Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * kernel/sched/debug.c
  3 *
  4 * Print the CFS rbtree
  5 *
  6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/proc_fs.h>
 14#include <linux/sched.h>
 15#include <linux/seq_file.h>
 16#include <linux/kallsyms.h>
 17#include <linux/utsname.h>
 18#include <linux/mempolicy.h>
 19#include <linux/debugfs.h>
 20
 21#include "sched.h"
 22
 23static DEFINE_SPINLOCK(sched_debug_lock);
 24
 25/*
 26 * This allows printing both to /proc/sched_debug and
 27 * to the console
 28 */
 29#define SEQ_printf(m, x...)			\
 30 do {						\
 31	if (m)					\
 32		seq_printf(m, x);		\
 33	else					\
 34		printk(x);			\
 35 } while (0)
 36
 37/*
 38 * Ease the printing of nsec fields:
 39 */
 40static long long nsec_high(unsigned long long nsec)
 41{
 42	if ((long long)nsec < 0) {
 43		nsec = -nsec;
 44		do_div(nsec, 1000000);
 45		return -nsec;
 46	}
 47	do_div(nsec, 1000000);
 48
 49	return nsec;
 50}
 51
 52static unsigned long nsec_low(unsigned long long nsec)
 53{
 54	if ((long long)nsec < 0)
 55		nsec = -nsec;
 56
 57	return do_div(nsec, 1000000);
 58}
 59
 60#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
 61
 62#define SCHED_FEAT(name, enabled)	\
 63	#name ,
 64
 65static const char * const sched_feat_names[] = {
 66#include "features.h"
 67};
 68
 69#undef SCHED_FEAT
 70
 71static int sched_feat_show(struct seq_file *m, void *v)
 72{
 73	int i;
 74
 75	for (i = 0; i < __SCHED_FEAT_NR; i++) {
 76		if (!(sysctl_sched_features & (1UL << i)))
 77			seq_puts(m, "NO_");
 78		seq_printf(m, "%s ", sched_feat_names[i]);
 79	}
 80	seq_puts(m, "\n");
 81
 82	return 0;
 83}
 84
 85#ifdef HAVE_JUMP_LABEL
 86
 87#define jump_label_key__true  STATIC_KEY_INIT_TRUE
 88#define jump_label_key__false STATIC_KEY_INIT_FALSE
 89
 90#define SCHED_FEAT(name, enabled)	\
 91	jump_label_key__##enabled ,
 92
 93struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
 94#include "features.h"
 95};
 96
 97#undef SCHED_FEAT
 98
 99static void sched_feat_disable(int i)
100{
101	static_key_disable(&sched_feat_keys[i]);
102}
103
104static void sched_feat_enable(int i)
105{
106	static_key_enable(&sched_feat_keys[i]);
107}
108#else
109static void sched_feat_disable(int i) { };
110static void sched_feat_enable(int i) { };
111#endif /* HAVE_JUMP_LABEL */
112
113static int sched_feat_set(char *cmp)
114{
115	int i;
116	int neg = 0;
117
118	if (strncmp(cmp, "NO_", 3) == 0) {
119		neg = 1;
120		cmp += 3;
121	}
122
123	for (i = 0; i < __SCHED_FEAT_NR; i++) {
124		if (strcmp(cmp, sched_feat_names[i]) == 0) {
125			if (neg) {
126				sysctl_sched_features &= ~(1UL << i);
127				sched_feat_disable(i);
128			} else {
129				sysctl_sched_features |= (1UL << i);
130				sched_feat_enable(i);
131			}
132			break;
133		}
134	}
135
136	return i;
137}
138
139static ssize_t
140sched_feat_write(struct file *filp, const char __user *ubuf,
141		size_t cnt, loff_t *ppos)
142{
143	char buf[64];
144	char *cmp;
145	int i;
146	struct inode *inode;
147
148	if (cnt > 63)
149		cnt = 63;
150
151	if (copy_from_user(&buf, ubuf, cnt))
152		return -EFAULT;
153
154	buf[cnt] = 0;
155	cmp = strstrip(buf);
156
157	/* Ensure the static_key remains in a consistent state */
158	inode = file_inode(filp);
159	inode_lock(inode);
160	i = sched_feat_set(cmp);
161	inode_unlock(inode);
162	if (i == __SCHED_FEAT_NR)
163		return -EINVAL;
164
165	*ppos += cnt;
166
167	return cnt;
168}
169
170static int sched_feat_open(struct inode *inode, struct file *filp)
171{
172	return single_open(filp, sched_feat_show, NULL);
173}
174
175static const struct file_operations sched_feat_fops = {
176	.open		= sched_feat_open,
177	.write		= sched_feat_write,
178	.read		= seq_read,
179	.llseek		= seq_lseek,
180	.release	= single_release,
181};
182
183static __init int sched_init_debug(void)
184{
185	debugfs_create_file("sched_features", 0644, NULL, NULL,
186			&sched_feat_fops);
187
188	return 0;
189}
190late_initcall(sched_init_debug);
191
192#ifdef CONFIG_SMP
193
194#ifdef CONFIG_SYSCTL
195
196static struct ctl_table sd_ctl_dir[] = {
197	{
198		.procname	= "sched_domain",
199		.mode		= 0555,
200	},
201	{}
202};
203
204static struct ctl_table sd_ctl_root[] = {
205	{
206		.procname	= "kernel",
207		.mode		= 0555,
208		.child		= sd_ctl_dir,
209	},
210	{}
211};
212
213static struct ctl_table *sd_alloc_ctl_entry(int n)
214{
215	struct ctl_table *entry =
216		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
217
218	return entry;
219}
220
221static void sd_free_ctl_entry(struct ctl_table **tablep)
222{
223	struct ctl_table *entry;
