Loading...
1/*
2 * kernel/sched/debug.c
3 *
4 * Print the CFS rbtree
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/proc_fs.h>
14#include <linux/sched.h>
15#include <linux/seq_file.h>
16#include <linux/kallsyms.h>
17#include <linux/utsname.h>
18#include <linux/mempolicy.h>
19#include <linux/debugfs.h>
20
21#include "sched.h"
22
23static DEFINE_SPINLOCK(sched_debug_lock);
24
25/*
26 * This allows printing both to /proc/sched_debug and
27 * to the console
28 */
29#define SEQ_printf(m, x...) \
30 do { \
31 if (m) \
32 seq_printf(m, x); \
33 else \
34 printk(x); \
35 } while (0)
36
37/*
38 * Ease the printing of nsec fields:
39 */
40static long long nsec_high(unsigned long long nsec)
41{
42 if ((long long)nsec < 0) {
43 nsec = -nsec;
44 do_div(nsec, 1000000);
45 return -nsec;
46 }
47 do_div(nsec, 1000000);
48
49 return nsec;
50}
51
52static unsigned long nsec_low(unsigned long long nsec)
53{
54 if ((long long)nsec < 0)
55 nsec = -nsec;
56
57 return do_div(nsec, 1000000);
58}
59
60#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
61
62#define SCHED_FEAT(name, enabled) \
63 #name ,
64
65static const char * const sched_feat_names[] = {
66#include "features.h"
67};
68
69#undef SCHED_FEAT
70
71static int sched_feat_show(struct seq_file *m, void *v)
72{
73 int i;
74
75 for (i = 0; i < __SCHED_FEAT_NR; i++) {
76 if (!(sysctl_sched_features & (1UL << i)))
77 seq_puts(m, "NO_");
78 seq_printf(m, "%s ", sched_feat_names[i]);
79 }
80 seq_puts(m, "\n");
81
82 return 0;
83}
84
85#ifdef HAVE_JUMP_LABEL
86
87#define jump_label_key__true STATIC_KEY_INIT_TRUE
88#define jump_label_key__false STATIC_KEY_INIT_FALSE
89
90#define SCHED_FEAT(name, enabled) \
91 jump_label_key__##enabled ,
92
93struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
94#include "features.h"
95};
96
97#undef SCHED_FEAT
98
99static void sched_feat_disable(int i)
100{
101 static_key_disable(&sched_feat_keys[i]);
102}
103
104static void sched_feat_enable(int i)
105{
106 static_key_enable(&sched_feat_keys[i]);
107}
108#else
109static void sched_feat_disable(int i) { };
110static void sched_feat_enable(int i) { };
111#endif /* HAVE_JUMP_LABEL */
112
113static int sched_feat_set(char *cmp)
114{
115 int i;
116 int neg = 0;
117
118 if (strncmp(cmp, "NO_", 3) == 0) {
119 neg = 1;
120 cmp += 3;
121 }
122
123 for (i = 0; i < __SCHED_FEAT_NR; i++) {
124 if (strcmp(cmp, sched_feat_names[i]) == 0) {
125 if (neg) {
126 sysctl_sched_features &= ~(1UL << i);
127 sched_feat_disable(i);
128 } else {
129 sysctl_sched_features |= (1UL << i);
130 sched_feat_enable(i);
131 }
132 break;
133 }
134 }
135
136 return i;
137}
138
139static ssize_t
140sched_feat_write(struct file *filp, const char __user *ubuf,
141 size_t cnt, loff_t *ppos)
142{
143 char buf[64];
144 char *cmp;
145 int i;
146 struct inode *inode;
147
148 if (cnt > 63)
149 cnt = 63;
150
151 if (copy_from_user(&buf, ubuf, cnt))
152 return -EFAULT;
153
154 buf[cnt] = 0;
155 cmp = strstrip(buf);
156
157 /* Ensure the static_key remains in a consistent state */
158 inode = file_inode(filp);
159 inode_lock(inode);
160 i = sched_feat_set(cmp);
161 inode_unlock(inode);
162 if (i == __SCHED_FEAT_NR)
163 return -EINVAL;
164
165 *ppos += cnt;
166
167 return cnt;
168}
169
170static int sched_feat_open(struct inode *inode, struct file *filp)
171{
172 return single_open(filp, sched_feat_show, NULL);
173}
174
175static const struct file_operations sched_feat_fops = {
176 .open = sched_feat_open,
177 .write = sched_feat_write,
178 .read = seq_read,
179 .llseek = seq_lseek,
180 .release = single_release,
181};
182
183static __init int sched_init_debug(void)
184{
185 debugfs_create_file("sched_features", 0644, NULL, NULL,
186 &sched_feat_fops);
187
188 return 0;
189}
190late_initcall(sched_init_debug);
191
192#ifdef CONFIG_SMP
193
194#ifdef CONFIG_SYSCTL
195
196static struct ctl_table sd_ctl_dir[] = {
197 {
198 .procname = "sched_domain",
199 .mode = 0555,
200 },
201 {}
202};
203
204static struct ctl_table sd_ctl_root[] = {
205 {
206 .procname = "kernel",
207 .mode = 0555,
208 .child = sd_ctl_dir,
209 },
210 {}
211};
212
213static struct ctl_table *sd_alloc_ctl_entry(int n)
214{
215 struct ctl_table *entry =
216 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
217
218 return entry;
219}
220
221static void sd_free_ctl_entry(struct ctl_table **tablep)
222{
223 struct ctl_table *entry;
224
225 /*
226 * In the intermediate directories, both the child directory and
227 * procname are dynamically allocated and could fail but the mode
228 * will always be set. In the lowest directory the names are
229 * static strings and all have proc handlers.
