Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v4.6
  1/*
  2 *  linux/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 *
  6 *  This file contains the interface functions for the various
  7 *  time related system calls: time, stime, gettimeofday, settimeofday,
  8 *			       adjtime
  9 */
 10/*
 11 * Modification history kernel/time.c
 12 *
 13 * 1993-09-02    Philip Gladstone
 14 *      Created file with time related functions from sched/core.c and adjtimex()
 15 * 1993-10-08    Torsten Duwe
 16 *      adjtime interface update and CMOS clock write code
 17 * 1995-08-13    Torsten Duwe
 18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 19 * 1999-01-16    Ulrich Windl
 20 *	Introduced error checking for many cases in adjtimex().
 21 *	Updated NTP code according to technical memorandum Jan '96
 22 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 23 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 24 *	(Even though the technical memorandum forbids it)
 25 * 2004-07-14	 Christoph Lameter
 26 *	Added getnstimeofday to allow the posix timer functions to return
 27 *	with nanosecond accuracy
 28 */
 29
 30#include <linux/export.h>
 31#include <linux/timex.h>
 32#include <linux/capability.h>
 33#include <linux/timekeeper_internal.h>
 34#include <linux/errno.h>
 35#include <linux/syscalls.h>
 36#include <linux/security.h>
 37#include <linux/fs.h>
 38#include <linux/math64.h>
 39#include <linux/ptrace.h>
 40
 41#include <asm/uaccess.h>
 
 42#include <asm/unistd.h>
 43
 44#include <generated/timeconst.h>
 45#include "timekeeping.h"
 46
 47/*
 48 * The timezone where the local system is located.  Used as a default by some
 49 * programs who obtain this value by using gettimeofday.
 50 */
 51struct timezone sys_tz;
 52
 53EXPORT_SYMBOL(sys_tz);
 54
 55#ifdef __ARCH_WANT_SYS_TIME
 56
 57/*
 58 * sys_time() can be implemented in user-level using
 59 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 60 * why not move it into the appropriate arch directory (for those
 61 * architectures that need it).
 62 */
 63SYSCALL_DEFINE1(time, time_t __user *, tloc)
 64{
 65	time_t i = get_seconds();
 66
 67	if (tloc) {
 68		if (put_user(i,tloc))
 69			return -EFAULT;
 70	}
 71	force_successful_syscall_return();
 72	return i;
 73}
 74
 75/*
 76 * sys_stime() can be implemented in user-level using
 77 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 78 * why not move it into the appropriate arch directory (for those
 79 * architectures that need it).
 80 */
 81
 82SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 83{
 84	struct timespec tv;
 85	int err;
 86
 87	if (get_user(tv.tv_sec, tptr))
 88		return -EFAULT;
 89
 90	tv.tv_nsec = 0;
 91
 92	err = security_settime(&tv, NULL);
 93	if (err)
 94		return err;
 95
 96	do_settimeofday(&tv);
 97	return 0;
 98}
 99
100#endif /* __ARCH_WANT_SYS_TIME */
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
103		struct timezone __user *, tz)
104{
105	if (likely(tv != NULL)) {
106		struct timeval ktv;
107		do_gettimeofday(&ktv);
108		if (copy_to_user(tv, &ktv, sizeof(ktv)))
109			return -EFAULT;
110	}
111	if (unlikely(tz != NULL)) {
112		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
113			return -EFAULT;
114	}
115	return 0;
116}
117
118/*
119 * Indicates if there is an offset between the system clock and the hardware
120 * clock/persistent clock/rtc.
121 */
122int persistent_clock_is_local;
123
124/*
125 * Adjust the time obtained from the CMOS to be UTC time instead of
126 * local time.
127 *
128 * This is ugly, but preferable to the alternatives.  Otherwise we
129 * would either need to write a program to do it in /etc/rc (and risk
130 * confusion if the program gets run more than once; it would also be
131 * hard to make the program warp the clock precisely n hours)  or
132 * compile in the timezone information into the kernel.  Bad, bad....
133 *
134 *						- TYT, 1992-01-01
135 *
136 * The best thing to do is to keep the CMOS clock in universal time (UTC)
137 * as real UNIX machines always do it. This avoids all headaches about
138 * daylight saving times and warping kernel clocks.
139 */
140static inline void warp_clock(void)
141{
142	if (sys_tz.tz_minuteswest != 0) {
143		struct timespec adjust;
144
145		persistent_clock_is_local = 1;
146		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
147		adjust.tv_nsec = 0;
148		timekeeping_inject_offset(&adjust);
149	}
150}
151
152/*
153 * In case for some reason the CMOS clock has not already been running
154 * in UTC, but in some local time: The first time we set the timezone,
155 * we will warp the clock so that it is ticking UTC time instead of
156 * local time. Presumably, if someone is setting the timezone then we
157 * are running in an environment where the programs understand about
158 * timezones. This should be done at boot time in the /etc/rc script,
159 * as soon as possible, so that the clock can be set right. Otherwise,
160 * various programs will get confused when the clock gets warped.
161 */
162
163int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
164{
165	static int firsttime = 1;
166	int error = 0;
167
168	if (tv && !timespec_valid(tv))
169		return -EINVAL;
170
171	error = security_settime(tv, tz);
172	if (error)
173		return error;
174
175	if (tz) {
176		/* Verify we're witin the +-15 hrs range */
177		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
178			return -EINVAL;
179
180		sys_tz = *tz;
181		update_vsyscall_tz();
182		if (firsttime) {
183			firsttime = 0;
184			if (!tv)
185				warp_clock();
186		}
187	}
188	if (tv)
189		return do_settimeofday(tv);
190	return 0;
191}
192
193SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
194		struct timezone __user *, tz)
195{
 
196	struct timeval user_tv;
197	struct timespec	new_ts;
198	struct timezone new_tz;
199
200	if (tv) {
201		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
202			return -EFAULT;
203
204		if (!timeval_valid(&user_tv))
205			return -EINVAL;
206
207		new_ts.tv_sec = user_tv.tv_sec;
208		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
209	}
210	if (tz) {
211		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
212			return -EFAULT;
213	}
214
215	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
216}
217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
218SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
219{
220	struct timex txc;		/* Local copy of parameter */
221	int ret;
222
223	/* Copy the user data space into the kernel copy
224	 * structure. But bear in mind that the structures
225	 * may change
226	 */
227	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
228		return -EFAULT;
229	ret = do_adjtimex(&txc);
230	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
231}
232
233/**
234 * current_fs_time - Return FS time
235 * @sb: Superblock.
236 *
237 * Return the current time truncated to the time granularity supported by
238 * the fs.
239 */
240struct timespec current_fs_time(struct super_block *sb)
241{
242	struct timespec now = current_kernel_time();
243	return timespec_trunc(now, sb->s_time_gran);
 