224
225	/*
226	 * In the intermediate directories, both the child directory and
227	 * procname are dynamically allocated and could fail but the mode
228	 * will always be set. In the lowest directory the names are
229	 * static strings and all have proc handlers.
230	 */
231	for (entry = *tablep; entry->mode; entry++) {
232		if (entry->child)
233			sd_free_ctl_entry(&entry->child);
234		if (entry->proc_handler == NULL)
235			kfree(entry->procname);
236	}
237
238	kfree(*tablep);
239	*tablep = NULL;
240}
241
242static int min_load_idx = 0;
243static int max_load_idx = CPU_LOAD_IDX_MAX-1;
244
245static void
246set_table_entry(struct ctl_table *entry,
247		const char *procname, void *data, int maxlen,
248		umode_t mode, proc_handler *proc_handler,
249		bool load_idx)
250{
251	entry->procname = procname;
252	entry->data = data;
253	entry->maxlen = maxlen;
254	entry->mode = mode;
255	entry->proc_handler = proc_handler;
256
257	if (load_idx) {
258		entry->extra1 = &min_load_idx;
259		entry->extra2 = &max_load_idx;
260	}
261}
262
263static struct ctl_table *
264sd_alloc_ctl_domain_table(struct sched_domain *sd)
265{
266	struct ctl_table *table = sd_alloc_ctl_entry(14);
267
268	if (table == NULL)
269		return NULL;
270
271	set_table_entry(&table[0], "min_interval", &sd->min_interval,
272		sizeof(long), 0644, proc_doulongvec_minmax, false);
273	set_table_entry(&table[1], "max_interval", &sd->max_interval,
274		sizeof(long), 0644, proc_doulongvec_minmax, false);
275	set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
276		sizeof(int), 0644, proc_dointvec_minmax, true);
277	set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
278		sizeof(int), 0644, proc_dointvec_minmax, true);
279	set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
280		sizeof(int), 0644, proc_dointvec_minmax, true);
281	set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
282		sizeof(int), 0644, proc_dointvec_minmax, true);
283	set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
284		sizeof(int), 0644, proc_dointvec_minmax, true);
285	set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
286		sizeof(int), 0644, proc_dointvec_minmax, false);
287	set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
288		sizeof(int), 0644, proc_dointvec_minmax, false);
289	set_table_entry(&table[9], "cache_nice_tries",
290		&sd->cache_nice_tries,
291		sizeof(int), 0644, proc_dointvec_minmax, false);
292	set_table_entry(&table[10], "flags", &sd->flags,
293		sizeof(int), 0644, proc_dointvec_minmax, false);
294	set_table_entry(&table[11], "max_newidle_lb_cost",
295		&sd->max_newidle_lb_cost,
296		sizeof(long), 0644, proc_doulongvec_minmax, false);
297	set_table_entry(&table[12], "name", sd->name,
298		CORENAME_MAX_SIZE, 0444, proc_dostring, false);
299	/* &table[13] is terminator */
300
301	return table;
302}
303
304static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
305{
306	struct ctl_table *entry, *table;
307	struct sched_domain *sd;
308	int domain_num = 0, i;
309	char buf[32];
310
311	for_each_domain(cpu, sd)
312		domain_num++;
313	entry = table = sd_alloc_ctl_entry(domain_num + 1);
314	if (table == NULL)
315		return NULL;
316
317	i = 0;
318	for_each_domain(cpu, sd) {
319		snprintf(buf, 32, "domain%d", i);
320		entry->procname = kstrdup(buf, GFP_KERNEL);
321		entry->mode = 0555;
322		entry->child = sd_alloc_ctl_domain_table(sd);
323		entry++;
324		i++;
325	}
326	return table;
327}
328
329static struct ctl_table_header *sd_sysctl_header;
330void register_sched_domain_sysctl(void)
331{
332	int i, cpu_num = num_possible_cpus();
333	struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
334	char buf[32];
335
336	WARN_ON(sd_ctl_dir[0].child);
337	sd_ctl_dir[0].child = entry;
338
339	if (entry == NULL)
340		return;
341
342	for_each_possible_cpu(i) {
343		snprintf(buf, 32, "cpu%d", i);
344		entry->procname = kstrdup(buf, GFP_KERNEL);
345		entry->mode = 0555;
346		entry->child = sd_alloc_ctl_cpu_table(i);
347		entry++;
348	}
349
350	WARN_ON(sd_sysctl_header);
351	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
352}
353
354/* may be called multiple times per register */
355void unregister_sched_domain_sysctl(void)
356{
357	unregister_sysctl_table(sd_sysctl_header);
358	sd_sysctl_header = NULL;
359	if (sd_ctl_dir[0].child)
360		sd_free_ctl_entry(&sd_ctl_dir[0].child);
361}
362#endif /* CONFIG_SYSCTL */
363#endif /* CONFIG_SMP */
364
365#ifdef CONFIG_FAIR_GROUP_SCHED
366static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
367{
368	struct sched_entity *se = tg->se[cpu];
 
