Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sizes.h>
  20
  21#include <asm/cp15.h>
  22#include <asm/cputype.h>
  23#include <asm/sections.h>
  24#include <asm/cachetype.h>
  25#include <asm/fixmap.h>
  26#include <asm/sections.h>
  27#include <asm/setup.h>
  28#include <asm/smp_plat.h>
 
  29#include <asm/tlb.h>
  30#include <asm/highmem.h>
  31#include <asm/system_info.h>
  32#include <asm/traps.h>
  33#include <asm/procinfo.h>
  34#include <asm/memory.h>
 
 
  35
  36#include <asm/mach/arch.h>
  37#include <asm/mach/map.h>
  38#include <asm/mach/pci.h>
  39#include <asm/fixmap.h>
  40
  41#include "fault.h"
  42#include "mm.h"
  43#include "tcm.h"
 
  44
  45/*
  46 * empty_zero_page is a special page that is used for
  47 * zero-initialized data and COW.
  48 */
  49struct page *empty_zero_page;
  50EXPORT_SYMBOL(empty_zero_page);
  51
  52/*
  53 * The pmd table for the upper-most set of pages.
  54 */
  55pmd_t *top_pmd;
  56
  57pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  58
  59#define CPOLICY_UNCACHED	0
  60#define CPOLICY_BUFFERED	1
  61#define CPOLICY_WRITETHROUGH	2
  62#define CPOLICY_WRITEBACK	3
  63#define CPOLICY_WRITEALLOC	4
  64
  65static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  66static unsigned int ecc_mask __initdata = 0;
  67pgprot_t pgprot_user;
  68pgprot_t pgprot_kernel;
  69pgprot_t pgprot_hyp_device;
  70pgprot_t pgprot_s2;
  71pgprot_t pgprot_s2_device;
  72
  73EXPORT_SYMBOL(pgprot_user);
  74EXPORT_SYMBOL(pgprot_kernel);
  75
  76struct cachepolicy {
  77	const char	policy[16];
  78	unsigned int	cr_mask;
  79	pmdval_t	pmd;
  80	pteval_t	pte;
  81	pteval_t	pte_s2;
  82};
  83
  84#ifdef CONFIG_ARM_LPAE
  85#define s2_policy(policy)	policy
  86#else
  87#define s2_policy(policy)	0
  88#endif
  89
  90static struct cachepolicy cache_policies[] __initdata = {
  91	{
  92		.policy		= "uncached",
  93		.cr_mask	= CR_W|CR_C,
  94		.pmd		= PMD_SECT_UNCACHED,
  95		.pte		= L_PTE_MT_UNCACHED,
  96		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
  97	}, {
  98		.policy		= "buffered",
  99		.cr_mask	= CR_C,
 100		.pmd		= PMD_SECT_BUFFERED,
 101		.pte		= L_PTE_MT_BUFFERABLE,
 102		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
 103	}, {
 104		.policy		= "writethrough",
 105		.cr_mask	= 0,
 106		.pmd		= PMD_SECT_WT,
 107		.pte		= L_PTE_MT_WRITETHROUGH,
 108		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 109	}, {
 110		.policy		= "writeback",
 111		.cr_mask	= 0,
 112		.pmd		= PMD_SECT_WB,
 113		.pte		= L_PTE_MT_WRITEBACK,
 114		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 115	}, {
 116		.policy		= "writealloc",
 117		.cr_mask	= 0,
 118		.pmd		= PMD_SECT_WBWA,
 119		.pte		= L_PTE_MT_WRITEALLOC,
 120		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 121	}
 122};
 123
 124#ifdef CONFIG_CPU_CP15
 125static unsigned long initial_pmd_value __initdata = 0;
 126
 127/*
 128 * Initialise the cache_policy variable with the initial state specified
 129 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 130 * the C code sets the page tables up with the same policy as the head
 131 * assembly code, which avoids an illegal state where the TLBs can get
 132 * confused.  See comments in early_cachepolicy() for more information.
 133 */
 134void __init init_default_cache_policy(unsigned long pmd)
 135{
 136	int i;
 137
 138	initial_pmd_value = pmd;
 139
 140	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
 141
 142	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 143		if (cache_policies[i].pmd == pmd) {
 144			cachepolicy = i;
 145			break;
 146		}
 147
 148	if (i == ARRAY_SIZE(cache_policies))
 149		pr_err("ERROR: could not find cache policy\n");
 150}
 151
 152/*
 153 * These are useful for identifying cache coherency problems by allowing
 154 * the cache or the cache and writebuffer to be turned off.  (Note: the
 155 * write buffer should not be on and the cache off).
 156 */
 157static int __init early_cachepolicy(char *p)
 158{
 159	int i, selected = -1;
 160
 161	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 162		int len = strlen(cache_policies[i].policy);
 163
 164		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 165			selected = i;
 166			break;
 167		}
 168	}
 169
 170	if (selected == -1)
 171		pr_err("ERROR: unknown or unsupported cache policy\n");
 172
 173	/*
 174	 * This restriction is partly to do with the way we boot; it is
 175	 * unpredictable to have memory mapped using two different sets of
 176	 * memory attributes (shared, type, and cache attribs).  We can not
 177	 * change these attributes once the initial assembly has setup the
 178	 * page tables.
 179	 */
 180	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 181		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 182			cache_policies[cachepolicy].policy);
 183		return 0;
 184	}
 185
 186	if (selected != cachepolicy) {
 187		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 188		cachepolicy = selected;
 189		flush_cache_all();
 190		set_cr(cr);
 191	}
 192	return 0;
 193}
 194early_param("cachepolicy", early_cachepolicy);
 195
 196static int __init early_nocache(char *__unused)
 197{
 198	char *p = "buffered";
 199	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 200	early_cachepolicy(p);
 201	return 0;
 202}
 203early_param("nocache", early_nocache);
 204
 205static int __init early_nowrite(char *__unused)
 206{
 207	char *p = "uncached";
 208	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 209	early_cachepolicy(p);
 210	return 0;
 211}
 212early_param("nowb", early_nowrite);
 213
 214#ifndef CONFIG_ARM_LPAE
 215static int __init early_ecc(char *p)
 216{
 217	if (memcmp(p, "on", 2) == 0)
 218		ecc_mask = PMD_PROTECTION;
 219	else if (memcmp(p, "off", 3) == 0)
 220		ecc_mask = 0;
 221	return 0;
 222}
 223early_param("ecc", early_ecc);
 224#endif
 225
 226#else /* ifdef CONFIG_CPU_CP15 */
 227
 228static int __init early_cachepolicy(char *p)
 229{
 230	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 
 231}
 232early_param("cachepolicy", early_cachepolicy);
 233
 234static int __init noalign_setup(char *__unused)
 235{
 236	pr_warn("noalign kernel parameter not supported without cp15\n");
 
 237}
 238__setup("noalign", noalign_setup);
 239
 240#endif /* ifdef CONFIG_CPU_CP15 / else */
 241
 242#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 243#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
 244#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 245
 246static struct mem_type mem_types[] = {
 247	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 248		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 249				  L_PTE_SHARED,
 250		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
 251				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 252				  L_PTE_SHARED,
 253		.prot_l1	= PMD_TYPE_TABLE,
 254		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 255		.domain		= DOMAIN_IO,
 256	},
 257	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 258		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 259		.prot_l1	= PMD_TYPE_TABLE,
 260		.prot_sect	= PROT_SECT_DEVICE,
 261		.domain		= DOMAIN_IO,
 262	},
 263	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
 264		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 265		.prot_l1	= PMD_TYPE_TABLE,
 266		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 267		.domain		= DOMAIN_IO,
 268	},
 269	[MT_DEVICE_WC] = {	/* ioremap_wc */
 270		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 271		.prot_l1	= PMD_TYPE_TABLE,
 272		.prot_sect	= PROT_SECT_DEVICE,
 273		.domain		= DOMAIN_IO,
 274	},
 275	[MT_UNCACHED] = {
 276		.prot_pte	= PROT_PTE_DEVICE,
 277		.prot_l1	= PMD_TYPE_TABLE,
 278		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 279		.domain		= DOMAIN_IO,
 280	},
 281	[MT_CACHECLEAN] = {
 282		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 283		.domain    = DOMAIN_KERNEL,
 284	},
 285#ifndef CONFIG_ARM_LPAE
 286	[MT_MINICLEAN] = {
 287		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 288		.domain    = DOMAIN_KERNEL,
 289	},
 290#endif
 291	[MT_LOW_VECTORS] = {
 292		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 293				L_PTE_RDONLY,
 294		.prot_l1   = PMD_TYPE_TABLE,
 295		.domain    = DOMAIN_VECTORS,
 296	},
 297	[MT_HIGH_VECTORS] = {
 298		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 299				L_PTE_USER | L_PTE_RDONLY,
 300		.prot_l1   = PMD_TYPE_TABLE,
 301		.domain    = DOMAIN_VECTORS,
 302	},
 303	[MT_MEMORY_RWX] = {
 304		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 305		.prot_l1   = PMD_TYPE_TABLE,
 306		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 307		.domain    = DOMAIN_KERNEL,
 308	},
 309	[MT_MEMORY_RW] = {
 310		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 311			     L_PTE_XN,
 312		.prot_l1   = PMD_TYPE_TABLE,
 313		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 314		.domain    = DOMAIN_KERNEL,
 315	},
 
 
 
 
 
 
 
 
 
 
 
 316	[MT_ROM] = {
 317		.prot_sect = PMD_TYPE_SECT,
 318		.domain    = DOMAIN_KERNEL,
 319	},
 320	[MT_MEMORY_RWX_NONCACHED] = {
 321		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 322				L_PTE_MT_BUFFERABLE,
 323		.prot_l1   = PMD_TYPE_TABLE,
 324		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 325		.domain    = DOMAIN_KERNEL,
 326	},
 327	[MT_MEMORY_RW_DTCM] = {
 328		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 329				L_PTE_XN,
 330		.prot_l1   = PMD_TYPE_TABLE,
 331		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 332		.domain    = DOMAIN_KERNEL,
 333	},
 334	[MT_MEMORY_RWX_ITCM] = {
 335		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 336		.prot_l1   = PMD_TYPE_TABLE,
 337		.domain    = DOMAIN_KERNEL,
 338	},
 339	[MT_MEMORY_RW_SO] = {
 340		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 341				L_PTE_MT_UNCACHED | L_PTE_XN,
 342		.prot_l1   = PMD_TYPE_TABLE,
 343		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 344				PMD_SECT_UNCACHED | PMD_SECT_XN,
 345		.domain    = DOMAIN_KERNEL,
 346	},
 347	[MT_MEMORY_DMA_READY] = {
 348		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 349				L_PTE_XN,
 350		.prot_l1   = PMD_TYPE_TABLE,
 351		.domain    = DOMAIN_KERNEL,
 352	},
 353};
 354
 355const struct mem_type *get_mem_type(unsigned int type)
 356{
 357	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 358}
 359EXPORT_SYMBOL(get_mem_type);
 360
 361static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 362
 363static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 364	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 365
 366static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 367{
 368	return &bm_pte[pte_index(addr)];
 369}
 370
 371static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 372{
 373	return pte_offset_kernel(dir, addr);
 374}
 375
 376static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 377{
 378	pgd_t *pgd = pgd_offset_k(addr);
 379	pud_t *pud = pud_offset(pgd, addr);
 380	pmd_t *pmd = pmd_offset(pud, addr);
 381
 382	return pmd;
 383}
 384
 385void __init early_fixmap_init(void)
 386{
 387	pmd_t *pmd;
 388
 389	/*
 390	 * The early fixmap range spans multiple pmds, for which
 391	 * we are not prepared:
 392	 */
 393	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 394		     != FIXADDR_TOP >> PMD_SHIFT);
 395
 396	pmd = fixmap_pmd(FIXADDR_TOP);
 397	pmd_populate_kernel(&init_mm, pmd, bm_pte);
 398
 399	pte_offset_fixmap = pte_offset_early_fixmap;
 400}
 401
 402/*
 403 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 404 * As a result, this can only be called with preemption disabled, as under
 405 * stop_machine().
 406 */
 407void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 408{
 409	unsigned long vaddr = __fix_to_virt(idx);
 410	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 411
 412	/* Make sure fixmap region does not exceed available allocation. */
 413	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
 414		     FIXADDR_END);
 415	BUG_ON(idx >= __end_of_fixed_addresses);
 416
 
 
 
 
 