230 */
231 for (entry = *tablep; entry->mode; entry++) {
232 if (entry->child)
233 sd_free_ctl_entry(&entry->child);
234 if (entry->proc_handler == NULL)
235 kfree(entry->procname);
236 }
237
238 kfree(*tablep);
239 *tablep = NULL;
240}
241
242static int min_load_idx = 0;
243static int max_load_idx = CPU_LOAD_IDX_MAX-1;
244
245static void
246set_table_entry(struct ctl_table *entry,
247 const char *procname, void *data, int maxlen,
248 umode_t mode, proc_handler *proc_handler,
249 bool load_idx)
250{
251 entry->procname = procname;
252 entry->data = data;
253 entry->maxlen = maxlen;
254 entry->mode = mode;
255 entry->proc_handler = proc_handler;
256
257 if (load_idx) {
258 entry->extra1 = &min_load_idx;
259 entry->extra2 = &max_load_idx;
260 }
261}
262
263static struct ctl_table *
264sd_alloc_ctl_domain_table(struct sched_domain *sd)
265{
266 struct ctl_table *table = sd_alloc_ctl_entry(14);
267
268 if (table == NULL)
269 return NULL;
270
271 set_table_entry(&table[0], "min_interval", &sd->min_interval,
272 sizeof(long), 0644, proc_doulongvec_minmax, false);
273 set_table_entry(&table[1], "max_interval", &sd->max_interval,
274 sizeof(long), 0644, proc_doulongvec_minmax, false);
275 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
276 sizeof(int), 0644, proc_dointvec_minmax, true);
277 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
278 sizeof(int), 0644, proc_dointvec_minmax, true);
279 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
280 sizeof(int), 0644, proc_dointvec_minmax, true);
281 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
282 sizeof(int), 0644, proc_dointvec_minmax, true);
283 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
284 sizeof(int), 0644, proc_dointvec_minmax, true);
285 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
286 sizeof(int), 0644, proc_dointvec_minmax, false);
287 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
288 sizeof(int), 0644, proc_dointvec_minmax, false);
289 set_table_entry(&table[9], "cache_nice_tries",
290 &sd->cache_nice_tries,
291 sizeof(int), 0644, proc_dointvec_minmax, false);
292 set_table_entry(&table[10], "flags", &sd->flags,
293 sizeof(int), 0644, proc_dointvec_minmax, false);
294 set_table_entry(&table[11], "max_newidle_lb_cost",
295 &sd->max_newidle_lb_cost,
296 sizeof(long), 0644, proc_doulongvec_minmax, false);
297 set_table_entry(&table[12], "name", sd->name,
298 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
299 /* &table[13] is terminator */
300
301 return table;
302}
303
304static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
305{
306 struct ctl_table *entry, *table;
307 struct sched_domain *sd;
308 int domain_num = 0, i;
309 char buf[32];
310
311 for_each_domain(cpu, sd)
312 domain_num++;
313 entry = table = sd_alloc_ctl_entry(domain_num + 1);
314 if (table == NULL)
315 return NULL;
316
317 i = 0;
318 for_each_domain(cpu, sd) {
319 snprintf(buf, 32, "domain%d", i);
320 entry->procname = kstrdup(buf, GFP_KERNEL);
321 entry->mode = 0555;
322 entry->child = sd_alloc_ctl_domain_table(sd);
323 entry++;
324 i++;
325 }
326 return table;
327}
328
329static struct ctl_table_header *sd_sysctl_header;
330void register_sched_domain_sysctl(void)
331{
332 int i, cpu_num = num_possible_cpus();
333 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
334 char buf[32];
335
336 WARN_ON(sd_ctl_dir[0].child);
337 sd_ctl_dir[0].child = entry;
338
339 if (entry == NULL)
340 return;
341
342 for_each_possible_cpu(i) {
343 snprintf(buf, 32, "cpu%d", i);
344 entry->procname = kstrdup(buf, GFP_KERNEL);
345 entry->mode = 0555;
346 entry->child = sd_alloc_ctl_cpu_table(i);
347 entry++;
348 }
349
350 WARN_ON(sd_sysctl_header);
351 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
352}
353
354/* may be called multiple times per register */
355void unregister_sched_domain_sysctl(void)
356{
357 unregister_sysctl_table(sd_sysctl_header);
358 sd_sysctl_header = NULL;
359 if (sd_ctl_dir[0].child)
360 sd_free_ctl_entry(&sd_ctl_dir[0].child);
361}
362#endif /* CONFIG_SYSCTL */
363#endif /* CONFIG_SMP */
364
365#ifdef CONFIG_FAIR_GROUP_SCHED
366static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
367{
368 struct sched_entity *se = tg->se[cpu];
369
370#define P(F) \
371 SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
372#define PN(F) \
373 SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
374
375 if (!se)
376 return;
377
378 PN(se->exec_start);
379 PN(se->vruntime);
380 PN(se->sum_exec_runtime);
381#ifdef CONFIG_SCHEDSTATS
382 if (schedstat_enabled()) {
383 PN(se->statistics.wait_start);
384 PN(se->statistics.sleep_start);
385 PN(se->statistics.block_start);
386 PN(se->statistics.sleep_max);
387 PN(se->statistics.block_max);
388 PN(se->statistics.exec_max);
389 PN(se->statistics.slice_max);
390 PN(se->statistics.wait_max);
391 PN(se->statistics.wait_sum);
392 P(se->statistics.wait_count);
393 }
394#endif
395 P(se->load.weight);
396#ifdef CONFIG_SMP
397 P(se->avg.load_avg);
398 P(se->avg.util_avg);
399#endif
400#undef PN
401#undef P
402}
403#endif
404
405#ifdef CONFIG_CGROUP_SCHED
406static char group_path[PATH_MAX];
407
408static char *task_group_path(struct task_group *tg)
409{
410 if (autogroup_path(tg, group_path, PATH_MAX))
411 return group_path;
412
413 return cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
414}
415#endif
416
417static void
418print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
419{
420 if (rq->curr == p)
421 SEQ_printf(m, "R");
422 else
423 SEQ_printf(m, " ");
424
425 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
426 p->comm, task_pid_nr(p),
427 SPLIT_NS(p->se.vruntime),
428 (long long)(p->nvcsw + p->nivcsw),
429 p->prio);
430#ifdef CONFIG_SCHEDSTATS
431 if (schedstat_enabled()) {
432 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
433 SPLIT_NS(p->se.statistics.wait_sum),
434 SPLIT_NS(p->se.sum_exec_runtime),
435 SPLIT_NS(p->se.statistics.sum_sleep_runtime));
436 }
437#else
438 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
439 0LL, 0L,
440 SPLIT_NS(p->se.sum_exec_runtime),
441 0LL, 0L);
442#endif
443#ifdef CONFIG_NUMA_BALANCING
444 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
445#endif
446#ifdef CONFIG_CGROUP_SCHED
447 SEQ_printf(m, " %s", task_group_path(task_group(p)));
448#endif
449
450 SEQ_printf(m, "\n");
451}
452
453static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
454{
455 struct task_struct *g, *p;
456
457 SEQ_printf(m,
458 "\nrunnable tasks:\n"
459 " task PID tree-key switches prio"
460 " wait-time sum-exec sum-sleep\n"
461 "------------------------------------------------------"
462 "----------------------------------------------------\n");
463
464 rcu_read_lock();
465 for_each_process_thread(g, p) {
466 if (task_cpu(p) != rq_cpu)
467 continue;
468
469 print_task(m, rq, p);
470 }
471 rcu_read_unlock();
472}
473
474void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
475{
476 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
477 spread, rq0_min_vruntime, spread0;
478 struct rq *rq = cpu_rq(cpu);
479 struct sched_entity *last;
480 unsigned long flags;
481
482#ifdef CONFIG_FAIR_GROUP_SCHED
483 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
484#else