 
369
370#define P(F) \
371	SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
372#define PN(F) \
373	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
374
375	if (!se)
376		return;
377
378	PN(se->exec_start);
379	PN(se->vruntime);
380	PN(se->sum_exec_runtime);
381#ifdef CONFIG_SCHEDSTATS
382	if (schedstat_enabled()) {
383		PN(se->statistics.wait_start);
384		PN(se->statistics.sleep_start);
385		PN(se->statistics.block_start);
386		PN(se->statistics.sleep_max);
387		PN(se->statistics.block_max);
388		PN(se->statistics.exec_max);
389		PN(se->statistics.slice_max);
390		PN(se->statistics.wait_max);
391		PN(se->statistics.wait_sum);
392		P(se->statistics.wait_count);
393	}
394#endif
395	P(se->load.weight);
396#ifdef CONFIG_SMP
397	P(se->avg.load_avg);
398	P(se->avg.util_avg);
399#endif
400#undef PN
401#undef P
402}
403#endif
404
405#ifdef CONFIG_CGROUP_SCHED
406static char group_path[PATH_MAX];
407
408static char *task_group_path(struct task_group *tg)
409{
410	if (autogroup_path(tg, group_path, PATH_MAX))
411		return group_path;
412
413	return cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
 
 
 
 
 
 
 
 
414}
415#endif
416
417static void
418print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
419{
420	if (rq->curr == p)
421		SEQ_printf(m, "R");
422	else
423		SEQ_printf(m, " ");
424
425	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
426		p->comm, task_pid_nr(p),
427		SPLIT_NS(p->se.vruntime),
428		(long long)(p->nvcsw + p->nivcsw),
429		p->prio);
430#ifdef CONFIG_SCHEDSTATS
431	if (schedstat_enabled()) {
432		SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
433			SPLIT_NS(p->se.statistics.wait_sum),
434			SPLIT_NS(p->se.sum_exec_runtime),
435			SPLIT_NS(p->se.statistics.sum_sleep_runtime));
436	}
437#else
438	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
439		0LL, 0L,
440		SPLIT_NS(p->se.sum_exec_runtime),
441		0LL, 0L);
442#endif
443#ifdef CONFIG_NUMA_BALANCING
444	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
445#endif
446#ifdef CONFIG_CGROUP_SCHED
447	SEQ_printf(m, " %s", task_group_path(task_group(p)));
448#endif
449
450	SEQ_printf(m, "\n");
451}
452
453static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
454{
455	struct task_struct *g, *p;
 
456
457	SEQ_printf(m,
458	"\nrunnable tasks:\n"
459	"            task   PID         tree-key  switches  prio"
460	"     wait-time             sum-exec        sum-sleep\n"
461	"------------------------------------------------------"
462	"----------------------------------------------------\n");
463
464	rcu_read_lock();
465	for_each_process_thread(g, p) {
466		if (task_cpu(p) != rq_cpu)
 
467			continue;
468
469		print_task(m, rq, p);
470	}
471	rcu_read_unlock();
 
472}
473
474void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
475{
476	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
477		spread, rq0_min_vruntime, spread0;
478	struct rq *rq = cpu_rq(cpu);
479	struct sched_entity *last;
480	unsigned long flags;
481
482#ifdef CONFIG_FAIR_GROUP_SCHED
483	SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
484#else
485	SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
486#endif
487	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
488			SPLIT_NS(cfs_rq->exec_clock));
489
490	raw_spin_lock_irqsave(&rq->lock, flags);
491	if (cfs_rq->rb_leftmost)
492		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
493	last = __pick_last_entity(cfs_rq);
494	if (last)
495		max_vruntime = last->vruntime;
496	min_vruntime = cfs_rq->min_vruntime;
497	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
498	raw_spin_unlock_irqrestore(&rq->lock, flags);
499	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
500			SPLIT_NS(MIN_vruntime));
501	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
502			SPLIT_NS(min_vruntime));
503	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
504			SPLIT_NS(max_vruntime));
505	spread = max_vruntime - MIN_vruntime;
506	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
507			SPLIT_NS(spread));
508	spread0 = min_vruntime - rq0_min_vruntime;
509	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
510			SPLIT_NS(spread0));
511	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
512			cfs_rq->nr_spread_over);
513	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
514	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
515#ifdef CONFIG_SMP
516	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
517			cfs_rq->avg.load_avg);
518	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
519			cfs_rq->runnable_load_avg);
520	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
521			cfs_rq->avg.util_avg);
522	SEQ_printf(m, "  .%-30s: %ld\n", "removed_load_avg",
523			atomic_long_read(&cfs_rq->removed_load_avg));
524	SEQ_printf(m, "  .%-30s: %ld\n", "removed_util_avg",
525			atomic_long_read(&cfs_rq->removed_util_avg));
526#ifdef CONFIG_FAIR_GROUP_SCHED
527	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
528			cfs_rq->tg_load_avg_contrib);
529	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
530			atomic_long_read(&cfs_rq->tg->load_avg));
531#endif
532#endif
533#ifdef CONFIG_CFS_BANDWIDTH
534	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
535			cfs_rq->throttled);
536	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
537			cfs_rq->throttle_count);
538#endif
539
540#ifdef CONFIG_FAIR_GROUP_SCHED
541	print_cfs_group_stats(m, cpu, cfs_rq->tg);
542#endif
543}
544
545void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
546{
547#ifdef CONFIG_RT_GROUP_SCHED
548	SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
549#else
550	SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
551#endif
552
553#define P(x) \
554	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
555#define PN(x) \
556	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
557
558	P(rt_nr_running);
559	P(rt_throttled);
560	PN(rt_time);
561	PN(rt_runtime);
562
563#undef PN
564#undef P
565}
566
567void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
568{
569	struct dl_bw *dl_bw;
570
571	SEQ_printf(m, "\ndl_rq[%d]:\n", cpu);
572	SEQ_printf(m, "  .%-30s: %ld\n", "dl_nr_running", dl_rq->dl_nr_running);
573#ifdef CONFIG_SMP
574	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
575#else
576	dl_bw = &dl_rq->dl_bw;
577#endif
578	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
579	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
580}
581
582extern __read_mostly int sched_clock_running;
583
584static void print_cpu(struct seq_file *m, int cpu)
585{
586	struct rq *rq = cpu_rq(cpu);
587	unsigned long flags;
588
589#ifdef CONFIG_X86
590	{
591		unsigned int freq = cpu_khz ? : 1;
592
593		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
594			   cpu, freq / 1000, (freq % 1000));
595	}
596#else
597	SEQ_printf(m, "cpu#%d\n", cpu);
598#endif
599
600#define P(x)								\
601do {									\
602	if (sizeof(rq->x) == 4)						\
603		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
604	else								\
605		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
606} while (0)
607
608#define PN(x) \
609	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
610
611	P(nr_running);
612	SEQ_printf(m, "  .%-30s: %lu\n", "load",
613		   rq->load.weight);
614	P(nr_switches);
615	P(nr_load_updates);
616	P(nr_uninterruptible);
617	PN(next_balance);
618	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
619	PN(clock);
620	PN(clock_task);
621	P(cpu_load[0]);
622	P(cpu_load[1]);
623	P(cpu_load[2]);
624	P(cpu_load[3]);
625	P(cpu_load[4]);
626#undef P
627#undef PN
628
629#ifdef CONFIG_SCHEDSTATS
630#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, rq->n);
631#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
632
 
