alloc			= arm_dma_alloc,
 198	.free			= arm_dma_free,
 199	.alloc_pages		= dma_direct_alloc_pages,
 200	.free_pages		= dma_direct_free_pages,
 201	.mmap			= arm_dma_mmap,
 202	.get_sgtable		= arm_dma_get_sgtable,
 203	.map_page		= arm_dma_map_page,
 204	.unmap_page		= arm_dma_unmap_page,
 205	.map_sg			= arm_dma_map_sg,
 206	.unmap_sg		= arm_dma_unmap_sg,
 207	.map_resource		= dma_direct_map_resource,
 208	.sync_single_for_cpu	= arm_dma_sync_single_for_cpu,
 209	.sync_single_for_device	= arm_dma_sync_single_for_device,
 210	.sync_sg_for_cpu	= arm_dma_sync_sg_for_cpu,
 211	.sync_sg_for_device	= arm_dma_sync_sg_for_device,
 212	.dma_supported		= arm_dma_supported,
 213	.get_required_mask	= dma_direct_get_required_mask,
 214};
 215EXPORT_SYMBOL(arm_dma_ops);
 216
 217static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 218	dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
 219static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 220				  dma_addr_t handle, unsigned long attrs);
 221static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 222		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 223		 unsigned long attrs);
 224
 225const struct dma_map_ops arm_coherent_dma_ops = {
 226	.alloc			= arm_coherent_dma_alloc,
 227	.free			= arm_coherent_dma_free,
 228	.alloc_pages		= dma_direct_alloc_pages,
 229	.free_pages		= dma_direct_free_pages,
 230	.mmap			= arm_coherent_dma_mmap,
 231	.get_sgtable		= arm_dma_get_sgtable,
 232	.map_page		= arm_coherent_dma_map_page,
 233	.map_sg			= arm_dma_map_sg,
 234	.map_resource		= dma_direct_map_resource,
 235	.dma_supported		= arm_dma_supported,
 236	.get_required_mask	= dma_direct_get_required_mask,
 237};
 238EXPORT_SYMBOL(arm_coherent_dma_ops);
 239
 240static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241{
 242	/*
 243	 * Ensure that the allocated pages are zeroed, and that any data
 244	 * lurking in the kernel direct-mapped region is invalidated.
 245	 */
 246	if (PageHighMem(page)) {
 247		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
 248		phys_addr_t end = base + size;
 249		while (size > 0) {
 250			void *ptr = kmap_atomic(page);
 251			memset(ptr, 0, PAGE_SIZE);
 252			if (coherent_flag != COHERENT)
 253				dmac_flush_range(ptr, ptr + PAGE_SIZE);
 254			kunmap_atomic(ptr);
 255			page++;
 256			size -= PAGE_SIZE;
 257		}
 258		if (coherent_flag != COHERENT)
 259			outer_flush_range(base, end);
 260	} else {
 261		void *ptr = page_address(page);
 262		memset(ptr, 0, size);
 263		if (coherent_flag != COHERENT) {
 264			dmac_flush_range(ptr, ptr + size);
 265			outer_flush_range(__pa(ptr), __pa(ptr) + size);
 266		}
 267	}
 268}
 269
 270/*
 271 * Allocate a DMA buffer for 'dev' of size 'size' using the
 272 * specified gfp mask.  Note that 'size' must be page aligned.
 273 */
 274static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
 275				       gfp_t gfp, int coherent_flag)
 276{
 277	unsigned long order = get_order(size);
 278	struct page *page, *p, *e;
 279
 280	page = alloc_pages(gfp, order);
 281	if (!page)
 282		return NULL;
 283
 284	/*
 285	 * Now split the huge page and free the excess pages
 286	 */
 287	split_page(page, order);
 288	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
 289		__free_page(p);
 290
 291	__dma_clear_buffer(page, size, coherent_flag);
 292
 293	return page;
 294}
 295
 296/*
 297 * Free a DMA buffer.  'size' must be page aligned.
 298 */
 299static void __dma_free_buffer(struct page *page, size_t size)
 300{
 301	struct page *e = page + (size >> PAGE_SHIFT);
 302
 303	while (page < e) {
 304		__free_page(page);
 305		page++;
 306	}
 307}
 308
 
 
 309static void *__alloc_from_contiguous(struct device *dev, size_t size,
 310				     pgprot_t prot, struct page **ret_page,
 311				     const void *caller, bool want_vaddr,
 312				     int coherent_flag, gfp_t gfp);
 313
 314static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 315				 pgprot_t prot, struct page **ret_page,
 316				 const void *caller, bool want_vaddr);
 317
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318#define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
 319static struct gen_pool *atomic_pool __ro_after_init;
 320
 321static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
 322
 323static int __init early_coherent_pool(char *p)
 324{
 325	atomic_pool_size = memparse(p, &p);
 326	return 0;
 327}
 328early_param("coherent_pool", early_coherent_pool);
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330/*
 331 * Initialise the coherent pool for atomic allocations.
 332 */
 333static int __init atomic_pool_init(void)
 334{
 335	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
 336	gfp_t gfp = GFP_KERNEL | GFP_DMA;
 337	struct page *page;
 338	void *ptr;
 339
 340	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
 341	if (!atomic_pool)
 342		goto out;
 343	/*
 344	 * The atomic pool is only used for non-coherent allocations
 345	 * so we must pass NORMAL for coherent_flag.
 346	 */
 347	if (dev_get_cma_area(NULL))
 348		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
 349				      &page, atomic_pool_init, true, NORMAL,
 350				      GFP_KERNEL);
 351	else
 352		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
 353					   &page, atomic_pool_init, true);
 354	if (ptr) {
 355		int ret;
 356
 357		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
 358					page_to_phys(page),
 359					atomic_pool_size, -1);
 360		if (ret)
 361			goto destroy_genpool;
 362
 363		gen_pool_set_algo(atomic_pool,
 364				gen_pool_first_fit_order_align,
 365				NULL);
 366		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
 367		       atomic_pool_size / 1024);
 368		return 0;
 369	}
 370
 371destroy_genpool:
 372	gen_pool_destroy(atomic_pool);
 373	atomic_pool = NULL;
 374out:
 375	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
 376	       atomic_pool_size / 1024);
 377	return -ENOMEM;
 378}
 379/*
 380 * CMA is activated by core_initcall, so we must be called after it.
 381 */
 382postcore_initcall(atomic_pool_init);
 383
 384struct dma_contig_early_reserve {
 385	phys_addr_t base;
 386	unsigned long size;
 387};
 388
 389static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
 390
 391static int dma_mmu_remap_num __initdata;
 392
 393void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
 394{
 395	dma_mmu_remap[dma_mmu_remap_num].base = base;
 396	dma_mmu_remap[dma_mmu_remap_num].size = size;
 397	dma_mmu_remap_num++;
 398}
 399
 400void __init dma_contiguous_remap(void)
 401{
 402	int i;
 403	for (i = 0; i < dma_mmu_remap_num; i++) {
 404		phys_addr_t start = dma_mmu_remap[i].base;
 405		phys_addr_t end = start + dma_mmu_remap[i].size;
 406		struct map_desc map;
 407		unsigned long addr;
 408
 409		if (end > arm_lowmem_limit)
 410			end = arm_lowmem_limit;
 411		if (start >= end)
 412			continue;
 413
 414		map.pfn = __phys_to_pfn(start);
 415		map.virtual = __phys_to_virt(start);
 416		map.length = end - start;
 417		map.type = MT_MEMORY_DMA_READY;
 418
 419		/*
 420		 * Clear previous low-memory mapping to ensure that the
 421		 * TLB does not see any conflicting entries, then flush
 422		 * the TLB of the old entries before creating new mappings.
 423		 *
 424		 * This ensures that any speculatively loaded TLB entries
 425		 * (even though they may be rare) can not cause any problems,
 426		 * and ensures that this code is architecturally compliant.
 427		 */
 428		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
 429		     addr += PMD_SIZE)
 430			pmd_clear(pmd_off_k(addr));
 431
 432		flush_tlb_kernel_range(__phys_to_virt(start),
 433				       __phys_to_virt(end));
 434
 435		iotable_init(&map, 1);
 436	}
 437}
 438
 439static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
 