 
 
 
 
 
 
 
 
 
 
 
244}
245EXPORT_SYMBOL(current_fs_time);
246
247/*
248 * Convert jiffies to milliseconds and back.
249 *
250 * Avoid unnecessary multiplications/divisions in the
251 * two most common HZ cases:
252 */
253unsigned int jiffies_to_msecs(const unsigned long j)
254{
255#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
256	return (MSEC_PER_SEC / HZ) * j;
257#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
258	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
259#else
260# if BITS_PER_LONG == 32
261	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
262# else
263	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
264# endif
265#endif
266}
267EXPORT_SYMBOL(jiffies_to_msecs);
268
269unsigned int jiffies_to_usecs(const unsigned long j)
270{
271	/*
272	 * Hz usually doesn't go much further MSEC_PER_SEC.
273	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
274	 */
275	BUILD_BUG_ON(HZ > USEC_PER_SEC);
276
277#if !(USEC_PER_SEC % HZ)
278	return (USEC_PER_SEC / HZ) * j;
279#else
280# if BITS_PER_LONG == 32
281	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
282# else
283	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
284# endif
285#endif
286}
287EXPORT_SYMBOL(jiffies_to_usecs);
288
289/**
290 * timespec_trunc - Truncate timespec to a granularity
291 * @t: Timespec
292 * @gran: Granularity in ns.
293 *
294 * Truncate a timespec to a granularity. Always rounds down. gran must
295 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
296 */
297struct timespec timespec_trunc(struct timespec t, unsigned gran)
298{
299	/* Avoid division in the common cases 1 ns and 1 s. */
300	if (gran == 1) {
301		/* nothing */
302	} else if (gran == NSEC_PER_SEC) {
303		t.tv_nsec = 0;
304	} else if (gran > 1 && gran < NSEC_PER_SEC) {
305		t.tv_nsec -= t.tv_nsec % gran;
306	} else {
307		WARN(1, "illegal file time granularity: %u", gran);
308	}
309	return t;
310}
311EXPORT_SYMBOL(timespec_trunc);
312
313/*
314 * mktime64 - Converts date to seconds.
315 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
316 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
317 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
318 *
319 * [For the Julian calendar (which was used in Russia before 1917,
320 * Britain & colonies before 1752, anywhere else before 1582,
321 * and is still in use by some communities) leave out the
322 * -year/100+year/400 terms, and add 10.]
323 *
324 * This algorithm was first published by Gauss (I think).
325 *
326 * A leap second can be indicated by calling this function with sec as
327 * 60 (allowable under ISO 8601).  The leap second is treated the same
328 * as the following second since they don't exist in UNIX time.
329 *
330 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
331 * tomorrow - (allowable under ISO 8601) is supported.
332 */
333time64_t mktime64(const unsigned int year0, const unsigned int mon0,
334		const unsigned int day, const unsigned int hour,
335		const unsigned int min, const unsigned int sec)
336{
337	unsigned int mon = mon0, year = year0;
338
339	/* 1..12 -> 11,12,1..10 */
340	if (0 >= (int) (mon -= 2)) {
341		mon += 12;	/* Puts Feb last since it has leap day */
342		year -= 1;
343	}
344
345	return ((((time64_t)
346		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
347		  year*365 - 719499
348	    )*24 + hour /* now have hours - midnight tomorrow handled here */
349	  )*60 + min /* now have minutes */
350	)*60 + sec; /* finally seconds */
351}
352EXPORT_SYMBOL(mktime64);
353
 
354/**
355 * set_normalized_timespec - set timespec sec and nsec parts and normalize
356 *
357 * @ts:		pointer to timespec variable to be set
358 * @sec:	seconds to set
359 * @nsec:	nanoseconds to set
360 *
361 * Set seconds and nanoseconds field of a timespec variable and
362 * normalize to the timespec storage format
363 *
364 * Note: The tv_nsec part is always in the range of
365 *	0 <= tv_nsec < NSEC_PER_SEC
366 * For negative values only the tv_sec field is negative !
367 */
368void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
369{
370	while (nsec >= NSEC_PER_SEC) {
371		/*
372		 * The following asm() prevents the compiler from
373		 * optimising this loop into a modulo operation. See
374		 * also __iter_div_u64_rem() in include/linux/time.h
375		 */
376		asm("" : "+rm"(nsec));
377		nsec -= NSEC_PER_SEC;
378		++sec;
379	}
380	while (nsec < 0) {
381		asm("" : "+rm"(nsec));
382		nsec += NSEC_PER_SEC;
383		--sec;
384	}
385	ts->tv_sec = sec;
386	ts->tv_nsec = nsec;
387}
388EXPORT_SYMBOL(set_normalized_timespec);
389
390/**
391 * ns_to_timespec - Convert nanoseconds to timespec
392 * @nsec:       the nanoseconds value to be converted
393 *
394 * Returns the timespec representation of the nsec parameter.
395 */
396struct timespec ns_to_timespec(const s64 nsec)
397{
398	struct timespec ts;
399	s32 rem;
400
401	if (!nsec)
402		return (struct timespec) {0, 0};
403
404	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
405	if (unlikely(rem < 0)) {
406		ts.tv_sec--;
407		rem += NSEC_PER_SEC;
408	}
409	ts.tv_nsec = rem;
410
411	return ts;
412}
413EXPORT_SYMBOL(ns_to_timespec);
 
414
415/**
416 * ns_to_timeval - Convert nanoseconds to timeval
417 * @nsec:       the nanoseconds value to be converted
418 *
419 * Returns the timeval representation of the nsec parameter.
420 */
421struct timeval ns_to_timeval(const s64 nsec)
422{
423	struct timespec ts = ns_to_timespec(nsec);
424	struct timeval tv;
425
426	tv.tv_sec = ts.tv_sec;
427	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
428
429	return tv;
430}
431EXPORT_SYMBOL(ns_to_timeval);
432
433#if BITS_PER_LONG == 32
 