485 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
486#endif
487 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
488 SPLIT_NS(cfs_rq->exec_clock));
489
490 raw_spin_lock_irqsave(&rq->lock, flags);
491 if (cfs_rq->rb_leftmost)
492 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
493 last = __pick_last_entity(cfs_rq);
494 if (last)
495 max_vruntime = last->vruntime;
496 min_vruntime = cfs_rq->min_vruntime;
497 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
498 raw_spin_unlock_irqrestore(&rq->lock, flags);
499 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
500 SPLIT_NS(MIN_vruntime));
501 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
502 SPLIT_NS(min_vruntime));
503 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
504 SPLIT_NS(max_vruntime));
505 spread = max_vruntime - MIN_vruntime;
506 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
507 SPLIT_NS(spread));
508 spread0 = min_vruntime - rq0_min_vruntime;
509 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
510 SPLIT_NS(spread0));
511 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
512 cfs_rq->nr_spread_over);
513 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
514 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
515#ifdef CONFIG_SMP
516 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
517 cfs_rq->avg.load_avg);
518 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
519 cfs_rq->runnable_load_avg);
520 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
521 cfs_rq->avg.util_avg);
522 SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg",
523 atomic_long_read(&cfs_rq->removed_load_avg));
524 SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg",
525 atomic_long_read(&cfs_rq->removed_util_avg));
526#ifdef CONFIG_FAIR_GROUP_SCHED
527 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
528 cfs_rq->tg_load_avg_contrib);
529 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
530 atomic_long_read(&cfs_rq->tg->load_avg));
531#endif
532#endif
533#ifdef CONFIG_CFS_BANDWIDTH
534 SEQ_printf(m, " .%-30s: %d\n", "throttled",
535 cfs_rq->throttled);
536 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
537 cfs_rq->throttle_count);
538#endif
539
540#ifdef CONFIG_FAIR_GROUP_SCHED
541 print_cfs_group_stats(m, cpu, cfs_rq->tg);
542#endif
543}
544
545void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
546{
547#ifdef CONFIG_RT_GROUP_SCHED
548 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
549#else
550 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
551#endif
552
553#define P(x) \
554 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
555#define PN(x) \
556 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
557
558 P(rt_nr_running);
559 P(rt_throttled);
560 PN(rt_time);
561 PN(rt_runtime);
562
563#undef PN
564#undef P
565}
566
567void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
568{
569 struct dl_bw *dl_bw;
570
571 SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
572 SEQ_printf(m, " .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running);
573#ifdef CONFIG_SMP
574 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
575#else
576 dl_bw = &dl_rq->dl_bw;
577#endif
578 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
579 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
580}
581
582extern __read_mostly int sched_clock_running;
583
584static void print_cpu(struct seq_file *m, int cpu)
585{
586 struct rq *rq = cpu_rq(cpu);
587 unsigned long flags;
588
589#ifdef CONFIG_X86
590 {
591 unsigned int freq = cpu_khz ? : 1;
592
593 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
594 cpu, freq / 1000, (freq % 1000));
595 }
596#else
597 SEQ_printf(m, "cpu#%d\n", cpu);
598#endif
599
600#define P(x) \
601do { \
602 if (sizeof(rq->x) == 4) \
603 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
604 else \
605 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
606} while (0)
607
608#define PN(x) \
609 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
610
611 P(nr_running);
612 SEQ_printf(m, " .%-30s: %lu\n", "load",
613 rq->load.weight);
614 P(nr_switches);
615 P(nr_load_updates);
616 P(nr_uninterruptible);
617 PN(next_balance);
618 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
619 PN(clock);
620 PN(clock_task);
621 P(cpu_load[0]);
622 P(cpu_load[1]);
623 P(cpu_load[2]);
624 P(cpu_load[3]);
625 P(cpu_load[4]);
626#undef P
627#undef PN
628
629#ifdef CONFIG_SCHEDSTATS
630#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
631#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
632
633#ifdef CONFIG_SMP
634 P64(avg_idle);
635 P64(max_idle_balance_cost);
636#endif
637
638 if (schedstat_enabled()) {
639 P(yld_count);
640 P(sched_count);
641 P(sched_goidle);
642 P(ttwu_count);
643 P(ttwu_local);
644 }
645
646#undef P
647#undef P64
648#endif
649 spin_lock_irqsave(&sched_debug_lock, flags);
650 print_cfs_stats(m, cpu);
651 print_rt_stats(m, cpu);
652 print_dl_stats(m, cpu);
653
654 print_rq(m, rq, cpu);
655 spin_unlock_irqrestore(&sched_debug_lock, flags);
656 SEQ_printf(m, "\n");
657}
658
659static const char *sched_tunable_scaling_names[] = {
660 "none",
661 "logaritmic",
662 "linear"
663};
664
665static void sched_debug_header(struct seq_file *m)
666{
667 u64 ktime, sched_clk, cpu_clk;
668 unsigned long flags;
669
670 local_irq_save(flags);
671 ktime = ktime_to_ns(ktime_get());
672 sched_clk = sched_clock();
673 cpu_clk = local_clock();
674 local_irq_restore(flags);
675
676 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
677 init_utsname()->release,
678 (int)strcspn(init_utsname()->version, " "),
679 init_utsname()->version);
680
681#define P(x) \
682 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
683#define PN(x) \
684 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
685 PN(ktime);
686 PN(sched_clk);
687 PN(cpu_clk);
688 P(jiffies);
689#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
690 P(sched_clock_stable());
691#endif
692#undef PN
693#undef P
694
695 SEQ_printf(m, "\n");
696 SEQ_printf(m, "sysctl_sched\n");
697
698#define P(x) \
699 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
700#define PN(x) \
701 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
702 PN(sysctl_sched_latency);
703 PN(sysctl_sched_min_granularity);
704 PN(sysctl_sched_wakeup_granularity);
705 P(sysctl_sched_child_runs_first);
706 P(sysctl_sched_features);
707#undef PN
708#undef P
709
710 SEQ_printf(m, " .%-40s: %d (%s)\n",
711 "sysctl_sched_tunable_scaling",
712 sysctl_sched_tunable_scaling,
713 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
714 SEQ_printf(m, "\n");
715}
716
717static int sched_debug_show(struct seq_file *m, void *v)
718{
719 int cpu = (unsigned long)(v - 2);
720
721 if (cpu != -1)
722 print_cpu(m, cpu);
723 else
724 sched_debug_header(m);
725
726 return 0;
727}
728
729void sysrq_sched_debug_show(void)
730{
731 int cpu;
732
733 sched_debug_header(NULL);
734 for_each_online_cpu(cpu)
735 print_cpu(NULL, cpu);
736
737}
738
739/*
740 * This itererator needs some explanation.
741 * It returns 1 for the header position.
742 * This means 2 is cpu 0.
743 * In a hotplugged system some cpus, including cpu 0, may be missing so we have
744 * to use cpumask_* to iterate over the cpus.