 440{
 441	struct page *page = virt_to_page(addr);
 442	pgprot_t prot = *(pgprot_t *)data;
 443
 444	set_pte_ext(pte, mk_pte(page, prot), 0);
 445	return 0;
 446}
 447
 448static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
 449{
 450	unsigned long start = (unsigned long) page_address(page);
 451	unsigned end = start + size;
 452
 453	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
 454	flush_tlb_kernel_range(start, end);
 455}
 456
 457static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
 458				 pgprot_t prot, struct page **ret_page,
 459				 const void *caller, bool want_vaddr)
 460{
 461	struct page *page;
 462	void *ptr = NULL;
 463	/*
 464	 * __alloc_remap_buffer is only called when the device is
 465	 * non-coherent
 466	 */
 467	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
 468	if (!page)
 469		return NULL;
 470	if (!want_vaddr)
 471		goto out;
 472
 473	ptr = dma_common_contiguous_remap(page, size, prot, caller);
 474	if (!ptr) {
 475		__dma_free_buffer(page, size);
 476		return NULL;
 477	}
 478
 479 out:
 480	*ret_page = page;
 481	return ptr;
 482}
 483
 484static void *__alloc_from_pool(size_t size, struct page **ret_page)
 485{
 486	unsigned long val;
 487	void *ptr = NULL;
 488
 489	if (!atomic_pool) {
 490		WARN(1, "coherent pool not initialised!\n");
 491		return NULL;
 492	}
 493
 494	val = gen_pool_alloc(atomic_pool, size);
 495	if (val) {
 496		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
 497
 498		*ret_page = phys_to_page(phys);
 499		ptr = (void *)val;
 500	}
 501
 502	return ptr;
 503}
 504
 505static bool __in_atomic_pool(void *start, size_t size)
 506{
 507	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
 508}
 509
 510static int __free_from_pool(void *start, size_t size)
 511{
 512	if (!__in_atomic_pool(start, size))
 513		return 0;
 514
 515	gen_pool_free(atomic_pool, (unsigned long)start, size);
 516
 517	return 1;
 518}
 519
 520static void *__alloc_from_contiguous(struct device *dev, size_t size,
 521				     pgprot_t prot, struct page **ret_page,
 522				     const void *caller, bool want_vaddr,
 523				     int coherent_flag, gfp_t gfp)
 524{
 525	unsigned long order = get_order(size);
 526	size_t count = size >> PAGE_SHIFT;
 527	struct page *page;
 528	void *ptr = NULL;
 529
 530	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
 531	if (!page)
 532		return NULL;
 533
 534	__dma_clear_buffer(page, size, coherent_flag);
 535
 536	if (!want_vaddr)
 537		goto out;
 538
 539	if (PageHighMem(page)) {
 540		ptr = dma_common_contiguous_remap(page, size, prot, caller);
 541		if (!ptr) {
 542			dma_release_from_contiguous(dev, page, count);
 543			return NULL;
 544		}
 545	} else {
 546		__dma_remap(page, size, prot);
 547		ptr = page_address(page);
 548	}
 549
 550 out:
 551	*ret_page = page;
 552	return ptr;
 553}
 554
 555static void __free_from_contiguous(struct device *dev, struct page *page,
 556				   void *cpu_addr, size_t size, bool want_vaddr)
 557{
 558	if (want_vaddr) {
 559		if (PageHighMem(page))
 560			dma_common_free_remap(cpu_addr, size);
 561		else
 562			__dma_remap(page, size, PAGE_KERNEL);
 563	}
 564	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
 565}
 566
 567static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
 568{
 569	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
 570			pgprot_writecombine(prot) :
 571			pgprot_dmacoherent(prot);
 572	return prot;
 573}
 574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 575static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
 576				   struct page **ret_page)
 577{
 578	struct page *page;
 579	/* __alloc_simple_buffer is only called when the device is coherent */
 580	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
 581	if (!page)
 582		return NULL;
 583
 584	*ret_page = page;
 585	return page_address(page);
 586}
 587
 588static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
 589				    struct page **ret_page)
 590{
 591	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
 592				     ret_page);
 593}
 594
 595static void simple_allocator_free(struct arm_dma_free_args *args)
 596{
 597	__dma_free_buffer(args->page, args->size);
 598}
 599
 600static struct arm_dma_allocator simple_allocator = {
 601	.alloc = simple_allocator_alloc,
 602	.free = simple_allocator_free,
 603};
 604
 605static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
 606				 struct page **ret_page)
 607{
 608	return __alloc_from_contiguous(args->dev, args->size, args->prot,
 609				       ret_page, args->caller,
 610				       args->want_vaddr, args->coherent_flag,
 611				       args->gfp);
 612}
 613
 614static void cma_allocator_free(struct arm_dma_free_args *args)
 615{
 616	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
 617			       args->size, args->want_vaddr);
 618}
 619
 620static struct arm_dma_allocator cma_allocator = {
 621	.alloc = cma_allocator_alloc,
 622	.free = cma_allocator_free,
 623};
 624
 625static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
 626				  struct page **ret_page)
 627{
 628	return __alloc_from_pool(args->size, ret_page);
 629}
 630
 631static void pool_allocator_free(struct arm_dma_free_args *args)
 632{
 633	__free_from_pool(args->cpu_addr, args->size);
 634}
 635
 636static struct arm_dma_allocator pool_allocator = {
 637	.alloc = pool_allocator_alloc,
 638	.free = pool_allocator_free,
 639};
 640
 641static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
 642				   struct page **ret_page)
 643{
 644	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
 645				    args->prot, ret_page, args->caller,
 646				    args->want_vaddr);
 647}
 648
 649static void remap_allocator_free(struct arm_dma_free_args *args)
 650{
 651	if (args->want_vaddr)
 652		dma_common_free_remap(args->cpu_addr, args->size);
 653
 654	__dma_free_buffer(args->page, args->size);
 655}
 656
 657static struct arm_dma_allocator remap_allocator = {
 658	.alloc = remap_allocator_alloc,
 659	.free = remap_allocator_free,
 660};
 661
 662static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 663			 gfp_t gfp, pgprot_t prot, bool is_coherent,
 664			 unsigned long attrs, const void *caller)
 665{
 666	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 667	struct page *page = NULL;
 668	void *addr;
 669	bool allowblock, cma;
 670	struct arm_dma_buffer *buf;
 671	struct arm_dma_alloc_args args = {
 672		.dev = dev,
 673		.size = PAGE_ALIGN(size),
 674		.gfp = gfp,
 675		.prot = prot,
 676		.caller = caller,
 677		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 678		.coherent_flag = is_coherent ? COHERENT : NORMAL,
 679	};
 680
 681#ifdef CONFIG_DMA_API_DEBUG
 682	u64 limit = (mask + 1) & ~mask;
 683	if (limit && size >= limit) {
 684		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
 685			size, mask);
 686		return NULL;
 687	}
 688#endif
 689
 
 
 