 
 
 
 
 
 
 
 
 
 
434/**
435 * set_normalized_timespec - set timespec sec and nsec parts and normalize
436 *
437 * @ts:		pointer to timespec variable to be set
438 * @sec:	seconds to set
439 * @nsec:	nanoseconds to set
440 *
441 * Set seconds and nanoseconds field of a timespec variable and
442 * normalize to the timespec storage format
443 *
444 * Note: The tv_nsec part is always in the range of
445 *	0 <= tv_nsec < NSEC_PER_SEC
446 * For negative values only the tv_sec field is negative !
447 */
448void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
449{
450	while (nsec >= NSEC_PER_SEC) {
451		/*
452		 * The following asm() prevents the compiler from
453		 * optimising this loop into a modulo operation. See
454		 * also __iter_div_u64_rem() in include/linux/time.h
455		 */
456		asm("" : "+rm"(nsec));
457		nsec -= NSEC_PER_SEC;
458		++sec;
459	}
460	while (nsec < 0) {
461		asm("" : "+rm"(nsec));
462		nsec += NSEC_PER_SEC;
463		--sec;
464	}
465	ts->tv_sec = sec;
466	ts->tv_nsec = nsec;
467}
468EXPORT_SYMBOL(set_normalized_timespec64);
469
470/**
471 * ns_to_timespec64 - Convert nanoseconds to timespec64
472 * @nsec:       the nanoseconds value to be converted
473 *
474 * Returns the timespec64 representation of the nsec parameter.
475 */
476struct timespec64 ns_to_timespec64(const s64 nsec)
477{
478	struct timespec64 ts;
479	s32 rem;
480
481	if (!nsec)
482		return (struct timespec64) {0, 0};
483
484	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
485	if (unlikely(rem < 0)) {
486		ts.tv_sec--;
487		rem += NSEC_PER_SEC;
488	}
489	ts.tv_nsec = rem;
490
491	return ts;
492}
493EXPORT_SYMBOL(ns_to_timespec64);
494#endif
495/**
496 * msecs_to_jiffies: - convert milliseconds to jiffies
497 * @m:	time in milliseconds
498 *
499 * conversion is done as follows:
500 *
501 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
502 *
503 * - 'too large' values [that would result in larger than
504 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
505 *
506 * - all other values are converted to jiffies by either multiplying
507 *   the input value by a factor or dividing it with a factor and
508 *   handling any 32-bit overflows.
509 *   for the details see __msecs_to_jiffies()
510 *
511 * msecs_to_jiffies() checks for the passed in value being a constant
512 * via __builtin_constant_p() allowing gcc to eliminate most of the
513 * code, __msecs_to_jiffies() is called if the value passed does not
514 * allow constant folding and the actual conversion must be done at
515 * runtime.
516 * the _msecs_to_jiffies helpers are the HZ dependent conversion
517 * routines found in include/linux/jiffies.h
518 */
519unsigned long __msecs_to_jiffies(const unsigned int m)
520{
521	/*
522	 * Negative value, means infinite timeout:
523	 */
524	if ((int)m < 0)
525		return MAX_JIFFY_OFFSET;
526	return _msecs_to_jiffies(m);
527}
528EXPORT_SYMBOL(__msecs_to_jiffies);
529
530unsigned long __usecs_to_jiffies(const unsigned int u)
531{
532	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
533		return MAX_JIFFY_OFFSET;
534	return _usecs_to_jiffies(u);
535}
536EXPORT_SYMBOL(__usecs_to_jiffies);
537
538/*
539 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
540 * that a remainder subtract here would not do the right thing as the
541 * resolution values don't fall on second boundries.  I.e. the line:
542 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
543 * Note that due to the small error in the multiplier here, this
544 * rounding is incorrect for sufficiently large values of tv_nsec, but
545 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
546 * OK.
547 *
548 * Rather, we just shift the bits off the right.
549 *
550 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
551 * value to a scaled second value.
552 */
553static unsigned long
554__timespec64_to_jiffies(u64 sec, long nsec)
555{
556	nsec = nsec + TICK_NSEC - 1;
557
558	if (sec >= MAX_SEC_IN_JIFFIES){
559		sec = MAX_SEC_IN_JIFFIES;
560		nsec = 0;
561	}
562	return ((sec * SEC_CONVERSION) +
563		(((u64)nsec * NSEC_CONVERSION) >>
564		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
565
566}
567
568static unsigned long
569__timespec_to_jiffies(unsigned long sec, long nsec)
570{
571	return __timespec64_to_jiffies((u64)sec, nsec);
572}
573
574unsigned long
575timespec64_to_jiffies(const struct timespec64 *value)
576{
577	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
578}
579EXPORT_SYMBOL(timespec64_to_jiffies);
580
581void
582jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
583{
584	/*
585	 * Convert jiffies to nanoseconds and separate with
586	 * one divide.
587	 */
588	u32 rem;
589	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
590				    NSEC_PER_SEC, &rem);
591	value->tv_nsec = rem;
592}
593EXPORT_SYMBOL(jiffies_to_timespec64);
594
595/*
596 * We could use a similar algorithm to timespec_to_jiffies (with a
597 * different multiplier for usec instead of nsec). But this has a
598 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
599 * usec value, since it's not necessarily integral.
600 *
601 * We could instead round in the intermediate scaled representation
602 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
603 * perilous: the scaling introduces a small positive error, which
604 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
605 * units to the intermediate before shifting) leads to accidental
606 * overflow and overestimates.
607 *
608 * At the cost of one additional multiplication by a constant, just
609 * use the timespec implementation.
610 */
611unsigned long
612timeval_to_jiffies(const struct timeval *value)
613{
614	return __timespec_to_jiffies(value->tv_sec,
615				     value->tv_usec * NSEC_PER_USEC);
616}
617EXPORT_SYMBOL(timeval_to_jiffies);
618
619void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
620{
621	/*
622	 * Convert jiffies to nanoseconds and separate with
623	 * one divide.
624	 */
625	u32 rem;
626
627	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
628				    NSEC_PER_SEC, &rem);
629	value->tv_usec = rem / NSEC_PER_USEC;
630}
631EXPORT_SYMBOL(jiffies_to_timeval);
632
633/*
634 * Convert jiffies/jiffies_64 to clock_t and back.
635 */
636clock_t jiffies_to_clock_t(unsigned long x)
637{
638#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
639# if HZ < USER_HZ
640	return x * (USER_HZ / HZ);
641# else
642	return x / (HZ / USER_HZ);
643# endif
644#else
645	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
646#endif
647}
648EXPORT_SYMBOL(jiffies_to_clock_t);
649
650unsigned long clock_t_to_jiffies(unsigned long x)
651{
652#if (HZ % USER_HZ)==0
653	if (x >= ~0UL / (HZ / USER_HZ))
654		return ~0UL;
655	return x * (HZ / USER_HZ);
656#else
657	/* Don't worry about loss of precision here .. */
658	if (x >= ~0UL / HZ * USER_HZ)
659		return ~0UL;
660
661	/* .. but do try to contain it here */
662	return div_u64((u64)x * HZ, USER_HZ);
663#endif
664}
665EXPORT_SYMBOL(clock_t_to_jiffies);
666
667u64 jiffies_64_to_clock_t(u64 x)
668{
669#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
670# if HZ < USER_HZ
671	x = div_u64(x * USER_HZ, HZ);
672# elif HZ > USER_HZ
673	x = div_u64(x, HZ / USER_HZ);
674# else
675	/* Nothing to do */
676# endif
677#else
678	/*
679	 * There are better ways that don't overflow early,
680	 * but even this doesn't overflow in hundreds of years
681	 * in 64 bits, so..
682	 */
683	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
684#endif
685	return x;
686}
687EXPORT_SYMBOL(jiffies_64_to_clock_t);
688
689u64 nsec_to_clock_t(u64 x)
690{
691#if (NSEC_PER_SEC % USER_HZ) == 0
692	return div_u64(x, NSEC_PER_SEC / USER_HZ);
693#elif (USER_HZ % 512) == 0
694	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
695#else
696	/*
697         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
698         * overflow after 64.99 years.
699         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
700         */
701	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
702#endif
703}
704
 
