Loading...
1/*
2 * linux/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * This file contains the interface functions for the various
7 * time related system calls: time, stime, gettimeofday, settimeofday,
8 * adjtime
9 */
10/*
11 * Modification history kernel/time.c
12 *
13 * 1993-09-02 Philip Gladstone
14 * Created file with time related functions from sched/core.c and adjtimex()
15 * 1993-10-08 Torsten Duwe
16 * adjtime interface update and CMOS clock write code
17 * 1995-08-13 Torsten Duwe
18 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
19 * 1999-01-16 Ulrich Windl
20 * Introduced error checking for many cases in adjtimex().
21 * Updated NTP code according to technical memorandum Jan '96
22 * "A Kernel Model for Precision Timekeeping" by Dave Mills
23 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24 * (Even though the technical memorandum forbids it)
25 * 2004-07-14 Christoph Lameter
26 * Added getnstimeofday to allow the posix timer functions to return
27 * with nanosecond accuracy
28 */
29
30#include <linux/export.h>
31#include <linux/timex.h>
32#include <linux/capability.h>
33#include <linux/timekeeper_internal.h>
34#include <linux/errno.h>
35#include <linux/syscalls.h>
36#include <linux/security.h>
37#include <linux/fs.h>
38#include <linux/math64.h>
39#include <linux/ptrace.h>
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43
44#include <generated/timeconst.h>
45#include "timekeeping.h"
46
47/*
48 * The timezone where the local system is located. Used as a default by some
49 * programs who obtain this value by using gettimeofday.
50 */
51struct timezone sys_tz;
52
53EXPORT_SYMBOL(sys_tz);
54
55#ifdef __ARCH_WANT_SYS_TIME
56
57/*
58 * sys_time() can be implemented in user-level using
59 * sys_gettimeofday(). Is this for backwards compatibility? If so,
60 * why not move it into the appropriate arch directory (for those
61 * architectures that need it).
62 */
63SYSCALL_DEFINE1(time, time_t __user *, tloc)
64{
65 time_t i = get_seconds();
66
67 if (tloc) {
68 if (put_user(i,tloc))
69 return -EFAULT;
70 }
71 force_successful_syscall_return();
72 return i;
73}
74
75/*
76 * sys_stime() can be implemented in user-level using
77 * sys_settimeofday(). Is this for backwards compatibility? If so,
78 * why not move it into the appropriate arch directory (for those
79 * architectures that need it).
80 */
81
82SYSCALL_DEFINE1(stime, time_t __user *, tptr)
83{
84 struct timespec tv;
85 int err;
86
87 if (get_user(tv.tv_sec, tptr))
88 return -EFAULT;
89
90 tv.tv_nsec = 0;
91
92 err = security_settime(&tv, NULL);
93 if (err)
94 return err;
95
96 do_settimeofday(&tv);
97 return 0;
98}
99
100#endif /* __ARCH_WANT_SYS_TIME */
101
102SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103 struct timezone __user *, tz)
104{
105 if (likely(tv != NULL)) {
106 struct timeval ktv;
107 do_gettimeofday(&ktv);
108 if (copy_to_user(tv, &ktv, sizeof(ktv)))
109 return -EFAULT;
110 }
111 if (unlikely(tz != NULL)) {
112 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113 return -EFAULT;
114 }
115 return 0;
116}
117
118/*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122int persistent_clock_is_local;
123
124/*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
127 *
128 * This is ugly, but preferable to the alternatives. Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours) or
132 * compile in the timezone information into the kernel. Bad, bad....
133 *
134 * - TYT, 1992-01-01
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
140static inline void warp_clock(void)
141{
142 if (sys_tz.tz_minuteswest != 0) {
143 struct timespec adjust;
144
145 persistent_clock_is_local = 1;
146 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147 adjust.tv_nsec = 0;
148 timekeeping_inject_offset(&adjust);
149 }
150}
151
152/*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
163int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164{
165 static int firsttime = 1;
166 int error = 0;
167
168 if (tv && !timespec_valid(tv))
169 return -EINVAL;
170
171 error = security_settime(tv, tz);
172 if (error)
173 return error;
174
175 if (tz) {
176 /* Verify we're witin the +-15 hrs range */
177 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178 return -EINVAL;
179
180 sys_tz = *tz;
181 update_vsyscall_tz();
182 if (firsttime) {
183 firsttime = 0;
184 if (!tv)
185 warp_clock();
186 }
187 }
188 if (tv)
189 return do_settimeofday(tv);
190 return 0;
191}
192
193SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194 struct timezone __user *, tz)
195{
196 struct timeval user_tv;
197 struct timespec new_ts;
198 struct timezone new_tz;
199
200 if (tv) {
201 if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202 return -EFAULT;
203
204 if (!timeval_valid(&user_tv))
205 return -EINVAL;
206
207 new_ts.tv_sec = user_tv.tv_sec;
208 new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209 }
210 if (tz) {
211 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212 return -EFAULT;
213 }
214
215 return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216}
217
218SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219{
220 struct timex txc; /* Local copy of parameter */
221 int ret;
222
223 /* Copy the user data space into the kernel copy
224 * structure. But bear in mind that the structures
225 * may change
226 */
227 if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228 return -EFAULT;
229 ret = do_adjtimex(&txc);
230 return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231}
232
233/**
234 * current_fs_time - Return FS time
235 * @sb: Superblock.
236 *
237 * Return the current time truncated to the time granularity supported by
238 * the fs.
239 */
240struct timespec current_fs_time(struct super_block *sb)
241{
242 struct timespec now = current_kernel_time();
243 return timespec_trunc(now, sb->s_time_gran);
244}
245EXPORT_SYMBOL(current_fs_time);
246
247/*
248 * Convert jiffies to milliseconds and back.
249 *
250 * Avoid unnecessary multiplications/divisions in the
251 * two most common HZ cases:
252 */
253unsigned int jiffies_to_msecs(const unsigned long j)
254{
255#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256 return (MSEC_PER_SEC / HZ) * j;
257#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259#else
260# if BITS_PER_LONG == 32
261 return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262# else
263 return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264# endif
265#endif
266}
267EXPORT_SYMBOL(jiffies_to_msecs);
268
269unsigned int jiffies_to_usecs(const unsigned long j)
270{
271 /*
272 * Hz usually doesn't go much further MSEC_PER_SEC.
273 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
274 */
275 BUILD_BUG_ON(HZ > USEC_PER_SEC);
276
277#if !(USEC_PER_SEC % HZ)
278 return (USEC_PER_SEC / HZ) * j;
279#else
280# if BITS_PER_LONG == 32
281 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
282# else
283 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
284# endif
285#endif
286}
287EXPORT_SYMBOL(jiffies_to_usecs);
288
289/**
290 * timespec_trunc - Truncate timespec to a granularity
291 * @t: Timespec
292 * @gran: Granularity in ns.