 690	buf = kzalloc(sizeof(*buf),
 691		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
 692	if (!buf)
 693		return NULL;
 694
 695	if (mask < 0xffffffffULL)
 696		gfp |= GFP_DMA;
 697
 698	/*
 699	 * Following is a work-around (a.k.a. hack) to prevent pages
 700	 * with __GFP_COMP being passed to split_page() which cannot
 701	 * handle them.  The real problem is that this flag probably
 702	 * should be 0 on ARM as it is not supported on this
 703	 * platform; see CONFIG_HUGETLBFS.
 704	 */
 705	gfp &= ~(__GFP_COMP);
 706	args.gfp = gfp;
 707
 708	*handle = DMA_MAPPING_ERROR;
 709	allowblock = gfpflags_allow_blocking(gfp);
 710	cma = allowblock ? dev_get_cma_area(dev) : false;
 711
 712	if (cma)
 713		buf->allocator = &cma_allocator;
 714	else if (is_coherent)
 715		buf->allocator = &simple_allocator;
 716	else if (allowblock)
 717		buf->allocator = &remap_allocator;
 718	else
 719		buf->allocator = &pool_allocator;
 720
 721	addr = buf->allocator->alloc(&args, &page);
 722
 723	if (page) {
 724		unsigned long flags;
 725
 726		*handle = pfn_to_dma(dev, page_to_pfn(page));
 727		buf->virt = args.want_vaddr ? addr : page;
 728
 729		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
 730		list_add(&buf->list, &arm_dma_bufs);
 731		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
 732	} else {
 733		kfree(buf);
 734	}
 735
 736	return args.want_vaddr ? addr : page;
 737}
 738
 739/*
 740 * Allocate DMA-coherent memory space and return both the kernel remapped
 741 * virtual and bus address for that space.
 742 */
 743void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
 744		    gfp_t gfp, unsigned long attrs)
 745{
 746	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
 747
 748	return __dma_alloc(dev, size, handle, gfp, prot, false,
 749			   attrs, __builtin_return_address(0));
 750}
 751
 752static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
 753	dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
 754{
 755	return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
 756			   attrs, __builtin_return_address(0));
 757}
 758
 759static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 760		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 761		 unsigned long attrs)
 762{
 763	int ret = -ENXIO;
 764	unsigned long nr_vma_pages = vma_pages(vma);
 
 765	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
 766	unsigned long pfn = dma_to_pfn(dev, dma_addr);
 767	unsigned long off = vma->vm_pgoff;
 768
 769	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
 770		return ret;
 771
 772	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
 773		ret = remap_pfn_range(vma, vma->vm_start,
 774				      pfn + off,
 775				      vma->vm_end - vma->vm_start,
 776				      vma->vm_page_prot);
 777	}
 
 778
 779	return ret;
 780}
 781
 782/*
 783 * Create userspace mapping for the DMA-coherent memory.
 784 */
 785static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 786		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 787		 unsigned long attrs)
 788{
 789	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 790}
 791
 792int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 793		 void *cpu_addr, dma_addr_t dma_addr, size_t size,
 794		 unsigned long attrs)
 795{
 
 796	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 
 797	return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
 798}
 799
 800/*
 801 * Free a buffer as defined by the above mapping.
 802 */
 803static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 804			   dma_addr_t handle, unsigned long attrs,
 805			   bool is_coherent)
 806{
 807	struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
 808	struct arm_dma_buffer *buf;
 809	struct arm_dma_free_args args = {
 810		.dev = dev,
 811		.size = PAGE_ALIGN(size),
 812		.cpu_addr = cpu_addr,
 813		.page = page,
 814		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
 815	};
 816
 817	buf = arm_dma_buffer_find(cpu_addr);
 818	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
 819		return;
 820
 821	buf->allocator->free(&args);
 822	kfree(buf);
 823}
 824
 825void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
 826		  dma_addr_t handle, unsigned long attrs)
 827{
 828	__arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
 829}
 830
 831static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
 832				  dma_addr_t handle, unsigned long attrs)
 833{
 834	__arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
 835}
 836
 837int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
 838		 void *cpu_addr, dma_addr_t handle, size_t size,
 839		 unsigned long attrs)
 840{
 841	unsigned long pfn = dma_to_pfn(dev, handle);
 842	struct page *page;
 843	int ret;
 844
 845	/* If the PFN is not valid, we do not have a struct page */
 846	if (!pfn_valid(pfn))
 847		return -ENXIO;
 848
 849	page = pfn_to_page(pfn);
 850
 851	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
 852	if (unlikely(ret))
 853		return ret;
 854
 855	sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
 856	return 0;
 857}
 858
 859static void dma_cache_maint_page(struct page *page, unsigned long offset,
 860	size_t size, enum dma_data_direction dir,
 861	void (*op)(const void *, size_t, int))
 862{
 863	unsigned long pfn;
 864	size_t left = size;
 865
 866	pfn = page_to_pfn(page) + offset / PAGE_SIZE;
 867	offset %= PAGE_SIZE;
 868
 869	/*
 870	 * A single sg entry may refer to multiple physically contiguous
 871	 * pages.  But we still need to process highmem pages individually.
 872	 * If highmem is not configured then the bulk of this loop gets
 873	 * optimized out.
 874	 */
 875	do {
 876		size_t len = left;
 877		void *vaddr;
 878
 879		page = pfn_to_page(pfn);
 880
 881		if (PageHighMem(page)) {
 882			if (len + offset > PAGE_SIZE)
 883				len = PAGE_SIZE - offset;
 884
 885			if (cache_is_vipt_nonaliasing()) {
 886				vaddr = kmap_atomic(page);
 887				op(vaddr + offset, len, dir);
 888				kunmap_atomic(vaddr);
 889			} else {
 890				vaddr = kmap_high_get(page);
 891				if (vaddr) {
 892					op(vaddr + offset, len, dir);
 893					kunmap_high(page);
 894				}
 895			}
 896		} else {
 897			vaddr = page_address(page) + offset;
 898			op(vaddr, len, dir);
 899		}
 900		offset = 0;
 901		pfn++;
 902		left -= len;
 903	} while (left);
 904}
 905
 906/*
 907 * Make an area consistent for devices.
 908 * Note: Drivers should NOT use this function directly, as it will break
 909 * platforms with CONFIG_DMABOUNCE.
 910 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
 911 */
 912static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
 913	size_t size, enum dma_data_direction dir)
 914{
 915	phys_addr_t paddr;
 916
 917	dma_cache_maint_page(page, off, size, dir, dmac_map_area);
 918
 919	paddr = page_to_phys(page) + off;
 920	if (dir == DMA_FROM_DEVICE) {
 921		outer_inv_range(paddr, paddr + size);
 922	} else {
 923		outer_clean_range(paddr, paddr + size);
 924	}
 925	/* FIXME: non-speculating: flush on bidirectional mappings? */
 926}
 927
 928static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
 929	size_t size, enum dma_data_direction dir)
 930{
 931	phys_addr_t paddr = page_to_phys(page) + off;
 932
 933	/* FIXME: non-speculating: not required */
 934	/* in any case, don't bother invalidating if DMA to device */
 935	if (dir != DMA_TO_DEVICE) {
 936		outer_inv_range(paddr, paddr + size);
 937
 938		dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
 939	}
 940
 941	/*
 942	 * Mark the D-cache clean for these pages to avoid extra flushing.
 943	 */
 944	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
 945		unsigned long pfn;
 946		size_t left = size;
 947
 948		pfn = page_to_pfn(page) + off / PAGE_SIZE;
 949		off %= PAGE_SIZE;
 950		if (off) {
 951			pfn++;
 952			left -= PAGE_SIZE - off;
 953		}
 954		while (left >= PAGE_SIZE) {
 955			page = pfn_to_page(pfn++);
 956			set_bit(PG_dcache_clean, &page->flags);
 957			left -= PAGE_SIZE;
 958		}
 959	}
 960}
 961
 962/**
 963 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
 964 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
 965 * @sg: list of buffers
 966 * @nents: number of buffers to map
 967 * @dir: DMA transfer direction
 968 *
 969 * Map a set of buffers described by scatterlist in streaming mode for DMA.
 970 * This is the scatter-gather version of the dma_map_single interface.
 971 * Here the scatter gather list elements are each tagged with the
 972 * appropriate dma address and length.  They are obtained via
 973 * sg_dma_{address,length}.
 974 *
 975 * Device ownership issues as mentioned for dma_map_single are the same
 976 * here.
 977 */
 978int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
 979		enum dma_data_direction dir, unsigned long attrs)
 980{
 981	const struct dma_map_ops *ops = get_dma_ops(dev);
 982	struct scatterlist *s;
 983	int i, j;
 984
 985	for_each_sg(sg, s, nents, i) {
 986#ifdef CONFIG_NEED_SG_DMA_LENGTH
 987		s->dma_length = s->length;
 988#endif
 989		s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
 990						s->length, dir, attrs);
 991		if (dma_mapping_error(dev, s->dma_address))
 992			goto bad_mapping;
 993	}
 994	return nents;
 995
 996 bad_mapping:
 997	for_each_sg(sg, s, i, j)
 998		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
 999	return 0;
1000}
1001
1002/**
1003 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1004 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1005 * @sg: list of buffers
1006 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1007 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1008 *
1009 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1010 * rules concerning calls here are the same as for dma_unmap_single().
1011 */
1012void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1013		enum dma_data_direction dir, unsigned long attrs)
1014{
1015	const struct dma_map_ops *ops = get_dma_ops(dev);
1016	struct scatterlist *s;
1017
1018	int i;
1019
1020	for_each_sg(sg, s, nents, i)
1021		ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1022}
1023
1024/**
1025 * arm_dma_sync_sg_for_cpu
1026 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1027 * @sg: list of buffers
1028 * @nents: number of buffers to map (returned from dma_map_sg)
1029 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1030 */
1031void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1032			int nents, enum dma_data_direction dir)
1033{
1034	const struct dma_map_ops *ops = get_dma_ops(dev);
1035	struct scatterlist *s;
1036	int i;
1037
1038	for_each_sg(sg, s, nents, i)
1039		ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1040					 dir);
1041}
1042
1043/**
1044 * arm_dma_sync_sg_for_device
1045 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1046 * @sg: list of buffers
1047 * @nents: number of buffers to map (returned from dma_map_sg)
1048 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1049 */
1050void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1051			int nents, enum dma_data_direction dir)
1052{
1053	const struct dma_map_ops *ops = get_dma_ops(dev);
1054	struct scatterlist *s;
1055	int i;
1056
1057	for_each_sg(sg, s, nents, i)
1058		ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1059					    dir);
1060}
1061
1062static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
 