 417	if (pgprot_val(prot))
 418		set_pte_at(NULL, vaddr, pte,
 419			pfn_pte(phys >> PAGE_SHIFT, prot));
 420	else
 421		pte_clear(NULL, vaddr, pte);
 422	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 423}
 424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425/*
 426 * Adjust the PMD section entries according to the CPU in use.
 427 */
 428static void __init build_mem_type_table(void)
 429{
 430	struct cachepolicy *cp;
 431	unsigned int cr = get_cr();
 432	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 433	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 434	int cpu_arch = cpu_architecture();
 435	int i;
 436
 437	if (cpu_arch < CPU_ARCH_ARMv6) {
 438#if defined(CONFIG_CPU_DCACHE_DISABLE)
 439		if (cachepolicy > CPOLICY_BUFFERED)
 440			cachepolicy = CPOLICY_BUFFERED;
 441#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 442		if (cachepolicy > CPOLICY_WRITETHROUGH)
 443			cachepolicy = CPOLICY_WRITETHROUGH;
 444#endif
 445	}
 446	if (cpu_arch < CPU_ARCH_ARMv5) {
 447		if (cachepolicy >= CPOLICY_WRITEALLOC)
 448			cachepolicy = CPOLICY_WRITEBACK;
 449		ecc_mask = 0;
 450	}
 451
 452	if (is_smp()) {
 453		if (cachepolicy != CPOLICY_WRITEALLOC) {
 454			pr_warn("Forcing write-allocate cache policy for SMP\n");
 455			cachepolicy = CPOLICY_WRITEALLOC;
 456		}
 457		if (!(initial_pmd_value & PMD_SECT_S)) {
 458			pr_warn("Forcing shared mappings for SMP\n");
 459			initial_pmd_value |= PMD_SECT_S;
 460		}
 461	}
 462
 463	/*
 464	 * Strip out features not present on earlier architectures.
 465	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 466	 * without extended page tables don't have the 'Shared' bit.
 467	 */
 468	if (cpu_arch < CPU_ARCH_ARMv5)
 469		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 470			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 471	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 472		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 473			mem_types[i].prot_sect &= ~PMD_SECT_S;
 474
 475	/*
 476	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 477	 * "update-able on write" bit on ARM610).  However, Xscale and
 478	 * Xscale3 require this bit to be cleared.
 479	 */
 480	if (cpu_is_xscale_family()) {
 481		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 482			mem_types[i].prot_sect &= ~PMD_BIT4;
 483			mem_types[i].prot_l1 &= ~PMD_BIT4;
 484		}
 485	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 486		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 487			if (mem_types[i].prot_l1)
 488				mem_types[i].prot_l1 |= PMD_BIT4;
 489			if (mem_types[i].prot_sect)
 490				mem_types[i].prot_sect |= PMD_BIT4;
 491		}
 492	}
 493
 494	/*
 495	 * Mark the device areas according to the CPU/architecture.
 496	 */
 497	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 498		if (!cpu_is_xsc3()) {
 499			/*
 500			 * Mark device regions on ARMv6+ as execute-never
 501			 * to prevent speculative instruction fetches.
 502			 */
 503			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 504			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 505			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 506			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 507
 508			/* Also setup NX memory mapping */
 509			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 
 510		}
 511		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 512			/*
 513			 * For ARMv7 with TEX remapping,
 514			 * - shared device is SXCB=1100
 515			 * - nonshared device is SXCB=0100
 516			 * - write combine device mem is SXCB=0001
 517			 * (Uncached Normal memory)
 518			 */
 519			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 520			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 521			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 522		} else if (cpu_is_xsc3()) {
 523			/*
 524			 * For Xscale3,
 525			 * - shared device is TEXCB=00101
 526			 * - nonshared device is TEXCB=01000
 527			 * - write combine device mem is TEXCB=00100
 528			 * (Inner/Outer Uncacheable in xsc3 parlance)
 529			 */
 530			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 531			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 532			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 533		} else {
 534			/*
 535			 * For ARMv6 and ARMv7 without TEX remapping,
 536			 * - shared device is TEXCB=00001
 537			 * - nonshared device is TEXCB=01000
 538			 * - write combine device mem is TEXCB=00100
 539			 * (Uncached Normal in ARMv6 parlance).
 540			 */
 541			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 542			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 543			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 544		}
 545	} else {
 546		/*
 547		 * On others, write combining is "Uncached/Buffered"
 548		 */
 549		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 550	}
 551
 552	/*
 553	 * Now deal with the memory-type mappings
 554	 */
 555	cp = &cache_policies[cachepolicy];
 556	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 557	s2_pgprot = cp->pte_s2;
 558	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 559	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 560
 561#ifndef CONFIG_ARM_LPAE
 562	/*
 563	 * We don't use domains on ARMv6 (since this causes problems with
 564	 * v6/v7 kernels), so we must use a separate memory type for user
 565	 * r/o, kernel r/w to map the vectors page.
 566	 */
 567	if (cpu_arch == CPU_ARCH_ARMv6)
 568		vecs_pgprot |= L_PTE_MT_VECTORS;
 569
 570	/*
 571	 * Check is it with support for the PXN bit
 572	 * in the Short-descriptor translation table format descriptors.
 573	 */
 574	if (cpu_arch == CPU_ARCH_ARMv7 &&
 575		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 576		user_pmd_table |= PMD_PXNTABLE;
 577	}
 578#endif
 579
 580	/*
 581	 * ARMv6 and above have extended page tables.
 582	 */
 583	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 584#ifndef CONFIG_ARM_LPAE
 585		/*
 586		 * Mark cache clean areas and XIP ROM read only
 587		 * from SVC mode and no access from userspace.
 588		 */
 589		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 590		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 591		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 
 592#endif
 593
 594		/*
 595		 * If the initial page tables were created with the S bit
 596		 * set, then we need to do the same here for the same
 597		 * reasons given in early_cachepolicy().
 598		 */
 599		if (initial_pmd_value & PMD_SECT_S) {
 600			user_pgprot |= L_PTE_SHARED;
 601			kern_pgprot |= L_PTE_SHARED;
 602			vecs_pgprot |= L_PTE_SHARED;
 603			s2_pgprot |= L_PTE_SHARED;
 604			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 605			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 606			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 607			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 608			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 609			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 610			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 611			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 
 
 612			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 613			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 614			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 615		}
 616	}
 617
 618	/*
 619	 * Non-cacheable Normal - intended for memory areas that must
 620	 * not cause dirty cache line writebacks when used
 621	 */
 622	if (cpu_arch >= CPU_ARCH_ARMv6) {
 623		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 624			/* Non-cacheable Normal is XCB = 001 */
 625			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 626				PMD_SECT_BUFFERED;
 627		} else {
 628			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 629			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 630				PMD_SECT_TEX(1);
 631		}
 632	} else {
 633		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 634	}
 635
 636#ifdef CONFIG_ARM_LPAE
 637	/*
 638	 * Do not generate access flag faults for the kernel mappings.
 639	 */
 640	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 641		mem_types[i].prot_pte |= PTE_EXT_AF;
 642		if (mem_types[i].prot_sect)
 643			mem_types[i].prot_sect |= PMD_SECT_AF;
 644	}
 645	kern_pgprot |= PTE_EXT_AF;
 646	vecs_pgprot |= PTE_EXT_AF;
 647
 648	/*
 649	 * Set PXN for user mappings
 650	 */
 651	user_pgprot |= PTE_EXT_PXN;
 652#endif
 653
 654	for (i = 0; i < 16; i++) {
 655		pteval_t v = pgprot_val(protection_map[i]);
 656		protection_map[i] = __pgprot(v | user_pgprot);
 657	}
 658
 659	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 660	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 661
 662	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 663	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 664				 L_PTE_DIRTY | kern_pgprot);
 665	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 666	pgprot_s2_device  = __pgprot(s2_device_pgprot);
 667	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 668
 669	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 670	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 671	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 672	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 673	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 674	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 
 
 675	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 676	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 677	mem_types[MT_ROM].prot_sect |= cp->pmd;
 678
 679	switch (cp->pmd) {
 680	case PMD_SECT_WT:
 681		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 682		break;
 683	case PMD_SECT_WB:
 684	case PMD_SECT_WBWA:
 685		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 686		break;
 687	}
 688	pr_info("Memory policy: %sData cache %s\n",
 689		ecc_mask ? "ECC enabled, " : "", cp->policy);
 690
 691	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 692		struct mem_type *t = &mem_types[i];
 693		if (t->prot_l1)
 694			t->prot_l1 |= PMD_DOMAIN(t->domain);
 695		if (t->prot_sect)
 696			t->prot_sect |= PMD_DOMAIN(t->domain);
 697	}
 698}
 699
 700#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 701pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 702			      unsigned long size, pgprot_t vma_prot)
 703{
 704	if (!pfn_valid(pfn))
 705		return pgprot_noncached(vma_prot);
 706	else if (file->f_flags & O_SYNC)
 707		return pgprot_writecombine(vma_prot);
 708	return vma_prot;
 709}
 710EXPORT_SYMBOL(phys_mem_access_prot);
 711#endif
 712
 713#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 714
 715static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 716{
 717	void *ptr = __va(memblock_alloc(sz, align));
 718	memset(ptr, 0, sz);
 719	return ptr;
 720}
 721
 722static void __init *early_alloc(unsigned long sz)
 723{
 724	return early_alloc_aligned(sz, sz);
 
 
 
 
 
 
 725}
 726
 727static void *__init late_alloc(unsigned long sz)
 728{
 729	void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
 
 730
 731	BUG_ON(!ptr);
 732	return ptr;
 
 733}
 734
 735static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 736				unsigned long prot,
 737				void *(*alloc)(unsigned long sz))
 738{
 739	if (pmd_none(*pmd)) {
 740		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 741		__pmd_populate(pmd, __pa(pte), prot);
 742	}
 743	BUG_ON(pmd_bad(*pmd));
 744	return pte_offset_kernel(pmd, addr);
 745}
 746
 747static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 748				      unsigned long prot)
 749{
 750	return arm_pte_alloc(pmd, addr, prot, early_alloc);
 751}
 752
 753static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 754				  unsigned long end, unsigned long pfn,
 755				  const struct mem_type *type,
 756				  void *(*alloc)(unsigned long sz),
 757				  bool ng)
 758{
 759	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 760	do {
 761		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 762			    ng ? PTE_EXT_NG : 0);
 763		pfn++;
 764	} while (pte++, addr += PAGE_SIZE, addr != end);
 765}
 766
 767static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 768			unsigned long end, phys_addr_t phys,
 769			const struct mem_type *type, bool ng)
 770{
 771	pmd_t *p = pmd;
 772
 773#ifndef CONFIG_ARM_LPAE
 774	/*
 775	 * In classic MMU format, puds and pmds are folded in to
 776	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 777	 * group of L1 entries making up one logical pointer to
 778	 * an L2 table (2MB), where as PMDs refer to the individual
 779	 * L1 entries (1MB). Hence increment to get the correct
 780	 * offset for odd 1MB sections.
 781	 * (See arch/arm/include/asm/pgtable-2level.h)
 782	 */
 783	if (addr & SECTION_SIZE)
 784		pmd++;
 785#endif
 786	do {
 787		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 788		phys += SECTION_SIZE;
 789	} while (pmd++, addr += SECTION_SIZE, addr != end);
 790
 791	flush_pmd_entry(p);
 792}
 793
 794static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 795				      unsigned long end, phys_addr_t phys,
 796				      const struct mem_type *type,
 797				      void *(*alloc)(unsigned long sz), bool ng)
 798{
 799	pmd_t *pmd = pmd_offset(pud, addr);
 800	unsigned long next;
 801
 802	do {
 803		/*
 804		 * With LPAE, we must loop over to map
 805		 * all the pmds for the given range.
 806		 */
 807		next = pmd_addr_end(addr, end);
 808
 809		/*
 810		 * Try a section mapping - addr, next and phys must all be
 811		 * aligned to a section boundary.
 812		 */
 813		if (type->prot_sect &&
 814				((addr | next | phys) & ~SECTION_MASK) == 0) {
 815			__map_init_section(pmd, addr, next, phys, type, ng);
 816		} else {
 817			alloc_init_pte(pmd, addr, next,
 818				       __phys_to_pfn(phys), type, alloc, ng);
 819		}
 820
 821		phys += next - addr;
 822
 823	} while (pmd++, addr = next, addr != end);
 824}
 825
 826static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 827				  unsigned long end, phys_addr_t phys,
 828				  const struct mem_type *type,
 829				  void *(*alloc)(unsigned long sz), bool ng)
 830{
 831	pud_t *pud = pud_offset(pgd, addr);
 832	unsigned long next;
 833
 834	do {
 835		next = pud_addr_end(addr, end);
 836		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 837		phys += next - addr;
 838	} while (pud++, addr = next, addr != end);
 839}
 840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841#ifndef CONFIG_ARM_LPAE
 842static void __init create_36bit_mapping(struct mm_struct *mm,
 843					struct map_desc *md,
 844					const struct mem_type *type,
 845					bool ng)
 846{
 847	unsigned long addr, length, end;
 848	phys_addr_t phys;
 849	pgd_t *pgd;
 850
 851	addr = md->virtual;
 852	phys = __pfn_to_phys(md->pfn);
 853	length = PAGE_ALIGN(md->length);
 854
 855	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 856		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 857		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 858		return;
 859	}
 860
 861	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 862	 *	Since domain assignments can in fact be arbitrary, the
 863	 *	'domain == 0' check below is required to insure that ARMv6
 864	 *	supersections are only allocated for domain 0 regardless
 865	 *	of the actual domain assignments in use.
 866	 */
 867	if (type->domain) {
 868		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 869		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 870		return;
 871	}
 872
 873	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 874		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 875		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 876		return;
 877	}
 878
 879	/*
 880	 * Shift bits [35:32] of address into bits [23:20] of PMD
 881	 * (See ARMv6 spec).
 882	 */
 883	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 884
 885	pgd = pgd_offset(mm, addr);
 886	end = addr + length;
 887	do {
 888		pud_t *pud = pud_offset(pgd, addr);
 