 
 
 
633#ifdef CONFIG_SMP
634	P64(avg_idle);
635	P64(max_idle_balance_cost);
636#endif
637
638	if (schedstat_enabled()) {
639		P(yld_count);
640		P(sched_count);
641		P(sched_goidle);
642		P(ttwu_count);
643		P(ttwu_local);
644	}
645
646#undef P
647#undef P64
648#endif
649	spin_lock_irqsave(&sched_debug_lock, flags);
650	print_cfs_stats(m, cpu);
651	print_rt_stats(m, cpu);
652	print_dl_stats(m, cpu);
653
 
654	print_rq(m, rq, cpu);
 
655	spin_unlock_irqrestore(&sched_debug_lock, flags);
656	SEQ_printf(m, "\n");
657}
658
659static const char *sched_tunable_scaling_names[] = {
660	"none",
661	"logaritmic",
662	"linear"
663};
664
665static void sched_debug_header(struct seq_file *m)
666{
667	u64 ktime, sched_clk, cpu_clk;
668	unsigned long flags;
 
669
670	local_irq_save(flags);
671	ktime = ktime_to_ns(ktime_get());
672	sched_clk = sched_clock();
673	cpu_clk = local_clock();
674	local_irq_restore(flags);
675
676	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
677		init_utsname()->release,
678		(int)strcspn(init_utsname()->version, " "),
679		init_utsname()->version);
680
681#define P(x) \
682	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
683#define PN(x) \
684	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
685	PN(ktime);
686	PN(sched_clk);
687	PN(cpu_clk);
688	P(jiffies);
689#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
690	P(sched_clock_stable());
691#endif
692#undef PN
693#undef P
694
695	SEQ_printf(m, "\n");
696	SEQ_printf(m, "sysctl_sched\n");
697
698#define P(x) \
699	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
700#define PN(x) \
701	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
702	PN(sysctl_sched_latency);
703	PN(sysctl_sched_min_granularity);
704	PN(sysctl_sched_wakeup_granularity);
705	P(sysctl_sched_child_runs_first);
706	P(sysctl_sched_features);
707#undef PN
708#undef P
709
710	SEQ_printf(m, "  .%-40s: %d (%s)\n",
711		"sysctl_sched_tunable_scaling",
712		sysctl_sched_tunable_scaling,
713		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
714	SEQ_printf(m, "\n");
715}
716
717static int sched_debug_show(struct seq_file *m, void *v)
718{
719	int cpu = (unsigned long)(v - 2);
720
721	if (cpu != -1)
722		print_cpu(m, cpu);
723	else
724		sched_debug_header(m);
725
726	return 0;
727}
728
729void sysrq_sched_debug_show(void)
730{
731	int cpu;
732
733	sched_debug_header(NULL);
734	for_each_online_cpu(cpu)
735		print_cpu(NULL, cpu);
736
737}
738
739/*
740 * This itererator needs some explanation.
741 * It returns 1 for the header position.
742 * This means 2 is cpu 0.
743 * In a hotplugged system some cpus, including cpu 0, may be missing so we have
744 * to use cpumask_* to iterate over the cpus.
745 */
746static void *sched_debug_start(struct seq_file *file, loff_t *offset)
747{
748	unsigned long n = *offset;
749
750	if (n == 0)
751		return (void *) 1;
752
753	n--;
754
755	if (n > 0)
756		n = cpumask_next(n - 1, cpu_online_mask);
757	else
758		n = cpumask_first(cpu_online_mask);
759
760	*offset = n + 1;
761
762	if (n < nr_cpu_ids)
763		return (void *)(unsigned long)(n + 2);
764	return NULL;
765}
766
767static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
768{
769	(*offset)++;
770	return sched_debug_start(file, offset);
771}
772
773static void sched_debug_stop(struct seq_file *file, void *data)
774{
775}
776
777static const struct seq_operations sched_debug_sops = {
778	.start = sched_debug_start,
779	.next = sched_debug_next,
780	.stop = sched_debug_stop,
781	.show = sched_debug_show,
782};
783
784static int sched_debug_release(struct inode *inode, struct file *file)
785{
786	seq_release(inode, file);
787
788	return 0;
789}
790
791static int sched_debug_open(struct inode *inode, struct file *filp)
792{
793	int ret = 0;
794
795	ret = seq_open(filp, &sched_debug_sops);
796
797	return ret;
798}
799
800static const struct file_operations sched_debug_fops = {
801	.open		= sched_debug_open,
802	.read		= seq_read,
803	.llseek		= seq_lseek,
804	.release	= sched_debug_release,
805};
806
807static int __init init_sched_debug_procfs(void)
808{
809	struct proc_dir_entry *pe;
810
811	pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
812	if (!pe)
813		return -ENOMEM;
814	return 0;
815}
816
817__initcall(init_sched_debug_procfs);
818
819#define __P(F) \
820	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
821#define P(F) \
822	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
823#define __PN(F) \
824	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
825#define PN(F) \
826	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
