Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/kernel/sys.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7#include <linux/export.h>
   8#include <linux/mm.h>
   9#include <linux/utsname.h>
  10#include <linux/mman.h>
  11#include <linux/reboot.h>
  12#include <linux/prctl.h>
  13#include <linux/highuid.h>
  14#include <linux/fs.h>
  15#include <linux/kmod.h>
  16#include <linux/perf_event.h>
  17#include <linux/resource.h>
  18#include <linux/kernel.h>
  19#include <linux/workqueue.h>
  20#include <linux/capability.h>
  21#include <linux/device.h>
  22#include <linux/key.h>
  23#include <linux/times.h>
  24#include <linux/posix-timers.h>
  25#include <linux/security.h>
  26#include <linux/dcookies.h>
  27#include <linux/suspend.h>
  28#include <linux/tty.h>
  29#include <linux/signal.h>
  30#include <linux/cn_proc.h>
  31#include <linux/getcpu.h>
  32#include <linux/task_io_accounting_ops.h>
  33#include <linux/seccomp.h>
  34#include <linux/cpu.h>
  35#include <linux/personality.h>
  36#include <linux/ptrace.h>
  37#include <linux/fs_struct.h>
  38#include <linux/file.h>
  39#include <linux/mount.h>
  40#include <linux/gfp.h>
  41#include <linux/syscore_ops.h>
  42#include <linux/version.h>
  43#include <linux/ctype.h>
  44
  45#include <linux/compat.h>
  46#include <linux/syscalls.h>
  47#include <linux/kprobes.h>
  48#include <linux/user_namespace.h>
  49#include <linux/binfmts.h>
  50
  51#include <linux/sched.h>
 
 
 
 
 
 
 
  52#include <linux/rcupdate.h>
  53#include <linux/uidgid.h>
  54#include <linux/cred.h>
  55
 
 
  56#include <linux/kmsg_dump.h>
  57/* Move somewhere else to avoid recompiling? */
  58#include <generated/utsrelease.h>
  59
  60#include <asm/uaccess.h>
  61#include <asm/io.h>
  62#include <asm/unistd.h>
  63
 
 
  64#ifndef SET_UNALIGN_CTL
  65# define SET_UNALIGN_CTL(a, b)	(-EINVAL)
  66#endif
  67#ifndef GET_UNALIGN_CTL
  68# define GET_UNALIGN_CTL(a, b)	(-EINVAL)
  69#endif
  70#ifndef SET_FPEMU_CTL
  71# define SET_FPEMU_CTL(a, b)	(-EINVAL)
  72#endif
  73#ifndef GET_FPEMU_CTL
  74# define GET_FPEMU_CTL(a, b)	(-EINVAL)
  75#endif
  76#ifndef SET_FPEXC_CTL
  77# define SET_FPEXC_CTL(a, b)	(-EINVAL)
  78#endif
  79#ifndef GET_FPEXC_CTL
  80# define GET_FPEXC_CTL(a, b)	(-EINVAL)
  81#endif
  82#ifndef GET_ENDIAN
  83# define GET_ENDIAN(a, b)	(-EINVAL)
  84#endif
  85#ifndef SET_ENDIAN
  86# define SET_ENDIAN(a, b)	(-EINVAL)
  87#endif
  88#ifndef GET_TSC_CTL
  89# define GET_TSC_CTL(a)		(-EINVAL)
  90#endif
  91#ifndef SET_TSC_CTL
  92# define SET_TSC_CTL(a)		(-EINVAL)
  93#endif
  94#ifndef MPX_ENABLE_MANAGEMENT
  95# define MPX_ENABLE_MANAGEMENT()	(-EINVAL)
  96#endif
  97#ifndef MPX_DISABLE_MANAGEMENT
  98# define MPX_DISABLE_MANAGEMENT()	(-EINVAL)
  99#endif
 100#ifndef GET_FP_MODE
 101# define GET_FP_MODE(a)		(-EINVAL)
 102#endif
 103#ifndef SET_FP_MODE
 104# define SET_FP_MODE(a,b)	(-EINVAL)
 105#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106
 107/*
 108 * this is where the system-wide overflow UID and GID are defined, for
 109 * architectures that now have 32-bit UID/GID but didn't in the past
 110 */
 111
 112int overflowuid = DEFAULT_OVERFLOWUID;
 113int overflowgid = DEFAULT_OVERFLOWGID;
 114
 115EXPORT_SYMBOL(overflowuid);
 116EXPORT_SYMBOL(overflowgid);
 117
 118/*
 119 * the same as above, but for filesystems which can only store a 16-bit
 120 * UID and GID. as such, this is needed on all architectures
 121 */
 122
 123int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 124int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
 125
 126EXPORT_SYMBOL(fs_overflowuid);
 127EXPORT_SYMBOL(fs_overflowgid);
 128
 129/*
 130 * Returns true if current's euid is same as p's uid or euid,
 131 * or has CAP_SYS_NICE to p's user_ns.
 132 *
 133 * Called with rcu_read_lock, creds are safe
 134 */
 135static bool set_one_prio_perm(struct task_struct *p)
 136{
 137	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 138
 139	if (uid_eq(pcred->uid,  cred->euid) ||
 140	    uid_eq(pcred->euid, cred->euid))
 141		return true;
 142	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 143		return true;
 144	return false;
 145}
 146
 147/*
 148 * set the priority of a task
 149 * - the caller must hold the RCU read lock
 150 */
 151static int set_one_prio(struct task_struct *p, int niceval, int error)
 152{
 153	int no_nice;
 154
 155	if (!set_one_prio_perm(p)) {
 156		error = -EPERM;
 157		goto out;
 158	}
 159	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 160		error = -EACCES;
 161		goto out;
 162	}
 163	no_nice = security_task_setnice(p, niceval);
 164	if (no_nice) {
 165		error = no_nice;
 166		goto out;
 167	}
 168	if (error == -ESRCH)
 169		error = 0;
 170	set_user_nice(p, niceval);
 171out:
 172	return error;
 173}
 174
 175SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 176{
 177	struct task_struct *g, *p;
 178	struct user_struct *user;
 179	const struct cred *cred = current_cred();
 180	int error = -EINVAL;
 181	struct pid *pgrp;
 182	kuid_t uid;
 183
 184	if (which > PRIO_USER || which < PRIO_PROCESS)
 185		goto out;
 186
 187	/* normalize: avoid signed division (rounding problems) */
 188	error = -ESRCH;
 189	if (niceval < MIN_NICE)
 190		niceval = MIN_NICE;
 191	if (niceval > MAX_NICE)
 192		niceval = MAX_NICE;
 193
 194	rcu_read_lock();
 195	read_lock(&tasklist_lock);
 196	switch (which) {
 197	case PRIO_PROCESS:
 198		if (who)
 199			p = find_task_by_vpid(who);
 200		else
 201			p = current;
 202		if (p)
 203			error = set_one_prio(p, niceval, error);
 204		break;
 205	case PRIO_PGRP:
 206		if (who)
 207			pgrp = find_vpid(who);
 208		else
 209			pgrp = task_pgrp(current);
 210		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 211			error = set_one_prio(p, niceval, error);
 212		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 213		break;
 214	case PRIO_USER:
 215		uid = make_kuid(cred->user_ns, who);
 216		user = cred->user;
 217		if (!who)
 218			uid = cred->uid;
 219		else if (!uid_eq(uid, cred->uid)) {
 220			user = find_user(uid);
 221			if (!user)
 222				goto out_unlock;	/* No processes for this user */
 223		}
 224		do_each_thread(g, p) {
 225			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
 226				error = set_one_prio(p, niceval, error);
 227		} while_each_thread(g, p);
 228		if (!uid_eq(uid, cred->uid))
 229			free_uid(user);		/* For find_user() */
 230		break;
 231	}
 232out_unlock:
 233	read_unlock(&tasklist_lock);
 234	rcu_read_unlock();
 235out:
 236	return error;
 237}
 238
 239/*
 240 * Ugh. To avoid negative return values, "getpriority()" will
 241 * not return the normal nice-value, but a negated value that
 242 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 243 * to stay compatible.
 244 */
 245SYSCALL_DEFINE2(getpriority, int, which, int, who)
 246{
 247	struct task_struct *g, *p;
 248	struct user_struct *user;
 249	const struct cred *cred = current_cred();
 250	long niceval, retval = -ESRCH;
 251	struct pid *pgrp;
 252	kuid_t uid;
 253
 254	if (which > PRIO_USER || which < PRIO_PROCESS)
 255		return -EINVAL;
 256
 257	rcu_read_lock();
 258	read_lock(&tasklist_lock);
 259	switch (which) {
 260	case PRIO_PROCESS:
 261		if (who)
 262			p = find_task_by_vpid(who);
 263		else
 264			p = current;
 265		if (p) {
 266			niceval = nice_to_rlimit(task_nice(p));
 267			if (niceval > retval)
 268				retval = niceval;
 269		}
 270		break;
 271	case PRIO_PGRP:
 272		if (who)
 273			pgrp = find_vpid(who);
 274		else
 275			pgrp = task_pgrp(current);
 276		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 277			niceval = nice_to_rlimit(task_nice(p));
 278			if (niceval > retval)
 279				retval = niceval;
 280		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 281		break;
 282	case PRIO_USER:
 283		uid = make_kuid(cred->user_ns, who);
 284		user = cred->user;
 285		if (!who)
 286			uid = cred->uid;
 287		else if (!uid_eq(uid, cred->uid)) {
 288			user = find_user(uid);
 289			if (!user)
 290				goto out_unlock;	/* No processes for this user */
 291		}
 292		do_each_thread(g, p) {
 293			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
 294				niceval = nice_to_rlimit(task_nice(p));
 295				if (niceval > retval)
 296					retval = niceval;
 297			}
 298		} while_each_thread(g, p);
 299		if (!uid_eq(uid, cred->uid))
 300			free_uid(user);		/* for find_user() */
 301		break;
 302	}
 303out_unlock:
 304	read_unlock(&tasklist_lock);
 305	rcu_read_unlock();
 306
 307	return retval;
 308}
 309
 310/*
 311 * Unprivileged users may change the real gid to the effective gid
 312 * or vice versa.  (BSD-style)
 313 *
 314 * If you set the real gid at all, or set the effective gid to a value not
 315 * equal to the real gid, then the saved gid is set to the new effective gid.
 316 *
 317 * This makes it possible for a setgid program to completely drop its
 318 * privileges, which is often a useful assertion to make when you are doing
 319 * a security audit over a program.
 320 *
 321 * The general idea is that a program which uses just setregid() will be
 322 * 100% compatible with BSD.  A program which uses just setgid() will be
 323 * 100% compatible with POSIX with saved IDs.
 324 *
 325 * SMP: There are not races, the GIDs are checked only by filesystem
 326 *      operations (as far as semantic preservation is concerned).
 327 */
 328#ifdef CONFIG_MULTIUSER
 329SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 330{
 331	struct user_namespace *ns = current_user_ns();
 332	const struct cred *old;
 333	struct cred *new;
 334	int retval;
 335	kgid_t krgid, kegid;
 336
 337	krgid = make_kgid(ns, rgid);
 338	kegid = make_kgid(ns, egid);
 339
 340	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 341		return -EINVAL;
 342	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 343		return -EINVAL;
 344
 345	new = prepare_creds();
 346	if (!new)
 347		return -ENOMEM;
 348	old = current_cred();
 349
 350	retval = -EPERM;
 351	if (rgid != (gid_t) -1) {
 352		if (gid_eq(old->gid, krgid) ||
 353		    gid_eq(old->egid, krgid) ||
 354		    ns_capable(old->user_ns, CAP_SETGID))
 355			new->gid = krgid;
 356		else
 357			goto error;
 358	}
 359	if (egid != (gid_t) -1) {
 360		if (gid_eq(old->gid, kegid) ||
 361		    gid_eq(old->egid, kegid) ||
 362		    gid_eq(old->sgid, kegid) ||
 363		    ns_capable(old->user_ns, CAP_SETGID))
 364			new->egid = kegid;
 365		else
 366			goto error;
 367	}
 368
 369	if (rgid != (gid_t) -1 ||
 370	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 371		new->sgid = new->egid;
 372	new->fsgid = new->egid;
 373
 374	return commit_creds(new);
 375
 376error:
 377	abort_creds(new);
 378	return retval;
 379}
 380
 
 
 
 
 
 381/*
 382 * setgid() is implemented like SysV w/ SAVED_IDS
 383 *
 384 * SMP: Same implicit races as above.
 385 */
 386SYSCALL_DEFINE1(setgid, gid_t, gid)
 387{
 388	struct user_namespace *ns = current_user_ns();
 389	const struct cred *old;
 390	struct cred *new;
 391	int retval;
 392	kgid_t kgid;
 393
 394	kgid = make_kgid(ns, gid);
 395	if (!gid_valid(kgid))
 396		return -EINVAL;
 397
 398	new = prepare_creds();
 399	if (!new)
 400		return -ENOMEM;
 401	old = current_cred();
 402
 403	retval = -EPERM;
 404	if (ns_capable(old->user_ns, CAP_SETGID))
 405		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 406	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 407		new->egid = new->fsgid = kgid;
 408	else
 409		goto error;
 410
 411	return commit_creds(new);
 412
 413error:
 414	abort_creds(new);
 415	return retval;
 416}
 417
 
 
 
 
 
 418/*
 419 * change the user struct in a credentials set to match the new UID
 420 */
 421static int set_user(struct cred *new)
 422{
 423	struct user_struct *new_user;
 424
 425	new_user = alloc_uid(new->uid);
 426	if (!new_user)
 427		return -EAGAIN;
 428
 429	/*
 430	 * We don't fail in case of NPROC limit excess here because too many
 431	 * poorly written programs don't check set*uid() return code, assuming
 432	 * it never fails if called by root.  We may still enforce NPROC limit
 433	 * for programs doing set*uid()+execve() by harmlessly deferring the
 434	 * failure to the execve() stage.
 435	 */
 436	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 437			new_user != INIT_USER)
 438		current->flags |= PF_NPROC_EXCEEDED;
 439	else
 440		current->flags &= ~PF_NPROC_EXCEEDED;
 441
 442	free_uid(new->user);
 443	new->user = new_user;
 444	return 0;
 445}
 446
 447/*
 448 * Unprivileged users may change the real uid to the effective uid
 449 * or vice versa.  (BSD-style)
 450 *
 451 * If you set the real uid at all, or set the effective uid to a value not
 452 * equal to the real uid, then the saved uid is set to the new effective uid.
 453 *
 454 * This makes it possible for a setuid program to completely drop its
 455 * privileges, which is often a useful assertion to make when you are doing
 456 * a security audit over a program.
 457 *
 458 * The general idea is that a program which uses just setreuid() will be
 459 * 100% compatible with BSD.  A program which uses just setuid() will be
 460 * 100% compatible with POSIX with saved IDs.
 461 */
 462SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 463{
 464	struct user_namespace *ns = current_user_ns();
 465	const struct cred *old;
 466	struct cred *new;
 467	int retval;
 468	kuid_t kruid, keuid;
 469
 470	kruid = make_kuid(ns, ruid);
 471	keuid = make_kuid(ns, euid);
 472
 473	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 474		return -EINVAL;
 475	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 476		return -EINVAL;
 477
 478	new = prepare_creds();
 479	if (!new)
 480		return -ENOMEM;
 481	old = current_cred();
 482
 483	retval = -EPERM;
 484	if (ruid != (uid_t) -1) {
 485		new->uid = kruid;
 486		if (!uid_eq(old->uid, kruid) &&
 487		    !uid_eq(old->euid, kruid) &&
 488		    !ns_capable(old->user_ns, CAP_SETUID))
 489			goto error;
 490	}
 491
 492	if (euid != (uid_t) -1) {
 493		new->euid = keuid;
 494		if (!uid_eq(old->uid, keuid) &&
 495		    !uid_eq(old->euid, keuid) &&
 496		    !uid_eq(old->suid, keuid) &&
 497		    !ns_capable(old->user_ns, CAP_SETUID))
 498			goto error;
 499	}
 500
 501	if (!uid_eq(new->uid, old->uid)) {
 502		retval = set_user(new);
 503		if (retval < 0)
 504			goto error;
 505	}
 506	if (ruid != (uid_t) -1 ||
 507	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 508		new->suid = new->euid;
 509	new->fsuid = new->euid;
 510
 511	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 512	if (retval < 0)
 513		goto error;
 514
 515	return commit_creds(new);
 516
 517error:
 518	abort_creds(new);
 519	return retval;
 520}
 521
 
 
 
 
 
 522/*
 523 * setuid() is implemented like SysV with SAVED_IDS
 524 *
 525 * Note that SAVED_ID's is deficient in that a setuid root program
 526 * like sendmail, for example, cannot set its uid to be a normal
 527 * user and then switch back, because if you're root, setuid() sets
 528 * the saved uid too.  If you don't like this, blame the bright people
 529 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 530 * will allow a root program to temporarily drop privileges and be able to
 531 * regain them by swapping the real and effective uid.
 532 */
 533SYSCALL_DEFINE1(setuid, uid_t, uid)
 534{
 535	struct user_namespace *ns = current_user_ns();
 536	const struct cred *old;
 537	struct cred *new;
 538	int retval;
 539	kuid_t kuid;
 540
 541	kuid = make_kuid(ns, uid);
 542	if (!uid_valid(kuid))
 543		return -EINVAL;
 544
 545	new = prepare_creds();
 546	if (!new)
 547		return -ENOMEM;
 548	old = current_cred();
 549
 550	retval = -EPERM;
 551	if (ns_capable(old->user_ns, CAP_SETUID)) {
 552		new->suid = new->uid = kuid;
 553		if (!uid_eq(kuid, old->uid)) {
 554			retval = set_user(new);
 555			if (retval < 0)
 556				goto error;
 557		}
 558	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 559		goto error;
 560	}
 561
 562	new->fsuid = new->euid = kuid;
 563
 564	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 565	if (retval < 0)
 566		goto error;
 567
 568	return commit_creds(new);
 569
 570error:
 571	abort_creds(new);
 572	return retval;
 573}
 574
 
 
 
 
 
 575
 576/*
 577 * This function implements a generic ability to update ruid, euid,
 578 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 579 */
 580SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 581{
 582	struct user_namespace *ns = current_user_ns();
 583	const struct cred *old;
 584	struct cred *new;
 585	int retval;
 586	kuid_t kruid, keuid, ksuid;
 587
 588	kruid = make_kuid(ns, ruid);
 589	keuid = make_kuid(ns, euid);
 590	ksuid = make_kuid(ns, suid);
 591
 592	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 593		return -EINVAL;
 594
 595	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 596		return -EINVAL;
 597
 598	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 599		return -EINVAL;
 600
 601	new = prepare_creds();
 602	if (!new)
 603		return -ENOMEM;
 604
 605	old = current_cred();
 606
 607	retval = -EPERM;
 608	if (!ns_capable(old->user_ns, CAP_SETUID)) {
 609		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 610		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 611			goto error;
 612		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 613		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 614			goto error;
 615		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 616		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 617			goto error;
 618	}
 619
 620	if (ruid != (uid_t) -1) {
 621		new->uid = kruid;
 622		if (!uid_eq(kruid, old->uid)) {
 623			retval = set_user(new);
 624			if (retval < 0)
 625				goto error;
 626		}
 627	}
 628	if (euid != (uid_t) -1)
 629		new->euid = keuid;
 630	if (suid != (uid_t) -1)
 631		new->suid = ksuid;
 632	new->fsuid = new->euid;
 633
 634	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 635	if (retval < 0)
 636		goto error;
 637
 638	return commit_creds(new);
 639
 640error:
 641	abort_creds(new);
 642	return retval;
 643}
 644
 
 
 
 
 