 
 
 
 
 
 
 
 
 
705/**
706 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
707 *
708 * @n:	nsecs in u64
709 *
710 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
711 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
712 * for scheduler, not for use in device drivers to calculate timeout value.
713 *
714 * note:
715 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
716 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
717 */
718u64 nsecs_to_jiffies64(u64 n)
719{
720#if (NSEC_PER_SEC % HZ) == 0
721	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
722	return div_u64(n, NSEC_PER_SEC / HZ);
723#elif (HZ % 512) == 0
724	/* overflow after 292 years if HZ = 1024 */
725	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
726#else
727	/*
728	 * Generic case - optimized for cases where HZ is a multiple of 3.
729	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
730	 */
731	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
732#endif
733}
734EXPORT_SYMBOL(nsecs_to_jiffies64);
735
736/**
737 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
738 *
739 * @n:	nsecs in u64
740 *
741 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
742 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
743 * for scheduler, not for use in device drivers to calculate timeout value.
744 *
745 * note:
746 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
747 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
748 */
749unsigned long nsecs_to_jiffies(u64 n)
750{
751	return (unsigned long)nsecs_to_jiffies64(n);
752}
753EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
754
755/*
756 * Add two timespec values and do a safety check for overflow.
757 * It's assumed that both values are valid (>= 0)
 
758 */
759struct timespec timespec_add_safe(const struct timespec lhs,
760				  const struct timespec rhs)
761{
762	struct timespec res;
763
764	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
765				lhs.tv_nsec + rhs.tv_nsec);
766
767	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
768		res.tv_sec = TIME_T_MAX;
 