 889		pmd_t *pmd = pmd_offset(pud, addr);
 890		int i;
 891
 892		for (i = 0; i < 16; i++)
 893			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 894				       (ng ? PMD_SECT_nG : 0));
 895
 896		addr += SUPERSECTION_SIZE;
 897		phys += SUPERSECTION_SIZE;
 898		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 899	} while (addr != end);
 900}
 901#endif	/* !CONFIG_ARM_LPAE */
 902
 903static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 904				    void *(*alloc)(unsigned long sz),
 905				    bool ng)
 906{
 907	unsigned long addr, length, end;
 908	phys_addr_t phys;
 909	const struct mem_type *type;
 910	pgd_t *pgd;
 911
 912	type = &mem_types[md->type];
 913
 914#ifndef CONFIG_ARM_LPAE
 915	/*
 916	 * Catch 36-bit addresses
 917	 */
 918	if (md->pfn >= 0x100000) {
 919		create_36bit_mapping(mm, md, type, ng);
 920		return;
 921	}
 922#endif
 923
 924	addr = md->virtual & PAGE_MASK;
 925	phys = __pfn_to_phys(md->pfn);
 926	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 927
 928	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 929		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 930			(long long)__pfn_to_phys(md->pfn), addr);
 931		return;
 932	}
 933
 934	pgd = pgd_offset(mm, addr);
 935	end = addr + length;
 936	do {
 937		unsigned long next = pgd_addr_end(addr, end);
 938
 939		alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
 940
 941		phys += next - addr;
 942		addr = next;
 943	} while (pgd++, addr != end);
 944}
 945
 946/*
 947 * Create the page directory entries and any necessary
 948 * page tables for the mapping specified by `md'.  We
 949 * are able to cope here with varying sizes and address
 950 * offsets, and we take full advantage of sections and
 951 * supersections.
 952 */
 953static void __init create_mapping(struct map_desc *md)
 954{
 955	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 956		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 957			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 958		return;
 959	}
 960
 961	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 962	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 963	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 964		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 965			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 966	}
 967
 968	__create_mapping(&init_mm, md, early_alloc, false);
 969}
 970
 971void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
 972				bool ng)
 973{
 974#ifdef CONFIG_ARM_LPAE
 975	pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
 
 
 
 
 
 
 976	if (WARN_ON(!pud))
 977		return;
 978	pmd_alloc(mm, pud, 0);
 979#endif
 980	__create_mapping(mm, md, late_alloc, ng);
 981}
 982
 983/*
 984 * Create the architecture specific mappings
 985 */
 986void __init iotable_init(struct map_desc *io_desc, int nr)
 987{
 988	struct map_desc *md;
 989	struct vm_struct *vm;
 990	struct static_vm *svm;
 991
 992	if (!nr)
 993		return;
 994
 995	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
 
 
 
 996
 997	for (md = io_desc; nr; md++, nr--) {
 998		create_mapping(md);
 999
1000		vm = &svm->vm;
1001		vm->addr = (void *)(md->virtual & PAGE_MASK);
1002		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1003		vm->phys_addr = __pfn_to_phys(md->pfn);
1004		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1005		vm->flags |= VM_ARM_MTYPE(md->type);
1006		vm->caller = iotable_init;
1007		add_static_vm_early(svm++);
1008	}
1009}
1010
1011void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1012				  void *caller)
1013{
1014	struct vm_struct *vm;
1015	struct static_vm *svm;
1016
1017	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
 
 
 
1018
1019	vm = &svm->vm;
1020	vm->addr = (void *)addr;
1021	vm->size = size;
1022	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1023	vm->caller = caller;
1024	add_static_vm_early(svm);
1025}
1026
1027#ifndef CONFIG_ARM_LPAE
1028
1029/*
1030 * The Linux PMD is made of two consecutive section entries covering 2MB
1031 * (see definition in include/asm/pgtable-2level.h).  However a call to
1032 * create_mapping() may optimize static mappings by using individual
1033 * 1MB section mappings.  This leaves the actual PMD potentially half
1034 * initialized if the top or bottom section entry isn't used, leaving it
1035 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1036 * the virtual space left free by that unused section entry.
1037 *
1038 * Let's avoid the issue by inserting dummy vm entries covering the unused
1039 * PMD halves once the static mappings are in place.
1040 */
1041
1042static void __init pmd_empty_section_gap(unsigned long addr)
1043{
1044	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1045}
1046
1047static void __init fill_pmd_gaps(void)
1048{
1049	struct static_vm *svm;
1050	struct vm_struct *vm;
1051	unsigned long addr, next = 0;
1052	pmd_t *pmd;
1053
1054	list_for_each_entry(svm, &static_vmlist, list) {
1055		vm = &svm->vm;
1056		addr = (unsigned long)vm->addr;
1057		if (addr < next)
1058			continue;
1059
1060		/*
1061		 * Check if this vm starts on an odd section boundary.
1062		 * If so and the first section entry for this PMD is free
1063		 * then we block the corresponding virtual address.
1064		 */
1065		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1066			pmd = pmd_off_k(addr);
1067			if (pmd_none(*pmd))
1068				pmd_empty_section_gap(addr & PMD_MASK);
1069		}
1070
1071		/*
1072		 * Then check if this vm ends on an odd section boundary.
1073		 * If so and the second section entry for this PMD is empty
1074		 * then we block the corresponding virtual address.
1075		 */
1076		addr += vm->size;
1077		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1078			pmd = pmd_off_k(addr) + 1;
1079			if (pmd_none(*pmd))
1080				pmd_empty_section_gap(addr);
1081		}
1082
1083		/* no need to look at any vm entry until we hit the next PMD */
1084		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1085	}
1086}
1087
1088#else
1089#define fill_pmd_gaps() do { } while (0)
1090#endif
1091
1092#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1093static void __init pci_reserve_io(void)
1094{
1095	struct static_vm *svm;
1096
1097	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1098	if (svm)
1099		return;
1100
1101	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1102}
1103#else
1104#define pci_reserve_io() do { } while (0)
1105#endif
1106
1107#ifdef CONFIG_DEBUG_LL
1108void __init debug_ll_io_init(void)
1109{
1110	struct map_desc map;
1111
1112	debug_ll_addr(&map.pfn, &map.virtual);
1113	if (!map.pfn || !map.virtual)
1114		return;
1115	map.pfn = __phys_to_pfn(map.pfn);
1116	map.virtual &= PAGE_MASK;
1117	map.length = PAGE_SIZE;
1118	map.type = MT_DEVICE;
1119	iotable_init(&map, 1);
1120}
1121#endif
1122
1123static void * __initdata vmalloc_min =
1124	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1125
1126/*
1127 * vmalloc=size forces the vmalloc area to be exactly 'size'
1128 * bytes. This can be used to increase (or decrease) the vmalloc
1129 * area - the default is 240m.
1130 */
1131static int __init early_vmalloc(char *arg)
1132{
1133	unsigned long vmalloc_reserve = memparse(arg, NULL);
 
1134
1135	if (vmalloc_reserve < SZ_16M) {
1136		vmalloc_reserve = SZ_16M;
1137		pr_warn("vmalloc area too small, limiting to %luMB\n",
1138			vmalloc_reserve >> 20);
1139	}
1140
1141	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1142		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1143		pr_warn("vmalloc area is too big, limiting to %luMB\n",
 
1144			vmalloc_reserve >> 20);
1145	}
1146
1147	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1148	return 0;
1149}
1150early_param("vmalloc", early_vmalloc);
1151
1152phys_addr_t arm_lowmem_limit __initdata = 0;
1153
1154void __init sanity_check_meminfo(void)
1155{
1156	phys_addr_t memblock_limit = 0;
1157	int highmem = 0;
1158	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1159	struct memblock_region *reg;
1160	bool should_use_highmem = false;
1161
1162	for_each_memblock(memory, reg) {
1163		phys_addr_t block_start = reg->base;
1164		phys_addr_t block_end = reg->base + reg->size;
1165		phys_addr_t size_limit = reg->size;
1166
1167		if (reg->base >= vmalloc_limit)
1168			highmem = 1;
1169		else
1170			size_limit = vmalloc_limit - reg->base;
1171
1172
1173		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1174
1175			if (highmem) {
1176				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1177					  &block_start, &block_end);
1178				memblock_remove(reg->base, reg->size);
1179				should_use_highmem = true;
1180				continue;
1181			}
1182
1183			if (reg->size > size_limit) {
1184				phys_addr_t overlap_size = reg->size - size_limit;
 
 
 
 
 
 
 
1185
1186				pr_notice("Truncating RAM at %pa-%pa to -%pa",
1187					  &block_start, &block_end, &vmalloc_limit);
1188				memblock_remove(vmalloc_limit, overlap_size);
1189				block_end = vmalloc_limit;
1190				should_use_highmem = true;
1191			}
 
 
 
 
1192		}
 
 
1193
1194		if (!highmem) {
1195			if (block_end > arm_lowmem_limit) {
1196				if (reg->size > size_limit)
1197					arm_lowmem_limit = vmalloc_limit;
1198				else
1199					arm_lowmem_limit = block_end;
1200			}
 
 
 
 
 
1201
1202			/*
1203			 * Find the first non-pmd-aligned page, and point
1204			 * memblock_limit at it. This relies on rounding the
1205			 * limit down to be pmd-aligned, which happens at the
1206			 * end of this function.
1207			 *
1208			 * With this algorithm, the start or end of almost any
1209			 * bank can be non-pmd-aligned. The only exception is
1210			 * that the start of the bank 0 must be section-
1211			 * aligned, since otherwise memory would need to be
1212			 * allocated when mapping the start of bank 0, which
1213			 * occurs before any free memory is mapped.
1214			 */
1215			if (!memblock_limit) {
1216				if (!IS_ALIGNED(block_start, PMD_SIZE))
1217					memblock_limit = block_start;
1218				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1219					memblock_limit = arm_lowmem_limit;
1220			}
1221
1222		}
1223	}
1224
1225	if (should_use_highmem)
1226		pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1227
1228	high_memory = __va(arm_lowmem_limit - 1) + 1;
1229
 
 
 
1230	/*
1231	 * Round the memblock limit down to a pmd size.  This
1232	 * helps to ensure that we will allocate memory from the
1233	 * last full pmd, which should be mapped.
1234	 */
1235	if (memblock_limit)
1236		memblock_limit = round_down(memblock_limit, PMD_SIZE);
1237	if (!memblock_limit)
1238		memblock_limit = arm_lowmem_limit;
 
 
 
 
 
 
 
 
 
1239
1240	memblock_set_current_limit(memblock_limit);
1241}
1242
1243static inline void prepare_page_table(void)
1244{
1245	unsigned long addr;
1246	phys_addr_t end;
1247
1248	/*
1249	 * Clear out all the mappings below the kernel image.
1250	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1252		pmd_clear(pmd_off_k(addr));
 
1253
1254#ifdef CONFIG_XIP_KERNEL
1255	/* The XIP kernel is mapped in the module area -- skip over it */
1256	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1257#endif
1258	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1259		pmd_clear(pmd_off_k(addr));
1260
1261	/*
1262	 * Find the end of the first block of lowmem.
1263	 */
1264	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1265	if (end >= arm_lowmem_limit)
1266		end = arm_lowmem_limit;
1267
1268	/*
1269	 * Clear out all the kernel space mappings, except for the first
1270	 * memory bank, up to the vmalloc region.
1271	 */
1272	for (addr = __phys_to_virt(end);
1273	     addr < VMALLOC_START; addr += PMD_SIZE)
1274		pmd_clear(pmd_off_k(addr));
1275}
1276
1277#ifdef CONFIG_ARM_LPAE
1278/* the first page is reserved for pgd */
1279#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1280				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1281#else
1282#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1283#endif
1284
1285/*
1286 * Reserve the special regions of memory
1287 */
1288void __init arm_mm_memblock_reserve(void)
1289{
1290	/*
1291	 * Reserve the page tables.  These are already in use,
1292	 * and can only be in node 0.
1293	 */
1294	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1295
1296#ifdef CONFIG_SA1111
1297	/*
1298	 * Because of the SA1111 DMA bug, we want to preserve our
1299	 * precious DMA-able memory...
1300	 */
1301	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1302#endif
1303}
1304
1305/*
1306 * Set up the device mappings.  Since we clear out the page tables for all
1307 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1308 * device mappings.  This means earlycon can be used to debug this function
1309 * Any other function or debugging method which may touch any device _will_
1310 * crash the kernel.
1311 */
1312static void __init devicemaps_init(const struct machine_desc *mdesc)
1313{
1314	struct map_desc map;
1315	unsigned long addr;
1316	void *vectors;
1317
1318	/*
1319	 * Allocate the vector page early.
1320	 */
1321	vectors = early_alloc(PAGE_SIZE * 2);
1322
1323	early_trap_init(vectors);
1324
1325	/*
1326	 * Clear page table except top pmd used by early fixmaps
1327	 */
1328	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1329		pmd_clear(pmd_off_k(addr));
1330
 
 
 
 
 
 
 
 
 
