Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sizes.h>
  20
  21#include <asm/cp15.h>
  22#include <asm/cputype.h>
  23#include <asm/sections.h>
  24#include <asm/cachetype.h>
  25#include <asm/fixmap.h>
  26#include <asm/sections.h>
  27#include <asm/setup.h>
  28#include <asm/smp_plat.h>
  29#include <asm/tlb.h>
  30#include <asm/highmem.h>
  31#include <asm/system_info.h>
  32#include <asm/traps.h>
  33#include <asm/procinfo.h>
  34#include <asm/memory.h>
  35
  36#include <asm/mach/arch.h>
  37#include <asm/mach/map.h>
  38#include <asm/mach/pci.h>
  39#include <asm/fixmap.h>
  40
  41#include "fault.h"
  42#include "mm.h"
  43#include "tcm.h"
  44
  45/*
  46 * empty_zero_page is a special page that is used for
  47 * zero-initialized data and COW.
  48 */
  49struct page *empty_zero_page;
  50EXPORT_SYMBOL(empty_zero_page);
  51
  52/*
  53 * The pmd table for the upper-most set of pages.
  54 */
  55pmd_t *top_pmd;
  56
  57pmdval_t user_pmd_table = _PAGE_USER_TABLE;
  58
  59#define CPOLICY_UNCACHED	0
  60#define CPOLICY_BUFFERED	1
  61#define CPOLICY_WRITETHROUGH	2
  62#define CPOLICY_WRITEBACK	3
  63#define CPOLICY_WRITEALLOC	4
  64
  65static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  66static unsigned int ecc_mask __initdata = 0;
  67pgprot_t pgprot_user;
  68pgprot_t pgprot_kernel;
  69pgprot_t pgprot_hyp_device;
  70pgprot_t pgprot_s2;
  71pgprot_t pgprot_s2_device;
  72
  73EXPORT_SYMBOL(pgprot_user);
  74EXPORT_SYMBOL(pgprot_kernel);
  75
  76struct cachepolicy {
  77	const char	policy[16];
  78	unsigned int	cr_mask;
  79	pmdval_t	pmd;
  80	pteval_t	pte;
  81	pteval_t	pte_s2;
  82};
  83
  84#ifdef CONFIG_ARM_LPAE
  85#define s2_policy(policy)	policy
  86#else
  87#define s2_policy(policy)	0
  88#endif
  89
  90static struct cachepolicy cache_policies[] __initdata = {
  91	{
  92		.policy		= "uncached",
  93		.cr_mask	= CR_W|CR_C,
  94		.pmd		= PMD_SECT_UNCACHED,
  95		.pte		= L_PTE_MT_UNCACHED,
  96		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
  97	}, {
  98		.policy		= "buffered",
  99		.cr_mask	= CR_C,
 100		.pmd		= PMD_SECT_BUFFERED,
 101		.pte		= L_PTE_MT_BUFFERABLE,
 102		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
 103	}, {
 104		.policy		= "writethrough",
 105		.cr_mask	= 0,
 106		.pmd		= PMD_SECT_WT,
 107		.pte		= L_PTE_MT_WRITETHROUGH,
 108		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 109	}, {
 110		.policy		= "writeback",
 111		.cr_mask	= 0,
 112		.pmd		= PMD_SECT_WB,
 113		.pte		= L_PTE_MT_WRITEBACK,
 114		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 115	}, {
 116		.policy		= "writealloc",
 117		.cr_mask	= 0,
 118		.pmd		= PMD_SECT_WBWA,
 119		.pte		= L_PTE_MT_WRITEALLOC,
 120		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 121	}
 122};
 123
 124#ifdef CONFIG_CPU_CP15
 125static unsigned long initial_pmd_value __initdata = 0;
 126
 127/*
 128 * Initialise the cache_policy variable with the initial state specified
 129 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
 130 * the C code sets the page tables up with the same policy as the head
 131 * assembly code, which avoids an illegal state where the TLBs can get
 132 * confused.  See comments in early_cachepolicy() for more information.
 133 */
 134void __init init_default_cache_policy(unsigned long pmd)
 135{
 136	int i;
 137
 138	initial_pmd_value = pmd;
 139
 140	pmd &= PMD_SECT_TEX(1) | PMD_SECT_BUFFERABLE | PMD_SECT_CACHEABLE;
 141
 142	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
 143		if (cache_policies[i].pmd == pmd) {
 144			cachepolicy = i;
 145			break;
 146		}
 147
 148	if (i == ARRAY_SIZE(cache_policies))
 149		pr_err("ERROR: could not find cache policy\n");
 150}
 151
 152/*
 153 * These are useful for identifying cache coherency problems by allowing
 154 * the cache or the cache and writebuffer to be turned off.  (Note: the
 155 * write buffer should not be on and the cache off).