 
769
770	return res;
771}
v4.17
  1/*
  2 *  linux/kernel/time.c
  3 *
  4 *  Copyright (C) 1991, 1992  Linus Torvalds
  5 *
  6 *  This file contains the interface functions for the various
  7 *  time related system calls: time, stime, gettimeofday, settimeofday,
  8 *			       adjtime
  9 */
 10/*
 11 * Modification history kernel/time.c
 12 *
 13 * 1993-09-02    Philip Gladstone
 14 *      Created file with time related functions from sched/core.c and adjtimex()
 15 * 1993-10-08    Torsten Duwe
 16 *      adjtime interface update and CMOS clock write code
 17 * 1995-08-13    Torsten Duwe
 18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
 19 * 1999-01-16    Ulrich Windl
 20 *	Introduced error checking for many cases in adjtimex().
 21 *	Updated NTP code according to technical memorandum Jan '96
 22 *	"A Kernel Model for Precision Timekeeping" by Dave Mills
 23 *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
 24 *	(Even though the technical memorandum forbids it)
 25 * 2004-07-14	 Christoph Lameter
 26 *	Added getnstimeofday to allow the posix timer functions to return
 27 *	with nanosecond accuracy
 28 */
 29
 30#include <linux/export.h>
 31#include <linux/timex.h>
 32#include <linux/capability.h>
 33#include <linux/timekeeper_internal.h>
 34#include <linux/errno.h>
 35#include <linux/syscalls.h>
 36#include <linux/security.h>
 37#include <linux/fs.h>
 38#include <linux/math64.h>
 39#include <linux/ptrace.h>
 40
 41#include <linux/uaccess.h>
 42#include <linux/compat.h>
 43#include <asm/unistd.h>
 44
 45#include <generated/timeconst.h>
 46#include "timekeeping.h"
 47
 48/*
 49 * The timezone where the local system is located.  Used as a default by some
 50 * programs who obtain this value by using gettimeofday.
 51 */
 52struct timezone sys_tz;
 53
 54EXPORT_SYMBOL(sys_tz);
 55
 56#ifdef __ARCH_WANT_SYS_TIME
 57
 58/*
 59 * sys_time() can be implemented in user-level using
 60 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
 61 * why not move it into the appropriate arch directory (for those
 62 * architectures that need it).
 63 */
 64SYSCALL_DEFINE1(time, time_t __user *, tloc)
 65{
 66	time_t i = get_seconds();
 67
 68	if (tloc) {
 69		if (put_user(i,tloc))
 70			return -EFAULT;
 71	}
 72	force_successful_syscall_return();
 73	return i;
 74}
 75
 76/*
 77 * sys_stime() can be implemented in user-level using
 78 * sys_settimeofday().  Is this for backwards compatibility?  If so,
 79 * why not move it into the appropriate arch directory (for those
 80 * architectures that need it).
 81 */
 82
 83SYSCALL_DEFINE1(stime, time_t __user *, tptr)
 84{
 85	struct timespec64 tv;
 86	int err;
 87
 88	if (get_user(tv.tv_sec, tptr))
 89		return -EFAULT;
 90
 91	tv.tv_nsec = 0;
 92
 93	err = security_settime64(&tv, NULL);
 94	if (err)
 95		return err;
 96
 97	do_settimeofday64(&tv);
 98	return 0;
 99}
100
101#endif /* __ARCH_WANT_SYS_TIME */
102
103#ifdef CONFIG_COMPAT
104#ifdef __ARCH_WANT_COMPAT_SYS_TIME
105
106/* compat_time_t is a 32 bit "long" and needs to get converted. */
107COMPAT_SYSCALL_DEFINE1(time, compat_time_t __user *, tloc)
108{
109	struct timeval tv;
110	compat_time_t i;
111
112	do_gettimeofday(&tv);
113	i = tv.tv_sec;
114
115	if (tloc) {
116		if (put_user(i,tloc))
117			return -EFAULT;
118	}
119	force_successful_syscall_return();
120	return i;
121}
122
123COMPAT_SYSCALL_DEFINE1(stime, compat_time_t __user *, tptr)
124{
125	struct timespec64 tv;
126	int err;
127
128	if (get_user(tv.tv_sec, tptr))
129		return -EFAULT;
130
131	tv.tv_nsec = 0;
132
133	err = security_settime64(&tv, NULL);
134	if (err)
135		return err;
136
137	do_settimeofday64(&tv);
138	return 0;
139}
140
141#endif /* __ARCH_WANT_COMPAT_SYS_TIME */
142#endif
143
144SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
145		struct timezone __user *, tz)
146{
147	if (likely(tv != NULL)) {
148		struct timeval ktv;
149		do_gettimeofday(&ktv);
150		if (copy_to_user(tv, &ktv, sizeof(ktv)))
151			return -EFAULT;
152	}
153	if (unlikely(tz != NULL)) {
154		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
155			return -EFAULT;
156	}
157	return 0;
158}
159
160/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161 * In case for some reason the CMOS clock has not already been running
162 * in UTC, but in some local time: The first time we set the timezone,
163 * we will warp the clock so that it is ticking UTC time instead of
164 * local time. Presumably, if someone is setting the timezone then we
165 * are running in an environment where the programs understand about
166 * timezones. This should be done at boot time in the /etc/rc script,
167 * as soon as possible, so that the clock can be set right. Otherwise,
168 * various programs will get confused when the clock gets warped.
169 */
170
171int do_sys_settimeofday64(const struct timespec64 *tv, const struct timezone *tz)
172{
173	static int firsttime = 1;
174	int error = 0;
175
176	if (tv && !timespec64_valid(tv))
177		return -EINVAL;
178
179	error = security_settime64(tv, tz);
180	if (error)
181		return error;
182
183	if (tz) {
184		/* Verify we're witin the +-15 hrs range */
185		if (tz->tz_minuteswest > 15*60 || tz->tz_minuteswest < -15*60)
186			return -EINVAL;
187
188		sys_tz = *tz;
189		update_vsyscall_tz();
190		if (firsttime) {
191			firsttime = 0;
192			if (!tv)
193				timekeeping_warp_clock();
194		}
195	}
196	if (tv)
197		return do_settimeofday64(tv);
198	return 0;
199}
200
201SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
202		struct timezone __user *, tz)
203{
204	struct timespec64 new_ts;
205	struct timeval user_tv;
 
206	struct timezone new_tz;
207
208	if (tv) {
209		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
210			return -EFAULT;
211
212		if (!timeval_valid(&user_tv))
213			return -EINVAL;
214
215		new_ts.tv_sec = user_tv.tv_sec;
216		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
217	}
218	if (tz) {
219		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
220			return -EFAULT;
221	}
222
223	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
224}
225
226#ifdef CONFIG_COMPAT
227COMPAT_SYSCALL_DEFINE2(gettimeofday, struct compat_timeval __user *, tv,
228		       struct timezone __user *, tz)
229{
230	if (tv) {
231		struct timeval ktv;
232
233		do_gettimeofday(&ktv);
234		if (compat_put_timeval(&ktv, tv))
235			return -EFAULT;
236	}
237	if (tz) {
238		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
239			return -EFAULT;
240	}
241
242	return 0;
243}
244
245COMPAT_SYSCALL_DEFINE2(settimeofday, struct compat_timeval __user *, tv,
246		       struct timezone __user *, tz)
247{
248	struct timespec64 new_ts;
249	struct timeval user_tv;
250	struct timezone new_tz;
251
252	if (tv) {
253		if (compat_get_timeval(&user_tv, tv))
254			return -EFAULT;
255		new_ts.tv_sec = user_tv.tv_sec;
256		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
257	}
258	if (tz) {
259		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
260			return -EFAULT;
261	}
262
263	return do_sys_settimeofday64(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
264}
265#endif
266
267SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
268{
269	struct timex txc;		/* Local copy of parameter */
270	int ret;
271
272	/* Copy the user data space into the kernel copy
273	 * structure. But bear in mind that the structures
274	 * may change
275	 */
276	if (copy_from_user(&txc, txc_p, sizeof(struct timex)))
277		return -EFAULT;
278	ret = do_adjtimex(&txc);
279	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
280}
281
282#ifdef CONFIG_COMPAT
283
284COMPAT_SYSCALL_DEFINE1(adjtimex, struct compat_timex __user *, utp)
 
 
 
 
 