 645SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 646{
 647	const struct cred *cred = current_cred();
 648	int retval;
 649	uid_t ruid, euid, suid;
 650
 651	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 652	euid = from_kuid_munged(cred->user_ns, cred->euid);
 653	suid = from_kuid_munged(cred->user_ns, cred->suid);
 654
 655	retval = put_user(ruid, ruidp);
 656	if (!retval) {
 657		retval = put_user(euid, euidp);
 658		if (!retval)
 659			return put_user(suid, suidp);
 660	}
 661	return retval;
 662}
 663
 664/*
 665 * Same as above, but for rgid, egid, sgid.
 666 */
 667SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 668{
 669	struct user_namespace *ns = current_user_ns();
 670	const struct cred *old;
 671	struct cred *new;
 672	int retval;
 673	kgid_t krgid, kegid, ksgid;
 674
 675	krgid = make_kgid(ns, rgid);
 676	kegid = make_kgid(ns, egid);
 677	ksgid = make_kgid(ns, sgid);
 678
 679	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 680		return -EINVAL;
 681	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 682		return -EINVAL;
 683	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 684		return -EINVAL;
 685
 686	new = prepare_creds();
 687	if (!new)
 688		return -ENOMEM;
 689	old = current_cred();
 690
 691	retval = -EPERM;
 692	if (!ns_capable(old->user_ns, CAP_SETGID)) {
 693		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 694		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 695			goto error;
 696		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 697		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 698			goto error;
 699		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 700		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 701			goto error;
 702	}
 703
 704	if (rgid != (gid_t) -1)
 705		new->gid = krgid;
 706	if (egid != (gid_t) -1)
 707		new->egid = kegid;
 708	if (sgid != (gid_t) -1)
 709		new->sgid = ksgid;
 710	new->fsgid = new->egid;
 711
 712	return commit_creds(new);
 713
 714error:
 715	abort_creds(new);
 716	return retval;
 717}
 718
 
 
 
 
 
 719SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 720{
 721	const struct cred *cred = current_cred();
 722	int retval;
 723	gid_t rgid, egid, sgid;
 724
 725	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 726	egid = from_kgid_munged(cred->user_ns, cred->egid);
 727	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 728
 729	retval = put_user(rgid, rgidp);
 730	if (!retval) {
 731		retval = put_user(egid, egidp);
 732		if (!retval)
 733			retval = put_user(sgid, sgidp);
 734	}
 735
 736	return retval;
 737}
 738
 739
 740/*
 741 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 742 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 743 * whatever uid it wants to). It normally shadows "euid", except when
 744 * explicitly set by setfsuid() or for access..
 745 */
 746SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 747{
 748	const struct cred *old;
 749	struct cred *new;
 750	uid_t old_fsuid;
 751	kuid_t kuid;
 752
 753	old = current_cred();
 754	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 755
 756	kuid = make_kuid(old->user_ns, uid);
 757	if (!uid_valid(kuid))
 758		return old_fsuid;
 759
 760	new = prepare_creds();
 761	if (!new)
 762		return old_fsuid;
 763
 764	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 765	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 766	    ns_capable(old->user_ns, CAP_SETUID)) {
 767		if (!uid_eq(kuid, old->fsuid)) {
 768			new->fsuid = kuid;
 769			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 770				goto change_okay;
 771		}
 772	}
 773
 774	abort_creds(new);
 775	return old_fsuid;
 776
 777change_okay:
 778	commit_creds(new);
 779	return old_fsuid;
 780}
 781
 
 
 
 
 
 782/*
 783 * Samma på svenska..
 784 */
 785SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 786{
 787	const struct cred *old;
 788	struct cred *new;
 789	gid_t old_fsgid;
 790	kgid_t kgid;
 791
 792	old = current_cred();
 793	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 794
 795	kgid = make_kgid(old->user_ns, gid);
 796	if (!gid_valid(kgid))
 797		return old_fsgid;
 798
 799	new = prepare_creds();
 800	if (!new)
 801		return old_fsgid;
 802
 803	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 804	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 805	    ns_capable(old->user_ns, CAP_SETGID)) {
 806		if (!gid_eq(kgid, old->fsgid)) {
 807			new->fsgid = kgid;
 808			goto change_okay;
 809		}
 810	}
 811
 812	abort_creds(new);
 813	return old_fsgid;
 814
 815change_okay:
 816	commit_creds(new);
 817	return old_fsgid;
 818}
 
 
 
 
 
 819#endif /* CONFIG_MULTIUSER */
 820
 821/**
 822 * sys_getpid - return the thread group id of the current process
 823 *
 824 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 825 * the pid are identical unless CLONE_THREAD was specified on clone() in
 826 * which case the tgid is the same in all threads of the same group.
 827 *
 828 * This is SMP safe as current->tgid does not change.
 829 */
 830SYSCALL_DEFINE0(getpid)
 831{
 832	return task_tgid_vnr(current);
 833}
 834
 835/* Thread ID - the internal kernel "pid" */
 836SYSCALL_DEFINE0(gettid)
 837{
 838	return task_pid_vnr(current);
 839}
 840
 841/*
 842 * Accessing ->real_parent is not SMP-safe, it could
 843 * change from under us. However, we can use a stale
 844 * value of ->real_parent under rcu_read_lock(), see
 845 * release_task()->call_rcu(delayed_put_task_struct).
 846 */
 847SYSCALL_DEFINE0(getppid)
 848{
 849	int pid;
 850
 851	rcu_read_lock();
 852	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 853	rcu_read_unlock();
 854
 855	return pid;
 856}
 857
 858SYSCALL_DEFINE0(getuid)
 859{
 860	/* Only we change this so SMP safe */
 861	return from_kuid_munged(current_user_ns(), current_uid());
 862}
 863
 864SYSCALL_DEFINE0(geteuid)
 865{
 866	/* Only we change this so SMP safe */
 867	return from_kuid_munged(current_user_ns(), current_euid());
 868}
 869
 870SYSCALL_DEFINE0(getgid)
 871{
 872	/* Only we change this so SMP safe */
 873	return from_kgid_munged(current_user_ns(), current_gid());
 874}
 875
 876SYSCALL_DEFINE0(getegid)
 877{
 878	/* Only we change this so SMP safe */
 879	return from_kgid_munged(current_user_ns(), current_egid());
 880}
 881
 882void do_sys_times(struct tms *tms)
 883{
 884	cputime_t tgutime, tgstime, cutime, cstime;
 885
 886	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 887	cutime = current->signal->cutime;
 888	cstime = current->signal->cstime;
 889	tms->tms_utime = cputime_to_clock_t(tgutime);
 890	tms->tms_stime = cputime_to_clock_t(tgstime);
 891	tms->tms_cutime = cputime_to_clock_t(cutime);
 892	tms->tms_cstime = cputime_to_clock_t(cstime);
 893}
 894
 895SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 896{
 897	if (tbuf) {
 898		struct tms tmp;
 899
 900		do_sys_times(&tmp);
 901		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 902			return -EFAULT;
 903	}
 904	force_successful_syscall_return();
 905	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 906}
 907
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 908/*
 909 * This needs some heavy checking ...
 910 * I just haven't the stomach for it. I also don't fully
 911 * understand sessions/pgrp etc. Let somebody who does explain it.
 912 *
 913 * OK, I think I have the protection semantics right.... this is really
 914 * only important on a multi-user system anyway, to make sure one user
 915 * can't send a signal to a process owned by another.  -TYT, 12/12/91
 916 *
 917 * !PF_FORKNOEXEC check to conform completely to POSIX.
 918 */
 919SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
 920{
 921	struct task_struct *p;
 922	struct task_struct *group_leader = current->group_leader;
 923	struct pid *pgrp;
 924	int err;
 925
 926	if (!pid)
 927		pid = task_pid_vnr(group_leader);
 928	if (!pgid)
 929		pgid = pid;
 930	if (pgid < 0)
 931		return -EINVAL;
 932	rcu_read_lock();
 933
 934	/* From this point forward we keep holding onto the tasklist lock
 935	 * so that our parent does not change from under us. -DaveM
 936	 */
 937	write_lock_irq(&tasklist_lock);
 938
 939	err = -ESRCH;
 940	p = find_task_by_vpid(pid);
 941	if (!p)
 942		goto out;
 943
 944	err = -EINVAL;
 945	if (!thread_group_leader(p))
 946		goto out;
 947
 948	if (same_thread_group(p->real_parent, group_leader)) {
 949		err = -EPERM;
 950		if (task_session(p) != task_session(group_leader))
 951			goto out;
 952		err = -EACCES;
 953		if (!(p->flags & PF_FORKNOEXEC))
 954			goto out;
 955	} else {
 956		err = -ESRCH;
 957		if (p != group_leader)
 958			goto out;
 959	}
 960
 961	err = -EPERM;
 962	if (p->signal->leader)
 963		goto out;
 964
 965	pgrp = task_pid(p);
 966	if (pgid != pid) {
 967		struct task_struct *g;
 968
 969		pgrp = find_vpid(pgid);
 970		g = pid_task(pgrp, PIDTYPE_PGID);
 971		if (!g || task_session(g) != task_session(group_leader))
 972			goto out;
 973	}
 974
 975	err = security_task_setpgid(p, pgid);
 976	if (err)
 977		goto out;
 978
 979	if (task_pgrp(p) != pgrp)
 980		change_pid(p, PIDTYPE_PGID, pgrp);
 981
 982	err = 0;
 983out:
 984	/* All paths lead to here, thus we are safe. -DaveM */
 985	write_unlock_irq(&tasklist_lock);
 986	rcu_read_unlock();
 987	return err;
 988}
 989
 990SYSCALL_DEFINE1(getpgid, pid_t, pid)
 991{
 992	struct task_struct *p;
 993	struct pid *grp;
 994	int retval;
 995
 996	rcu_read_lock();
 997	if (!pid)
 998		grp = task_pgrp(current);
 999	else {
1000		retval = -ESRCH;
1001		p = find_task_by_vpid(pid);
1002		if (!p)
1003			goto out;
1004		grp = task_pgrp(p);
1005		if (!grp)
1006			goto out;
1007
1008		retval = security_task_getpgid(p);
1009		if (retval)
1010			goto out;
1011	}
1012	retval = pid_vnr(grp);
1013out:
1014	rcu_read_unlock();
1015	return retval;
1016}
1017
 
 
 
 
 
1018#ifdef __ARCH_WANT_SYS_GETPGRP
1019
1020SYSCALL_DEFINE0(getpgrp)
1021{
1022	return sys_getpgid(0);
1023}
1024
1025#endif
1026
1027SYSCALL_DEFINE1(getsid, pid_t, pid)
1028{
1029	struct task_struct *p;
1030	struct pid *sid;
1031	int retval;
1032
1033	rcu_read_lock();
1034	if (!pid)
1035		sid = task_session(current);
1036	else {
1037		retval = -ESRCH;
1038		p = find_task_by_vpid(pid);
1039		if (!p)
1040			goto out;
1041		sid = task_session(p);
1042		if (!sid)
1043			goto out;
1044
1045		retval = security_task_getsid(p);
1046		if (retval)
1047			goto out;
1048	}
1049	retval = pid_vnr(sid);
1050out:
1051	rcu_read_unlock();
1052	return retval;
1053}
1054
1055static void set_special_pids(struct pid *pid)
1056{
1057	struct task_struct *curr = current->group_leader;
1058
1059	if (task_session(curr) != pid)
1060		change_pid(curr, PIDTYPE_SID, pid);
1061
1062	if (task_pgrp(curr) != pid)
1063		change_pid(curr, PIDTYPE_PGID, pid);
1064}
1065
1066SYSCALL_DEFINE0(setsid)
1067{
1068	struct task_struct *group_leader = current->group_leader;
1069	struct pid *sid = task_pid(group_leader);
1070	pid_t session = pid_vnr(sid);
1071	int err = -EPERM;
1072
1073	write_lock_irq(&tasklist_lock);
1074	/* Fail if I am already a session leader */
1075	if (group_leader->signal->leader)
1076		goto out;
1077
1078	/* Fail if a process group id already exists that equals the
1079	 * proposed session id.
1080	 */
1081	if (pid_task(sid, PIDTYPE_PGID))
1082		goto out;
1083
1084	group_leader->signal->leader = 1;
1085	set_special_pids(sid);
1086
1087	proc_clear_tty(group_leader);
1088
1089	err = session;
1090out:
1091	write_unlock_irq(&tasklist_lock);
1092	if (err > 0) {
1093		proc_sid_connector(group_leader);
1094		sched_autogroup_create_attach(group_leader);
1095	}
1096	return err;
1097}
1098
 
 
 
 
 
1099DECLARE_RWSEM(uts_sem);
1100
1101#ifdef COMPAT_UTS_MACHINE
1102#define override_architecture(name) \
1103	(personality(current->personality) == PER_LINUX32 && \
1104	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1105		      sizeof(COMPAT_UTS_MACHINE)))
1106#else
1107#define override_architecture(name)	0
1108#endif
1109
1110/*
1111 * Work around broken programs that cannot handle "Linux 3.0".
1112 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1113 * And we map 4.x to 2.6.60+x, so 4.0 would be 2.6.60.
 
1114 */
1115static int override_release(char __user *release, size_t len)
1116{
1117	int ret = 0;
1118
1119	if (current->personality & UNAME26) {
1120		const char *rest = UTS_RELEASE;
1121		char buf[65] = { 0 };
1122		int ndots = 0;
1123		unsigned v;
1124		size_t copy;
1125
1126		while (*rest) {
1127			if (*rest == '.' && ++ndots >= 3)
1128				break;
1129			if (!isdigit(*rest) && *rest != '.')
1130				break;
1131			rest++;
1132		}
1133		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1134		copy = clamp_t(size_t, len, 1, sizeof(buf));
1135		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1136		ret = copy_to_user(release, buf, copy + 1);
1137	}
1138	return ret;
1139}
1140
1141SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1142{
1143	int errno = 0;
1144
1145	down_read(&uts_sem);
1146	if (copy_to_user(name, utsname(), sizeof *name))
1147		errno = -EFAULT;
1148	up_read(&uts_sem);
 
 
1149
1150	if (!errno && override_release(name->release, sizeof(name->release)))
1151		errno = -EFAULT;
1152	if (!errno && override_architecture(name))
1153		errno = -EFAULT;
1154	return errno;
1155}
1156
1157#ifdef __ARCH_WANT_SYS_OLD_UNAME
1158/*
1159 * Old cruft
1160 */
1161SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1162{
1163	int error = 0;
1164
1165	if (!name)
1166		return -EFAULT;
1167
1168	down_read(&uts_sem);
1169	if (copy_to_user(name, utsname(), sizeof(*name)))
1170		error = -EFAULT;
1171	up_read(&uts_sem);
 
 
1172
1173	if (!error && override_release(name->release, sizeof(name->release)))
1174		error = -EFAULT;
1175	if (!error && override_architecture(name))
1176		error = -EFAULT;
1177	return error;
1178}
1179
1180SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1181{
1182	int error;
1183
1184	if (!name)
1185		return -EFAULT;
1186	if (!access_ok(VERIFY_WRITE, name, sizeof(struct oldold_utsname)))
1187		return -EFAULT;
1188
1189	down_read(&uts_sem);
1190	error = __copy_to_user(&name->sysname, &utsname()->sysname,
1191			       __OLD_UTS_LEN);
1192	error |= __put_user(0, name->sysname + __OLD_UTS_LEN);
1193	error |= __copy_to_user(&name->nodename, &utsname()->nodename,
1194				__OLD_UTS_LEN);
1195	error |= __put_user(0, name->nodename + __OLD_UTS_LEN);
1196	error |= __copy_to_user(&name->release, &utsname()->release,
1197				__OLD_UTS_LEN);
1198	error |= __put_user(0, name->release + __OLD_UTS_LEN);
1199	error |= __copy_to_user(&name->version, &utsname()->version,
1200				__OLD_UTS_LEN);
1201	error |= __put_user(0, name->version + __OLD_UTS_LEN);
1202	error |= __copy_to_user(&name->machine, &utsname()->machine,
1203				__OLD_UTS_LEN);
1204	error |= __put_user(0, name->machine + __OLD_UTS_LEN);
1205	up_read(&uts_sem);
 
 
1206
1207	if (!error && override_architecture(name))
1208		error = -EFAULT;
1209	if (!error && override_release(name->release, sizeof(name->release)))
1210		error = -EFAULT;
1211	return error ? -EFAULT : 0;
1212}
1213#endif
1214
1215SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1216{
1217	int errno;
1218	char tmp[__NEW_UTS_LEN];
1219
1220	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1221		return -EPERM;
1222
1223	if (len < 0 || len > __NEW_UTS_LEN)
1224		return -EINVAL;
1225	down_write(&uts_sem);
1226	errno = -EFAULT;
1227	if (!copy_from_user(tmp, name, len)) {
1228		struct new_utsname *u = utsname();
1229
 
 
1230		memcpy(u->nodename, tmp, len);
1231		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1232		errno = 0;
1233		uts_proc_notify(UTS_PROC_HOSTNAME);
 
1234	}
1235	up_write(&uts_sem);
1236	return errno;
1237}
1238
1239#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1240
1241SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1242{
1243	int i, errno;
1244	struct new_utsname *u;
 
1245
1246	if (len < 0)
1247		return -EINVAL;
1248	down_read(&uts_sem);
1249	u = utsname();
1250	i = 1 + strlen(u->nodename);
1251	if (i > len)
1252		i = len;
1253	errno = 0;
1254	if (copy_to_user(name, u->nodename, i))
1255		errno = -EFAULT;
1256	up_read(&uts_sem);
1257	return errno;
 
 
1258}
1259
1260#endif
1261
1262/*
1263 * Only setdomainname; getdomainname can be implemented by calling
1264 * uname()
1265 */
1266SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1267{
1268	int errno;
1269	char tmp[__NEW_UTS_LEN];
1270
1271	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1272		return -EPERM;
1273	if (len < 0 || len > __NEW_UTS_LEN)
1274		return -EINVAL;
1275
1276	down_write(&uts_sem);
1277	errno = -EFAULT;
1278	if (!copy_from_user(tmp, name, len)) {
1279		struct new_utsname *u = utsname();
1280
 
 
1281		memcpy(u->domainname, tmp, len);
1282		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1283		errno = 0;
1284		uts_proc_notify(UTS_PROC_DOMAINNAME);
 
1285	}
1286	up_write(&uts_sem);
1287	return errno;
1288}
1289
1290SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1291{
1292	struct rlimit value;
1293	int ret;
1294
1295	ret = do_prlimit(current, resource, NULL, &value);
1296	if (!ret)
1297		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1298
1299	return ret;
1300}
1301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1302#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1303
1304/*
1305 *	Back compatibility for getrlimit. Needed for some apps.
1306 */
1307SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1308		struct rlimit __user *, rlim)
1309{
1310	struct rlimit x;
1311	if (resource >= RLIM_NLIMITS)
1312		return -EINVAL;
1313
 