 
 156 */
 157static int __init early_cachepolicy(char *p)
 158{
 159	int i, selected = -1;
 160
 161	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 162		int len = strlen(cache_policies[i].policy);
 163
 164		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 165			selected = i;
 
 
 166			break;
 167		}
 168	}
 169
 170	if (selected == -1)
 171		pr_err("ERROR: unknown or unsupported cache policy\n");
 172
 173	/*
 174	 * This restriction is partly to do with the way we boot; it is
 175	 * unpredictable to have memory mapped using two different sets of
 176	 * memory attributes (shared, type, and cache attribs).  We can not
 177	 * change these attributes once the initial assembly has setup the
 178	 * page tables.
 179	 */
 180	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
 181		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
 182			cache_policies[cachepolicy].policy);
 183		return 0;
 184	}
 185
 186	if (selected != cachepolicy) {
 187		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
 188		cachepolicy = selected;
 189		flush_cache_all();
 190		set_cr(cr);
 191	}
 
 
 192	return 0;
 193}
 194early_param("cachepolicy", early_cachepolicy);
 195
 196static int __init early_nocache(char *__unused)
 197{
 198	char *p = "buffered";
 199	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
 200	early_cachepolicy(p);
 201	return 0;
 202}
 203early_param("nocache", early_nocache);
 204
 205static int __init early_nowrite(char *__unused)
 206{
 207	char *p = "uncached";
 208	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
 209	early_cachepolicy(p);
 210	return 0;
 211}
 212early_param("nowb", early_nowrite);
 213
 214#ifndef CONFIG_ARM_LPAE
 215static int __init early_ecc(char *p)
 216{
 217	if (memcmp(p, "on", 2) == 0)
 218		ecc_mask = PMD_PROTECTION;
 219	else if (memcmp(p, "off", 3) == 0)
 220		ecc_mask = 0;
 221	return 0;
 222}
 223early_param("ecc", early_ecc);
 224#endif
 225
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226#else /* ifdef CONFIG_CPU_CP15 */
 227
 228static int __init early_cachepolicy(char *p)
 229{
 230	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
 231}
 232early_param("cachepolicy", early_cachepolicy);
 233
 234static int __init noalign_setup(char *__unused)
 235{
 236	pr_warn("noalign kernel parameter not supported without cp15\n");
 237}
 238__setup("noalign", noalign_setup);
 239
 240#endif /* ifdef CONFIG_CPU_CP15 / else */
 241
 242#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 243#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
 244#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 245
 246static struct mem_type mem_types[] = {
 247	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 248		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 249				  L_PTE_SHARED,
 250		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
 251				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 252				  L_PTE_SHARED,
 253		.prot_l1	= PMD_TYPE_TABLE,
 254		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 255		.domain		= DOMAIN_IO,
 256	},
 257	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 258		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 259		.prot_l1	= PMD_TYPE_TABLE,
 260		.prot_sect	= PROT_SECT_DEVICE,
 261		.domain		= DOMAIN_IO,
 262	},
 263	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
 264		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 265		.prot_l1	= PMD_TYPE_TABLE,
 266		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 267		.domain		= DOMAIN_IO,
 268	},
 269	[MT_DEVICE_WC] = {	/* ioremap_wc */
 270		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 271		.prot_l1	= PMD_TYPE_TABLE,
 272		.prot_sect	= PROT_SECT_DEVICE,
 273		.domain		= DOMAIN_IO,
 274	},
 275	[MT_UNCACHED] = {
 276		.prot_pte	= PROT_PTE_DEVICE,
 277		.prot_l1	= PMD_TYPE_TABLE,
 278		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 279		.domain		= DOMAIN_IO,
 280	},
 281	[MT_CACHECLEAN] = {
 282		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 283		.domain    = DOMAIN_KERNEL,
 284	},
 285#ifndef CONFIG_ARM_LPAE
 286	[MT_MINICLEAN] = {
 287		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 288		.domain    = DOMAIN_KERNEL,
 289	},
 290#endif