293 *
294 * Truncate a timespec to a granularity. Always rounds down. gran must
295 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
296 */
297struct timespec timespec_trunc(struct timespec t, unsigned gran)
298{
299 /* Avoid division in the common cases 1 ns and 1 s. */
300 if (gran == 1) {
301 /* nothing */
302 } else if (gran == NSEC_PER_SEC) {
303 t.tv_nsec = 0;
304 } else if (gran > 1 && gran < NSEC_PER_SEC) {
305 t.tv_nsec -= t.tv_nsec % gran;
306 } else {
307 WARN(1, "illegal file time granularity: %u", gran);
308 }
309 return t;
310}
311EXPORT_SYMBOL(timespec_trunc);
312
313/*
314 * mktime64 - Converts date to seconds.
315 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
316 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
317 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
318 *
319 * [For the Julian calendar (which was used in Russia before 1917,
320 * Britain & colonies before 1752, anywhere else before 1582,
321 * and is still in use by some communities) leave out the
322 * -year/100+year/400 terms, and add 10.]
323 *
324 * This algorithm was first published by Gauss (I think).
325 *
326 * A leap second can be indicated by calling this function with sec as
327 * 60 (allowable under ISO 8601). The leap second is treated the same
328 * as the following second since they don't exist in UNIX time.
329 *
330 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
331 * tomorrow - (allowable under ISO 8601) is supported.
332 */
333time64_t mktime64(const unsigned int year0, const unsigned int mon0,
334 const unsigned int day, const unsigned int hour,
335 const unsigned int min, const unsigned int sec)
336{
337 unsigned int mon = mon0, year = year0;
338
339 /* 1..12 -> 11,12,1..10 */
340 if (0 >= (int) (mon -= 2)) {
341 mon += 12; /* Puts Feb last since it has leap day */
342 year -= 1;
343 }
344
345 return ((((time64_t)
346 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
347 year*365 - 719499
348 )*24 + hour /* now have hours - midnight tomorrow handled here */
349 )*60 + min /* now have minutes */
350 )*60 + sec; /* finally seconds */
351}
352EXPORT_SYMBOL(mktime64);
353
354/**
355 * set_normalized_timespec - set timespec sec and nsec parts and normalize
356 *
357 * @ts: pointer to timespec variable to be set
358 * @sec: seconds to set
359 * @nsec: nanoseconds to set
360 *
361 * Set seconds and nanoseconds field of a timespec variable and
362 * normalize to the timespec storage format
363 *
364 * Note: The tv_nsec part is always in the range of
365 * 0 <= tv_nsec < NSEC_PER_SEC
366 * For negative values only the tv_sec field is negative !
367 */
368void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
369{
370 while (nsec >= NSEC_PER_SEC) {
371 /*
372 * The following asm() prevents the compiler from
373 * optimising this loop into a modulo operation. See
374 * also __iter_div_u64_rem() in include/linux/time.h
375 */
376 asm("" : "+rm"(nsec));
377 nsec -= NSEC_PER_SEC;
378 ++sec;
379 }
380 while (nsec < 0) {
381 asm("" : "+rm"(nsec));
382 nsec += NSEC_PER_SEC;
383 --sec;
384 }
385 ts->tv_sec = sec;
386 ts->tv_nsec = nsec;
387}
388EXPORT_SYMBOL(set_normalized_timespec);
389
390/**
391 * ns_to_timespec - Convert nanoseconds to timespec
392 * @nsec: the nanoseconds value to be converted
393 *
394 * Returns the timespec representation of the nsec parameter.
395 */
396struct timespec ns_to_timespec(const s64 nsec)
397{
398 struct timespec ts;
399 s32 rem;
400
401 if (!nsec)
402 return (struct timespec) {0, 0};
403
404 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
405 if (unlikely(rem < 0)) {
406 ts.tv_sec--;
407 rem += NSEC_PER_SEC;
408 }
409 ts.tv_nsec = rem;
410
411 return ts;
412}
413EXPORT_SYMBOL(ns_to_timespec);
414
415/**
416 * ns_to_timeval - Convert nanoseconds to timeval
417 * @nsec: the nanoseconds value to be converted
418 *
419 * Returns the timeval representation of the nsec parameter.
420 */
421struct timeval ns_to_timeval(const s64 nsec)
422{
423 struct timespec ts = ns_to_timespec(nsec);
424 struct timeval tv;
425
426 tv.tv_sec = ts.tv_sec;
427 tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
428
429 return tv;
430}
431EXPORT_SYMBOL(ns_to_timeval);
432
433#if BITS_PER_LONG == 32
434/**
435 * set_normalized_timespec - set timespec sec and nsec parts and normalize
436 *
437 * @ts: pointer to timespec variable to be set
438 * @sec: seconds to set
439 * @nsec: nanoseconds to set
440 *
441 * Set seconds and nanoseconds field of a timespec variable and
442 * normalize to the timespec storage format
443 *
444 * Note: The tv_nsec part is always in the range of
445 * 0 <= tv_nsec < NSEC_PER_SEC
446 * For negative values only the tv_sec field is negative !
447 */
448void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
449{
450 while (nsec >= NSEC_PER_SEC) {
451 /*
452 * The following asm() prevents the compiler from
453 * optimising this loop into a modulo operation. See
454 * also __iter_div_u64_rem() in include/linux/time.h
455 */
456 asm("" : "+rm"(nsec));
457 nsec -= NSEC_PER_SEC;
458 ++sec;
459 }
460 while (nsec < 0) {
461 asm("" : "+rm"(nsec));
462 nsec += NSEC_PER_SEC;
463 --sec;
464 }
465 ts->tv_sec = sec;
466 ts->tv_nsec = nsec;
467}
468EXPORT_SYMBOL(set_normalized_timespec64);
469
470/**
471 * ns_to_timespec64 - Convert nanoseconds to timespec64
472 * @nsec: the nanoseconds value to be converted
473 *
474 * Returns the timespec64 representation of the nsec parameter.
475 */
476struct timespec64 ns_to_timespec64(const s64 nsec)
477{
478 struct timespec64 ts;
479 s32 rem;
480
481 if (!nsec)
482 return (struct timespec64) {0, 0};
483
484 ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
485 if (unlikely(rem < 0)) {
486 ts.tv_sec--;
487 rem += NSEC_PER_SEC;
488 }
489 ts.tv_nsec = rem;
490
491 return ts;
492}
493EXPORT_SYMBOL(ns_to_timespec64);
494#endif
495/**
496 * msecs_to_jiffies: - convert milliseconds to jiffies
497 * @m: time in milliseconds
498 *
499 * conversion is done as follows:
500 *
501 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
502 *
503 * - 'too large' values [that would result in larger than
504 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
505 *
506 * - all other values are converted to jiffies by either multiplying
507 * the input value by a factor or dividing it with a factor and
508 * handling any 32-bit overflows.