1314	task_lock(current->group_leader);
1315	x = current->signal->rlim[resource];
1316	task_unlock(current->group_leader);
1317	if (x.rlim_cur > 0x7FFFFFFF)
1318		x.rlim_cur = 0x7FFFFFFF;
1319	if (x.rlim_max > 0x7FFFFFFF)
1320		x.rlim_max = 0x7FFFFFFF;
1321	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1322}
1323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324#endif
1325
1326static inline bool rlim64_is_infinity(__u64 rlim64)
1327{
1328#if BITS_PER_LONG < 64
1329	return rlim64 >= ULONG_MAX;
1330#else
1331	return rlim64 == RLIM64_INFINITY;
1332#endif
1333}
1334
1335static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1336{
1337	if (rlim->rlim_cur == RLIM_INFINITY)
1338		rlim64->rlim_cur = RLIM64_INFINITY;
1339	else
1340		rlim64->rlim_cur = rlim->rlim_cur;
1341	if (rlim->rlim_max == RLIM_INFINITY)
1342		rlim64->rlim_max = RLIM64_INFINITY;
1343	else
1344		rlim64->rlim_max = rlim->rlim_max;
1345}
1346
1347static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1348{
1349	if (rlim64_is_infinity(rlim64->rlim_cur))
1350		rlim->rlim_cur = RLIM_INFINITY;
1351	else
1352		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1353	if (rlim64_is_infinity(rlim64->rlim_max))
1354		rlim->rlim_max = RLIM_INFINITY;
1355	else
1356		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1357}
1358
1359/* make sure you are allowed to change @tsk limits before calling this */
1360int do_prlimit(struct task_struct *tsk, unsigned int resource,
1361		struct rlimit *new_rlim, struct rlimit *old_rlim)
1362{
1363	struct rlimit *rlim;
1364	int retval = 0;
1365
1366	if (resource >= RLIM_NLIMITS)
1367		return -EINVAL;
1368	if (new_rlim) {
1369		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1370			return -EINVAL;
1371		if (resource == RLIMIT_NOFILE &&
1372				new_rlim->rlim_max > sysctl_nr_open)
1373			return -EPERM;
1374	}
1375
1376	/* protect tsk->signal and tsk->sighand from disappearing */
1377	read_lock(&tasklist_lock);
1378	if (!tsk->sighand) {
1379		retval = -ESRCH;
1380		goto out;
1381	}
1382
1383	rlim = tsk->signal->rlim + resource;
1384	task_lock(tsk->group_leader);
1385	if (new_rlim) {
1386		/* Keep the capable check against init_user_ns until
1387		   cgroups can contain all limits */
1388		if (new_rlim->rlim_max > rlim->rlim_max &&
1389				!capable(CAP_SYS_RESOURCE))
1390			retval = -EPERM;
1391		if (!retval)
1392			retval = security_task_setrlimit(tsk->group_leader,
1393					resource, new_rlim);
1394		if (resource == RLIMIT_CPU && new_rlim->rlim_cur == 0) {
1395			/*
1396			 * The caller is asking for an immediate RLIMIT_CPU
1397			 * expiry.  But we use the zero value to mean "it was
1398			 * never set".  So let's cheat and make it one second
1399			 * instead
1400			 */
1401			new_rlim->rlim_cur = 1;
1402		}
1403	}
1404	if (!retval) {
1405		if (old_rlim)
1406			*old_rlim = *rlim;
1407		if (new_rlim)
1408			*rlim = *new_rlim;
1409	}
1410	task_unlock(tsk->group_leader);
1411
1412	/*
1413	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1414	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1415	 * very long-standing error, and fixing it now risks breakage of
1416	 * applications, so we live with it
1417	 */
1418	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1419			 new_rlim->rlim_cur != RLIM_INFINITY)
 
1420		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1421out:
1422	read_unlock(&tasklist_lock);
1423	return retval;
1424}
1425
1426/* rcu lock must be held */
1427static int check_prlimit_permission(struct task_struct *task)
 
1428{
1429	const struct cred *cred = current_cred(), *tcred;
 
1430
1431	if (current == task)
1432		return 0;
1433
1434	tcred = __task_cred(task);
1435	if (uid_eq(cred->uid, tcred->euid) &&
1436	    uid_eq(cred->uid, tcred->suid) &&
1437	    uid_eq(cred->uid, tcred->uid)  &&
1438	    gid_eq(cred->gid, tcred->egid) &&
1439	    gid_eq(cred->gid, tcred->sgid) &&
1440	    gid_eq(cred->gid, tcred->gid))
1441		return 0;
1442	if (ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1443		return 0;
1444
1445	return -EPERM;
1446}
1447
1448SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1449		const struct rlimit64 __user *, new_rlim,
1450		struct rlimit64 __user *, old_rlim)
1451{
1452	struct rlimit64 old64, new64;
1453	struct rlimit old, new;
1454	struct task_struct *tsk;
 
1455	int ret;
1456
 
 
 
1457	if (new_rlim) {
1458		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1459			return -EFAULT;
1460		rlim64_to_rlim(&new64, &new);
 
1461	}
1462
1463	rcu_read_lock();
1464	tsk = pid ? find_task_by_vpid(pid) : current;
1465	if (!tsk) {
1466		rcu_read_unlock();
1467		return -ESRCH;
1468	}
1469	ret = check_prlimit_permission(tsk);
1470	if (ret) {
1471		rcu_read_unlock();
1472		return ret;
1473	}
1474	get_task_struct(tsk);
1475	rcu_read_unlock();
1476
1477	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1478			old_rlim ? &old : NULL);
1479
1480	if (!ret && old_rlim) {
1481		rlim_to_rlim64(&old, &old64);
1482		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1483			ret = -EFAULT;
1484	}
1485
1486	put_task_struct(tsk);
1487	return ret;
1488}
1489
1490SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1491{
1492	struct rlimit new_rlim;
1493
1494	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1495		return -EFAULT;
1496	return do_prlimit(current, resource, &new_rlim, NULL);
1497}
1498
1499/*
1500 * It would make sense to put struct rusage in the task_struct,
1501 * except that would make the task_struct be *really big*.  After
1502 * task_struct gets moved into malloc'ed memory, it would
1503 * make sense to do this.  It will make moving the rest of the information
1504 * a lot simpler!  (Which we're not doing right now because we're not
1505 * measuring them yet).
1506 *
1507 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1508 * races with threads incrementing their own counters.  But since word
1509 * reads are atomic, we either get new values or old values and we don't
1510 * care which for the sums.  We always take the siglock to protect reading
1511 * the c* fields from p->signal from races with exit.c updating those
1512 * fields when reaping, so a sample either gets all the additions of a
1513 * given child after it's reaped, or none so this sample is before reaping.
1514 *
1515 * Locking:
1516 * We need to take the siglock for CHILDEREN, SELF and BOTH
1517 * for  the cases current multithreaded, non-current single threaded
1518 * non-current multithreaded.  Thread traversal is now safe with
1519 * the siglock held.
1520 * Strictly speaking, we donot need to take the siglock if we are current and
1521 * single threaded,  as no one else can take our signal_struct away, no one
1522 * else can  reap the  children to update signal->c* counters, and no one else
1523 * can race with the signal-> fields. If we do not take any lock, the
1524 * signal-> fields could be read out of order while another thread was just
1525 * exiting. So we should  place a read memory barrier when we avoid the lock.
1526 * On the writer side,  write memory barrier is implied in  __exit_signal
1527 * as __exit_signal releases  the siglock spinlock after updating the signal->
1528 * fields. But we don't do this yet to keep things simple.
1529 *
1530 */
1531
1532static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1533{
1534	r->ru_nvcsw += t->nvcsw;
1535	r->ru_nivcsw += t->nivcsw;
1536	r->ru_minflt += t->min_flt;
1537	r->ru_majflt += t->maj_flt;
1538	r->ru_inblock += task_io_get_inblock(t);
1539	r->ru_oublock += task_io_get_oublock(t);
1540}
1541
1542static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1543{
1544	struct task_struct *t;
1545	unsigned long flags;
1546	cputime_t tgutime, tgstime, utime, stime;
1547	unsigned long maxrss = 0;
1548
1549	memset((char *)r, 0, sizeof (*r));
1550	utime = stime = 0;
1551
1552	if (who == RUSAGE_THREAD) {
1553		task_cputime_adjusted(current, &utime, &stime);
1554		accumulate_thread_rusage(p, r);
1555		maxrss = p->signal->maxrss;
1556		goto out;
1557	}
1558
1559	if (!lock_task_sighand(p, &flags))
1560		return;
1561
1562	switch (who) {
1563	case RUSAGE_BOTH:
1564	case RUSAGE_CHILDREN:
1565		utime = p->signal->cutime;
1566		stime = p->signal->cstime;
1567		r->ru_nvcsw = p->signal->cnvcsw;
1568		r->ru_nivcsw = p->signal->cnivcsw;
1569		r->ru_minflt = p->signal->cmin_flt;
1570		r->ru_majflt = p->signal->cmaj_flt;
1571		r->ru_inblock = p->signal->cinblock;
1572		r->ru_oublock = p->signal->coublock;
1573		maxrss = p->signal->cmaxrss;
1574
1575		if (who == RUSAGE_CHILDREN)
1576			break;
 
1577
1578	case RUSAGE_SELF:
1579		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1580		utime += tgutime;
1581		stime += tgstime;
1582		r->ru_nvcsw += p->signal->nvcsw;
1583		r->ru_nivcsw += p->signal->nivcsw;
1584		r->ru_minflt += p->signal->min_flt;
1585		r->ru_majflt += p->signal->maj_flt;
1586		r->ru_inblock += p->signal->inblock;
1587		r->ru_oublock += p->signal->oublock;
1588		if (maxrss < p->signal->maxrss)
1589			maxrss = p->signal->maxrss;
1590		t = p;
1591		do {
1592			accumulate_thread_rusage(t, r);
1593		} while_each_thread(p, t);
1594		break;
1595
1596	default:
1597		BUG();
1598	}
1599	unlock_task_sighand(p, &flags);
1600
1601out:
1602	cputime_to_timeval(utime, &r->ru_utime);
1603	cputime_to_timeval(stime, &r->ru_stime);
1604
1605	if (who != RUSAGE_CHILDREN) {
1606		struct mm_struct *mm = get_task_mm(p);
1607
1608		if (mm) {
1609			setmax_mm_hiwater_rss(&maxrss, mm);
1610			mmput(mm);
1611		}
1612	}
1613	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1614}
1615
1616int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1617{
1618	struct rusage r;
1619
1620	k_getrusage(p, who, &r);
1621	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1622}
1623
1624SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1625{
1626	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1627	    who != RUSAGE_THREAD)
1628		return -EINVAL;
1629	return getrusage(current, who, ru);
 
 
1630}
1631
1632#ifdef CONFIG_COMPAT
1633COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1634{
1635	struct rusage r;
1636
1637	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1638	    who != RUSAGE_THREAD)
1639		return -EINVAL;
1640
1641	k_getrusage(current, who, &r);
1642	return put_compat_rusage(&r, ru);
1643}
1644#endif
1645
1646SYSCALL_DEFINE1(umask, int, mask)
1647{
1648	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1649	return mask;
1650}
1651
1652static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1653{
1654	struct fd exe;
1655	struct file *old_exe, *exe_file;
1656	struct inode *inode;
1657	int err;
1658
1659	exe = fdget(fd);
1660	if (!exe.file)
1661		return -EBADF;
1662
1663	inode = file_inode(exe.file);
1664
1665	/*
1666	 * Because the original mm->exe_file points to executable file, make
1667	 * sure that this one is executable as well, to avoid breaking an
1668	 * overall picture.
1669	 */
1670	err = -EACCES;
1671	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1672		goto exit;
1673
1674	err = inode_permission(inode, MAY_EXEC);
1675	if (err)
1676		goto exit;
1677
1678	/*
1679	 * Forbid mm->exe_file change if old file still mapped.
1680	 */
1681	exe_file = get_mm_exe_file(mm);
1682	err = -EBUSY;
1683	if (exe_file) {
1684		struct vm_area_struct *vma;
1685
1686		down_read(&mm->mmap_sem);
1687		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1688			if (!vma->vm_file)
1689				continue;
1690			if (path_equal(&vma->vm_file->f_path,
1691				       &exe_file->f_path))
1692				goto exit_err;
1693		}
1694
1695		up_read(&mm->mmap_sem);
1696		fput(exe_file);
1697	}
1698
1699	/*
1700	 * The symlink can be changed only once, just to disallow arbitrary
1701	 * transitions malicious software might bring in. This means one
1702	 * could make a snapshot over all processes running and monitor
1703	 * /proc/pid/exe changes to notice unusual activity if needed.
1704	 */
1705	err = -EPERM;
1706	if (test_and_set_bit(MMF_EXE_FILE_CHANGED, &mm->flags))
1707		goto exit;
1708
1709	err = 0;
1710	/* set the new file, lockless */
1711	get_file(exe.file);
1712	old_exe = xchg(&mm->exe_file, exe.file);
1713	if (old_exe)
1714		fput(old_exe);
1715exit:
1716	fdput(exe);
1717	return err;
1718exit_err:
1719	up_read(&mm->mmap_sem);
1720	fput(exe_file);
1721	goto exit;
1722}
1723
1724/*
 
 
1725 * WARNING: we don't require any capability here so be very careful
1726 * in what is allowed for modification from userspace.
1727 */
1728static int validate_prctl_map(struct prctl_mm_map *prctl_map)
1729{
1730	unsigned long mmap_max_addr = TASK_SIZE;
1731	struct mm_struct *mm = current->mm;
1732	int error = -EINVAL, i;
1733
1734	static const unsigned char offsets[] = {
1735		offsetof(struct prctl_mm_map, start_code),
1736		offsetof(struct prctl_mm_map, end_code),
1737		offsetof(struct prctl_mm_map, start_data),
1738		offsetof(struct prctl_mm_map, end_data),
1739		offsetof(struct prctl_mm_map, start_brk),
1740		offsetof(struct prctl_mm_map, brk),
1741		offsetof(struct prctl_mm_map, start_stack),
1742		offsetof(struct prctl_mm_map, arg_start),
1743		offsetof(struct prctl_mm_map, arg_end),
1744		offsetof(struct prctl_mm_map, env_start),
1745		offsetof(struct prctl_mm_map, env_end),
1746	};
1747
1748	/*
1749	 * Make sure the members are not somewhere outside
1750	 * of allowed address space.
1751	 */
1752	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1753		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1754
1755		if ((unsigned long)val >= mmap_max_addr ||
1756		    (unsigned long)val < mmap_min_addr)
1757			goto out;
1758	}
1759
1760	/*
1761	 * Make sure the pairs are ordered.
1762	 */
1763#define __prctl_check_order(__m1, __op, __m2)				\
1764	((unsigned long)prctl_map->__m1 __op				\
1765	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1766	error  = __prctl_check_order(start_code, <, end_code);
1767	error |= __prctl_check_order(start_data, <, end_data);
1768	error |= __prctl_check_order(start_brk, <=, brk);
1769	error |= __prctl_check_order(arg_start, <=, arg_end);
1770	error |= __prctl_check_order(env_start, <=, env_end);
1771	if (error)
1772		goto out;
1773#undef __prctl_check_order
1774
1775	error = -EINVAL;
1776
1777	/*
1778	 * @brk should be after @end_data in traditional maps.
1779	 */
1780	if (prctl_map->start_brk <= prctl_map->end_data ||
1781	    prctl_map->brk <= prctl_map->end_data)
1782		goto out;
1783
1784	/*
1785	 * Neither we should allow to override limits if they set.
1786	 */
1787	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1788			      prctl_map->start_brk, prctl_map->end_data,
1789			      prctl_map->start_data))
1790			goto out;
1791
1792	/*
1793	 * Someone is trying to cheat the auxv vector.
1794	 */
1795	if (prctl_map->auxv_size) {
1796		if (!prctl_map->auxv || prctl_map->auxv_size > sizeof(mm->saved_auxv))
1797			goto out;
1798	}
1799
1800	/*
1801	 * Finally, make sure the caller has the rights to
1802	 * change /proc/pid/exe link: only local root should
1803	 * be allowed to.
1804	 */
1805	if (prctl_map->exe_fd != (u32)-1) {
1806		struct user_namespace *ns = current_user_ns();
1807		const struct cred *cred = current_cred();
1808
1809		if (!uid_eq(cred->uid, make_kuid(ns, 0)) ||
1810		    !gid_eq(cred->gid, make_kgid(ns, 0)))
1811			goto out;
1812	}
1813
1814	error = 0;
1815out:
1816	return error;
1817}
1818
1819#ifdef CONFIG_CHECKPOINT_RESTORE
1820static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1821{
1822	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1823	unsigned long user_auxv[AT_VECTOR_SIZE];
1824	struct mm_struct *mm = current->mm;
1825	int error;
1826
1827	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1828	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1829
1830	if (opt == PR_SET_MM_MAP_SIZE)
1831		return put_user((unsigned int)sizeof(prctl_map),
1832				(unsigned int __user *)addr);
1833
1834	if (data_size != sizeof(prctl_map))
1835		return -EINVAL;
1836
1837	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1838		return -EFAULT;
1839
1840	error = validate_prctl_map(&prctl_map);
1841	if (error)
1842		return error;
1843
1844	if (prctl_map.auxv_size) {
 
 
 
 
 
 
 
1845		memset(user_auxv, 0, sizeof(user_auxv));
1846		if (copy_from_user(user_auxv,
1847				   (const void __user *)prctl_map.auxv,
1848				   prctl_map.auxv_size))
1849			return -EFAULT;
1850
1851		/* Last entry must be AT_NULL as specification requires */
1852		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1853		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1854	}
1855
1856	if (prctl_map.exe_fd != (u32)-1) {
 
 
 
 
 
 
 
 
1857		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
1858		if (error)
1859			return error;
1860	}
1861
1862	down_write(&mm->mmap_sem);
 
 
 
 
1863
1864	/*
1865	 * We don't validate if these members are pointing to
1866	 * real present VMAs because application may have correspond
1867	 * VMAs already unmapped and kernel uses these members for statistics
1868	 * output in procfs mostly, except
1869	 *
1870	 *  - @start_brk/@brk which are used in do_brk but kernel lookups
1871	 *    for VMAs when updating these memvers so anything wrong written
1872	 *    here cause kernel to swear at userspace program but won't lead
1873	 *    to any problem in kernel itself
1874	 */
1875
 
1876	mm->start_code	= prctl_map.start_code;
1877	mm->end_code	= prctl_map.end_code;
1878	mm->start_data	= prctl_map.start_data;
1879	mm->end_data	= prctl_map.end_data;
1880	mm->start_brk	= prctl_map.start_brk;
1881	mm->brk		= prctl_map.brk;
1882	mm->start_stack	= prctl_map.start_stack;
1883	mm->arg_start	= prctl_map.arg_start;
1884	mm->arg_end	= prctl_map.arg_end;
1885	mm->env_start	= prctl_map.env_start;
1886	mm->env_end	= prctl_map.env_end;
 
1887
1888	/*
1889	 * Note this update of @saved_auxv is lockless thus
1890	 * if someone reads this member in procfs while we're
1891	 * updating -- it may get partly updated results. It's
1892	 * known and acceptable trade off: we leave it as is to
1893	 * not introduce additional locks here making the kernel
1894	 * more complex.
1895	 */
1896	if (prctl_map.auxv_size)
1897		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
1898
1899	up_write(&mm->mmap_sem);
1900	return 0;
1901}
1902#endif /* CONFIG_CHECKPOINT_RESTORE */
1903
1904static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
1905			  unsigned long len)
1906{
1907	/*
1908	 * This doesn't move the auxiliary vector itself since it's pinned to
1909	 * mm_struct, but it permits filling the vector with new values.  It's
1910	 * up to the caller to provide sane values here, otherwise userspace
1911	 * tools which use this vector might be unhappy.
1912	 */
1913	unsigned long user_auxv[AT_VECTOR_SIZE];
1914
1915	if (len > sizeof(user_auxv))
1916		return -EINVAL;
1917
1918	if (copy_from_user(user_auxv, (const void __user *)addr, len))
1919		return -EFAULT;
1920
1921	/* Make sure the last entry is always AT_NULL */
1922	user_auxv[AT_VECTOR_SIZE - 2] = 0;
1923	user_auxv[AT_VECTOR_SIZE - 1] = 0;
1924
1925	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1926
1927	task_lock(current);
1928	memcpy(mm->saved_auxv, user_auxv, len);
1929	task_unlock(current);
1930
1931	return 0;
1932}
1933
1934static int prctl_set_mm(int opt, unsigned long addr,
1935			unsigned long arg4, unsigned long arg5)
1936{
1937	struct mm_struct *mm = current->mm;
1938	struct prctl_mm_map prctl_map;
 