 291	[MT_LOW_VECTORS] = {
 292		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 293				L_PTE_RDONLY,
 294		.prot_l1   = PMD_TYPE_TABLE,
 295		.domain    = DOMAIN_VECTORS,
 296	},
 297	[MT_HIGH_VECTORS] = {
 298		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 299				L_PTE_USER | L_PTE_RDONLY,
 300		.prot_l1   = PMD_TYPE_TABLE,
 301		.domain    = DOMAIN_VECTORS,
 302	},
 303	[MT_MEMORY_RWX] = {
 304		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 305		.prot_l1   = PMD_TYPE_TABLE,
 306		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 307		.domain    = DOMAIN_KERNEL,
 308	},
 309	[MT_MEMORY_RW] = {
 310		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 311			     L_PTE_XN,
 312		.prot_l1   = PMD_TYPE_TABLE,
 313		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 314		.domain    = DOMAIN_KERNEL,
 315	},
 316	[MT_ROM] = {
 317		.prot_sect = PMD_TYPE_SECT,
 318		.domain    = DOMAIN_KERNEL,
 319	},
 320	[MT_MEMORY_RWX_NONCACHED] = {
 321		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 322				L_PTE_MT_BUFFERABLE,
 323		.prot_l1   = PMD_TYPE_TABLE,
 324		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 325		.domain    = DOMAIN_KERNEL,
 326	},
 327	[MT_MEMORY_RW_DTCM] = {
 328		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 329				L_PTE_XN,
 330		.prot_l1   = PMD_TYPE_TABLE,
 331		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 332		.domain    = DOMAIN_KERNEL,
 333	},
 334	[MT_MEMORY_RWX_ITCM] = {
 335		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 336		.prot_l1   = PMD_TYPE_TABLE,
 337		.domain    = DOMAIN_KERNEL,
 338	},
 339	[MT_MEMORY_RW_SO] = {
 340		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 341				L_PTE_MT_UNCACHED | L_PTE_XN,
 342		.prot_l1   = PMD_TYPE_TABLE,
 343		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 344				PMD_SECT_UNCACHED | PMD_SECT_XN,
 345		.domain    = DOMAIN_KERNEL,
 346	},
 347	[MT_MEMORY_DMA_READY] = {
 348		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 349				L_PTE_XN,
 350		.prot_l1   = PMD_TYPE_TABLE,
 351		.domain    = DOMAIN_KERNEL,
 352	},
 353};
 354
 355const struct mem_type *get_mem_type(unsigned int type)
 356{
 357	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 358}
 359EXPORT_SYMBOL(get_mem_type);
 360
 361static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
 362
 363static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
 364	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
 365
 366static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
 367{
 368	return &bm_pte[pte_index(addr)];
 369}
 370
 371static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
 372{
 373	return pte_offset_kernel(dir, addr);
 374}
 375
 376static inline pmd_t * __init fixmap_pmd(unsigned long addr)
 377{
 378	pgd_t *pgd = pgd_offset_k(addr);
 379	pud_t *pud = pud_offset(pgd, addr);
 380	pmd_t *pmd = pmd_offset(pud, addr);
 381
 382	return pmd;
 383}
 384
 385void __init early_fixmap_init(void)
 386{
 387	pmd_t *pmd;
 388
 389	/*
 390	 * The early fixmap range spans multiple pmds, for which
 391	 * we are not prepared:
 392	 */
 393	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
 394		     != FIXADDR_TOP >> PMD_SHIFT);
 395
 396	pmd = fixmap_pmd(FIXADDR_TOP);
 397	pmd_populate_kernel(&init_mm, pmd, bm_pte);
 398
 399	pte_offset_fixmap = pte_offset_early_fixmap;
 400}
 401
 402/*
 403 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
 404 * As a result, this can only be called with preemption disabled, as under
 405 * stop_machine().
 406 */
 407void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
 408{
 409	unsigned long vaddr = __fix_to_virt(idx);
 410	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
 411
 412	/* Make sure fixmap region does not exceed available allocation. */
 413	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) >
 414		     FIXADDR_END);
 415	BUG_ON(idx >= __end_of_fixed_addresses);
 416
 417	if (pgprot_val(prot))
 418		set_pte_at(NULL, vaddr, pte,
 419			pfn_pte(phys >> PAGE_SHIFT, prot));
 420	else
 421		pte_clear(NULL, vaddr, pte);
 422	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
 423}
 424
 425/*
 426 * Adjust the PMD section entries according to the CPU in use.