285{
286	struct timex txc;
287	int err, ret;
288
289	err = compat_get_timex(&txc, utp);
290	if (err)
291		return err;
292
293	ret = do_adjtimex(&txc);
294
295	err = compat_put_timex(utp, &txc);
296	if (err)
297		return err;
298
299	return ret;
300}
301#endif
302
303/*
304 * Convert jiffies to milliseconds and back.
305 *
306 * Avoid unnecessary multiplications/divisions in the
307 * two most common HZ cases:
308 */
309unsigned int jiffies_to_msecs(const unsigned long j)
310{
311#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
312	return (MSEC_PER_SEC / HZ) * j;
313#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
314	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
315#else
316# if BITS_PER_LONG == 32
317	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
318# else
319	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
320# endif
321#endif
322}
323EXPORT_SYMBOL(jiffies_to_msecs);
324
325unsigned int jiffies_to_usecs(const unsigned long j)
326{
327	/*
328	 * Hz usually doesn't go much further MSEC_PER_SEC.
329	 * jiffies_to_usecs() and usecs_to_jiffies() depend on that.
330	 */
331	BUILD_BUG_ON(HZ > USEC_PER_SEC);
332
333#if !(USEC_PER_SEC % HZ)
334	return (USEC_PER_SEC / HZ) * j;
335#else
336# if BITS_PER_LONG == 32
337	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
338# else
339	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
340# endif
341#endif
342}
343EXPORT_SYMBOL(jiffies_to_usecs);
344
345/**
346 * timespec_trunc - Truncate timespec to a granularity
347 * @t: Timespec
348 * @gran: Granularity in ns.
349 *
350 * Truncate a timespec to a granularity. Always rounds down. gran must
351 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
352 */
353struct timespec timespec_trunc(struct timespec t, unsigned gran)
354{
355	/* Avoid division in the common cases 1 ns and 1 s. */
356	if (gran == 1) {
357		/* nothing */
358	} else if (gran == NSEC_PER_SEC) {
359		t.tv_nsec = 0;
360	} else if (gran > 1 && gran < NSEC_PER_SEC) {
361		t.tv_nsec -= t.tv_nsec % gran;
362	} else {
363		WARN(1, "illegal file time granularity: %u", gran);
364	}
365	return t;
366}
367EXPORT_SYMBOL(timespec_trunc);
368
369/*
370 * mktime64 - Converts date to seconds.
371 * Converts Gregorian date to seconds since 1970-01-01 00:00:00.
372 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
373 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
374 *
375 * [For the Julian calendar (which was used in Russia before 1917,
376 * Britain & colonies before 1752, anywhere else before 1582,
377 * and is still in use by some communities) leave out the
378 * -year/100+year/400 terms, and add 10.]
379 *
380 * This algorithm was first published by Gauss (I think).
381 *
382 * A leap second can be indicated by calling this function with sec as
383 * 60 (allowable under ISO 8601).  The leap second is treated the same
384 * as the following second since they don't exist in UNIX time.
385 *
386 * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight
387 * tomorrow - (allowable under ISO 8601) is supported.
388 */
389time64_t mktime64(const unsigned int year0, const unsigned int mon0,
390		const unsigned int day, const unsigned int hour,
391		const unsigned int min, const unsigned int sec)
392{
393	unsigned int mon = mon0, year = year0;
394
395	/* 1..12 -> 11,12,1..10 */
396	if (0 >= (int) (mon -= 2)) {
397		mon += 12;	/* Puts Feb last since it has leap day */
398		year -= 1;
399	}
400
401	return ((((time64_t)
402		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
403		  year*365 - 719499
404	    )*24 + hour /* now have hours - midnight tomorrow handled here */
405	  )*60 + min /* now have minutes */
406	)*60 + sec; /* finally seconds */
407}
408EXPORT_SYMBOL(mktime64);
409
410#if __BITS_PER_LONG == 32
411/**
412 * set_normalized_timespec - set timespec sec and nsec parts and normalize
413 *
414 * @ts:		pointer to timespec variable to be set
415 * @sec:	seconds to set
416 * @nsec:	nanoseconds to set
417 *
418 * Set seconds and nanoseconds field of a timespec variable and
419 * normalize to the timespec storage format
420 *
421 * Note: The tv_nsec part is always in the range of
422 *	0 <= tv_nsec < NSEC_PER_SEC
423 * For negative values only the tv_sec field is negative !
424 */
425void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
426{
427	while (nsec >= NSEC_PER_SEC) {
428		/*
429		 * The following asm() prevents the compiler from
430		 * optimising this loop into a modulo operation. See
431		 * also __iter_div_u64_rem() in include/linux/time.h
432		 */
433		asm("" : "+rm"(nsec));
434		nsec -= NSEC_PER_SEC;
435		++sec;
436	}
437	while (nsec < 0) {
438		asm("" : "+rm"(nsec));
439		nsec += NSEC_PER_SEC;
440		--sec;
441	}
442	ts->tv_sec = sec;
443	ts->tv_nsec = nsec;
444}
445EXPORT_SYMBOL(set_normalized_timespec);
446
447/**
448 * ns_to_timespec - Convert nanoseconds to timespec
449 * @nsec:       the nanoseconds value to be converted
450 *
451 * Returns the timespec representation of the nsec parameter.
452 */
453struct timespec ns_to_timespec(const s64 nsec)
454{
455	struct timespec ts;
456	s32 rem;
457
458	if (!nsec)
459		return (struct timespec) {0, 0};
460
461	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
462	if (unlikely(rem < 0)) {
463		ts.tv_sec--;
464		rem += NSEC_PER_SEC;
465	}
466	ts.tv_nsec = rem;
467
468	return ts;
469}
470EXPORT_SYMBOL(ns_to_timespec);
471#endif
472
473/**
474 * ns_to_timeval - Convert nanoseconds to timeval
475 * @nsec:       the nanoseconds value to be converted
476 *
477 * Returns the timeval representation of the nsec parameter.
478 */
479struct timeval ns_to_timeval(const s64 nsec)
480{
481	struct timespec ts = ns_to_timespec(nsec);
482	struct timeval tv;
483
484	tv.tv_sec = ts.tv_sec;
485	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
486
487	return tv;
488}
489EXPORT_SYMBOL(ns_to_timeval);
490
491struct __kernel_old_timeval ns_to_kernel_old_timeval(const s64 nsec)
492{
493	struct timespec64 ts = ns_to_timespec64(nsec);