1331	/*
1332	 * Map the kernel if it is XIP.
1333	 * It is always first in the modulearea.
1334	 */
1335#ifdef CONFIG_XIP_KERNEL
1336	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1337	map.virtual = MODULES_VADDR;
1338	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1339	map.type = MT_ROM;
1340	create_mapping(&map);
1341#endif
1342
1343	/*
1344	 * Map the cache flushing regions.
1345	 */
1346#ifdef FLUSH_BASE
1347	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1348	map.virtual = FLUSH_BASE;
1349	map.length = SZ_1M;
1350	map.type = MT_CACHECLEAN;
1351	create_mapping(&map);
1352#endif
1353#ifdef FLUSH_BASE_MINICACHE
1354	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1355	map.virtual = FLUSH_BASE_MINICACHE;
1356	map.length = SZ_1M;
1357	map.type = MT_MINICLEAN;
1358	create_mapping(&map);
1359#endif
1360
1361	/*
1362	 * Create a mapping for the machine vectors at the high-vectors
1363	 * location (0xffff0000).  If we aren't using high-vectors, also
1364	 * create a mapping at the low-vectors virtual address.
1365	 */
1366	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1367	map.virtual = 0xffff0000;
1368	map.length = PAGE_SIZE;
1369#ifdef CONFIG_KUSER_HELPERS
1370	map.type = MT_HIGH_VECTORS;
1371#else
1372	map.type = MT_LOW_VECTORS;
1373#endif
1374	create_mapping(&map);
1375
1376	if (!vectors_high()) {
1377		map.virtual = 0;
1378		map.length = PAGE_SIZE * 2;
1379		map.type = MT_LOW_VECTORS;
1380		create_mapping(&map);
1381	}
1382
1383	/* Now create a kernel read-only mapping */
1384	map.pfn += 1;
1385	map.virtual = 0xffff0000 + PAGE_SIZE;
1386	map.length = PAGE_SIZE;
1387	map.type = MT_LOW_VECTORS;
1388	create_mapping(&map);
1389
1390	/*
1391	 * Ask the machine support to map in the statically mapped devices.
1392	 */
1393	if (mdesc->map_io)
1394		mdesc->map_io();
1395	else
1396		debug_ll_io_init();
1397	fill_pmd_gaps();
1398
1399	/* Reserve fixed i/o space in VMALLOC region */
1400	pci_reserve_io();
1401
1402	/*
1403	 * Finally flush the caches and tlb to ensure that we're in a
1404	 * consistent state wrt the writebuffer.  This also ensures that
1405	 * any write-allocated cache lines in the vector page are written
1406	 * back.  After this point, we can start to touch devices again.
1407	 */
1408	local_flush_tlb_all();
1409	flush_cache_all();
1410
1411	/* Enable asynchronous aborts */
1412	early_abt_enable();
1413}
1414
1415static void __init kmap_init(void)
1416{
1417#ifdef CONFIG_HIGHMEM
1418	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1419		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1420#endif
1421
1422	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1423			_PAGE_KERNEL_TABLE);
1424}
1425
1426static void __init map_lowmem(void)
1427{
1428	struct memblock_region *reg;
1429#ifdef CONFIG_XIP_KERNEL
1430	phys_addr_t kernel_x_start = round_down(__pa(_sdata), SECTION_SIZE);
1431#else
1432	phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1433#endif
1434	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1435
1436	/* Map all the lowmem memory banks. */
1437	for_each_memblock(memory, reg) {
1438		phys_addr_t start = reg->base;
1439		phys_addr_t end = start + reg->size;
1440		struct map_desc map;
1441
1442		if (memblock_is_nomap(reg))
1443			continue;
1444
1445		if (end > arm_lowmem_limit)
1446			end = arm_lowmem_limit;
1447		if (start >= end)
1448			break;
1449
1450		if (end < kernel_x_start) {
1451			map.pfn = __phys_to_pfn(start);
1452			map.virtual = __phys_to_virt(start);
1453			map.length = end - start;
1454			map.type = MT_MEMORY_RWX;
1455
1456			create_mapping(&map);
1457		} else if (start >= kernel_x_end) {
1458			map.pfn = __phys_to_pfn(start);
1459			map.virtual = __phys_to_virt(start);
1460			map.length = end - start;
1461			map.type = MT_MEMORY_RW;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462
1463			create_mapping(&map);
1464		} else {
1465			/* This better cover the entire kernel */
1466			if (start < kernel_x_start) {
 
1467				map.pfn = __phys_to_pfn(start);
1468				map.virtual = __phys_to_virt(start);
1469				map.length = kernel_x_start - start;
1470				map.type = MT_MEMORY_RW;
1471
1472				create_mapping(&map);
1473			}
1474
1475			map.pfn = __phys_to_pfn(kernel_x_start);
1476			map.virtual = __phys_to_virt(kernel_x_start);
1477			map.length = kernel_x_end - kernel_x_start;
1478			map.type = MT_MEMORY_RWX;
1479
1480			create_mapping(&map);
1481
1482			if (kernel_x_end < end) {
1483				map.pfn = __phys_to_pfn(kernel_x_end);
1484				map.virtual = __phys_to_virt(kernel_x_end);
1485				map.length = end - kernel_x_end;
1486				map.type = MT_MEMORY_RW;
1487
1488				create_mapping(&map);
 
1489			}
 
 
 
 
 
 
 
 
 
 
 
 
1490		}
 
 
 
 
 
1491	}
1492}
1493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1494#ifdef CONFIG_ARM_PV_FIXUP
1495extern unsigned long __atags_pointer;
1496typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1497pgtables_remap lpae_pgtables_remap_asm;
1498
1499/*
1500 * early_paging_init() recreates boot time page table setup, allowing machines
1501 * to switch over to a high (>4G) address space on LPAE systems
1502 */
1503void __init early_paging_init(const struct machine_desc *mdesc)
1504{
1505	pgtables_remap *lpae_pgtables_remap;
1506	unsigned long pa_pgd;
1507	unsigned int cr, ttbcr;
1508	long long offset;
1509	void *boot_data;
1510
1511	if (!mdesc->pv_fixup)
1512		return;
1513
1514	offset = mdesc->pv_fixup();
1515	if (offset == 0)
1516		return;
1517
1518	/*
 
 
 
 
 
 
 
1519	 * Get the address of the remap function in the 1:1 identity
1520	 * mapping setup by the early page table assembly code.  We
1521	 * must get this prior to the pv update.  The following barrier
1522	 * ensures that this is complete before we fixup any P:V offsets.
1523	 */
1524	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1525	pa_pgd = __pa(swapper_pg_dir);
1526	boot_data = __va(__atags_pointer);
1527	barrier();
1528
1529	pr_info("Switching physical address space to 0x%08llx\n",
1530		(u64)PHYS_OFFSET + offset);
1531
1532	/* Re-set the phys pfn offset, and the pv offset */
1533	__pv_offset += offset;
1534	__pv_phys_pfn_offset += PFN_DOWN(offset);
1535
1536	/* Run the patch stub to update the constants */
1537	fixup_pv_table(&__pv_table_begin,
1538		(&__pv_table_end - &__pv_table_begin) << 2);
1539
1540	/*
1541	 * We changing not only the virtual to physical mapping, but also
1542	 * the physical addresses used to access memory.  We need to flush
1543	 * all levels of cache in the system with caching disabled to
1544	 * ensure that all data is written back, and nothing is prefetched
1545	 * into the caches.  We also need to prevent the TLB walkers
1546	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1547	 * specific.
1548	 */
1549	cr = get_cr();
1550	set_cr(cr & ~(CR_I | CR_C));
1551	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1552	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1553		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1554	flush_cache_all();
1555
1556	/*
1557	 * Fixup the page tables - this must be in the idmap region as
1558	 * we need to disable the MMU to do this safely, and hence it
1559	 * needs to be assembly.  It's fairly simple, as we're using the
1560	 * temporary tables setup by the initial assembly code.
1561	 */
1562	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1563
1564	/* Re-enable the caches and cacheable TLB walks */
1565	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1566	set_cr(cr);
1567}
1568
1569#else
1570
1571void __init early_paging_init(const struct machine_desc *mdesc)
1572{
1573	long long offset;
1574
1575	if (!mdesc->pv_fixup)
1576		return;
1577
1578	offset = mdesc->pv_fixup();
1579	if (offset == 0)
1580		return;
1581
1582	pr_crit("Physical address space modification is only to support Keystone2.\n");
1583	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1584	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1585	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1586}
1587
1588#endif
1589
1590static void __init early_fixmap_shutdown(void)
1591{
1592	int i;
1593	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1594
1595	pte_offset_fixmap = pte_offset_late_fixmap;
1596	pmd_clear(fixmap_pmd(va));
1597	local_flush_tlb_kernel_page(va);
1598
1599	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1600		pte_t *pte;
1601		struct map_desc map;
1602
1603		map.virtual = fix_to_virt(i);
1604		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1605
1606		/* Only i/o device mappings are supported ATM */
1607		if (pte_none(*pte) ||
1608		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1609			continue;
1610
1611		map.pfn = pte_pfn(*pte);
1612		map.type = MT_DEVICE;
1613		map.length = PAGE_SIZE;
1614
1615		create_mapping(&map);
1616	}
1617}
1618
1619/*
1620 * paging_init() sets up the page tables, initialises the zone memory
1621 * maps, and sets up the zero page, bad page and bad page tables.
1622 */
1623void __init paging_init(const struct machine_desc *mdesc)
1624{
1625	void *zero_page;
1626
1627	build_mem_type_table();
 
 
1628	prepare_page_table();
1629	map_lowmem();
1630	memblock_set_current_limit(arm_lowmem_limit);
 
 
 
 
 
 
1631	dma_contiguous_remap();
1632	early_fixmap_shutdown();
1633	devicemaps_init(mdesc);
1634	kmap_init();
1635	tcm_init();
1636
1637	top_pmd = pmd_off_k(0xffff0000);
1638
1639	/* allocate the zero page. */
1640	zero_page = early_alloc(PAGE_SIZE);
1641
1642	bootmem_init();
1643
1644	empty_zero_page = virt_to_page(zero_page);
1645	__flush_dcache_page(NULL, empty_zero_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1646}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/arch/arm/mm/mmu.c
   4 *
   5 *  Copyright (C) 1995-2005 Russell King
 
 
 
 
   6 */
   7#include <linux/module.h>
   8#include <linux/kernel.h>
   9#include <linux/errno.h>
  10#include <linux/init.h>
  11#include <linux/mman.h>
  12#include <linux/nodemask.h>
  13#include <linux/memblock.h>
  14#include <linux/fs.h>
  15#include <linux/vmalloc.h>
  16#include <linux/sizes.h>
  17
  18#include <asm/cp15.h>
  19#include <asm/cputype.h>
 
  20#include <asm/cachetype.h>
 
  21#include <asm/sections.h>
  22#include <asm/setup.h>
  23#include <asm/smp_plat.h>
  24#include <asm/tcm.h>
  25#include <asm/tlb.h>
  26#include <asm/highmem.h>
  27#include <asm/system_info.h>
  28#include <asm/traps.h>
  29#include <asm/procinfo.h>
  30#include <asm/page.h>
  31#include <asm/pgalloc.h>
  32#include <asm/kasan_def.h>
  33
  34#include <asm/mach/arch.h>
  35#include <asm/mach/map.h>
  36#include <asm/mach/pci.h>
  37#include <asm/fixmap.h>
  38
  39#include "fault.h"
  40#include "mm.h"
  41
  42extern unsigned long __atags_pointer;
  43
  44/*
  45 * empty_zero_page is a special page that is used for
  46 * zero-initialized data and COW.
  47 */
  48struct page *empty_zero_page;
  49EXPORT_SYMBOL(empty_zero_page);
  50
  51/*
  52 * The pmd table for the upper-most set of pages.
  53 */
  54pmd_t *top_pmd;
  55
  56pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  57
  58#define CPOLICY_UNCACHED	0
  59#define CPOLICY_BUFFERED	1
  60#define CPOLICY_WRITETHROUGH	2
  61#define CPOLICY_WRITEBACK	3
  62#define CPOLICY_WRITEALLOC	4
  63
  64static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  65static unsigned int ecc_mask __initdata = 0;
  66pgprot_t pgprot_user;
  67pgprot_t pgprot_kernel;
 
 
 
  68
  69EXPORT_SYMBOL(pgprot_user);
  70EXPORT_SYMBOL(pgprot_kernel);
  71
  72struct cachepolicy {
  73	const char	policy[16];
  74	unsigned int	cr_mask;
  75	pmdval_t	pmd;
  76	pteval_t	pte;
 
  77};
  78
 
 
 
 
 
 
  79static struct cachepolicy cache_policies[] __initdata = {
  80	{
  81		.policy		= "uncached",
  82		.cr_mask	= CR_W|CR_C,
  83		.pmd		= PMD_SECT_UNCACHED,
  84		.pte		= L_PTE_MT_UNCACHED,
 
  85	}, {
  86		.policy		= "buffered",
  87		.cr_mask	= CR_C,
  88		.pmd		= PMD_SECT_BUFFERED,
  89		.pte		= L_PTE_MT_BUFFERABLE,
 
  90	}, {
  91		.policy		= "writethrough",
  92		.cr_mask	= 0,
  93		.pmd		= PMD_SECT_WT,
  94		.pte		= L_PTE_MT_WRITETHROUGH,
 
  95	}, {
  96		.policy		= "writeback",
  97		.cr_mask	= 0,
  98		.pmd		= PMD_SECT_WB,
  99		.pte		= L_PTE_MT_WRITEBACK,
 
 100	}, {
 101		.policy		= "writealloc",
 102		.cr_mask	= 0,
 103		.pmd		= PMD_SECT_WBWA,
 104		.pte		= L_PTE_MT_WRITEALLOC,
 