509 * for the details see __msecs_to_jiffies()
510 *
511 * msecs_to_jiffies() checks for the passed in value being a constant
512 * via __builtin_constant_p() allowing gcc to eliminate most of the
513 * code, __msecs_to_jiffies() is called if the value passed does not
514 * allow constant folding and the actual conversion must be done at
515 * runtime.
516 * the _msecs_to_jiffies helpers are the HZ dependent conversion
517 * routines found in include/linux/jiffies.h
518 */
519unsigned long __msecs_to_jiffies(const unsigned int m)
520{
521 /*
522 * Negative value, means infinite timeout:
523 */
524 if ((int)m < 0)
525 return MAX_JIFFY_OFFSET;
526 return _msecs_to_jiffies(m);
527}
528EXPORT_SYMBOL(__msecs_to_jiffies);
529
530unsigned long __usecs_to_jiffies(const unsigned int u)
531{
532 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
533 return MAX_JIFFY_OFFSET;
534 return _usecs_to_jiffies(u);
535}
536EXPORT_SYMBOL(__usecs_to_jiffies);
537
538/*
539 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
540 * that a remainder subtract here would not do the right thing as the
541 * resolution values don't fall on second boundries. I.e. the line:
542 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
543 * Note that due to the small error in the multiplier here, this
544 * rounding is incorrect for sufficiently large values of tv_nsec, but
545 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
546 * OK.
547 *
548 * Rather, we just shift the bits off the right.
549 *
550 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
551 * value to a scaled second value.
552 */
553static unsigned long
554__timespec64_to_jiffies(u64 sec, long nsec)
555{
556 nsec = nsec + TICK_NSEC - 1;
557
558 if (sec >= MAX_SEC_IN_JIFFIES){
559 sec = MAX_SEC_IN_JIFFIES;
560 nsec = 0;
561 }
562 return ((sec * SEC_CONVERSION) +
563 (((u64)nsec * NSEC_CONVERSION) >>
564 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
565
566}
567
568static unsigned long
569__timespec_to_jiffies(unsigned long sec, long nsec)
570{
571 return __timespec64_to_jiffies((u64)sec, nsec);
572}
573
574unsigned long
575timespec64_to_jiffies(const struct timespec64 *value)
576{
577 return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
578}
579EXPORT_SYMBOL(timespec64_to_jiffies);
580
581void
582jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
583{
584 /*
585 * Convert jiffies to nanoseconds and separate with
586 * one divide.
587 */
588 u32 rem;
589 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
590 NSEC_PER_SEC, &rem);
591 value->tv_nsec = rem;
592}
593EXPORT_SYMBOL(jiffies_to_timespec64);
594
595/*
596 * We could use a similar algorithm to timespec_to_jiffies (with a
597 * different multiplier for usec instead of nsec). But this has a
598 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
599 * usec value, since it's not necessarily integral.
600 *
601 * We could instead round in the intermediate scaled representation
602 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
603 * perilous: the scaling introduces a small positive error, which
604 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
605 * units to the intermediate before shifting) leads to accidental
606 * overflow and overestimates.
607 *
608 * At the cost of one additional multiplication by a constant, just
609 * use the timespec implementation.
610 */
611unsigned long
612timeval_to_jiffies(const struct timeval *value)
613{
614 return __timespec_to_jiffies(value->tv_sec,
615 value->tv_usec * NSEC_PER_USEC);
616}
617EXPORT_SYMBOL(timeval_to_jiffies);
618
619void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
620{
621 /*
622 * Convert jiffies to nanoseconds and separate with
623 * one divide.
624 */
625 u32 rem;
626
627 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
628 NSEC_PER_SEC, &rem);
629 value->tv_usec = rem / NSEC_PER_USEC;
630}
631EXPORT_SYMBOL(jiffies_to_timeval);
632
633/*
634 * Convert jiffies/jiffies_64 to clock_t and back.
635 */
636clock_t jiffies_to_clock_t(unsigned long x)
637{
638#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
639# if HZ < USER_HZ
640 return x * (USER_HZ / HZ);
641# else
642 return x / (HZ / USER_HZ);
643# endif
644#else
645 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
646#endif
647}
648EXPORT_SYMBOL(jiffies_to_clock_t);
649
650unsigned long clock_t_to_jiffies(unsigned long x)
651{
652#if (HZ % USER_HZ)==0
653 if (x >= ~0UL / (HZ / USER_HZ))
654 return ~0UL;
655 return x * (HZ / USER_HZ);
656#else
657 /* Don't worry about loss of precision here .. */
658 if (x >= ~0UL / HZ * USER_HZ)
659 return ~0UL;
660
661 /* .. but do try to contain it here */
662 return div_u64((u64)x * HZ, USER_HZ);
663#endif
664}
665EXPORT_SYMBOL(clock_t_to_jiffies);
666
667u64 jiffies_64_to_clock_t(u64 x)
668{
669#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
670# if HZ < USER_HZ
671 x = div_u64(x * USER_HZ, HZ);
672# elif HZ > USER_HZ
673 x = div_u64(x, HZ / USER_HZ);
674# else
675 /* Nothing to do */
676# endif
677#else
678 /*
679 * There are better ways that don't overflow early,
680 * but even this doesn't overflow in hundreds of years
681 * in 64 bits, so..
682 */
683 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
684#endif
685 return x;
686}
687EXPORT_SYMBOL(jiffies_64_to_clock_t);
688
689u64 nsec_to_clock_t(u64 x)
690{
691#if (NSEC_PER_SEC % USER_HZ) == 0
692 return div_u64(x, NSEC_PER_SEC / USER_HZ);
693#elif (USER_HZ % 512) == 0
694 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
695#else
696 /*
697 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
698 * overflow after 64.99 years.
699 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
700 */
701 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
702#endif
703}
704
705/**
706 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
707 *
708 * @n: nsecs in u64
709 *
710 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
711 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
712 * for scheduler, not for use in device drivers to calculate timeout value.
713 *
714 * note:
715 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
716 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
717 */
718u64 nsecs_to_jiffies64(u64 n)
719{
720#if (NSEC_PER_SEC % HZ) == 0
721 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
722 return div_u64(n, NSEC_PER_SEC / HZ);
723#elif (HZ % 512) == 0
724 /* overflow after 292 years if HZ = 1024 */
725 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
726#else
727 /*
728 * Generic case - optimized for cases where HZ is a multiple of 3.
729 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
730 */
731 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
732#endif
733}
734EXPORT_SYMBOL(nsecs_to_jiffies64);
735
736/**
737 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
738 *
739 * @n: nsecs in u64
740 *
741 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
742 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
743 * for scheduler, not for use in device drivers to calculate timeout value.