 
 
 
1939	struct vm_area_struct *vma;
1940	int error;
1941
1942	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
1943			      opt != PR_SET_MM_MAP &&
1944			      opt != PR_SET_MM_MAP_SIZE)))
1945		return -EINVAL;
1946
1947#ifdef CONFIG_CHECKPOINT_RESTORE
1948	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
1949		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
1950#endif
1951
1952	if (!capable(CAP_SYS_RESOURCE))
1953		return -EPERM;
1954
1955	if (opt == PR_SET_MM_EXE_FILE)
1956		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
1957
1958	if (opt == PR_SET_MM_AUXV)
1959		return prctl_set_auxv(mm, addr, arg4);
1960
1961	if (addr >= TASK_SIZE || addr < mmap_min_addr)
1962		return -EINVAL;
1963
1964	error = -EINVAL;
1965
1966	down_write(&mm->mmap_sem);
 
 
 
 
 
1967	vma = find_vma(mm, addr);
1968
 
1969	prctl_map.start_code	= mm->start_code;
1970	prctl_map.end_code	= mm->end_code;
1971	prctl_map.start_data	= mm->start_data;
1972	prctl_map.end_data	= mm->end_data;
1973	prctl_map.start_brk	= mm->start_brk;
1974	prctl_map.brk		= mm->brk;
1975	prctl_map.start_stack	= mm->start_stack;
1976	prctl_map.arg_start	= mm->arg_start;
1977	prctl_map.arg_end	= mm->arg_end;
1978	prctl_map.env_start	= mm->env_start;
1979	prctl_map.env_end	= mm->env_end;
1980	prctl_map.auxv		= NULL;
1981	prctl_map.auxv_size	= 0;
1982	prctl_map.exe_fd	= -1;
1983
1984	switch (opt) {
1985	case PR_SET_MM_START_CODE:
1986		prctl_map.start_code = addr;
1987		break;
1988	case PR_SET_MM_END_CODE:
1989		prctl_map.end_code = addr;
1990		break;
1991	case PR_SET_MM_START_DATA:
1992		prctl_map.start_data = addr;
1993		break;
1994	case PR_SET_MM_END_DATA:
1995		prctl_map.end_data = addr;
1996		break;
1997	case PR_SET_MM_START_STACK:
1998		prctl_map.start_stack = addr;
1999		break;
2000	case PR_SET_MM_START_BRK:
2001		prctl_map.start_brk = addr;
2002		break;
2003	case PR_SET_MM_BRK:
2004		prctl_map.brk = addr;
2005		break;
2006	case PR_SET_MM_ARG_START:
2007		prctl_map.arg_start = addr;
2008		break;
2009	case PR_SET_MM_ARG_END:
2010		prctl_map.arg_end = addr;
2011		break;
2012	case PR_SET_MM_ENV_START:
2013		prctl_map.env_start = addr;
2014		break;
2015	case PR_SET_MM_ENV_END:
2016		prctl_map.env_end = addr;
2017		break;
2018	default:
2019		goto out;
2020	}
2021
2022	error = validate_prctl_map(&prctl_map);
2023	if (error)
2024		goto out;
2025
2026	switch (opt) {
2027	/*
2028	 * If command line arguments and environment
2029	 * are placed somewhere else on stack, we can
2030	 * set them up here, ARG_START/END to setup
2031	 * command line argumets and ENV_START/END
2032	 * for environment.
2033	 */
2034	case PR_SET_MM_START_STACK:
2035	case PR_SET_MM_ARG_START:
2036	case PR_SET_MM_ARG_END:
2037	case PR_SET_MM_ENV_START:
2038	case PR_SET_MM_ENV_END:
2039		if (!vma) {
2040			error = -EFAULT;
2041			goto out;
2042		}
2043	}
2044
2045	mm->start_code	= prctl_map.start_code;
2046	mm->end_code	= prctl_map.end_code;
2047	mm->start_data	= prctl_map.start_data;
2048	mm->end_data	= prctl_map.end_data;
2049	mm->start_brk	= prctl_map.start_brk;
2050	mm->brk		= prctl_map.brk;
2051	mm->start_stack	= prctl_map.start_stack;
2052	mm->arg_start	= prctl_map.arg_start;
2053	mm->arg_end	= prctl_map.arg_end;
2054	mm->env_start	= prctl_map.env_start;
2055	mm->env_end	= prctl_map.env_end;
2056
2057	error = 0;
2058out:
2059	up_write(&mm->mmap_sem);
 
2060	return error;
2061}
2062
2063#ifdef CONFIG_CHECKPOINT_RESTORE
2064static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2065{
2066	return put_user(me->clear_child_tid, tid_addr);
2067}
2068#else
2069static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2070{
2071	return -EINVAL;
2072}
2073#endif
2074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2075SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2076		unsigned long, arg4, unsigned long, arg5)
2077{
2078	struct task_struct *me = current;
2079	unsigned char comm[sizeof(me->comm)];
2080	long error;
2081
2082	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2083	if (error != -ENOSYS)
2084		return error;
2085
2086	error = 0;
2087	switch (option) {
2088	case PR_SET_PDEATHSIG:
2089		if (!valid_signal(arg2)) {
2090			error = -EINVAL;
2091			break;
2092		}
2093		me->pdeath_signal = arg2;
2094		break;
2095	case PR_GET_PDEATHSIG:
2096		error = put_user(me->pdeath_signal, (int __user *)arg2);
2097		break;
2098	case PR_GET_DUMPABLE:
2099		error = get_dumpable(me->mm);
2100		break;
2101	case PR_SET_DUMPABLE:
2102		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2103			error = -EINVAL;
2104			break;
2105		}
2106		set_dumpable(me->mm, arg2);
2107		break;
2108
2109	case PR_SET_UNALIGN:
2110		error = SET_UNALIGN_CTL(me, arg2);
2111		break;
2112	case PR_GET_UNALIGN:
2113		error = GET_UNALIGN_CTL(me, arg2);
2114		break;
2115	case PR_SET_FPEMU:
2116		error = SET_FPEMU_CTL(me, arg2);
2117		break;
2118	case PR_GET_FPEMU:
2119		error = GET_FPEMU_CTL(me, arg2);
2120		break;
2121	case PR_SET_FPEXC:
2122		error = SET_FPEXC_CTL(me, arg2);
2123		break;
2124	case PR_GET_FPEXC:
2125		error = GET_FPEXC_CTL(me, arg2);
2126		break;
2127	case PR_GET_TIMING:
2128		error = PR_TIMING_STATISTICAL;
2129		break;
2130	case PR_SET_TIMING:
2131		if (arg2 != PR_TIMING_STATISTICAL)
2132			error = -EINVAL;
2133		break;
2134	case PR_SET_NAME:
2135		comm[sizeof(me->comm) - 1] = 0;
2136		if (strncpy_from_user(comm, (char __user *)arg2,
2137				      sizeof(me->comm) - 1) < 0)
2138			return -EFAULT;
2139		set_task_comm(me, comm);
2140		proc_comm_connector(me);
2141		break;
2142	case PR_GET_NAME:
2143		get_task_comm(comm, me);
2144		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2145			return -EFAULT;
2146		break;
2147	case PR_GET_ENDIAN:
2148		error = GET_ENDIAN(me, arg2);
2149		break;
2150	case PR_SET_ENDIAN:
2151		error = SET_ENDIAN(me, arg2);
2152		break;
2153	case PR_GET_SECCOMP:
2154		error = prctl_get_seccomp();
2155		break;
2156	case PR_SET_SECCOMP:
2157		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2158		break;
2159	case PR_GET_TSC:
2160		error = GET_TSC_CTL(arg2);
2161		break;
2162	case PR_SET_TSC:
2163		error = SET_TSC_CTL(arg2);
2164		break;
2165	case PR_TASK_PERF_EVENTS_DISABLE:
2166		error = perf_event_task_disable();
2167		break;
2168	case PR_TASK_PERF_EVENTS_ENABLE:
2169		error = perf_event_task_enable();
2170		break;
2171	case PR_GET_TIMERSLACK:
2172		if (current->timer_slack_ns > ULONG_MAX)
2173			error = ULONG_MAX;
2174		else
2175			error = current->timer_slack_ns;
2176		break;
2177	case PR_SET_TIMERSLACK:
2178		if (arg2 <= 0)
2179			current->timer_slack_ns =
2180					current->default_timer_slack_ns;
2181		else
2182			current->timer_slack_ns = arg2;
2183		break;
2184	case PR_MCE_KILL:
2185		if (arg4 | arg5)
2186			return -EINVAL;
2187		switch (arg2) {
2188		case PR_MCE_KILL_CLEAR:
2189			if (arg3 != 0)
2190				return -EINVAL;
2191			current->flags &= ~PF_MCE_PROCESS;
2192			break;
2193		case PR_MCE_KILL_SET:
2194			current->flags |= PF_MCE_PROCESS;
2195			if (arg3 == PR_MCE_KILL_EARLY)
2196				current->flags |= PF_MCE_EARLY;
2197			else if (arg3 == PR_MCE_KILL_LATE)
2198				current->flags &= ~PF_MCE_EARLY;
2199			else if (arg3 == PR_MCE_KILL_DEFAULT)
2200				current->flags &=
2201						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2202			else
2203				return -EINVAL;
2204			break;
2205		default:
2206			return -EINVAL;
2207		}
2208		break;
2209	case PR_MCE_KILL_GET:
2210		if (arg2 | arg3 | arg4 | arg5)
2211			return -EINVAL;
2212		if (current->flags & PF_MCE_PROCESS)
2213			error = (current->flags & PF_MCE_EARLY) ?
2214				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2215		else
2216			error = PR_MCE_KILL_DEFAULT;
2217		break;
2218	case PR_SET_MM:
2219		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2220		break;
2221	case PR_GET_TID_ADDRESS:
2222		error = prctl_get_tid_address(me, (int __user **)arg2);
2223		break;
2224	case PR_SET_CHILD_SUBREAPER:
2225		me->signal->is_child_subreaper = !!arg2;
 
 
 
 
2226		break;
2227	case PR_GET_CHILD_SUBREAPER:
2228		error = put_user(me->signal->is_child_subreaper,
2229				 (int __user *)arg2);
2230		break;
2231	case PR_SET_NO_NEW_PRIVS:
2232		if (arg2 != 1 || arg3 || arg4 || arg5)
2233			return -EINVAL;
2234
2235		task_set_no_new_privs(current);
2236		break;
2237	case PR_GET_NO_NEW_PRIVS:
2238		if (arg2 || arg3 || arg4 || arg5)
2239			return -EINVAL;
2240		return task_no_new_privs(current) ? 1 : 0;
2241	case PR_GET_THP_DISABLE:
2242		if (arg2 || arg3 || arg4 || arg5)
2243			return -EINVAL;
2244		error = !!(me->mm->def_flags & VM_NOHUGEPAGE);
2245		break;
2246	case PR_SET_THP_DISABLE:
2247		if (arg3 || arg4 || arg5)
2248			return -EINVAL;
2249		down_write(&me->mm->mmap_sem);
 
2250		if (arg2)
2251			me->mm->def_flags |= VM_NOHUGEPAGE;
2252		else
2253			me->mm->def_flags &= ~VM_NOHUGEPAGE;
2254		up_write(&me->mm->mmap_sem);
2255		break;
2256	case PR_MPX_ENABLE_MANAGEMENT:
2257		if (arg2 || arg3 || arg4 || arg5)
2258			return -EINVAL;
2259		error = MPX_ENABLE_MANAGEMENT();
2260		break;
2261	case PR_MPX_DISABLE_MANAGEMENT:
2262		if (arg2 || arg3 || arg4 || arg5)
2263			return -EINVAL;
2264		error = MPX_DISABLE_MANAGEMENT();
2265		break;
2266	case PR_SET_FP_MODE:
2267		error = SET_FP_MODE(me, arg2);
2268		break;
2269	case PR_GET_FP_MODE:
2270		error = GET_FP_MODE(me);
2271		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2272	default:
2273		error = -EINVAL;
2274		break;
2275	}
2276	return error;
2277}
2278
2279SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2280		struct getcpu_cache __user *, unused)
2281{
2282	int err = 0;
2283	int cpu = raw_smp_processor_id();
2284
2285	if (cpup)
2286		err |= put_user(cpu, cpup);
2287	if (nodep)
2288		err |= put_user(cpu_to_node(cpu), nodep);
2289	return err ? -EFAULT : 0;
2290}
2291
2292/**
2293 * do_sysinfo - fill in sysinfo struct
2294 * @info: pointer to buffer to fill
2295 */
2296static int do_sysinfo(struct sysinfo *info)
2297{
2298	unsigned long mem_total, sav_total;
2299	unsigned int mem_unit, bitcount;
2300	struct timespec tp;
2301
2302	memset(info, 0, sizeof(struct sysinfo));
2303
2304	get_monotonic_boottime(&tp);
2305	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2306
2307	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2308
2309	info->procs = nr_threads;
2310
2311	si_meminfo(info);
2312	si_swapinfo(info);
2313
2314	/*
2315	 * If the sum of all the available memory (i.e. ram + swap)
2316	 * is less than can be stored in a 32 bit unsigned long then
2317	 * we can be binary compatible with 2.2.x kernels.  If not,
2318	 * well, in that case 2.2.x was broken anyways...
2319	 *
2320	 *  -Erik Andersen <andersee@debian.org>
2321	 */
2322
2323	mem_total = info->totalram + info->totalswap;
2324	if (mem_total < info->totalram || mem_total < info->totalswap)
2325		goto out;
2326	bitcount = 0;
2327	mem_unit = info->mem_unit;
2328	while (mem_unit > 1) {
2329		bitcount++;
2330		mem_unit >>= 1;
2331		sav_total = mem_total;
2332		mem_total <<= 1;
2333		if (mem_total < sav_total)
2334			goto out;
2335	}
2336
2337	/*
2338	 * If mem_total did not overflow, multiply all memory values by
2339	 * info->mem_unit and set it to 1.  This leaves things compatible
2340	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2341	 * kernels...
2342	 */
2343
2344	info->mem_unit = 1;
2345	info->totalram <<= bitcount;
2346	info->freeram <<= bitcount;
2347	info->sharedram <<= bitcount;
2348	info->bufferram <<= bitcount;
2349	info->totalswap <<= bitcount;
2350	info->freeswap <<= bitcount;
2351	info->totalhigh <<= bitcount;
2352	info->freehigh <<= bitcount;
2353
2354out:
2355	return 0;
2356}
2357
2358SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2359{
2360	struct sysinfo val;
2361
2362	do_sysinfo(&val);
2363
2364	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2365		return -EFAULT;
2366
2367	return 0;
2368}
2369
2370#ifdef CONFIG_COMPAT
2371struct compat_sysinfo {
2372	s32 uptime;
2373	u32 loads[3];
2374	u32 totalram;
2375	u32 freeram;
2376	u32 sharedram;
2377	u32 bufferram;
2378	u32 totalswap;
2379	u32 freeswap;
2380	u16 procs;
2381	u16 pad;
2382	u32 totalhigh;
2383	u32 freehigh;
2384	u32 mem_unit;
2385	char _f[20-2*sizeof(u32)-sizeof(int)];
2386};
2387
2388COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2389{
2390	struct sysinfo s;
2391
2392	do_sysinfo(&s);
2393
2394	/* Check to see if any memory value is too large for 32-bit and scale
2395	 *  down if needed
2396	 */
2397	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2398		int bitcount = 0;
2399
2400		while (s.mem_unit < PAGE_SIZE) {
2401			s.mem_unit <<= 1;
2402			bitcount++;
2403		}
2404
2405		s.totalram >>= bitcount;
2406		s.freeram >>= bitcount;
2407		s.sharedram >>= bitcount;
2408		s.bufferram >>= bitcount;
2409		s.totalswap >>= bitcount;
2410		s.freeswap >>= bitcount;
2411		s.totalhigh >>= bitcount;
2412		s.freehigh >>= bitcount;
2413	}
2414
2415	if (!access_ok(VERIFY_WRITE, info, sizeof(struct compat_sysinfo)) ||
2416	    __put_user(s.uptime, &info->uptime) ||
2417	    __put_user(s.loads[0], &info->loads[0]) ||
2418	    __put_user(s.loads[1], &info->loads[1]) ||
2419	    __put_user(s.loads[2], &info->loads[2]) ||
2420	    __put_user(s.totalram, &info->totalram) ||
2421	    __put_user(s.freeram, &info->freeram) ||
2422	    __put_user(s.sharedram, &info->sharedram) ||
2423	    __put_user(s.bufferram, &info->bufferram) ||
2424	    __put_user(s.totalswap, &info->totalswap) ||
2425	    __put_user(s.freeswap, &info->freeswap) ||
2426	    __put_user(s.procs, &info->procs) ||
2427	    __put_user(s.totalhigh, &info->totalhigh) ||
2428	    __put_user(s.freehigh, &info->freehigh) ||
2429	    __put_user(s.mem_unit, &info->mem_unit))
2430		return -EFAULT;
2431
2432	return 0;
2433}
2434#endif /* CONFIG_COMPAT */
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/kernel/sys.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/mm.h>
  10#include <linux/utsname.h>
  11#include <linux/mman.h>
  12#include <linux/reboot.h>
  13#include <linux/prctl.h>
  14#include <linux/highuid.h>
  15#include <linux/fs.h>
  16#include <linux/kmod.h>
  17#include <linux/perf_event.h>
  18#include <linux/resource.h>
  19#include <linux/kernel.h>
  20#include <linux/workqueue.h>
  21#include <linux/capability.h>
  22#include <linux/device.h>
  23#include <linux/key.h>
  24#include <linux/times.h>
  25#include <linux/posix-timers.h>
  26#include <linux/security.h>
  27#include <linux/dcookies.h>
  28#include <linux/suspend.h>
  29#include <linux/tty.h>
  30#include <linux/signal.h>
  31#include <linux/cn_proc.h>
  32#include <linux/getcpu.h>
  33#include <linux/task_io_accounting_ops.h>
  34#include <linux/seccomp.h>
  35#include <linux/cpu.h>
  36#include <linux/personality.h>
  37#include <linux/ptrace.h>
  38#include <linux/fs_struct.h>
  39#include <linux/file.h>
  40#include <linux/mount.h>
  41#include <linux/gfp.h>
  42#include <linux/syscore_ops.h>
  43#include <linux/version.h>
  44#include <linux/ctype.h>
  45
  46#include <linux/compat.h>
  47#include <linux/syscalls.h>
  48#include <linux/kprobes.h>
  49#include <linux/user_namespace.h>
  50#include <linux/binfmts.h>
  51
  52#include <linux/sched.h>
  53#include <linux/sched/autogroup.h>
  54#include <linux/sched/loadavg.h>
  55#include <linux/sched/stat.h>
  56#include <linux/sched/mm.h>
  57#include <linux/sched/coredump.h>
  58#include <linux/sched/task.h>
  59#include <linux/sched/cputime.h>
  60#include <linux/rcupdate.h>
  61#include <linux/uidgid.h>
  62#include <linux/cred.h>
  63
  64#include <linux/nospec.h>
  65
  66#include <linux/kmsg_dump.h>
  67/* Move somewhere else to avoid recompiling? */
  68#include <generated/utsrelease.h>
  69
  70#include <linux/uaccess.h>
  71#include <asm/io.h>
  72#include <asm/unistd.h>
  73
  74#include "uid16.h"
  75
  76#ifndef SET_UNALIGN_CTL
  77# define SET_UNALIGN_CTL(a, b)	(-EINVAL)
  78#endif
  79#ifndef GET_UNALIGN_CTL
  80# define GET_UNALIGN_CTL(a, b)	(-EINVAL)
  81#endif
  82#ifndef SET_FPEMU_CTL
  83# define SET_FPEMU_CTL(a, b)	(-EINVAL)
  84#endif
  85#ifndef GET_FPEMU_CTL
  86# define GET_FPEMU_CTL(a, b)	(-EINVAL)
  87#endif
  88#ifndef SET_FPEXC_CTL
  89# define SET_FPEXC_CTL(a, b)	(-EINVAL)
  90#endif
  91#ifndef GET_FPEXC_CTL
  92# define GET_FPEXC_CTL(a, b)	(-EINVAL)
  93#endif
  94#ifndef GET_ENDIAN
  95# define GET_ENDIAN(a, b)	(-EINVAL)
  96#endif
  97#ifndef SET_ENDIAN
  98# define SET_ENDIAN(a, b)	(-EINVAL)
  99#endif
 100#ifndef GET_TSC_CTL
 101# define GET_TSC_CTL(a)		(-EINVAL)
 102#endif
 103#ifndef SET_TSC_CTL
 104# define SET_TSC_CTL(a)		(-EINVAL)
 105#endif
 
