Loading...
1/*
2 * linux/kernel/sys.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7#include <linux/export.h>
8#include <linux/mm.h>
9#include <linux/utsname.h>
10#include <linux/mman.h>
11#include <linux/reboot.h>
12#include <linux/prctl.h>
13#include <linux/highuid.h>
14#include <linux/fs.h>
15#include <linux/kmod.h>
16#include <linux/perf_event.h>
17#include <linux/resource.h>
18#include <linux/kernel.h>
19#include <linux/workqueue.h>
20#include <linux/capability.h>
21#include <linux/device.h>
22#include <linux/key.h>
23#include <linux/times.h>
24#include <linux/posix-timers.h>
25#include <linux/security.h>
26#include <linux/dcookies.h>
27#include <linux/suspend.h>
28#include <linux/tty.h>
29#include <linux/signal.h>
30#include <linux/cn_proc.h>
31#include <linux/getcpu.h>
32#include <linux/task_io_accounting_ops.h>
33#include <linux/seccomp.h>
34#include <linux/cpu.h>
35#include <linux/personality.h>
36#include <linux/ptrace.h>
37#include <linux/fs_struct.h>
38#include <linux/file.h>
39#include <linux/mount.h>
40#include <linux/gfp.h>
41#include <linux/syscore_ops.h>
42#include <linux/version.h>
43#include <linux/ctype.h>
44
45#include <linux/compat.h>
46#include <linux/syscalls.h>
47#include <linux/kprobes.h>
48#include <linux/user_namespace.h>
49#include <linux/binfmts.h>
50
51#include <linux/sched.h>
52#include <linux/rcupdate.h>
53#include <linux/uidgid.h>
54#include <linux/cred.h>
55
56#include <linux/kmsg_dump.h>
57/* Move somewhere else to avoid recompiling? */
58#include <generated/utsrelease.h>
59
60#include <asm/uaccess.h>
61#include <asm/io.h>
62#include <asm/unistd.h>
63
64#ifndef SET_UNALIGN_CTL
65# define SET_UNALIGN_CTL(a, b) (-EINVAL)
66#endif
67#ifndef GET_UNALIGN_CTL
68# define GET_UNALIGN_CTL(a, b) (-EINVAL)
69#endif
70#ifndef SET_FPEMU_CTL
71# define SET_FPEMU_CTL(a, b) (-EINVAL)
72#endif
73#ifndef GET_FPEMU_CTL
74# define GET_FPEMU_CTL(a, b) (-EINVAL)
75#endif
76#ifndef SET_FPEXC_CTL
77# define SET_FPEXC_CTL(a, b) (-EINVAL)
78#endif
79#ifndef GET_FPEXC_CTL
80# define GET_FPEXC_CTL(a, b) (-EINVAL)
81#endif
82#ifndef GET_ENDIAN
83# define GET_ENDIAN(a, b) (-EINVAL)
84#endif
85#ifndef SET_ENDIAN
86# define SET_ENDIAN(a, b) (-EINVAL)
87#endif
88#ifndef GET_TSC_CTL
89# define GET_TSC_CTL(a) (-EINVAL)
90#endif
91#ifndef SET_TSC_CTL
92# define SET_TSC_CTL(a) (-EINVAL)
93#endif
94#ifndef MPX_ENABLE_MANAGEMENT
95# define MPX_ENABLE_MANAGEMENT() (-EINVAL)
96#endif
97#ifndef MPX_DISABLE_MANAGEMENT
98# define MPX_DISABLE_MANAGEMENT() (-EINVAL)
99#endif
100#ifndef GET_FP_MODE
101# define GET_FP_MODE(a) (-EINVAL)
102#endif
103#ifndef SET_FP_MODE
104# define SET_FP_MODE(a,b) (-EINVAL)
105#endif
106
107/*
108 * this is where the system-wide overflow UID and GID are defined, for
109 * architectures that now have 32-bit UID/GID but didn't in the past
110 */
111
112int overflowuid = DEFAULT_OVERFLOWUID;
113int overflowgid = DEFAULT_OVERFLOWGID;
114
115EXPORT_SYMBOL(overflowuid);
116EXPORT_SYMBOL(overflowgid);
117
118/*
119 * the same as above, but for filesystems which can only store a 16-bit
120 * UID and GID. as such, this is needed on all architectures
121 */
122
123int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
124int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
125
126EXPORT_SYMBOL(fs_overflowuid);
127EXPORT_SYMBOL(fs_overflowgid);
128
129/*
130 * Returns true if current's euid is same as p's uid or euid,
131 * or has CAP_SYS_NICE to p's user_ns.
132 *
133 * Called with rcu_read_lock, creds are safe
134 */
135static bool set_one_prio_perm(struct task_struct *p)
136{
137 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
138
139 if (uid_eq(pcred->uid, cred->euid) ||
140 uid_eq(pcred->euid, cred->euid))
141 return true;
142 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
143 return true;
144 return false;
145}
146
147/*
148 * set the priority of a task
149 * - the caller must hold the RCU read lock
150 */
151static int set_one_prio(struct task_struct *p, int niceval, int error)
152{
153 int no_nice;
154
155 if (!set_one_prio_perm(p)) {
156 error = -EPERM;
157 goto out;
158 }
159 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
160 error = -EACCES;
161 goto out;
162 }
163 no_nice = security_task_setnice(p, niceval);
164 if (no_nice) {
165 error = no_nice;
166 goto out;
167 }
168 if (error == -ESRCH)
169 error = 0;
170 set_user_nice(p, niceval);
171out:
172 return error;
173}
174
175SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
176{
177 struct task_struct *g, *p;
178 struct user_struct *user;
179 const struct cred *cred = current_cred();
180 int error = -EINVAL;
181 struct pid *pgrp;
182 kuid_t uid;
183
184 if (which > PRIO_USER || which < PRIO_PROCESS)
185 goto out;
186
187 /* normalize: avoid signed division (rounding problems) */
188 error = -ESRCH;
189 if (niceval < MIN_NICE)
190 niceval = MIN_NICE;
191 if (niceval > MAX_NICE)
192 niceval = MAX_NICE;
193
194 rcu_read_lock();
195 read_lock(&tasklist_lock);
196 switch (which) {
197 case PRIO_PROCESS:
198 if (who)
199 p = find_task_by_vpid(who);
200 else
201 p = current;
202 if (p)
203 error = set_one_prio(p, niceval, error);
204 break;
205 case PRIO_PGRP:
206 if (who)
207 pgrp = find_vpid(who);
208 else
209 pgrp = task_pgrp(current);
210 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
211 error = set_one_prio(p, niceval, error);
212 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
213 break;
214 case PRIO_USER:
215 uid = make_kuid(cred->user_ns, who);
216 user = cred->user;
217 if (!who)
218 uid = cred->uid;
219 else if (!uid_eq(uid, cred->uid)) {
220 user = find_user(uid);
221 if (!user)
222 goto out_unlock; /* No processes for this user */
223 }
224 do_each_thread(g, p) {
225 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
226 error = set_one_prio(p, niceval, error);
227 } while_each_thread(g, p);
228 if (!uid_eq(uid, cred->uid))
229 free_uid(user); /* For find_user() */
230 break;
231 }
232out_unlock:
233 read_unlock(&tasklist_lock);
234 rcu_read_unlock();
235out:
236 return error;
237}
238
239/*
240 * Ugh. To avoid negative return values, "getpriority()" will
241 * not return the normal nice-value, but a negated value that
242 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
243 * to stay compatible.
244 */
245SYSCALL_DEFINE2(getpriority, int, which, int, who)
246{
247 struct task_struct *g, *p;
248 struct user_struct *user;
249 const struct cred *cred = current_cred();
250 long niceval, retval = -ESRCH;
251 struct pid *pgrp;
252 kuid_t uid;
253
254 if (which > PRIO_USER || which < PRIO_PROCESS)
255 return -EINVAL;
256
257 rcu_read_lock();
258 read_lock(&tasklist_lock);
259 switch (which) {
260 case PRIO_PROCESS:
261 if (who)
262 p = find_task_by_vpid(who);
263 else
264 p = current;
265 if (p) {
266 niceval = nice_to_rlimit(task_nice(p));
267 if (niceval > retval)
268 retval = niceval;
269 }
270 break;
271 case PRIO_PGRP:
272 if (who)
273 pgrp = find_vpid(who);
274 else
275 pgrp = task_pgrp(current);
276 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
277 niceval = nice_to_rlimit(task_nice(p));
278 if (niceval > retval)
279 retval = niceval;
280 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
281 break;
282 case PRIO_USER:
283 uid = make_kuid(cred->user_ns, who);
284 user = cred->user;
285 if (!who)
286 uid = cred->uid;
287 else if (!uid_eq(uid, cred->uid)) {
288 user = find_user(uid);
289 if (!user)
290 goto out_unlock; /* No processes for this user */
291 }
292 do_each_thread(g, p) {
293 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
294 niceval = nice_to_rlimit(task_nice(p));
295 if (niceval > retval)
296 retval = niceval;
297 }
298 } while_each_thread(g, p);
299 if (!uid_eq(uid, cred->uid))
300 free_uid(user); /* for find_user() */
301 break;
302 }
303out_unlock:
304 read_unlock(&tasklist_lock);
305 rcu_read_unlock();
306
307 return retval;
308}
309
310/*
311 * Unprivileged users may change the real gid to the effective gid
312 * or vice versa. (BSD-style)
313 *
314 * If you set the real gid at all, or set the effective gid to a value not
315 * equal to the real gid, then the saved gid is set to the new effective gid.
316 *
317 * This makes it possible for a setgid program to completely drop its
318 * privileges, which is often a useful assertion to make when you are doing
319 * a security audit over a program.
320 *
321 * The general idea is that a program which uses just setregid() will be
322 * 100% compatible with BSD. A program which uses just setgid() will be
323 * 100% compatible with POSIX with saved IDs.
324 *
325 * SMP: There are not races, the GIDs are checked only by filesystem
326 * operations (as far as semantic preservation is concerned).
327 */
328#ifdef CONFIG_MULTIUSER
329SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
330{
331 struct user_namespace *ns = current_user_ns();
332 const struct cred *old;
333 struct cred *new;
334 int retval;
335 kgid_t krgid, kegid;
336
337 krgid = make_kgid(ns, rgid);
338 kegid = make_kgid(ns, egid);
339
340 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
341 return -EINVAL;
342 if ((egid != (gid_t) -1) && !gid_valid(kegid))
343 return -EINVAL;
344
345 new = prepare_creds();
346 if (!new)
347 return -ENOMEM;
348 old = current_cred();
349
350 retval = -EPERM;
351 if (rgid != (gid_t) -1) {
352 if (gid_eq(old->gid, krgid) ||
353 gid_eq(old->egid, krgid) ||
354 ns_capable(old->user_ns, CAP_SETGID))
355 new->gid = krgid;
356 else
357 goto error;
358 }
359 if (egid != (gid_t) -1) {
360 if (gid_eq(old->gid, kegid) ||
361 gid_eq(old->egid, kegid) ||
362 gid_eq(old->sgid, kegid) ||
363 ns_capable(old->user_ns, CAP_SETGID))
364 new->egid = kegid;
365 else
366 goto error;
367 }
368
369 if (rgid != (gid_t) -1 ||
370 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
371 new->sgid = new->egid;
372 new->fsgid = new->egid;
373
374 return commit_creds(new);
375
376error:
377 abort_creds(new);
378 return retval;
379}
380
381/*
382 * setgid() is implemented like SysV w/ SAVED_IDS
383 *
384 * SMP: Same implicit races as above.
385 */
386SYSCALL_DEFINE1(setgid, gid_t, gid)
387{
388 struct user_namespace *ns = current_user_ns();
389 const struct cred *old;
390 struct cred *new;
391 int retval;
392 kgid_t kgid;
393
394 kgid = make_kgid(ns, gid);
395 if (!gid_valid(kgid))
396 return -EINVAL;
397
398 new = prepare_creds();
399 if (!new)
400 return -ENOMEM;
401 old = current_cred();
402
403 retval = -EPERM;
404 if (ns_capable(old->user_ns, CAP_SETGID))
405 new->gid = new->egid = new->sgid = new->fsgid = kgid;
406 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
407 new->egid = new->fsgid = kgid;
408 else
409 goto error;
410
411 return commit_creds(new);
412
413error:
414 abort_creds(new);
415 return retval;
416}
417
418/*
419 * change the user struct in a credentials set to match the new UID
420 */
421static int set_user(struct cred *new)
422{
423 struct user_struct *new_user;
424
425 new_user = alloc_uid(new->uid);
426 if (!new_user)
427 return -EAGAIN;
428
429 /*
430 * We don't fail in case of NPROC limit excess here because too many
431 * poorly written programs don't check set*uid() return code, assuming
432 * it never fails if called by root. We may still enforce NPROC limit
433 * for programs doing set*uid()+execve() by harmlessly deferring the
434 * failure to the execve() stage.
435 */
436 if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
437 new_user != INIT_USER)
438 current->flags |= PF_NPROC_EXCEEDED;
439 else
440 current->flags &= ~PF_NPROC_EXCEEDED;
441
442 free_uid(new->user);
443 new->user = new_user;
444 return 0;
445}
446
447/*
448 * Unprivileged users may change the real uid to the effective uid
449 * or vice versa. (BSD-style)
450 *
451 * If you set the real uid at all, or set the effective uid to a value not
452 * equal to the real uid, then the saved uid is set to the new effective uid.
453 *
454 * This makes it possible for a setuid program to completely drop its
455 * privileges, which is often a useful assertion to make when you are doing
456 * a security audit over a program.
457 *
458 * The general idea is that a program which uses just setreuid() will be
459 * 100% compatible with BSD. A program which uses just setuid() will be
460 * 100% compatible with POSIX with saved IDs.
461 */
462SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
463{
464 struct user_namespace *ns = current_user_ns();
465 const struct cred *old;
466 struct cred *new;
467 int retval;
468 kuid_t kruid, keuid;
469
470 kruid = make_kuid(ns, ruid);
471 keuid = make_kuid(ns, euid);
472
473 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
474 return -EINVAL;
475 if ((euid != (uid_t) -1) && !uid_valid(keuid))
476 return -EINVAL;
477
478 new = prepare_creds();
479 if (!new)
480 return -ENOMEM;
481 old = current_cred();
482
483 retval = -EPERM;
484 if (ruid != (uid_t) -1) {
485 new->uid = kruid;
486 if (!uid_eq(old->uid, kruid) &&
487 !uid_eq(old->euid, kruid) &&
488 !ns_capable(old->user_ns, CAP_SETUID))
489 goto error;
490 }
491
492 if (euid != (uid_t) -1) {
493 new->euid = keuid;
494 if (!uid_eq(old->uid, keuid) &&
495 !uid_eq(old->euid, keuid) &&
496 !uid_eq(old->suid, keuid) &&
497 !ns_capable(old->user_ns, CAP_SETUID))
498 goto error;
499 }
500
501 if (!uid_eq(new->uid, old->uid)) {
502 retval = set_user(new);
503 if (retval < 0)
504 goto error;
505 }
506 if (ruid != (uid_t) -1 ||
507 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
508 new->suid = new->euid;
509 new->fsuid = new->euid;
510
511 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
512 if (retval < 0)
513 goto error;
514
515 return commit_creds(new);
516
517error:
518 abort_creds(new);
519 return retval;
520}
521
522/*
523 * setuid() is implemented like SysV with SAVED_IDS
524 *
525 * Note that SAVED_ID's is deficient in that a setuid root program
526 * like sendmail, for example, cannot set its uid to be a normal
527 * user and then switch back, because if you're root, setuid() sets
528 * the saved uid too. If you don't like this, blame the bright people
529 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
530 * will allow a root program to temporarily drop privileges and be able to
531 * regain them by swapping the real and effective uid.
532 */
533SYSCALL_DEFINE1(setuid, uid_t, uid)
534{
535 struct user_namespace *ns = current_user_ns();
536 const struct cred *old;
537 struct cred *new;
538 int retval;
539 kuid_t kuid;
540
541 kuid = make_kuid(ns, uid);
542 if (!uid_valid(kuid))
543 return -EINVAL;
544
545 new = prepare_creds();
546 if (!new)
547 return -ENOMEM;
548 old = current_cred();
549
550 retval = -EPERM;
551 if (ns_capable(old->user_ns, CAP_SETUID)) {
552 new->suid = new->uid = kuid;
553 if (!uid_eq(kuid, old->uid)) {
554 retval = set_user(new);
555 if (retval < 0)
556 goto error;
557 }
558 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
559 goto error;
560 }
561
562 new->fsuid = new->euid = kuid;
563
564 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
565 if (retval < 0)
566 goto error;
567
568 return commit_creds(new);
569
570error:
571 abort_creds(new);
572 return retval;
573}
574
575
576/*
577 * This function implements a generic ability to update ruid, euid,
578 * and suid. This allows you to implement the 4.4 compatible seteuid().
579 */
580SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
581{
582 struct user_namespace *ns = current_user_ns();
583 const struct cred *old;
584 struct cred *new;
585 int retval;
586 kuid_t kruid, keuid, ksuid;
587
588 kruid = make_kuid(ns, ruid);
589 keuid = make_kuid(ns, euid);
590 ksuid = make_kuid(ns, suid);
591
592 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
593 return -EINVAL;
594
595 if ((euid != (uid_t) -1) && !uid_valid(keuid))
596 return -EINVAL;
597
598 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
599 return -EINVAL;
600
601 new = prepare_creds();
602 if (!new)
603 return -ENOMEM;
604
605 old = current_cred();
606
607 retval = -EPERM;
608 if (!ns_capable(old->user_ns, CAP_SETUID)) {
609 if (ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
610 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
611 goto error;
612 if (euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
613 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
614 goto error;
615 if (suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
616 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
617 goto error;
618 }
619
620 if (ruid != (uid_t) -1) {
621 new->uid = kruid;
622 if (!uid_eq(kruid, old->uid)) {
623 retval = set_user(new);
624 if (retval < 0)
625 goto error;
626 }
627 }
628 if (euid != (uid_t) -1)
629 new->euid = keuid;
630 if (suid != (uid_t) -1)
631 new->suid = ksuid;
632 new->fsuid = new->euid;
633
634 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
635 if (retval < 0)
636 goto error;
637
638 return commit_creds(new);
639
640error:
641 abort_creds(new);
642 return retval;
643}
644
645SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
646{
647 const struct cred *cred = current_cred();
648 int retval;
649 uid_t ruid, euid, suid;
650
651 ruid = from_kuid_munged(cred->user_ns, cred->uid);
652 euid = from_kuid_munged(cred->user_ns, cred->euid);
653 suid = from_kuid_munged(cred->user_ns, cred->suid);
654
655 retval = put_user(ruid, ruidp);
656 if (!retval) {
657 retval = put_user(euid, euidp);
658 if (!retval)
659 return put_user(suid, suidp);
660 }
661 return retval;
662}
663
664/*
665 * Same as above, but for rgid, egid, sgid.
666 */
667SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
668{
669 struct user_namespace *ns = current_user_ns();
670 const struct cred *old;
671 struct cred *new;
672 int retval;
673 kgid_t krgid, kegid, ksgid;
674
675 krgid = make_kgid(ns, rgid);
676 kegid = make_kgid(ns, egid);
677 ksgid = make_kgid(ns, sgid);
678
679 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
680 return -EINVAL;
681 if ((egid != (gid_t) -1) && !gid_valid(kegid))
682 return -EINVAL;
683 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
684 return -EINVAL;
685
686 new = prepare_creds();
687 if (!new)
688 return -ENOMEM;
689 old = current_cred();
690
691 retval = -EPERM;
692 if (!ns_capable(old->user_ns, CAP_SETGID)) {
693 if (rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
694 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
695 goto error;
696 if (egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
697 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
698 goto error;
699 if (sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
700 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
701 goto error;
702 }
703
704 if (rgid != (gid_t) -1)
705 new->gid = krgid;
706 if (egid != (gid_t) -1)
707 new->egid = kegid;
708 if (sgid != (gid_t) -1)
709 new->sgid = ksgid;
710 new->fsgid = new->egid;
711
712 return commit_creds(new);
713
714error:
715 abort_creds(new);
716 return retval;
717}
718
719SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
720{
721 const struct cred *cred = current_cred();
722 int retval;
723 gid_t rgid, egid, sgid;
724
725 rgid = from_kgid_munged(cred->user_ns, cred->gid);
726 egid = from_kgid_munged(cred->user_ns, cred->egid);
727 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
728
729 retval = put_user(rgid, rgidp);
730 if (!retval) {
731 retval = put_user(egid, egidp);
732 if (!retval)
733 retval = put_user(sgid, sgidp);
734 }
735
736 return retval;
737}
738
739
740/*
741 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
742 * is used for "access()" and for the NFS daemon (letting nfsd stay at
743 * whatever uid it wants to). It normally shadows "euid", except when
744 * explicitly set by setfsuid() or for access..