745 */
746static void *sched_debug_start(struct seq_file *file, loff_t *offset)
747{
748 unsigned long n = *offset;
749
750 if (n == 0)
751 return (void *) 1;
752
753 n--;
754
755 if (n > 0)
756 n = cpumask_next(n - 1, cpu_online_mask);
757 else
758 n = cpumask_first(cpu_online_mask);
759
760 *offset = n + 1;
761
762 if (n < nr_cpu_ids)
763 return (void *)(unsigned long)(n + 2);
764 return NULL;
765}
766
767static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
768{
769 (*offset)++;
770 return sched_debug_start(file, offset);
771}
772
773static void sched_debug_stop(struct seq_file *file, void *data)
774{
775}
776
777static const struct seq_operations sched_debug_sops = {
778 .start = sched_debug_start,
779 .next = sched_debug_next,
780 .stop = sched_debug_stop,
781 .show = sched_debug_show,
782};
783
784static int sched_debug_release(struct inode *inode, struct file *file)
785{
786 seq_release(inode, file);
787
788 return 0;
789}
790
791static int sched_debug_open(struct inode *inode, struct file *filp)
792{
793 int ret = 0;
794
795 ret = seq_open(filp, &sched_debug_sops);
796
797 return ret;
798}
799
800static const struct file_operations sched_debug_fops = {
801 .open = sched_debug_open,
802 .read = seq_read,
803 .llseek = seq_lseek,
804 .release = sched_debug_release,
805};
806
807static int __init init_sched_debug_procfs(void)
808{
809 struct proc_dir_entry *pe;
810
811 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
812 if (!pe)
813 return -ENOMEM;
814 return 0;
815}
816
817__initcall(init_sched_debug_procfs);
818
819#define __P(F) \
820 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
821#define P(F) \
822 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
823#define __PN(F) \
824 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
825#define PN(F) \
826 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
827
828
829#ifdef CONFIG_NUMA_BALANCING
830void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
831 unsigned long tpf, unsigned long gsf, unsigned long gpf)
832{
833 SEQ_printf(m, "numa_faults node=%d ", node);
834 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
835 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
836}
837#endif
838
839
840static void sched_show_numa(struct task_struct *p, struct seq_file *m)
841{
842#ifdef CONFIG_NUMA_BALANCING
843 struct mempolicy *pol;
844
845 if (p->mm)
846 P(mm->numa_scan_seq);
847
848 task_lock(p);
849 pol = p->mempolicy;
850 if (pol && !(pol->flags & MPOL_F_MORON))
851 pol = NULL;
852 mpol_get(pol);
853 task_unlock(p);
854
855 P(numa_pages_migrated);
856 P(numa_preferred_nid);
857 P(total_numa_faults);
858 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
859 task_node(p), task_numa_group_id(p));
860 show_numa_stats(p, m);
861 mpol_put(pol);
862#endif
863}
864
865void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
866{
867 unsigned long nr_switches;
868
869 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
870 get_nr_threads(p));
871 SEQ_printf(m,
872 "---------------------------------------------------------"
873 "----------\n");
874#define __P(F) \
875 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
876#define P(F) \
877 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
878#define __PN(F) \
879 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
880#define PN(F) \
881 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
882
883 PN(se.exec_start);
884 PN(se.vruntime);
885 PN(se.sum_exec_runtime);
886
887 nr_switches = p->nvcsw + p->nivcsw;
888
889#ifdef CONFIG_SCHEDSTATS
890 P(se.nr_migrations);
891
892 if (schedstat_enabled()) {
893 u64 avg_atom, avg_per_cpu;
894
895 PN(se.statistics.sum_sleep_runtime);
896 PN(se.statistics.wait_start);
897 PN(se.statistics.sleep_start);
898 PN(se.statistics.block_start);
899 PN(se.statistics.sleep_max);
900 PN(se.statistics.block_max);
901 PN(se.statistics.exec_max);
902 PN(se.statistics.slice_max);
903 PN(se.statistics.wait_max);
904 PN(se.statistics.wait_sum);
905 P(se.statistics.wait_count);
906 PN(se.statistics.iowait_sum);
907 P(se.statistics.iowait_count);
908 P(se.statistics.nr_migrations_cold);
909 P(se.statistics.nr_failed_migrations_affine);
910 P(se.statistics.nr_failed_migrations_running);
911 P(se.statistics.nr_failed_migrations_hot);
912 P(se.statistics.nr_forced_migrations);
913 P(se.statistics.nr_wakeups);
914 P(se.statistics.nr_wakeups_sync);
915 P(se.statistics.nr_wakeups_migrate);
916 P(se.statistics.nr_wakeups_local);
917 P(se.statistics.nr_wakeups_remote);
918 P(se.statistics.nr_wakeups_affine);
919 P(se.statistics.nr_wakeups_affine_attempts);
920 P(se.statistics.nr_wakeups_passive);
921 P(se.statistics.nr_wakeups_idle);
922
923 avg_atom = p->se.sum_exec_runtime;
924 if (nr_switches)
925 avg_atom = div64_ul(avg_atom, nr_switches);
926 else
927 avg_atom = -1LL;
928
929 avg_per_cpu = p->se.sum_exec_runtime;
930 if (p->se.nr_migrations) {
931 avg_per_cpu = div64_u64(avg_per_cpu,
932 p->se.nr_migrations);
933 } else {
934 avg_per_cpu = -1LL;
935 }
936
937 __PN(avg_atom);
938 __PN(avg_per_cpu);
939 }
940#endif
941 __P(nr_switches);
942 SEQ_printf(m, "%-45s:%21Ld\n",
943 "nr_voluntary_switches", (long long)p->nvcsw);
944 SEQ_printf(m, "%-45s:%21Ld\n",
945 "nr_involuntary_switches", (long long)p->nivcsw);
946
947 P(se.load.weight);
948#ifdef CONFIG_SMP
949 P(se.avg.load_sum);
950 P(se.avg.util_sum);
951 P(se.avg.load_avg);
952 P(se.avg.util_avg);
953 P(se.avg.last_update_time);
954#endif
955 P(policy);
956 P(prio);
957#undef PN
958#undef __PN
959#undef P
960#undef __P
961
962 {
963 unsigned int this_cpu = raw_smp_processor_id();
964 u64 t0, t1;
965
966 t0 = cpu_clock(this_cpu);
967 t1 = cpu_clock(this_cpu);
968 SEQ_printf(m, "%-45s:%21Ld\n",
969 "clock-delta", (long long)(t1-t0));
970 }
971
972 sched_show_numa(p, m);
973}
974
975void proc_sched_set_task(struct task_struct *p)
976{
977#ifdef CONFIG_SCHEDSTATS
978 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
979#endif
980}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * kernel/sched/debug.c
4 *
5 * Print the CFS rbtree and other debugging details
6 *
7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8 */
9
10/*
11 * This allows printing both to /sys/kernel/debug/sched/debug and
12 * to the console
13 */
14#define SEQ_printf(m, x...) \
15 do { \
16 if (m) \
17 seq_printf(m, x); \
18 else \
19 pr_cont(x); \
20 } while (0)
21
22/*
23 * Ease the printing of nsec fields:
24 */
25static long long nsec_high(unsigned long long nsec)
26{
27 if ((long long)nsec < 0) {
28 nsec = -nsec;
29 do_div(nsec, 1000000);
30 return -nsec;
31 }
32 do_div(nsec, 1000000);
33
34 return nsec;
35}
36
37static unsigned long nsec_low(unsigned long long nsec)
38{
39 if ((long long)nsec < 0)
40 nsec = -nsec;
41
42 return do_div(nsec, 1000000);
43}
44
45#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
46
47#define SCHED_FEAT(name, enabled) \
48 #name ,
49
50static const char * const sched_feat_names[] = {
51#include "features.h"
52};
53
54#undef SCHED_FEAT
55
56static int sched_feat_show(struct seq_file *m, void *v)
57{
58 int i;
59
60 for (i = 0; i < __SCHED_FEAT_NR; i++) {
61 if (!(sysctl_sched_features & (1UL << i)))
62 seq_puts(m, "NO_");
63 seq_printf(m, "%s ", sched_feat_names[i]);
64 }
65 seq_puts(m, "\n");
66
67 return 0;
68}
69
70#ifdef CONFIG_JUMP_LABEL
71
72#define jump_label_key__true STATIC_KEY_INIT_TRUE
73#define jump_label_key__false STATIC_KEY_INIT_FALSE
74
75#define SCHED_FEAT(name, enabled) \
76 jump_label_key__##enabled ,
77
78struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
79#include "features.h"
80};
81
82#undef SCHED_FEAT
83
84static void sched_feat_disable(int i)
85{
86 static_key_disable_cpuslocked(&sched_feat_keys[i]);
87}
88
89static void sched_feat_enable(int i)
90{
91 static_key_enable_cpuslocked(&sched_feat_keys[i]);
92}
93#else
94static void sched_feat_disable(int i) { };
95static void sched_feat_enable(int i) { };
96#endif /* CONFIG_JUMP_LABEL */
97
98static int sched_feat_set(char *cmp)
99{
100 int i;
101 int neg = 0;
102
103 if (strncmp(cmp, "NO_", 3) == 0) {
104 neg = 1;
105 cmp += 3;
106 }
107
108 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