744 *
745 * note:
746 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
747 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
748 */
749unsigned long nsecs_to_jiffies(u64 n)
750{
751 return (unsigned long)nsecs_to_jiffies64(n);
752}
753EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
754
755/*
756 * Add two timespec values and do a safety check for overflow.
757 * It's assumed that both values are valid (>= 0)
758 */
759struct timespec timespec_add_safe(const struct timespec lhs,
760 const struct timespec rhs)
761{
762 struct timespec res;
763
764 set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
765 lhs.tv_nsec + rhs.tv_nsec);
766
767 if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
768 res.tv_sec = TIME_T_MAX;
769
770 return res;
771}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 *
5 * This file contains the interface functions for the various time related
6 * system calls: time, stime, gettimeofday, settimeofday, adjtime
7 *
8 * Modification history:
9 *
10 * 1993-09-02 Philip Gladstone
11 * Created file with time related functions from sched/core.c and adjtimex()
12 * 1993-10-08 Torsten Duwe
13 * adjtime interface update and CMOS clock write code
14 * 1995-08-13 Torsten Duwe
15 * kernel PLL updated to 1994-12-13 specs (rfc-1589)
16 * 1999-01-16 Ulrich Windl
17 * Introduced error checking for many cases in adjtimex().
18 * Updated NTP code according to technical memorandum Jan '96
19 * "A Kernel Model for Precision Timekeeping" by Dave Mills
20 * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
21 * (Even though the technical memorandum forbids it)
22 * 2004-07-14 Christoph Lameter
23 * Added getnstimeofday to allow the posix timer functions to return
24 * with nanosecond accuracy
25 */
26
27#include <linux/export.h>
28#include <linux/kernel.h>
29#include <linux/timex.h>
30#include <linux/capability.h>
31#include <linux/timekeeper_internal.h>
32#include <linux/errno.h>
33#include <linux/syscalls.h>
34#include <linux/security.h>
35#include <linux/fs.h>
36#include <linux/math64.h>
37#include <linux/ptrace.h>
38
39#include <linux/uaccess.h>
40#include <linux/compat.h>
41#include <asm/unistd.h>
42
43#include <generated/timeconst.h>
44#include "timekeeping.h"
45
46/*
47 * The timezone where the local system is located. Used as a default by some
48 * programs who obtain this value by using gettimeofday.
49 */
50struct timezone sys_tz;
51
52EXPORT_SYMBOL(sys_tz);
53
54#ifdef __ARCH_WANT_SYS_TIME
55
56/*
57 * sys_time() can be implemented in user-level using
58 * sys_gettimeofday(). Is this for backwards compatibility? If so,
59 * why not move it into the appropriate arch directory (for those
60 * architectures that need it).
61 */
62SYSCALL_DEFINE1(time, __kernel_old_time_t __user *, tloc)
63{
64 __kernel_old_time_t i = (__kernel_old_time_t)ktime_get_real_seconds();
65
66 if (tloc) {
67 if (put_user(i,tloc))
68 return -EFAULT;
69 }
70 force_successful_syscall_return();
71 return i;
72}
73
74/*
75 * sys_stime() can be implemented in user-level using
76 * sys_settimeofday(). Is this for backwards compatibility? If so,
77 * why not move it into the appropriate arch directory (for those
78 * architectures that need it).
79 */
80
81SYSCALL_DEFINE1(stime, __kernel_old_time_t __user *, tptr)
82{
83 struct timespec64 tv;
84 int err;
85
86 if (get_user(tv.tv_sec, tptr))
87 return -EFAULT;
88
89 tv.tv_nsec = 0;
90
91 err = security_settime64(&tv, NULL);
92 if (err)
93 return err;
94
95 do_settimeofday64(&tv);
96 return 0;
97}
98
99#endif /* __ARCH_WANT_SYS_TIME */
100
101#ifdef CONFIG_COMPAT_32BIT_TIME
102#ifdef __ARCH_WANT_SYS_TIME32
103
104/* old_time32_t is a 32 bit "long" and needs to get converted. */
105SYSCALL_DEFINE1(time32, old_time32_t __user *, tloc)
106{
107 old_time32_t i;
108
109 i = (old_time32_t)ktime_get_real_seconds();
110
111 if (tloc) {
112 if (put_user(i,tloc))
113 return -EFAULT;
114 }
115 force_successful_syscall_return();
116 return i;
117}
118
119SYSCALL_DEFINE1(stime32, old_time32_t __user *, tptr)
120{
121 struct timespec64 tv;
122 int err;
123
124 if (get_user(tv.tv_sec, tptr))
125 return -EFAULT;
126
127 tv.tv_nsec = 0;
128
129 err = security_settime64(&tv, NULL);
130 if (err)
131 return err;
132
133 do_settimeofday64(&tv);
134 return 0;
135}
136
137#endif /* __ARCH_WANT_SYS_TIME32 */
138#endif
139
140SYSCALL_DEFINE2(gettimeofday, struct __kernel_old_timeval __user *, tv,
141 struct timezone __user *, tz)
142{
143 if (likely(tv != NULL)) {
144 struct timespec64 ts;
145
146 ktime_get_real_ts64(&ts);
147 if (put_user(ts.tv_sec, &tv->tv_sec) ||
148 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
149 return -EFAULT;
150 }
151 if (unlikely(tz != NULL)) {
152 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
153 return -EFAULT;
154 }
155 return 0;
156}
157
158/*
159 * In case for some reason the CMOS clock has not already been running
160 * in UTC, but in some local time: The first time we set the timezone,
161 * we will warp the clock so that it is ticking UTC time instead of
162 * local time. Presumably, if someone is setting the timezone then we
163 * are running in an environment where the programs understand about
164 * timezones. This should be done at boot time in the /etc/rc script,
165 * as soon as possible, so that the clock can be set right. Otherwise,
166 * various programs will get confused when the clock gets warped.