 427 */
 428static void __init build_mem_type_table(void)
 429{
 430	struct cachepolicy *cp;
 431	unsigned int cr = get_cr();
 432	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 433	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 434	int cpu_arch = cpu_architecture();
 435	int i;
 436
 437	if (cpu_arch < CPU_ARCH_ARMv6) {
 438#if defined(CONFIG_CPU_DCACHE_DISABLE)
 439		if (cachepolicy > CPOLICY_BUFFERED)
 440			cachepolicy = CPOLICY_BUFFERED;
 441#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 442		if (cachepolicy > CPOLICY_WRITETHROUGH)
 443			cachepolicy = CPOLICY_WRITETHROUGH;
 444#endif
 445	}
 446	if (cpu_arch < CPU_ARCH_ARMv5) {
 447		if (cachepolicy >= CPOLICY_WRITEALLOC)
 448			cachepolicy = CPOLICY_WRITEBACK;
 449		ecc_mask = 0;
 450	}
 451
 452	if (is_smp()) {
 453		if (cachepolicy != CPOLICY_WRITEALLOC) {
 454			pr_warn("Forcing write-allocate cache policy for SMP\n");
 455			cachepolicy = CPOLICY_WRITEALLOC;
 456		}
 457		if (!(initial_pmd_value & PMD_SECT_S)) {
 458			pr_warn("Forcing shared mappings for SMP\n");
 459			initial_pmd_value |= PMD_SECT_S;
 460		}
 461	}
 462
 463	/*
 464	 * Strip out features not present on earlier architectures.
 465	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 466	 * without extended page tables don't have the 'Shared' bit.
 467	 */
 468	if (cpu_arch < CPU_ARCH_ARMv5)
 469		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 470			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 471	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 472		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 473			mem_types[i].prot_sect &= ~PMD_SECT_S;
 474
 475	/*
 476	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 477	 * "update-able on write" bit on ARM610).  However, Xscale and
 478	 * Xscale3 require this bit to be cleared.
 479	 */
 480	if (cpu_is_xscale_family()) {
 481		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 482			mem_types[i].prot_sect &= ~PMD_BIT4;
 483			mem_types[i].prot_l1 &= ~PMD_BIT4;
 484		}
 485	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 486		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 487			if (mem_types[i].prot_l1)
 488				mem_types[i].prot_l1 |= PMD_BIT4;
 489			if (mem_types[i].prot_sect)
 490				mem_types[i].prot_sect |= PMD_BIT4;
 491		}
 492	}
 493
 494	/*
 495	 * Mark the device areas according to the CPU/architecture.
 496	 */
 497	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 498		if (!cpu_is_xsc3()) {
 499			/*
 500			 * Mark device regions on ARMv6+ as execute-never
 501			 * to prevent speculative instruction fetches.
 502			 */
 503			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 504			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 505			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 506			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 507
 508			/* Also setup NX memory mapping */
 509			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 510		}
 511		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 512			/*
 513			 * For ARMv7 with TEX remapping,
 514			 * - shared device is SXCB=1100
 515			 * - nonshared device is SXCB=0100
 516			 * - write combine device mem is SXCB=0001
 517			 * (Uncached Normal memory)
 518			 */
 519			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 520			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 521			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 522		} else if (cpu_is_xsc3()) {
 523			/*
 524			 * For Xscale3,
 525			 * - shared device is TEXCB=00101
 526			 * - nonshared device is TEXCB=01000
 527			 * - write combine device mem is TEXCB=00100
 528			 * (Inner/Outer Uncacheable in xsc3 parlance)
 529			 */
 530			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 531			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 532			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 533		} else {
 534			/*
 535			 * For ARMv6 and ARMv7 without TEX remapping,
 536			 * - shared device is TEXCB=00001
 537			 * - nonshared device is TEXCB=01000
 538			 * - write combine device mem is TEXCB=00100
 539			 * (Uncached Normal in ARMv6 parlance).
 540			 */
 541			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 542			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 543			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 544		}
 545	} else {
 546		/*
 547		 * On others, write combining is "Uncached/Buffered"
 548		 */
 549		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 550	}
 551
 552	/*
 553	 * Now deal with the memory-type mappings
 554	 */
 555	cp = &cache_policies[cachepolicy];
 556	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 557	s2_pgprot = cp->pte_s2;
 558	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 559	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 560
 561#ifndef CONFIG_ARM_LPAE
 562	/*
 563	 * We don't use domains on ARMv6 (since this causes problems with
 564	 * v6/v7 kernels), so we must use a separate memory type for user
 565	 * r/o, kernel r/w to map the vectors page.