109 if (i < 0)
110 return i;
111
112 if (neg) {
113 sysctl_sched_features &= ~(1UL << i);
114 sched_feat_disable(i);
115 } else {
116 sysctl_sched_features |= (1UL << i);
117 sched_feat_enable(i);
118 }
119
120 return 0;
121}
122
123static ssize_t
124sched_feat_write(struct file *filp, const char __user *ubuf,
125 size_t cnt, loff_t *ppos)
126{
127 char buf[64];
128 char *cmp;
129 int ret;
130 struct inode *inode;
131
132 if (cnt > 63)
133 cnt = 63;
134
135 if (copy_from_user(&buf, ubuf, cnt))
136 return -EFAULT;
137
138 buf[cnt] = 0;
139 cmp = strstrip(buf);
140
141 /* Ensure the static_key remains in a consistent state */
142 inode = file_inode(filp);
143 cpus_read_lock();
144 inode_lock(inode);
145 ret = sched_feat_set(cmp);
146 inode_unlock(inode);
147 cpus_read_unlock();
148 if (ret < 0)
149 return ret;
150
151 *ppos += cnt;
152
153 return cnt;
154}
155
156static int sched_feat_open(struct inode *inode, struct file *filp)
157{
158 return single_open(filp, sched_feat_show, NULL);
159}
160
161static const struct file_operations sched_feat_fops = {
162 .open = sched_feat_open,
163 .write = sched_feat_write,
164 .read = seq_read,
165 .llseek = seq_lseek,
166 .release = single_release,
167};
168
169#ifdef CONFIG_SMP
170
171static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf,
172 size_t cnt, loff_t *ppos)
173{
174 char buf[16];
175 unsigned int scaling;
176
177 if (cnt > 15)
178 cnt = 15;
179
180 if (copy_from_user(&buf, ubuf, cnt))
181 return -EFAULT;
182 buf[cnt] = '\0';
183
184 if (kstrtouint(buf, 10, &scaling))
185 return -EINVAL;
186
187 if (scaling >= SCHED_TUNABLESCALING_END)
188 return -EINVAL;
189
190 sysctl_sched_tunable_scaling = scaling;
191 if (sched_update_scaling())
192 return -EINVAL;
193
194 *ppos += cnt;
195 return cnt;
196}
197
198static int sched_scaling_show(struct seq_file *m, void *v)
199{
200 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling);
201 return 0;
202}
203
204static int sched_scaling_open(struct inode *inode, struct file *filp)
205{
206 return single_open(filp, sched_scaling_show, NULL);
207}
208
209static const struct file_operations sched_scaling_fops = {
210 .open = sched_scaling_open,
211 .write = sched_scaling_write,
212 .read = seq_read,
213 .llseek = seq_lseek,
214 .release = single_release,
215};
216
217#endif /* SMP */
218
219#ifdef CONFIG_PREEMPT_DYNAMIC
220
221static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf,
222 size_t cnt, loff_t *ppos)
223{
224 char buf[16];
225 int mode;
226
227 if (cnt > 15)
228 cnt = 15;
229
230 if (copy_from_user(&buf, ubuf, cnt))
231 return -EFAULT;
232
233 buf[cnt] = 0;
234 mode = sched_dynamic_mode(strstrip(buf));
235 if (mode < 0)
236 return mode;
237
238 sched_dynamic_update(mode);
239
240 *ppos += cnt;
241
242 return cnt;
243}
244
245static int sched_dynamic_show(struct seq_file *m, void *v)
246{
247 static const char * preempt_modes[] = {
248 "none", "voluntary", "full"
249 };
250 int i;
251
252 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) {
253 if (preempt_dynamic_mode == i)
254 seq_puts(m, "(");
255 seq_puts(m, preempt_modes[i]);
256 if (preempt_dynamic_mode == i)
257 seq_puts(m, ")");
258
259 seq_puts(m, " ");
260 }
261
262 seq_puts(m, "\n");
263 return 0;
264}
265
266static int sched_dynamic_open(struct inode *inode, struct file *filp)
267{
268 return single_open(filp, sched_dynamic_show, NULL);
269}
270
271static const struct file_operations sched_dynamic_fops = {
272 .open = sched_dynamic_open,
273 .write = sched_dynamic_write,
274 .read = seq_read,
275 .llseek = seq_lseek,
276 .release = single_release,
277};
278
279#endif /* CONFIG_PREEMPT_DYNAMIC */
280
281__read_mostly bool sched_debug_verbose;
282
283#ifdef CONFIG_SMP
284static struct dentry *sd_dentry;
285
286
287static ssize_t sched_verbose_write(struct file *filp, const char __user *ubuf,
288 size_t cnt, loff_t *ppos)
289{
290 ssize_t result;
291 bool orig;
292
293 cpus_read_lock();
294 mutex_lock(&sched_domains_mutex);
295
296 orig = sched_debug_verbose;
297 result = debugfs_write_file_bool(filp, ubuf, cnt, ppos);
298
299 if (sched_debug_verbose && !orig)
300 update_sched_domain_debugfs();
301 else if (!sched_debug_verbose && orig) {
302 debugfs_remove(sd_dentry);
303 sd_dentry = NULL;
304 }
305
306 mutex_unlock(&sched_domains_mutex);
307 cpus_read_unlock();
308
309 return result;
310}
311#else
312#define sched_verbose_write debugfs_write_file_bool
313#endif
314
315static const struct file_operations sched_verbose_fops = {
316 .read = debugfs_read_file_bool,
317 .write = sched_verbose_write,
318 .open = simple_open,
319 .llseek = default_llseek,
320};
321
322static const struct seq_operations sched_debug_sops;
323
324static int sched_debug_open(struct inode *inode, struct file *filp)
325{
326 return seq_open(filp, &sched_debug_sops);
327}
328
329static const struct file_operations sched_debug_fops = {
330 .open = sched_debug_open,
331 .read = seq_read,
332 .llseek = seq_lseek,
333 .release = seq_release,
334};
335
336static struct dentry *debugfs_sched;
337
338static __init int sched_init_debug(void)
339{
340 struct dentry __maybe_unused *numa;
341
342 debugfs_sched = debugfs_create_dir("sched", NULL);
343
344 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops);
345 debugfs_create_file_unsafe("verbose", 0644, debugfs_sched, &sched_debug_verbose, &sched_verbose_fops);
346#ifdef CONFIG_PREEMPT_DYNAMIC
347 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
348#endif
349
350 debugfs_create_u32("base_slice_ns", 0644, debugfs_sched, &sysctl_sched_base_slice);
351
352 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
353 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
354
355#ifdef CONFIG_SMP
356 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops);
357 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost);
358 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate);
359
360 mutex_lock(&sched_domains_mutex);
361 update_sched_domain_debugfs();
362 mutex_unlock(&sched_domains_mutex);
363#endif
364
365#ifdef CONFIG_NUMA_BALANCING
366 numa = debugfs_create_dir("numa_balancing", debugfs_sched);
367
368 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay);
369 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min);
370 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max);
371 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size);
372 debugfs_create_u32("hot_threshold_ms", 0644, numa, &sysctl_numa_balancing_hot_threshold);
373#endif
374
375 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops);
376
377 return 0;
378}
379late_initcall(sched_init_debug);
380
381#ifdef CONFIG_SMP
382
383static cpumask_var_t sd_sysctl_cpus;
384
385static int sd_flags_show(struct seq_file *m, void *v)
386{
387 unsigned long flags = *(unsigned int *)m->private;
388 int idx;
389
390 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
391 seq_puts(m, sd_flag_debug[idx].name);
392 seq_puts(m, " ");
393 }
394 seq_puts(m, "\n");
395
396 return 0;
397}
398
399static int sd_flags_open(struct inode *inode, struct file *file)
400{
401 return single_open(file, sd_flags_show, inode->i_private);
402}
403
404static const struct file_operations sd_flags_fops = {
405 .open = sd_flags_open,
406 .read = seq_read,
407 .llseek = seq_lseek,
408 .release = single_release,
409};
410
411static void register_sd(struct sched_domain *sd, struct dentry *parent)
412{
413#define SDM(type, mode, member) \
414 debugfs_create_##type(#member, mode, parent, &sd->member)
415
416 SDM(ulong, 0644, min_interval);
417 SDM(ulong, 0644, max_interval);
418 SDM(u64, 0644, max_newidle_lb_cost);
419 SDM(u32, 0644, busy_factor);
420 SDM(u32, 0644, imbalance_pct);
421 SDM(u32, 0644, cache_nice_tries);
422 SDM(str, 0444, name);
423
424#undef SDM
425
426 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops);
427 debugfs_create_file("groups_flags", 0444, parent, &sd->groups->flags, &sd_flags_fops);
428}
429
430void update_sched_domain_debugfs(void)
431{
432 int cpu, i;
433
434 /*
435 * This can unfortunately be invoked before sched_debug_init() creates
436 * the debug directory. Don't touch sd_sysctl_cpus until then.