 105	}
 106};
 107
 108#ifdef CONFIG_CPU_CP15
 109static unsigned long initial_pmd_value __initdata = 0;
 110
 111/*
 112 * Initialise the cache_policy variable with the initial state specified
 113 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 114 * the C code sets the page tables up with the same policy as the head
 115 * assembly code, which avoids an illegal state where the TLBs can get
 116 * confused.  See comments in early_cachepolicy() for more information.
 117 */
 118void __init init_default_cache_policy(unsigned long pmd)
 119{
 120	int i;
 121
 122	initial_pmd_value = pmd;
 123
 124	pmd &= PMD_SECT_CACHE_MASK;
 125
 126	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 127		if (cache_policies[i].pmd == pmd) {
 128			cachepolicy = i;
 129			break;
 130		}
 131
 132	if (i == ARRAY_SIZE(cache_policies))
 133		pr_err("ERROR: could not find cache policy\n");
 134}
 135
 136/*
 137 * These are useful for identifying cache coherency problems by allowing
 138 * the cache or the cache and writebuffer to be turned off.  (Note: the
 139 * write buffer should not be on and the cache off).
 140 */
 141static int __init early_cachepolicy(char *p)
 142{
 143	int i, selected = -1;
 144
 145	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 146		int len = strlen(cache_policies[i].policy);
 147
 148		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 149			selected = i;
 150			break;
 151		}
 152	}
 153
 154	if (selected == -1)
 155		pr_err("ERROR: unknown or unsupported cache policy\n");
 156
 157	/*
 158	 * This restriction is partly to do with the way we boot; it is
 159	 * unpredictable to have memory mapped using two different sets of
 160	 * memory attributes (shared, type, and cache attribs).  We can not
 161	 * change these attributes once the initial assembly has setup the
 162	 * page tables.
 163	 */
 164	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 165		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 166			cache_policies[cachepolicy].policy);
 167		return 0;
 168	}
 169
 170	if (selected != cachepolicy) {
 171		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 172		cachepolicy = selected;
 173		flush_cache_all();
 174		set_cr(cr);
 175	}
 176	return 0;
 177}
 178early_param("cachepolicy", early_cachepolicy);
 179
 180static int __init early_nocache(char *__unused)
 181{
 182	char *p = "buffered";
 183	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 184	early_cachepolicy(p);
 185	return 0;
 186}
 187early_param("nocache", early_nocache);
 188
 189static int __init early_nowrite(char *__unused)
 190{
 191	char *p = "uncached";
 192	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 193	early_cachepolicy(p);
 194	return 0;
 195}
 196early_param("nowb", early_nowrite);
 197
 198#ifndef CONFIG_ARM_LPAE
 199static int __init early_ecc(char *p)
 200{
 201	if (memcmp(p, "on", 2) == 0)
 202		ecc_mask = PMD_PROTECTION;
 203	else if (memcmp(p, "off", 3) == 0)
 204		ecc_mask = 0;
 205	return 0;
 206}
 207early_param("ecc", early_ecc);
 208#endif
 209
 210#else /* ifdef CONFIG_CPU_CP15 */
 211
 212static int __init early_cachepolicy(char *p)
 213{
 214	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 215	return 0;
 216}
 217early_param("cachepolicy", early_cachepolicy);
 218
 219static int __init noalign_setup(char *__unused)
 220{
 221	pr_warn("noalign kernel parameter not supported without cp15\n");
 222	return 1;
 223}
 224__setup("noalign", noalign_setup);
 225
 226#endif /* ifdef CONFIG_CPU_CP15 / else */
 227
 228#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 229#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
 230#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 231
 232static struct mem_type mem_types[] __ro_after_init = {
 233	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 234		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 235				  L_PTE_SHARED,
 
 
 
 236		.prot_l1	= PMD_TYPE_TABLE,
 237		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 238		.domain		= DOMAIN_IO,
 239	},
 240	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 241		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 242		.prot_l1	= PMD_TYPE_TABLE,
 243		.prot_sect	= PROT_SECT_DEVICE,
 244		.domain		= DOMAIN_IO,
 245	},
 246	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
 247		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 248		.prot_l1	= PMD_TYPE_TABLE,
 249		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 250		.domain		= DOMAIN_IO,
 251	},
 252	[MT_DEVICE_WC] = {	/* ioremap_wc */
 253		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 254		.prot_l1	= PMD_TYPE_TABLE,
 255		.prot_sect	= PROT_SECT_DEVICE,
 256		.domain		= DOMAIN_IO,
 257	},
 258	[MT_UNCACHED] = {
 259		.prot_pte	= PROT_PTE_DEVICE,
 260		.prot_l1	= PMD_TYPE_TABLE,
 261		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 262		.domain		= DOMAIN_IO,
 263	},
 264	[MT_CACHECLEAN] = {
 265		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 266		.domain    = DOMAIN_KERNEL,
 267	},
 268#ifndef CONFIG_ARM_LPAE
 269	[MT_MINICLEAN] = {
 270		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 271		.domain    = DOMAIN_KERNEL,
 272	},
 273#endif
 274	[MT_LOW_VECTORS] = {
 275		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 276				L_PTE_RDONLY,
 277		.prot_l1   = PMD_TYPE_TABLE,
 278		.domain    = DOMAIN_VECTORS,
 279	},
 280	[MT_HIGH_VECTORS] = {
 281		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 282				L_PTE_USER | L_PTE_RDONLY,
 283		.prot_l1   = PMD_TYPE_TABLE,
 284		.domain    = DOMAIN_VECTORS,
 285	},
 286	[MT_MEMORY_RWX] = {
 287		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 288		.prot_l1   = PMD_TYPE_TABLE,
 289		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 290		.domain    = DOMAIN_KERNEL,
 291	},
 292	[MT_MEMORY_RW] = {
 293		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 294			     L_PTE_XN,
 295		.prot_l1   = PMD_TYPE_TABLE,
 296		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 297		.domain    = DOMAIN_KERNEL,
 298	},
 299	[MT_MEMORY_RO] = {
 300		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 301			     L_PTE_XN | L_PTE_RDONLY,
 302		.prot_l1   = PMD_TYPE_TABLE,
 303#ifdef CONFIG_ARM_LPAE
 304		.prot_sect = PMD_TYPE_SECT | L_PMD_SECT_RDONLY | PMD_SECT_AP2,
 305#else
 306		.prot_sect = PMD_TYPE_SECT,
 307#endif
 308		.domain    = DOMAIN_KERNEL,
 309	},
 310	[MT_ROM] = {
 311		.prot_sect = PMD_TYPE_SECT,
 312		.domain    = DOMAIN_KERNEL,
 313	},
 314	[MT_MEMORY_RWX_NONCACHED] = {
 315		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 316				L_PTE_MT_BUFFERABLE,
 317		.prot_l1   = PMD_TYPE_TABLE,
 318		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 319		.domain    = DOMAIN_KERNEL,
 320	},
 321	[MT_MEMORY_RW_DTCM] = {
 322		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 323				L_PTE_XN,
 324		.prot_l1   = PMD_TYPE_TABLE,
 325		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 326		.domain    = DOMAIN_KERNEL,
 327	},
 328	[MT_MEMORY_RWX_ITCM] = {
 329		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 330		.prot_l1   = PMD_TYPE_TABLE,
 331		.domain    = DOMAIN_KERNEL,
 332	},
 333	[MT_MEMORY_RW_SO] = {
 334		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 335				L_PTE_MT_UNCACHED | L_PTE_XN,
 336		.prot_l1   = PMD_TYPE_TABLE,
 337		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 338				PMD_SECT_UNCACHED | PMD_SECT_XN,
 339		.domain    = DOMAIN_KERNEL,
 340	},
 341	[MT_MEMORY_DMA_READY] = {
 342		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 343				L_PTE_XN,
 344		.prot_l1   = PMD_TYPE_TABLE,
 345		.domain    = DOMAIN_KERNEL,
 346	},
 347};
 348
 349const struct mem_type *get_mem_type(unsigned int type)
 350{
 351	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 352}
 353EXPORT_SYMBOL(get_mem_type);
 354
 355static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 356
 357static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 358	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 359
 360static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 361{
 362	return &bm_pte[pte_index(addr)];
 363}
 364
 365static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 366{
 367	return pte_offset_kernel(dir, addr);
 368}
 369
 370static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 371{
 372	return pmd_off_k(addr);
 
 
 
 
 373}
 374
 375void __init early_fixmap_init(void)
 376{
 377	pmd_t *pmd;
 378
 379	/*
 380	 * The early fixmap range spans multiple pmds, for which
 381	 * we are not prepared:
 382	 */
 383	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 384		     != FIXADDR_TOP >> PMD_SHIFT);
 385
 386	pmd = fixmap_pmd(FIXADDR_TOP);
 387	pmd_populate_kernel(&init_mm, pmd, bm_pte);
 388
 389	pte_offset_fixmap = pte_offset_early_fixmap;
 390}
 391
 392/*
 393 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 394 * As a result, this can only be called with preemption disabled, as under
 395 * stop_machine().
 396 */
 397void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 398{
 399	unsigned long vaddr = __fix_to_virt(idx);
 400	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 401
 402	/* Make sure fixmap region does not exceed available allocation. */
 403	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
 
 404	BUG_ON(idx >= __end_of_fixed_addresses);
 405
 406	/* We support only device mappings before pgprot_kernel is set. */
 407	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
 408		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
 409		return;
 410
 411	if (pgprot_val(prot))
 412		set_pte_at(NULL, vaddr, pte,
 413			pfn_pte(phys >> PAGE_SHIFT, prot));
 414	else
 415		pte_clear(NULL, vaddr, pte);
 416	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 417}
 418
 419static pgprot_t protection_map[16] __ro_after_init = {
 420	[VM_NONE]					= __PAGE_NONE,
 421	[VM_READ]					= __PAGE_READONLY,
 422	[VM_WRITE]					= __PAGE_COPY,
 423	[VM_WRITE | VM_READ]				= __PAGE_COPY,
 424	[VM_EXEC]					= __PAGE_READONLY_EXEC,
 425	[VM_EXEC | VM_READ]				= __PAGE_READONLY_EXEC,
 426	[VM_EXEC | VM_WRITE]				= __PAGE_COPY_EXEC,
 427	[VM_EXEC | VM_WRITE | VM_READ]			= __PAGE_COPY_EXEC,
 428	[VM_SHARED]					= __PAGE_NONE,
 429	[VM_SHARED | VM_READ]				= __PAGE_READONLY,
 430	[VM_SHARED | VM_WRITE]				= __PAGE_SHARED,
 431	[VM_SHARED | VM_WRITE | VM_READ]		= __PAGE_SHARED,
 432	[VM_SHARED | VM_EXEC]				= __PAGE_READONLY_EXEC,
 433	[VM_SHARED | VM_EXEC | VM_READ]			= __PAGE_READONLY_EXEC,
 434	[VM_SHARED | VM_EXEC | VM_WRITE]		= __PAGE_SHARED_EXEC,
 435	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __PAGE_SHARED_EXEC
 436};
 437DECLARE_VM_GET_PAGE_PROT
 438
 439/*
 440 * Adjust the PMD section entries according to the CPU in use.
 441 */
 442static void __init build_mem_type_table(void)
 443{
 444	struct cachepolicy *cp;
 445	unsigned int cr = get_cr();
 446	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 
 447	int cpu_arch = cpu_architecture();
 448	int i;
 449
 450	if (cpu_arch < CPU_ARCH_ARMv6) {
 451#if defined(CONFIG_CPU_DCACHE_DISABLE)
 452		if (cachepolicy > CPOLICY_BUFFERED)
 453			cachepolicy = CPOLICY_BUFFERED;
 454#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 455		if (cachepolicy > CPOLICY_WRITETHROUGH)
 456			cachepolicy = CPOLICY_WRITETHROUGH;
 457#endif
 458	}
 459	if (cpu_arch < CPU_ARCH_ARMv5) {
 460		if (cachepolicy >= CPOLICY_WRITEALLOC)
 461			cachepolicy = CPOLICY_WRITEBACK;
 462		ecc_mask = 0;
 463	}
 464
 465	if (is_smp()) {
 466		if (cachepolicy != CPOLICY_WRITEALLOC) {
 467			pr_warn("Forcing write-allocate cache policy for SMP\n");
 468			cachepolicy = CPOLICY_WRITEALLOC;
 469		}
 470		if (!(initial_pmd_value & PMD_SECT_S)) {
 471			pr_warn("Forcing shared mappings for SMP\n");
 472			initial_pmd_value |= PMD_SECT_S;
 473		}
 474	}
 475
 476	/*
 477	 * Strip out features not present on earlier architectures.
 478	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 479	 * without extended page tables don't have the 'Shared' bit.
 480	 */
 481	if (cpu_arch < CPU_ARCH_ARMv5)
 482		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 483			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 484	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 485		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 486			mem_types[i].prot_sect &= ~PMD_SECT_S;
 487
 488	/*
 489	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 490	 * "update-able on write" bit on ARM610).  However, Xscale and
 491	 * Xscale3 require this bit to be cleared.
 492	 */
 493	if (cpu_is_xscale_family()) {
 494		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 495			mem_types[i].prot_sect &= ~PMD_BIT4;
 496			mem_types[i].prot_l1 &= ~PMD_BIT4;
 497		}
 498	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 499		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 500			if (mem_types[i].prot_l1)
 501				mem_types[i].prot_l1 |= PMD_BIT4;
 502			if (mem_types[i].prot_sect)
 503				mem_types[i].prot_sect |= PMD_BIT4;
 504		}
 505	}
 506
 507	/*
 508	 * Mark the device areas according to the CPU/architecture.
 509	 */
 510	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 511		if (!cpu_is_xsc3()) {
 512			/*
 513			 * Mark device regions on ARMv6+ as execute-never
 514			 * to prevent speculative instruction fetches.
 515			 */
 516			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 517			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 518			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 519			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 520
 521			/* Also setup NX memory mapping */
 522			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 523			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_XN;
 524		}
 525		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 526			/*
 527			 * For ARMv7 with TEX remapping,
 528			 * - shared device is SXCB=1100
 529			 * - nonshared device is SXCB=0100
 530			 * - write combine device mem is SXCB=0001
 531			 * (Uncached Normal memory)
 532			 */
 533			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 534			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 535			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 536		} else if (cpu_is_xsc3()) {
 537			/*
 538			 * For Xscale3,
 539			 * - shared device is TEXCB=00101
 540			 * - nonshared device is TEXCB=01000
 541			 * - write combine device mem is TEXCB=00100
 542			 * (Inner/Outer Uncacheable in xsc3 parlance)
 543			 */
 544			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 545			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 546			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 547		} else {
 548			/*
 549			 * For ARMv6 and ARMv7 without TEX remapping,
 550			 * - shared device is TEXCB=00001
 551			 * - nonshared device is TEXCB=01000
 552			 * - write combine device mem is TEXCB=00100
 553			 * (Uncached Normal in ARMv6 parlance).
 554			 */
 555			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 556			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 557			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 558		}
 559	} else {
 560		/*
 561		 * On others, write combining is "Uncached/Buffered"
 562		 */
 563		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 564	}
 565
 566	/*
 567	 * Now deal with the memory-type mappings
 568	 */
 569	cp = &cache_policies[cachepolicy];
 570	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 
 