167 */
168
169int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
170{
171 static int firsttime = 1;
172 int error = 0;
173
174 if (tv && !timespec64_valid_settod(tv))
175 return -EINVAL;
176
177 error = security_settime64(tv, tz);
178 if (error)
179 return error;
180
181 if (tz) {
182 /* Verify we're within the +-15 hrs range */
183 if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
184 return -EINVAL;
185
186 sys_tz = *tz;
187 update_vsyscall_tz();
188 if (firsttime) {
189 firsttime = 0;
190 if (!tv)
191 timekeeping_warp_clock();
192 }
193 }
194 if (tv)
195 return do_settimeofday64(tv);
196 return 0;
197}
198
199SYSCALL_DEFINE2(settimeofday, struct __kernel_old_timeval __user *, tv,
200 struct timezone __user *, tz)
201{
202 struct timespec64 new_ts;
203 struct timezone new_tz;
204
205 if (tv) {
206 if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
207 get_user(new_ts.tv_nsec, &tv->tv_usec))
208 return -EFAULT;
209
210 if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
211 return -EINVAL;
212
213 new_ts.tv_nsec *= NSEC_PER_USEC;
214 }
215 if (tz) {
216 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
217 return -EFAULT;
218 }
219
220 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
221}
222
223#ifdef CONFIG_COMPAT
224COMPAT_SYSCALL_DEFINE2(gettimeofday, struct old_timeval32 __user *, tv,
225 struct timezone __user *, tz)
226{
227 if (tv) {
228 struct timespec64 ts;
229
230 ktime_get_real_ts64(&ts);
231 if (put_user(ts.tv_sec, &tv->tv_sec) ||
232 put_user(ts.tv_nsec / 1000, &tv->tv_usec))
233 return -EFAULT;
234 }
235 if (tz) {
236 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
237 return -EFAULT;
238 }
239
240 return 0;
241}
242
243COMPAT_SYSCALL_DEFINE2(settimeofday, struct old_timeval32 __user *, tv,
244 struct timezone __user *, tz)
245{
246 struct timespec64 new_ts;
247 struct timezone new_tz;
248
249 if (tv) {
250 if (get_user(new_ts.tv_sec, &tv->tv_sec) ||
251 get_user(new_ts.tv_nsec, &tv->tv_usec))
252 return -EFAULT;
253
254 if (new_ts.tv_nsec > USEC_PER_SEC || new_ts.tv_nsec < 0)
255 return -EINVAL;
256
257 new_ts.tv_nsec *= NSEC_PER_USEC;
258 }
259 if (tz) {
260 if (copy_from_user(&new_tz, tz, sizeof(*tz)))
261 return -EFAULT;
262 }
263
264 return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
265}
266#endif
267
268#ifdef CONFIG_64BIT
269SYSCALL_DEFINE1(adjtimex, struct __kernel_timex __user *, txc_p)
270{
271 struct __kernel_timex txc; /* Local copy of parameter */
272 int ret;
273
274 /* Copy the user data space into the kernel copy
275 * structure. But bear in mind that the structures
276 * may change
277 */
278 if (copy_from_user(&txc, txc_p, sizeof(struct __kernel_timex)))
279 return -EFAULT;
280 ret = do_adjtimex(&txc);
281 return copy_to_user(txc_p, &txc, sizeof(struct __kernel_timex)) ? -EFAULT : ret;
282}
283#endif
284
285#ifdef CONFIG_COMPAT_32BIT_TIME
286int get_old_timex32(struct __kernel_timex *txc, const struct old_timex32 __user *utp)
287{
288 struct old_timex32 tx32;
289
290 memset(txc, 0, sizeof(struct __kernel_timex));
291 if (copy_from_user(&tx32, utp, sizeof(struct old_timex32)))
292 return -EFAULT;
293
294 txc->modes = tx32.modes;
295 txc->offset = tx32.offset;
296 txc->freq = tx32.freq;
297 txc->maxerror = tx32.maxerror;
298 txc->esterror = tx32.esterror;
299 txc->status = tx32.status;
300 txc->constant = tx32.constant;
301 txc->precision = tx32.precision;
302 txc->tolerance = tx32.tolerance;
303 txc->time.tv_sec = tx32.time.tv_sec;
304 txc->time.tv_usec = tx32.time.tv_usec;
305 txc->tick = tx32.tick;
306 txc->ppsfreq = tx32.ppsfreq;
307 txc->jitter = tx32.jitter;
308 txc->shift = tx32.shift;
309 txc->stabil = tx32.stabil;
310 txc->jitcnt = tx32.jitcnt;
311 txc->calcnt = tx32.calcnt;
312 txc->errcnt = tx32.errcnt;
313 txc->stbcnt = tx32.stbcnt;
314
315 return 0;
316}
317
318int put_old_timex32(struct old_timex32 __user *utp, const struct __kernel_timex *txc)
319{
320 struct old_timex32 tx32;
321
322 memset(&tx32, 0, sizeof(struct old_timex32));
323 tx32.modes = txc->modes;
324 tx32.offset = txc->offset;
325 tx32.freq = txc->freq;
326 tx32.maxerror = txc->maxerror;
327 tx32.esterror = txc->esterror;
328 tx32.status = txc->status;
329 tx32.constant = txc->constant;
330 tx32.precision = txc->precision;
331 tx32.tolerance = txc->tolerance;
332 tx32.time.tv_sec = txc->time.tv_sec;
333 tx32.time.tv_usec = txc->time.tv_usec;
334 tx32.tick = txc->tick;
335 tx32.ppsfreq = txc->ppsfreq;
336 tx32.jitter = txc->jitter;
337 tx32.shift = txc->shift;
338 tx32.stabil = txc->stabil;
339 tx32.jitcnt = txc->jitcnt;
340 tx32.calcnt = txc->calcnt;
341 tx32.errcnt = txc->errcnt;
342 tx32.stbcnt = txc->stbcnt;
343 tx32.tai = txc->tai;
344 if (copy_to_user(utp, &tx32, sizeof(struct old_timex32)))
345 return -EFAULT;
346 return 0;
347}
348
349SYSCALL_DEFINE1(adjtimex_time32, struct old_timex32 __user *, utp)
350{
351 struct __kernel_timex txc;
352 int err, ret;
353
354 err = get_old_timex32(&txc, utp);
355 if (err)
356 return err;
357
358 ret = do_adjtimex(&txc);
359
360 err = put_old_timex32(utp, &txc);
361 if (err)
362 return err;
363
364 return ret;
365}
366#endif
367
368/**
369 * jiffies_to_msecs - Convert jiffies to milliseconds
370 * @j: jiffies value
371 *
372 * Avoid unnecessary multiplications/divisions in the
373 * two most common HZ cases.
374 *
375 * Return: milliseconds value
376 */
377unsigned int jiffies_to_msecs(const unsigned long j)
378{
379#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
380 return (MSEC_PER_SEC / HZ) * j;
381#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
382 return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
383#else
384# if BITS_PER_LONG == 32
385 return (HZ_TO_MSEC_MUL32 * j + (1ULL << HZ_TO_MSEC_SHR32) - 1) >>
386 HZ_TO_MSEC_SHR32;
387# else
388 return DIV_ROUND_UP(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
389# endif
390#endif
391}
392EXPORT_SYMBOL(jiffies_to_msecs);
393
394/**
395 * jiffies_to_usecs - Convert jiffies to microseconds
396 * @j: jiffies value
397 *
398 * Return: microseconds value
399 */
400unsigned int jiffies_to_usecs(const unsigned long j)
401{
402 /*
403 * Hz usually doesn't go much further MSEC_PER_SEC.
404 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
405 */
406 BUILD_BUG_ON(HZ > USEC_PER_SEC);
407
408#if !(USEC_PER_SEC % HZ)
409 return (USEC_PER_SEC / HZ) * j;
410#else
411# if BITS_PER_LONG == 32
412 return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
413# else
414 return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
415# endif
416#endif
417}
418EXPORT_SYMBOL(jiffies_to_usecs);
419
420/**
421 * mktime64 - Converts date to seconds.