827
828
829#ifdef CONFIG_NUMA_BALANCING
830void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
831		unsigned long tpf, unsigned long gsf, unsigned long gpf)
832{
833	SEQ_printf(m, "numa_faults node=%d ", node);
834	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tsf, tpf);
835	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gsf, gpf);
836}
837#endif
838
839
840static void sched_show_numa(struct task_struct *p, struct seq_file *m)
841{
842#ifdef CONFIG_NUMA_BALANCING
843	struct mempolicy *pol;
844
845	if (p->mm)
846		P(mm->numa_scan_seq);
847
848	task_lock(p);
849	pol = p->mempolicy;
850	if (pol && !(pol->flags & MPOL_F_MORON))
851		pol = NULL;
852	mpol_get(pol);
853	task_unlock(p);
854
855	P(numa_pages_migrated);
856	P(numa_preferred_nid);
857	P(total_numa_faults);
858	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
859			task_node(p), task_numa_group_id(p));
860	show_numa_stats(p, m);
861	mpol_put(pol);
862#endif
863}
864
865void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
866{
867	unsigned long nr_switches;
868
869	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr(p),
870						get_nr_threads(p));
871	SEQ_printf(m,
872		"---------------------------------------------------------"
873		"----------\n");
874#define __P(F) \
875	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
876#define P(F) \
877	SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
878#define __PN(F) \
879	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
880#define PN(F) \
881	SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
882
883	PN(se.exec_start);
884	PN(se.vruntime);
885	PN(se.sum_exec_runtime);
886
887	nr_switches = p->nvcsw + p->nivcsw;
888
889#ifdef CONFIG_SCHEDSTATS
 
 
 
 
 
 
 
 
 
 
 
 
890	P(se.nr_migrations);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
891
892	if (schedstat_enabled()) {
893		u64 avg_atom, avg_per_cpu;
894
895		PN(se.statistics.sum_sleep_runtime);
896		PN(se.statistics.wait_start);
897		PN(se.statistics.sleep_start);
898		PN(se.statistics.block_start);
899		PN(se.statistics.sleep_max);
900		PN(se.statistics.block_max);
901		PN(se.statistics.exec_max);
902		PN(se.statistics.slice_max);
903		PN(se.statistics.wait_max);
904		PN(se.statistics.wait_sum);
905		P(se.statistics.wait_count);
906		PN(se.statistics.iowait_sum);
907		P(se.statistics.iowait_count);
908		P(se.statistics.nr_migrations_cold);
909		P(se.statistics.nr_failed_migrations_affine);
910		P(se.statistics.nr_failed_migrations_running);
911		P(se.statistics.nr_failed_migrations_hot);
912		P(se.statistics.nr_forced_migrations);
913		P(se.statistics.nr_wakeups);
914		P(se.statistics.nr_wakeups_sync);
915		P(se.statistics.nr_wakeups_migrate);
916		P(se.statistics.nr_wakeups_local);
917		P(se.statistics.nr_wakeups_remote);
918		P(se.statistics.nr_wakeups_affine);
919		P(se.statistics.nr_wakeups_affine_attempts);
920		P(se.statistics.nr_wakeups_passive);
921		P(se.statistics.nr_wakeups_idle);
922
923		avg_atom = p->se.sum_exec_runtime;
924		if (nr_switches)
925			avg_atom = div64_ul(avg_atom, nr_switches);
926		else
927			avg_atom = -1LL;
928
929		avg_per_cpu = p->se.sum_exec_runtime;
930		if (p->se.nr_migrations) {
931			avg_per_cpu = div64_u64(avg_per_cpu,
932						p->se.nr_migrations);
933		} else {
934			avg_per_cpu = -1LL;
935		}
936
937		__PN(avg_atom);
938		__PN(avg_per_cpu);
939	}
940#endif
941	__P(nr_switches);
942	SEQ_printf(m, "%-45s:%21Ld\n",
943		   "nr_voluntary_switches", (long long)p->nvcsw);
944	SEQ_printf(m, "%-45s:%21Ld\n",
945		   "nr_involuntary_switches", (long long)p->nivcsw);
946
947	P(se.load.weight);
948#ifdef CONFIG_SMP
949	P(se.avg.load_sum);
950	P(se.avg.util_sum);
951	P(se.avg.load_avg);
952	P(se.avg.util_avg);
953	P(se.avg.last_update_time);
954#endif
955	P(policy);
956	P(prio);
957#undef PN
958#undef __PN
959#undef P
960#undef __P
961
962	{
963		unsigned int this_cpu = raw_smp_processor_id();
964		u64 t0, t1;
965
966		t0 = cpu_clock(this_cpu);
967		t1 = cpu_clock(this_cpu);
968		SEQ_printf(m, "%-45s:%21Ld\n",
969			   "clock-delta", (long long)(t1-t0));
970	}
971
972	sched_show_numa(p, m);
973}
974
975void proc_sched_set_task(struct task_struct *p)
976{
977#ifdef CONFIG_SCHEDSTATS
978	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
979#endif
980}
v3.5.6
  1/*
  2 * kernel/sched/debug.c
  3 *
  4 * Print the CFS rbtree
  5 *
  6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/proc_fs.h>
 14#include <linux/sched.h>
 15#include <linux/seq_file.h>
 16#include <linux/kallsyms.h>
 17#include <linux/utsname.h>
 