 
 571
 572#ifndef CONFIG_ARM_LPAE
 573	/*
 574	 * We don't use domains on ARMv6 (since this causes problems with
 575	 * v6/v7 kernels), so we must use a separate memory type for user
 576	 * r/o, kernel r/w to map the vectors page.
 577	 */
 578	if (cpu_arch == CPU_ARCH_ARMv6)
 579		vecs_pgprot |= L_PTE_MT_VECTORS;
 580
 581	/*
 582	 * Check is it with support for the PXN bit
 583	 * in the Short-descriptor translation table format descriptors.
 584	 */
 585	if (cpu_arch == CPU_ARCH_ARMv7 &&
 586		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 587		user_pmd_table |= PMD_PXNTABLE;
 588	}
 589#endif
 590
 591	/*
 592	 * ARMv6 and above have extended page tables.
 593	 */
 594	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 595#ifndef CONFIG_ARM_LPAE
 596		/*
 597		 * Mark cache clean areas and XIP ROM read only
 598		 * from SVC mode and no access from userspace.
 599		 */
 600		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 601		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 602		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 603		mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 604#endif
 605
 606		/*
 607		 * If the initial page tables were created with the S bit
 608		 * set, then we need to do the same here for the same
 609		 * reasons given in early_cachepolicy().
 610		 */
 611		if (initial_pmd_value & PMD_SECT_S) {
 612			user_pgprot |= L_PTE_SHARED;
 613			kern_pgprot |= L_PTE_SHARED;
 614			vecs_pgprot |= L_PTE_SHARED;
 
 615			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 616			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 617			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 618			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 619			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 620			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 621			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 622			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 623			mem_types[MT_MEMORY_RO].prot_sect |= PMD_SECT_S;
 624			mem_types[MT_MEMORY_RO].prot_pte |= L_PTE_SHARED;
 625			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 626			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 627			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 628		}
 629	}
 630
 631	/*
 632	 * Non-cacheable Normal - intended for memory areas that must
 633	 * not cause dirty cache line writebacks when used
 634	 */
 635	if (cpu_arch >= CPU_ARCH_ARMv6) {
 636		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 637			/* Non-cacheable Normal is XCB = 001 */
 638			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 639				PMD_SECT_BUFFERED;
 640		} else {
 641			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 642			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 643				PMD_SECT_TEX(1);
 644		}
 645	} else {
 646		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 647	}
 648
 649#ifdef CONFIG_ARM_LPAE
 650	/*
 651	 * Do not generate access flag faults for the kernel mappings.
 652	 */
 653	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 654		mem_types[i].prot_pte |= PTE_EXT_AF;
 655		if (mem_types[i].prot_sect)
 656			mem_types[i].prot_sect |= PMD_SECT_AF;
 657	}
 658	kern_pgprot |= PTE_EXT_AF;
 659	vecs_pgprot |= PTE_EXT_AF;
 660
 661	/*
 662	 * Set PXN for user mappings
 663	 */
 664	user_pgprot |= PTE_EXT_PXN;
 665#endif
 666
 667	for (i = 0; i < 16; i++) {
 668		pteval_t v = pgprot_val(protection_map[i]);
 669		protection_map[i] = __pgprot(v | user_pgprot);
 670	}
 671
 672	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 673	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 674
 675	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 676	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 677				 L_PTE_DIRTY | kern_pgprot);
 
 
 
 678
 679	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 680	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 681	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 682	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 683	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 684	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 685	mem_types[MT_MEMORY_RO].prot_sect |= ecc_mask | cp->pmd;
 686	mem_types[MT_MEMORY_RO].prot_pte |= kern_pgprot;
 687	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 688	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 689	mem_types[MT_ROM].prot_sect |= cp->pmd;
 690
 691	switch (cp->pmd) {
 692	case PMD_SECT_WT:
 693		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 694		break;
 695	case PMD_SECT_WB:
 696	case PMD_SECT_WBWA:
 697		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 698		break;
 699	}
 700	pr_info("Memory policy: %sData cache %s\n",
 701		ecc_mask ? "ECC enabled, " : "", cp->policy);
 702
 703	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 704		struct mem_type *t = &mem_types[i];
 705		if (t->prot_l1)
 706			t->prot_l1 |= PMD_DOMAIN(t->domain);
 707		if (t->prot_sect)
 708			t->prot_sect |= PMD_DOMAIN(t->domain);
 709	}
 710}
 711
 712#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 713pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 714			      unsigned long size, pgprot_t vma_prot)
 715{
 716	if (!pfn_valid(pfn))
 717		return pgprot_noncached(vma_prot);
 718	else if (file->f_flags & O_SYNC)
 719		return pgprot_writecombine(vma_prot);
 720	return vma_prot;
 721}
 722EXPORT_SYMBOL(phys_mem_access_prot);
 723#endif
 724
 725#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 726
 
 
 
 
 
 
 
 727static void __init *early_alloc(unsigned long sz)
 728{
 729	void *ptr = memblock_alloc(sz, sz);
 730
 731	if (!ptr)
 732		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
 733		      __func__, sz, sz);
 734
 735	return ptr;
 736}
 737
 738static void *__init late_alloc(unsigned long sz)
 739{
 740	void *ptdesc = pagetable_alloc(GFP_PGTABLE_KERNEL & ~__GFP_HIGHMEM,
 741			get_order(sz));
 742
 743	if (!ptdesc || !pagetable_pte_ctor(ptdesc))
 744		BUG();
 745	return ptdesc_to_virt(ptdesc);
 746}
 747
 748static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 749				unsigned long prot,
 750				void *(*alloc)(unsigned long sz))
 751{
 752	if (pmd_none(*pmd)) {
 753		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 754		__pmd_populate(pmd, __pa(pte), prot);
 755	}
 756	BUG_ON(pmd_bad(*pmd));
 757	return pte_offset_kernel(pmd, addr);
 758}
 759
 760static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 761				      unsigned long prot)
 762{
 763	return arm_pte_alloc(pmd, addr, prot, early_alloc);
 764}
 765
 766static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 767				  unsigned long end, unsigned long pfn,
 768				  const struct mem_type *type,
 769				  void *(*alloc)(unsigned long sz),
 770				  bool ng)
 771{
 772	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 773	do {
 774		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 775			    ng ? PTE_EXT_NG : 0);
 776		pfn++;
 777	} while (pte++, addr += PAGE_SIZE, addr != end);
 778}
 779
 780static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 781			unsigned long end, phys_addr_t phys,
 782			const struct mem_type *type, bool ng)
 783{
 784	pmd_t *p = pmd;
 785
 786#ifndef CONFIG_ARM_LPAE
 787	/*
 788	 * In classic MMU format, puds and pmds are folded in to
 789	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 790	 * group of L1 entries making up one logical pointer to
 791	 * an L2 table (2MB), where as PMDs refer to the individual
 792	 * L1 entries (1MB). Hence increment to get the correct
 793	 * offset for odd 1MB sections.
 794	 * (See arch/arm/include/asm/pgtable-2level.h)
 795	 */
 796	if (addr & SECTION_SIZE)
 797		pmd++;
 798#endif
 799	do {
 800		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 801		phys += SECTION_SIZE;
 802	} while (pmd++, addr += SECTION_SIZE, addr != end);
 803
 804	flush_pmd_entry(p);
 805}
 806
 807static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 808				      unsigned long end, phys_addr_t phys,
 809				      const struct mem_type *type,
 810				      void *(*alloc)(unsigned long sz), bool ng)
 811{
 812	pmd_t *pmd = pmd_offset(pud, addr);
 813	unsigned long next;
 814
 815	do {
 816		/*
 817		 * With LPAE, we must loop over to map
 818		 * all the pmds for the given range.
 819		 */
 820		next = pmd_addr_end(addr, end);
 821
 822		/*
 823		 * Try a section mapping - addr, next and phys must all be
 824		 * aligned to a section boundary.
 825		 */
 826		if (type->prot_sect &&
 827				((addr | next | phys) & ~SECTION_MASK) == 0) {
 828			__map_init_section(pmd, addr, next, phys, type, ng);
 829		} else {
 830			alloc_init_pte(pmd, addr, next,
 831				       __phys_to_pfn(phys), type, alloc, ng);
 832		}
 833
 834		phys += next - addr;
 835
 836	} while (pmd++, addr = next, addr != end);
 837}
 838
 839static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
 840				  unsigned long end, phys_addr_t phys,
 841				  const struct mem_type *type,
 842				  void *(*alloc)(unsigned long sz), bool ng)
 843{
 844	pud_t *pud = pud_offset(p4d, addr);
 845	unsigned long next;
 846
 847	do {
 848		next = pud_addr_end(addr, end);
 849		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 850		phys += next - addr;
 851	} while (pud++, addr = next, addr != end);
 852}
 853
 854static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
 855				  unsigned long end, phys_addr_t phys,
 856				  const struct mem_type *type,
 857				  void *(*alloc)(unsigned long sz), bool ng)
 858{
 859	p4d_t *p4d = p4d_offset(pgd, addr);
 860	unsigned long next;
 861
 862	do {
 863		next = p4d_addr_end(addr, end);
 864		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
 865		phys += next - addr;
 866	} while (p4d++, addr = next, addr != end);
 867}
 868
 869#ifndef CONFIG_ARM_LPAE
 870static void __init create_36bit_mapping(struct mm_struct *mm,
 871					struct map_desc *md,
 872					const struct mem_type *type,
 873					bool ng)
 874{
 875	unsigned long addr, length, end;
 876	phys_addr_t phys;
 877	pgd_t *pgd;
 878
 879	addr = md->virtual;
 880	phys = __pfn_to_phys(md->pfn);
 881	length = PAGE_ALIGN(md->length);
 882
 883	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 884		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 885		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 886		return;
 887	}
 888
 889	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 890	 *	Since domain assignments can in fact be arbitrary, the
 891	 *	'domain == 0' check below is required to insure that ARMv6
 892	 *	supersections are only allocated for domain 0 regardless
 893	 *	of the actual domain assignments in use.
 894	 */
 895	if (type->domain) {
 896		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 897		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 898		return;
 899	}
 900
 901	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 902		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 903		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 904		return;
 905	}
 906
 907	/*
 908	 * Shift bits [35:32] of address into bits [23:20] of PMD
 909	 * (See ARMv6 spec).
 910	 */
 911	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 912
 913	pgd = pgd_offset(mm, addr);
 914	end = addr + length;
 915	do {
 916		p4d_t *p4d = p4d_offset(pgd, addr);
 917		pud_t *pud = pud_offset(p4d, addr);
 918		pmd_t *pmd = pmd_offset(pud, addr);
 919		int i;
 920
 921		for (i = 0; i < 16; i++)
 922			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 923				       (ng ? PMD_SECT_nG : 0));
 924
 925		addr += SUPERSECTION_SIZE;
 926		phys += SUPERSECTION_SIZE;
 927		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 928	} while (addr != end);
 929}
 930#endif	/* !CONFIG_ARM_LPAE */
 931
 932static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 933				    void *(*alloc)(unsigned long sz),
 934				    bool ng)
 935{
 936	unsigned long addr, length, end;
 937	phys_addr_t phys;
 938	const struct mem_type *type;
 939	pgd_t *pgd;
 940
 941	type = &mem_types[md->type];
 942
 943#ifndef CONFIG_ARM_LPAE
 944	/*
 945	 * Catch 36-bit addresses
 946	 */
 947	if (md->pfn >= 0x100000) {
 948		create_36bit_mapping(mm, md, type, ng);
 949		return;
 950	}
 951#endif
 952
 953	addr = md->virtual & PAGE_MASK;
 954	phys = __pfn_to_phys(md->pfn);
 955	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 956
 957	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 958		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 959			(long long)__pfn_to_phys(md->pfn), addr);
 960		return;
 961	}
 962
 963	pgd = pgd_offset(mm, addr);
 964	end = addr + length;
 965	do {
 966		unsigned long next = pgd_addr_end(addr, end);
 967
 968		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
 969
 970		phys += next - addr;
 971		addr = next;
 972	} while (pgd++, addr != end);
 973}
 974
 975/*
 976 * Create the page directory entries and any necessary
 977 * page tables for the mapping specified by `md'.  We
 978 * are able to cope here with varying sizes and address
 979 * offsets, and we take full advantage of sections and
 980 * supersections.
 981 */
 982static void __init create_mapping(struct map_desc *md)
 983{
 984	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 985		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 986			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 987		return;
 988	}
 989
 990	if (md->type == MT_DEVICE &&
 991	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 992	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 993		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 994			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 995	}
 996
 997	__create_mapping(&init_mm, md, early_alloc, false);
 998}
 999
1000void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
1001				bool ng)
1002{
1003#ifdef CONFIG_ARM_LPAE
1004	p4d_t *p4d;
1005	pud_t *pud;
1006
1007	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
1008	if (WARN_ON(!p4d))
1009		return;
1010	pud = pud_alloc(mm, p4d, md->virtual);
1011	if (WARN_ON(!pud))
1012		return;
1013	pmd_alloc(mm, pud, 0);
1014#endif
1015	__create_mapping(mm, md, late_alloc, ng);
1016}
1017
1018/*
1019 * Create the architecture specific mappings
1020 */
1021void __init iotable_init(struct map_desc *io_desc, int nr)
1022{
1023	struct map_desc *md;
1024	struct vm_struct *vm;
1025	struct static_vm *svm;
1026
1027	if (!nr)
1028		return;
1029
1030	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
1031	if (!svm)
1032		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1033		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
1034
1035	for (md = io_desc; nr; md++, nr--) {
1036		create_mapping(md);
1037
1038		vm = &svm->vm;
1039		vm->addr = (void *)(md->virtual & PAGE_MASK);
1040		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1041		vm->phys_addr = __pfn_to_phys(md->pfn);
1042		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1043		vm->flags |= VM_ARM_MTYPE(md->type);
1044		vm->caller = iotable_init;
1045		add_static_vm_early(svm++);
1046	}
1047}
1048
1049void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1050				  void *caller)
1051{
1052	struct vm_struct *vm;
1053	struct static_vm *svm;
1054
1055	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
1056	if (!svm)
1057		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
1058		      __func__, sizeof(*svm), __alignof__(*svm));
1059
1060	vm = &svm->vm;
1061	vm->addr = (void *)addr;
1062	vm->size = size;
1063	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1064	vm->caller = caller;
1065	add_static_vm_early(svm);
1066}
1067
1068#ifndef CONFIG_ARM_LPAE
1069
1070/*
1071 * The Linux PMD is made of two consecutive section entries covering 2MB
1072 * (see definition in include/asm/pgtable-2level.h).  However a call to
1073 * create_mapping() may optimize static mappings by using individual
1074 * 1MB section mappings.  This leaves the actual PMD potentially half
1075 * initialized if the top or bottom section entry isn't used, leaving it
1076 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1077 * the virtual space left free by that unused section entry.
1078 *
1079 * Let's avoid the issue by inserting dummy vm entries covering the unused
1080 * PMD halves once the static mappings are in place.
1081 */
1082
1083static void __init pmd_empty_section_gap(unsigned long addr)
1084{
1085	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1086}
1087
1088static void __init fill_pmd_gaps(void)
1089{
1090	struct static_vm *svm;
1091	struct vm_struct *vm;
1092	unsigned long addr, next = 0;
1093	pmd_t *pmd;
1094
1095	list_for_each_entry(svm, &static_vmlist, list) {
1096		vm = &svm->vm;
1097		addr = (unsigned long)vm->addr;
1098		if (addr < next)
1099			continue;
1100
1101		/*
1102		 * Check if this vm starts on an odd section boundary.
1103		 * If so and the first section entry for this PMD is free
1104		 * then we block the corresponding virtual address.
1105		 */
1106		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1107			pmd = pmd_off_k(addr);
1108			if (pmd_none(*pmd))
1109				pmd_empty_section_gap(addr & PMD_MASK);
1110		}
1111
1112		/*
1113		 * Then check if this vm ends on an odd section boundary.
1114		 * If so and the second section entry for this PMD is empty
1115		 * then we block the corresponding virtual address.
1116		 */
1117		addr += vm->size;
1118		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1119			pmd = pmd_off_k(addr) + 1;
1120			if (pmd_none(*pmd))
1121				pmd_empty_section_gap(addr);
1122		}
1123
1124		/* no need to look at any vm entry until we hit the next PMD */
1125		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1126	}
1127}
1128
1129#else
1130#define fill_pmd_gaps() do { } while (0)
1131#endif
1132
1133#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1134static void __init pci_reserve_io(void)
1135{
1136	struct static_vm *svm;
1137
1138	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1139	if (svm)
1140		return;
1141
1142	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1143}
1144#else
1145#define pci_reserve_io() do { } while (0)
1146#endif
1147
1148#ifdef CONFIG_DEBUG_LL
1149void __init debug_ll_io_init(void)
1150{
1151	struct map_desc map;
1152
1153	debug_ll_addr(&map.pfn, &map.virtual);
1154	if (!map.pfn || !map.virtual)
1155		return;
1156	map.pfn = __phys_to_pfn(map.pfn);
1157	map.virtual &= PAGE_MASK;
1158	map.length = PAGE_SIZE;
1159	map.type = MT_DEVICE;
1160	iotable_init(&map, 1);
1161}
1162#endif
1163
1164static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
 