745 */
746SYSCALL_DEFINE1(setfsuid, uid_t, uid)
747{
748 const struct cred *old;
749 struct cred *new;
750 uid_t old_fsuid;
751 kuid_t kuid;
752
753 old = current_cred();
754 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
755
756 kuid = make_kuid(old->user_ns, uid);
757 if (!uid_valid(kuid))
758 return old_fsuid;
759
760 new = prepare_creds();
761 if (!new)
762 return old_fsuid;
763
764 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
765 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
766 ns_capable(old->user_ns, CAP_SETUID)) {
767 if (!uid_eq(kuid, old->fsuid)) {
768 new->fsuid = kuid;
769 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
770 goto change_okay;
771 }
772 }
773
774 abort_creds(new);
775 return old_fsuid;
776
777change_okay:
778 commit_creds(new);
779 return old_fsuid;
780}
781
782/*
783 * Samma på svenska..
784 */
785SYSCALL_DEFINE1(setfsgid, gid_t, gid)
786{
787 const struct cred *old;
788 struct cred *new;
789 gid_t old_fsgid;
790 kgid_t kgid;
791
792 old = current_cred();
793 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
794
795 kgid = make_kgid(old->user_ns, gid);
796 if (!gid_valid(kgid))
797 return old_fsgid;
798
799 new = prepare_creds();
800 if (!new)
801 return old_fsgid;
802
803 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
804 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
805 ns_capable(old->user_ns, CAP_SETGID)) {
806 if (!gid_eq(kgid, old->fsgid)) {
807 new->fsgid = kgid;
808 goto change_okay;
809 }
810 }
811
812 abort_creds(new);
813 return old_fsgid;
814
815change_okay:
816 commit_creds(new);
817 return old_fsgid;
818}
819#endif /* CONFIG_MULTIUSER */
820
821/**
822 * sys_getpid - return the thread group id of the current process
823 *
824 * Note, despite the name, this returns the tgid not the pid. The tgid and
825 * the pid are identical unless CLONE_THREAD was specified on clone() in
826 * which case the tgid is the same in all threads of the same group.
827 *
828 * This is SMP safe as current->tgid does not change.
829 */
830SYSCALL_DEFINE0(getpid)
831{
832 return task_tgid_vnr(current);
833}
834
835/* Thread ID - the internal kernel "pid" */
836SYSCALL_DEFINE0(gettid)
837{
838 return task_pid_vnr(current);
839}
840
841/*
842 * Accessing ->real_parent is not SMP-safe, it could
843 * change from under us. However, we can use a stale
844 * value of ->real_parent under rcu_read_lock(), see
845 * release_task()->call_rcu(delayed_put_task_struct).
846 */
847SYSCALL_DEFINE0(getppid)
848{
849 int pid;
850
851 rcu_read_lock();
852 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
853 rcu_read_unlock();
854
855 return pid;
856}
857
858SYSCALL_DEFINE0(getuid)
859{
860 /* Only we change this so SMP safe */
861 return from_kuid_munged(current_user_ns(), current_uid());
862}
863
864SYSCALL_DEFINE0(geteuid)
865{
866 /* Only we change this so SMP safe */
867 return from_kuid_munged(current_user_ns(), current_euid());
868}
869
870SYSCALL_DEFINE0(getgid)
871{
872 /* Only we change this so SMP safe */
873 return from_kgid_munged(current_user_ns(), current_gid());
874}
875
876SYSCALL_DEFINE0(getegid)
877{
878 /* Only we change this so SMP safe */
879 return from_kgid_munged(current_user_ns(), current_egid());
880}
881
882void do_sys_times(struct tms *tms)
883{
884 cputime_t tgutime, tgstime, cutime, cstime;
885
886 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
887 cutime = current->signal->cutime;
888 cstime = current->signal->cstime;
889 tms->tms_utime = cputime_to_clock_t(tgutime);
890 tms->tms_stime = cputime_to_clock_t(tgstime);
891 tms->tms_cutime = cputime_to_clock_t(cutime);
892 tms->tms_cstime = cputime_to_clock_t(cstime);
893}
894
895SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
896{
897 if (tbuf) {
898 struct tms tmp;
899
900 do_sys_times(&tmp);
901 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
902 return -EFAULT;
903 }
904 force_successful_syscall_return();
905 return (long) jiffies_64_to_clock_t(get_jiffies_64());
906}
907
908/*
909 * This needs some heavy checking ...
910 * I just haven't the stomach for it. I also don't fully
911 * understand sessions/pgrp etc. Let somebody who does explain it.
912 *
913 * OK, I think I have the protection semantics right.... this is really
914 * only important on a multi-user system anyway, to make sure one user
915 * can't send a signal to a process owned by another. -TYT, 12/12/91
916 *
917 * !PF_FORKNOEXEC check to conform completely to POSIX.
918 */
919SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
920{
921 struct task_struct *p;
922 struct task_struct *group_leader = current->group_leader;
923 struct pid *pgrp;
924 int err;
925
926 if (!pid)
927 pid = task_pid_vnr(group_leader);
928 if (!pgid)
929 pgid = pid;
930 if (pgid < 0)
931 return -EINVAL;
932 rcu_read_lock();
933
934 /* From this point forward we keep holding onto the tasklist lock
935 * so that our parent does not change from under us. -DaveM
936 */
937 write_lock_irq(&tasklist_lock);
938
939 err = -ESRCH;
940 p = find_task_by_vpid(pid);
941 if (!p)
942 goto out;
943
944 err = -EINVAL;
945 if (!thread_group_leader(p))
946 goto out;
947
948 if (same_thread_group(p->real_parent, group_leader)) {
949 err = -EPERM;
950 if (task_session(p) != task_session(group_leader))
951 goto out;
952 err = -EACCES;
953 if (!(p->flags & PF_FORKNOEXEC))
954 goto out;
955 } else {
956 err = -ESRCH;
957 if (p != group_leader)
958 goto out;
959 }
960
961 err = -EPERM;
962 if (p->signal->leader)
963 goto out;
964
965 pgrp = task_pid(p);
966 if (pgid != pid) {
967 struct task_struct *g;
968
969 pgrp = find_vpid(pgid);
970 g = pid_task(pgrp, PIDTYPE_PGID);
971 if (!g || task_session(g) != task_session(group_leader))
972 goto out;
973 }
974
975 err = security_task_setpgid(p, pgid);
976 if (err)
977 goto out;
978
979 if (task_pgrp(p) != pgrp)
980 change_pid(p, PIDTYPE_PGID, pgrp);
981
982 err = 0;
983out:
984 /* All paths lead to here, thus we are safe. -DaveM */
985 write_unlock_irq(&tasklist_lock);
986 rcu_read_unlock();
987 return err;
988}
989
990SYSCALL_DEFINE1(getpgid, pid_t, pid)
991{
992 struct task_struct *p;
993 struct pid *grp;
994 int retval;
995
996 rcu_read_lock();
997 if (!pid)
998 grp = task_pgrp(current);
999 else {
1000 retval = -ESRCH;
1001 p = find_task_by_vpid(pid);
1002 if (!p)
1003 goto out;
1004 grp = task_pgrp(p);
1005 if (!grp)
1006 goto out;
1007
1008 retval = security_task_getpgid(p);
1009 if (retval)
1010 goto out;
1011 }
1012 retval = pid_vnr(grp);
1013out:
1014 rcu_read_unlock();
1015 return retval;
1016}
1017
1018#ifdef __ARCH_WANT_SYS_GETPGRP
1019
1020SYSCALL_DEFINE0(getpgrp)
1021{
1022 return sys_getpgid(0);
1023}
1024
1025#endif
1026
1027SYSCALL_DEFINE1(getsid, pid_t, pid)
1028{
1029 struct task_struct *p;
1030 struct pid *sid;
1031 int retval;
1032
1033 rcu_read_lock();
1034 if (!pid)
1035 sid = task_session(current);
1036 else {
1037 retval = -ESRCH;
1038 p = find_task_by_vpid(pid);
1039 if (!p)
1040 goto out;
1041 sid = task_session(p);
1042 if (!sid)
1043 goto out;
1044
1045 retval = security_task_getsid(p);
1046 if (retval)
1047 goto out;
1048 }
1049 retval = pid_vnr(sid);
1050out:
1051 rcu_read_unlock();
1052 return retval;
1053}
1054
1055static void set_special_pids(struct pid *pid)
1056{
1057 struct task_struct *curr = current->group_leader;
1058
1059 if (task_session(curr) != pid)
1060 change_pid(curr, PIDTYPE_SID, pid);
1061
1062 if (task_pgrp(curr) != pid)
1063 change_pid(curr, PIDTYPE_PGID, pid);
1064}
1065
1066SYSCALL_DEFINE0(setsid)
1067{
1068 struct task_struct *group_leader = current->group_leader;
1069 struct pid *sid = task_pid(group_leader);
1070 pid_t session = pid_vnr(sid);
1071 int err = -EPERM;
1072
1073 write_lock_irq(&tasklist_lock);
1074 /* Fail if I am already a session leader */
1075 if (group_leader->signal->leader)
1076 goto out;
1077
1078 /* Fail if a process group id already exists that equals the
1079 * proposed session id.
1080 */
1081 if (pid_task(sid, PIDTYPE_PGID))
1082 goto out;
1083
1084 group_leader->signal->leader = 1;
1085 set_special_pids(sid);
1086
1087 proc_clear_tty(group_leader);
1088
1089 err = session;
1090out:
1091 write_unlock_irq(&tasklist_lock);
1092 if (err > 0) {
1093 proc_sid_connector(group_leader);
1094 sched_autogroup_create_attach(group_leader);
1095 }
1096 return err;
1097}
1098
1099DECLARE_RWSEM(uts_sem);
1100
1101#ifdef COMPAT_UTS_MACHINE
1102#define override_architecture(name) \
1103 (personality(current->personality) == PER_LINUX32 && \
1104 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1105 sizeof(COMPAT_UTS_MACHINE)))
1106#else
1107#define override_architecture(name) 0
1108#endif
1109
1110/*
1111 * Work around broken programs that cannot handle "Linux 3.0".
1112 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1113 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
1114 */
1115static int override_release(char __user *release, size_t len)
1116{
1117 int ret = 0;
1118
1119 if (current->personality & UNAME26) {
1120 const char *rest = UTS_RELEASE;
1121 char buf[65] = { 0 };
1122 int ndots = 0;
1123 unsigned v;
1124 size_t copy;
1125
1126 while (*rest) {
1127 if (*rest == '.' && ++ndots >= 3)
1128 break;
1129 if (!isdigit(*rest) && *rest != '.')
1130 break;
1131 rest++;
1132 }
1133 v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1134 copy = clamp_t(size_t, len, 1, sizeof(buf));
1135 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1136 ret = copy_to_user(release, buf, copy + 1);
1137 }
1138 return ret;
1139}
1140
1141SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1142{
1143 int errno = 0;
1144
1145 down_read(&uts_sem);
1146 if (copy_to_user(name, utsname(), sizeof *name))
1147 errno = -EFAULT;
1148 up_read(&uts_sem);
1149
1150 if (!errno && override_release(name->release, sizeof(name->release)))
1151 errno = -EFAULT;
1152 if (!errno && override_architecture(name))
1153 errno = -EFAULT;
1154 return errno;
1155}
1156
1157#ifdef __ARCH_WANT_SYS_OLD_UNAME
1158/*
1159 * Old cruft
1160 */
1161SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1162{
1163 int error = 0;
1164
1165 if (!name)
1166 return -EFAULT;
1167
1168 down_read(&uts_sem);
1169 if (copy_to_user(name, utsname(), sizeof(*name)))
1170 error = -EFAULT;
1171 up_read(&uts_sem);
1172
1173 if (!error && override_release(name->release, sizeof(name->release)))
1174 error = -EFAULT;
1175 if (!error && override_architecture(name))
1176 error = -EFAULT;
1177 return error;
1178}
1179
1180SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1181{
1182 int error;
1183
1184 if (!name)
1185 return -EFAULT;
1186 if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1187 return -EFAULT;
1188
1189 down_read(&uts_sem);
1190 error = __copy_to_user(&name->sysname, &utsname()->sysname,
1191 __OLD_UTS_LEN);
1192 error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1193 error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1194 __OLD_UTS_LEN);
1195 error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1196 error |= __copy_to_user(&name->release, &utsname()->release,
1197 __OLD_UTS_LEN);
1198 error |= __put_user(0, name->release + __OLD_UTS_LEN);
1199 error |= __copy_to_user(&name->version, &utsname()->version,
1200 __OLD_UTS_LEN);
1201 error |= __put_user(0, name->version + __OLD_UTS_LEN);
1202 error |= __copy_to_user(&name->machine, &utsname()->machine,
1203 __OLD_UTS_LEN);
1204 error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1205 up_read(&uts_sem);
1206
1207 if (!error && override_architecture(name))
1208 error = -EFAULT;
1209 if (!error && override_release(name->release, sizeof(name->release)))
1210 error = -EFAULT;
1211 return error ? -EFAULT : 0;
1212}
1213#endif
1214
1215SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1216{
1217 int errno;
1218 char tmp[__NEW_UTS_LEN];
1219
1220 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1221 return -EPERM;
1222
1223 if (len < 0 || len > __NEW_UTS_LEN)
1224 return -EINVAL;
1225 down_write(&uts_sem);
1226 errno = -EFAULT;
1227 if (!copy_from_user(tmp, name, len)) {
1228 struct new_utsname *u = utsname();
1229
1230 memcpy(u->nodename, tmp, len);
1231 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1232 errno = 0;
1233 uts_proc_notify(UTS_PROC_HOSTNAME);
1234 }
1235 up_write(&uts_sem);
1236 return errno;
1237}
1238
1239#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1240
1241SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1242{
1243 int i, errno;
1244 struct new_utsname *u;
1245
1246 if (len < 0)
1247 return -EINVAL;
1248 down_read(&uts_sem);
1249 u = utsname();
1250 i = 1 + strlen(u->nodename);
1251 if (i > len)
1252 i = len;
1253 errno = 0;
1254 if (copy_to_user(name, u->nodename, i))
1255 errno = -EFAULT;
1256 up_read(&uts_sem);
1257 return errno;
1258}
1259
1260#endif
1261
1262/*
1263 * Only setdomainname; getdomainname can be implemented by calling
1264 * uname()
1265 */
1266SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1267{
1268 int errno;
1269 char tmp[__NEW_UTS_LEN];
1270
1271 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1272 return -EPERM;
1273 if (len < 0 || len > __NEW_UTS_LEN)
1274 return -EINVAL;
1275
1276 down_write(&uts_sem);
1277 errno = -EFAULT;
1278 if (!copy_from_user(tmp, name, len)) {
1279 struct new_utsname *u = utsname();
1280
1281 memcpy(u->domainname, tmp, len);
1282 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1283 errno = 0;
1284 uts_proc_notify(UTS_PROC_DOMAINNAME);
1285 }
1286 up_write(&uts_sem);
1287 return errno;
1288}
1289
1290SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1291{
1292 struct rlimit value;
1293 int ret;
1294
1295 ret = do_prlimit(current, resource, NULL, &value);
1296 if (!ret)
1297 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1298
1299 return ret;
1300}
1301
1302#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1303
1304/*
1305 * Back compatibility for getrlimit. Needed for some apps.
1306 */
1307SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1308 struct rlimit __user *, rlim)
1309{
1310 struct rlimit x;
1311 if (resource >= RLIM_NLIMITS)
1312 return -EINVAL;
1313
1314 task_lock(current->group_leader);
1315 x = current->signal->rlim[resource];
1316 task_unlock(current->group_leader);
1317 if (x.rlim_cur > 0x7FFFFFFF)
1318 x.rlim_cur = 0x7FFFFFFF;
1319 if (x.rlim_max > 0x7FFFFFFF)
1320 x.rlim_max = 0x7FFFFFFF;
1321 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1322}
1323
1324#endif
1325
1326static inline bool rlim64_is_infinity(__u64 rlim64)
1327{
1328#if BITS_PER_LONG < 64
1329 return rlim64 >= ULONG_MAX;
1330#else
1331 return rlim64 == RLIM64_INFINITY;
1332#endif
1333}
1334
1335static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1336{
1337 if (rlim->rlim_cur == RLIM_INFINITY)
1338 rlim64->rlim_cur = RLIM64_INFINITY;
1339 else
1340 rlim64->rlim_cur = rlim->rlim_cur;
1341 if (rlim->rlim_max == RLIM_INFINITY)
1342 rlim64->rlim_max = RLIM64_INFINITY;
1343 else
1344 rlim64->rlim_max = rlim->rlim_max;
1345}
1346
1347static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1348{
1349 if (rlim64_is_infinity(rlim64->rlim_cur))
1350 rlim->rlim_cur = RLIM_INFINITY;
1351 else
1352 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1353 if (rlim64_is_infinity(rlim64->rlim_max))
1354 rlim->rlim_max = RLIM_INFINITY;
1355 else
1356 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1357}
1358
1359/* make sure you are allowed to change @tsk limits before calling this */
1360int do_prlimit(struct task_struct *tsk, unsigned int resource,
1361 struct rlimit *new_rlim, struct rlimit *old_rlim)
1362{
1363 struct rlimit *rlim;
1364 int retval = 0;
1365
1366 if (resource >= RLIM_NLIMITS)
1367 return -EINVAL;
1368 if (new_rlim) {
1369 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1370 return -EINVAL;
1371 if (resource == RLIMIT_NOFILE &&
1372 new_rlim->rlim_max > sysctl_nr_open)
1373 return -EPERM;
1374 }
1375
1376 /* protect tsk->signal and tsk->sighand from disappearing */
1377 read_lock(&tasklist_lock);
1378 if (!tsk->sighand) {
1379 retval = -ESRCH;
1380 goto out;
1381 }
1382
1383 rlim = tsk->signal->rlim + resource;
1384 task_lock(tsk->group_leader);
1385 if (new_rlim) {
1386 /* Keep the capable check against init_user_ns until
1387 cgroups can contain all limits */
1388 if (new_rlim->rlim_max > rlim->rlim_max &&
1389 !capable(CAP_SYS_RESOURCE))
1390 retval = -EPERM;
1391 if (!retval)
1392 retval = security_task_setrlimit(tsk->group_leader,
1393 resource, new_rlim);
1394 if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1395 /*
1396 * The caller is asking for an immediate RLIMIT_CPU
1397 * expiry. But we use the zero value to mean "it was
1398 * never set". So let's cheat and make it one second
1399 * instead
1400 */
1401 new_rlim->rlim_cur = 1;
1402 }
1403 }
1404 if (!retval) {
1405 if (old_rlim)
1406 *old_rlim = *rlim;
1407 if (new_rlim)
1408 *rlim = *new_rlim;
1409 }
1410 task_unlock(tsk->group_leader);
1411
1412 /*
1413 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1414 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1415 * very long-standing error, and fixing it now risks breakage of
1416 * applications, so we live with it
1417 */
1418 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1419 new_rlim->rlim_cur != RLIM_INFINITY)
1420 update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1421out:
1422 read_unlock(&tasklist_lock);
1423 return retval;
1424}
1425
1426/* rcu lock must be held */
1427static int check_prlimit_permission(struct task_struct *task)
1428{
1429 const struct cred *cred = current_cred(), *tcred;
1430
1431 if (current == task)
1432 return 0;
1433
1434 tcred = __task_cred(task);
1435 if (uid_eq(cred->uid, tcred->euid) &&
1436 uid_eq(cred->uid, tcred->suid) &&
1437 uid_eq(cred->uid, tcred->uid) &&
1438 gid_eq(cred->gid, tcred->egid) &&
1439 gid_eq(cred->gid, tcred->sgid) &&
1440 gid_eq(cred->gid, tcred->gid))
1441 return 0;
1442 if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1443 return 0;
1444
1445 return -EPERM;
1446}
1447
1448SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1449 const struct rlimit64 __user *, new_rlim,
1450 struct rlimit64 __user *, old_rlim)
1451{
1452 struct rlimit64 old64, new64;
1453 struct rlimit old, new;
1454 struct task_struct *tsk;
1455 int ret;
1456
1457 if (new_rlim) {
1458 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1459 return -EFAULT;
1460 rlim64_to_rlim(&new64, &new);
1461 }
1462
1463 rcu_read_lock();
1464 tsk = pid ? find_task_by_vpid(pid) : current;
1465 if (!tsk) {
1466 rcu_read_unlock();
1467 return -ESRCH;
1468 }
1469 ret = check_prlimit_permission(tsk);
1470 if (ret) {
1471 rcu_read_unlock();
1472 return ret;
1473 }
1474 get_task_struct(tsk);
1475 rcu_read_unlock();
1476
1477 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1478 old_rlim ? &old : NULL);
1479
1480 if (!ret && old_rlim) {
1481 rlim_to_rlim64(&old, &old64);
1482 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1483 ret = -EFAULT;
1484 }
1485
1486 put_task_struct(tsk);
1487 return ret;
1488}
1489
1490SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1491{
1492 struct rlimit new_rlim;
1493
1494 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1495 return -EFAULT;
1496 return do_prlimit(current, resource, &new_rlim, NULL);
1497}
1498
1499/*
1500 * It would make sense to put struct rusage in the task_struct,
1501 * except that would make the task_struct be *really big*. After
1502 * task_struct gets moved into malloc'ed memory, it would
1503 * make sense to do this. It will make moving the rest of the information
1504 * a lot simpler! (Which we're not doing right now because we're not
1505 * measuring them yet).