 566	 */
 
 567	if (cpu_arch == CPU_ARCH_ARMv6)
 568		vecs_pgprot |= L_PTE_MT_VECTORS;
 569
 570	/*
 571	 * Check is it with support for the PXN bit
 572	 * in the Short-descriptor translation table format descriptors.
 573	 */
 574	if (cpu_arch == CPU_ARCH_ARMv7 &&
 575		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
 576		user_pmd_table |= PMD_PXNTABLE;
 577	}
 578#endif
 579
 580	/*
 581	 * ARMv6 and above have extended page tables.
 582	 */
 583	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 584#ifndef CONFIG_ARM_LPAE
 585		/*
 586		 * Mark cache clean areas and XIP ROM read only
 587		 * from SVC mode and no access from userspace.
 588		 */
 589		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 590		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 591		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 592#endif
 593
 594		/*
 595		 * If the initial page tables were created with the S bit
 596		 * set, then we need to do the same here for the same
 597		 * reasons given in early_cachepolicy().
 598		 */
 599		if (initial_pmd_value & PMD_SECT_S) {
 600			user_pgprot |= L_PTE_SHARED;
 601			kern_pgprot |= L_PTE_SHARED;
 602			vecs_pgprot |= L_PTE_SHARED;
 603			s2_pgprot |= L_PTE_SHARED;
 604			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 605			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 606			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 607			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 608			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 609			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 610			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 611			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 612			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 613			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 614			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 615		}
 616	}
 617
 618	/*
 619	 * Non-cacheable Normal - intended for memory areas that must
 620	 * not cause dirty cache line writebacks when used
 621	 */
 622	if (cpu_arch >= CPU_ARCH_ARMv6) {
 623		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 624			/* Non-cacheable Normal is XCB = 001 */
 625			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 626				PMD_SECT_BUFFERED;
 627		} else {
 628			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 629			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 630				PMD_SECT_TEX(1);
 631		}
 632	} else {
 633		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 634	}
 635
 636#ifdef CONFIG_ARM_LPAE
 637	/*
 638	 * Do not generate access flag faults for the kernel mappings.
 639	 */
 640	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 641		mem_types[i].prot_pte |= PTE_EXT_AF;
 642		if (mem_types[i].prot_sect)
 643			mem_types[i].prot_sect |= PMD_SECT_AF;
 644	}
 645	kern_pgprot |= PTE_EXT_AF;
 646	vecs_pgprot |= PTE_EXT_AF;
 647
 648	/*
 649	 * Set PXN for user mappings
 650	 */
 651	user_pgprot |= PTE_EXT_PXN;
 652#endif
 653
 654	for (i = 0; i < 16; i++) {
 655		pteval_t v = pgprot_val(protection_map[i]);
 656		protection_map[i] = __pgprot(v | user_pgprot);
 657	}
 658
 659	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 660	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 661
 662	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 663	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 664				 L_PTE_DIRTY | kern_pgprot);
 665	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 666	pgprot_s2_device  = __pgprot(s2_device_pgprot);
 667	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 668
 669	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 670	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 671	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 672	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 673	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 674	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 675	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 676	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 677	mem_types[MT_ROM].prot_sect |= cp->pmd;
 678
 679	switch (cp->pmd) {
 680	case PMD_SECT_WT:
 681		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 682		break;
 683	case PMD_SECT_WB:
 684	case PMD_SECT_WBWA:
 685		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 686		break;
 687	}
 688	pr_info("Memory policy: %sData cache %s\n",
 689		ecc_mask ? "ECC enabled, " : "", cp->policy);
 690
 691	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 692		struct mem_type *t = &mem_types[i];
 693		if (t->prot_l1)
 694			t->prot_l1 |= PMD_DOMAIN(t->domain);
 695		if (t->prot_sect)
 696			t->prot_sect |= PMD_DOMAIN(t->domain);
 697	}
 698}
 699
 700#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 701pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 702			      unsigned long size, pgprot_t vma_prot)
 703{