 
 
 
 
 
 106#ifndef GET_FP_MODE
 107# define GET_FP_MODE(a)		(-EINVAL)
 108#endif
 109#ifndef SET_FP_MODE
 110# define SET_FP_MODE(a,b)	(-EINVAL)
 111#endif
 112#ifndef SVE_SET_VL
 113# define SVE_SET_VL(a)		(-EINVAL)
 114#endif
 115#ifndef SVE_GET_VL
 116# define SVE_GET_VL()		(-EINVAL)
 117#endif
 118#ifndef PAC_RESET_KEYS
 119# define PAC_RESET_KEYS(a, b)	(-EINVAL)
 120#endif
 121#ifndef SET_TAGGED_ADDR_CTRL
 122# define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
 123#endif
 124#ifndef GET_TAGGED_ADDR_CTRL
 125# define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
 126#endif
 127
 128/*
 129 * this is where the system-wide overflow UID and GID are defined, for
 130 * architectures that now have 32-bit UID/GID but didn't in the past
 131 */
 132
 133int overflowuid = DEFAULT_OVERFLOWUID;
 134int overflowgid = DEFAULT_OVERFLOWGID;
 135
 136EXPORT_SYMBOL(overflowuid);
 137EXPORT_SYMBOL(overflowgid);
 138
 139/*
 140 * the same as above, but for filesystems which can only store a 16-bit
 141 * UID and GID. as such, this is needed on all architectures
 142 */
 143
 144int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
 145int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
 146
 147EXPORT_SYMBOL(fs_overflowuid);
 148EXPORT_SYMBOL(fs_overflowgid);
 149
 150/*
 151 * Returns true if current's euid is same as p's uid or euid,
 152 * or has CAP_SYS_NICE to p's user_ns.
 153 *
 154 * Called with rcu_read_lock, creds are safe
 155 */
 156static bool set_one_prio_perm(struct task_struct *p)
 157{
 158	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
 159
 160	if (uid_eq(pcred->uid,  cred->euid) ||
 161	    uid_eq(pcred->euid, cred->euid))
 162		return true;
 163	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
 164		return true;
 165	return false;
 166}
 167
 168/*
 169 * set the priority of a task
 170 * - the caller must hold the RCU read lock
 171 */
 172static int set_one_prio(struct task_struct *p, int niceval, int error)
 173{
 174	int no_nice;
 175
 176	if (!set_one_prio_perm(p)) {
 177		error = -EPERM;
 178		goto out;
 179	}
 180	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
 181		error = -EACCES;
 182		goto out;
 183	}
 184	no_nice = security_task_setnice(p, niceval);
 185	if (no_nice) {
 186		error = no_nice;
 187		goto out;
 188	}
 189	if (error == -ESRCH)
 190		error = 0;
 191	set_user_nice(p, niceval);
 192out:
 193	return error;
 194}
 195
 196SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
 197{
 198	struct task_struct *g, *p;
 199	struct user_struct *user;
 200	const struct cred *cred = current_cred();
 201	int error = -EINVAL;
 202	struct pid *pgrp;
 203	kuid_t uid;
 204
 205	if (which > PRIO_USER || which < PRIO_PROCESS)
 206		goto out;
 207
 208	/* normalize: avoid signed division (rounding problems) */
 209	error = -ESRCH;
 210	if (niceval < MIN_NICE)
 211		niceval = MIN_NICE;
 212	if (niceval > MAX_NICE)
 213		niceval = MAX_NICE;
 214
 215	rcu_read_lock();
 216	read_lock(&tasklist_lock);
 217	switch (which) {
 218	case PRIO_PROCESS:
 219		if (who)
 220			p = find_task_by_vpid(who);
 221		else
 222			p = current;
 223		if (p)
 224			error = set_one_prio(p, niceval, error);
 225		break;
 226	case PRIO_PGRP:
 227		if (who)
 228			pgrp = find_vpid(who);
 229		else
 230			pgrp = task_pgrp(current);
 231		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 232			error = set_one_prio(p, niceval, error);
 233		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 234		break;
 235	case PRIO_USER:
 236		uid = make_kuid(cred->user_ns, who);
 237		user = cred->user;
 238		if (!who)
 239			uid = cred->uid;
 240		else if (!uid_eq(uid, cred->uid)) {
 241			user = find_user(uid);
 242			if (!user)
 243				goto out_unlock;	/* No processes for this user */
 244		}
 245		do_each_thread(g, p) {
 246			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
 247				error = set_one_prio(p, niceval, error);
 248		} while_each_thread(g, p);
 249		if (!uid_eq(uid, cred->uid))
 250			free_uid(user);		/* For find_user() */
 251		break;
 252	}
 253out_unlock:
 254	read_unlock(&tasklist_lock);
 255	rcu_read_unlock();
 256out:
 257	return error;
 258}
 259
 260/*
 261 * Ugh. To avoid negative return values, "getpriority()" will
 262 * not return the normal nice-value, but a negated value that
 263 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
 264 * to stay compatible.
 265 */
 266SYSCALL_DEFINE2(getpriority, int, which, int, who)
 267{
 268	struct task_struct *g, *p;
 269	struct user_struct *user;
 270	const struct cred *cred = current_cred();
 271	long niceval, retval = -ESRCH;
 272	struct pid *pgrp;
 273	kuid_t uid;
 274
 275	if (which > PRIO_USER || which < PRIO_PROCESS)
 276		return -EINVAL;
 277
 278	rcu_read_lock();
 279	read_lock(&tasklist_lock);
 280	switch (which) {
 281	case PRIO_PROCESS:
 282		if (who)
 283			p = find_task_by_vpid(who);
 284		else
 285			p = current;
 286		if (p) {
 287			niceval = nice_to_rlimit(task_nice(p));
 288			if (niceval > retval)
 289				retval = niceval;
 290		}
 291		break;
 292	case PRIO_PGRP:
 293		if (who)
 294			pgrp = find_vpid(who);
 295		else
 296			pgrp = task_pgrp(current);
 297		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
 298			niceval = nice_to_rlimit(task_nice(p));
 299			if (niceval > retval)
 300				retval = niceval;
 301		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
 302		break;
 303	case PRIO_USER:
 304		uid = make_kuid(cred->user_ns, who);
 305		user = cred->user;
 306		if (!who)
 307			uid = cred->uid;
 308		else if (!uid_eq(uid, cred->uid)) {
 309			user = find_user(uid);
 310			if (!user)
 311				goto out_unlock;	/* No processes for this user */
 312		}
 313		do_each_thread(g, p) {
 314			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
 315				niceval = nice_to_rlimit(task_nice(p));
 316				if (niceval > retval)
 317					retval = niceval;
 318			}
 319		} while_each_thread(g, p);
 320		if (!uid_eq(uid, cred->uid))
 321			free_uid(user);		/* for find_user() */
 322		break;
 323	}
 324out_unlock:
 325	read_unlock(&tasklist_lock);
 326	rcu_read_unlock();
 327
 328	return retval;
 329}
 330
 331/*
 332 * Unprivileged users may change the real gid to the effective gid
 333 * or vice versa.  (BSD-style)
 334 *
 335 * If you set the real gid at all, or set the effective gid to a value not
 336 * equal to the real gid, then the saved gid is set to the new effective gid.
 337 *
 338 * This makes it possible for a setgid program to completely drop its
 339 * privileges, which is often a useful assertion to make when you are doing
 340 * a security audit over a program.
 341 *
 342 * The general idea is that a program which uses just setregid() will be
 343 * 100% compatible with BSD.  A program which uses just setgid() will be
 344 * 100% compatible with POSIX with saved IDs.
 345 *
 346 * SMP: There are not races, the GIDs are checked only by filesystem
 347 *      operations (as far as semantic preservation is concerned).
 348 */
 349#ifdef CONFIG_MULTIUSER
 350long __sys_setregid(gid_t rgid, gid_t egid)
 351{
 352	struct user_namespace *ns = current_user_ns();
 353	const struct cred *old;
 354	struct cred *new;
 355	int retval;
 356	kgid_t krgid, kegid;
 357
 358	krgid = make_kgid(ns, rgid);
 359	kegid = make_kgid(ns, egid);
 360
 361	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 362		return -EINVAL;
 363	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 364		return -EINVAL;
 365
 366	new = prepare_creds();
 367	if (!new)
 368		return -ENOMEM;
 369	old = current_cred();
 370
 371	retval = -EPERM;
 372	if (rgid != (gid_t) -1) {
 373		if (gid_eq(old->gid, krgid) ||
 374		    gid_eq(old->egid, krgid) ||
 375		    ns_capable(old->user_ns, CAP_SETGID))
 376			new->gid = krgid;
 377		else
 378			goto error;
 379	}
 380	if (egid != (gid_t) -1) {
 381		if (gid_eq(old->gid, kegid) ||
 382		    gid_eq(old->egid, kegid) ||
 383		    gid_eq(old->sgid, kegid) ||
 384		    ns_capable(old->user_ns, CAP_SETGID))
 385			new->egid = kegid;
 386		else
 387			goto error;
 388	}
 389
 390	if (rgid != (gid_t) -1 ||
 391	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
 392		new->sgid = new->egid;
 393	new->fsgid = new->egid;
 394
 395	return commit_creds(new);
 396
 397error:
 398	abort_creds(new);
 399	return retval;
 400}
 401
 402SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
 403{
 404	return __sys_setregid(rgid, egid);
 405}
 406
 407/*
 408 * setgid() is implemented like SysV w/ SAVED_IDS
 409 *
 410 * SMP: Same implicit races as above.
 411 */
 412long __sys_setgid(gid_t gid)
 413{
 414	struct user_namespace *ns = current_user_ns();
 415	const struct cred *old;
 416	struct cred *new;
 417	int retval;
 418	kgid_t kgid;
 419
 420	kgid = make_kgid(ns, gid);
 421	if (!gid_valid(kgid))
 422		return -EINVAL;
 423
 424	new = prepare_creds();
 425	if (!new)
 426		return -ENOMEM;
 427	old = current_cred();
 428
 429	retval = -EPERM;
 430	if (ns_capable(old->user_ns, CAP_SETGID))
 431		new->gid = new->egid = new->sgid = new->fsgid = kgid;
 432	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
 433		new->egid = new->fsgid = kgid;
 434	else
 435		goto error;
 436
 437	return commit_creds(new);
 438
 439error:
 440	abort_creds(new);
 441	return retval;
 442}
 443
 444SYSCALL_DEFINE1(setgid, gid_t, gid)
 445{
 446	return __sys_setgid(gid);
 447}
 448
 449/*
 450 * change the user struct in a credentials set to match the new UID
 451 */
 452static int set_user(struct cred *new)
 453{
 454	struct user_struct *new_user;
 455
 456	new_user = alloc_uid(new->uid);
 457	if (!new_user)
 458		return -EAGAIN;
 459
 460	/*
 461	 * We don't fail in case of NPROC limit excess here because too many
 462	 * poorly written programs don't check set*uid() return code, assuming
 463	 * it never fails if called by root.  We may still enforce NPROC limit
 464	 * for programs doing set*uid()+execve() by harmlessly deferring the
 465	 * failure to the execve() stage.
 466	 */
 467	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
 468			new_user != INIT_USER)
 469		current->flags |= PF_NPROC_EXCEEDED;
 470	else
 471		current->flags &= ~PF_NPROC_EXCEEDED;
 472
 473	free_uid(new->user);
 474	new->user = new_user;
 475	return 0;
 476}
 477
 478/*
 479 * Unprivileged users may change the real uid to the effective uid
 480 * or vice versa.  (BSD-style)
 481 *
 482 * If you set the real uid at all, or set the effective uid to a value not
 483 * equal to the real uid, then the saved uid is set to the new effective uid.
 484 *
 485 * This makes it possible for a setuid program to completely drop its
 486 * privileges, which is often a useful assertion to make when you are doing
 487 * a security audit over a program.
 488 *
 489 * The general idea is that a program which uses just setreuid() will be
 490 * 100% compatible with BSD.  A program which uses just setuid() will be
 491 * 100% compatible with POSIX with saved IDs.
 492 */
 493long __sys_setreuid(uid_t ruid, uid_t euid)
 494{
 495	struct user_namespace *ns = current_user_ns();
 496	const struct cred *old;
 497	struct cred *new;
 498	int retval;
 499	kuid_t kruid, keuid;
 500
 501	kruid = make_kuid(ns, ruid);
 502	keuid = make_kuid(ns, euid);
 503
 504	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 505		return -EINVAL;
 506	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 507		return -EINVAL;
 508
 509	new = prepare_creds();
 510	if (!new)
 511		return -ENOMEM;
 512	old = current_cred();
 513
 514	retval = -EPERM;
 515	if (ruid != (uid_t) -1) {
 516		new->uid = kruid;
 517		if (!uid_eq(old->uid, kruid) &&
 518		    !uid_eq(old->euid, kruid) &&
 519		    !ns_capable_setid(old->user_ns, CAP_SETUID))
 520			goto error;
 521	}
 522
 523	if (euid != (uid_t) -1) {
 524		new->euid = keuid;
 525		if (!uid_eq(old->uid, keuid) &&
 526		    !uid_eq(old->euid, keuid) &&
 527		    !uid_eq(old->suid, keuid) &&
 528		    !ns_capable_setid(old->user_ns, CAP_SETUID))
 529			goto error;
 530	}
 531
 532	if (!uid_eq(new->uid, old->uid)) {
 533		retval = set_user(new);
 534		if (retval < 0)
 535			goto error;
 536	}
 537	if (ruid != (uid_t) -1 ||
 538	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
 539		new->suid = new->euid;
 540	new->fsuid = new->euid;
 541
 542	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
 543	if (retval < 0)
 544		goto error;
 545
 546	return commit_creds(new);
 547
 548error:
 549	abort_creds(new);
 550	return retval;
 551}
 552
 553SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
 554{
 555	return __sys_setreuid(ruid, euid);
 556}
 557
 558/*
 559 * setuid() is implemented like SysV with SAVED_IDS
 560 *
 561 * Note that SAVED_ID's is deficient in that a setuid root program
 562 * like sendmail, for example, cannot set its uid to be a normal
 563 * user and then switch back, because if you're root, setuid() sets
 564 * the saved uid too.  If you don't like this, blame the bright people
 565 * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
 566 * will allow a root program to temporarily drop privileges and be able to
 567 * regain them by swapping the real and effective uid.
 568 */
 569long __sys_setuid(uid_t uid)
 570{
 571	struct user_namespace *ns = current_user_ns();
 572	const struct cred *old;
 573	struct cred *new;
 574	int retval;
 575	kuid_t kuid;
 576
 577	kuid = make_kuid(ns, uid);
 578	if (!uid_valid(kuid))
 579		return -EINVAL;
 580
 581	new = prepare_creds();
 582	if (!new)
 583		return -ENOMEM;
 584	old = current_cred();
 585
 586	retval = -EPERM;
 587	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
 588		new->suid = new->uid = kuid;
 589		if (!uid_eq(kuid, old->uid)) {
 590			retval = set_user(new);
 591			if (retval < 0)
 592				goto error;
 593		}
 594	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
 595		goto error;
 596	}
 597
 598	new->fsuid = new->euid = kuid;
 599
 600	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
 601	if (retval < 0)
 602		goto error;
 603
 604	return commit_creds(new);
 605
 606error:
 607	abort_creds(new);
 608	return retval;
 609}
 610
 611SYSCALL_DEFINE1(setuid, uid_t, uid)
 612{
 613	return __sys_setuid(uid);
 614}
 615
 616
 617/*
 618 * This function implements a generic ability to update ruid, euid,
 619 * and suid.  This allows you to implement the 4.4 compatible seteuid().
 620 */
 621long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
 622{
 623	struct user_namespace *ns = current_user_ns();
 624	const struct cred *old;
 625	struct cred *new;
 626	int retval;
 627	kuid_t kruid, keuid, ksuid;
 628
 629	kruid = make_kuid(ns, ruid);
 630	keuid = make_kuid(ns, euid);
 631	ksuid = make_kuid(ns, suid);
 632
 633	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
 634		return -EINVAL;
 635
 636	if ((euid != (uid_t) -1) && !uid_valid(keuid))
 637		return -EINVAL;
 638
 639	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
 640		return -EINVAL;
 641
 642	new = prepare_creds();
 643	if (!new)
 644		return -ENOMEM;
 645
 646	old = current_cred();
 647
 648	retval = -EPERM;
 649	if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
 650		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
 651		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
 652			goto error;
 653		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
 654		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
 655			goto error;
 656		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
 657		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
 658			goto error;
 659	}
 660
 661	if (ruid != (uid_t) -1) {
 662		new->uid = kruid;
 663		if (!uid_eq(kruid, old->uid)) {
 664			retval = set_user(new);
 665			if (retval < 0)
 666				goto error;
 667		}
 668	}
 669	if (euid != (uid_t) -1)
 670		new->euid = keuid;
 671	if (suid != (uid_t) -1)
 672		new->suid = ksuid;
 673	new->fsuid = new->euid;
 674
 675	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
 676	if (retval < 0)
 677		goto error;
 678
 679	return commit_creds(new);
 680
 681error:
 682	abort_creds(new);
 683	return retval;
 684}
 685
 686SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
 687{
 688	return __sys_setresuid(ruid, euid, suid);
 689}
 690
 691SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
 692{
 693	const struct cred *cred = current_cred();
 694	int retval;
 695	uid_t ruid, euid, suid;
 696
 697	ruid = from_kuid_munged(cred->user_ns, cred->uid);
 698	euid = from_kuid_munged(cred->user_ns, cred->euid);
 699	suid = from_kuid_munged(cred->user_ns, cred->suid);
 700
 701	retval = put_user(ruid, ruidp);
 702	if (!retval) {
 703		retval = put_user(euid, euidp);
 704		if (!retval)
 705			return put_user(suid, suidp);
 706	}
 707	return retval;
 708}
 709
 710/*
 711 * Same as above, but for rgid, egid, sgid.
 712 */
 713long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
 714{
 715	struct user_namespace *ns = current_user_ns();
 716	const struct cred *old;
 717	struct cred *new;
 718	int retval;
 719	kgid_t krgid, kegid, ksgid;
 720
 721	krgid = make_kgid(ns, rgid);
 722	kegid = make_kgid(ns, egid);
 723	ksgid = make_kgid(ns, sgid);
 724
 725	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
 726		return -EINVAL;
 727	if ((egid != (gid_t) -1) && !gid_valid(kegid))
 728		return -EINVAL;
 729	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
 730		return -EINVAL;
 731
 732	new = prepare_creds();
 733	if (!new)
 734		return -ENOMEM;
 735	old = current_cred();
 736
 737	retval = -EPERM;
 738	if (!ns_capable(old->user_ns, CAP_SETGID)) {
 739		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
 740		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
 741			goto error;
 742		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
 743		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
 744			goto error;
 745		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
 746		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
 747			goto error;
 748	}
 749
 750	if (rgid != (gid_t) -1)
 751		new->gid = krgid;
 752	if (egid != (gid_t) -1)
 753		new->egid = kegid;
 754	if (sgid != (gid_t) -1)
 755		new->sgid = ksgid;
 756	new->fsgid = new->egid;
 757
 758	return commit_creds(new);
 759
 760error:
 761	abort_creds(new);
 762	return retval;
 763}
 764
 765SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
 766{
 767	return __sys_setresgid(rgid, egid, sgid);
 768}
 769
 770SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
 771{
 772	const struct cred *cred = current_cred();
 773	int retval;
 774	gid_t rgid, egid, sgid;
 775
 776	rgid = from_kgid_munged(cred->user_ns, cred->gid);
 777	egid = from_kgid_munged(cred->user_ns, cred->egid);
 778	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
 779
 780	retval = put_user(rgid, rgidp);
 781	if (!retval) {
 782		retval = put_user(egid, egidp);
 783		if (!retval)
 784			retval = put_user(sgid, sgidp);
 785	}
 786
 787	return retval;
 788}
 789
 790
 791/*
 792 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
 793 * is used for "access()" and for the NFS daemon (letting nfsd stay at
 794 * whatever uid it wants to). It normally shadows "euid", except when
 795 * explicitly set by setfsuid() or for access..
 796 */
 797long __sys_setfsuid(uid_t uid)
 798{
 799	const struct cred *old;
 800	struct cred *new;
 801	uid_t old_fsuid;
 802	kuid_t kuid;
 803
 804	old = current_cred();
 805	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
 806
 807	kuid = make_kuid(old->user_ns, uid);
 808	if (!uid_valid(kuid))
 809		return old_fsuid;
 810
 811	new = prepare_creds();
 812	if (!new)
 813		return old_fsuid;
 814
 815	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
 816	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
 817	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
 818		if (!uid_eq(kuid, old->fsuid)) {
 819			new->fsuid = kuid;
 820			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
 821				goto change_okay;
 822		}
 823	}
 824
 825	abort_creds(new);
 826	return old_fsuid;
 827
 828change_okay:
 829	commit_creds(new);
 830	return old_fsuid;
 831}
 832
 833SYSCALL_DEFINE1(setfsuid, uid_t, uid)
 834{
 835	return __sys_setfsuid(uid);
 836}
 837
 838/*
 839 * Samma på svenska..
 840 */
 841long __sys_setfsgid(gid_t gid)
 842{
 843	const struct cred *old;
 844	struct cred *new;
 845	gid_t old_fsgid;
 846	kgid_t kgid;
 847
 848	old = current_cred();
 849	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
 850
 851	kgid = make_kgid(old->user_ns, gid);
 852	if (!gid_valid(kgid))
 853		return old_fsgid;
 854
 855	new = prepare_creds();
 856	if (!new)
 857		return old_fsgid;
 858
 859	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
 860	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
 861	    ns_capable(old->user_ns, CAP_SETGID)) {
 862		if (!gid_eq(kgid, old->fsgid)) {
 863			new->fsgid = kgid;
 864			goto change_okay;
 865		}
 866	}
 867
 868	abort_creds(new);
 869	return old_fsgid;
 870
 871change_okay:
 872	commit_creds(new);
 873	return old_fsgid;
 874}
 875
 876SYSCALL_DEFINE1(setfsgid, gid_t, gid)
 877{
 878	return __sys_setfsgid(gid);
 879}
 880#endif /* CONFIG_MULTIUSER */
 881
 882/**
 883 * sys_getpid - return the thread group id of the current process
 884 *
 885 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 886 * the pid are identical unless CLONE_THREAD was specified on clone() in
 887 * which case the tgid is the same in all threads of the same group.
 888 *
 889 * This is SMP safe as current->tgid does not change.
 890 */
 891SYSCALL_DEFINE0(getpid)
 892{
 893	return task_tgid_vnr(current);
 894}
 895
 896/* Thread ID - the internal kernel "pid" */
 897SYSCALL_DEFINE0(gettid)
 898{
 899	return task_pid_vnr(current);
 900}
 901
 902/*
 903 * Accessing ->real_parent is not SMP-safe, it could
 904 * change from under us. However, we can use a stale
 905 * value of ->real_parent under rcu_read_lock(), see
 906 * release_task()->call_rcu(delayed_put_task_struct).
 907 */
 908SYSCALL_DEFINE0(getppid)
 909{
 910	int pid;
 911
 912	rcu_read_lock();
 913	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
 914	rcu_read_unlock();
 915
 916	return pid;
 917}
 918
 919SYSCALL_DEFINE0(getuid)
 920{
 921	/* Only we change this so SMP safe */
 922	return from_kuid_munged(current_user_ns(), current_uid());
 923}
 924
 925SYSCALL_DEFINE0(geteuid)
 926{
 927	/* Only we change this so SMP safe */
 928	return from_kuid_munged(current_user_ns(), current_euid());
 929}
 930
 931SYSCALL_DEFINE0(getgid)
 932{
 933	/* Only we change this so SMP safe */
 934	return from_kgid_munged(current_user_ns(), current_gid());
 935}
 936
 937SYSCALL_DEFINE0(getegid)
 938{
 939	/* Only we change this so SMP safe */
 940	return from_kgid_munged(current_user_ns(), current_egid());
 941}
 942
 943static void do_sys_times(struct tms *tms)
 944{
 945	u64 tgutime, tgstime, cutime, cstime;
 946
 947	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
 948	cutime = current->signal->cutime;
 949	cstime = current->signal->cstime;
 950	tms->tms_utime = nsec_to_clock_t(tgutime);
 951	tms->tms_stime = nsec_to_clock_t(tgstime);
 952	tms->tms_cutime = nsec_to_clock_t(cutime);
 953	tms->tms_cstime = nsec_to_clock_t(cstime);
 954}
 955
 956SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
 957{
 958	if (tbuf) {
 959		struct tms tmp;
 960
 961		do_sys_times(&tmp);
 962		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
 963			return -EFAULT;
 964	}
 965	force_successful_syscall_return();
 966	return (long) jiffies_64_to_clock_t(get_jiffies_64());
 967}
 968
 969#ifdef CONFIG_COMPAT
 970static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
 971{
 972	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
 973}
 974
 975COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
 976{
 977	if (tbuf) {
 978		struct tms tms;
 979		struct compat_tms tmp;
 980
 981		do_sys_times(&tms);
 982		/* Convert our struct tms to the compat version. */
 983		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
 984		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
 985		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
 986		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
 987		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
 988			return -EFAULT;
 989	}
 990	force_successful_syscall_return();
 991	return compat_jiffies_to_clock_t(jiffies);
 992}
 993#endif
 994
 995/*
 996 * This needs some heavy checking ...
 997 * I just haven't the stomach for it. I also don't fully
 998 * understand sessions/pgrp etc. Let somebody who does explain it.
 999 *
1000 * OK, I think I have the protection semantics right.... this is really
1001 * only important on a multi-user system anyway, to make sure one user
1002 * can't send a signal to a process owned by another.  -TYT, 12/12/91
1003 *
1004 * !PF_FORKNOEXEC check to conform completely to POSIX.
1005 */
1006SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1007{
1008	struct task_struct *p;
1009	struct task_struct *group_leader = current->group_leader;
1010	struct pid *pgrp;
1011	int err;
1012
1013	if (!pid)
1014		pid = task_pid_vnr(group_leader);
1015	if (!pgid)
1016		pgid = pid;
1017	if (pgid < 0)
1018		return -EINVAL;
1019	rcu_read_lock();
1020
1021	/* From this point forward we keep holding onto the tasklist lock
1022	 * so that our parent does not change from under us. -DaveM
1023	 */
1024	write_lock_irq(&tasklist_lock);
1025
1026	err = -ESRCH;
1027	p = find_task_by_vpid(pid);
1028	if (!p)
1029		goto out;
1030
1031	err = -EINVAL;
1032	if (!thread_group_leader(p))
1033		goto out;
1034
1035	if (same_thread_group(p->real_parent, group_leader)) {
1036		err = -EPERM;
1037		if (task_session(p) != task_session(group_leader))
1038			goto out;
1039		err = -EACCES;
1040		if (!(p->flags & PF_FORKNOEXEC))
1041			goto out;
1042	} else {
1043		err = -ESRCH;
1044		if (p != group_leader)
1045			goto out;
1046	}
1047
1048	err = -EPERM;
1049	if (p->signal->leader)
1050		goto out;
1051
1052	pgrp = task_pid(p);
1053	if (pgid != pid) {
1054		struct task_struct *g;
1055
1056		pgrp = find_vpid(pgid);
1057		g = pid_task(pgrp, PIDTYPE_PGID);
1058		if (!g || task_session(g) != task_session(group_leader))
1059			goto out;
1060	}
1061
1062	err = security_task_setpgid(p, pgid);
1063	if (err)
1064		goto out;
1065
1066	if (task_pgrp(p) != pgrp)
1067		change_pid(p, PIDTYPE_PGID, pgrp);
1068
1069	err = 0;
1070out:
1071	/* All paths lead to here, thus we are safe. -DaveM */
1072	write_unlock_irq(&tasklist_lock);
1073	rcu_read_unlock();
1074	return err;
1075}
1076
1077static int do_getpgid(pid_t pid)
1078{
1079	struct task_struct *p;
1080	struct pid *grp;
1081	int retval;
1082
1083	rcu_read_lock();
1084	if (!pid)
1085		grp = task_pgrp(current);
1086	else {
1087		retval = -ESRCH;
1088		p = find_task_by_vpid(pid);
1089		if (!p)
1090			goto out;
1091		grp = task_pgrp(p);
1092		if (!grp)
1093			goto out;
1094
1095		retval = security_task_getpgid(p);
1096		if (retval)
1097			goto out;
1098	}
1099	retval = pid_vnr(grp);
1100out:
1101	rcu_read_unlock();
1102	return retval;
1103}
1104
1105SYSCALL_DEFINE1(getpgid, pid_t, pid)
1106{
1107	return do_getpgid(pid);
1108}
1109
1110#ifdef __ARCH_WANT_SYS_GETPGRP
1111
1112SYSCALL_DEFINE0(getpgrp)
1113{
1114	return do_getpgid(0);
1115}
1116
1117#endif
1118
1119SYSCALL_DEFINE1(getsid, pid_t, pid)
1120{
1121	struct task_struct *p;
1122	struct pid *sid;
1123	int retval;
1124
1125	rcu_read_lock();
1126	if (!pid)
1127		sid = task_session(current);
1128	else {
1129		retval = -ESRCH;
1130		p = find_task_by_vpid(pid);
1131		if (!p)
1132			goto out;
1133		sid = task_session(p);
1134		if (!sid)
1135			goto out;
1136
1137		retval = security_task_getsid(p);
1138		if (retval)
1139			goto out;
1140	}
1141	retval = pid_vnr(sid);
1142out:
1143	rcu_read_unlock();
1144	return retval;
1145}
1146
1147static void set_special_pids(struct pid *pid)
1148{
1149	struct task_struct *curr = current->group_leader;
1150
1151	if (task_session(curr) != pid)
1152		change_pid(curr, PIDTYPE_SID, pid);
1153
1154	if (task_pgrp(curr) != pid)
1155		change_pid(curr, PIDTYPE_PGID, pid);
1156}
1157
1158int ksys_setsid(void)
1159{
1160	struct task_struct *group_leader = current->group_leader;
1161	struct pid *sid = task_pid(group_leader);
1162	pid_t session = pid_vnr(sid);
1163	int err = -EPERM;
1164
1165	write_lock_irq(&tasklist_lock);
1166	/* Fail if I am already a session leader */
1167	if (group_leader->signal->leader)
1168		goto out;
1169
1170	/* Fail if a process group id already exists that equals the
1171	 * proposed session id.
1172	 */
1173	if (pid_task(sid, PIDTYPE_PGID))
1174		goto out;
1175
1176	group_leader->signal->leader = 1;
1177	set_special_pids(sid);
1178
1179	proc_clear_tty(group_leader);
1180
1181	err = session;
1182out:
1183	write_unlock_irq(&tasklist_lock);
1184	if (err > 0) {
1185		proc_sid_connector(group_leader);
1186		sched_autogroup_create_attach(group_leader);
1187	}
1188	return err;
1189}
1190
1191SYSCALL_DEFINE0(setsid)
1192{
1193	return ksys_setsid();
1194}
1195
1196DECLARE_RWSEM(uts_sem);
1197
1198#ifdef COMPAT_UTS_MACHINE
1199#define override_architecture(name) \
1200	(personality(current->personality) == PER_LINUX32 && \
1201	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1202		      sizeof(COMPAT_UTS_MACHINE)))
1203#else
1204#define override_architecture(name)	0
1205#endif
1206
1207/*
1208 * Work around broken programs that cannot handle "Linux 3.0".
1209 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1210 * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1211 * 2.6.60.
1212 */
1213static int override_release(char __user *release, size_t len)
1214{
1215	int ret = 0;
1216
1217	if (current->personality & UNAME26) {
1218		const char *rest = UTS_RELEASE;
1219		char buf[65] = { 0 };
1220		int ndots = 0;
1221		unsigned v;
1222		size_t copy;
1223
1224		while (*rest) {
1225			if (*rest == '.' && ++ndots >= 3)
1226				break;
1227			if (!isdigit(*rest) && *rest != '.')
1228				break;
1229			rest++;
1230		}
1231		v = ((LINUX_VERSION_CODE >> 8) & 0xff) + 60;
1232		copy = clamp_t(size_t, len, 1, sizeof(buf));
1233		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1234		ret = copy_to_user(release, buf, copy + 1);
1235	}
1236	return ret;
1237}
1238
1239SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1240{
1241	struct new_utsname tmp;
1242
1243	down_read(&uts_sem);
1244	memcpy(&tmp, utsname(), sizeof(tmp));
 