 
 
 
 
 
1063{
1064	/*
1065	 * When CONFIG_ARM_LPAE is set, physical address can extend above
1066	 * 32-bits, which then can't be addressed by devices that only support
1067	 * 32-bit DMA.
1068	 * Use the generic dma-direct / swiotlb ops code in that case, as that
1069	 * handles bounce buffering for us.
1070	 */
1071	if (IS_ENABLED(CONFIG_ARM_LPAE))
1072		return NULL;
1073	return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1074}
 
 
 
 
 
 
1075
1076#ifdef CONFIG_ARM_DMA_USE_IOMMU
1077
1078static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1079{
1080	int prot = 0;
1081
1082	if (attrs & DMA_ATTR_PRIVILEGED)
1083		prot |= IOMMU_PRIV;
1084
1085	switch (dir) {
1086	case DMA_BIDIRECTIONAL:
1087		return prot | IOMMU_READ | IOMMU_WRITE;
1088	case DMA_TO_DEVICE:
1089		return prot | IOMMU_READ;
1090	case DMA_FROM_DEVICE:
1091		return prot | IOMMU_WRITE;
1092	default:
1093		return prot;
1094	}
1095}
 
 
 
1096
1097/* IOMMU */
1098
1099static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1100
1101static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1102				      size_t size)
1103{
1104	unsigned int order = get_order(size);
1105	unsigned int align = 0;
1106	unsigned int count, start;
1107	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1108	unsigned long flags;
1109	dma_addr_t iova;
1110	int i;
1111
1112	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1113		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1114
1115	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1116	align = (1 << order) - 1;
1117
1118	spin_lock_irqsave(&mapping->lock, flags);
1119	for (i = 0; i < mapping->nr_bitmaps; i++) {
1120		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1121				mapping->bits, 0, count, align);
1122
1123		if (start > mapping->bits)
1124			continue;
1125
1126		bitmap_set(mapping->bitmaps[i], start, count);
1127		break;
1128	}
1129
1130	/*
1131	 * No unused range found. Try to extend the existing mapping
1132	 * and perform a second attempt to reserve an IO virtual
1133	 * address range of size bytes.
1134	 */
1135	if (i == mapping->nr_bitmaps) {
1136		if (extend_iommu_mapping(mapping)) {
1137			spin_unlock_irqrestore(&mapping->lock, flags);
1138			return DMA_MAPPING_ERROR;
1139		}
1140
1141		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1142				mapping->bits, 0, count, align);
1143
1144		if (start > mapping->bits) {
1145			spin_unlock_irqrestore(&mapping->lock, flags);
1146			return DMA_MAPPING_ERROR;
1147		}
1148
1149		bitmap_set(mapping->bitmaps[i], start, count);
1150	}
1151	spin_unlock_irqrestore(&mapping->lock, flags);
1152
1153	iova = mapping->base + (mapping_size * i);
1154	iova += start << PAGE_SHIFT;
1155
1156	return iova;
1157}
1158
1159static inline void __free_iova(struct dma_iommu_mapping *mapping,
1160			       dma_addr_t addr, size_t size)
1161{
1162	unsigned int start, count;
1163	size_t mapping_size = mapping->bits << PAGE_SHIFT;
1164	unsigned long flags;
1165	dma_addr_t bitmap_base;
1166	u32 bitmap_index;
1167
1168	if (!size)
1169		return;
1170
1171	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1172	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1173
1174	bitmap_base = mapping->base + mapping_size * bitmap_index;
1175
1176	start = (addr - bitmap_base) >>	PAGE_SHIFT;
1177
1178	if (addr + size > bitmap_base + mapping_size) {
1179		/*
1180		 * The address range to be freed reaches into the iova
1181		 * range of the next bitmap. This should not happen as
1182		 * we don't allow this in __alloc_iova (at the
1183		 * moment).
1184		 */
1185		BUG();
1186	} else
1187		count = size >> PAGE_SHIFT;
1188
1189	spin_lock_irqsave(&mapping->lock, flags);
1190	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1191	spin_unlock_irqrestore(&mapping->lock, flags);
1192}
1193
1194/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1195static const int iommu_order_array[] = { 9, 8, 4, 0 };
1196
1197static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1198					  gfp_t gfp, unsigned long attrs,
1199					  int coherent_flag)
1200{
1201	struct page **pages;
1202	int count = size >> PAGE_SHIFT;
1203	int array_size = count * sizeof(struct page *);
1204	int i = 0;
1205	int order_idx = 0;
1206
1207	if (array_size <= PAGE_SIZE)
1208		pages = kzalloc(array_size, GFP_KERNEL);
1209	else
1210		pages = vzalloc(array_size);
1211	if (!pages)
1212		return NULL;
1213
1214	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1215	{
1216		unsigned long order = get_order(size);
1217		struct page *page;
1218
1219		page = dma_alloc_from_contiguous(dev, count, order,
1220						 gfp & __GFP_NOWARN);
1221		if (!page)
1222			goto error;
1223
1224		__dma_clear_buffer(page, size, coherent_flag);
1225
1226		for (i = 0; i < count; i++)
1227			pages[i] = page + i;
1228
1229		return pages;
1230	}
1231
1232	/* Go straight to 4K chunks if caller says it's OK. */
1233	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1234		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1235
1236	/*
1237	 * IOMMU can map any pages, so himem can also be used here
1238	 */
1239	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1240
1241	while (count) {
1242		int j, order;
1243
1244		order = iommu_order_array[order_idx];
1245
1246		/* Drop down when we get small */
1247		if (__fls(count) < order) {
1248			order_idx++;
1249			continue;
1250		}
1251
1252		if (order) {
1253			/* See if it's easy to allocate a high-order chunk */
1254			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1255
1256			/* Go down a notch at first sign of pressure */
1257			if (!pages[i]) {
1258				order_idx++;
1259				continue;
1260			}
1261		} else {
1262			pages[i] = alloc_pages(gfp, 0);
1263			if (!pages[i])
1264				goto error;
1265		}
1266
1267		if (order) {
1268			split_page(pages[i], order);
1269			j = 1 << order;
1270			while (--j)
1271				pages[i + j] = pages[i] + j;
1272		}
1273
1274		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1275		i += 1 << order;
1276		count -= 1 << order;
1277	}
1278
1279	return pages;
1280error:
1281	while (i--)
1282		if (pages[i])
1283			__free_pages(pages[i], 0);
1284	kvfree(pages);
1285	return NULL;
1286}
1287
1288static int __iommu_free_buffer(struct device *dev, struct page **pages,
1289			       size_t size, unsigned long attrs)
1290{
1291	int count = size >> PAGE_SHIFT;
1292	int i;
1293
1294	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1295		dma_release_from_contiguous(dev, pages[0], count);
1296	} else {
1297		for (i = 0; i < count; i++)
1298			if (pages[i])
1299				__free_pages(pages[i], 0);
1300	}
1301
1302	kvfree(pages);
1303	return 0;
1304}
1305
1306/*
 