 704	if (!pfn_valid(pfn))
 705		return pgprot_noncached(vma_prot);
 706	else if (file->f_flags & O_SYNC)
 707		return pgprot_writecombine(vma_prot);
 708	return vma_prot;
 709}
 710EXPORT_SYMBOL(phys_mem_access_prot);
 711#endif
 712
 713#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 714
 715static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 716{
 717	void *ptr = __va(memblock_alloc(sz, align));
 718	memset(ptr, 0, sz);
 719	return ptr;
 720}
 721
 722static void __init *early_alloc(unsigned long sz)
 723{
 724	return early_alloc_aligned(sz, sz);
 725}
 726
 727static void *__init late_alloc(unsigned long sz)
 728{
 729	void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz));
 730
 731	BUG_ON(!ptr);
 732	return ptr;
 733}
 734
 735static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
 736				unsigned long prot,
 737				void *(*alloc)(unsigned long sz))
 738{
 739	if (pmd_none(*pmd)) {
 740		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 741		__pmd_populate(pmd, __pa(pte), prot);
 742	}
 743	BUG_ON(pmd_bad(*pmd));
 744	return pte_offset_kernel(pmd, addr);
 745}
 746
 747static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
 748				      unsigned long prot)
 749{
 750	return arm_pte_alloc(pmd, addr, prot, early_alloc);
 751}
 752
 753static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 754				  unsigned long end, unsigned long pfn,
 755				  const struct mem_type *type,
 756				  void *(*alloc)(unsigned long sz),
 757				  bool ng)
 758{
 759	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
 760	do {
 761		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
 762			    ng ? PTE_EXT_NG : 0);
 763		pfn++;
 764	} while (pte++, addr += PAGE_SIZE, addr != end);
 765}
 766
 767static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 768			unsigned long end, phys_addr_t phys,
 769			const struct mem_type *type, bool ng)
 770{
 771	pmd_t *p = pmd;
 772
 773#ifndef CONFIG_ARM_LPAE
 774	/*
 775	 * In classic MMU format, puds and pmds are folded in to
 776	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 777	 * group of L1 entries making up one logical pointer to
 778	 * an L2 table (2MB), where as PMDs refer to the individual
 779	 * L1 entries (1MB). Hence increment to get the correct
 780	 * offset for odd 1MB sections.
 781	 * (See arch/arm/include/asm/pgtable-2level.h)
 782	 */
 783	if (addr & SECTION_SIZE)
 784		pmd++;
 785#endif
 786	do {
 787		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
 788		phys += SECTION_SIZE;
 789	} while (pmd++, addr += SECTION_SIZE, addr != end);
 790
 791	flush_pmd_entry(p);
 792}
 793
 794static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 795				      unsigned long end, phys_addr_t phys,
 796				      const struct mem_type *type,
 797				      void *(*alloc)(unsigned long sz), bool ng)
 798{
 799	pmd_t *pmd = pmd_offset(pud, addr);
 800	unsigned long next;
 801
 802	do {
 803		/*
 804		 * With LPAE, we must loop over to map
 805		 * all the pmds for the given range.
 806		 */
 807		next = pmd_addr_end(addr, end);
 808
 809		/*
 810		 * Try a section mapping - addr, next and phys must all be
 811		 * aligned to a section boundary.
 812		 */
 813		if (type->prot_sect &&
 814				((addr | next | phys) & ~SECTION_MASK) == 0) {
 815			__map_init_section(pmd, addr, next, phys, type, ng);
 816		} else {
 817			alloc_init_pte(pmd, addr, next,
 818				       __phys_to_pfn(phys), type, alloc, ng);
 819		}
 820
 821		phys += next - addr;
 822
 823	} while (pmd++, addr = next, addr != end);
 824}
 825
 826static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 827				  unsigned long end, phys_addr_t phys,
 828				  const struct mem_type *type,
 829				  void *(*alloc)(unsigned long sz), bool ng)
 830{
 831	pud_t *pud = pud_offset(pgd, addr);
 832	unsigned long next;
 833
 834	do {
 835		next = pud_addr_end(addr, end);
 836		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
 837		phys += next - addr;
 838	} while (pud++, addr = next, addr != end);
 839}
 840
 841#ifndef CONFIG_ARM_LPAE
 842static void __init create_36bit_mapping(struct mm_struct *mm,
 843					struct map_desc *md,
 844					const struct mem_type *type,
 845					bool ng)
 846{
 847	unsigned long addr, length, end;
 848	phys_addr_t phys;
 849	pgd_t *pgd;
 850
 851	addr = md->virtual;
 852	phys = __pfn_to_phys(md->pfn);
 853	length = PAGE_ALIGN(md->length);
 854
 855	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 856		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
 
 857		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 858		return;
 859	}
 860
 861	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 862	 *	Since domain assignments can in fact be arbitrary, the
 863	 *	'domain == 0' check below is required to insure that ARMv6
 864	 *	supersections are only allocated for domain 0 regardless
 865	 *	of the actual domain assignments in use.