1245	up_read(&uts_sem);
1246	if (copy_to_user(name, &tmp, sizeof(tmp)))
1247		return -EFAULT;
1248
1249	if (override_release(name->release, sizeof(name->release)))
1250		return -EFAULT;
1251	if (override_architecture(name))
1252		return -EFAULT;
1253	return 0;
1254}
1255
1256#ifdef __ARCH_WANT_SYS_OLD_UNAME
1257/*
1258 * Old cruft
1259 */
1260SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1261{
1262	struct old_utsname tmp;
1263
1264	if (!name)
1265		return -EFAULT;
1266
1267	down_read(&uts_sem);
1268	memcpy(&tmp, utsname(), sizeof(tmp));
 
1269	up_read(&uts_sem);
1270	if (copy_to_user(name, &tmp, sizeof(tmp)))
1271		return -EFAULT;
1272
1273	if (override_release(name->release, sizeof(name->release)))
1274		return -EFAULT;
1275	if (override_architecture(name))
1276		return -EFAULT;
1277	return 0;
1278}
1279
1280SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1281{
1282	struct oldold_utsname tmp = {};
1283
1284	if (!name)
1285		return -EFAULT;
 
 
1286
1287	down_read(&uts_sem);
1288	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1289	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1290	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1291	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1292	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
 
 
 
 
 
 
 
 
 
 
1293	up_read(&uts_sem);
1294	if (copy_to_user(name, &tmp, sizeof(tmp)))
1295		return -EFAULT;
1296
1297	if (override_architecture(name))
1298		return -EFAULT;
1299	if (override_release(name->release, sizeof(name->release)))
1300		return -EFAULT;
1301	return 0;
1302}
1303#endif
1304
1305SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1306{
1307	int errno;
1308	char tmp[__NEW_UTS_LEN];
1309
1310	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1311		return -EPERM;
1312
1313	if (len < 0 || len > __NEW_UTS_LEN)
1314		return -EINVAL;
 
1315	errno = -EFAULT;
1316	if (!copy_from_user(tmp, name, len)) {
1317		struct new_utsname *u;
1318
1319		down_write(&uts_sem);
1320		u = utsname();
1321		memcpy(u->nodename, tmp, len);
1322		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1323		errno = 0;
1324		uts_proc_notify(UTS_PROC_HOSTNAME);
1325		up_write(&uts_sem);
1326	}
 
1327	return errno;
1328}
1329
1330#ifdef __ARCH_WANT_SYS_GETHOSTNAME
1331
1332SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1333{
1334	int i;
1335	struct new_utsname *u;
1336	char tmp[__NEW_UTS_LEN + 1];
1337
1338	if (len < 0)
1339		return -EINVAL;
1340	down_read(&uts_sem);
1341	u = utsname();
1342	i = 1 + strlen(u->nodename);
1343	if (i > len)
1344		i = len;
1345	memcpy(tmp, u->nodename, i);
 
 
1346	up_read(&uts_sem);
1347	if (copy_to_user(name, tmp, i))
1348		return -EFAULT;
1349	return 0;
1350}
1351
1352#endif
1353
1354/*
1355 * Only setdomainname; getdomainname can be implemented by calling
1356 * uname()
1357 */
1358SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1359{
1360	int errno;
1361	char tmp[__NEW_UTS_LEN];
1362
1363	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1364		return -EPERM;
1365	if (len < 0 || len > __NEW_UTS_LEN)
1366		return -EINVAL;
1367
 
1368	errno = -EFAULT;
1369	if (!copy_from_user(tmp, name, len)) {
1370		struct new_utsname *u;
1371
1372		down_write(&uts_sem);
1373		u = utsname();
1374		memcpy(u->domainname, tmp, len);
1375		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1376		errno = 0;
1377		uts_proc_notify(UTS_PROC_DOMAINNAME);
1378		up_write(&uts_sem);
1379	}
 