 
 
 
 
 
 
 
 
 
 
1307 * Create a mapping in device IO address space for specified pages
1308 */
1309static dma_addr_t
1310__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1311		       unsigned long attrs)
1312{
1313	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1314	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1315	dma_addr_t dma_addr, iova;
1316	int i;
1317
1318	dma_addr = __alloc_iova(mapping, size);
1319	if (dma_addr == DMA_MAPPING_ERROR)
1320		return dma_addr;
1321
1322	iova = dma_addr;
1323	for (i = 0; i < count; ) {
1324		int ret;
1325
1326		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1327		phys_addr_t phys = page_to_phys(pages[i]);
1328		unsigned int len, j;
1329
1330		for (j = i + 1; j < count; j++, next_pfn++)
1331			if (page_to_pfn(pages[j]) != next_pfn)
1332				break;
1333
1334		len = (j - i) << PAGE_SHIFT;
1335		ret = iommu_map(mapping->domain, iova, phys, len,
1336				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1337		if (ret < 0)
1338			goto fail;
1339		iova += len;
1340		i = j;
1341	}
1342	return dma_addr;
1343fail:
1344	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1345	__free_iova(mapping, dma_addr, size);
1346	return DMA_MAPPING_ERROR;
1347}
1348
1349static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1350{
1351	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1352
1353	/*
1354	 * add optional in-page offset from iova to size and align
1355	 * result to page size
1356	 */
1357	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1358	iova &= PAGE_MASK;
1359
1360	iommu_unmap(mapping->domain, iova, size);
1361	__free_iova(mapping, iova, size);
1362	return 0;
1363}
1364
1365static struct page **__atomic_get_pages(void *addr)
1366{
1367	struct page *page;
1368	phys_addr_t phys;
1369
1370	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1371	page = phys_to_page(phys);
1372
1373	return (struct page **)page;
1374}
1375
1376static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1377{
 
 
1378	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1379		return __atomic_get_pages(cpu_addr);
1380
1381	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1382		return cpu_addr;
1383
1384	return dma_common_find_pages(cpu_addr);
 
 
 
1385}
1386
1387static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1388				  dma_addr_t *handle, int coherent_flag,
1389				  unsigned long attrs)
1390{
1391	struct page *page;
1392	void *addr;
1393
1394	if (coherent_flag  == COHERENT)
1395		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1396	else
1397		addr = __alloc_from_pool(size, &page);
1398	if (!addr)
1399		return NULL;
1400
1401	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1402	if (*handle == DMA_MAPPING_ERROR)
1403		goto err_mapping;
1404
1405	return addr;
1406
1407err_mapping:
1408	__free_from_pool(addr, size);
1409	return NULL;
1410}
1411
1412static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1413			dma_addr_t handle, size_t size, int coherent_flag)
1414{
1415	__iommu_remove_mapping(dev, handle, size);
1416	if (coherent_flag == COHERENT)
1417		__dma_free_buffer(virt_to_page(cpu_addr), size);
1418	else
1419		__free_from_pool(cpu_addr, size);
1420}
1421
1422static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1423	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1424	    int coherent_flag)
1425{
1426	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1427	struct page **pages;
1428	void *addr = NULL;
1429
1430	*handle = DMA_MAPPING_ERROR;
1431	size = PAGE_ALIGN(size);
1432
1433	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1434		return __iommu_alloc_simple(dev, size, gfp, handle,
1435					    coherent_flag, attrs);
1436
1437	/*
1438	 * Following is a work-around (a.k.a. hack) to prevent pages
1439	 * with __GFP_COMP being passed to split_page() which cannot
1440	 * handle them.  The real problem is that this flag probably
1441	 * should be 0 on ARM as it is not supported on this
1442	 * platform; see CONFIG_HUGETLBFS.
1443	 */
1444	gfp &= ~(__GFP_COMP);
1445
1446	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1447	if (!pages)
1448		return NULL;
1449
1450	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1451	if (*handle == DMA_MAPPING_ERROR)
1452		goto err_buffer;
1453
1454	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1455		return pages;
1456
1457	addr = dma_common_pages_remap(pages, size, prot,
1458				   __builtin_return_address(0));
1459	if (!addr)
1460		goto err_mapping;
1461
1462	return addr;
1463
1464err_mapping:
1465	__iommu_remove_mapping(dev, *handle, size);
1466err_buffer:
1467	__iommu_free_buffer(dev, pages, size, attrs);
1468	return NULL;
1469}
1470
1471static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1472	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1473{
1474	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1475}
1476
1477static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1478		    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1479{
1480	return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1481}
1482
1483static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1484		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1485		    unsigned long attrs)
1486{
 
 
1487	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1488	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1489	int err;
 
 
1490
1491	if (!pages)
1492		return -ENXIO;
1493
1494	if (vma->vm_pgoff >= nr_pages)
1495		return -ENXIO;
1496
1497	err = vm_map_pages(vma, pages, nr_pages);
1498	if (err)
1499		pr_err("Remapping memory failed: %d\n", err);
1500
1501	return err;
1502}
1503static int arm_iommu_mmap_attrs(struct device *dev,
1504		struct vm_area_struct *vma, void *cpu_addr,
1505		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1506{
1507	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
 
 
1508
1509	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1510}
1511
1512static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1513		struct vm_area_struct *vma, void *cpu_addr,
1514		dma_addr_t dma_addr, size_t size, unsigned long attrs)
1515{
1516	return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1517}
1518
1519/*
1520 * free a page as defined by the above mapping.
1521 * Must not be called with IRQs disabled.
1522 */
1523static void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1524	dma_addr_t handle, unsigned long attrs, int coherent_flag)
1525{
1526	struct page **pages;
1527	size = PAGE_ALIGN(size);
1528
1529	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1530		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1531		return;
1532	}
1533
1534	pages = __iommu_get_pages(cpu_addr, attrs);
1535	if (!pages) {
1536		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1537		return;
1538	}
1539
1540	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1541		dma_common_free_remap(cpu_addr, size);
 