1506 *
1507 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1508 * races with threads incrementing their own counters. But since word
1509 * reads are atomic, we either get new values or old values and we don't
1510 * care which for the sums. We always take the siglock to protect reading
1511 * the c* fields from p->signal from races with exit.c updating those
1512 * fields when reaping, so a sample either gets all the additions of a
1513 * given child after it's reaped, or none so this sample is before reaping.
1514 *
1515 * Locking:
1516 * We need to take the siglock for CHILDEREN, SELF and BOTH
1517 * for the cases current multithreaded, non-current single threaded
1518 * non-current multithreaded. Thread traversal is now safe with
1519 * the siglock held.
1520 * Strictly speaking, we donot need to take the siglock if we are current and
1521 * single threaded, as no one else can take our signal_struct away, no one
1522 * else can reap the children to update signal->c* counters, and no one else
1523 * can race with the signal-> fields. If we do not take any lock, the
1524 * signal-> fields could be read out of order while another thread was just
1525 * exiting. So we should place a read memory barrier when we avoid the lock.
1526 * On the writer side, write memory barrier is implied in __exit_signal
1527 * as __exit_signal releases the siglock spinlock after updating the signal->
1528 * fields. But we don't do this yet to keep things simple.
1529 *
1530 */
1531
1532static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1533{
1534 r->ru_nvcsw += t->nvcsw;
1535 r->ru_nivcsw += t->nivcsw;
1536 r->ru_minflt += t->min_flt;
1537 r->ru_majflt += t->maj_flt;
1538 r->ru_inblock += task_io_get_inblock(t);
1539 r->ru_oublock += task_io_get_oublock(t);
1540}
1541
1542static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1543{
1544 struct task_struct *t;
1545 unsigned long flags;
1546 cputime_t tgutime, tgstime, utime, stime;
1547 unsigned long maxrss = 0;
1548
1549 memset((char *)r, 0, sizeof (*r));
1550 utime = stime = 0;
1551
1552 if (who == RUSAGE_THREAD) {
1553 task_cputime_adjusted(current, &utime, &stime);
1554 accumulate_thread_rusage(p, r);
1555 maxrss = p->signal->maxrss;
1556 goto out;
1557 }
1558
1559 if (!lock_task_sighand(p, &flags))
1560 return;
1561
1562 switch (who) {
1563 case RUSAGE_BOTH:
1564 case RUSAGE_CHILDREN:
1565 utime = p->signal->cutime;
1566 stime = p->signal->cstime;
1567 r->ru_nvcsw = p->signal->cnvcsw;
1568 r->ru_nivcsw = p->signal->cnivcsw;
1569 r->ru_minflt = p->signal->cmin_flt;
1570 r->ru_majflt = p->signal->cmaj_flt;
1571 r->ru_inblock = p->signal->cinblock;
1572 r->ru_oublock = p->signal->coublock;
1573 maxrss = p->signal->cmaxrss;
1574
1575 if (who == RUSAGE_CHILDREN)
1576 break;
1577
1578 case RUSAGE_SELF:
1579 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1580 utime += tgutime;
1581 stime += tgstime;
1582 r->ru_nvcsw += p->signal->nvcsw;
1583 r->ru_nivcsw += p->signal->nivcsw;
1584 r->ru_minflt += p->signal->min_flt;
1585 r->ru_majflt += p->signal->maj_flt;
1586 r->ru_inblock += p->signal->inblock;
1587 r->ru_oublock += p->signal->oublock;
1588 if (maxrss < p->signal->maxrss)
1589 maxrss = p->signal->maxrss;
1590 t = p;
1591 do {
1592 accumulate_thread_rusage(t, r);
1593 } while_each_thread(p, t);
1594 break;
1595
1596 default:
1597 BUG();
1598 }
1599 unlock_task_sighand(p, &flags);
1600
1601out:
1602 cputime_to_timeval(utime, &r->ru_utime);
1603 cputime_to_timeval(stime, &r->ru_stime);
1604
1605 if (who != RUSAGE_CHILDREN) {
1606 struct mm_struct *mm = get_task_mm(p);
1607
1608 if (mm) {
1609 setmax_mm_hiwater_rss(&maxrss, mm);
1610 mmput(mm);
1611 }
1612 }
1613 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1614}
1615
1616int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1617{
1618 struct rusage r;
1619
1620 k_getrusage(p, who, &r);
1621 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1622}
1623
1624SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1625{
1626 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1627 who != RUSAGE_THREAD)
1628 return -EINVAL;
1629 return getrusage(current, who, ru);
1630}
1631
1632#ifdef CONFIG_COMPAT
1633COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1634{
1635 struct rusage r;
1636
1637 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1638 who != RUSAGE_THREAD)
1639 return -EINVAL;
1640
1641 k_getrusage(current, who, &r);
1642 return put_compat_rusage(&r, ru);
1643}
1644#endif
1645
1646SYSCALL_DEFINE1(umask, int, mask)
1647{
1648 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1649 return mask;
1650}
1651
1652static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1653{
1654 struct fd exe;
1655 struct file *old_exe, *exe_file;
1656 struct inode *inode;
1657 int err;
1658
1659 exe = fdget(fd);
1660 if (!exe.file)
1661 return -EBADF;
1662
1663 inode = file_inode(exe.file);
1664
1665 /*
1666 * Because the original mm->exe_file points to executable file, make
1667 * sure that this one is executable as well, to avoid breaking an
1668 * overall picture.
1669 */
1670 err = -EACCES;
1671 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1672 goto exit;
1673
1674 err = inode_permission(inode, MAY_EXEC);
1675 if (err)
1676 goto exit;
1677
1678 /*
1679 * Forbid mm->exe_file change if old file still mapped.
1680 */
1681 exe_file = get_mm_exe_file(mm);
1682 err = -EBUSY;
1683 if (exe_file) {
1684 struct vm_area_struct *vma;
1685
1686 down_read(&mm->mmap_sem);
1687 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1688 if (!vma->vm_file)
1689 continue;
1690 if (path_equal(&vma->vm_file->f_path,
1691 &exe_file->f_path))
1692 goto exit_err;
1693 }
1694
1695 up_read(&mm->mmap_sem);
1696 fput(exe_file);
1697 }
1698
1699 /*
1700 * The symlink can be changed only once, just to disallow arbitrary
1701 * transitions malicious software might bring in. This means one
1702 * could make a snapshot over all processes running and monitor
1703 * /proc/pid/exe changes to notice unusual activity if needed.
1704 */
1705 err = -EPERM;
1706 if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1707 goto exit;
1708
1709 err = 0;
1710 /* set the new file, lockless */
1711 get_file(exe.file);
1712 old_exe = xchg(&mm->exe_file, exe.file);
1713 if (old_exe)
1714 fput(old_exe);
1715exit:
1716 fdput(exe);
1717 return err;
1718exit_err:
1719 up_read(&mm->mmap_sem);
1720 fput(exe_file);
1721 goto exit;
1722}
1723
1724/*
1725 * WARNING: we don't require any capability here so be very careful
1726 * in what is allowed for modification from userspace.
1727 */
1728static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1729{
1730 unsigned long mmap_max_addr = TASK_SIZE;
1731 struct mm_struct *mm = current->mm;
1732 int error = -EINVAL, i;
1733
1734 static const unsigned char offsets[] = {
1735 offsetof(struct prctl_mm_map, start_code),
1736 offsetof(struct prctl_mm_map, end_code),
1737 offsetof(struct prctl_mm_map, start_data),
1738 offsetof(struct prctl_mm_map, end_data),
1739 offsetof(struct prctl_mm_map, start_brk),
1740 offsetof(struct prctl_mm_map, brk),
1741 offsetof(struct prctl_mm_map, start_stack),
1742 offsetof(struct prctl_mm_map, arg_start),
1743 offsetof(struct prctl_mm_map, arg_end),
1744 offsetof(struct prctl_mm_map, env_start),
1745 offsetof(struct prctl_mm_map, env_end),
1746 };
1747
1748 /*
1749 * Make sure the members are not somewhere outside
1750 * of allowed address space.
1751 */
1752 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1753 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1754
1755 if ((unsigned long)val >= mmap_max_addr ||
1756 (unsigned long)val < mmap_min_addr)
1757 goto out;
1758 }
1759
1760 /*
1761 * Make sure the pairs are ordered.
1762 */
1763#define __prctl_check_order(__m1, __op, __m2) \
1764 ((unsigned long)prctl_map->__m1 __op \
1765 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1766 error = __prctl_check_order(start_code, <, end_code);
1767 error |= __prctl_check_order(start_data, <, end_data);
1768 error |= __prctl_check_order(start_brk, <=, brk);
1769 error |= __prctl_check_order(arg_start, <=, arg_end);
1770 error |= __prctl_check_order(env_start, <=, env_end);
1771 if (error)
1772 goto out;
1773#undef __prctl_check_order
1774
1775 error = -EINVAL;
1776
1777 /*
1778 * @brk should be after @end_data in traditional maps.
1779 */
1780 if (prctl_map->start_brk <= prctl_map->end_data ||
1781 prctl_map->brk <= prctl_map->end_data)
1782 goto out;
1783
1784 /*
1785 * Neither we should allow to override limits if they set.
1786 */
1787 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1788 prctl_map->start_brk, prctl_map->end_data,
1789 prctl_map->start_data))
1790 goto out;
1791
1792 /*
1793 * Someone is trying to cheat the auxv vector.
1794 */
1795 if (prctl_map->auxv_size) {
1796 if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1797 goto out;
1798 }
1799
1800 /*
1801 * Finally, make sure the caller has the rights to
1802 * change /proc/pid/exe link: only local root should
1803 * be allowed to.
1804 */
1805 if (prctl_map->exe_fd != (u32)-1) {
1806 struct user_namespace *ns = current_user_ns();
1807 const struct cred *cred = current_cred();
1808
1809 if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1810 !gid_eq(cred->gid, make_kgid(ns, 0)))
1811 goto out;
1812 }
1813
1814 error = 0;
1815out:
1816 return error;
1817}
1818
1819#ifdef CONFIG_CHECKPOINT_RESTORE
1820static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1821{
1822 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1823 unsigned long user_auxv[AT_VECTOR_SIZE];
1824 struct mm_struct *mm = current->mm;
1825 int error;
1826
1827 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1828 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1829
1830 if (opt == PR_SET_MM_MAP_SIZE)
1831 return put_user((unsigned int)sizeof(prctl_map),
1832 (unsigned int __user *)addr);
1833
1834 if (data_size != sizeof(prctl_map))
1835 return -EINVAL;
1836
1837 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1838 return -EFAULT;
1839
1840 error = validate_prctl_map(&prctl_map);
1841 if (error)
1842 return error;
1843
1844 if (prctl_map.auxv_size) {
1845 memset(user_auxv, 0, sizeof(user_auxv));
1846 if (copy_from_user(user_auxv,
1847 (const void __user *)prctl_map.auxv,
1848 prctl_map.auxv_size))
1849 return -EFAULT;
1850
1851 /* Last entry must be AT_NULL as specification requires */
1852 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1853 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1854 }
1855
1856 if (prctl_map.exe_fd != (u32)-1) {
1857 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1858 if (error)
1859 return error;
1860 }
1861
1862 down_write(&mm->mmap_sem);
1863
1864 /*
1865 * We don't validate if these members are pointing to
1866 * real present VMAs because application may have correspond
1867 * VMAs already unmapped and kernel uses these members for statistics
1868 * output in procfs mostly, except
1869 *
1870 * - @start_brk/@brk which are used in do_brk but kernel lookups
1871 * for VMAs when updating these memvers so anything wrong written
1872 * here cause kernel to swear at userspace program but won't lead
1873 * to any problem in kernel itself
1874 */
1875
1876 mm->start_code = prctl_map.start_code;
1877 mm->end_code = prctl_map.end_code;
1878 mm->start_data = prctl_map.start_data;
1879 mm->end_data = prctl_map.end_data;
1880 mm->start_brk = prctl_map.start_brk;
1881 mm->brk = prctl_map.brk;
1882 mm->start_stack = prctl_map.start_stack;
1883 mm->arg_start = prctl_map.arg_start;
1884 mm->arg_end = prctl_map.arg_end;
1885 mm->env_start = prctl_map.env_start;
1886 mm->env_end = prctl_map.env_end;
1887
1888 /*
1889 * Note this update of @saved_auxv is lockless thus
1890 * if someone reads this member in procfs while we're
1891 * updating -- it may get partly updated results. It's
1892 * known and acceptable trade off: we leave it as is to
1893 * not introduce additional locks here making the kernel
1894 * more complex.
1895 */
1896 if (prctl_map.auxv_size)
1897 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1898
1899 up_write(&mm->mmap_sem);
1900 return 0;
1901}
1902#endif /* CONFIG_CHECKPOINT_RESTORE */
1903
1904static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1905 unsigned long len)
1906{
1907 /*
1908 * This doesn't move the auxiliary vector itself since it's pinned to
1909 * mm_struct, but it permits filling the vector with new values. It's
1910 * up to the caller to provide sane values here, otherwise userspace
1911 * tools which use this vector might be unhappy.
1912 */
1913 unsigned long user_auxv[AT_VECTOR_SIZE];
1914
1915 if (len > sizeof(user_auxv))
1916 return -EINVAL;
1917
1918 if (copy_from_user(user_auxv, (const void __user *)addr, len))
1919 return -EFAULT;
1920
1921 /* Make sure the last entry is always AT_NULL */
1922 user_auxv[AT_VECTOR_SIZE - 2] = 0;
1923 user_auxv[AT_VECTOR_SIZE - 1] = 0;
1924
1925 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1926
1927 task_lock(current);
1928 memcpy(mm->saved_auxv, user_auxv, len);
1929 task_unlock(current);
1930
1931 return 0;
1932}
1933
1934static int prctl_set_mm(int opt, unsigned long addr,
1935 unsigned long arg4, unsigned long arg5)
1936{
1937 struct mm_struct *mm = current->mm;
1938 struct prctl_mm_map prctl_map;
1939 struct vm_area_struct *vma;
1940 int error;
1941
1942 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1943 opt != PR_SET_MM_MAP &&
1944 opt != PR_SET_MM_MAP_SIZE)))
1945 return -EINVAL;
1946
1947#ifdef CONFIG_CHECKPOINT_RESTORE
1948 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1949 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1950#endif
1951
1952 if (!capable(CAP_SYS_RESOURCE))
1953 return -EPERM;
1954
1955 if (opt == PR_SET_MM_EXE_FILE)
1956 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1957
1958 if (opt == PR_SET_MM_AUXV)
1959 return prctl_set_auxv(mm, addr, arg4);
1960
1961 if (addr >= TASK_SIZE || addr < mmap_min_addr)
1962 return -EINVAL;
1963
1964 error = -EINVAL;
1965
1966 down_write(&mm->mmap_sem);
1967 vma = find_vma(mm, addr);
1968
1969 prctl_map.start_code = mm->start_code;
1970 prctl_map.end_code = mm->end_code;
1971 prctl_map.start_data = mm->start_data;
1972 prctl_map.end_data = mm->end_data;
1973 prctl_map.start_brk = mm->start_brk;
1974 prctl_map.brk = mm->brk;
1975 prctl_map.start_stack = mm->start_stack;
1976 prctl_map.arg_start = mm->arg_start;
1977 prctl_map.arg_end = mm->arg_end;
1978 prctl_map.env_start = mm->env_start;
1979 prctl_map.env_end = mm->env_end;
1980 prctl_map.auxv = NULL;
1981 prctl_map.auxv_size = 0;
1982 prctl_map.exe_fd = -1;
1983
1984 switch (opt) {
1985 case PR_SET_MM_START_CODE:
1986 prctl_map.start_code = addr;
1987 break;
1988 case PR_SET_MM_END_CODE:
1989 prctl_map.end_code = addr;
1990 break;
1991 case PR_SET_MM_START_DATA:
1992 prctl_map.start_data = addr;
1993 break;
1994 case PR_SET_MM_END_DATA:
1995 prctl_map.end_data = addr;
1996 break;
1997 case PR_SET_MM_START_STACK:
1998 prctl_map.start_stack = addr;
1999 break;
2000 case PR_SET_MM_START_BRK:
2001 prctl_map.start_brk = addr;
2002 break;
2003 case PR_SET_MM_BRK:
2004 prctl_map.brk = addr;
2005 break;
2006 case PR_SET_MM_ARG_START:
2007 prctl_map.arg_start = addr;
2008 break;
2009 case PR_SET_MM_ARG_END:
2010 prctl_map.arg_end = addr;
2011 break;
2012 case PR_SET_MM_ENV_START:
2013 prctl_map.env_start = addr;
2014 break;
2015 case PR_SET_MM_ENV_END:
2016 prctl_map.env_end = addr;
2017 break;
2018 default:
2019 goto out;
2020 }
2021
2022 error = validate_prctl_map(&prctl_map);
2023 if (error)
2024 goto out;
2025
2026 switch (opt) {
2027 /*
2028 * If command line arguments and environment
2029 * are placed somewhere else on stack, we can
2030 * set them up here, ARG_START/END to setup
2031 * command line argumets and ENV_START/END
2032 * for environment.