 
 18
 19#include "sched.h"
 20
 21static DEFINE_SPINLOCK(sched_debug_lock);
 22
 23/*
 24 * This allows printing both to /proc/sched_debug and
 25 * to the console
 26 */
 27#define SEQ_printf(m, x...)			\
 28 do {						\
 29	if (m)					\
 30		seq_printf(m, x);		\
 31	else					\
 32		printk(x);			\
 33 } while (0)
 34
 35/*
 36 * Ease the printing of nsec fields:
 37 */
 38static long long nsec_high(unsigned long long nsec)
 39{
 40	if ((long long)nsec < 0) {
 41		nsec = -nsec;
 42		do_div(nsec, 1000000);
 43		return -nsec;
 44	}
 45	do_div(nsec, 1000000);
 46
 47	return nsec;
 48}
 49
 50static unsigned long nsec_low(unsigned long long nsec)
 51{
 52	if ((long long)nsec < 0)
 53		nsec = -nsec;
 54
 55	return do_div(nsec, 1000000);
 56}
 57
 58#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
 59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 60#ifdef CONFIG_FAIR_GROUP_SCHED
 61static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
 62{
 63	struct sched_entity *se = tg->se[cpu];
 64	if (!se)
 65		return;
 66
 67#define P(F) \
 68	SEQ_printf(m, "  .%-30s: %lld\n", #F, (long long)F)
 69#define PN(F) \
 70	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
 71
 
 
 
 72	PN(se->exec_start);
 73	PN(se->vruntime);
 74	PN(se->sum_exec_runtime);
 75#ifdef CONFIG_SCHEDSTATS
 76	PN(se->statistics.wait_start);
 77	PN(se->statistics.sleep_start);
 78	PN(se->statistics.block_start);
 79	PN(se->statistics.sleep_max);
 80	PN(se->statistics.block_max);
 81	PN(se->statistics.exec_max);
 82	PN(se->statistics.slice_max);
 83	PN(se->statistics.wait_max);
 84	PN(se->statistics.wait_sum);
 85	P(se->statistics.wait_count);
 
 
 86#endif
 87	P(se->load.weight);
 
 
 
 
 88#undef PN
 89#undef P
 90}
 91#endif
 92
 93#ifdef CONFIG_CGROUP_SCHED
 94static char group_path[PATH_MAX];
 95
 96static char *task_group_path(struct task_group *tg)
 97{
 98	if (autogroup_path(tg, group_path, PATH_MAX))
 99		return group_path;
100
101	/*
102	 * May be NULL if the underlying cgroup isn't fully-created yet
103	 */
104	if (!tg->css.cgroup) {
105		group_path[0] = '\0';
106		return group_path;
107	}
108	cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
109	return group_path;
110}
111#endif
112
113static void
114print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
115{
116	if (rq->curr == p)
117		SEQ_printf(m, "R");
118	else
119		SEQ_printf(m, " ");
120
121	SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
122		p->comm, p->pid,
123		SPLIT_NS(p->se.vruntime),
124		(long long)(p->nvcsw + p->nivcsw),
125		p->prio);
126#ifdef CONFIG_SCHEDSTATS
 
 
 
 
 
 
 