 
1542
1543	__iommu_remove_mapping(dev, handle, size);
1544	__iommu_free_buffer(dev, pages, size, attrs);
1545}
1546
1547static void arm_iommu_free_attrs(struct device *dev, size_t size,
1548				 void *cpu_addr, dma_addr_t handle,
1549				 unsigned long attrs)
1550{
1551	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1552}
1553
1554static void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1555		    void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1556{
1557	__arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1558}
1559
1560static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1561				 void *cpu_addr, dma_addr_t dma_addr,
1562				 size_t size, unsigned long attrs)
1563{
1564	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1565	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1566
1567	if (!pages)
1568		return -ENXIO;
1569
1570	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1571					 GFP_KERNEL);
1572}
1573
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1574/*
1575 * Map a part of the scatter-gather list into contiguous io address space
1576 */
1577static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1578			  size_t size, dma_addr_t *handle,
1579			  enum dma_data_direction dir, unsigned long attrs,
1580			  bool is_coherent)
1581{
1582	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1583	dma_addr_t iova, iova_base;
1584	int ret = 0;
1585	unsigned int count;
1586	struct scatterlist *s;
1587	int prot;
1588
1589	size = PAGE_ALIGN(size);
1590	*handle = DMA_MAPPING_ERROR;
1591
1592	iova_base = iova = __alloc_iova(mapping, size);
1593	if (iova == DMA_MAPPING_ERROR)
1594		return -ENOMEM;
1595
1596	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1597		phys_addr_t phys = page_to_phys(sg_page(s));
1598		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1599
1600		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 
1601			__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1602
1603		prot = __dma_info_to_prot(dir, attrs);
1604
1605		ret = iommu_map(mapping->domain, iova, phys, len, prot);
1606		if (ret < 0)
1607			goto fail;
1608		count += len >> PAGE_SHIFT;
1609		iova += len;
1610	}
1611	*handle = iova_base;
1612
1613	return 0;
1614fail:
1615	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1616	__free_iova(mapping, iova_base, size);
1617	return ret;
1618}
1619
1620static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1621		     enum dma_data_direction dir, unsigned long attrs,
1622		     bool is_coherent)
1623{
1624	struct scatterlist *s = sg, *dma = sg, *start = sg;
1625	int i, count = 0;
1626	unsigned int offset = s->offset;
1627	unsigned int size = s->offset + s->length;
1628	unsigned int max = dma_get_max_seg_size(dev);
1629
1630	for (i = 1; i < nents; i++) {
1631		s = sg_next(s);
1632
1633		s->dma_address = DMA_MAPPING_ERROR;
1634		s->dma_length = 0;
1635
1636		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1637			if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1638			    dir, attrs, is_coherent) < 0)
1639				goto bad_mapping;
1640
1641			dma->dma_address += offset;
1642			dma->dma_length = size - offset;
1643
1644			size = offset = s->offset;
1645			start = s;
1646			dma = sg_next(dma);
1647			count += 1;
1648		}
1649		size += s->length;
1650	}
1651	if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1652		is_coherent) < 0)
1653		goto bad_mapping;
1654
1655	dma->dma_address += offset;
1656	dma->dma_length = size - offset;
1657
1658	return count+1;
1659
1660bad_mapping:
1661	for_each_sg(sg, s, count, i)
1662		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1663	return 0;
1664}
1665
1666/**
1667 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1668 * @dev: valid struct device pointer
1669 * @sg: list of buffers
1670 * @nents: number of buffers to map
1671 * @dir: DMA transfer direction
1672 *
1673 * Map a set of i/o coherent buffers described by scatterlist in streaming
1674 * mode for DMA. The scatter gather list elements are merged together (if
1675 * possible) and tagged with the appropriate dma address and length. They are
1676 * obtained via sg_dma_{address,length}.
1677 */
1678static int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1679		int nents, enum dma_data_direction dir, unsigned long attrs)
1680{
1681	return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1682}
1683
1684/**
1685 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1686 * @dev: valid struct device pointer
1687 * @sg: list of buffers
1688 * @nents: number of buffers to map
1689 * @dir: DMA transfer direction
1690 *
1691 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1692 * The scatter gather list elements are merged together (if possible) and
1693 * tagged with the appropriate dma address and length. They are obtained via
1694 * sg_dma_{address,length}.
1695 */
1696static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1697		int nents, enum dma_data_direction dir, unsigned long attrs)
1698{
1699	return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1700}
1701
1702static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1703		int nents, enum dma_data_direction dir,
1704		unsigned long attrs, bool is_coherent)
1705{
1706	struct scatterlist *s;
1707	int i;
1708
1709	for_each_sg(sg, s, nents, i) {
1710		if (sg_dma_len(s))
1711			__iommu_remove_mapping(dev, sg_dma_address(s),
1712					       sg_dma_len(s));
1713		if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
 
1714			__dma_page_dev_to_cpu(sg_page(s), s->offset,
1715					      s->length, dir);
1716	}
1717}
1718
1719/**
1720 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1721 * @dev: valid struct device pointer
1722 * @sg: list of buffers
1723 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1724 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1725 *
1726 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1727 * rules concerning calls here are the same as for dma_unmap_single().
1728 */
1729static void arm_coherent_iommu_unmap_sg(struct device *dev,
1730		struct scatterlist *sg, int nents, enum dma_data_direction dir,
1731		unsigned long attrs)
1732{
1733	__iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1734}
1735
1736/**
1737 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1738 * @dev: valid struct device pointer
1739 * @sg: list of buffers
1740 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1741 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1742 *
1743 * Unmap a set of streaming mode DMA translations.  Again, CPU access
1744 * rules concerning calls here are the same as for dma_unmap_single().
1745 */
1746static void arm_iommu_unmap_sg(struct device *dev,
1747			       struct scatterlist *sg, int nents,
1748			       enum dma_data_direction dir,
1749			       unsigned long attrs)
1750{
1751	__iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1752}
1753
1754/**
1755 * arm_iommu_sync_sg_for_cpu
1756 * @dev: valid struct device pointer
1757 * @sg: list of buffers
1758 * @nents: number of buffers to map (returned from dma_map_sg)
1759 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1760 */
1761static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1762			struct scatterlist *sg,
1763			int nents, enum dma_data_direction dir)
1764{
1765	struct scatterlist *s;
1766	int i;
1767
1768	for_each_sg(sg, s, nents, i)
1769		__dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1770
1771}
1772
1773/**
1774 * arm_iommu_sync_sg_for_device
1775 * @dev: valid struct device pointer
1776 * @sg: list of buffers
1777 * @nents: number of buffers to map (returned from dma_map_sg)
1778 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1779 */
1780static void arm_iommu_sync_sg_for_device(struct device *dev,
1781			struct scatterlist *sg,
1782			int nents, enum dma_data_direction dir)
1783{
1784	struct scatterlist *s;
1785	int i;
1786
1787	for_each_sg(sg, s, nents, i)
1788		__dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1789}
1790
1791
1792/**
1793 * arm_coherent_iommu_map_page
1794 * @dev: valid struct device pointer
1795 * @page: page that buffer resides in
1796 * @offset: offset into page for start of buffer
1797 * @size: size of buffer to map
1798 * @dir: DMA transfer direction
1799 *
1800 * Coherent IOMMU aware version of arm_dma_map_page()
1801 */
1802static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1803	     unsigned long offset, size_t size, enum dma_data_direction dir,
1804	     unsigned long attrs)
1805{
1806	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1807	dma_addr_t dma_addr;
1808	int ret, prot, len = PAGE_ALIGN(size + offset);
1809
1810	dma_addr = __alloc_iova(mapping, len);
1811	if (dma_addr == DMA_MAPPING_ERROR)
1812		return dma_addr;
1813
1814	prot = __dma_info_to_prot(dir, attrs);
1815
1816	ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1817	if (ret < 0)
1818		goto fail;
1819
1820	return dma_addr + offset;
1821fail:
1822	__free_iova(mapping, dma_addr, len);
1823	return DMA_MAPPING_ERROR;
1824}
1825
1826/**
1827 * arm_iommu_map_page
1828 * @dev: valid struct device pointer
1829 * @page: page that buffer resides in
1830 * @offset: offset into page for start of buffer
1831 * @size: size of buffer to map
1832 * @dir: DMA transfer direction
1833 *
1834 * IOMMU aware version of arm_dma_map_page()
1835 */
1836static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1837	     unsigned long offset, size_t size, enum dma_data_direction dir,
1838	     unsigned long attrs)
1839{
1840	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1841		__dma_page_cpu_to_dev(page, offset, size, dir);
1842
1843	return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1844}
1845
1846/**
1847 * arm_coherent_iommu_unmap_page
1848 * @dev: valid struct device pointer
1849 * @handle: DMA address of buffer
1850 * @size: size of buffer (same as passed to dma_map_page)
1851 * @dir: DMA transfer direction (same as passed to dma_map_page)
1852 *
1853 * Coherent IOMMU aware version of arm_dma_unmap_page()
1854 */
1855static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1856		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
1857{
1858	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1859	dma_addr_t iova = handle & PAGE_MASK;
1860	int offset = handle & ~PAGE_MASK;
1861	int len = PAGE_ALIGN(size + offset);
1862
1863	if (!iova)
1864		return;
1865
1866	iommu_unmap(mapping->domain, iova, len);
1867	__free_iova(mapping, iova, len);
1868}
1869
1870/**
1871 * arm_iommu_unmap_page
1872 * @dev: valid struct device pointer
1873 * @handle: DMA address of buffer
1874 * @size: size of buffer (same as passed to dma_map_page)
1875 * @dir: DMA transfer direction (same as passed to dma_map_page)
1876 *
1877 * IOMMU aware version of arm_dma_unmap_page()
1878 */
1879static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1880		size_t size, enum dma_data_direction dir, unsigned long attrs)
 