494	struct __kernel_old_timeval tv;
495
496	tv.tv_sec = ts.tv_sec;
497	tv.tv_usec = (suseconds_t)ts.tv_nsec / 1000;
498
499	return tv;
500}
501EXPORT_SYMBOL(ns_to_kernel_old_timeval);
502
503/**
504 * set_normalized_timespec - set timespec sec and nsec parts and normalize
505 *
506 * @ts:		pointer to timespec variable to be set
507 * @sec:	seconds to set
508 * @nsec:	nanoseconds to set
509 *
510 * Set seconds and nanoseconds field of a timespec variable and
511 * normalize to the timespec storage format
512 *
513 * Note: The tv_nsec part is always in the range of
514 *	0 <= tv_nsec < NSEC_PER_SEC
515 * For negative values only the tv_sec field is negative !
516 */
517void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec)
518{
519	while (nsec >= NSEC_PER_SEC) {
520		/*
521		 * The following asm() prevents the compiler from
522		 * optimising this loop into a modulo operation. See
523		 * also __iter_div_u64_rem() in include/linux/time.h
524		 */
525		asm("" : "+rm"(nsec));
526		nsec -= NSEC_PER_SEC;
527		++sec;
528	}
529	while (nsec < 0) {
530		asm("" : "+rm"(nsec));
531		nsec += NSEC_PER_SEC;
532		--sec;
533	}
534	ts->tv_sec = sec;
535	ts->tv_nsec = nsec;
536}
537EXPORT_SYMBOL(set_normalized_timespec64);
538
539/**
540 * ns_to_timespec64 - Convert nanoseconds to timespec64
541 * @nsec:       the nanoseconds value to be converted
542 *
543 * Returns the timespec64 representation of the nsec parameter.
544 */
545struct timespec64 ns_to_timespec64(const s64 nsec)
546{
547	struct timespec64 ts;
548	s32 rem;
549
550	if (!nsec)
551		return (struct timespec64) {0, 0};
552
553	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
554	if (unlikely(rem < 0)) {
555		ts.tv_sec--;
556		rem += NSEC_PER_SEC;
557	}
558	ts.tv_nsec = rem;
559
560	return ts;
561}
562EXPORT_SYMBOL(ns_to_timespec64);
563
564/**
565 * msecs_to_jiffies: - convert milliseconds to jiffies
566 * @m:	time in milliseconds
567 *
568 * conversion is done as follows:
569 *
570 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
571 *
572 * - 'too large' values [that would result in larger than
573 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
574 *
575 * - all other values are converted to jiffies by either multiplying
576 *   the input value by a factor or dividing it with a factor and
577 *   handling any 32-bit overflows.
578 *   for the details see __msecs_to_jiffies()
579 *
580 * msecs_to_jiffies() checks for the passed in value being a constant
581 * via __builtin_constant_p() allowing gcc to eliminate most of the
582 * code, __msecs_to_jiffies() is called if the value passed does not
583 * allow constant folding and the actual conversion must be done at
584 * runtime.
585 * the _msecs_to_jiffies helpers are the HZ dependent conversion
586 * routines found in include/linux/jiffies.h
587 */
588unsigned long __msecs_to_jiffies(const unsigned int m)
589{
590	/*
591	 * Negative value, means infinite timeout:
592	 */
593	if ((int)m < 0)
594		return MAX_JIFFY_OFFSET;
595	return _msecs_to_jiffies(m);
596}
597EXPORT_SYMBOL(__msecs_to_jiffies);
598
599unsigned long __usecs_to_jiffies(const unsigned int u)
600{
601	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
602		return MAX_JIFFY_OFFSET;
603	return _usecs_to_jiffies(u);
604}
605EXPORT_SYMBOL(__usecs_to_jiffies);
606
607/*
608 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
609 * that a remainder subtract here would not do the right thing as the
610 * resolution values don't fall on second boundries.  I.e. the line:
611 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
612 * Note that due to the small error in the multiplier here, this
613 * rounding is incorrect for sufficiently large values of tv_nsec, but
614 * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're
615 * OK.
616 *
617 * Rather, we just shift the bits off the right.
618 *
619 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
620 * value to a scaled second value.
621 */
622static unsigned long
623__timespec64_to_jiffies(u64 sec, long nsec)
624{
625	nsec = nsec + TICK_NSEC - 1;
626
627	if (sec >= MAX_SEC_IN_JIFFIES){
628		sec = MAX_SEC_IN_JIFFIES;
629		nsec = 0;
630	}
631	return ((sec * SEC_CONVERSION) +
632		(((u64)nsec * NSEC_CONVERSION) >>
633		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
634
635}
636
637static unsigned long
638__timespec_to_jiffies(unsigned long sec, long nsec)
639{
640	return __timespec64_to_jiffies((u64)sec, nsec);
641}
642
643unsigned long
644timespec64_to_jiffies(const struct timespec64 *value)
645{
646	return __timespec64_to_jiffies(value->tv_sec, value->tv_nsec);
647}
648EXPORT_SYMBOL(timespec64_to_jiffies);
649
650void
651jiffies_to_timespec64(const unsigned long jiffies, struct timespec64 *value)
652{
653	/*
654	 * Convert jiffies to nanoseconds and separate with
655	 * one divide.
656	 */
657	u32 rem;
658	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
659				    NSEC_PER_SEC, &rem);
660	value->tv_nsec = rem;
661}
662EXPORT_SYMBOL(jiffies_to_timespec64);
663
664/*
665 * We could use a similar algorithm to timespec_to_jiffies (with a
666 * different multiplier for usec instead of nsec). But this has a
667 * problem with rounding: we can't exactly add TICK_NSEC - 1 to the
668 * usec value, since it's not necessarily integral.
669 *
670 * We could instead round in the intermediate scaled representation
671 * (i.e. in units of 1/2^(large scale) jiffies) but that's also
672 * perilous: the scaling introduces a small positive error, which
673 * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1
674 * units to the intermediate before shifting) leads to accidental
675 * overflow and overestimates.
676 *
677 * At the cost of one additional multiplication by a constant, just
678 * use the timespec implementation.
679 */
680unsigned long
681timeval_to_jiffies(const struct timeval *value)
682{
683	return __timespec_to_jiffies(value->tv_sec,
684				     value->tv_usec * NSEC_PER_USEC);
685}
686EXPORT_SYMBOL(timeval_to_jiffies);