127	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
128		SPLIT_NS(p->se.vruntime),
129		SPLIT_NS(p->se.sum_exec_runtime),
130		SPLIT_NS(p->se.statistics.sum_sleep_runtime));
131#else
132	SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
133		0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
134#endif
135#ifdef CONFIG_CGROUP_SCHED
136	SEQ_printf(m, " %s", task_group_path(task_group(p)));
137#endif
138
139	SEQ_printf(m, "\n");
140}
141
142static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
143{
144	struct task_struct *g, *p;
145	unsigned long flags;
146
147	SEQ_printf(m,
148	"\nrunnable tasks:\n"
149	"            task   PID         tree-key  switches  prio"
150	"     exec-runtime         sum-exec        sum-sleep\n"
151	"------------------------------------------------------"
152	"----------------------------------------------------\n");
153
154	read_lock_irqsave(&tasklist_lock, flags);
155
156	do_each_thread(g, p) {
157		if (!p->on_rq || task_cpu(p) != rq_cpu)
158			continue;
159
160		print_task(m, rq, p);
161	} while_each_thread(g, p);
162
163	read_unlock_irqrestore(&tasklist_lock, flags);
164}
165
166void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
167{
168	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
169		spread, rq0_min_vruntime, spread0;
170	struct rq *rq = cpu_rq(cpu);
171	struct sched_entity *last;
172	unsigned long flags;
173
174#ifdef CONFIG_FAIR_GROUP_SCHED
175	SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
176#else
177	SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
178#endif
179	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
180			SPLIT_NS(cfs_rq->exec_clock));
181
182	raw_spin_lock_irqsave(&rq->lock, flags);
183	if (cfs_rq->rb_leftmost)
184		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
185	last = __pick_last_entity(cfs_rq);
186	if (last)
187		max_vruntime = last->vruntime;
188	min_vruntime = cfs_rq->min_vruntime;
189	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
190	raw_spin_unlock_irqrestore(&rq->lock, flags);
191	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
192			SPLIT_NS(MIN_vruntime));
193	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
194			SPLIT_NS(min_vruntime));
195	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
196			SPLIT_NS(max_vruntime));
197	spread = max_vruntime - MIN_vruntime;
198	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
199			SPLIT_NS(spread));
200	spread0 = min_vruntime - rq0_min_vruntime;
201	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
202			SPLIT_NS(spread0));
203	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
204			cfs_rq->nr_spread_over);
205	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
206	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
 
 
 
 
 
 
 
 
 
 
 
207#ifdef CONFIG_FAIR_GROUP_SCHED
208#ifdef CONFIG_SMP
209	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "load_avg",
210			SPLIT_NS(cfs_rq->load_avg));
211	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "load_period",
212			SPLIT_NS(cfs_rq->load_period));
213	SEQ_printf(m, "  .%-30s: %ld\n", "load_contrib",
214			cfs_rq->load_contribution);
215	SEQ_printf(m, "  .%-30s: %d\n", "load_tg",
216			atomic_read(&cfs_rq->tg->load_weight));
 
 
217#endif
218
 
219	print_cfs_group_stats(m, cpu, cfs_rq->tg);
220#endif
221}
222
223void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
224{
225#ifdef CONFIG_RT_GROUP_SCHED
226	SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
227#else
228	SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
229#endif
230
231#define P(x) \
232	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
233#define PN(x) \
234	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
235
236	P(rt_nr_running);
237	P(rt_throttled);
238	PN(rt_time);
239	PN(rt_runtime);
240
241#undef PN
242#undef P
243}
244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
245extern __read_mostly int sched_clock_running;
246
247static void print_cpu(struct seq_file *m, int cpu)
248{
249	struct rq *rq = cpu_rq(cpu);
250	unsigned long flags;
251
252#ifdef CONFIG_X86
253	{
254		unsigned int freq = cpu_khz ? : 1;
255
256		SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
257			   cpu, freq / 1000, (freq % 1000));
258	}
259#else
260	SEQ_printf(m, "\ncpu#%d\n", cpu);
261#endif
262
263#define P(x)								\
264do {									\
265	if (sizeof(rq->x) == 4)						\
266		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
267	else								\
268		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
269} while (0)
270
271#define PN(x) \
272	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
273
274	P(nr_running);
275	SEQ_printf(m, "  .%-30s: %lu\n", "load",
276		   rq->load.weight);
277	P(nr_switches);
278	P(nr_load_updates);
279	P(nr_uninterruptible);
280	PN(next_balance);
281	P(curr->pid);
282	PN(clock);
 
283	P(cpu_load[0]);
284	P(cpu_load[1]);
285	P(cpu_load[2]);
286	P(cpu_load[3]);
287	P(cpu_load[4]);
288#undef P
289#undef PN
290
291#ifdef CONFIG_SCHEDSTATS
292#define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, rq->n);
293#define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
294
295	P(yld_count);
296
297	P(sched_count);
298	P(sched_goidle);
299#ifdef CONFIG_SMP
300	P64(avg_idle);
 
301#endif
302
303	P(ttwu_count);
304	P(ttwu_local);
 
 
 
 
 
305
306#undef P
307#undef P64
308#endif
309	spin_lock_irqsave(&sched_debug_lock, flags);
310	print_cfs_stats(m, cpu);
311	print_rt_stats(m, cpu);
 
312
313	rcu_read_lock();
314	print_rq(m, rq, cpu);
315	rcu_read_unlock();
316	spin_unlock_irqrestore(&sched_debug_lock, flags);
 