1881{
1882	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1883	dma_addr_t iova = handle & PAGE_MASK;
1884	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1885	int offset = handle & ~PAGE_MASK;
1886	int len = PAGE_ALIGN(size + offset);
1887
1888	if (!iova)
1889		return;
1890
1891	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1892		__dma_page_dev_to_cpu(page, offset, size, dir);
1893
1894	iommu_unmap(mapping->domain, iova, len);
1895	__free_iova(mapping, iova, len);
1896}
1897
1898/**
1899 * arm_iommu_map_resource - map a device resource for DMA
1900 * @dev: valid struct device pointer
1901 * @phys_addr: physical address of resource
1902 * @size: size of resource to map
1903 * @dir: DMA transfer direction
1904 */
1905static dma_addr_t arm_iommu_map_resource(struct device *dev,
1906		phys_addr_t phys_addr, size_t size,
1907		enum dma_data_direction dir, unsigned long attrs)
1908{
1909	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1910	dma_addr_t dma_addr;
1911	int ret, prot;
1912	phys_addr_t addr = phys_addr & PAGE_MASK;
1913	unsigned int offset = phys_addr & ~PAGE_MASK;
1914	size_t len = PAGE_ALIGN(size + offset);
1915
1916	dma_addr = __alloc_iova(mapping, len);
1917	if (dma_addr == DMA_MAPPING_ERROR)
1918		return dma_addr;
1919
1920	prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1921
1922	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1923	if (ret < 0)
1924		goto fail;
1925
1926	return dma_addr + offset;
1927fail:
1928	__free_iova(mapping, dma_addr, len);
1929	return DMA_MAPPING_ERROR;
1930}
1931
1932/**
1933 * arm_iommu_unmap_resource - unmap a device DMA resource
1934 * @dev: valid struct device pointer
1935 * @dma_handle: DMA address to resource
1936 * @size: size of resource to map
1937 * @dir: DMA transfer direction
1938 */
1939static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1940		size_t size, enum dma_data_direction dir,
1941		unsigned long attrs)
1942{
1943	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1944	dma_addr_t iova = dma_handle & PAGE_MASK;
1945	unsigned int offset = dma_handle & ~PAGE_MASK;
1946	size_t len = PAGE_ALIGN(size + offset);
1947
1948	if (!iova)
1949		return;
1950
1951	iommu_unmap(mapping->domain, iova, len);
1952	__free_iova(mapping, iova, len);
1953}
1954
1955static void arm_iommu_sync_single_for_cpu(struct device *dev,
1956		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1957{
1958	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1959	dma_addr_t iova = handle & PAGE_MASK;
1960	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1961	unsigned int offset = handle & ~PAGE_MASK;
1962
1963	if (!iova)
1964		return;
1965
1966	__dma_page_dev_to_cpu(page, offset, size, dir);
1967}
1968
1969static void arm_iommu_sync_single_for_device(struct device *dev,
1970		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1971{
1972	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1973	dma_addr_t iova = handle & PAGE_MASK;
1974	struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1975	unsigned int offset = handle & ~PAGE_MASK;
1976
1977	if (!iova)
1978		return;
1979
1980	__dma_page_cpu_to_dev(page, offset, size, dir);
1981}
1982
1983static const struct dma_map_ops iommu_ops = {
1984	.alloc		= arm_iommu_alloc_attrs,
1985	.free		= arm_iommu_free_attrs,
1986	.mmap		= arm_iommu_mmap_attrs,
1987	.get_sgtable	= arm_iommu_get_sgtable,
1988
1989	.map_page		= arm_iommu_map_page,
1990	.unmap_page		= arm_iommu_unmap_page,
1991	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1992	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1993
1994	.map_sg			= arm_iommu_map_sg,
1995	.unmap_sg		= arm_iommu_unmap_sg,
1996	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1997	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1998
1999	.map_resource		= arm_iommu_map_resource,
2000	.unmap_resource		= arm_iommu_unmap_resource,
2001
2002	.dma_supported		= arm_dma_supported,
2003};
2004
2005static const struct dma_map_ops iommu_coherent_ops = {
2006	.alloc		= arm_coherent_iommu_alloc_attrs,
2007	.free		= arm_coherent_iommu_free_attrs,
2008	.mmap		= arm_coherent_iommu_mmap_attrs,
2009	.get_sgtable	= arm_iommu_get_sgtable,
2010
2011	.map_page	= arm_coherent_iommu_map_page,
2012	.unmap_page	= arm_coherent_iommu_unmap_page,
2013
2014	.map_sg		= arm_coherent_iommu_map_sg,
2015	.unmap_sg	= arm_coherent_iommu_unmap_sg,
2016
2017	.map_resource	= arm_iommu_map_resource,
2018	.unmap_resource	= arm_iommu_unmap_resource,
2019
2020	.dma_supported		= arm_dma_supported,
2021};
2022
2023/**
2024 * arm_iommu_create_mapping
2025 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2026 * @base: start address of the valid IO address space
2027 * @size: maximum size of the valid IO address space
2028 *
2029 * Creates a mapping structure which holds information about used/unused
2030 * IO address ranges, which is required to perform memory allocation and
2031 * mapping with IOMMU aware functions.
2032 *
2033 * The client device need to be attached to the mapping with
2034 * arm_iommu_attach_device function.
2035 */
2036struct dma_iommu_mapping *
2037arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2038{
2039	unsigned int bits = size >> PAGE_SHIFT;
2040	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2041	struct dma_iommu_mapping *mapping;
2042	int extensions = 1;
2043	int err = -ENOMEM;
2044
2045	/* currently only 32-bit DMA address space is supported */
2046	if (size > DMA_BIT_MASK(32) + 1)
2047		return ERR_PTR(-ERANGE);
2048
2049	if (!bitmap_size)
2050		return ERR_PTR(-EINVAL);
2051
2052	if (bitmap_size > PAGE_SIZE) {
2053		extensions = bitmap_size / PAGE_SIZE;
2054		bitmap_size = PAGE_SIZE;
2055	}
2056
2057	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2058	if (!mapping)
2059		goto err;
2060
2061	mapping->bitmap_size = bitmap_size;
2062	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2063				   GFP_KERNEL);
2064	if (!mapping->bitmaps)
2065		goto err2;
2066
2067	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2068	if (!mapping->bitmaps[0])
2069		goto err3;
2070
2071	mapping->nr_bitmaps = 1;
2072	mapping->extensions = extensions;
2073	mapping->base = base;
2074	mapping->bits = BITS_PER_BYTE * bitmap_size;
2075
2076	spin_lock_init(&mapping->lock);
2077
2078	mapping->domain = iommu_domain_alloc(bus);
2079	if (!mapping->domain)
2080		goto err4;
2081
2082	kref_init(&mapping->kref);
2083	return mapping;
2084err4:
2085	kfree(mapping->bitmaps[0]);
2086err3:
2087	kfree(mapping->bitmaps);
2088err2:
2089	kfree(mapping);
2090err:
2091	return ERR_PTR(err);
2092}
2093EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2094
2095static void release_iommu_mapping(struct kref *kref)
2096{
2097	int i;
2098	struct dma_iommu_mapping *mapping =
2099		container_of(kref, struct dma_iommu_mapping, kref);
2100
2101	iommu_domain_free(mapping->domain);
2102	for (i = 0; i < mapping->nr_bitmaps; i++)
2103		kfree(mapping->bitmaps[i]);
2104	kfree(mapping->bitmaps);
2105	kfree(mapping);
2106}
2107
2108static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2109{
2110	int next_bitmap;
2111
2112	if (mapping->nr_bitmaps >= mapping->extensions)
2113		return -EINVAL;
2114
2115	next_bitmap = mapping->nr_bitmaps;
2116	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2117						GFP_ATOMIC);
2118	if (!mapping->bitmaps[next_bitmap])
2119		return -ENOMEM;
2120
2121	mapping->nr_bitmaps++;
2122
2123	return 0;
2124}
2125
2126void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2127{
2128	if (mapping)
2129		kref_put(&mapping->kref, release_iommu_mapping);
2130}
2131EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2132
2133static int __arm_iommu_attach_device(struct device *dev,
2134				     struct dma_iommu_mapping *mapping)
2135{
2136	int err;
2137
2138	err = iommu_attach_device(mapping->domain, dev);
2139	if (err)
2140		return err;
2141
2142	kref_get(&mapping->kref);
2143	to_dma_iommu_mapping(dev) = mapping;
2144
2145	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2146	return 0;
2147}
2148
2149/**
2150 * arm_iommu_attach_device
2151 * @dev: valid struct device pointer
2152 * @mapping: io address space mapping structure (returned from
2153 *	arm_iommu_create_mapping)
2154 *
2155 * Attaches specified io address space mapping to the provided device.
2156 * This replaces the dma operations (dma_map_ops pointer) with the
2157 * IOMMU aware version.
2158 *
2159 * More than one client might be attached to the same io address space
2160 * mapping.
2161 */
2162int arm_iommu_attach_device(struct device *dev,
2163			    struct dma_iommu_mapping *mapping)
2164{
2165	int err;
2166
2167	err = __arm_iommu_attach_device(dev, mapping);
2168	if (err)
2169		return err;
2170
2171	set_dma_ops(dev, &iommu_ops);
2172	return 0;
2173}
2174EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2175
2176/**
2177 * arm_iommu_detach_device
2178 * @dev: valid struct device pointer
2179 *
2180 * Detaches the provided device from a previously attached map.
2181 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2182 */
2183void arm_iommu_detach_device(struct device *dev)
2184{
2185	struct dma_iommu_mapping *mapping;
2186
2187	mapping = to_dma_iommu_mapping(dev);
2188	if (!mapping) {
2189		dev_warn(dev, "Not attached\n");
2190		return;
2191	}
2192
2193	iommu_detach_device(mapping->domain, dev);
2194	kref_put(&mapping->kref, release_iommu_mapping);
2195	to_dma_iommu_mapping(dev) = NULL;
2196	set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2197
2198	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2199}
 