422 * @year0: year to convert
423 * @mon0: month to convert
424 * @day: day to convert
425 * @hour: hour to convert
426 * @min: minute to convert
427 * @sec: second to convert
428 *
429 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
430 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
431 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
432 *
433 * [For the Julian calendar (which was used in Russia before 1917,
434 * Britain & colonies before 1752, anywhere else before 1582,
435 * and is still in use by some communities) leave out the
436 * -year/100+year/400 terms, and add 10.]
437 *
438 * This algorithm was first published by Gauss (I think).
439 *
440 * A leap second can be indicated by calling this function with sec as
441 * 60 (allowable under ISO 8601). The leap second is treated the same
442 * as the following second since they don't exist in UNIX time.
443 *
444 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
445 * tomorrow - (allowable under ISO 8601) is supported.
446 *
447 * Return: seconds since the epoch time for the given input date
448 */
449time64_t mktime64(const unsigned int year0, const unsigned int mon0,
450 const unsigned int day, const unsigned int hour,
451 const unsigned int min, const unsigned int sec)
452{
453 unsigned int mon = mon0, year = year0;
454
455 /* 1..12 -> 11,12,1..10 */
456 if (0 >= (int) (mon -= 2)) {
457 mon += 12; /* Puts Feb last since it has leap day */
458 year -= 1;
459 }
460
461 return ((((time64_t)
462 (year/4 - year/100 + year/400 + 367*mon/12 + day) +
463 year*365 - 719499
464 )*24 + hour /* now have hours - midnight tomorrow handled here */
465 )*60 + min /* now have minutes */
466 )*60 + sec; /* finally seconds */
467}
468EXPORT_SYMBOL(mktime64);
469
470struct __kernel_old_timeval ns_to_kernel_old_timeval(s64 nsec)
471{
472 struct timespec64 ts = ns_to_timespec64(nsec);
473 struct __kernel_old_timeval tv;
474
475 tv.tv_sec = ts.tv_sec;
476 tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
477
478 return tv;
479}
480EXPORT_SYMBOL(ns_to_kernel_old_timeval);
481
482/**
483 * set_normalized_timespec64 - set timespec sec and nsec parts and normalize
484 *
485 * @ts: pointer to timespec variable to be set
486 * @sec: seconds to set
487 * @nsec: nanoseconds to set
488 *
489 * Set seconds and nanoseconds field of a timespec variable and
490 * normalize to the timespec storage format
491 *
492 * Note: The tv_nsec part is always in the range of 0 <= tv_nsec < NSEC_PER_SEC.
493 * For negative values only the tv_sec field is negative !
494 */
495void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
496{
497 while (nsec >= NSEC_PER_SEC) {
498 /*
499 * The following asm() prevents the compiler from
500 * optimising this loop into a modulo operation. See
501 * also __iter_div_u64_rem() in include/linux/time.h
502 */
503 asm("" : "+rm"(nsec));
504 nsec -= NSEC_PER_SEC;
505 ++sec;
506 }
507 while (nsec < 0) {
508 asm("" : "+rm"(nsec));
509 nsec += NSEC_PER_SEC;
510 --sec;
511 }
512 ts->tv_sec = sec;
513 ts->tv_nsec = nsec;
514}
515EXPORT_SYMBOL(set_normalized_timespec64);
516
517/**
518 * ns_to_timespec64 - Convert nanoseconds to timespec64
519 * @nsec: the nanoseconds value to be converted
520 *
521 * Return: the timespec64 representation of the nsec parameter.
522 */
523struct timespec64 ns_to_timespec64(s64 nsec)
524{
525 struct timespec64 ts = { 0, 0 };
526 s32 rem;
527
528 if (likely(nsec > 0)) {
529 ts.tv_sec = div_u64_rem(nsec, NSEC_PER_SEC, &rem);
530 ts.tv_nsec = rem;
531 } else if (nsec < 0) {
532 /*
533 * With negative times, tv_sec points to the earlier
534 * second, and tv_nsec counts the nanoseconds since
535 * then, so tv_nsec is always a positive number.
536 */
537 ts.tv_sec = -div_u64_rem(-nsec - 1, NSEC_PER_SEC, &rem) - 1;
538 ts.tv_nsec = NSEC_PER_SEC - rem - 1;
539 }
540
541 return ts;
542}
543EXPORT_SYMBOL(ns_to_timespec64);
544
545/**
546 * __msecs_to_jiffies: - convert milliseconds to jiffies
547 * @m: time in milliseconds
548 *
549 * conversion is done as follows:
550 *
551 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
552 *
553 * - 'too large' values [that would result in larger than
554 * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
555 *
556 * - all other values are converted to jiffies by either multiplying
557 * the input value by a factor or dividing it with a factor and
558 * handling any 32-bit overflows.
559 * for the details see __msecs_to_jiffies()
560 *
561 * __msecs_to_jiffies() checks for the passed in value being a constant
562 * via __builtin_constant_p() allowing gcc to eliminate most of the
563 * code, __msecs_to_jiffies() is called if the value passed does not
564 * allow constant folding and the actual conversion must be done at
565 * runtime.
566 * The _msecs_to_jiffies helpers are the HZ dependent conversion
567 * routines found in include/linux/jiffies.h
568 *
569 * Return: jiffies value
570 */
571unsigned long __msecs_to_jiffies(const unsigned int m)
572{
573 /*
574 * Negative value, means infinite timeout:
575 */
576 if ((int)m < 0)
577 return MAX_JIFFY_OFFSET;
578 return _msecs_to_jiffies(m);
579}
580EXPORT_SYMBOL(__msecs_to_jiffies);
581
582/**
583 * __usecs_to_jiffies: - convert microseconds to jiffies
584 * @u: time in milliseconds
585 *
586 * Return: jiffies value
587 */
588unsigned long __usecs_to_jiffies(const unsigned int u)
589{
590 if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
591 return MAX_JIFFY_OFFSET;
592 return _usecs_to_jiffies(u);
593}
594EXPORT_SYMBOL(__usecs_to_jiffies);
595
596/**
597 * timespec64_to_jiffies - convert a timespec64 value to jiffies
598 * @value: pointer to &struct timespec64
599 *
600 * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
601 * that a remainder subtract here would not do the right thing as the
602 * resolution values don't fall on second boundaries. I.e. the line:
603 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
604 * Note that due to the small error in the multiplier here, this
605 * rounding is incorrect for sufficiently large values of tv_nsec, but
606 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
607 * OK.
608 *
609 * Rather, we just shift the bits off the right.
610 *
611 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
612 * value to a scaled second value.