437 */
438 if (!debugfs_sched)
439 return;
440
441 if (!sched_debug_verbose)
442 return;
443
444 if (!cpumask_available(sd_sysctl_cpus)) {
445 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
446 return;
447 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
448 }
449
450 if (!sd_dentry) {
451 sd_dentry = debugfs_create_dir("domains", debugfs_sched);
452
453 /* rebuild sd_sysctl_cpus if empty since it gets cleared below */
454 if (cpumask_empty(sd_sysctl_cpus))
455 cpumask_copy(sd_sysctl_cpus, cpu_online_mask);
456 }
457
458 for_each_cpu(cpu, sd_sysctl_cpus) {
459 struct sched_domain *sd;
460 struct dentry *d_cpu;
461 char buf[32];
462
463 snprintf(buf, sizeof(buf), "cpu%d", cpu);
464 debugfs_lookup_and_remove(buf, sd_dentry);
465 d_cpu = debugfs_create_dir(buf, sd_dentry);
466
467 i = 0;
468 for_each_domain(cpu, sd) {
469 struct dentry *d_sd;
470
471 snprintf(buf, sizeof(buf), "domain%d", i);
472 d_sd = debugfs_create_dir(buf, d_cpu);
473
474 register_sd(sd, d_sd);
475 i++;
476 }
477
478 __cpumask_clear_cpu(cpu, sd_sysctl_cpus);
479 }
480}
481
482void dirty_sched_domain_sysctl(int cpu)
483{
484 if (cpumask_available(sd_sysctl_cpus))
485 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
486}
487
488#endif /* CONFIG_SMP */
489
490#ifdef CONFIG_FAIR_GROUP_SCHED
491static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
492{
493 struct sched_entity *se = tg->se[cpu];
494
495#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
496#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", \
497 #F, (long long)schedstat_val(stats->F))
498#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
499#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", \
500 #F, SPLIT_NS((long long)schedstat_val(stats->F)))
501
502 if (!se)
503 return;
504
505 PN(se->exec_start);
506 PN(se->vruntime);
507 PN(se->sum_exec_runtime);
508
509 if (schedstat_enabled()) {
510 struct sched_statistics *stats;
511 stats = __schedstats_from_se(se);
512
513 PN_SCHEDSTAT(wait_start);
514 PN_SCHEDSTAT(sleep_start);
515 PN_SCHEDSTAT(block_start);
516 PN_SCHEDSTAT(sleep_max);
517 PN_SCHEDSTAT(block_max);
518 PN_SCHEDSTAT(exec_max);
519 PN_SCHEDSTAT(slice_max);
520 PN_SCHEDSTAT(wait_max);
521 PN_SCHEDSTAT(wait_sum);
522 P_SCHEDSTAT(wait_count);
523 }
524
525 P(se->load.weight);
526#ifdef CONFIG_SMP
527 P(se->avg.load_avg);
528 P(se->avg.util_avg);
529 P(se->avg.runnable_avg);
530#endif
531
532#undef PN_SCHEDSTAT
533#undef PN
534#undef P_SCHEDSTAT
535#undef P
536}
537#endif
538
539#ifdef CONFIG_CGROUP_SCHED
540static DEFINE_SPINLOCK(sched_debug_lock);
541static char group_path[PATH_MAX];
542
543static void task_group_path(struct task_group *tg, char *path, int plen)
544{
545 if (autogroup_path(tg, path, plen))
546 return;
547
548 cgroup_path(tg->css.cgroup, path, plen);
549}
550
551/*
552 * Only 1 SEQ_printf_task_group_path() caller can use the full length
553 * group_path[] for cgroup path. Other simultaneous callers will have
554 * to use a shorter stack buffer. A "..." suffix is appended at the end
555 * of the stack buffer so that it will show up in case the output length
556 * matches the given buffer size to indicate possible path name truncation.
557 */
558#define SEQ_printf_task_group_path(m, tg, fmt...) \
559{ \
560 if (spin_trylock(&sched_debug_lock)) { \
561 task_group_path(tg, group_path, sizeof(group_path)); \
562 SEQ_printf(m, fmt, group_path); \
563 spin_unlock(&sched_debug_lock); \
564 } else { \
565 char buf[128]; \
566 char *bufend = buf + sizeof(buf) - 3; \
567 task_group_path(tg, buf, bufend - buf); \
568 strcpy(bufend - 1, "..."); \
569 SEQ_printf(m, fmt, buf); \
570 } \
571}
572#endif
573
574static void
575print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
576{
577 if (task_current(rq, p))
578 SEQ_printf(m, ">R");
579 else
580 SEQ_printf(m, " %c", task_state_to_char(p));
581
582 SEQ_printf(m, "%15s %5d %9Ld.%06ld %c %9Ld.%06ld %9Ld.%06ld %9Ld.%06ld %9Ld %5d ",
583 p->comm, task_pid_nr(p),
584 SPLIT_NS(p->se.vruntime),
585 entity_eligible(cfs_rq_of(&p->se), &p->se) ? 'E' : 'N',
586 SPLIT_NS(p->se.deadline),
587 SPLIT_NS(p->se.slice),
588 SPLIT_NS(p->se.sum_exec_runtime),
589 (long long)(p->nvcsw + p->nivcsw),
590 p->prio);
591
592 SEQ_printf(m, "%9lld.%06ld %9lld.%06ld %9lld.%06ld %9lld.%06ld",
593 SPLIT_NS(schedstat_val_or_zero(p->stats.wait_sum)),
594 SPLIT_NS(p->se.sum_exec_runtime),
595 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_sleep_runtime)),
596 SPLIT_NS(schedstat_val_or_zero(p->stats.sum_block_runtime)));
597
598#ifdef CONFIG_NUMA_BALANCING
599 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
600#endif
601#ifdef CONFIG_CGROUP_SCHED
602 SEQ_printf_task_group_path(m, task_group(p), " %s")
603#endif
604
605 SEQ_printf(m, "\n");
606}
607
608static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
609{
610 struct task_struct *g, *p;
611
612 SEQ_printf(m, "\n");
613 SEQ_printf(m, "runnable tasks:\n");
614 SEQ_printf(m, " S task PID tree-key switches prio"
615 " wait-time sum-exec sum-sleep\n");
616 SEQ_printf(m, "-------------------------------------------------------"
617 "------------------------------------------------------\n");
618
619 rcu_read_lock();
620 for_each_process_thread(g, p) {
621 if (task_cpu(p) != rq_cpu)
622 continue;
623
624 print_task(m, rq, p);
625 }
626 rcu_read_unlock();
627}
628
629void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
630{
631 s64 left_vruntime = -1, min_vruntime, right_vruntime = -1, left_deadline = -1, spread;
632 struct sched_entity *last, *first, *root;
633 struct rq *rq = cpu_rq(cpu);
634 unsigned long flags;
635
636#ifdef CONFIG_FAIR_GROUP_SCHED
637 SEQ_printf(m, "\n");
638 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
639#else
640 SEQ_printf(m, "\n");
641 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
642#endif
643 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
644 SPLIT_NS(cfs_rq->exec_clock));
645
646 raw_spin_rq_lock_irqsave(rq, flags);
647 root = __pick_root_entity(cfs_rq);
648 if (root)
649 left_vruntime = root->min_vruntime;
650 first = __pick_first_entity(cfs_rq);
651 if (first)
652 left_deadline = first->deadline;
653 last = __pick_last_entity(cfs_rq);
654 if (last)
655 right_vruntime = last->vruntime;
656 min_vruntime = cfs_rq->min_vruntime;
657 raw_spin_rq_unlock_irqrestore(rq, flags);
658
659 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_deadline",
660 SPLIT_NS(left_deadline));
661 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "left_vruntime",
662 SPLIT_NS(left_vruntime));