2033 */
2034 case PR_SET_MM_START_STACK:
2035 case PR_SET_MM_ARG_START:
2036 case PR_SET_MM_ARG_END:
2037 case PR_SET_MM_ENV_START:
2038 case PR_SET_MM_ENV_END:
2039 if (!vma) {
2040 error = -EFAULT;
2041 goto out;
2042 }
2043 }
2044
2045 mm->start_code = prctl_map.start_code;
2046 mm->end_code = prctl_map.end_code;
2047 mm->start_data = prctl_map.start_data;
2048 mm->end_data = prctl_map.end_data;
2049 mm->start_brk = prctl_map.start_brk;
2050 mm->brk = prctl_map.brk;
2051 mm->start_stack = prctl_map.start_stack;
2052 mm->arg_start = prctl_map.arg_start;
2053 mm->arg_end = prctl_map.arg_end;
2054 mm->env_start = prctl_map.env_start;
2055 mm->env_end = prctl_map.env_end;
2056
2057 error = 0;
2058out:
2059 up_write(&mm->mmap_sem);
2060 return error;
2061}
2062
2063#ifdef CONFIG_CHECKPOINT_RESTORE
2064static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2065{
2066 return put_user(me->clear_child_tid, tid_addr);
2067}
2068#else
2069static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2070{
2071 return -EINVAL;
2072}
2073#endif
2074
2075SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2076 unsigned long, arg4, unsigned long, arg5)
2077{
2078 struct task_struct *me = current;
2079 unsigned char comm[sizeof(me->comm)];
2080 long error;
2081
2082 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2083 if (error != -ENOSYS)
2084 return error;
2085
2086 error = 0;
2087 switch (option) {
2088 case PR_SET_PDEATHSIG:
2089 if (!valid_signal(arg2)) {
2090 error = -EINVAL;
2091 break;
2092 }
2093 me->pdeath_signal = arg2;
2094 break;
2095 case PR_GET_PDEATHSIG:
2096 error = put_user(me->pdeath_signal, (int __user *)arg2);
2097 break;
2098 case PR_GET_DUMPABLE:
2099 error = get_dumpable(me->mm);
2100 break;
2101 case PR_SET_DUMPABLE:
2102 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2103 error = -EINVAL;
2104 break;
2105 }
2106 set_dumpable(me->mm, arg2);
2107 break;
2108
2109 case PR_SET_UNALIGN:
2110 error = SET_UNALIGN_CTL(me, arg2);
2111 break;
2112 case PR_GET_UNALIGN:
2113 error = GET_UNALIGN_CTL(me, arg2);
2114 break;
2115 case PR_SET_FPEMU:
2116 error = SET_FPEMU_CTL(me, arg2);
2117 break;
2118 case PR_GET_FPEMU:
2119 error = GET_FPEMU_CTL(me, arg2);
2120 break;
2121 case PR_SET_FPEXC:
2122 error = SET_FPEXC_CTL(me, arg2);
2123 break;
2124 case PR_GET_FPEXC:
2125 error = GET_FPEXC_CTL(me, arg2);
2126 break;
2127 case PR_GET_TIMING:
2128 error = PR_TIMING_STATISTICAL;
2129 break;
2130 case PR_SET_TIMING:
2131 if (arg2 != PR_TIMING_STATISTICAL)
2132 error = -EINVAL;
2133 break;
2134 case PR_SET_NAME:
2135 comm[sizeof(me->comm) - 1] = 0;
2136 if (strncpy_from_user(comm, (char __user *)arg2,
2137 sizeof(me->comm) - 1) < 0)
2138 return -EFAULT;
2139 set_task_comm(me, comm);
2140 proc_comm_connector(me);
2141 break;
2142 case PR_GET_NAME:
2143 get_task_comm(comm, me);
2144 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2145 return -EFAULT;
2146 break;
2147 case PR_GET_ENDIAN:
2148 error = GET_ENDIAN(me, arg2);
2149 break;
2150 case PR_SET_ENDIAN:
2151 error = SET_ENDIAN(me, arg2);
2152 break;
2153 case PR_GET_SECCOMP:
2154 error = prctl_get_seccomp();
2155 break;
2156 case PR_SET_SECCOMP:
2157 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2158 break;
2159 case PR_GET_TSC:
2160 error = GET_TSC_CTL(arg2);
2161 break;
2162 case PR_SET_TSC:
2163 error = SET_TSC_CTL(arg2);
2164 break;
2165 case PR_TASK_PERF_EVENTS_DISABLE:
2166 error = perf_event_task_disable();
2167 break;
2168 case PR_TASK_PERF_EVENTS_ENABLE:
2169 error = perf_event_task_enable();
2170 break;
2171 case PR_GET_TIMERSLACK:
2172 if (current->timer_slack_ns > ULONG_MAX)
2173 error = ULONG_MAX;
2174 else
2175 error = current->timer_slack_ns;
2176 break;
2177 case PR_SET_TIMERSLACK:
2178 if (arg2 <= 0)
2179 current->timer_slack_ns =
2180 current->default_timer_slack_ns;
2181 else
2182 current->timer_slack_ns = arg2;
2183 break;
2184 case PR_MCE_KILL:
2185 if (arg4 | arg5)
2186 return -EINVAL;
2187 switch (arg2) {
2188 case PR_MCE_KILL_CLEAR:
2189 if (arg3 != 0)
2190 return -EINVAL;
2191 current->flags &= ~PF_MCE_PROCESS;
2192 break;
2193 case PR_MCE_KILL_SET:
2194 current->flags |= PF_MCE_PROCESS;
2195 if (arg3 == PR_MCE_KILL_EARLY)
2196 current->flags |= PF_MCE_EARLY;
2197 else if (arg3 == PR_MCE_KILL_LATE)
2198 current->flags &= ~PF_MCE_EARLY;
2199 else if (arg3 == PR_MCE_KILL_DEFAULT)
2200 current->flags &=
2201 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2202 else
2203 return -EINVAL;
2204 break;
2205 default:
2206 return -EINVAL;
2207 }
2208 break;
2209 case PR_MCE_KILL_GET:
2210 if (arg2 | arg3 | arg4 | arg5)
2211 return -EINVAL;
2212 if (current->flags & PF_MCE_PROCESS)
2213 error = (current->flags & PF_MCE_EARLY) ?
2214 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2215 else
2216 error = PR_MCE_KILL_DEFAULT;
2217 break;
2218 case PR_SET_MM:
2219 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2220 break;
2221 case PR_GET_TID_ADDRESS:
2222 error = prctl_get_tid_address(me, (int __user **)arg2);
2223 break;
2224 case PR_SET_CHILD_SUBREAPER:
2225 me->signal->is_child_subreaper = !!arg2;
2226 break;
2227 case PR_GET_CHILD_SUBREAPER:
2228 error = put_user(me->signal->is_child_subreaper,
2229 (int __user *)arg2);
2230 break;
2231 case PR_SET_NO_NEW_PRIVS:
2232 if (arg2 != 1 || arg3 || arg4 || arg5)
2233 return -EINVAL;
2234
2235 task_set_no_new_privs(current);
2236 break;
2237 case PR_GET_NO_NEW_PRIVS:
2238 if (arg2 || arg3 || arg4 || arg5)
2239 return -EINVAL;
2240 return task_no_new_privs(current) ? 1 : 0;
2241 case PR_GET_THP_DISABLE:
2242 if (arg2 || arg3 || arg4 || arg5)
2243 return -EINVAL;
2244 error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2245 break;
2246 case PR_SET_THP_DISABLE:
2247 if (arg3 || arg4 || arg5)
2248 return -EINVAL;
2249 down_write(&me->mm->mmap_sem);
2250 if (arg2)
2251 me->mm->def_flags |= VM_NOHUGEPAGE;
2252 else
2253 me->mm->def_flags &= ~VM_NOHUGEPAGE;
2254 up_write(&me->mm->mmap_sem);
2255 break;
2256 case PR_MPX_ENABLE_MANAGEMENT:
2257 if (arg2 || arg3 || arg4 || arg5)
2258 return -EINVAL;
2259 error = MPX_ENABLE_MANAGEMENT();
2260 break;
2261 case PR_MPX_DISABLE_MANAGEMENT:
2262 if (arg2 || arg3 || arg4 || arg5)
2263 return -EINVAL;
2264 error = MPX_DISABLE_MANAGEMENT();
2265 break;
2266 case PR_SET_FP_MODE:
2267 error = SET_FP_MODE(me, arg2);
2268 break;
2269 case PR_GET_FP_MODE:
2270 error = GET_FP_MODE(me);
2271 break;
2272 default:
2273 error = -EINVAL;
2274 break;
2275 }
2276 return error;
2277}
2278
2279SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2280 struct getcpu_cache __user *, unused)
2281{
2282 int err = 0;
2283 int cpu = raw_smp_processor_id();
2284
2285 if (cpup)
2286 err |= put_user(cpu, cpup);
2287 if (nodep)
2288 err |= put_user(cpu_to_node(cpu), nodep);
2289 return err ? -EFAULT : 0;
2290}
2291
2292/**
2293 * do_sysinfo - fill in sysinfo struct
2294 * @info: pointer to buffer to fill
2295 */
2296static int do_sysinfo(struct sysinfo *info)
2297{
2298 unsigned long mem_total, sav_total;
2299 unsigned int mem_unit, bitcount;
2300 struct timespec tp;
2301
2302 memset(info, 0, sizeof(struct sysinfo));
2303
2304 get_monotonic_boottime(&tp);
2305 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2306
2307 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2308
2309 info->procs = nr_threads;
2310
2311 si_meminfo(info);
2312 si_swapinfo(info);
2313
2314 /*
2315 * If the sum of all the available memory (i.e. ram + swap)
2316 * is less than can be stored in a 32 bit unsigned long then
2317 * we can be binary compatible with 2.2.x kernels. If not,
2318 * well, in that case 2.2.x was broken anyways...
2319 *
2320 * -Erik Andersen <andersee@debian.org>
2321 */
2322
2323 mem_total = info->totalram + info->totalswap;
2324 if (mem_total < info->totalram || mem_total < info->totalswap)
2325 goto out;
2326 bitcount = 0;
2327 mem_unit = info->mem_unit;
2328 while (mem_unit > 1) {
2329 bitcount++;
2330 mem_unit >>= 1;
2331 sav_total = mem_total;
2332 mem_total <<= 1;
2333 if (mem_total < sav_total)
2334 goto out;
2335 }
2336
2337 /*
2338 * If mem_total did not overflow, multiply all memory values by
2339 * info->mem_unit and set it to 1. This leaves things compatible
2340 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2341 * kernels...
2342 */
2343
2344 info->mem_unit = 1;
2345 info->totalram <<= bitcount;
2346 info->freeram <<= bitcount;
2347 info->sharedram <<= bitcount;
2348 info->bufferram <<= bitcount;
2349 info->totalswap <<= bitcount;
2350 info->freeswap <<= bitcount;
2351 info->totalhigh <<= bitcount;
2352 info->freehigh <<= bitcount;
2353
2354out:
2355 return 0;
2356}
2357
2358SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2359{
2360 struct sysinfo val;
2361
2362 do_sysinfo(&val);
2363
2364 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2365 return -EFAULT;
2366
2367 return 0;
2368}
2369
2370#ifdef CONFIG_COMPAT
2371struct compat_sysinfo {
2372 s32 uptime;
2373 u32 loads[3];
2374 u32 totalram;
2375 u32 freeram;
2376 u32 sharedram;
2377 u32 bufferram;
2378 u32 totalswap;
2379 u32 freeswap;
2380 u16 procs;
2381 u16 pad;
2382 u32 totalhigh;
2383 u32 freehigh;
2384 u32 mem_unit;
2385 char _f[20-2*sizeof(u32)-sizeof(int)];
2386};
2387
2388COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2389{
2390 struct sysinfo s;
2391
2392 do_sysinfo(&s);
2393
2394 /* Check to see if any memory value is too large for 32-bit and scale
2395 * down if needed
2396 */
2397 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2398 int bitcount = 0;
2399
2400 while (s.mem_unit < PAGE_SIZE) {
2401 s.mem_unit <<= 1;
2402 bitcount++;
2403 }
2404
2405 s.totalram >>= bitcount;
2406 s.freeram >>= bitcount;
2407 s.sharedram >>= bitcount;
2408 s.bufferram >>= bitcount;
2409 s.totalswap >>= bitcount;
2410 s.freeswap >>= bitcount;
2411 s.totalhigh >>= bitcount;
2412 s.freehigh >>= bitcount;
2413 }
2414
2415 if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2416 __put_user(s.uptime, &info->uptime) ||
2417 __put_user(s.loads[0], &info->loads[0]) ||
2418 __put_user(s.loads[1], &info->loads[1]) ||
2419 __put_user(s.loads[2], &info->loads[2]) ||
2420 __put_user(s.totalram, &info->totalram) ||
2421 __put_user(s.freeram, &info->freeram) ||
2422 __put_user(s.sharedram, &info->sharedram) ||
2423 __put_user(s.bufferram, &info->bufferram) ||
2424 __put_user(s.totalswap, &info->totalswap) ||
2425 __put_user(s.freeswap, &info->freeswap) ||
2426 __put_user(s.procs, &info->procs) ||
2427 __put_user(s.totalhigh, &info->totalhigh) ||
2428 __put_user(s.freehigh, &info->freehigh) ||
2429 __put_user(s.mem_unit, &info->mem_unit))
2430 return -EFAULT;
2431
2432 return 0;
2433}
2434#endif /* CONFIG_COMPAT */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/kernel/sys.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8#include <linux/export.h>
9#include <linux/mm.h>
10#include <linux/mm_inline.h>
11#include <linux/utsname.h>
12#include <linux/mman.h>
13#include <linux/reboot.h>
14#include <linux/prctl.h>
15#include <linux/highuid.h>
16#include <linux/fs.h>
17#include <linux/kmod.h>
18#include <linux/ksm.h>
19#include <linux/perf_event.h>
20#include <linux/resource.h>
21#include <linux/kernel.h>
22#include <linux/workqueue.h>
23#include <linux/capability.h>
24#include <linux/device.h>
25#include <linux/key.h>
26#include <linux/times.h>
27#include <linux/posix-timers.h>
28#include <linux/security.h>
29#include <linux/random.h>
30#include <linux/suspend.h>
31#include <linux/tty.h>
32#include <linux/signal.h>
33#include <linux/cn_proc.h>
34#include <linux/getcpu.h>
35#include <linux/task_io_accounting_ops.h>
36#include <linux/seccomp.h>
37#include <linux/cpu.h>
38#include <linux/personality.h>
39#include <linux/ptrace.h>
40#include <linux/fs_struct.h>
41#include <linux/file.h>
42#include <linux/mount.h>
43#include <linux/gfp.h>
44#include <linux/syscore_ops.h>
45#include <linux/version.h>
46#include <linux/ctype.h>
47#include <linux/syscall_user_dispatch.h>
48
49#include <linux/compat.h>
50#include <linux/syscalls.h>
51#include <linux/kprobes.h>
52#include <linux/user_namespace.h>
53#include <linux/time_namespace.h>
54#include <linux/binfmts.h>
55
56#include <linux/sched.h>
57#include <linux/sched/autogroup.h>
58#include <linux/sched/loadavg.h>
59#include <linux/sched/stat.h>
60#include <linux/sched/mm.h>
61#include <linux/sched/coredump.h>
62#include <linux/sched/task.h>
63#include <linux/sched/cputime.h>
64#include <linux/rcupdate.h>
65#include <linux/uidgid.h>
66#include <linux/cred.h>
67
68#include <linux/nospec.h>
69
70#include <linux/kmsg_dump.h>
71/* Move somewhere else to avoid recompiling? */
72#include <generated/utsrelease.h>
73
74#include <linux/uaccess.h>
75#include <asm/io.h>
76#include <asm/unistd.h>
77
78#include "uid16.h"
79
80#ifndef SET_UNALIGN_CTL
81# define SET_UNALIGN_CTL(a, b) (-EINVAL)
82#endif
83#ifndef GET_UNALIGN_CTL
84# define GET_UNALIGN_CTL(a, b) (-EINVAL)
85#endif
86#ifndef SET_FPEMU_CTL
87# define SET_FPEMU_CTL(a, b) (-EINVAL)
88#endif
89#ifndef GET_FPEMU_CTL
90# define GET_FPEMU_CTL(a, b) (-EINVAL)
91#endif
92#ifndef SET_FPEXC_CTL
93# define SET_FPEXC_CTL(a, b) (-EINVAL)
94#endif
95#ifndef GET_FPEXC_CTL
96# define GET_FPEXC_CTL(a, b) (-EINVAL)
97#endif
98#ifndef GET_ENDIAN
99# define GET_ENDIAN(a, b) (-EINVAL)
100#endif
101#ifndef SET_ENDIAN
102# define SET_ENDIAN(a, b) (-EINVAL)
103#endif
104#ifndef GET_TSC_CTL
105# define GET_TSC_CTL(a) (-EINVAL)
106#endif
107#ifndef SET_TSC_CTL
108# define SET_TSC_CTL(a) (-EINVAL)
109#endif
110#ifndef GET_FP_MODE
111# define GET_FP_MODE(a) (-EINVAL)
112#endif
113#ifndef SET_FP_MODE
114# define SET_FP_MODE(a,b) (-EINVAL)
115#endif
116#ifndef SVE_SET_VL
117# define SVE_SET_VL(a) (-EINVAL)
118#endif
119#ifndef SVE_GET_VL
120# define SVE_GET_VL() (-EINVAL)
121#endif
122#ifndef SME_SET_VL
123# define SME_SET_VL(a) (-EINVAL)
124#endif
125#ifndef SME_GET_VL
126# define SME_GET_VL() (-EINVAL)
127#endif
128#ifndef PAC_RESET_KEYS
129# define PAC_RESET_KEYS(a, b) (-EINVAL)
130#endif
131#ifndef PAC_SET_ENABLED_KEYS
132# define PAC_SET_ENABLED_KEYS(a, b, c) (-EINVAL)
133#endif
134#ifndef PAC_GET_ENABLED_KEYS
135# define PAC_GET_ENABLED_KEYS(a) (-EINVAL)
136#endif
137#ifndef SET_TAGGED_ADDR_CTRL
138# define SET_TAGGED_ADDR_CTRL(a) (-EINVAL)
139#endif
140#ifndef GET_TAGGED_ADDR_CTRL
141# define GET_TAGGED_ADDR_CTRL() (-EINVAL)
142#endif
143#ifndef RISCV_V_SET_CONTROL
144# define RISCV_V_SET_CONTROL(a) (-EINVAL)
145#endif
146#ifndef RISCV_V_GET_CONTROL
147# define RISCV_V_GET_CONTROL() (-EINVAL)
148#endif
149
150/*
151 * this is where the system-wide overflow UID and GID are defined, for
152 * architectures that now have 32-bit UID/GID but didn't in the past
153 */
154
155int overflowuid = DEFAULT_OVERFLOWUID;
156int overflowgid = DEFAULT_OVERFLOWGID;
157
158EXPORT_SYMBOL(overflowuid);
159EXPORT_SYMBOL(overflowgid);
160
161/*
162 * the same as above, but for filesystems which can only store a 16-bit
163 * UID and GID. as such, this is needed on all architectures
164 */
165
166int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
167int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
168
169EXPORT_SYMBOL(fs_overflowuid);
170EXPORT_SYMBOL(fs_overflowgid);
171
172/*
173 * Returns true if current's euid is same as p's uid or euid,
174 * or has CAP_SYS_NICE to p's user_ns.
175 *
176 * Called with rcu_read_lock, creds are safe
177 */
178static bool set_one_prio_perm(struct task_struct *p)
179{
180 const struct cred *cred = current_cred(), *pcred = __task_cred(p);
181
182 if (uid_eq(pcred->uid, cred->euid) ||
183 uid_eq(pcred->euid, cred->euid))
184 return true;
185 if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
186 return true;
187 return false;
188}
189
190/*
191 * set the priority of a task
192 * - the caller must hold the RCU read lock
193 */
194static int set_one_prio(struct task_struct *p, int niceval, int error)
195{
196 int no_nice;
197
198 if (!set_one_prio_perm(p)) {
199 error = -EPERM;
200 goto out;
201 }
202 if (niceval < task_nice(p) && !can_nice(p, niceval)) {
203 error = -EACCES;
204 goto out;
205 }
206 no_nice = security_task_setnice(p, niceval);
207 if (no_nice) {
208 error = no_nice;
209 goto out;
210 }
211 if (error == -ESRCH)
212 error = 0;
213 set_user_nice(p, niceval);
214out:
215 return error;
216}
217
218SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
219{
220 struct task_struct *g, *p;
221 struct user_struct *user;
222 const struct cred *cred = current_cred();
223 int error = -EINVAL;
224 struct pid *pgrp;
225 kuid_t uid;
226
227 if (which > PRIO_USER || which < PRIO_PROCESS)
228 goto out;
229
230 /* normalize: avoid signed division (rounding problems) */
231 error = -ESRCH;
232 if (niceval < MIN_NICE)
233 niceval = MIN_NICE;
234 if (niceval > MAX_NICE)
235 niceval = MAX_NICE;
236
237 rcu_read_lock();
238 switch (which) {
239 case PRIO_PROCESS:
240 if (who)
241 p = find_task_by_vpid(who);
242 else
243 p = current;
244 if (p)
245 error = set_one_prio(p, niceval, error);
246 break;
247 case PRIO_PGRP:
248 if (who)
249 pgrp = find_vpid(who);
250 else
251 pgrp = task_pgrp(current);
252 read_lock(&tasklist_lock);
253 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
254 error = set_one_prio(p, niceval, error);
255 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
256 read_unlock(&tasklist_lock);
257 break;
258 case PRIO_USER:
259 uid = make_kuid(cred->user_ns, who);
260 user = cred->user;
261 if (!who)
262 uid = cred->uid;
263 else if (!uid_eq(uid, cred->uid)) {
264 user = find_user(uid);
265 if (!user)
266 goto out_unlock; /* No processes for this user */
267 }
268 for_each_process_thread(g, p) {
269 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
270 error = set_one_prio(p, niceval, error);
271 }
272 if (!uid_eq(uid, cred->uid))
273 free_uid(user); /* For find_user() */
274 break;
275 }
276out_unlock:
277 rcu_read_unlock();
278out:
279 return error;
280}
281
282/*
283 * Ugh. To avoid negative return values, "getpriority()" will
284 * not return the normal nice-value, but a negated value that
285 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
286 * to stay compatible.