613 *
614 * Return: jiffies value
615 */
616unsigned long
617timespec64_to_jiffies(const struct timespec64 *value)
618{
619 u64 sec = value->tv_sec;
620 long nsec = value->tv_nsec + TICK_NSEC - 1;
621
622 if (sec >= MAX_SEC_IN_JIFFIES){
623 sec = MAX_SEC_IN_JIFFIES;
624 nsec = 0;
625 }
626 return ((sec * SEC_CONVERSION) +
627 (((u64)nsec * NSEC_CONVERSION) >>
628 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
629
630}
631EXPORT_SYMBOL(timespec64_to_jiffies);
632
633/**
634 * jiffies_to_timespec64 - convert jiffies value to &struct timespec64
635 * @jiffies: jiffies value
636 * @value: pointer to &struct timespec64
637 */
638void
639jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
640{
641 /*
642 * Convert jiffies to nanoseconds and separate with
643 * one divide.
644 */
645 u32 rem;
646 value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
647 NSEC_PER_SEC, &rem);
648 value->tv_nsec = rem;
649}
650EXPORT_SYMBOL(jiffies_to_timespec64);
651
652/*
653 * Convert jiffies/jiffies_64 to clock_t and back.
654 */
655
656/**
657 * jiffies_to_clock_t - Convert jiffies to clock_t
658 * @x: jiffies value
659 *
660 * Return: jiffies converted to clock_t (CLOCKS_PER_SEC)
661 */
662clock_t jiffies_to_clock_t(unsigned long x)
663{
664#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
665# if HZ < USER_HZ
666 return x * (USER_HZ / HZ);
667# else
668 return x / (HZ / USER_HZ);
669# endif
670#else
671 return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
672#endif
673}
674EXPORT_SYMBOL(jiffies_to_clock_t);
675
676/**
677 * clock_t_to_jiffies - Convert clock_t to jiffies
678 * @x: clock_t value
679 *
680 * Return: clock_t value converted to jiffies
681 */
682unsigned long clock_t_to_jiffies(unsigned long x)
683{
684#if (HZ % USER_HZ)==0
685 if (x >= ~0UL / (HZ / USER_HZ))
686 return ~0UL;
687 return x * (HZ / USER_HZ);
688#else
689 /* Don't worry about loss of precision here .. */
690 if (x >= ~0UL / HZ * USER_HZ)
691 return ~0UL;
692
693 /* .. but do try to contain it here */
694 return div_u64((u64)x * HZ, USER_HZ);
695#endif
696}
697EXPORT_SYMBOL(clock_t_to_jiffies);
698
699/**
700 * jiffies_64_to_clock_t - Convert jiffies_64 to clock_t
701 * @x: jiffies_64 value
702 *
703 * Return: jiffies_64 value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
704 */
705u64 jiffies_64_to_clock_t(u64 x)
706{
707#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
708# if HZ < USER_HZ
709 x = div_u64(x * USER_HZ, HZ);
710# elif HZ > USER_HZ
711 x = div_u64(x, HZ / USER_HZ);
712# else
713 /* Nothing to do */
714# endif
715#else
716 /*
717 * There are better ways that don't overflow early,
718 * but even this doesn't overflow in hundreds of years
719 * in 64 bits, so..
720 */
721 x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
722#endif
723 return x;
724}
725EXPORT_SYMBOL(jiffies_64_to_clock_t);
726
727/**
728 * nsec_to_clock_t - Convert nsec value to clock_t
729 * @x: nsec value
730 *
731 * Return: nsec value converted to 64-bit "clock_t" (CLOCKS_PER_SEC)
732 */
733u64 nsec_to_clock_t(u64 x)
734{
735#if (NSEC_PER_SEC % USER_HZ) == 0
736 return div_u64(x, NSEC_PER_SEC / USER_HZ);
737#elif (USER_HZ % 512) == 0
738 return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
739#else
740 /*
741 * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
742 * overflow after 64.99 years.
743 * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
744 */
745 return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
746#endif
747}
748
749/**
750 * jiffies64_to_nsecs - Convert jiffies64 to nanoseconds
751 * @j: jiffies64 value
752 *
753 * Return: nanoseconds value
754 */
755u64 jiffies64_to_nsecs(u64 j)
756{
757#if !(NSEC_PER_SEC % HZ)
758 return (NSEC_PER_SEC / HZ) * j;
759# else
760 return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
761#endif
762}
763EXPORT_SYMBOL(jiffies64_to_nsecs);
764
765/**
766 * jiffies64_to_msecs - Convert jiffies64 to milliseconds
767 * @j: jiffies64 value
768 *
769 * Return: milliseconds value
770 */
771u64 jiffies64_to_msecs(const u64 j)
772{
773#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
774 return (MSEC_PER_SEC / HZ) * j;
775#else
776 return div_u64(j * HZ_TO_MSEC_NUM, HZ_TO_MSEC_DEN);
777#endif
778}
779EXPORT_SYMBOL(jiffies64_to_msecs);
780
781/**
782 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
783 *
784 * @n: nsecs in u64
785 *
786 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
787 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
788 * for scheduler, not for use in device drivers to calculate timeout value.
789 *
790 * note:
791 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
792 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
793 *
794 * Return: nsecs converted to jiffies64 value
795 */
796u64 nsecs_to_jiffies64(u64 n)
797{
798#if (NSEC_PER_SEC % HZ) == 0
799 /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
800 return div_u64(n, NSEC_PER_SEC / HZ);
801#elif (HZ % 512) == 0
802 /* overflow after 292 years if HZ = 1024 */
803 return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
804#else
805 /*
806 * Generic case - optimized for cases where HZ is a multiple of 3.
807 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
808 */
809 return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
810#endif
811}
812EXPORT_SYMBOL(nsecs_to_jiffies64);
813
814/**
815 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
816 *
817 * @n: nsecs in u64
818 *
819 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
820 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
821 * for scheduler, not for use in device drivers to calculate timeout value.
822 *
823 * note:
824 * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
825 * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
826 *
827 * Return: nsecs converted to jiffies value
828 */
829unsigned long nsecs_to_jiffies(u64 n)
830{
831 return (unsigned long)nsecs_to_jiffies64(n);
832}
833EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
834
835/**
836 * timespec64_add_safe - Add two timespec64 values and do a safety check
837 * for overflow.
838 * @lhs: first (left) timespec64 to add
839 * @rhs: second (right) timespec64 to add
840 *
841 * It's assumed that both values are valid (>= 0).
842 * And, each timespec64 is in normalized form.
843 *
844 * Return: sum of @lhs + @rhs
845 */
846struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
847 const struct timespec64 rhs)
848{
849 struct timespec64 res;
850
851 set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
852 lhs.tv_nsec + rhs.tv_nsec);
853
854 if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
855 res.tv_sec = TIME64_MAX;
856 res.tv_nsec = 0;
857 }
858
859 return res;
860}
861
862/**
863 * get_timespec64 - get user's time value into kernel space
864 * @ts: destination &struct timespec64
865 * @uts: user's time value as &struct __kernel_timespec
866 *
867 * Handles compat or 32-bit modes.