 
 
 
 
 
 
 
 
 
 
 
 
2200EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2201
2202static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2203{
2204	return coherent ? &iommu_coherent_ops : &iommu_ops;
2205}
2206
2207static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2208				    const struct iommu_ops *iommu)
2209{
2210	struct dma_iommu_mapping *mapping;
2211
2212	if (!iommu)
2213		return false;
2214
2215	mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2216	if (IS_ERR(mapping)) {
2217		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2218				size, dev_name(dev));
2219		return false;
2220	}
2221
2222	if (__arm_iommu_attach_device(dev, mapping)) {
2223		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2224				dev_name(dev));
2225		arm_iommu_release_mapping(mapping);
2226		return false;
2227	}
2228
2229	return true;
2230}
2231
2232static void arm_teardown_iommu_dma_ops(struct device *dev)
2233{
2234	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2235
2236	if (!mapping)
2237		return;
2238
2239	arm_iommu_detach_device(dev);
2240	arm_iommu_release_mapping(mapping);
2241}
2242
2243#else
2244
2245static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2246				    const struct iommu_ops *iommu)
2247{
2248	return false;
2249}
2250
2251static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2252
2253#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2254
2255#endif	/* CONFIG_ARM_DMA_USE_IOMMU */
2256
 
 
 
 
 
2257void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2258			const struct iommu_ops *iommu, bool coherent)
2259{
2260	const struct dma_map_ops *dma_ops;
2261
2262	dev->archdata.dma_coherent = coherent;
2263#ifdef CONFIG_SWIOTLB
2264	dev->dma_coherent = coherent;
2265#endif
2266
2267	/*
2268	 * Don't override the dma_ops if they have already been set. Ideally
2269	 * this should be the only location where dma_ops are set, remove this
2270	 * check when all other callers of set_dma_ops will have disappeared.
2271	 */
2272	if (dev->dma_ops)
2273		return;
2274
2275	if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2276		dma_ops = arm_get_iommu_dma_map_ops(coherent);
2277	else
2278		dma_ops = arm_get_dma_map_ops(coherent);
2279
2280	set_dma_ops(dev, dma_ops);
2281
2282#ifdef CONFIG_XEN
2283	if (xen_initial_domain())
2284		dev->dma_ops = &xen_swiotlb_dma_ops;
2285#endif
2286	dev->archdata.dma_ops_setup = true;
2287}
2288
2289void arch_teardown_dma_ops(struct device *dev)
2290{
2291	if (!dev->archdata.dma_ops_setup)
2292		return;
2293
2294	arm_teardown_iommu_dma_ops(dev);
2295	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2296	set_dma_ops(dev, NULL);
2297}
2298
2299#ifdef CONFIG_SWIOTLB
2300void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
2301		enum dma_data_direction dir)
2302{
2303	__dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2304			      size, dir);
2305}
2306
2307void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
2308		enum dma_data_direction dir)
2309{
2310	__dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2311			      size, dir);
2312}
2313
2314void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2315		gfp_t gfp, unsigned long attrs)
2316{
2317	return __dma_alloc(dev, size, dma_handle, gfp,
2318			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2319			   attrs, __builtin_return_address(0));
2320}
2321
2322void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2323		dma_addr_t dma_handle, unsigned long attrs)
2324{
2325	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2326}
2327#endif /* CONFIG_SWIOTLB */