317}
318
319static const char *sched_tunable_scaling_names[] = {
320	"none",
321	"logaritmic",
322	"linear"
323};
324
325static int sched_debug_show(struct seq_file *m, void *v)
326{
327	u64 ktime, sched_clk, cpu_clk;
328	unsigned long flags;
329	int cpu;
330
331	local_irq_save(flags);
332	ktime = ktime_to_ns(ktime_get());
333	sched_clk = sched_clock();
334	cpu_clk = local_clock();
335	local_irq_restore(flags);
336
337	SEQ_printf(m, "Sched Debug Version: v0.10, %s %.*s\n",
338		init_utsname()->release,
339		(int)strcspn(init_utsname()->version, " "),
340		init_utsname()->version);
341
342#define P(x) \
343	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
344#define PN(x) \
345	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
346	PN(ktime);
347	PN(sched_clk);
348	PN(cpu_clk);
349	P(jiffies);
350#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
351	P(sched_clock_stable);
352#endif
353#undef PN
354#undef P
355
356	SEQ_printf(m, "\n");
357	SEQ_printf(m, "sysctl_sched\n");
358
359#define P(x) \
360	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
361#define PN(x) \
362	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
363	PN(sysctl_sched_latency);
364	PN(sysctl_sched_min_granularity);
365	PN(sysctl_sched_wakeup_granularity);
366	P(sysctl_sched_child_runs_first);
367	P(sysctl_sched_features);
368#undef PN
369#undef P
370
371	SEQ_printf(m, "  .%-40s: %d (%s)\n", "sysctl_sched_tunable_scaling",
 
372		sysctl_sched_tunable_scaling,
373		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
 
 
 
 
 
 
374
375	for_each_online_cpu(cpu)
376		print_cpu(m, cpu);
377
378	SEQ_printf(m, "\n");
379
380	return 0;
381}
382
383void sysrq_sched_debug_show(void)
384{
385	sched_debug_show(NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
386}
387
388static int sched_debug_open(struct inode *inode, struct file *filp)
389{
390	return single_open(filp, sched_debug_show, NULL);
 
 
 
 
391}
392
393static const struct file_operations sched_debug_fops = {
394	.open		= sched_debug_open,
395	.read		= seq_read,
396	.llseek		= seq_lseek,
397	.release	= single_release,
398};
399
400static int __init init_sched_debug_procfs(void)
401{
402	struct proc_dir_entry *pe;
403
404	pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
405	if (!pe)
406		return -ENOMEM;
407	return 0;
408}
409
410__initcall(init_sched_debug_procfs);
411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
413{
414	unsigned long nr_switches;
415
416	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid,
417						get_nr_threads(p));
418	SEQ_printf(m,
419		"---------------------------------------------------------\n");
 
420#define __P(F) \
421	SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
422#define P(F) \
423	SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
424#define __PN(F) \
425	SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
426#define PN(F) \
427	SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
428
429	PN(se.exec_start);
430	PN(se.vruntime);
431	PN(se.sum_exec_runtime);
432
433	nr_switches = p->nvcsw + p->nivcsw;
434
435#ifdef CONFIG_SCHEDSTATS
436	PN(se.statistics.wait_start);
437	PN(se.statistics.sleep_start);
438	PN(se.statistics.block_start);
439	PN(se.statistics.sleep_max);
440	PN(se.statistics.block_max);
441	PN(se.statistics.exec_max);
442	PN(se.statistics.slice_max);
443	PN(se.statistics.wait_max);
444	PN(se.statistics.wait_sum);
445	P(se.statistics.wait_count);
446	PN(se.statistics.iowait_sum);
447	P(se.statistics.iowait_count);
448	P(se.nr_migrations);
449	P(se.statistics.nr_migrations_cold);
450	P(se.statistics.nr_failed_migrations_affine);
451	P(se.statistics.nr_failed_migrations_running);
452	P(se.statistics.nr_failed_migrations_hot);
453	P(se.statistics.nr_forced_migrations);
454	P(se.statistics.nr_wakeups);
455	P(se.statistics.nr_wakeups_sync);
456	P(se.statistics.nr_wakeups_migrate);
457	P(se.statistics.nr_wakeups_local);
458	P(se.statistics.nr_wakeups_remote);
459	P(se.statistics.nr_wakeups_affine);
460	P(se.statistics.nr_wakeups_affine_attempts);
461	P(se.statistics.nr_wakeups_passive);
462	P(se.statistics.nr_wakeups_idle);
463
464	{
465		u64 avg_atom, avg_per_cpu;
466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467		avg_atom = p->se.sum_exec_runtime;
468		if (nr_switches)
469			do_div(avg_atom, nr_switches);
470		else
471			avg_atom = -1LL;
472
473		avg_per_cpu = p->se.sum_exec_runtime;
474		if (p->se.nr_migrations) {
475			avg_per_cpu = div64_u64(avg_per_cpu,
476						p->se.nr_migrations);
477		} else {
478			avg_per_cpu = -1LL;
479		}
480
481		__PN(avg_atom);
482		__PN(avg_per_cpu);
483	}
484#endif
485	__P(nr_switches);
486	SEQ_printf(m, "%-35s:%21Ld\n",
487		   "nr_voluntary_switches", (long long)p->nvcsw);
488	SEQ_printf(m, "%-35s:%21Ld\n",
489		   "nr_involuntary_switches", (long long)p->nivcsw);
490
491	P(se.load.weight);
 
 
 
 
 
 
 
492	P(policy);
493	P(prio);
494#undef PN
495#undef __PN
496#undef P
497#undef __P
498
499	{
500		unsigned int this_cpu = raw_smp_processor_id();
501		u64 t0, t1;
502
503		t0 = cpu_clock(this_cpu);
504		t1 = cpu_clock(this_cpu);
505		SEQ_printf(m, "%-35s:%21Ld\n",
506			   "clock-delta", (long long)(t1-t0));
507	}
 
 
508}
509
510void proc_sched_set_task(struct task_struct *p)
511{
512#ifdef CONFIG_SCHEDSTATS
513	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
514#endif
515}