663 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
664 SPLIT_NS(min_vruntime));
665 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "avg_vruntime",
666 SPLIT_NS(avg_vruntime(cfs_rq)));
667 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "right_vruntime",
668 SPLIT_NS(right_vruntime));
669 spread = right_vruntime - left_vruntime;
670 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", SPLIT_NS(spread));
671 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
672 cfs_rq->nr_spread_over);
673 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
674 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running);
675 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running",
676 cfs_rq->idle_nr_running);
677 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running",
678 cfs_rq->idle_h_nr_running);
679 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
680#ifdef CONFIG_SMP
681 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
682 cfs_rq->avg.load_avg);
683 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg",
684 cfs_rq->avg.runnable_avg);
685 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
686 cfs_rq->avg.util_avg);
687 SEQ_printf(m, " .%-30s: %u\n", "util_est",
688 cfs_rq->avg.util_est);
689 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
690 cfs_rq->removed.load_avg);
691 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
692 cfs_rq->removed.util_avg);
693 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg",
694 cfs_rq->removed.runnable_avg);
695#ifdef CONFIG_FAIR_GROUP_SCHED
696 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
697 cfs_rq->tg_load_avg_contrib);
698 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
699 atomic_long_read(&cfs_rq->tg->load_avg));
700#endif
701#endif
702#ifdef CONFIG_CFS_BANDWIDTH
703 SEQ_printf(m, " .%-30s: %d\n", "throttled",
704 cfs_rq->throttled);
705 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
706 cfs_rq->throttle_count);
707#endif
708
709#ifdef CONFIG_FAIR_GROUP_SCHED
710 print_cfs_group_stats(m, cpu, cfs_rq->tg);
711#endif
712}
713
714void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
715{
716#ifdef CONFIG_RT_GROUP_SCHED
717 SEQ_printf(m, "\n");
718 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
719#else
720 SEQ_printf(m, "\n");
721 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
722#endif
723
724#define P(x) \
725 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
726#define PU(x) \
727 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
728#define PN(x) \
729 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
730
731 PU(rt_nr_running);
732 P(rt_throttled);
733 PN(rt_time);
734 PN(rt_runtime);
735
736#undef PN
737#undef PU
738#undef P
739}
740
741void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
742{
743 struct dl_bw *dl_bw;
744
745 SEQ_printf(m, "\n");
746 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
747
748#define PU(x) \
749 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
750
751 PU(dl_nr_running);
752#ifdef CONFIG_SMP
753 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
754#else
755 dl_bw = &dl_rq->dl_bw;
756#endif
757 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
758 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
759
760#undef PU
761}
762
763static void print_cpu(struct seq_file *m, int cpu)
764{
765 struct rq *rq = cpu_rq(cpu);
766
767#ifdef CONFIG_X86
768 {
769 unsigned int freq = cpu_khz ? : 1;
770
771 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
772 cpu, freq / 1000, (freq % 1000));
773 }
774#else
775 SEQ_printf(m, "cpu#%d\n", cpu);
776#endif
777
778#define P(x) \
779do { \
780 if (sizeof(rq->x) == 4) \
781 SEQ_printf(m, " .%-30s: %d\n", #x, (int)(rq->x)); \
782 else \
783 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
784} while (0)
785
786#define PN(x) \
787 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
788
789 P(nr_running);
790 P(nr_switches);
791 P(nr_uninterruptible);
792 PN(next_balance);
793 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
794 PN(clock);
795 PN(clock_task);
796#undef P
797#undef PN
798
799#ifdef CONFIG_SMP
800#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
801 P64(avg_idle);
802 P64(max_idle_balance_cost);
803#undef P64
804#endif
805
806#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
807 if (schedstat_enabled()) {
808 P(yld_count);
809 P(sched_count);
810 P(sched_goidle);
811 P(ttwu_count);
812 P(ttwu_local);
813 }
814#undef P
815
816 print_cfs_stats(m, cpu);
817 print_rt_stats(m, cpu);
818 print_dl_stats(m, cpu);
819
820 print_rq(m, rq, cpu);
821 SEQ_printf(m, "\n");
822}
823
824static const char *sched_tunable_scaling_names[] = {
825 "none",
826 "logarithmic",
827 "linear"
828};
829
830static void sched_debug_header(struct seq_file *m)
831{
832 u64 ktime, sched_clk, cpu_clk;
833 unsigned long flags;
834
835 local_irq_save(flags);
836 ktime = ktime_to_ns(ktime_get());
837 sched_clk = sched_clock();
838 cpu_clk = local_clock();
839 local_irq_restore(flags);
840
841 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
842 init_utsname()->release,
843 (int)strcspn(init_utsname()->version, " "),
844 init_utsname()->version);
845
846#define P(x) \
847 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
848#define PN(x) \
849 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
850 PN(ktime);
851 PN(sched_clk);
852 PN(cpu_clk);
853 P(jiffies);
854#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
855 P(sched_clock_stable());
856#endif
857#undef PN
858#undef P
859
860 SEQ_printf(m, "\n");
861 SEQ_printf(m, "sysctl_sched\n");
862
863#define P(x) \
864 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
865#define PN(x) \
866 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
867 PN(sysctl_sched_base_slice);
868 P(sysctl_sched_features);
869#undef PN
870#undef P
871
872 SEQ_printf(m, " .%-40s: %d (%s)\n",
873 "sysctl_sched_tunable_scaling",
874 sysctl_sched_tunable_scaling,
875 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
876 SEQ_printf(m, "\n");
877}
878
879static int sched_debug_show(struct seq_file *m, void *v)
880{
881 int cpu = (unsigned long)(v - 2);
882
883 if (cpu != -1)
884 print_cpu(m, cpu);
885 else
886 sched_debug_header(m);
887
888 return 0;
889}
890
891void sysrq_sched_debug_show(void)
892{
893 int cpu;
894
895 sched_debug_header(NULL);
896 for_each_online_cpu(cpu) {
897 /*
898 * Need to reset softlockup watchdogs on all CPUs, because
899 * another CPU might be blocked waiting for us to process
900 * an IPI or stop_machine.