 866	 */
 867	if (type->domain) {
 868		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
 
 869		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 870		return;
 871	}
 872
 873	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 874		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
 
 875		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 876		return;
 877	}
 878
 879	/*
 880	 * Shift bits [35:32] of address into bits [23:20] of PMD
 881	 * (See ARMv6 spec).
 882	 */
 883	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 884
 885	pgd = pgd_offset(mm, addr);
 886	end = addr + length;
 887	do {
 888		pud_t *pud = pud_offset(pgd, addr);
 889		pmd_t *pmd = pmd_offset(pud, addr);
 890		int i;
 891
 892		for (i = 0; i < 16; i++)
 893			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
 894				       (ng ? PMD_SECT_nG : 0));
 895
 896		addr += SUPERSECTION_SIZE;
 897		phys += SUPERSECTION_SIZE;
 898		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 899	} while (addr != end);
 900}
 901#endif	/* !CONFIG_ARM_LPAE */
 902
 903static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
 904				    void *(*alloc)(unsigned long sz),
 905				    bool ng)
 
 
 
 
 
 906{
 907	unsigned long addr, length, end;
 908	phys_addr_t phys;
 909	const struct mem_type *type;
 910	pgd_t *pgd;
 911
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912	type = &mem_types[md->type];
 913
 914#ifndef CONFIG_ARM_LPAE
 915	/*
 916	 * Catch 36-bit addresses
 917	 */
 918	if (md->pfn >= 0x100000) {
 919		create_36bit_mapping(mm, md, type, ng);
 920		return;
 921	}
 922#endif
 923
 924	addr = md->virtual & PAGE_MASK;
 925	phys = __pfn_to_phys(md->pfn);
 926	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 927
 928	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 929		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
 930			(long long)__pfn_to_phys(md->pfn), addr);
 
 931		return;
 932	}
 933
 934	pgd = pgd_offset(mm, addr);
 935	end = addr + length;
 936	do {
 937		unsigned long next = pgd_addr_end(addr, end);
 938
 939		alloc_init_pud(pgd, addr, next, phys, type, alloc, ng);
 940
 941		phys += next - addr;
 942		addr = next;
 943	} while (pgd++, addr != end);
 944}
 945
 946/*
 947 * Create the page directory entries and any necessary
 948 * page tables for the mapping specified by `md'.  We
 949 * are able to cope here with varying sizes and address
 950 * offsets, and we take full advantage of sections and
 951 * supersections.
 952 */
 953static void __init create_mapping(struct map_desc *md)
 954{
 955	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 956		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
 957			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 958		return;
 959	}
 960
 961	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 962	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
 963	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 964		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
 965			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 966	}
 967
 968	__create_mapping(&init_mm, md, early_alloc, false);
 969}
 970
 971void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
 972				bool ng)
 973{
 974#ifdef CONFIG_ARM_LPAE
 975	pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
 976	if (WARN_ON(!pud))
 977		return;
 978	pmd_alloc(mm, pud, 0);
 979#endif
 980	__create_mapping(mm, md, late_alloc, ng);
 981}
 982
 983/*
 984 * Create the architecture specific mappings
 985 */
 986void __init iotable_init(struct map_desc *io_desc, int nr)
 987{
 988	struct map_desc *md;
 989	struct vm_struct *vm;
 990	struct static_vm *svm;
 991
 992	if (!nr)
 993		return;
 994
 995	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
 996
 997	for (md = io_desc; nr; md++, nr--) {
 998		create_mapping(md);
 999
1000		vm = &svm->vm;
1001		vm->addr = (void *)(md->virtual & PAGE_MASK);
1002		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
1003		vm->phys_addr = __pfn_to_phys(md->pfn);
1004		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
1005		vm->flags |= VM_ARM_MTYPE(md->type);
1006		vm->caller = iotable_init;
1007		add_static_vm_early(svm++);
1008	}
1009}
1010
1011void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
1012				  void *caller)
1013{
1014	struct vm_struct *vm;
1015	struct static_vm *svm;
1016
1017	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
1018
1019	vm = &svm->vm;
1020	vm->addr = (void *)addr;
1021	vm->size = size;
1022	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
1023	vm->caller = caller;
1024	add_static_vm_early(svm);
1025}
1026
1027#ifndef CONFIG_ARM_LPAE
1028
1029/*
1030 * The Linux PMD is made of two consecutive section entries covering 2MB
1031 * (see definition in include/asm/pgtable-2level.h).  However a call to
1032 * create_mapping() may optimize static mappings by using individual
1033 * 1MB section mappings.  This leaves the actual PMD potentially half
1034 * initialized if the top or bottom section entry isn't used, leaving it
1035 * open to problems if a subsequent ioremap() or vmalloc() tries to use
1036 * the virtual space left free by that unused section entry.