868 *
869 * Return: %0 on success or negative errno on error
870 */
871int get_timespec64(struct timespec64 *ts,
872 const struct __kernel_timespec __user *uts)
873{
874 struct __kernel_timespec kts;
875 int ret;
876
877 ret = copy_from_user(&kts, uts, sizeof(kts));
878 if (ret)
879 return -EFAULT;
880
881 ts->tv_sec = kts.tv_sec;
882
883 /* Zero out the padding in compat mode */
884 if (in_compat_syscall())
885 kts.tv_nsec &= 0xFFFFFFFFUL;
886
887 /* In 32-bit mode, this drops the padding */
888 ts->tv_nsec = kts.tv_nsec;
889
890 return 0;
891}
892EXPORT_SYMBOL_GPL(get_timespec64);
893
894/**
895 * put_timespec64 - convert timespec64 value to __kernel_timespec format and
896 * copy the latter to userspace
897 * @ts: input &struct timespec64
898 * @uts: user's &struct __kernel_timespec
899 *
900 * Return: %0 on success or negative errno on error
901 */
902int put_timespec64(const struct timespec64 *ts,
903 struct __kernel_timespec __user *uts)
904{
905 struct __kernel_timespec kts = {
906 .tv_sec = ts->tv_sec,
907 .tv_nsec = ts->tv_nsec
908 };
909
910 return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
911}
912EXPORT_SYMBOL_GPL(put_timespec64);
913
914static int __get_old_timespec32(struct timespec64 *ts64,
915 const struct old_timespec32 __user *cts)
916{
917 struct old_timespec32 ts;
918 int ret;
919
920 ret = copy_from_user(&ts, cts, sizeof(ts));
921 if (ret)
922 return -EFAULT;
923
924 ts64->tv_sec = ts.tv_sec;
925 ts64->tv_nsec = ts.tv_nsec;
926
927 return 0;
928}
929
930static int __put_old_timespec32(const struct timespec64 *ts64,
931 struct old_timespec32 __user *cts)
932{
933 struct old_timespec32 ts = {
934 .tv_sec = ts64->tv_sec,
935 .tv_nsec = ts64->tv_nsec
936 };
937 return copy_to_user(cts, &ts, sizeof(ts)) ? -EFAULT : 0;
938}
939
940/**
941 * get_old_timespec32 - get user's old-format time value into kernel space
942 * @ts: destination &struct timespec64
943 * @uts: user's old-format time value (&struct old_timespec32)
944 *
945 * Handles X86_X32_ABI compatibility conversion.
946 *
947 * Return: %0 on success or negative errno on error
948 */
949int get_old_timespec32(struct timespec64 *ts, const void __user *uts)
950{
951 if (COMPAT_USE_64BIT_TIME)
952 return copy_from_user(ts, uts, sizeof(*ts)) ? -EFAULT : 0;
953 else
954 return __get_old_timespec32(ts, uts);
955}
956EXPORT_SYMBOL_GPL(get_old_timespec32);
957
958/**
959 * put_old_timespec32 - convert timespec64 value to &struct old_timespec32 and
960 * copy the latter to userspace
961 * @ts: input &struct timespec64
962 * @uts: user's &struct old_timespec32
963 *
964 * Handles X86_X32_ABI compatibility conversion.
965 *
966 * Return: %0 on success or negative errno on error
967 */
968int put_old_timespec32(const struct timespec64 *ts, void __user *uts)
969{
970 if (COMPAT_USE_64BIT_TIME)
971 return copy_to_user(uts, ts, sizeof(*ts)) ? -EFAULT : 0;
972 else
973 return __put_old_timespec32(ts, uts);
974}
975EXPORT_SYMBOL_GPL(put_old_timespec32);
976
977/**
978 * get_itimerspec64 - get user's &struct __kernel_itimerspec into kernel space
979 * @it: destination &struct itimerspec64
980 * @uit: user's &struct __kernel_itimerspec
981 *
982 * Return: %0 on success or negative errno on error
983 */
984int get_itimerspec64(struct itimerspec64 *it,
985 const struct __kernel_itimerspec __user *uit)
986{
987 int ret;
988
989 ret = get_timespec64(&it->it_interval, &uit->it_interval);
990 if (ret)
991 return ret;
992
993 ret = get_timespec64(&it->it_value, &uit->it_value);
994
995 return ret;
996}
997EXPORT_SYMBOL_GPL(get_itimerspec64);
998
999/**
1000 * put_itimerspec64 - convert &struct itimerspec64 to __kernel_itimerspec format
1001 * and copy the latter to userspace
1002 * @it: input &struct itimerspec64
1003 * @uit: user's &struct __kernel_itimerspec
1004 *
1005 * Return: %0 on success or negative errno on error
1006 */
1007int put_itimerspec64(const struct itimerspec64 *it,
1008 struct __kernel_itimerspec __user *uit)
1009{
1010 int ret;
1011
1012 ret = put_timespec64(&it->it_interval, &uit->it_interval);
1013 if (ret)
1014 return ret;
1015
1016 ret = put_timespec64(&it->it_value, &uit->it_value);
1017
1018 return ret;
1019}
1020EXPORT_SYMBOL_GPL(put_itimerspec64);
1021
1022/**
1023 * get_old_itimerspec32 - get user's &struct old_itimerspec32 into kernel space
1024 * @its: destination &struct itimerspec64
1025 * @uits: user's &struct old_itimerspec32
1026 *
1027 * Return: %0 on success or negative errno on error
1028 */
1029int get_old_itimerspec32(struct itimerspec64 *its,
1030 const struct old_itimerspec32 __user *uits)
1031{
1032
1033 if (__get_old_timespec32(&its->it_interval, &uits->it_interval) ||
1034 __get_old_timespec32(&its->it_value, &uits->it_value))
1035 return -EFAULT;
1036 return 0;
1037}
1038EXPORT_SYMBOL_GPL(get_old_itimerspec32);
1039
1040/**
1041 * put_old_itimerspec32 - convert &struct itimerspec64 to &struct
1042 * old_itimerspec32 and copy the latter to userspace
1043 * @its: input &struct itimerspec64
1044 * @uits: user's &struct old_itimerspec32
1045 *
1046 * Return: %0 on success or negative errno on error
1047 */
1048int put_old_itimerspec32(const struct itimerspec64 *its,
1049 struct old_itimerspec32 __user *uits)
1050{
1051 if (__put_old_timespec32(&its->it_interval, &uits->it_interval) ||
1052 __put_old_timespec32(&its->it_value, &uits->it_value))
1053 return -EFAULT;
1054 return 0;
1055}
1056EXPORT_SYMBOL_GPL(put_old_itimerspec32);