1165
1166/*
1167 * vmalloc=size forces the vmalloc area to be exactly 'size'
1168 * bytes. This can be used to increase (or decrease) the vmalloc
1169 * area - the default is 240MiB.
1170 */
1171static int __init early_vmalloc(char *arg)
1172{
1173	unsigned long vmalloc_reserve = memparse(arg, NULL);
1174	unsigned long vmalloc_max;
1175
1176	if (vmalloc_reserve < SZ_16M) {
1177		vmalloc_reserve = SZ_16M;
1178		pr_warn("vmalloc area is too small, limiting to %luMiB\n",
1179			vmalloc_reserve >> 20);
1180	}
1181
1182	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
1183	if (vmalloc_reserve > vmalloc_max) {
1184		vmalloc_reserve = vmalloc_max;
1185		pr_warn("vmalloc area is too big, limiting to %luMiB\n",
1186			vmalloc_reserve >> 20);
1187	}
1188
1189	vmalloc_size = vmalloc_reserve;
1190	return 0;
1191}
1192early_param("vmalloc", early_vmalloc);
1193
1194phys_addr_t arm_lowmem_limit __initdata = 0;
1195
1196void __init adjust_lowmem_bounds(void)
1197{
1198	phys_addr_t block_start, block_end, memblock_limit = 0;
1199	u64 vmalloc_limit, i;
1200	phys_addr_t lowmem_limit = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1201
1202	/*
1203	 * Let's use our own (unoptimized) equivalent of __pa() that is
1204	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
1205	 * The result is used as the upper bound on physical memory address
1206	 * and may itself be outside the valid range for which phys_addr_t
1207	 * and therefore __pa() is defined.
1208	 */
1209	vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
1210			PAGE_OFFSET + PHYS_OFFSET;
1211
1212	/*
1213	 * The first usable region must be PMD aligned. Mark its start
1214	 * as MEMBLOCK_NOMAP if it isn't
1215	 */
1216	for_each_mem_range(i, &block_start, &block_end) {
1217		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
1218			phys_addr_t len;
1219
1220			len = round_up(block_start, PMD_SIZE) - block_start;
1221			memblock_mark_nomap(block_start, len);
1222		}
1223		break;
1224	}
1225
1226	for_each_mem_range(i, &block_start, &block_end) {
1227		if (block_start < vmalloc_limit) {
1228			if (block_end > lowmem_limit)
1229				/*
1230				 * Compare as u64 to ensure vmalloc_limit does
1231				 * not get truncated. block_end should always
1232				 * fit in phys_addr_t so there should be no
1233				 * issue with assignment.
1234				 */
1235				lowmem_limit = min_t(u64,
1236							 vmalloc_limit,
1237							 block_end);
1238
1239			/*
1240			 * Find the first non-pmd-aligned page, and point
1241			 * memblock_limit at it. This relies on rounding the
1242			 * limit down to be pmd-aligned, which happens at the
1243			 * end of this function.
1244			 *
1245			 * With this algorithm, the start or end of almost any
1246			 * bank can be non-pmd-aligned. The only exception is
1247			 * that the start of the bank 0 must be section-
1248			 * aligned, since otherwise memory would need to be
1249			 * allocated when mapping the start of bank 0, which
1250			 * occurs before any free memory is mapped.
1251			 */
1252			if (!memblock_limit) {
1253				if (!IS_ALIGNED(block_start, PMD_SIZE))
1254					memblock_limit = block_start;
1255				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1256					memblock_limit = lowmem_limit;
1257			}
1258
1259		}
1260	}
1261
1262	arm_lowmem_limit = lowmem_limit;
 
1263
1264	high_memory = __va(arm_lowmem_limit - 1) + 1;
1265
1266	if (!memblock_limit)
1267		memblock_limit = arm_lowmem_limit;
1268
1269	/*
1270	 * Round the memblock limit down to a pmd size.  This
1271	 * helps to ensure that we will allocate memory from the
1272	 * last full pmd, which should be mapped.
1273	 */
1274	memblock_limit = round_down(memblock_limit, PMD_SIZE);
1275
1276	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1277		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
1278			phys_addr_t end = memblock_end_of_DRAM();
1279
1280			pr_notice("Ignoring RAM at %pa-%pa\n",
1281				  &memblock_limit, &end);
1282			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1283
1284			memblock_remove(memblock_limit, end - memblock_limit);
1285		}
1286	}
1287
1288	memblock_set_current_limit(memblock_limit);
1289}
1290
1291static __init void prepare_page_table(void)
1292{
1293	unsigned long addr;
1294	phys_addr_t end;
1295
1296	/*
1297	 * Clear out all the mappings below the kernel image.
1298	 */
1299#ifdef CONFIG_KASAN
1300	/*
1301	 * KASan's shadow memory inserts itself between the TASK_SIZE
1302	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
1303	 */
1304	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
1305		pmd_clear(pmd_off_k(addr));
1306	/*
1307	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
1308	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
1309	 * are using a thumb-compiled kernel, there there will be 8MB more
1310	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
1311	 */
1312	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
1313		pmd_clear(pmd_off_k(addr));
1314#else
1315	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1316		pmd_clear(pmd_off_k(addr));
1317#endif
1318
1319#ifdef CONFIG_XIP_KERNEL
1320	/* The XIP kernel is mapped in the module area -- skip over it */
1321	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1322#endif
1323	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1324		pmd_clear(pmd_off_k(addr));
1325
1326	/*
1327	 * Find the end of the first block of lowmem.
1328	 */
1329	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1330	if (end >= arm_lowmem_limit)
1331		end = arm_lowmem_limit;
1332
1333	/*
1334	 * Clear out all the kernel space mappings, except for the first
1335	 * memory bank, up to the vmalloc region.
1336	 */
1337	for (addr = __phys_to_virt(end);
1338	     addr < VMALLOC_START; addr += PMD_SIZE)
1339		pmd_clear(pmd_off_k(addr));
1340}
1341
1342#ifdef CONFIG_ARM_LPAE
1343/* the first page is reserved for pgd */
1344#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1345				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1346#else
1347#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1348#endif
1349
1350/*
1351 * Reserve the special regions of memory
1352 */
1353void __init arm_mm_memblock_reserve(void)
1354{
1355	/*
1356	 * Reserve the page tables.  These are already in use,
1357	 * and can only be in node 0.
1358	 */
1359	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1360
1361#ifdef CONFIG_SA1111
1362	/*
1363	 * Because of the SA1111 DMA bug, we want to preserve our
1364	 * precious DMA-able memory...
1365	 */
1366	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1367#endif
1368}
1369
1370/*
1371 * Set up the device mappings.  Since we clear out the page tables for all
1372 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1373 * device mappings.  This means earlycon can be used to debug this function
1374 * Any other function or debugging method which may touch any device _will_
1375 * crash the kernel.
1376 */
1377static void __init devicemaps_init(const struct machine_desc *mdesc)
1378{
1379	struct map_desc map;
1380	unsigned long addr;
1381	void *vectors;
1382
1383	/*
1384	 * Allocate the vector page early.
1385	 */
1386	vectors = early_alloc(PAGE_SIZE * 2);
1387
1388	early_trap_init(vectors);
1389
1390	/*
1391	 * Clear page table except top pmd used by early fixmaps
1392	 */
1393	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1394		pmd_clear(pmd_off_k(addr));
1395
1396	if (__atags_pointer) {
1397		/* create a read-only mapping of the device tree */
1398		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
1399		map.virtual = FDT_FIXED_BASE;
1400		map.length = FDT_FIXED_SIZE;
1401		map.type = MT_MEMORY_RO;
1402		create_mapping(&map);
1403	}
1404
1405	/*
1406	 * Map the kernel if it is XIP.
1407	 * It is always first in the modulearea.
1408	 */
1409#ifdef CONFIG_XIP_KERNEL
1410	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1411	map.virtual = MODULES_VADDR;
1412	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1413	map.type = MT_ROM;
1414	create_mapping(&map);
1415#endif
1416
1417	/*
1418	 * Map the cache flushing regions.
1419	 */
1420#ifdef FLUSH_BASE
1421	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1422	map.virtual = FLUSH_BASE;
1423	map.length = SZ_1M;
1424	map.type = MT_CACHECLEAN;
1425	create_mapping(&map);
1426#endif
1427#ifdef FLUSH_BASE_MINICACHE
1428	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1429	map.virtual = FLUSH_BASE_MINICACHE;
1430	map.length = SZ_1M;
1431	map.type = MT_MINICLEAN;
1432	create_mapping(&map);
1433#endif
1434
1435	/*
1436	 * Create a mapping for the machine vectors at the high-vectors
1437	 * location (0xffff0000).  If we aren't using high-vectors, also
1438	 * create a mapping at the low-vectors virtual address.
1439	 */
1440	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1441	map.virtual = 0xffff0000;
1442	map.length = PAGE_SIZE;
1443#ifdef CONFIG_KUSER_HELPERS
1444	map.type = MT_HIGH_VECTORS;
1445#else
1446	map.type = MT_LOW_VECTORS;
1447#endif
1448	create_mapping(&map);
1449
1450	if (!vectors_high()) {
1451		map.virtual = 0;
1452		map.length = PAGE_SIZE * 2;
1453		map.type = MT_LOW_VECTORS;
1454		create_mapping(&map);
1455	}
1456
1457	/* Now create a kernel read-only mapping */
1458	map.pfn += 1;
1459	map.virtual = 0xffff0000 + PAGE_SIZE;
1460	map.length = PAGE_SIZE;
1461	map.type = MT_LOW_VECTORS;
1462	create_mapping(&map);
1463
1464	/*
1465	 * Ask the machine support to map in the statically mapped devices.
1466	 */
1467	if (mdesc->map_io)
1468		mdesc->map_io();
1469	else
1470		debug_ll_io_init();
1471	fill_pmd_gaps();
1472
1473	/* Reserve fixed i/o space in VMALLOC region */
1474	pci_reserve_io();
1475
1476	/*
1477	 * Finally flush the caches and tlb to ensure that we're in a
1478	 * consistent state wrt the writebuffer.  This also ensures that
1479	 * any write-allocated cache lines in the vector page are written
1480	 * back.  After this point, we can start to touch devices again.
1481	 */
1482	local_flush_tlb_all();
1483	flush_cache_all();
1484
1485	/* Enable asynchronous aborts */
1486	early_abt_enable();
1487}
1488
1489static void __init kmap_init(void)
1490{
1491#ifdef CONFIG_HIGHMEM
1492	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1493		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1494#endif
1495
1496	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1497			_PAGE_KERNEL_TABLE);
1498}
1499
1500static void __init map_lowmem(void)
1501{
1502	phys_addr_t start, end;
1503	u64 i;
 