287 */
288SYSCALL_DEFINE2(getpriority, int, which, int, who)
289{
290 struct task_struct *g, *p;
291 struct user_struct *user;
292 const struct cred *cred = current_cred();
293 long niceval, retval = -ESRCH;
294 struct pid *pgrp;
295 kuid_t uid;
296
297 if (which > PRIO_USER || which < PRIO_PROCESS)
298 return -EINVAL;
299
300 rcu_read_lock();
301 switch (which) {
302 case PRIO_PROCESS:
303 if (who)
304 p = find_task_by_vpid(who);
305 else
306 p = current;
307 if (p) {
308 niceval = nice_to_rlimit(task_nice(p));
309 if (niceval > retval)
310 retval = niceval;
311 }
312 break;
313 case PRIO_PGRP:
314 if (who)
315 pgrp = find_vpid(who);
316 else
317 pgrp = task_pgrp(current);
318 read_lock(&tasklist_lock);
319 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
320 niceval = nice_to_rlimit(task_nice(p));
321 if (niceval > retval)
322 retval = niceval;
323 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
324 read_unlock(&tasklist_lock);
325 break;
326 case PRIO_USER:
327 uid = make_kuid(cred->user_ns, who);
328 user = cred->user;
329 if (!who)
330 uid = cred->uid;
331 else if (!uid_eq(uid, cred->uid)) {
332 user = find_user(uid);
333 if (!user)
334 goto out_unlock; /* No processes for this user */
335 }
336 for_each_process_thread(g, p) {
337 if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
338 niceval = nice_to_rlimit(task_nice(p));
339 if (niceval > retval)
340 retval = niceval;
341 }
342 }
343 if (!uid_eq(uid, cred->uid))
344 free_uid(user); /* for find_user() */
345 break;
346 }
347out_unlock:
348 rcu_read_unlock();
349
350 return retval;
351}
352
353/*
354 * Unprivileged users may change the real gid to the effective gid
355 * or vice versa. (BSD-style)
356 *
357 * If you set the real gid at all, or set the effective gid to a value not
358 * equal to the real gid, then the saved gid is set to the new effective gid.
359 *
360 * This makes it possible for a setgid program to completely drop its
361 * privileges, which is often a useful assertion to make when you are doing
362 * a security audit over a program.
363 *
364 * The general idea is that a program which uses just setregid() will be
365 * 100% compatible with BSD. A program which uses just setgid() will be
366 * 100% compatible with POSIX with saved IDs.
367 *
368 * SMP: There are not races, the GIDs are checked only by filesystem
369 * operations (as far as semantic preservation is concerned).
370 */
371#ifdef CONFIG_MULTIUSER
372long __sys_setregid(gid_t rgid, gid_t egid)
373{
374 struct user_namespace *ns = current_user_ns();
375 const struct cred *old;
376 struct cred *new;
377 int retval;
378 kgid_t krgid, kegid;
379
380 krgid = make_kgid(ns, rgid);
381 kegid = make_kgid(ns, egid);
382
383 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
384 return -EINVAL;
385 if ((egid != (gid_t) -1) && !gid_valid(kegid))
386 return -EINVAL;
387
388 new = prepare_creds();
389 if (!new)
390 return -ENOMEM;
391 old = current_cred();
392
393 retval = -EPERM;
394 if (rgid != (gid_t) -1) {
395 if (gid_eq(old->gid, krgid) ||
396 gid_eq(old->egid, krgid) ||
397 ns_capable_setid(old->user_ns, CAP_SETGID))
398 new->gid = krgid;
399 else
400 goto error;
401 }
402 if (egid != (gid_t) -1) {
403 if (gid_eq(old->gid, kegid) ||
404 gid_eq(old->egid, kegid) ||
405 gid_eq(old->sgid, kegid) ||
406 ns_capable_setid(old->user_ns, CAP_SETGID))
407 new->egid = kegid;
408 else
409 goto error;
410 }
411
412 if (rgid != (gid_t) -1 ||
413 (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
414 new->sgid = new->egid;
415 new->fsgid = new->egid;
416
417 retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
418 if (retval < 0)
419 goto error;
420
421 return commit_creds(new);
422
423error:
424 abort_creds(new);
425 return retval;
426}
427
428SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
429{
430 return __sys_setregid(rgid, egid);
431}
432
433/*
434 * setgid() is implemented like SysV w/ SAVED_IDS
435 *
436 * SMP: Same implicit races as above.
437 */
438long __sys_setgid(gid_t gid)
439{
440 struct user_namespace *ns = current_user_ns();
441 const struct cred *old;
442 struct cred *new;
443 int retval;
444 kgid_t kgid;
445
446 kgid = make_kgid(ns, gid);
447 if (!gid_valid(kgid))
448 return -EINVAL;
449
450 new = prepare_creds();
451 if (!new)
452 return -ENOMEM;
453 old = current_cred();
454
455 retval = -EPERM;
456 if (ns_capable_setid(old->user_ns, CAP_SETGID))
457 new->gid = new->egid = new->sgid = new->fsgid = kgid;
458 else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
459 new->egid = new->fsgid = kgid;
460 else
461 goto error;
462
463 retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
464 if (retval < 0)
465 goto error;
466
467 return commit_creds(new);
468
469error:
470 abort_creds(new);
471 return retval;
472}
473
474SYSCALL_DEFINE1(setgid, gid_t, gid)
475{
476 return __sys_setgid(gid);
477}
478
479/*
480 * change the user struct in a credentials set to match the new UID
481 */
482static int set_user(struct cred *new)
483{
484 struct user_struct *new_user;
485
486 new_user = alloc_uid(new->uid);
487 if (!new_user)
488 return -EAGAIN;
489
490 free_uid(new->user);
491 new->user = new_user;
492 return 0;
493}
494
495static void flag_nproc_exceeded(struct cred *new)
496{
497 if (new->ucounts == current_ucounts())
498 return;
499
500 /*
501 * We don't fail in case of NPROC limit excess here because too many
502 * poorly written programs don't check set*uid() return code, assuming
503 * it never fails if called by root. We may still enforce NPROC limit
504 * for programs doing set*uid()+execve() by harmlessly deferring the
505 * failure to the execve() stage.
506 */
507 if (is_rlimit_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
508 new->user != INIT_USER)
509 current->flags |= PF_NPROC_EXCEEDED;
510 else
511 current->flags &= ~PF_NPROC_EXCEEDED;
512}
513
514/*
515 * Unprivileged users may change the real uid to the effective uid
516 * or vice versa. (BSD-style)
517 *
518 * If you set the real uid at all, or set the effective uid to a value not
519 * equal to the real uid, then the saved uid is set to the new effective uid.
520 *
521 * This makes it possible for a setuid program to completely drop its
522 * privileges, which is often a useful assertion to make when you are doing
523 * a security audit over a program.
524 *
525 * The general idea is that a program which uses just setreuid() will be
526 * 100% compatible with BSD. A program which uses just setuid() will be
527 * 100% compatible with POSIX with saved IDs.
528 */
529long __sys_setreuid(uid_t ruid, uid_t euid)
530{
531 struct user_namespace *ns = current_user_ns();
532 const struct cred *old;
533 struct cred *new;
534 int retval;
535 kuid_t kruid, keuid;
536
537 kruid = make_kuid(ns, ruid);
538 keuid = make_kuid(ns, euid);
539
540 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
541 return -EINVAL;
542 if ((euid != (uid_t) -1) && !uid_valid(keuid))
543 return -EINVAL;
544
545 new = prepare_creds();
546 if (!new)
547 return -ENOMEM;
548 old = current_cred();
549
550 retval = -EPERM;
551 if (ruid != (uid_t) -1) {
552 new->uid = kruid;
553 if (!uid_eq(old->uid, kruid) &&
554 !uid_eq(old->euid, kruid) &&
555 !ns_capable_setid(old->user_ns, CAP_SETUID))
556 goto error;
557 }
558
559 if (euid != (uid_t) -1) {
560 new->euid = keuid;
561 if (!uid_eq(old->uid, keuid) &&
562 !uid_eq(old->euid, keuid) &&
563 !uid_eq(old->suid, keuid) &&
564 !ns_capable_setid(old->user_ns, CAP_SETUID))
565 goto error;
566 }
567
568 if (!uid_eq(new->uid, old->uid)) {
569 retval = set_user(new);
570 if (retval < 0)
571 goto error;
572 }
573 if (ruid != (uid_t) -1 ||
574 (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
575 new->suid = new->euid;
576 new->fsuid = new->euid;
577
578 retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
579 if (retval < 0)
580 goto error;
581
582 retval = set_cred_ucounts(new);
583 if (retval < 0)
584 goto error;
585
586 flag_nproc_exceeded(new);
587 return commit_creds(new);
588
589error:
590 abort_creds(new);
591 return retval;
592}
593
594SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
595{
596 return __sys_setreuid(ruid, euid);
597}
598
599/*
600 * setuid() is implemented like SysV with SAVED_IDS
601 *
602 * Note that SAVED_ID's is deficient in that a setuid root program
603 * like sendmail, for example, cannot set its uid to be a normal
604 * user and then switch back, because if you're root, setuid() sets
605 * the saved uid too. If you don't like this, blame the bright people
606 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
607 * will allow a root program to temporarily drop privileges and be able to
608 * regain them by swapping the real and effective uid.
609 */
610long __sys_setuid(uid_t uid)
611{
612 struct user_namespace *ns = current_user_ns();
613 const struct cred *old;
614 struct cred *new;
615 int retval;
616 kuid_t kuid;
617
618 kuid = make_kuid(ns, uid);
619 if (!uid_valid(kuid))
620 return -EINVAL;
621
622 new = prepare_creds();
623 if (!new)
624 return -ENOMEM;
625 old = current_cred();
626
627 retval = -EPERM;
628 if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
629 new->suid = new->uid = kuid;
630 if (!uid_eq(kuid, old->uid)) {
631 retval = set_user(new);
632 if (retval < 0)
633 goto error;
634 }
635 } else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
636 goto error;
637 }
638
639 new->fsuid = new->euid = kuid;
640
641 retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
642 if (retval < 0)
643 goto error;
644
645 retval = set_cred_ucounts(new);
646 if (retval < 0)
647 goto error;
648
649 flag_nproc_exceeded(new);
650 return commit_creds(new);
651
652error:
653 abort_creds(new);
654 return retval;
655}
656
657SYSCALL_DEFINE1(setuid, uid_t, uid)
658{
659 return __sys_setuid(uid);
660}
661
662
663/*
664 * This function implements a generic ability to update ruid, euid,
665 * and suid. This allows you to implement the 4.4 compatible seteuid().
666 */
667long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
668{
669 struct user_namespace *ns = current_user_ns();
670 const struct cred *old;
671 struct cred *new;
672 int retval;
673 kuid_t kruid, keuid, ksuid;
674 bool ruid_new, euid_new, suid_new;
675
676 kruid = make_kuid(ns, ruid);
677 keuid = make_kuid(ns, euid);
678 ksuid = make_kuid(ns, suid);
679
680 if ((ruid != (uid_t) -1) && !uid_valid(kruid))
681 return -EINVAL;
682
683 if ((euid != (uid_t) -1) && !uid_valid(keuid))
684 return -EINVAL;
685
686 if ((suid != (uid_t) -1) && !uid_valid(ksuid))
687 return -EINVAL;
688
689 old = current_cred();
690
691 /* check for no-op */
692 if ((ruid == (uid_t) -1 || uid_eq(kruid, old->uid)) &&
693 (euid == (uid_t) -1 || (uid_eq(keuid, old->euid) &&
694 uid_eq(keuid, old->fsuid))) &&
695 (suid == (uid_t) -1 || uid_eq(ksuid, old->suid)))
696 return 0;
697
698 ruid_new = ruid != (uid_t) -1 && !uid_eq(kruid, old->uid) &&
699 !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid);
700 euid_new = euid != (uid_t) -1 && !uid_eq(keuid, old->uid) &&
701 !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid);
702 suid_new = suid != (uid_t) -1 && !uid_eq(ksuid, old->uid) &&
703 !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid);
704 if ((ruid_new || euid_new || suid_new) &&
705 !ns_capable_setid(old->user_ns, CAP_SETUID))
706 return -EPERM;
707
708 new = prepare_creds();
709 if (!new)
710 return -ENOMEM;
711
712 if (ruid != (uid_t) -1) {
713 new->uid = kruid;
714 if (!uid_eq(kruid, old->uid)) {
715 retval = set_user(new);
716 if (retval < 0)
717 goto error;
718 }
719 }
720 if (euid != (uid_t) -1)
721 new->euid = keuid;
722 if (suid != (uid_t) -1)
723 new->suid = ksuid;
724 new->fsuid = new->euid;
725
726 retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
727 if (retval < 0)
728 goto error;
729
730 retval = set_cred_ucounts(new);
731 if (retval < 0)
732 goto error;
733
734 flag_nproc_exceeded(new);
735 return commit_creds(new);
736
737error:
738 abort_creds(new);
739 return retval;
740}
741
742SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
743{
744 return __sys_setresuid(ruid, euid, suid);
745}
746
747SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
748{
749 const struct cred *cred = current_cred();
750 int retval;
751 uid_t ruid, euid, suid;
752
753 ruid = from_kuid_munged(cred->user_ns, cred->uid);
754 euid = from_kuid_munged(cred->user_ns, cred->euid);
755 suid = from_kuid_munged(cred->user_ns, cred->suid);
756
757 retval = put_user(ruid, ruidp);
758 if (!retval) {
759 retval = put_user(euid, euidp);
760 if (!retval)
761 return put_user(suid, suidp);
762 }
763 return retval;
764}
765
766/*
767 * Same as above, but for rgid, egid, sgid.
768 */
769long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
770{
771 struct user_namespace *ns = current_user_ns();
772 const struct cred *old;
773 struct cred *new;
774 int retval;
775 kgid_t krgid, kegid, ksgid;
776 bool rgid_new, egid_new, sgid_new;
777
778 krgid = make_kgid(ns, rgid);
779 kegid = make_kgid(ns, egid);
780 ksgid = make_kgid(ns, sgid);
781
782 if ((rgid != (gid_t) -1) && !gid_valid(krgid))
783 return -EINVAL;
784 if ((egid != (gid_t) -1) && !gid_valid(kegid))
785 return -EINVAL;
786 if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
787 return -EINVAL;
788
789 old = current_cred();
790
791 /* check for no-op */
792 if ((rgid == (gid_t) -1 || gid_eq(krgid, old->gid)) &&
793 (egid == (gid_t) -1 || (gid_eq(kegid, old->egid) &&
794 gid_eq(kegid, old->fsgid))) &&
795 (sgid == (gid_t) -1 || gid_eq(ksgid, old->sgid)))
796 return 0;
797
798 rgid_new = rgid != (gid_t) -1 && !gid_eq(krgid, old->gid) &&
799 !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid);
800 egid_new = egid != (gid_t) -1 && !gid_eq(kegid, old->gid) &&
801 !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid);
802 sgid_new = sgid != (gid_t) -1 && !gid_eq(ksgid, old->gid) &&
803 !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid);
804 if ((rgid_new || egid_new || sgid_new) &&
805 !ns_capable_setid(old->user_ns, CAP_SETGID))
806 return -EPERM;
807
808 new = prepare_creds();
809 if (!new)
810 return -ENOMEM;
811
812 if (rgid != (gid_t) -1)
813 new->gid = krgid;
814 if (egid != (gid_t) -1)
815 new->egid = kegid;
816 if (sgid != (gid_t) -1)
817 new->sgid = ksgid;
818 new->fsgid = new->egid;
819
820 retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
821 if (retval < 0)
822 goto error;
823
824 return commit_creds(new);
825
826error:
827 abort_creds(new);
828 return retval;
829}
830
831SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
832{
833 return __sys_setresgid(rgid, egid, sgid);
834}
835
836SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
837{
838 const struct cred *cred = current_cred();
839 int retval;
840 gid_t rgid, egid, sgid;
841
842 rgid = from_kgid_munged(cred->user_ns, cred->gid);
843 egid = from_kgid_munged(cred->user_ns, cred->egid);
844 sgid = from_kgid_munged(cred->user_ns, cred->sgid);
845
846 retval = put_user(rgid, rgidp);
847 if (!retval) {
848 retval = put_user(egid, egidp);
849 if (!retval)
850 retval = put_user(sgid, sgidp);
851 }
852
853 return retval;
854}
855
856
857/*
858 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
859 * is used for "access()" and for the NFS daemon (letting nfsd stay at
860 * whatever uid it wants to). It normally shadows "euid", except when
861 * explicitly set by setfsuid() or for access..
862 */
863long __sys_setfsuid(uid_t uid)
864{
865 const struct cred *old;
866 struct cred *new;
867 uid_t old_fsuid;
868 kuid_t kuid;
869
870 old = current_cred();
871 old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
872
873 kuid = make_kuid(old->user_ns, uid);
874 if (!uid_valid(kuid))
875 return old_fsuid;
876
877 new = prepare_creds();
878 if (!new)
879 return old_fsuid;
880
881 if (uid_eq(kuid, old->uid) || uid_eq(kuid, old->euid) ||
882 uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
883 ns_capable_setid(old->user_ns, CAP_SETUID)) {
884 if (!uid_eq(kuid, old->fsuid)) {
885 new->fsuid = kuid;
886 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
887 goto change_okay;
888 }
889 }
890
891 abort_creds(new);
892 return old_fsuid;
893
894change_okay:
895 commit_creds(new);
896 return old_fsuid;
897}
898
899SYSCALL_DEFINE1(setfsuid, uid_t, uid)
900{
901 return __sys_setfsuid(uid);
902}
903
904/*
905 * Samma på svenska..
906 */
907long __sys_setfsgid(gid_t gid)
908{
909 const struct cred *old;
910 struct cred *new;
911 gid_t old_fsgid;
912 kgid_t kgid;
913
914 old = current_cred();
915 old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
916
917 kgid = make_kgid(old->user_ns, gid);
918 if (!gid_valid(kgid))
919 return old_fsgid;
920
921 new = prepare_creds();
922 if (!new)
923 return old_fsgid;
924
925 if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->egid) ||
926 gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
927 ns_capable_setid(old->user_ns, CAP_SETGID)) {
928 if (!gid_eq(kgid, old->fsgid)) {
929 new->fsgid = kgid;
930 if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
931 goto change_okay;
932 }
933 }
934
935 abort_creds(new);
936 return old_fsgid;
937
938change_okay:
939 commit_creds(new);
940 return old_fsgid;
941}
942
943SYSCALL_DEFINE1(setfsgid, gid_t, gid)
944{
945 return __sys_setfsgid(gid);
946}
947#endif /* CONFIG_MULTIUSER */
948
949/**
950 * sys_getpid - return the thread group id of the current process
951 *
952 * Note, despite the name, this returns the tgid not the pid. The tgid and
953 * the pid are identical unless CLONE_THREAD was specified on clone() in
954 * which case the tgid is the same in all threads of the same group.
955 *
956 * This is SMP safe as current->tgid does not change.
957 */
958SYSCALL_DEFINE0(getpid)
959{
960 return task_tgid_vnr(current);
961}
962
963/* Thread ID - the internal kernel "pid" */
964SYSCALL_DEFINE0(gettid)
965{
966 return task_pid_vnr(current);
967}
968
969/*
970 * Accessing ->real_parent is not SMP-safe, it could
971 * change from under us. However, we can use a stale
972 * value of ->real_parent under rcu_read_lock(), see
973 * release_task()->call_rcu(delayed_put_task_struct).