687
688void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
689{
690	/*
691	 * Convert jiffies to nanoseconds and separate with
692	 * one divide.
693	 */
694	u32 rem;
695
696	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
697				    NSEC_PER_SEC, &rem);
698	value->tv_usec = rem / NSEC_PER_USEC;
699}
700EXPORT_SYMBOL(jiffies_to_timeval);
701
702/*
703 * Convert jiffies/jiffies_64 to clock_t and back.
704 */
705clock_t jiffies_to_clock_t(unsigned long x)
706{
707#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
708# if HZ < USER_HZ
709	return x * (USER_HZ / HZ);
710# else
711	return x / (HZ / USER_HZ);
712# endif
713#else
714	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
715#endif
716}
717EXPORT_SYMBOL(jiffies_to_clock_t);
718
719unsigned long clock_t_to_jiffies(unsigned long x)
720{
721#if (HZ % USER_HZ)==0
722	if (x >= ~0UL / (HZ / USER_HZ))
723		return ~0UL;
724	return x * (HZ / USER_HZ);
725#else
726	/* Don't worry about loss of precision here .. */
727	if (x >= ~0UL / HZ * USER_HZ)
728		return ~0UL;
729
730	/* .. but do try to contain it here */
731	return div_u64((u64)x * HZ, USER_HZ);
732#endif
733}
734EXPORT_SYMBOL(clock_t_to_jiffies);
735
736u64 jiffies_64_to_clock_t(u64 x)
737{
738#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
739# if HZ < USER_HZ
740	x = div_u64(x * USER_HZ, HZ);
741# elif HZ > USER_HZ
742	x = div_u64(x, HZ / USER_HZ);
743# else
744	/* Nothing to do */
745# endif
746#else
747	/*
748	 * There are better ways that don't overflow early,
749	 * but even this doesn't overflow in hundreds of years
750	 * in 64 bits, so..
751	 */
752	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
753#endif
754	return x;
755}
756EXPORT_SYMBOL(jiffies_64_to_clock_t);
757
758u64 nsec_to_clock_t(u64 x)
759{
760#if (NSEC_PER_SEC % USER_HZ) == 0
761	return div_u64(x, NSEC_PER_SEC / USER_HZ);
762#elif (USER_HZ % 512) == 0
763	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
764#else
765	/*
766         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
767         * overflow after 64.99 years.
768         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
769         */
770	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
771#endif
772}
773
774u64 jiffies64_to_nsecs(u64 j)
775{
776#if !(NSEC_PER_SEC % HZ)
777	return (NSEC_PER_SEC / HZ) * j;
778# else
779	return div_u64(j * HZ_TO_NSEC_NUM, HZ_TO_NSEC_DEN);
780#endif
781}
782EXPORT_SYMBOL(jiffies64_to_nsecs);
783
784/**
785 * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
786 *
787 * @n:	nsecs in u64
788 *
789 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
790 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
791 * for scheduler, not for use in device drivers to calculate timeout value.
792 *
793 * note:
794 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
795 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
796 */
797u64 nsecs_to_jiffies64(u64 n)
798{
799#if (NSEC_PER_SEC % HZ) == 0
800	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
801	return div_u64(n, NSEC_PER_SEC / HZ);
802#elif (HZ % 512) == 0
803	/* overflow after 292 years if HZ = 1024 */
804	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
805#else
806	/*
807	 * Generic case - optimized for cases where HZ is a multiple of 3.
808	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
809	 */
810	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
811#endif
812}
813EXPORT_SYMBOL(nsecs_to_jiffies64);
814
815/**
816 * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
817 *
818 * @n:	nsecs in u64
819 *
820 * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
821 * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
822 * for scheduler, not for use in device drivers to calculate timeout value.
823 *
824 * note:
825 *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
826 *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
827 */
828unsigned long nsecs_to_jiffies(u64 n)
829{
830	return (unsigned long)nsecs_to_jiffies64(n);
831}
832EXPORT_SYMBOL_GPL(nsecs_to_jiffies);
833
834/*
835 * Add two timespec64 values and do a safety check for overflow.
836 * It's assumed that both values are valid (>= 0).
837 * And, each timespec64 is in normalized form.
838 */
839struct timespec64 timespec64_add_safe(const struct timespec64 lhs,
840				const struct timespec64 rhs)
841{
842	struct timespec64 res;
843
844	set_normalized_timespec64(&res, (timeu64_t) lhs.tv_sec + rhs.tv_sec,
845			lhs.tv_nsec + rhs.tv_nsec);
846
847	if (unlikely(res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)) {
848		res.tv_sec = TIME64_MAX;
849		res.tv_nsec = 0;
850	}
851
852	return res;
853}
854
855int get_timespec64(struct timespec64 *ts,
856		   const struct timespec __user *uts)
857{
858	struct timespec kts;
859	int ret;
860
861	ret = copy_from_user(&kts, uts, sizeof(kts));
862	if (ret)
863		return -EFAULT;
864
865	ts->tv_sec = kts.tv_sec;
866	ts->tv_nsec = kts.tv_nsec;
867
868	return 0;
869}
870EXPORT_SYMBOL_GPL(get_timespec64);
871
872int put_timespec64(const struct timespec64 *ts,
873		   struct timespec __user *uts)
874{
875	struct timespec kts = {
876		.tv_sec = ts->tv_sec,
877		.tv_nsec = ts->tv_nsec
878	};
879	return copy_to_user(uts, &kts, sizeof(kts)) ? -EFAULT : 0;
880}
881EXPORT_SYMBOL_GPL(put_timespec64);
882
883int get_itimerspec64(struct itimerspec64 *it,
884			const struct itimerspec __user *uit)
885{
886	int ret;
887
888	ret = get_timespec64(&it->it_interval, &uit->it_interval);
889	if (ret)
890		return ret;
891
892	ret = get_timespec64(&it->it_value, &uit->it_value);
893
894	return ret;
895}
896EXPORT_SYMBOL_GPL(get_itimerspec64);
897
898int put_itimerspec64(const struct itimerspec64 *it,
899			struct itimerspec __user *uit)
900{
901	int ret;
902
903	ret = put_timespec64(&it->it_interval, &uit->it_interval);
904	if (ret)
905		return ret;
906
907	ret = put_timespec64(&it->it_value, &uit->it_value);
908
909	return ret;
910}
911EXPORT_SYMBOL_GPL(put_itimerspec64);