1380	return errno;
1381}
1382
1383SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1384{
1385	struct rlimit value;
1386	int ret;
1387
1388	ret = do_prlimit(current, resource, NULL, &value);
1389	if (!ret)
1390		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1391
1392	return ret;
1393}
1394
1395#ifdef CONFIG_COMPAT
1396
1397COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1398		       struct compat_rlimit __user *, rlim)
1399{
1400	struct rlimit r;
1401	struct compat_rlimit r32;
1402
1403	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1404		return -EFAULT;
1405
1406	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1407		r.rlim_cur = RLIM_INFINITY;
1408	else
1409		r.rlim_cur = r32.rlim_cur;
1410	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1411		r.rlim_max = RLIM_INFINITY;
1412	else
1413		r.rlim_max = r32.rlim_max;
1414	return do_prlimit(current, resource, &r, NULL);
1415}
1416
1417COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1418		       struct compat_rlimit __user *, rlim)
1419{
1420	struct rlimit r;
1421	int ret;
1422
1423	ret = do_prlimit(current, resource, NULL, &r);
1424	if (!ret) {
1425		struct compat_rlimit r32;
1426		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1427			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1428		else
1429			r32.rlim_cur = r.rlim_cur;
1430		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1431			r32.rlim_max = COMPAT_RLIM_INFINITY;
1432		else
1433			r32.rlim_max = r.rlim_max;
1434
1435		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1436			return -EFAULT;
1437	}
1438	return ret;
1439}
1440
1441#endif
1442
1443#ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1444
1445/*
1446 *	Back compatibility for getrlimit. Needed for some apps.
1447 */
1448SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1449		struct rlimit __user *, rlim)
1450{
1451	struct rlimit x;
1452	if (resource >= RLIM_NLIMITS)
1453		return -EINVAL;
1454
1455	resource = array_index_nospec(resource, RLIM_NLIMITS);
1456	task_lock(current->group_leader);
1457	x = current->signal->rlim[resource];
1458	task_unlock(current->group_leader);
1459	if (x.rlim_cur > 0x7FFFFFFF)
1460		x.rlim_cur = 0x7FFFFFFF;
1461	if (x.rlim_max > 0x7FFFFFFF)
1462		x.rlim_max = 0x7FFFFFFF;
1463	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1464}
1465
1466#ifdef CONFIG_COMPAT
1467COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1468		       struct compat_rlimit __user *, rlim)
1469{
1470	struct rlimit r;
1471
1472	if (resource >= RLIM_NLIMITS)
1473		return -EINVAL;
1474
1475	resource = array_index_nospec(resource, RLIM_NLIMITS);
1476	task_lock(current->group_leader);
1477	r = current->signal->rlim[resource];
1478	task_unlock(current->group_leader);
1479	if (r.rlim_cur > 0x7FFFFFFF)
1480		r.rlim_cur = 0x7FFFFFFF;
1481	if (r.rlim_max > 0x7FFFFFFF)
1482		r.rlim_max = 0x7FFFFFFF;
1483
1484	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1485	    put_user(r.rlim_max, &rlim->rlim_max))
1486		return -EFAULT;
1487	return 0;
1488}
1489#endif
1490
1491#endif
1492
1493static inline bool rlim64_is_infinity(__u64 rlim64)
1494{
1495#if BITS_PER_LONG < 64
1496	return rlim64 >= ULONG_MAX;
1497#else
1498	return rlim64 == RLIM64_INFINITY;
1499#endif
1500}
1501
1502static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1503{
1504	if (rlim->rlim_cur == RLIM_INFINITY)
1505		rlim64->rlim_cur = RLIM64_INFINITY;
1506	else
1507		rlim64->rlim_cur = rlim->rlim_cur;
1508	if (rlim->rlim_max == RLIM_INFINITY)
1509		rlim64->rlim_max = RLIM64_INFINITY;
1510	else
1511		rlim64->rlim_max = rlim->rlim_max;
1512}
1513
1514static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1515{
1516	if (rlim64_is_infinity(rlim64->rlim_cur))
1517		rlim->rlim_cur = RLIM_INFINITY;
1518	else
1519		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1520	if (rlim64_is_infinity(rlim64->rlim_max))
1521		rlim->rlim_max = RLIM_INFINITY;
1522	else
1523		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1524}
1525
1526/* make sure you are allowed to change @tsk limits before calling this */
1527int do_prlimit(struct task_struct *tsk, unsigned int resource,
1528		struct rlimit *new_rlim, struct rlimit *old_rlim)
1529{
1530	struct rlimit *rlim;
1531	int retval = 0;
1532
1533	if (resource >= RLIM_NLIMITS)
1534		return -EINVAL;
1535	if (new_rlim) {
1536		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1537			return -EINVAL;
1538		if (resource == RLIMIT_NOFILE &&
1539				new_rlim->rlim_max > sysctl_nr_open)
1540			return -EPERM;
1541	}
1542
1543	/* protect tsk->signal and tsk->sighand from disappearing */
1544	read_lock(&tasklist_lock);
1545	if (!tsk->sighand) {
1546		retval = -ESRCH;
1547		goto out;
1548	}
1549
1550	rlim = tsk->signal->rlim + resource;
1551	task_lock(tsk->group_leader);
1552	if (new_rlim) {
1553		/* Keep the capable check against init_user_ns until
1554		   cgroups can contain all limits */
1555		if (new_rlim->rlim_max > rlim->rlim_max &&
1556				!capable(CAP_SYS_RESOURCE))
1557			retval = -EPERM;
1558		if (!retval)
1559			retval = security_task_setrlimit(tsk, resource, new_rlim);
 
 
 
 
 
 
 
 
 
 
1560	}
1561	if (!retval) {
1562		if (old_rlim)
1563			*old_rlim = *rlim;
1564		if (new_rlim)
1565			*rlim = *new_rlim;
1566	}
1567	task_unlock(tsk->group_leader);
1568
1569	/*
1570	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1571	 * infite. In case of RLIM_INFINITY the posix CPU timer code
1572	 * ignores the rlimit.
 
1573	 */
1574	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1575	     new_rlim->rlim_cur != RLIM_INFINITY &&
1576	     IS_ENABLED(CONFIG_POSIX_TIMERS))
1577		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1578out:
1579	read_unlock(&tasklist_lock);
1580	return retval;
1581}
1582
1583/* rcu lock must be held */
1584static int check_prlimit_permission(struct task_struct *task,
1585				    unsigned int flags)
1586{
1587	const struct cred *cred = current_cred(), *tcred;
1588	bool id_match;
1589
1590	if (current == task)
1591		return 0;
1592
1593	tcred = __task_cred(task);
1594	id_match = (uid_eq(cred->uid, tcred->euid) &&
1595		    uid_eq(cred->uid, tcred->suid) &&
1596		    uid_eq(cred->uid, tcred->uid)  &&
1597		    gid_eq(cred->gid, tcred->egid) &&
1598		    gid_eq(cred->gid, tcred->sgid) &&
1599		    gid_eq(cred->gid, tcred->gid));
1600	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1601		return -EPERM;
 
1602
1603	return security_task_prlimit(cred, tcred, flags);
1604}
1605
1606SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1607		const struct rlimit64 __user *, new_rlim,
1608		struct rlimit64 __user *, old_rlim)
1609{
1610	struct rlimit64 old64, new64;
1611	struct rlimit old, new;
1612	struct task_struct *tsk;
1613	unsigned int checkflags = 0;
1614	int ret;
1615
1616	if (old_rlim)
1617		checkflags |= LSM_PRLIMIT_READ;
1618
1619	if (new_rlim) {
1620		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1621			return -EFAULT;
1622		rlim64_to_rlim(&new64, &new);
1623		checkflags |= LSM_PRLIMIT_WRITE;
1624	}
1625
1626	rcu_read_lock();
1627	tsk = pid ? find_task_by_vpid(pid) : current;
1628	if (!tsk) {
1629		rcu_read_unlock();
1630		return -ESRCH;
1631	}
1632	ret = check_prlimit_permission(tsk, checkflags);
1633	if (ret) {
1634		rcu_read_unlock();
1635		return ret;
1636	}
1637	get_task_struct(tsk);
1638	rcu_read_unlock();
1639
1640	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1641			old_rlim ? &old : NULL);
1642
1643	if (!ret && old_rlim) {
1644		rlim_to_rlim64(&old, &old64);
1645		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1646			ret = -EFAULT;
1647	}
1648
1649	put_task_struct(tsk);
1650	return ret;
1651}
1652
1653SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1654{
1655	struct rlimit new_rlim;
1656
1657	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1658		return -EFAULT;
1659	return do_prlimit(current, resource, &new_rlim, NULL);
1660}
1661
1662/*
1663 * It would make sense to put struct rusage in the task_struct,
1664 * except that would make the task_struct be *really big*.  After
1665 * task_struct gets moved into malloc'ed memory, it would
1666 * make sense to do this.  It will make moving the rest of the information
1667 * a lot simpler!  (Which we're not doing right now because we're not
1668 * measuring them yet).
1669 *
1670 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1671 * races with threads incrementing their own counters.  But since word
1672 * reads are atomic, we either get new values or old values and we don't
1673 * care which for the sums.  We always take the siglock to protect reading
1674 * the c* fields from p->signal from races with exit.c updating those
1675 * fields when reaping, so a sample either gets all the additions of a
1676 * given child after it's reaped, or none so this sample is before reaping.
1677 *
1678 * Locking:
1679 * We need to take the siglock for CHILDEREN, SELF and BOTH
1680 * for  the cases current multithreaded, non-current single threaded
1681 * non-current multithreaded.  Thread traversal is now safe with
1682 * the siglock held.
1683 * Strictly speaking, we donot need to take the siglock if we are current and
1684 * single threaded,  as no one else can take our signal_struct away, no one
1685 * else can  reap the  children to update signal->c* counters, and no one else
1686 * can race with the signal-> fields. If we do not take any lock, the
1687 * signal-> fields could be read out of order while another thread was just
1688 * exiting. So we should  place a read memory barrier when we avoid the lock.
1689 * On the writer side,  write memory barrier is implied in  __exit_signal
1690 * as __exit_signal releases  the siglock spinlock after updating the signal->
1691 * fields. But we don't do this yet to keep things simple.
1692 *
1693 */
1694
1695static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1696{
1697	r->ru_nvcsw += t->nvcsw;
1698	r->ru_nivcsw += t->nivcsw;
1699	r->ru_minflt += t->min_flt;
1700	r->ru_majflt += t->maj_flt;
1701	r->ru_inblock += task_io_get_inblock(t);
1702	r->ru_oublock += task_io_get_oublock(t);
1703}
1704
1705void getrusage(struct task_struct *p, int who, struct rusage *r)
1706{
1707	struct task_struct *t;
1708	unsigned long flags;
1709	u64 tgutime, tgstime, utime, stime;
1710	unsigned long maxrss = 0;
1711
1712	memset((char *)r, 0, sizeof (*r));
1713	utime = stime = 0;
1714
1715	if (who == RUSAGE_THREAD) {
1716		task_cputime_adjusted(current, &utime, &stime);
1717		accumulate_thread_rusage(p, r);
1718		maxrss = p->signal->maxrss;
1719		goto out;
1720	}
1721
1722	if (!lock_task_sighand(p, &flags))
1723		return;
1724
1725	switch (who) {
1726	case RUSAGE_BOTH:
1727	case RUSAGE_CHILDREN:
1728		utime = p->signal->cutime;
1729		stime = p->signal->cstime;
1730		r->ru_nvcsw = p->signal->cnvcsw;
1731		r->ru_nivcsw = p->signal->cnivcsw;
1732		r->ru_minflt = p->signal->cmin_flt;
1733		r->ru_majflt = p->signal->cmaj_flt;
1734		r->ru_inblock = p->signal->cinblock;
1735		r->ru_oublock = p->signal->coublock;
1736		maxrss = p->signal->cmaxrss;
1737
1738		if (who == RUSAGE_CHILDREN)
1739			break;
1740		/* fall through */
1741
1742	case RUSAGE_SELF:
1743		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1744		utime += tgutime;
1745		stime += tgstime;
1746		r->ru_nvcsw += p->signal->nvcsw;
1747		r->ru_nivcsw += p->signal->nivcsw;
1748		r->ru_minflt += p->signal->min_flt;
1749		r->ru_majflt += p->signal->maj_flt;
1750		r->ru_inblock += p->signal->inblock;
1751		r->ru_oublock += p->signal->oublock;
1752		if (maxrss < p->signal->maxrss)
1753			maxrss = p->signal->maxrss;
1754		t = p;
1755		do {
1756			accumulate_thread_rusage(t, r);
1757		} while_each_thread(p, t);
1758		break;
1759
1760	default:
1761		BUG();
1762	}
1763	unlock_task_sighand(p, &flags);
1764
1765out:
1766	r->ru_utime = ns_to_timeval(utime);
1767	r->ru_stime = ns_to_timeval(stime);
1768
1769	if (who != RUSAGE_CHILDREN) {
1770		struct mm_struct *mm = get_task_mm(p);
1771
1772		if (mm) {
1773			setmax_mm_hiwater_rss(&maxrss, mm);
1774			mmput(mm);
1775		}
1776	}
1777	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1778}
1779
1780SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1781{
1782	struct rusage r;
1783
 
 
 
 
 
 
1784	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1785	    who != RUSAGE_THREAD)
1786		return -EINVAL;
1787
1788	getrusage(current, who, &r);
1789	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1790}
1791
1792#ifdef CONFIG_COMPAT
1793COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1794{
1795	struct rusage r;
1796
1797	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1798	    who != RUSAGE_THREAD)
1799		return -EINVAL;
1800
1801	getrusage(current, who, &r);
1802	return put_compat_rusage(&r, ru);
1803}
1804#endif
1805
1806SYSCALL_DEFINE1(umask, int, mask)
1807{
1808	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1809	return mask;
1810}
1811
1812static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1813{
1814	struct fd exe;
1815	struct file *old_exe, *exe_file;
1816	struct inode *inode;
1817	int err;
1818
1819	exe = fdget(fd);
1820	if (!exe.file)
1821		return -EBADF;
1822
1823	inode = file_inode(exe.file);
1824
1825	/*
1826	 * Because the original mm->exe_file points to executable file, make
1827	 * sure that this one is executable as well, to avoid breaking an
1828	 * overall picture.
1829	 */
1830	err = -EACCES;
1831	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1832		goto exit;
1833
1834	err = inode_permission(inode, MAY_EXEC);
1835	if (err)
1836		goto exit;
1837
1838	/*
1839	 * Forbid mm->exe_file change if old file still mapped.
1840	 */
1841	exe_file = get_mm_exe_file(mm);
1842	err = -EBUSY;
1843	if (exe_file) {
1844		struct vm_area_struct *vma;
1845
1846		down_read(&mm->mmap_sem);
1847		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1848			if (!vma->vm_file)
1849				continue;
1850			if (path_equal(&vma->vm_file->f_path,
1851				       &exe_file->f_path))
1852				goto exit_err;
1853		}
1854
1855		up_read(&mm->mmap_sem);
1856		fput(exe_file);
1857	}
1858
 
 
 
 
 
 
 
 
 
 
1859	err = 0;
1860	/* set the new file, lockless */
1861	get_file(exe.file);
1862	old_exe = xchg(&mm->exe_file, exe.file);
1863	if (old_exe)
1864		fput(old_exe);
1865exit:
1866	fdput(exe);
1867	return err;
1868exit_err:
1869	up_read(&mm->mmap_sem);
1870	fput(exe_file);
1871	goto exit;
1872}
1873
1874/*
1875 * Check arithmetic relations of passed addresses.
1876 *
1877 * WARNING: we don't require any capability here so be very careful
1878 * in what is allowed for modification from userspace.
1879 */
1880static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1881{
1882	unsigned long mmap_max_addr = TASK_SIZE;
 
1883	int error = -EINVAL, i;
1884
1885	static const unsigned char offsets[] = {
1886		offsetof(struct prctl_mm_map, start_code),
1887		offsetof(struct prctl_mm_map, end_code),
1888		offsetof(struct prctl_mm_map, start_data),
1889		offsetof(struct prctl_mm_map, end_data),
1890		offsetof(struct prctl_mm_map, start_brk),
1891		offsetof(struct prctl_mm_map, brk),
1892		offsetof(struct prctl_mm_map, start_stack),
1893		offsetof(struct prctl_mm_map, arg_start),
1894		offsetof(struct prctl_mm_map, arg_end),
1895		offsetof(struct prctl_mm_map, env_start),
1896		offsetof(struct prctl_mm_map, env_end),
1897	};
1898
1899	/*
1900	 * Make sure the members are not somewhere outside
1901	 * of allowed address space.
1902	 */
1903	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1904		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1905
1906		if ((unsigned long)val >= mmap_max_addr ||
1907		    (unsigned long)val < mmap_min_addr)
1908			goto out;
1909	}
1910
1911	/*
1912	 * Make sure the pairs are ordered.
1913	 */
1914#define __prctl_check_order(__m1, __op, __m2)				\
1915	((unsigned long)prctl_map->__m1 __op				\
1916	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1917	error  = __prctl_check_order(start_code, <, end_code);
1918	error |= __prctl_check_order(start_data,<=, end_data);
1919	error |= __prctl_check_order(start_brk, <=, brk);
1920	error |= __prctl_check_order(arg_start, <=, arg_end);
1921	error |= __prctl_check_order(env_start, <=, env_end);
1922	if (error)
1923		goto out;
1924#undef __prctl_check_order
1925
1926	error = -EINVAL;
1927
1928	/*
1929	 * @brk should be after @end_data in traditional maps.
1930	 */
1931	if (prctl_map->start_brk <= prctl_map->end_data ||
1932	    prctl_map->brk <= prctl_map->end_data)
1933		goto out;
1934
1935	/*
1936	 * Neither we should allow to override limits if they set.
1937	 */
1938	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1939			      prctl_map->start_brk, prctl_map->end_data,
1940			      prctl_map->start_data))
1941			goto out;
1942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1943	error = 0;
1944out:
1945	return error;
1946}
1947
1948#ifdef CONFIG_CHECKPOINT_RESTORE
1949static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1950{
1951	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1952	unsigned long user_auxv[AT_VECTOR_SIZE];
1953	struct mm_struct *mm = current->mm;
1954	int error;
1955
1956	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1957	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1958
1959	if (opt == PR_SET_MM_MAP_SIZE)
1960		return put_user((unsigned int)sizeof(prctl_map),
1961				(unsigned int __user *)addr);
1962
1963	if (data_size != sizeof(prctl_map))
1964		return -EINVAL;
1965
1966	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1967		return -EFAULT;
1968
1969	error = validate_prctl_map_addr(&prctl_map);
1970	if (error)
1971		return error;
1972
1973	if (prctl_map.auxv_size) {
1974		/*
1975		 * Someone is trying to cheat the auxv vector.
1976		 */
1977		if (!prctl_map.auxv ||
1978				prctl_map.auxv_size > sizeof(mm->saved_auxv))
1979			return -EINVAL;
1980
1981		memset(user_auxv, 0, sizeof(user_auxv));
1982		if (copy_from_user(user_auxv,
1983				   (const void __user *)prctl_map.auxv,
1984				   prctl_map.auxv_size))
1985			return -EFAULT;
1986
1987		/* Last entry must be AT_NULL as specification requires */
1988		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
1989		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
1990	}
1991
1992	if (prctl_map.exe_fd != (u32)-1) {
1993		/*
1994		 * Make sure the caller has the rights to
1995		 * change /proc/pid/exe link: only local sys admin should
1996		 * be allowed to.
1997		 */
1998		if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
1999			return -EINVAL;
2000
2001		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2002		if (error)
2003			return error;
2004	}
2005
2006	/*
2007	 * arg_lock protects concurent updates but we still need mmap_sem for
2008	 * read to exclude races with sys_brk.
2009	 */
2010	down_read(&mm->mmap_sem);
2011
2012	/*
2013	 * We don't validate if these members are pointing to
2014	 * real present VMAs because application may have correspond
2015	 * VMAs already unmapped and kernel uses these members for statistics
2016	 * output in procfs mostly, except
2017	 *
2018	 *  - @start_brk/@brk which are used in do_brk but kernel lookups
2019	 *    for VMAs when updating these memvers so anything wrong written
2020	 *    here cause kernel to swear at userspace program but won't lead
2021	 *    to any problem in kernel itself
2022	 */
2023
2024	spin_lock(&mm->arg_lock);
2025	mm->start_code	= prctl_map.start_code;
2026	mm->end_code	= prctl_map.end_code;
2027	mm->start_data	= prctl_map.start_data;
2028	mm->end_data	= prctl_map.end_data;
2029	mm->start_brk	= prctl_map.start_brk;
2030	mm->brk		= prctl_map.brk;
2031	mm->start_stack	= prctl_map.start_stack;
2032	mm->arg_start	= prctl_map.arg_start;
2033	mm->arg_end	= prctl_map.arg_end;
2034	mm->env_start	= prctl_map.env_start;
2035	mm->env_end	= prctl_map.env_end;
2036	spin_unlock(&mm->arg_lock);
2037
2038	/*
2039	 * Note this update of @saved_auxv is lockless thus
2040	 * if someone reads this member in procfs while we're
2041	 * updating -- it may get partly updated results. It's
2042	 * known and acceptable trade off: we leave it as is to
2043	 * not introduce additional locks here making the kernel
2044	 * more complex.
2045	 */
2046	if (prctl_map.auxv_size)
2047		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2048
2049	up_read(&mm->mmap_sem);
2050	return 0;
2051}
2052#endif /* CONFIG_CHECKPOINT_RESTORE */
2053
2054static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2055			  unsigned long len)
2056{
2057	/*
2058	 * This doesn't move the auxiliary vector itself since it's pinned to
2059	 * mm_struct, but it permits filling the vector with new values.  It's
2060	 * up to the caller to provide sane values here, otherwise userspace
2061	 * tools which use this vector might be unhappy.
2062	 */
2063	unsigned long user_auxv[AT_VECTOR_SIZE];
2064
2065	if (len > sizeof(user_auxv))
2066		return -EINVAL;
2067
2068	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2069		return -EFAULT;
2070
2071	/* Make sure the last entry is always AT_NULL */
2072	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2073	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2074
2075	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2076
2077	task_lock(current);
2078	memcpy(mm->saved_auxv, user_auxv, len);
2079	task_unlock(current);
2080
2081	return 0;
2082}
2083
2084static int prctl_set_mm(int opt, unsigned long addr,
2085			unsigned long arg4, unsigned long arg5)
2086{
2087	struct mm_struct *mm = current->mm;
2088	struct prctl_mm_map prctl_map = {
2089		.auxv = NULL,
2090		.auxv_size = 0,
2091		.exe_fd = -1,
2092	};
2093	struct vm_area_struct *vma;
2094	int error;
2095
2096	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2097			      opt != PR_SET_MM_MAP &&
2098			      opt != PR_SET_MM_MAP_SIZE)))
2099		return -EINVAL;
2100
2101#ifdef CONFIG_CHECKPOINT_RESTORE
2102	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2103		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2104#endif
2105
2106	if (!capable(CAP_SYS_RESOURCE))
2107		return -EPERM;
2108
2109	if (opt == PR_SET_MM_EXE_FILE)
2110		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2111
2112	if (opt == PR_SET_MM_AUXV)
2113		return prctl_set_auxv(mm, addr, arg4);
2114
2115	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2116		return -EINVAL;
2117
2118	error = -EINVAL;
2119
2120	/*
2121	 * arg_lock protects concurent updates of arg boundaries, we need
2122	 * mmap_sem for a) concurrent sys_brk, b) finding VMA for addr
2123	 * validation.
2124	 */
2125	down_read(&mm->mmap_sem);
2126	vma = find_vma(mm, addr);
2127
2128	spin_lock(&mm->arg_lock);
2129	prctl_map.start_code	= mm->start_code;
2130	prctl_map.end_code	= mm->end_code;
2131	prctl_map.start_data	= mm->start_data;
2132	prctl_map.end_data	= mm->end_data;
2133	prctl_map.start_brk	= mm->start_brk;
2134	prctl_map.brk		= mm->brk;
2135	prctl_map.start_stack	= mm->start_stack;
2136	prctl_map.arg_start	= mm->arg_start;
2137	prctl_map.arg_end	= mm->arg_end;
2138	prctl_map.env_start	= mm->env_start;
2139	prctl_map.env_end	= mm->env_end;
 