974 */
975SYSCALL_DEFINE0(getppid)
976{
977 int pid;
978
979 rcu_read_lock();
980 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
981 rcu_read_unlock();
982
983 return pid;
984}
985
986SYSCALL_DEFINE0(getuid)
987{
988 /* Only we change this so SMP safe */
989 return from_kuid_munged(current_user_ns(), current_uid());
990}
991
992SYSCALL_DEFINE0(geteuid)
993{
994 /* Only we change this so SMP safe */
995 return from_kuid_munged(current_user_ns(), current_euid());
996}
997
998SYSCALL_DEFINE0(getgid)
999{
1000 /* Only we change this so SMP safe */
1001 return from_kgid_munged(current_user_ns(), current_gid());
1002}
1003
1004SYSCALL_DEFINE0(getegid)
1005{
1006 /* Only we change this so SMP safe */
1007 return from_kgid_munged(current_user_ns(), current_egid());
1008}
1009
1010static void do_sys_times(struct tms *tms)
1011{
1012 u64 tgutime, tgstime, cutime, cstime;
1013
1014 thread_group_cputime_adjusted(current, &tgutime, &tgstime);
1015 cutime = current->signal->cutime;
1016 cstime = current->signal->cstime;
1017 tms->tms_utime = nsec_to_clock_t(tgutime);
1018 tms->tms_stime = nsec_to_clock_t(tgstime);
1019 tms->tms_cutime = nsec_to_clock_t(cutime);
1020 tms->tms_cstime = nsec_to_clock_t(cstime);
1021}
1022
1023SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
1024{
1025 if (tbuf) {
1026 struct tms tmp;
1027
1028 do_sys_times(&tmp);
1029 if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
1030 return -EFAULT;
1031 }
1032 force_successful_syscall_return();
1033 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1034}
1035
1036#ifdef CONFIG_COMPAT
1037static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
1038{
1039 return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
1040}
1041
1042COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1043{
1044 if (tbuf) {
1045 struct tms tms;
1046 struct compat_tms tmp;
1047
1048 do_sys_times(&tms);
1049 /* Convert our struct tms to the compat version. */
1050 tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1051 tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1052 tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1053 tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1054 if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1055 return -EFAULT;
1056 }
1057 force_successful_syscall_return();
1058 return compat_jiffies_to_clock_t(jiffies);
1059}
1060#endif
1061
1062/*
1063 * This needs some heavy checking ...
1064 * I just haven't the stomach for it. I also don't fully
1065 * understand sessions/pgrp etc. Let somebody who does explain it.
1066 *
1067 * OK, I think I have the protection semantics right.... this is really
1068 * only important on a multi-user system anyway, to make sure one user
1069 * can't send a signal to a process owned by another. -TYT, 12/12/91
1070 *
1071 * !PF_FORKNOEXEC check to conform completely to POSIX.
1072 */
1073SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1074{
1075 struct task_struct *p;
1076 struct task_struct *group_leader = current->group_leader;
1077 struct pid *pgrp;
1078 int err;
1079
1080 if (!pid)
1081 pid = task_pid_vnr(group_leader);
1082 if (!pgid)
1083 pgid = pid;
1084 if (pgid < 0)
1085 return -EINVAL;
1086 rcu_read_lock();
1087
1088 /* From this point forward we keep holding onto the tasklist lock
1089 * so that our parent does not change from under us. -DaveM
1090 */
1091 write_lock_irq(&tasklist_lock);
1092
1093 err = -ESRCH;
1094 p = find_task_by_vpid(pid);
1095 if (!p)
1096 goto out;
1097
1098 err = -EINVAL;
1099 if (!thread_group_leader(p))
1100 goto out;
1101
1102 if (same_thread_group(p->real_parent, group_leader)) {
1103 err = -EPERM;
1104 if (task_session(p) != task_session(group_leader))
1105 goto out;
1106 err = -EACCES;
1107 if (!(p->flags & PF_FORKNOEXEC))
1108 goto out;
1109 } else {
1110 err = -ESRCH;
1111 if (p != group_leader)
1112 goto out;
1113 }
1114
1115 err = -EPERM;
1116 if (p->signal->leader)
1117 goto out;
1118
1119 pgrp = task_pid(p);
1120 if (pgid != pid) {
1121 struct task_struct *g;
1122
1123 pgrp = find_vpid(pgid);
1124 g = pid_task(pgrp, PIDTYPE_PGID);
1125 if (!g || task_session(g) != task_session(group_leader))
1126 goto out;
1127 }
1128
1129 err = security_task_setpgid(p, pgid);
1130 if (err)
1131 goto out;
1132
1133 if (task_pgrp(p) != pgrp)
1134 change_pid(p, PIDTYPE_PGID, pgrp);
1135
1136 err = 0;
1137out:
1138 /* All paths lead to here, thus we are safe. -DaveM */
1139 write_unlock_irq(&tasklist_lock);
1140 rcu_read_unlock();
1141 return err;
1142}
1143
1144static int do_getpgid(pid_t pid)
1145{
1146 struct task_struct *p;
1147 struct pid *grp;
1148 int retval;
1149
1150 rcu_read_lock();
1151 if (!pid)
1152 grp = task_pgrp(current);
1153 else {
1154 retval = -ESRCH;
1155 p = find_task_by_vpid(pid);
1156 if (!p)
1157 goto out;
1158 grp = task_pgrp(p);
1159 if (!grp)
1160 goto out;
1161
1162 retval = security_task_getpgid(p);
1163 if (retval)
1164 goto out;
1165 }
1166 retval = pid_vnr(grp);
1167out:
1168 rcu_read_unlock();
1169 return retval;
1170}
1171
1172SYSCALL_DEFINE1(getpgid, pid_t, pid)
1173{
1174 return do_getpgid(pid);
1175}
1176
1177#ifdef __ARCH_WANT_SYS_GETPGRP
1178
1179SYSCALL_DEFINE0(getpgrp)
1180{
1181 return do_getpgid(0);
1182}
1183
1184#endif
1185
1186SYSCALL_DEFINE1(getsid, pid_t, pid)
1187{
1188 struct task_struct *p;
1189 struct pid *sid;
1190 int retval;
1191
1192 rcu_read_lock();
1193 if (!pid)
1194 sid = task_session(current);
1195 else {
1196 retval = -ESRCH;
1197 p = find_task_by_vpid(pid);
1198 if (!p)
1199 goto out;
1200 sid = task_session(p);
1201 if (!sid)
1202 goto out;
1203
1204 retval = security_task_getsid(p);
1205 if (retval)
1206 goto out;
1207 }
1208 retval = pid_vnr(sid);
1209out:
1210 rcu_read_unlock();
1211 return retval;
1212}
1213
1214static void set_special_pids(struct pid *pid)
1215{
1216 struct task_struct *curr = current->group_leader;
1217
1218 if (task_session(curr) != pid)
1219 change_pid(curr, PIDTYPE_SID, pid);
1220
1221 if (task_pgrp(curr) != pid)
1222 change_pid(curr, PIDTYPE_PGID, pid);
1223}
1224
1225int ksys_setsid(void)
1226{
1227 struct task_struct *group_leader = current->group_leader;
1228 struct pid *sid = task_pid(group_leader);
1229 pid_t session = pid_vnr(sid);
1230 int err = -EPERM;
1231
1232 write_lock_irq(&tasklist_lock);
1233 /* Fail if I am already a session leader */
1234 if (group_leader->signal->leader)
1235 goto out;
1236
1237 /* Fail if a process group id already exists that equals the
1238 * proposed session id.
1239 */
1240 if (pid_task(sid, PIDTYPE_PGID))
1241 goto out;
1242
1243 group_leader->signal->leader = 1;
1244 set_special_pids(sid);
1245
1246 proc_clear_tty(group_leader);
1247
1248 err = session;
1249out:
1250 write_unlock_irq(&tasklist_lock);
1251 if (err > 0) {
1252 proc_sid_connector(group_leader);
1253 sched_autogroup_create_attach(group_leader);
1254 }
1255 return err;
1256}
1257
1258SYSCALL_DEFINE0(setsid)
1259{
1260 return ksys_setsid();
1261}
1262
1263DECLARE_RWSEM(uts_sem);
1264
1265#ifdef COMPAT_UTS_MACHINE
1266#define override_architecture(name) \
1267 (personality(current->personality) == PER_LINUX32 && \
1268 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1269 sizeof(COMPAT_UTS_MACHINE)))
1270#else
1271#define override_architecture(name) 0
1272#endif
1273
1274/*
1275 * Work around broken programs that cannot handle "Linux 3.0".
1276 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1277 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1278 * 2.6.60.
1279 */
1280static int override_release(char __user *release, size_t len)
1281{
1282 int ret = 0;
1283
1284 if (current->personality & UNAME26) {
1285 const char *rest = UTS_RELEASE;
1286 char buf[65] = { 0 };
1287 int ndots = 0;
1288 unsigned v;
1289 size_t copy;
1290
1291 while (*rest) {
1292 if (*rest == '.' && ++ndots >= 3)
1293 break;
1294 if (!isdigit(*rest) && *rest != '.')
1295 break;
1296 rest++;
1297 }
1298 v = LINUX_VERSION_PATCHLEVEL + 60;
1299 copy = clamp_t(size_t, len, 1, sizeof(buf));
1300 copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1301 ret = copy_to_user(release, buf, copy + 1);
1302 }
1303 return ret;
1304}
1305
1306SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1307{
1308 struct new_utsname tmp;
1309
1310 down_read(&uts_sem);
1311 memcpy(&tmp, utsname(), sizeof(tmp));
1312 up_read(&uts_sem);
1313 if (copy_to_user(name, &tmp, sizeof(tmp)))
1314 return -EFAULT;
1315
1316 if (override_release(name->release, sizeof(name->release)))
1317 return -EFAULT;
1318 if (override_architecture(name))
1319 return -EFAULT;
1320 return 0;
1321}
1322
1323#ifdef __ARCH_WANT_SYS_OLD_UNAME
1324/*
1325 * Old cruft
1326 */
1327SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1328{
1329 struct old_utsname tmp;
1330
1331 if (!name)
1332 return -EFAULT;
1333
1334 down_read(&uts_sem);
1335 memcpy(&tmp, utsname(), sizeof(tmp));
1336 up_read(&uts_sem);
1337 if (copy_to_user(name, &tmp, sizeof(tmp)))
1338 return -EFAULT;
1339
1340 if (override_release(name->release, sizeof(name->release)))
1341 return -EFAULT;
1342 if (override_architecture(name))
1343 return -EFAULT;
1344 return 0;
1345}
1346
1347SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1348{
1349 struct oldold_utsname tmp;
1350
1351 if (!name)
1352 return -EFAULT;
1353
1354 memset(&tmp, 0, sizeof(tmp));
1355
1356 down_read(&uts_sem);
1357 memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1358 memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1359 memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1360 memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1361 memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1362 up_read(&uts_sem);
1363 if (copy_to_user(name, &tmp, sizeof(tmp)))
1364 return -EFAULT;
1365
1366 if (override_architecture(name))
1367 return -EFAULT;
1368 if (override_release(name->release, sizeof(name->release)))
1369 return -EFAULT;
1370 return 0;
1371}
1372#endif
1373
1374SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1375{
1376 int errno;
1377 char tmp[__NEW_UTS_LEN];
1378
1379 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1380 return -EPERM;
1381
1382 if (len < 0 || len > __NEW_UTS_LEN)
1383 return -EINVAL;
1384 errno = -EFAULT;
1385 if (!copy_from_user(tmp, name, len)) {
1386 struct new_utsname *u;
1387
1388 add_device_randomness(tmp, len);
1389 down_write(&uts_sem);
1390 u = utsname();
1391 memcpy(u->nodename, tmp, len);
1392 memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1393 errno = 0;
1394 uts_proc_notify(UTS_PROC_HOSTNAME);
1395 up_write(&uts_sem);
1396 }
1397 return errno;
1398}
1399
1400#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1401
1402SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1403{
1404 int i;
1405 struct new_utsname *u;
1406 char tmp[__NEW_UTS_LEN + 1];
1407
1408 if (len < 0)
1409 return -EINVAL;
1410 down_read(&uts_sem);
1411 u = utsname();
1412 i = 1 + strlen(u->nodename);
1413 if (i > len)
1414 i = len;
1415 memcpy(tmp, u->nodename, i);
1416 up_read(&uts_sem);
1417 if (copy_to_user(name, tmp, i))
1418 return -EFAULT;
1419 return 0;
1420}
1421
1422#endif
1423
1424/*
1425 * Only setdomainname; getdomainname can be implemented by calling
1426 * uname()
1427 */
1428SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1429{
1430 int errno;
1431 char tmp[__NEW_UTS_LEN];
1432
1433 if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1434 return -EPERM;
1435 if (len < 0 || len > __NEW_UTS_LEN)
1436 return -EINVAL;
1437
1438 errno = -EFAULT;
1439 if (!copy_from_user(tmp, name, len)) {
1440 struct new_utsname *u;
1441
1442 add_device_randomness(tmp, len);
1443 down_write(&uts_sem);
1444 u = utsname();
1445 memcpy(u->domainname, tmp, len);
1446 memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1447 errno = 0;
1448 uts_proc_notify(UTS_PROC_DOMAINNAME);
1449 up_write(&uts_sem);
1450 }
1451 return errno;
1452}
1453
1454/* make sure you are allowed to change @tsk limits before calling this */
1455static int do_prlimit(struct task_struct *tsk, unsigned int resource,
1456 struct rlimit *new_rlim, struct rlimit *old_rlim)
1457{
1458 struct rlimit *rlim;
1459 int retval = 0;
1460
1461 if (resource >= RLIM_NLIMITS)
1462 return -EINVAL;
1463 resource = array_index_nospec(resource, RLIM_NLIMITS);
1464
1465 if (new_rlim) {
1466 if (new_rlim->rlim_cur > new_rlim->rlim_max)
1467 return -EINVAL;
1468 if (resource == RLIMIT_NOFILE &&
1469 new_rlim->rlim_max > sysctl_nr_open)
1470 return -EPERM;
1471 }
1472
1473 /* Holding a refcount on tsk protects tsk->signal from disappearing. */
1474 rlim = tsk->signal->rlim + resource;
1475 task_lock(tsk->group_leader);
1476 if (new_rlim) {
1477 /*
1478 * Keep the capable check against init_user_ns until cgroups can
1479 * contain all limits.
1480 */
1481 if (new_rlim->rlim_max > rlim->rlim_max &&
1482 !capable(CAP_SYS_RESOURCE))
1483 retval = -EPERM;
1484 if (!retval)
1485 retval = security_task_setrlimit(tsk, resource, new_rlim);
1486 }
1487 if (!retval) {
1488 if (old_rlim)
1489 *old_rlim = *rlim;
1490 if (new_rlim)
1491 *rlim = *new_rlim;
1492 }
1493 task_unlock(tsk->group_leader);
1494
1495 /*
1496 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1497 * infinite. In case of RLIM_INFINITY the posix CPU timer code
1498 * ignores the rlimit.
1499 */
1500 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1501 new_rlim->rlim_cur != RLIM_INFINITY &&
1502 IS_ENABLED(CONFIG_POSIX_TIMERS)) {
1503 /*
1504 * update_rlimit_cpu can fail if the task is exiting, but there
1505 * may be other tasks in the thread group that are not exiting,
1506 * and they need their cpu timers adjusted.
1507 *
1508 * The group_leader is the last task to be released, so if we
1509 * cannot update_rlimit_cpu on it, then the entire process is
1510 * exiting and we do not need to update at all.
1511 */
1512 update_rlimit_cpu(tsk->group_leader, new_rlim->rlim_cur);
1513 }
1514
1515 return retval;
1516}
1517
1518SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1519{
1520 struct rlimit value;
1521 int ret;
1522
1523 ret = do_prlimit(current, resource, NULL, &value);
1524 if (!ret)
1525 ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1526
1527 return ret;
1528}
1529
1530#ifdef CONFIG_COMPAT
1531
1532COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1533 struct compat_rlimit __user *, rlim)
1534{
1535 struct rlimit r;
1536 struct compat_rlimit r32;
1537
1538 if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1539 return -EFAULT;
1540
1541 if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1542 r.rlim_cur = RLIM_INFINITY;
1543 else
1544 r.rlim_cur = r32.rlim_cur;
1545 if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1546 r.rlim_max = RLIM_INFINITY;
1547 else
1548 r.rlim_max = r32.rlim_max;
1549 return do_prlimit(current, resource, &r, NULL);
1550}
1551
1552COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1553 struct compat_rlimit __user *, rlim)
1554{
1555 struct rlimit r;
1556 int ret;
1557
1558 ret = do_prlimit(current, resource, NULL, &r);
1559 if (!ret) {
1560 struct compat_rlimit r32;
1561 if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1562 r32.rlim_cur = COMPAT_RLIM_INFINITY;
1563 else
1564 r32.rlim_cur = r.rlim_cur;
1565 if (r.rlim_max > COMPAT_RLIM_INFINITY)
1566 r32.rlim_max = COMPAT_RLIM_INFINITY;
1567 else
1568 r32.rlim_max = r.rlim_max;
1569
1570 if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1571 return -EFAULT;
1572 }
1573 return ret;
1574}
1575
1576#endif
1577
1578#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1579
1580/*
1581 * Back compatibility for getrlimit. Needed for some apps.
1582 */
1583SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1584 struct rlimit __user *, rlim)
1585{
1586 struct rlimit x;
1587 if (resource >= RLIM_NLIMITS)
1588 return -EINVAL;
1589
1590 resource = array_index_nospec(resource, RLIM_NLIMITS);
1591 task_lock(current->group_leader);
1592 x = current->signal->rlim[resource];
1593 task_unlock(current->group_leader);
1594 if (x.rlim_cur > 0x7FFFFFFF)
1595 x.rlim_cur = 0x7FFFFFFF;
1596 if (x.rlim_max > 0x7FFFFFFF)
1597 x.rlim_max = 0x7FFFFFFF;
1598 return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1599}
1600
1601#ifdef CONFIG_COMPAT
1602COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1603 struct compat_rlimit __user *, rlim)
1604{
1605 struct rlimit r;
1606
1607 if (resource >= RLIM_NLIMITS)
1608 return -EINVAL;
1609
1610 resource = array_index_nospec(resource, RLIM_NLIMITS);
1611 task_lock(current->group_leader);
1612 r = current->signal->rlim[resource];
1613 task_unlock(current->group_leader);
1614 if (r.rlim_cur > 0x7FFFFFFF)
1615 r.rlim_cur = 0x7FFFFFFF;
1616 if (r.rlim_max > 0x7FFFFFFF)
1617 r.rlim_max = 0x7FFFFFFF;
1618
1619 if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1620 put_user(r.rlim_max, &rlim->rlim_max))
1621 return -EFAULT;
1622 return 0;
1623}
1624#endif
1625
1626#endif
1627
1628static inline bool rlim64_is_infinity(__u64 rlim64)
1629{
1630#if BITS_PER_LONG < 64
1631 return rlim64 >= ULONG_MAX;
1632#else
1633 return rlim64 == RLIM64_INFINITY;
1634#endif
1635}
1636
1637static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1638{
1639 if (rlim->rlim_cur == RLIM_INFINITY)
1640 rlim64->rlim_cur = RLIM64_INFINITY;
1641 else
1642 rlim64->rlim_cur = rlim->rlim_cur;
1643 if (rlim->rlim_max == RLIM_INFINITY)
1644 rlim64->rlim_max = RLIM64_INFINITY;
1645 else
1646 rlim64->rlim_max = rlim->rlim_max;
1647}
1648
1649static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1650{
1651 if (rlim64_is_infinity(rlim64->rlim_cur))
1652 rlim->rlim_cur = RLIM_INFINITY;
1653 else
1654 rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1655 if (rlim64_is_infinity(rlim64->rlim_max))
1656 rlim->rlim_max = RLIM_INFINITY;
1657 else
1658 rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1659}
1660
1661/* rcu lock must be held */
1662static int check_prlimit_permission(struct task_struct *task,
1663 unsigned int flags)
1664{
1665 const struct cred *cred = current_cred(), *tcred;
1666 bool id_match;
1667
1668 if (current == task)
1669 return 0;
1670
1671 tcred = __task_cred(task);
1672 id_match = (uid_eq(cred->uid, tcred->euid) &&
1673 uid_eq(cred->uid, tcred->suid) &&
1674 uid_eq(cred->uid, tcred->uid) &&
1675 gid_eq(cred->gid, tcred->egid) &&
1676 gid_eq(cred->gid, tcred->sgid) &&
1677 gid_eq(cred->gid, tcred->gid));
1678 if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1679 return -EPERM;
1680
1681 return security_task_prlimit(cred, tcred, flags);
1682}
1683
1684SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1685 const struct rlimit64 __user *, new_rlim,
1686 struct rlimit64 __user *, old_rlim)
1687{
1688 struct rlimit64 old64, new64;
1689 struct rlimit old, new;
1690 struct task_struct *tsk;
1691 unsigned int checkflags = 0;
1692 int ret;
1693
1694 if (old_rlim)
1695 checkflags |= LSM_PRLIMIT_READ;
1696
1697 if (new_rlim) {
1698 if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1699 return -EFAULT;
1700 rlim64_to_rlim(&new64, &new);
1701 checkflags |= LSM_PRLIMIT_WRITE;
1702 }
1703
1704 rcu_read_lock();
1705 tsk = pid ? find_task_by_vpid(pid) : current;
1706 if (!tsk) {
1707 rcu_read_unlock();
1708 return -ESRCH;
1709 }
1710 ret = check_prlimit_permission(tsk, checkflags);
1711 if (ret) {
1712 rcu_read_unlock();
1713 return ret;
1714 }
1715 get_task_struct(tsk);
1716 rcu_read_unlock();
1717
1718 ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1719 old_rlim ? &old : NULL);
1720
1721 if (!ret && old_rlim) {
1722 rlim_to_rlim64(&old, &old64);
1723 if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1724 ret = -EFAULT;
1725 }
1726
1727 put_task_struct(tsk);
1728 return ret;
1729}
1730
1731SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1732{
1733 struct rlimit new_rlim;
1734
1735 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1736 return -EFAULT;
1737 return do_prlimit(current, resource, &new_rlim, NULL);
1738}
1739
1740/*
1741 * It would make sense to put struct rusage in the task_struct,
1742 * except that would make the task_struct be *really big*. After
1743 * task_struct gets moved into malloc'ed memory, it would
1744 * make sense to do this. It will make moving the rest of the information
1745 * a lot simpler! (Which we're not doing right now because we're not
1746 * measuring them yet).