 
 
 
 
1504
1505	/* Map all the lowmem memory banks. */
1506	for_each_mem_range(i, &start, &end) {
 
 
1507		struct map_desc map;
1508
1509		pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
1510			 (long long)start, (long long)end);
 
1511		if (end > arm_lowmem_limit)
1512			end = arm_lowmem_limit;
1513		if (start >= end)
1514			break;
1515
1516		/*
1517		 * If our kernel image is in the VMALLOC area we need to remove
1518		 * the kernel physical memory from lowmem since the kernel will
1519		 * be mapped separately.
1520		 *
1521		 * The kernel will typically be at the very start of lowmem,
1522		 * but any placement relative to memory ranges is possible.
1523		 *
1524		 * If the memblock contains the kernel, we have to chisel out
1525		 * the kernel memory from it and map each part separately. We
1526		 * get 6 different theoretical cases:
1527		 *
1528		 *                            +--------+ +--------+
1529		 *  +-- start --+  +--------+ | Kernel | | Kernel |
1530		 *  |           |  | Kernel | | case 2 | | case 5 |
1531		 *  |           |  | case 1 | +--------+ |        | +--------+
1532		 *  |  Memory   |  +--------+            |        | | Kernel |
1533		 *  |  range    |  +--------+            |        | | case 6 |
1534		 *  |           |  | Kernel | +--------+ |        | +--------+
1535		 *  |           |  | case 3 | | Kernel | |        |
1536		 *  +-- end ----+  +--------+ | case 4 | |        |
1537		 *                            +--------+ +--------+
1538		 */
1539
1540		/* Case 5: kernel covers range, don't map anything, should be rare */
1541		if ((start > kernel_sec_start) && (end < kernel_sec_end))
1542			break;
1543
1544		/* Cases where the kernel is starting inside the range */
1545		if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
1546			/* Case 6: kernel is embedded in the range, we need two mappings */
1547			if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
1548				/* Map memory below the kernel */
1549				map.pfn = __phys_to_pfn(start);
1550				map.virtual = __phys_to_virt(start);
1551				map.length = kernel_sec_start - start;
1552				map.type = MT_MEMORY_RW;
 
1553				create_mapping(&map);
1554				/* Map memory above the kernel */
1555				map.pfn = __phys_to_pfn(kernel_sec_end);
1556				map.virtual = __phys_to_virt(kernel_sec_end);
1557				map.length = end - kernel_sec_end;
 
 
 
 
 
 
 
 
 
1558				map.type = MT_MEMORY_RW;
 
1559				create_mapping(&map);
1560				break;
1561			}
1562			/* Case 1: kernel and range start at the same address, should be common */
1563			if (kernel_sec_start == start)
1564				start = kernel_sec_end;
1565			/* Case 3: kernel and range end at the same address, should be rare */
1566			if (kernel_sec_end == end)
1567				end = kernel_sec_start;
1568		} else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
1569			/* Case 2: kernel ends inside range, starts below it */
1570			start = kernel_sec_end;
1571		} else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
1572			/* Case 4: kernel starts inside range, ends above it */
1573			end = kernel_sec_start;
1574		}
1575		map.pfn = __phys_to_pfn(start);
1576		map.virtual = __phys_to_virt(start);
1577		map.length = end - start;
1578		map.type = MT_MEMORY_RW;
1579		create_mapping(&map);
1580	}
1581}
1582
1583static void __init map_kernel(void)
1584{
1585	/*
1586	 * We use the well known kernel section start and end and split the area in the
1587	 * middle like this:
1588	 *  .                .
1589	 *  | RW memory      |
1590	 *  +----------------+ kernel_x_start
1591	 *  | Executable     |
1592	 *  | kernel memory  |
1593	 *  +----------------+ kernel_x_end / kernel_nx_start
1594	 *  | Non-executable |
1595	 *  | kernel memory  |
1596	 *  +----------------+ kernel_nx_end
1597	 *  | RW memory      |
1598	 *  .                .
1599	 *
1600	 * Notice that we are dealing with section sized mappings here so all of this
1601	 * will be bumped to the closest section boundary. This means that some of the
1602	 * non-executable part of the kernel memory is actually mapped as executable.
1603	 * This will only persist until we turn on proper memory management later on
1604	 * and we remap the whole kernel with page granularity.
1605	 */
1606	phys_addr_t kernel_x_start = kernel_sec_start;
1607	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1608	phys_addr_t kernel_nx_start = kernel_x_end;
1609	phys_addr_t kernel_nx_end = kernel_sec_end;
1610	struct map_desc map;
1611
1612	map.pfn = __phys_to_pfn(kernel_x_start);
1613	map.virtual = __phys_to_virt(kernel_x_start);
1614	map.length = kernel_x_end - kernel_x_start;
1615	map.type = MT_MEMORY_RWX;
1616	create_mapping(&map);
1617
1618	/* If the nx part is small it may end up covered by the tail of the RWX section */
1619	if (kernel_x_end == kernel_nx_end)
1620		return;
1621
1622	map.pfn = __phys_to_pfn(kernel_nx_start);
1623	map.virtual = __phys_to_virt(kernel_nx_start);
1624	map.length = kernel_nx_end - kernel_nx_start;
1625	map.type = MT_MEMORY_RW;
1626	create_mapping(&map);
1627}
1628
1629#ifdef CONFIG_ARM_PV_FIXUP
1630typedef void pgtables_remap(long long offset, unsigned long pgd);
 
1631pgtables_remap lpae_pgtables_remap_asm;
1632
1633/*
1634 * early_paging_init() recreates boot time page table setup, allowing machines
1635 * to switch over to a high (>4G) address space on LPAE systems
1636 */
1637static void __init early_paging_init(const struct machine_desc *mdesc)
1638{
1639	pgtables_remap *lpae_pgtables_remap;
1640	unsigned long pa_pgd;
1641	unsigned int cr, ttbcr;
1642	long long offset;
 
1643
1644	if (!mdesc->pv_fixup)
1645		return;
1646
1647	offset = mdesc->pv_fixup();
1648	if (offset == 0)
1649		return;
1650
1651	/*
1652	 * Offset the kernel section physical offsets so that the kernel
1653	 * mapping will work out later on.
1654	 */
1655	kernel_sec_start += offset;
1656	kernel_sec_end += offset;
1657
1658	/*
1659	 * Get the address of the remap function in the 1:1 identity
1660	 * mapping setup by the early page table assembly code.  We
1661	 * must get this prior to the pv update.  The following barrier
1662	 * ensures that this is complete before we fixup any P:V offsets.
1663	 */
1664	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1665	pa_pgd = __pa(swapper_pg_dir);
 
1666	barrier();
1667
1668	pr_info("Switching physical address space to 0x%08llx\n",
1669		(u64)PHYS_OFFSET + offset);
1670
1671	/* Re-set the phys pfn offset, and the pv offset */
1672	__pv_offset += offset;
1673	__pv_phys_pfn_offset += PFN_DOWN(offset);
1674
1675	/* Run the patch stub to update the constants */
1676	fixup_pv_table(&__pv_table_begin,
1677		(&__pv_table_end - &__pv_table_begin) << 2);
1678
1679	/*
1680	 * We changing not only the virtual to physical mapping, but also
1681	 * the physical addresses used to access memory.  We need to flush
1682	 * all levels of cache in the system with caching disabled to
1683	 * ensure that all data is written back, and nothing is prefetched
1684	 * into the caches.  We also need to prevent the TLB walkers
1685	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1686	 * specific.
1687	 */
1688	cr = get_cr();
1689	set_cr(cr & ~(CR_I | CR_C));
1690	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1691	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1692		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1693	flush_cache_all();
1694
1695	/*
1696	 * Fixup the page tables - this must be in the idmap region as
1697	 * we need to disable the MMU to do this safely, and hence it
1698	 * needs to be assembly.  It's fairly simple, as we're using the
1699	 * temporary tables setup by the initial assembly code.
1700	 */
1701	lpae_pgtables_remap(offset, pa_pgd);
1702
1703	/* Re-enable the caches and cacheable TLB walks */
1704	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1705	set_cr(cr);
1706}
1707
1708#else
1709
1710static void __init early_paging_init(const struct machine_desc *mdesc)
1711{
1712	long long offset;
1713
1714	if (!mdesc->pv_fixup)
1715		return;
1716
1717	offset = mdesc->pv_fixup();
1718	if (offset == 0)
1719		return;
1720
1721	pr_crit("Physical address space modification is only to support Keystone2.\n");
1722	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1723	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1724	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1725}
1726
1727#endif
1728
1729static void __init early_fixmap_shutdown(void)
1730{
1731	int i;
1732	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1733
1734	pte_offset_fixmap = pte_offset_late_fixmap;
1735	pmd_clear(fixmap_pmd(va));
1736	local_flush_tlb_kernel_page(va);
1737
1738	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1739		pte_t *pte;
1740		struct map_desc map;
1741
1742		map.virtual = fix_to_virt(i);
1743		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1744
1745		/* Only i/o device mappings are supported ATM */
1746		if (pte_none(*pte) ||
1747		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1748			continue;
1749
1750		map.pfn = pte_pfn(*pte);
1751		map.type = MT_DEVICE;
1752		map.length = PAGE_SIZE;
1753
1754		create_mapping(&map);
1755	}
1756}
1757
1758/*
1759 * paging_init() sets up the page tables, initialises the zone memory
1760 * maps, and sets up the zero page, bad page and bad page tables.
1761 */
1762void __init paging_init(const struct machine_desc *mdesc)
1763{
1764	void *zero_page;
1765
1766	pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
1767		 kernel_sec_start, kernel_sec_end);
1768
1769	prepare_page_table();
1770	map_lowmem();
1771	memblock_set_current_limit(arm_lowmem_limit);
1772	pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
1773	/*
1774	 * After this point early_alloc(), i.e. the memblock allocator, can
1775	 * be used
1776	 */
1777	map_kernel();
1778	dma_contiguous_remap();
1779	early_fixmap_shutdown();
1780	devicemaps_init(mdesc);
1781	kmap_init();
1782	tcm_init();
1783
1784	top_pmd = pmd_off_k(0xffff0000);
1785
1786	/* allocate the zero page. */
1787	zero_page = early_alloc(PAGE_SIZE);
1788
1789	bootmem_init();
1790
1791	empty_zero_page = virt_to_page(zero_page);
1792	__flush_dcache_folio(NULL, page_folio(empty_zero_page));
1793}
1794
1795void __init early_mm_init(const struct machine_desc *mdesc)
1796{
1797	build_mem_type_table();
1798	early_paging_init(mdesc);
1799}
1800
1801void set_ptes(struct mm_struct *mm, unsigned long addr,
1802			      pte_t *ptep, pte_t pteval, unsigned int nr)
1803{
1804	unsigned long ext = 0;
1805
1806	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
1807		if (!pte_special(pteval))
1808			__sync_icache_dcache(pteval);
1809		ext |= PTE_EXT_NG;
1810	}
1811
1812	for (;;) {
1813		set_pte_ext(ptep, pteval, ext);
1814		if (--nr == 0)
1815			break;
1816		ptep++;
1817		pte_val(pteval) += PAGE_SIZE;
1818	}
1819}