 
 
2140
2141	switch (opt) {
2142	case PR_SET_MM_START_CODE:
2143		prctl_map.start_code = addr;
2144		break;
2145	case PR_SET_MM_END_CODE:
2146		prctl_map.end_code = addr;
2147		break;
2148	case PR_SET_MM_START_DATA:
2149		prctl_map.start_data = addr;
2150		break;
2151	case PR_SET_MM_END_DATA:
2152		prctl_map.end_data = addr;
2153		break;
2154	case PR_SET_MM_START_STACK:
2155		prctl_map.start_stack = addr;
2156		break;
2157	case PR_SET_MM_START_BRK:
2158		prctl_map.start_brk = addr;
2159		break;
2160	case PR_SET_MM_BRK:
2161		prctl_map.brk = addr;
2162		break;
2163	case PR_SET_MM_ARG_START:
2164		prctl_map.arg_start = addr;
2165		break;
2166	case PR_SET_MM_ARG_END:
2167		prctl_map.arg_end = addr;
2168		break;
2169	case PR_SET_MM_ENV_START:
2170		prctl_map.env_start = addr;
2171		break;
2172	case PR_SET_MM_ENV_END:
2173		prctl_map.env_end = addr;
2174		break;
2175	default:
2176		goto out;
2177	}
2178
2179	error = validate_prctl_map_addr(&prctl_map);
2180	if (error)
2181		goto out;
2182
2183	switch (opt) {
2184	/*
2185	 * If command line arguments and environment
2186	 * are placed somewhere else on stack, we can
2187	 * set them up here, ARG_START/END to setup
2188	 * command line argumets and ENV_START/END
2189	 * for environment.
2190	 */
2191	case PR_SET_MM_START_STACK:
2192	case PR_SET_MM_ARG_START:
2193	case PR_SET_MM_ARG_END:
2194	case PR_SET_MM_ENV_START:
2195	case PR_SET_MM_ENV_END:
2196		if (!vma) {
2197			error = -EFAULT;
2198			goto out;
2199		}
2200	}
2201
2202	mm->start_code	= prctl_map.start_code;
2203	mm->end_code	= prctl_map.end_code;
2204	mm->start_data	= prctl_map.start_data;
2205	mm->end_data	= prctl_map.end_data;
2206	mm->start_brk	= prctl_map.start_brk;
2207	mm->brk		= prctl_map.brk;
2208	mm->start_stack	= prctl_map.start_stack;
2209	mm->arg_start	= prctl_map.arg_start;
2210	mm->arg_end	= prctl_map.arg_end;
2211	mm->env_start	= prctl_map.env_start;
2212	mm->env_end	= prctl_map.env_end;
2213
2214	error = 0;
2215out:
2216	spin_unlock(&mm->arg_lock);
2217	up_read(&mm->mmap_sem);
2218	return error;
2219}
2220
2221#ifdef CONFIG_CHECKPOINT_RESTORE
2222static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2223{
2224	return put_user(me->clear_child_tid, tid_addr);
2225}
2226#else
2227static int prctl_get_tid_address(struct task_struct *me, int __user **tid_addr)
2228{
2229	return -EINVAL;
2230}
2231#endif
2232
2233static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2234{
2235	/*
2236	 * If task has has_child_subreaper - all its decendants
2237	 * already have these flag too and new decendants will
2238	 * inherit it on fork, skip them.
2239	 *
2240	 * If we've found child_reaper - skip descendants in
2241	 * it's subtree as they will never get out pidns.
2242	 */
2243	if (p->signal->has_child_subreaper ||
2244	    is_child_reaper(task_pid(p)))
2245		return 0;
2246
2247	p->signal->has_child_subreaper = 1;
2248	return 1;
2249}
2250
2251int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2252{
2253	return -EINVAL;
2254}
2255
2256int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2257				    unsigned long ctrl)
2258{
2259	return -EINVAL;
2260}
2261
2262SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2263		unsigned long, arg4, unsigned long, arg5)
2264{
2265	struct task_struct *me = current;
2266	unsigned char comm[sizeof(me->comm)];
2267	long error;
2268
2269	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2270	if (error != -ENOSYS)
2271		return error;
2272
2273	error = 0;
2274	switch (option) {
2275	case PR_SET_PDEATHSIG:
2276		if (!valid_signal(arg2)) {
2277			error = -EINVAL;
2278			break;
2279		}
2280		me->pdeath_signal = arg2;
2281		break;
2282	case PR_GET_PDEATHSIG:
2283		error = put_user(me->pdeath_signal, (int __user *)arg2);
2284		break;
2285	case PR_GET_DUMPABLE:
2286		error = get_dumpable(me->mm);
2287		break;
2288	case PR_SET_DUMPABLE:
2289		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2290			error = -EINVAL;
2291			break;
2292		}
2293		set_dumpable(me->mm, arg2);
2294		break;
2295
2296	case PR_SET_UNALIGN:
2297		error = SET_UNALIGN_CTL(me, arg2);
2298		break;
2299	case PR_GET_UNALIGN:
2300		error = GET_UNALIGN_CTL(me, arg2);
2301		break;
2302	case PR_SET_FPEMU:
2303		error = SET_FPEMU_CTL(me, arg2);
2304		break;
2305	case PR_GET_FPEMU:
2306		error = GET_FPEMU_CTL(me, arg2);
2307		break;
2308	case PR_SET_FPEXC:
2309		error = SET_FPEXC_CTL(me, arg2);
2310		break;
2311	case PR_GET_FPEXC:
2312		error = GET_FPEXC_CTL(me, arg2);
2313		break;
2314	case PR_GET_TIMING:
2315		error = PR_TIMING_STATISTICAL;
2316		break;
2317	case PR_SET_TIMING:
2318		if (arg2 != PR_TIMING_STATISTICAL)
2319			error = -EINVAL;
2320		break;
2321	case PR_SET_NAME:
2322		comm[sizeof(me->comm) - 1] = 0;
2323		if (strncpy_from_user(comm, (char __user *)arg2,
2324				      sizeof(me->comm) - 1) < 0)
2325			return -EFAULT;
2326		set_task_comm(me, comm);
2327		proc_comm_connector(me);
2328		break;
2329	case PR_GET_NAME:
2330		get_task_comm(comm, me);
2331		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2332			return -EFAULT;
2333		break;
2334	case PR_GET_ENDIAN:
2335		error = GET_ENDIAN(me, arg2);
2336		break;
2337	case PR_SET_ENDIAN:
2338		error = SET_ENDIAN(me, arg2);
2339		break;
2340	case PR_GET_SECCOMP:
2341		error = prctl_get_seccomp();
2342		break;
2343	case PR_SET_SECCOMP:
2344		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2345		break;
2346	case PR_GET_TSC:
2347		error = GET_TSC_CTL(arg2);
2348		break;
2349	case PR_SET_TSC:
2350		error = SET_TSC_CTL(arg2);
2351		break;
2352	case PR_TASK_PERF_EVENTS_DISABLE:
2353		error = perf_event_task_disable();
2354		break;
2355	case PR_TASK_PERF_EVENTS_ENABLE:
2356		error = perf_event_task_enable();
2357		break;
2358	case PR_GET_TIMERSLACK:
2359		if (current->timer_slack_ns > ULONG_MAX)
2360			error = ULONG_MAX;
2361		else
2362			error = current->timer_slack_ns;
2363		break;
2364	case PR_SET_TIMERSLACK:
2365		if (arg2 <= 0)
2366			current->timer_slack_ns =
2367					current->default_timer_slack_ns;
2368		else
2369			current->timer_slack_ns = arg2;
2370		break;
2371	case PR_MCE_KILL:
2372		if (arg4 | arg5)
2373			return -EINVAL;
2374		switch (arg2) {
2375		case PR_MCE_KILL_CLEAR:
2376			if (arg3 != 0)
2377				return -EINVAL;
2378			current->flags &= ~PF_MCE_PROCESS;
2379			break;
2380		case PR_MCE_KILL_SET:
2381			current->flags |= PF_MCE_PROCESS;
2382			if (arg3 == PR_MCE_KILL_EARLY)
2383				current->flags |= PF_MCE_EARLY;
2384			else if (arg3 == PR_MCE_KILL_LATE)
2385				current->flags &= ~PF_MCE_EARLY;
2386			else if (arg3 == PR_MCE_KILL_DEFAULT)
2387				current->flags &=
2388						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2389			else
2390				return -EINVAL;
2391			break;
2392		default:
2393			return -EINVAL;
2394		}
2395		break;
2396	case PR_MCE_KILL_GET:
2397		if (arg2 | arg3 | arg4 | arg5)
2398			return -EINVAL;
2399		if (current->flags & PF_MCE_PROCESS)
2400			error = (current->flags & PF_MCE_EARLY) ?
2401				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2402		else
2403			error = PR_MCE_KILL_DEFAULT;
2404		break;
2405	case PR_SET_MM:
2406		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2407		break;
2408	case PR_GET_TID_ADDRESS:
2409		error = prctl_get_tid_address(me, (int __user **)arg2);
2410		break;
2411	case PR_SET_CHILD_SUBREAPER:
2412		me->signal->is_child_subreaper = !!arg2;
2413		if (!arg2)
2414			break;
2415
2416		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2417		break;
2418	case PR_GET_CHILD_SUBREAPER:
2419		error = put_user(me->signal->is_child_subreaper,
2420				 (int __user *)arg2);
2421		break;
2422	case PR_SET_NO_NEW_PRIVS:
2423		if (arg2 != 1 || arg3 || arg4 || arg5)
2424			return -EINVAL;
2425
2426		task_set_no_new_privs(current);
2427		break;
2428	case PR_GET_NO_NEW_PRIVS:
2429		if (arg2 || arg3 || arg4 || arg5)
2430			return -EINVAL;
2431		return task_no_new_privs(current) ? 1 : 0;
2432	case PR_GET_THP_DISABLE:
2433		if (arg2 || arg3 || arg4 || arg5)
2434			return -EINVAL;
2435		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2436		break;
2437	case PR_SET_THP_DISABLE:
2438		if (arg3 || arg4 || arg5)
2439			return -EINVAL;
2440		if (down_write_killable(&me->mm->mmap_sem))
2441			return -EINTR;
2442		if (arg2)
2443			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2444		else
2445			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2446		up_write(&me->mm->mmap_sem);
2447		break;
2448	case PR_MPX_ENABLE_MANAGEMENT:
 
 
 
 
2449	case PR_MPX_DISABLE_MANAGEMENT:
2450		/* No longer implemented: */
2451		return -EINVAL;
 
 
2452	case PR_SET_FP_MODE:
2453		error = SET_FP_MODE(me, arg2);
2454		break;
2455	case PR_GET_FP_MODE:
2456		error = GET_FP_MODE(me);
2457		break;
2458	case PR_SVE_SET_VL:
2459		error = SVE_SET_VL(arg2);
2460		break;
2461	case PR_SVE_GET_VL:
2462		error = SVE_GET_VL();
2463		break;
2464	case PR_GET_SPECULATION_CTRL:
2465		if (arg3 || arg4 || arg5)
2466			return -EINVAL;
2467		error = arch_prctl_spec_ctrl_get(me, arg2);
2468		break;
2469	case PR_SET_SPECULATION_CTRL:
2470		if (arg4 || arg5)
2471			return -EINVAL;
2472		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2473		break;
2474	case PR_PAC_RESET_KEYS:
2475		if (arg3 || arg4 || arg5)
2476			return -EINVAL;
2477		error = PAC_RESET_KEYS(me, arg2);
2478		break;
2479	case PR_SET_TAGGED_ADDR_CTRL:
2480		if (arg3 || arg4 || arg5)
2481			return -EINVAL;
2482		error = SET_TAGGED_ADDR_CTRL(arg2);
2483		break;
2484	case PR_GET_TAGGED_ADDR_CTRL:
2485		if (arg2 || arg3 || arg4 || arg5)
2486			return -EINVAL;
2487		error = GET_TAGGED_ADDR_CTRL();
2488		break;
2489	default:
2490		error = -EINVAL;
2491		break;
2492	}
2493	return error;
2494}
2495
2496SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2497		struct getcpu_cache __user *, unused)
2498{
2499	int err = 0;
2500	int cpu = raw_smp_processor_id();
2501
2502	if (cpup)
2503		err |= put_user(cpu, cpup);
2504	if (nodep)
2505		err |= put_user(cpu_to_node(cpu), nodep);
2506	return err ? -EFAULT : 0;
2507}
2508
2509/**
2510 * do_sysinfo - fill in sysinfo struct
2511 * @info: pointer to buffer to fill
2512 */
2513static int do_sysinfo(struct sysinfo *info)
2514{
2515	unsigned long mem_total, sav_total;
2516	unsigned int mem_unit, bitcount;
2517	struct timespec64 tp;
2518
2519	memset(info, 0, sizeof(struct sysinfo));
2520
2521	ktime_get_boottime_ts64(&tp);
2522	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2523
2524	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2525
2526	info->procs = nr_threads;
2527
2528	si_meminfo(info);
2529	si_swapinfo(info);
2530
2531	/*
2532	 * If the sum of all the available memory (i.e. ram + swap)
2533	 * is less than can be stored in a 32 bit unsigned long then
2534	 * we can be binary compatible with 2.2.x kernels.  If not,
2535	 * well, in that case 2.2.x was broken anyways...
2536	 *
2537	 *  -Erik Andersen <andersee@debian.org>
2538	 */
2539
2540	mem_total = info->totalram + info->totalswap;
2541	if (mem_total < info->totalram || mem_total < info->totalswap)
2542		goto out;
2543	bitcount = 0;
2544	mem_unit = info->mem_unit;
2545	while (mem_unit > 1) {
2546		bitcount++;
2547		mem_unit >>= 1;
2548		sav_total = mem_total;
2549		mem_total <<= 1;
2550		if (mem_total < sav_total)
2551			goto out;
2552	}
2553
2554	/*
2555	 * If mem_total did not overflow, multiply all memory values by
2556	 * info->mem_unit and set it to 1.  This leaves things compatible
2557	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2558	 * kernels...
2559	 */
2560
2561	info->mem_unit = 1;
2562	info->totalram <<= bitcount;
2563	info->freeram <<= bitcount;
2564	info->sharedram <<= bitcount;
2565	info->bufferram <<= bitcount;
2566	info->totalswap <<= bitcount;
2567	info->freeswap <<= bitcount;
2568	info->totalhigh <<= bitcount;
2569	info->freehigh <<= bitcount;
2570
2571out:
2572	return 0;
2573}
2574
2575SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2576{
2577	struct sysinfo val;
2578
2579	do_sysinfo(&val);
2580
2581	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2582		return -EFAULT;
2583
2584	return 0;
2585}
2586
2587#ifdef CONFIG_COMPAT
2588struct compat_sysinfo {
2589	s32 uptime;
2590	u32 loads[3];
2591	u32 totalram;
2592	u32 freeram;
2593	u32 sharedram;
2594	u32 bufferram;
2595	u32 totalswap;
2596	u32 freeswap;
2597	u16 procs;
2598	u16 pad;
2599	u32 totalhigh;
2600	u32 freehigh;
2601	u32 mem_unit;
2602	char _f[20-2*sizeof(u32)-sizeof(int)];
2603};
2604
2605COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2606{
2607	struct sysinfo s;
2608
2609	do_sysinfo(&s);
2610
2611	/* Check to see if any memory value is too large for 32-bit and scale
2612	 *  down if needed
2613	 */
2614	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2615		int bitcount = 0;
2616
2617		while (s.mem_unit < PAGE_SIZE) {
2618			s.mem_unit <<= 1;
2619			bitcount++;
2620		}
2621
2622		s.totalram >>= bitcount;
2623		s.freeram >>= bitcount;
2624		s.sharedram >>= bitcount;
2625		s.bufferram >>= bitcount;
2626		s.totalswap >>= bitcount;
2627		s.freeswap >>= bitcount;
2628		s.totalhigh >>= bitcount;
2629		s.freehigh >>= bitcount;
2630	}
2631
2632	if (!access_ok(info, sizeof(struct compat_sysinfo)) ||
2633	    __put_user(s.uptime, &info->uptime) ||
2634	    __put_user(s.loads[0], &info->loads[0]) ||
2635	    __put_user(s.loads[1], &info->loads[1]) ||
2636	    __put_user(s.loads[2], &info->loads[2]) ||
2637	    __put_user(s.totalram, &info->totalram) ||
2638	    __put_user(s.freeram, &info->freeram) ||
2639	    __put_user(s.sharedram, &info->sharedram) ||
2640	    __put_user(s.bufferram, &info->bufferram) ||
2641	    __put_user(s.totalswap, &info->totalswap) ||
2642	    __put_user(s.freeswap, &info->freeswap) ||
2643	    __put_user(s.procs, &info->procs) ||
2644	    __put_user(s.totalhigh, &info->totalhigh) ||
2645	    __put_user(s.freehigh, &info->freehigh) ||
2646	    __put_user(s.mem_unit, &info->mem_unit))
2647		return -EFAULT;
2648
2649	return 0;
2650}
2651#endif /* CONFIG_COMPAT */