1747 *
1748 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1749 * races with threads incrementing their own counters. But since word
1750 * reads are atomic, we either get new values or old values and we don't
1751 * care which for the sums. We always take the siglock to protect reading
1752 * the c* fields from p->signal from races with exit.c updating those
1753 * fields when reaping, so a sample either gets all the additions of a
1754 * given child after it's reaped, or none so this sample is before reaping.
1755 *
1756 * Locking:
1757 * We need to take the siglock for CHILDEREN, SELF and BOTH
1758 * for the cases current multithreaded, non-current single threaded
1759 * non-current multithreaded. Thread traversal is now safe with
1760 * the siglock held.
1761 * Strictly speaking, we donot need to take the siglock if we are current and
1762 * single threaded, as no one else can take our signal_struct away, no one
1763 * else can reap the children to update signal->c* counters, and no one else
1764 * can race with the signal-> fields. If we do not take any lock, the
1765 * signal-> fields could be read out of order while another thread was just
1766 * exiting. So we should place a read memory barrier when we avoid the lock.
1767 * On the writer side, write memory barrier is implied in __exit_signal
1768 * as __exit_signal releases the siglock spinlock after updating the signal->
1769 * fields. But we don't do this yet to keep things simple.
1770 *
1771 */
1772
1773static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1774{
1775 r->ru_nvcsw += t->nvcsw;
1776 r->ru_nivcsw += t->nivcsw;
1777 r->ru_minflt += t->min_flt;
1778 r->ru_majflt += t->maj_flt;
1779 r->ru_inblock += task_io_get_inblock(t);
1780 r->ru_oublock += task_io_get_oublock(t);
1781}
1782
1783void getrusage(struct task_struct *p, int who, struct rusage *r)
1784{
1785 struct task_struct *t;
1786 unsigned long flags;
1787 u64 tgutime, tgstime, utime, stime;
1788 unsigned long maxrss;
1789 struct mm_struct *mm;
1790 struct signal_struct *sig = p->signal;
1791 unsigned int seq = 0;
1792
1793retry:
1794 memset(r, 0, sizeof(*r));
1795 utime = stime = 0;
1796 maxrss = 0;
1797
1798 if (who == RUSAGE_THREAD) {
1799 task_cputime_adjusted(current, &utime, &stime);
1800 accumulate_thread_rusage(p, r);
1801 maxrss = sig->maxrss;
1802 goto out_thread;
1803 }
1804
1805 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
1806
1807 switch (who) {
1808 case RUSAGE_BOTH:
1809 case RUSAGE_CHILDREN:
1810 utime = sig->cutime;
1811 stime = sig->cstime;
1812 r->ru_nvcsw = sig->cnvcsw;
1813 r->ru_nivcsw = sig->cnivcsw;
1814 r->ru_minflt = sig->cmin_flt;
1815 r->ru_majflt = sig->cmaj_flt;
1816 r->ru_inblock = sig->cinblock;
1817 r->ru_oublock = sig->coublock;
1818 maxrss = sig->cmaxrss;
1819
1820 if (who == RUSAGE_CHILDREN)
1821 break;
1822 fallthrough;
1823
1824 case RUSAGE_SELF:
1825 r->ru_nvcsw += sig->nvcsw;
1826 r->ru_nivcsw += sig->nivcsw;
1827 r->ru_minflt += sig->min_flt;
1828 r->ru_majflt += sig->maj_flt;
1829 r->ru_inblock += sig->inblock;
1830 r->ru_oublock += sig->oublock;
1831 if (maxrss < sig->maxrss)
1832 maxrss = sig->maxrss;
1833
1834 rcu_read_lock();
1835 __for_each_thread(sig, t)
1836 accumulate_thread_rusage(t, r);
1837 rcu_read_unlock();
1838
1839 break;
1840
1841 default:
1842 BUG();
1843 }
1844
1845 if (need_seqretry(&sig->stats_lock, seq)) {
1846 seq = 1;
1847 goto retry;
1848 }
1849 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
1850
1851 if (who == RUSAGE_CHILDREN)
1852 goto out_children;
1853
1854 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1855 utime += tgutime;
1856 stime += tgstime;
1857
1858out_thread:
1859 mm = get_task_mm(p);
1860 if (mm) {
1861 setmax_mm_hiwater_rss(&maxrss, mm);
1862 mmput(mm);
1863 }
1864
1865out_children:
1866 r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1867 r->ru_utime = ns_to_kernel_old_timeval(utime);
1868 r->ru_stime = ns_to_kernel_old_timeval(stime);
1869}
1870
1871SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1872{
1873 struct rusage r;
1874
1875 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1876 who != RUSAGE_THREAD)
1877 return -EINVAL;
1878
1879 getrusage(current, who, &r);
1880 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1881}
1882
1883#ifdef CONFIG_COMPAT
1884COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1885{
1886 struct rusage r;
1887
1888 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1889 who != RUSAGE_THREAD)
1890 return -EINVAL;
1891
1892 getrusage(current, who, &r);
1893 return put_compat_rusage(&r, ru);
1894}
1895#endif
1896
1897SYSCALL_DEFINE1(umask, int, mask)
1898{
1899 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO);
1900 return mask;
1901}
1902
1903static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1904{
1905 struct fd exe;
1906 struct inode *inode;
1907 int err;
1908
1909 exe = fdget(fd);
1910 if (!exe.file)
1911 return -EBADF;
1912
1913 inode = file_inode(exe.file);
1914
1915 /*
1916 * Because the original mm->exe_file points to executable file, make
1917 * sure that this one is executable as well, to avoid breaking an
1918 * overall picture.
1919 */
1920 err = -EACCES;
1921 if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1922 goto exit;
1923
1924 err = file_permission(exe.file, MAY_EXEC);
1925 if (err)
1926 goto exit;
1927
1928 err = replace_mm_exe_file(mm, exe.file);
1929exit:
1930 fdput(exe);
1931 return err;
1932}
1933
1934/*
1935 * Check arithmetic relations of passed addresses.
1936 *
1937 * WARNING: we don't require any capability here so be very careful
1938 * in what is allowed for modification from userspace.
1939 */
1940static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1941{
1942 unsigned long mmap_max_addr = TASK_SIZE;
1943 int error = -EINVAL, i;
1944
1945 static const unsigned char offsets[] = {
1946 offsetof(struct prctl_mm_map, start_code),
1947 offsetof(struct prctl_mm_map, end_code),
1948 offsetof(struct prctl_mm_map, start_data),
1949 offsetof(struct prctl_mm_map, end_data),
1950 offsetof(struct prctl_mm_map, start_brk),
1951 offsetof(struct prctl_mm_map, brk),
1952 offsetof(struct prctl_mm_map, start_stack),
1953 offsetof(struct prctl_mm_map, arg_start),
1954 offsetof(struct prctl_mm_map, arg_end),
1955 offsetof(struct prctl_mm_map, env_start),
1956 offsetof(struct prctl_mm_map, env_end),
1957 };
1958
1959 /*
1960 * Make sure the members are not somewhere outside
1961 * of allowed address space.
1962 */
1963 for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1964 u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1965
1966 if ((unsigned long)val >= mmap_max_addr ||
1967 (unsigned long)val < mmap_min_addr)
1968 goto out;
1969 }
1970
1971 /*
1972 * Make sure the pairs are ordered.
1973 */
1974#define __prctl_check_order(__m1, __op, __m2) \
1975 ((unsigned long)prctl_map->__m1 __op \
1976 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1977 error = __prctl_check_order(start_code, <, end_code);
1978 error |= __prctl_check_order(start_data,<=, end_data);
1979 error |= __prctl_check_order(start_brk, <=, brk);
1980 error |= __prctl_check_order(arg_start, <=, arg_end);
1981 error |= __prctl_check_order(env_start, <=, env_end);
1982 if (error)
1983 goto out;
1984#undef __prctl_check_order
1985
1986 error = -EINVAL;
1987
1988 /*
1989 * Neither we should allow to override limits if they set.
1990 */
1991 if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1992 prctl_map->start_brk, prctl_map->end_data,
1993 prctl_map->start_data))
1994 goto out;
1995
1996 error = 0;
1997out:
1998 return error;
1999}
2000
2001#ifdef CONFIG_CHECKPOINT_RESTORE
2002static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
2003{
2004 struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
2005 unsigned long user_auxv[AT_VECTOR_SIZE];
2006 struct mm_struct *mm = current->mm;
2007 int error;
2008
2009 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2010 BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
2011
2012 if (opt == PR_SET_MM_MAP_SIZE)
2013 return put_user((unsigned int)sizeof(prctl_map),
2014 (unsigned int __user *)addr);
2015
2016 if (data_size != sizeof(prctl_map))
2017 return -EINVAL;
2018
2019 if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
2020 return -EFAULT;
2021
2022 error = validate_prctl_map_addr(&prctl_map);
2023 if (error)
2024 return error;
2025
2026 if (prctl_map.auxv_size) {
2027 /*
2028 * Someone is trying to cheat the auxv vector.
2029 */
2030 if (!prctl_map.auxv ||
2031 prctl_map.auxv_size > sizeof(mm->saved_auxv))
2032 return -EINVAL;
2033
2034 memset(user_auxv, 0, sizeof(user_auxv));
2035 if (copy_from_user(user_auxv,
2036 (const void __user *)prctl_map.auxv,
2037 prctl_map.auxv_size))
2038 return -EFAULT;
2039
2040 /* Last entry must be AT_NULL as specification requires */
2041 user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2042 user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2043 }
2044
2045 if (prctl_map.exe_fd != (u32)-1) {
2046 /*
2047 * Check if the current user is checkpoint/restore capable.
2048 * At the time of this writing, it checks for CAP_SYS_ADMIN
2049 * or CAP_CHECKPOINT_RESTORE.
2050 * Note that a user with access to ptrace can masquerade an
2051 * arbitrary program as any executable, even setuid ones.
2052 * This may have implications in the tomoyo subsystem.
2053 */
2054 if (!checkpoint_restore_ns_capable(current_user_ns()))
2055 return -EPERM;
2056
2057 error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2058 if (error)
2059 return error;
2060 }
2061
2062 /*
2063 * arg_lock protects concurrent updates but we still need mmap_lock for
2064 * read to exclude races with sys_brk.
2065 */
2066 mmap_read_lock(mm);
2067
2068 /*
2069 * We don't validate if these members are pointing to
2070 * real present VMAs because application may have correspond
2071 * VMAs already unmapped and kernel uses these members for statistics
2072 * output in procfs mostly, except
2073 *
2074 * - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2075 * for VMAs when updating these members so anything wrong written
2076 * here cause kernel to swear at userspace program but won't lead
2077 * to any problem in kernel itself
2078 */
2079
2080 spin_lock(&mm->arg_lock);
2081 mm->start_code = prctl_map.start_code;
2082 mm->end_code = prctl_map.end_code;
2083 mm->start_data = prctl_map.start_data;
2084 mm->end_data = prctl_map.end_data;
2085 mm->start_brk = prctl_map.start_brk;
2086 mm->brk = prctl_map.brk;
2087 mm->start_stack = prctl_map.start_stack;
2088 mm->arg_start = prctl_map.arg_start;
2089 mm->arg_end = prctl_map.arg_end;
2090 mm->env_start = prctl_map.env_start;
2091 mm->env_end = prctl_map.env_end;
2092 spin_unlock(&mm->arg_lock);
2093
2094 /*
2095 * Note this update of @saved_auxv is lockless thus
2096 * if someone reads this member in procfs while we're
2097 * updating -- it may get partly updated results. It's
2098 * known and acceptable trade off: we leave it as is to
2099 * not introduce additional locks here making the kernel
2100 * more complex.
2101 */
2102 if (prctl_map.auxv_size)
2103 memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2104
2105 mmap_read_unlock(mm);
2106 return 0;
2107}
2108#endif /* CONFIG_CHECKPOINT_RESTORE */
2109
2110static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2111 unsigned long len)
2112{
2113 /*
2114 * This doesn't move the auxiliary vector itself since it's pinned to
2115 * mm_struct, but it permits filling the vector with new values. It's
2116 * up to the caller to provide sane values here, otherwise userspace
2117 * tools which use this vector might be unhappy.
2118 */
2119 unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2120
2121 if (len > sizeof(user_auxv))
2122 return -EINVAL;
2123
2124 if (copy_from_user(user_auxv, (const void __user *)addr, len))
2125 return -EFAULT;
2126
2127 /* Make sure the last entry is always AT_NULL */
2128 user_auxv[AT_VECTOR_SIZE - 2] = 0;
2129 user_auxv[AT_VECTOR_SIZE - 1] = 0;
2130
2131 BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2132
2133 task_lock(current);
2134 memcpy(mm->saved_auxv, user_auxv, len);
2135 task_unlock(current);
2136
2137 return 0;
2138}
2139
2140static int prctl_set_mm(int opt, unsigned long addr,
2141 unsigned long arg4, unsigned long arg5)
2142{
2143 struct mm_struct *mm = current->mm;
2144 struct prctl_mm_map prctl_map = {
2145 .auxv = NULL,
2146 .auxv_size = 0,
2147 .exe_fd = -1,
2148 };
2149 struct vm_area_struct *vma;
2150 int error;
2151
2152 if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2153 opt != PR_SET_MM_MAP &&
2154 opt != PR_SET_MM_MAP_SIZE)))
2155 return -EINVAL;
2156
2157#ifdef CONFIG_CHECKPOINT_RESTORE
2158 if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2159 return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2160#endif
2161
2162 if (!capable(CAP_SYS_RESOURCE))
2163 return -EPERM;
2164
2165 if (opt == PR_SET_MM_EXE_FILE)
2166 return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2167
2168 if (opt == PR_SET_MM_AUXV)
2169 return prctl_set_auxv(mm, addr, arg4);
2170
2171 if (addr >= TASK_SIZE || addr < mmap_min_addr)
2172 return -EINVAL;
2173
2174 error = -EINVAL;
2175
2176 /*
2177 * arg_lock protects concurrent updates of arg boundaries, we need
2178 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2179 * validation.
2180 */
2181 mmap_read_lock(mm);
2182 vma = find_vma(mm, addr);
2183
2184 spin_lock(&mm->arg_lock);
2185 prctl_map.start_code = mm->start_code;
2186 prctl_map.end_code = mm->end_code;
2187 prctl_map.start_data = mm->start_data;
2188 prctl_map.end_data = mm->end_data;
2189 prctl_map.start_brk = mm->start_brk;
2190 prctl_map.brk = mm->brk;
2191 prctl_map.start_stack = mm->start_stack;
2192 prctl_map.arg_start = mm->arg_start;
2193 prctl_map.arg_end = mm->arg_end;
2194 prctl_map.env_start = mm->env_start;
2195 prctl_map.env_end = mm->env_end;
2196
2197 switch (opt) {
2198 case PR_SET_MM_START_CODE:
2199 prctl_map.start_code = addr;
2200 break;
2201 case PR_SET_MM_END_CODE:
2202 prctl_map.end_code = addr;
2203 break;
2204 case PR_SET_MM_START_DATA:
2205 prctl_map.start_data = addr;
2206 break;
2207 case PR_SET_MM_END_DATA:
2208 prctl_map.end_data = addr;
2209 break;
2210 case PR_SET_MM_START_STACK:
2211 prctl_map.start_stack = addr;
2212 break;
2213 case PR_SET_MM_START_BRK:
2214 prctl_map.start_brk = addr;
2215 break;
2216 case PR_SET_MM_BRK:
2217 prctl_map.brk = addr;
2218 break;
2219 case PR_SET_MM_ARG_START:
2220 prctl_map.arg_start = addr;
2221 break;
2222 case PR_SET_MM_ARG_END:
2223 prctl_map.arg_end = addr;
2224 break;
2225 case PR_SET_MM_ENV_START:
2226 prctl_map.env_start = addr;
2227 break;
2228 case PR_SET_MM_ENV_END:
2229 prctl_map.env_end = addr;
2230 break;
2231 default:
2232 goto out;
2233 }
2234
2235 error = validate_prctl_map_addr(&prctl_map);
2236 if (error)
2237 goto out;
2238
2239 switch (opt) {
2240 /*
2241 * If command line arguments and environment
2242 * are placed somewhere else on stack, we can
2243 * set them up here, ARG_START/END to setup
2244 * command line arguments and ENV_START/END
2245 * for environment.
2246 */
2247 case PR_SET_MM_START_STACK:
2248 case PR_SET_MM_ARG_START:
2249 case PR_SET_MM_ARG_END:
2250 case PR_SET_MM_ENV_START:
2251 case PR_SET_MM_ENV_END:
2252 if (!vma) {
2253 error = -EFAULT;
2254 goto out;
2255 }
2256 }
2257
2258 mm->start_code = prctl_map.start_code;
2259 mm->end_code = prctl_map.end_code;
2260 mm->start_data = prctl_map.start_data;
2261 mm->end_data = prctl_map.end_data;
2262 mm->start_brk = prctl_map.start_brk;
2263 mm->brk = prctl_map.brk;
2264 mm->start_stack = prctl_map.start_stack;
2265 mm->arg_start = prctl_map.arg_start;
2266 mm->arg_end = prctl_map.arg_end;
2267 mm->env_start = prctl_map.env_start;
2268 mm->env_end = prctl_map.env_end;
2269
2270 error = 0;
2271out:
2272 spin_unlock(&mm->arg_lock);
2273 mmap_read_unlock(mm);
2274 return error;
2275}
2276
2277#ifdef CONFIG_CHECKPOINT_RESTORE
2278static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2279{
2280 return put_user(me->clear_child_tid, tid_addr);
2281}
2282#else
2283static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2284{
2285 return -EINVAL;
2286}
2287#endif
2288
2289static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2290{
2291 /*
2292 * If task has has_child_subreaper - all its descendants
2293 * already have these flag too and new descendants will
2294 * inherit it on fork, skip them.
2295 *
2296 * If we've found child_reaper - skip descendants in
2297 * it's subtree as they will never get out pidns.