901 */
902 touch_nmi_watchdog();
903 touch_all_softlockup_watchdogs();
904 print_cpu(NULL, cpu);
905 }
906}
907
908/*
909 * This iterator needs some explanation.
910 * It returns 1 for the header position.
911 * This means 2 is CPU 0.
912 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
913 * to use cpumask_* to iterate over the CPUs.
914 */
915static void *sched_debug_start(struct seq_file *file, loff_t *offset)
916{
917 unsigned long n = *offset;
918
919 if (n == 0)
920 return (void *) 1;
921
922 n--;
923
924 if (n > 0)
925 n = cpumask_next(n - 1, cpu_online_mask);
926 else
927 n = cpumask_first(cpu_online_mask);
928
929 *offset = n + 1;
930
931 if (n < nr_cpu_ids)
932 return (void *)(unsigned long)(n + 2);
933
934 return NULL;
935}
936
937static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
938{
939 (*offset)++;
940 return sched_debug_start(file, offset);
941}
942
943static void sched_debug_stop(struct seq_file *file, void *data)
944{
945}
946
947static const struct seq_operations sched_debug_sops = {
948 .start = sched_debug_start,
949 .next = sched_debug_next,
950 .stop = sched_debug_stop,
951 .show = sched_debug_show,
952};
953
954#define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
955#define __P(F) __PS(#F, F)
956#define P(F) __PS(#F, p->F)
957#define PM(F, M) __PS(#F, p->F & (M))
958#define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
959#define __PN(F) __PSN(#F, F)
960#define PN(F) __PSN(#F, p->F)
961
962
963#ifdef CONFIG_NUMA_BALANCING
964void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
965 unsigned long tpf, unsigned long gsf, unsigned long gpf)
966{
967 SEQ_printf(m, "numa_faults node=%d ", node);
968 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
969 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
970}
971#endif
972
973
974static void sched_show_numa(struct task_struct *p, struct seq_file *m)
975{
976#ifdef CONFIG_NUMA_BALANCING
977 if (p->mm)
978 P(mm->numa_scan_seq);
979
980 P(numa_pages_migrated);
981 P(numa_preferred_nid);
982 P(total_numa_faults);
983 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
984 task_node(p), task_numa_group_id(p));
985 show_numa_stats(p, m);
986#endif
987}
988
989void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
990 struct seq_file *m)
991{
992 unsigned long nr_switches;
993
994 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
995 get_nr_threads(p));
996 SEQ_printf(m,
997 "---------------------------------------------------------"
998 "----------\n");
999
1000#define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->stats.F))
1001#define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->stats.F))
1002
1003 PN(se.exec_start);
1004 PN(se.vruntime);
1005 PN(se.sum_exec_runtime);
1006
1007 nr_switches = p->nvcsw + p->nivcsw;
1008
1009 P(se.nr_migrations);
1010
1011 if (schedstat_enabled()) {
1012 u64 avg_atom, avg_per_cpu;
1013
1014 PN_SCHEDSTAT(sum_sleep_runtime);
1015 PN_SCHEDSTAT(sum_block_runtime);
1016 PN_SCHEDSTAT(wait_start);
1017 PN_SCHEDSTAT(sleep_start);
1018 PN_SCHEDSTAT(block_start);
1019 PN_SCHEDSTAT(sleep_max);
1020 PN_SCHEDSTAT(block_max);
1021 PN_SCHEDSTAT(exec_max);
1022 PN_SCHEDSTAT(slice_max);
1023 PN_SCHEDSTAT(wait_max);
1024 PN_SCHEDSTAT(wait_sum);
1025 P_SCHEDSTAT(wait_count);
1026 PN_SCHEDSTAT(iowait_sum);
1027 P_SCHEDSTAT(iowait_count);
1028 P_SCHEDSTAT(nr_migrations_cold);
1029 P_SCHEDSTAT(nr_failed_migrations_affine);
1030 P_SCHEDSTAT(nr_failed_migrations_running);
1031 P_SCHEDSTAT(nr_failed_migrations_hot);
1032 P_SCHEDSTAT(nr_forced_migrations);
1033 P_SCHEDSTAT(nr_wakeups);
1034 P_SCHEDSTAT(nr_wakeups_sync);
1035 P_SCHEDSTAT(nr_wakeups_migrate);
1036 P_SCHEDSTAT(nr_wakeups_local);
1037 P_SCHEDSTAT(nr_wakeups_remote);
1038 P_SCHEDSTAT(nr_wakeups_affine);
1039 P_SCHEDSTAT(nr_wakeups_affine_attempts);
1040 P_SCHEDSTAT(nr_wakeups_passive);
1041 P_SCHEDSTAT(nr_wakeups_idle);
1042
1043 avg_atom = p->se.sum_exec_runtime;
1044 if (nr_switches)
1045 avg_atom = div64_ul(avg_atom, nr_switches);
1046 else
1047 avg_atom = -1LL;
1048
1049 avg_per_cpu = p->se.sum_exec_runtime;
1050 if (p->se.nr_migrations) {
1051 avg_per_cpu = div64_u64(avg_per_cpu,
1052 p->se.nr_migrations);
1053 } else {
1054 avg_per_cpu = -1LL;
1055 }
1056
1057 __PN(avg_atom);
1058 __PN(avg_per_cpu);
1059
1060#ifdef CONFIG_SCHED_CORE
1061 PN_SCHEDSTAT(core_forceidle_sum);
1062#endif
1063 }
1064
1065 __P(nr_switches);
1066 __PS("nr_voluntary_switches", p->nvcsw);
1067 __PS("nr_involuntary_switches", p->nivcsw);
1068
1069 P(se.load.weight);
1070#ifdef CONFIG_SMP
1071 P(se.avg.load_sum);
1072 P(se.avg.runnable_sum);
1073 P(se.avg.util_sum);
1074 P(se.avg.load_avg);
1075 P(se.avg.runnable_avg);
1076 P(se.avg.util_avg);
1077 P(se.avg.last_update_time);
1078 PM(se.avg.util_est, ~UTIL_AVG_UNCHANGED);
1079#endif
1080#ifdef CONFIG_UCLAMP_TASK
1081 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1082 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1083 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1084 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1085#endif
1086 P(policy);
1087 P(prio);
1088 if (task_has_dl_policy(p)) {
1089 P(dl.runtime);
1090 P(dl.deadline);
1091 }
1092#undef PN_SCHEDSTAT
1093#undef P_SCHEDSTAT
1094
1095 {
1096 unsigned int this_cpu = raw_smp_processor_id();
1097 u64 t0, t1;
1098
1099 t0 = cpu_clock(this_cpu);
1100 t1 = cpu_clock(this_cpu);
1101 __PS("clock-delta", t1-t0);
1102 }
1103
1104 sched_show_numa(p, m);
1105}
1106
1107void proc_sched_set_task(struct task_struct *p)
1108{
1109#ifdef CONFIG_SCHEDSTATS
1110 memset(&p->stats, 0, sizeof(p->stats));
1111#endif
1112}
1113
1114void resched_latency_warn(int cpu, u64 latency)
1115{
1116 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1);
1117
1118 WARN(__ratelimit(&latency_check_ratelimit),
1119 "sched: CPU %d need_resched set for > %llu ns (%d ticks) "
1120 "without schedule\n",
1121 cpu, latency, cpu_rq(cpu)->ticks_without_resched);
1122}