2298 */
2299 if (p->signal->has_child_subreaper ||
2300 is_child_reaper(task_pid(p)))
2301 return 0;
2302
2303 p->signal->has_child_subreaper = 1;
2304 return 1;
2305}
2306
2307int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2308{
2309 return -EINVAL;
2310}
2311
2312int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2313 unsigned long ctrl)
2314{
2315 return -EINVAL;
2316}
2317
2318#define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2319
2320#ifdef CONFIG_ANON_VMA_NAME
2321
2322#define ANON_VMA_NAME_MAX_LEN 80
2323#define ANON_VMA_NAME_INVALID_CHARS "\\`$[]"
2324
2325static inline bool is_valid_name_char(char ch)
2326{
2327 /* printable ascii characters, excluding ANON_VMA_NAME_INVALID_CHARS */
2328 return ch > 0x1f && ch < 0x7f &&
2329 !strchr(ANON_VMA_NAME_INVALID_CHARS, ch);
2330}
2331
2332static int prctl_set_vma(unsigned long opt, unsigned long addr,
2333 unsigned long size, unsigned long arg)
2334{
2335 struct mm_struct *mm = current->mm;
2336 const char __user *uname;
2337 struct anon_vma_name *anon_name = NULL;
2338 int error;
2339
2340 switch (opt) {
2341 case PR_SET_VMA_ANON_NAME:
2342 uname = (const char __user *)arg;
2343 if (uname) {
2344 char *name, *pch;
2345
2346 name = strndup_user(uname, ANON_VMA_NAME_MAX_LEN);
2347 if (IS_ERR(name))
2348 return PTR_ERR(name);
2349
2350 for (pch = name; *pch != '\0'; pch++) {
2351 if (!is_valid_name_char(*pch)) {
2352 kfree(name);
2353 return -EINVAL;
2354 }
2355 }
2356 /* anon_vma has its own copy */
2357 anon_name = anon_vma_name_alloc(name);
2358 kfree(name);
2359 if (!anon_name)
2360 return -ENOMEM;
2361
2362 }
2363
2364 mmap_write_lock(mm);
2365 error = madvise_set_anon_name(mm, addr, size, anon_name);
2366 mmap_write_unlock(mm);
2367 anon_vma_name_put(anon_name);
2368 break;
2369 default:
2370 error = -EINVAL;
2371 }
2372
2373 return error;
2374}
2375
2376#else /* CONFIG_ANON_VMA_NAME */
2377static int prctl_set_vma(unsigned long opt, unsigned long start,
2378 unsigned long size, unsigned long arg)
2379{
2380 return -EINVAL;
2381}
2382#endif /* CONFIG_ANON_VMA_NAME */
2383
2384static inline unsigned long get_current_mdwe(void)
2385{
2386 unsigned long ret = 0;
2387
2388 if (test_bit(MMF_HAS_MDWE, ¤t->mm->flags))
2389 ret |= PR_MDWE_REFUSE_EXEC_GAIN;
2390 if (test_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags))
2391 ret |= PR_MDWE_NO_INHERIT;
2392
2393 return ret;
2394}
2395
2396static inline int prctl_set_mdwe(unsigned long bits, unsigned long arg3,
2397 unsigned long arg4, unsigned long arg5)
2398{
2399 unsigned long current_bits;
2400
2401 if (arg3 || arg4 || arg5)
2402 return -EINVAL;
2403
2404 if (bits & ~(PR_MDWE_REFUSE_EXEC_GAIN | PR_MDWE_NO_INHERIT))
2405 return -EINVAL;
2406
2407 /* NO_INHERIT only makes sense with REFUSE_EXEC_GAIN */
2408 if (bits & PR_MDWE_NO_INHERIT && !(bits & PR_MDWE_REFUSE_EXEC_GAIN))
2409 return -EINVAL;
2410
2411 /* PARISC cannot allow mdwe as it needs writable stacks */
2412 if (IS_ENABLED(CONFIG_PARISC))
2413 return -EINVAL;
2414
2415 current_bits = get_current_mdwe();
2416 if (current_bits && current_bits != bits)
2417 return -EPERM; /* Cannot unset the flags */
2418
2419 if (bits & PR_MDWE_NO_INHERIT)
2420 set_bit(MMF_HAS_MDWE_NO_INHERIT, ¤t->mm->flags);
2421 if (bits & PR_MDWE_REFUSE_EXEC_GAIN)
2422 set_bit(MMF_HAS_MDWE, ¤t->mm->flags);
2423
2424 return 0;
2425}
2426
2427static inline int prctl_get_mdwe(unsigned long arg2, unsigned long arg3,
2428 unsigned long arg4, unsigned long arg5)
2429{
2430 if (arg2 || arg3 || arg4 || arg5)
2431 return -EINVAL;
2432 return get_current_mdwe();
2433}
2434
2435static int prctl_get_auxv(void __user *addr, unsigned long len)
2436{
2437 struct mm_struct *mm = current->mm;
2438 unsigned long size = min_t(unsigned long, sizeof(mm->saved_auxv), len);
2439
2440 if (size && copy_to_user(addr, mm->saved_auxv, size))
2441 return -EFAULT;
2442 return sizeof(mm->saved_auxv);
2443}
2444
2445SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2446 unsigned long, arg4, unsigned long, arg5)
2447{
2448 struct task_struct *me = current;
2449 unsigned char comm[sizeof(me->comm)];
2450 long error;
2451
2452 error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2453 if (error != -ENOSYS)
2454 return error;
2455
2456 error = 0;
2457 switch (option) {
2458 case PR_SET_PDEATHSIG:
2459 if (!valid_signal(arg2)) {
2460 error = -EINVAL;
2461 break;
2462 }
2463 me->pdeath_signal = arg2;
2464 break;
2465 case PR_GET_PDEATHSIG:
2466 error = put_user(me->pdeath_signal, (int __user *)arg2);
2467 break;
2468 case PR_GET_DUMPABLE:
2469 error = get_dumpable(me->mm);
2470 break;
2471 case PR_SET_DUMPABLE:
2472 if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2473 error = -EINVAL;
2474 break;
2475 }
2476 set_dumpable(me->mm, arg2);
2477 break;
2478
2479 case PR_SET_UNALIGN:
2480 error = SET_UNALIGN_CTL(me, arg2);
2481 break;
2482 case PR_GET_UNALIGN:
2483 error = GET_UNALIGN_CTL(me, arg2);
2484 break;
2485 case PR_SET_FPEMU:
2486 error = SET_FPEMU_CTL(me, arg2);
2487 break;
2488 case PR_GET_FPEMU:
2489 error = GET_FPEMU_CTL(me, arg2);
2490 break;
2491 case PR_SET_FPEXC:
2492 error = SET_FPEXC_CTL(me, arg2);
2493 break;
2494 case PR_GET_FPEXC:
2495 error = GET_FPEXC_CTL(me, arg2);
2496 break;
2497 case PR_GET_TIMING:
2498 error = PR_TIMING_STATISTICAL;
2499 break;
2500 case PR_SET_TIMING:
2501 if (arg2 != PR_TIMING_STATISTICAL)
2502 error = -EINVAL;
2503 break;
2504 case PR_SET_NAME:
2505 comm[sizeof(me->comm) - 1] = 0;
2506 if (strncpy_from_user(comm, (char __user *)arg2,
2507 sizeof(me->comm) - 1) < 0)
2508 return -EFAULT;
2509 set_task_comm(me, comm);
2510 proc_comm_connector(me);
2511 break;
2512 case PR_GET_NAME:
2513 get_task_comm(comm, me);
2514 if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2515 return -EFAULT;
2516 break;
2517 case PR_GET_ENDIAN:
2518 error = GET_ENDIAN(me, arg2);
2519 break;
2520 case PR_SET_ENDIAN:
2521 error = SET_ENDIAN(me, arg2);
2522 break;
2523 case PR_GET_SECCOMP:
2524 error = prctl_get_seccomp();
2525 break;
2526 case PR_SET_SECCOMP:
2527 error = prctl_set_seccomp(arg2, (char __user *)arg3);
2528 break;
2529 case PR_GET_TSC:
2530 error = GET_TSC_CTL(arg2);
2531 break;
2532 case PR_SET_TSC:
2533 error = SET_TSC_CTL(arg2);
2534 break;
2535 case PR_TASK_PERF_EVENTS_DISABLE:
2536 error = perf_event_task_disable();
2537 break;
2538 case PR_TASK_PERF_EVENTS_ENABLE:
2539 error = perf_event_task_enable();
2540 break;
2541 case PR_GET_TIMERSLACK:
2542 if (current->timer_slack_ns > ULONG_MAX)
2543 error = ULONG_MAX;
2544 else
2545 error = current->timer_slack_ns;
2546 break;
2547 case PR_SET_TIMERSLACK:
2548 if (arg2 <= 0)
2549 current->timer_slack_ns =
2550 current->default_timer_slack_ns;
2551 else
2552 current->timer_slack_ns = arg2;
2553 break;
2554 case PR_MCE_KILL:
2555 if (arg4 | arg5)
2556 return -EINVAL;
2557 switch (arg2) {
2558 case PR_MCE_KILL_CLEAR:
2559 if (arg3 != 0)
2560 return -EINVAL;
2561 current->flags &= ~PF_MCE_PROCESS;
2562 break;
2563 case PR_MCE_KILL_SET:
2564 current->flags |= PF_MCE_PROCESS;
2565 if (arg3 == PR_MCE_KILL_EARLY)
2566 current->flags |= PF_MCE_EARLY;
2567 else if (arg3 == PR_MCE_KILL_LATE)
2568 current->flags &= ~PF_MCE_EARLY;
2569 else if (arg3 == PR_MCE_KILL_DEFAULT)
2570 current->flags &=
2571 ~(PF_MCE_EARLY|PF_MCE_PROCESS);
2572 else
2573 return -EINVAL;
2574 break;
2575 default:
2576 return -EINVAL;
2577 }
2578 break;
2579 case PR_MCE_KILL_GET:
2580 if (arg2 | arg3 | arg4 | arg5)
2581 return -EINVAL;
2582 if (current->flags & PF_MCE_PROCESS)
2583 error = (current->flags & PF_MCE_EARLY) ?
2584 PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2585 else
2586 error = PR_MCE_KILL_DEFAULT;
2587 break;
2588 case PR_SET_MM:
2589 error = prctl_set_mm(arg2, arg3, arg4, arg5);
2590 break;
2591 case PR_GET_TID_ADDRESS:
2592 error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2593 break;
2594 case PR_SET_CHILD_SUBREAPER:
2595 me->signal->is_child_subreaper = !!arg2;
2596 if (!arg2)
2597 break;
2598
2599 walk_process_tree(me, propagate_has_child_subreaper, NULL);
2600 break;
2601 case PR_GET_CHILD_SUBREAPER:
2602 error = put_user(me->signal->is_child_subreaper,
2603 (int __user *)arg2);
2604 break;
2605 case PR_SET_NO_NEW_PRIVS:
2606 if (arg2 != 1 || arg3 || arg4 || arg5)
2607 return -EINVAL;
2608
2609 task_set_no_new_privs(current);
2610 break;
2611 case PR_GET_NO_NEW_PRIVS:
2612 if (arg2 || arg3 || arg4 || arg5)
2613 return -EINVAL;
2614 return task_no_new_privs(current) ? 1 : 0;
2615 case PR_GET_THP_DISABLE:
2616 if (arg2 || arg3 || arg4 || arg5)
2617 return -EINVAL;
2618 error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2619 break;
2620 case PR_SET_THP_DISABLE:
2621 if (arg3 || arg4 || arg5)
2622 return -EINVAL;
2623 if (mmap_write_lock_killable(me->mm))
2624 return -EINTR;
2625 if (arg2)
2626 set_bit(MMF_DISABLE_THP, &me->mm->flags);
2627 else
2628 clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2629 mmap_write_unlock(me->mm);
2630 break;
2631 case PR_MPX_ENABLE_MANAGEMENT:
2632 case PR_MPX_DISABLE_MANAGEMENT:
2633 /* No longer implemented: */
2634 return -EINVAL;
2635 case PR_SET_FP_MODE:
2636 error = SET_FP_MODE(me, arg2);
2637 break;
2638 case PR_GET_FP_MODE:
2639 error = GET_FP_MODE(me);
2640 break;
2641 case PR_SVE_SET_VL:
2642 error = SVE_SET_VL(arg2);
2643 break;
2644 case PR_SVE_GET_VL:
2645 error = SVE_GET_VL();
2646 break;
2647 case PR_SME_SET_VL:
2648 error = SME_SET_VL(arg2);
2649 break;
2650 case PR_SME_GET_VL:
2651 error = SME_GET_VL();
2652 break;
2653 case PR_GET_SPECULATION_CTRL:
2654 if (arg3 || arg4 || arg5)
2655 return -EINVAL;
2656 error = arch_prctl_spec_ctrl_get(me, arg2);
2657 break;
2658 case PR_SET_SPECULATION_CTRL:
2659 if (arg4 || arg5)
2660 return -EINVAL;
2661 error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2662 break;
2663 case PR_PAC_RESET_KEYS:
2664 if (arg3 || arg4 || arg5)
2665 return -EINVAL;
2666 error = PAC_RESET_KEYS(me, arg2);
2667 break;
2668 case PR_PAC_SET_ENABLED_KEYS:
2669 if (arg4 || arg5)
2670 return -EINVAL;
2671 error = PAC_SET_ENABLED_KEYS(me, arg2, arg3);
2672 break;
2673 case PR_PAC_GET_ENABLED_KEYS:
2674 if (arg2 || arg3 || arg4 || arg5)
2675 return -EINVAL;
2676 error = PAC_GET_ENABLED_KEYS(me);
2677 break;
2678 case PR_SET_TAGGED_ADDR_CTRL:
2679 if (arg3 || arg4 || arg5)
2680 return -EINVAL;
2681 error = SET_TAGGED_ADDR_CTRL(arg2);
2682 break;
2683 case PR_GET_TAGGED_ADDR_CTRL:
2684 if (arg2 || arg3 || arg4 || arg5)
2685 return -EINVAL;
2686 error = GET_TAGGED_ADDR_CTRL();
2687 break;
2688 case PR_SET_IO_FLUSHER:
2689 if (!capable(CAP_SYS_RESOURCE))
2690 return -EPERM;
2691
2692 if (arg3 || arg4 || arg5)
2693 return -EINVAL;
2694
2695 if (arg2 == 1)
2696 current->flags |= PR_IO_FLUSHER;
2697 else if (!arg2)
2698 current->flags &= ~PR_IO_FLUSHER;
2699 else
2700 return -EINVAL;
2701 break;
2702 case PR_GET_IO_FLUSHER:
2703 if (!capable(CAP_SYS_RESOURCE))
2704 return -EPERM;
2705
2706 if (arg2 || arg3 || arg4 || arg5)
2707 return -EINVAL;
2708
2709 error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2710 break;
2711 case PR_SET_SYSCALL_USER_DISPATCH:
2712 error = set_syscall_user_dispatch(arg2, arg3, arg4,
2713 (char __user *) arg5);
2714 break;
2715#ifdef CONFIG_SCHED_CORE
2716 case PR_SCHED_CORE:
2717 error = sched_core_share_pid(arg2, arg3, arg4, arg5);
2718 break;
2719#endif
2720 case PR_SET_MDWE:
2721 error = prctl_set_mdwe(arg2, arg3, arg4, arg5);
2722 break;
2723 case PR_GET_MDWE:
2724 error = prctl_get_mdwe(arg2, arg3, arg4, arg5);
2725 break;
2726 case PR_SET_VMA:
2727 error = prctl_set_vma(arg2, arg3, arg4, arg5);
2728 break;
2729 case PR_GET_AUXV:
2730 if (arg4 || arg5)
2731 return -EINVAL;
2732 error = prctl_get_auxv((void __user *)arg2, arg3);
2733 break;
2734#ifdef CONFIG_KSM
2735 case PR_SET_MEMORY_MERGE:
2736 if (arg3 || arg4 || arg5)
2737 return -EINVAL;
2738 if (mmap_write_lock_killable(me->mm))
2739 return -EINTR;
2740
2741 if (arg2)
2742 error = ksm_enable_merge_any(me->mm);
2743 else
2744 error = ksm_disable_merge_any(me->mm);
2745 mmap_write_unlock(me->mm);
2746 break;
2747 case PR_GET_MEMORY_MERGE:
2748 if (arg2 || arg3 || arg4 || arg5)
2749 return -EINVAL;
2750
2751 error = !!test_bit(MMF_VM_MERGE_ANY, &me->mm->flags);
2752 break;
2753#endif
2754 case PR_RISCV_V_SET_CONTROL:
2755 error = RISCV_V_SET_CONTROL(arg2);
2756 break;
2757 case PR_RISCV_V_GET_CONTROL:
2758 error = RISCV_V_GET_CONTROL();
2759 break;
2760 default:
2761 error = -EINVAL;
2762 break;
2763 }
2764 return error;
2765}
2766
2767SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2768 struct getcpu_cache __user *, unused)
2769{
2770 int err = 0;
2771 int cpu = raw_smp_processor_id();
2772
2773 if (cpup)
2774 err |= put_user(cpu, cpup);
2775 if (nodep)
2776 err |= put_user(cpu_to_node(cpu), nodep);
2777 return err ? -EFAULT : 0;
2778}
2779
2780/**
2781 * do_sysinfo - fill in sysinfo struct
2782 * @info: pointer to buffer to fill
2783 */
2784static int do_sysinfo(struct sysinfo *info)
2785{
2786 unsigned long mem_total, sav_total;
2787 unsigned int mem_unit, bitcount;
2788 struct timespec64 tp;
2789
2790 memset(info, 0, sizeof(struct sysinfo));
2791
2792 ktime_get_boottime_ts64(&tp);
2793 timens_add_boottime(&tp);
2794 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2795
2796 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2797
2798 info->procs = nr_threads;
2799
2800 si_meminfo(info);
2801 si_swapinfo(info);
2802
2803 /*
2804 * If the sum of all the available memory (i.e. ram + swap)
2805 * is less than can be stored in a 32 bit unsigned long then
2806 * we can be binary compatible with 2.2.x kernels. If not,
2807 * well, in that case 2.2.x was broken anyways...
2808 *
2809 * -Erik Andersen <andersee@debian.org>
2810 */
2811
2812 mem_total = info->totalram + info->totalswap;
2813 if (mem_total < info->totalram || mem_total < info->totalswap)
2814 goto out;
2815 bitcount = 0;
2816 mem_unit = info->mem_unit;
2817 while (mem_unit > 1) {
2818 bitcount++;
2819 mem_unit >>= 1;
2820 sav_total = mem_total;
2821 mem_total <<= 1;
2822 if (mem_total < sav_total)
2823 goto out;
2824 }
2825
2826 /*
2827 * If mem_total did not overflow, multiply all memory values by
2828 * info->mem_unit and set it to 1. This leaves things compatible
2829 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2830 * kernels...
2831 */
2832
2833 info->mem_unit = 1;
2834 info->totalram <<= bitcount;
2835 info->freeram <<= bitcount;
2836 info->sharedram <<= bitcount;
2837 info->bufferram <<= bitcount;
2838 info->totalswap <<= bitcount;
2839 info->freeswap <<= bitcount;
2840 info->totalhigh <<= bitcount;
2841 info->freehigh <<= bitcount;
2842
2843out:
2844 return 0;
2845}
2846
2847SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2848{
2849 struct sysinfo val;
2850
2851 do_sysinfo(&val);
2852
2853 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2854 return -EFAULT;
2855
2856 return 0;
2857}
2858
2859#ifdef CONFIG_COMPAT
2860struct compat_sysinfo {
2861 s32 uptime;
2862 u32 loads[3];
2863 u32 totalram;
2864 u32 freeram;
2865 u32 sharedram;
2866 u32 bufferram;
2867 u32 totalswap;
2868 u32 freeswap;
2869 u16 procs;
2870 u16 pad;
2871 u32 totalhigh;
2872 u32 freehigh;
2873 u32 mem_unit;
2874 char _f[20-2*sizeof(u32)-sizeof(int)];
2875};
2876
2877COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2878{
2879 struct sysinfo s;
2880 struct compat_sysinfo s_32;
2881
2882 do_sysinfo(&s);
2883
2884 /* Check to see if any memory value is too large for 32-bit and scale
2885 * down if needed
2886 */
2887 if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2888 int bitcount = 0;
2889
2890 while (s.mem_unit < PAGE_SIZE) {
2891 s.mem_unit <<= 1;
2892 bitcount++;
2893 }
2894
2895 s.totalram >>= bitcount;
2896 s.freeram >>= bitcount;
2897 s.sharedram >>= bitcount;
2898 s.bufferram >>= bitcount;
2899 s.totalswap >>= bitcount;
2900 s.freeswap >>= bitcount;
2901 s.totalhigh >>= bitcount;
2902 s.freehigh >>= bitcount;
2903 }
2904
2905 memset(&s_32, 0, sizeof(s_32));
2906 s_32.uptime = s.uptime;
2907 s_32.loads[0] = s.loads[0];
2908 s_32.loads[1] = s.loads[1];
2909 s_32.loads[2] = s.loads[2];
2910 s_32.totalram = s.totalram;
2911 s_32.freeram = s.freeram;
2912 s_32.sharedram = s.sharedram;
2913 s_32.bufferram = s.bufferram;
2914 s_32.totalswap = s.totalswap;
2915 s_32.freeswap = s.freeswap;
2916 s_32.procs = s.procs;
2917 s_32.totalhigh = s.totalhigh;
2918 s_32.freehigh = s.freehigh;
2919 s_32.mem_unit = s.mem_unit;
2920 if (copy_to_user(info, &s_32, sizeof(s_32)))
2921 return -EFAULT;
2922 return 0;
2923}
2924#endif /* CONFIG_COMPAT */