1037 *
1038 * Let's avoid the issue by inserting dummy vm entries covering the unused
1039 * PMD halves once the static mappings are in place.
1040 */
1041
1042static void __init pmd_empty_section_gap(unsigned long addr)
1043{
1044	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
1045}
1046
1047static void __init fill_pmd_gaps(void)
1048{
1049	struct static_vm *svm;
1050	struct vm_struct *vm;
1051	unsigned long addr, next = 0;
1052	pmd_t *pmd;
1053
1054	list_for_each_entry(svm, &static_vmlist, list) {
1055		vm = &svm->vm;
1056		addr = (unsigned long)vm->addr;
1057		if (addr < next)
1058			continue;
1059
1060		/*
1061		 * Check if this vm starts on an odd section boundary.
1062		 * If so and the first section entry for this PMD is free
1063		 * then we block the corresponding virtual address.
1064		 */
1065		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1066			pmd = pmd_off_k(addr);
1067			if (pmd_none(*pmd))
1068				pmd_empty_section_gap(addr & PMD_MASK);
1069		}
1070
1071		/*
1072		 * Then check if this vm ends on an odd section boundary.
1073		 * If so and the second section entry for this PMD is empty
1074		 * then we block the corresponding virtual address.
1075		 */
1076		addr += vm->size;
1077		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
1078			pmd = pmd_off_k(addr) + 1;
1079			if (pmd_none(*pmd))
1080				pmd_empty_section_gap(addr);
1081		}
1082
1083		/* no need to look at any vm entry until we hit the next PMD */
1084		next = (addr + PMD_SIZE - 1) & PMD_MASK;
1085	}
1086}
1087
1088#else
1089#define fill_pmd_gaps() do { } while (0)
1090#endif
1091
1092#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
1093static void __init pci_reserve_io(void)
1094{
1095	struct static_vm *svm;
1096
1097	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1098	if (svm)
1099		return;
1100
1101	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1102}
1103#else
1104#define pci_reserve_io() do { } while (0)
1105#endif
1106
1107#ifdef CONFIG_DEBUG_LL
1108void __init debug_ll_io_init(void)
1109{
1110	struct map_desc map;
1111
1112	debug_ll_addr(&map.pfn, &map.virtual);
1113	if (!map.pfn || !map.virtual)
1114		return;
1115	map.pfn = __phys_to_pfn(map.pfn);
1116	map.virtual &= PAGE_MASK;
1117	map.length = PAGE_SIZE;
1118	map.type = MT_DEVICE;
1119	iotable_init(&map, 1);
1120}
1121#endif
1122
1123static void * __initdata vmalloc_min =
1124	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1125
1126/*
1127 * vmalloc=size forces the vmalloc area to be exactly 'size'
1128 * bytes. This can be used to increase (or decrease) the vmalloc
1129 * area - the default is 240m.
1130 */
1131static int __init early_vmalloc(char *arg)
1132{
1133	unsigned long vmalloc_reserve = memparse(arg, NULL);
1134
1135	if (vmalloc_reserve < SZ_16M) {
1136		vmalloc_reserve = SZ_16M;
1137		pr_warn("vmalloc area too small, limiting to %luMB\n",
 
1138			vmalloc_reserve >> 20);
1139	}
1140
1141	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1142		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1143		pr_warn("vmalloc area is too big, limiting to %luMB\n",
 
1144			vmalloc_reserve >> 20);
1145	}
1146
1147	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1148	return 0;
1149}
1150early_param("vmalloc", early_vmalloc);
1151
1152phys_addr_t arm_lowmem_limit __initdata = 0;
1153
1154void __init sanity_check_meminfo(void)
1155{
1156	phys_addr_t memblock_limit = 0;
1157	int highmem = 0;
1158	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1159	struct memblock_region *reg;
1160	bool should_use_highmem = false;
1161
1162	for_each_memblock(memory, reg) {
1163		phys_addr_t block_start = reg->base;
1164		phys_addr_t block_end = reg->base + reg->size;
1165		phys_addr_t size_limit = reg->size;
 
 
1166
1167		if (reg->base >= vmalloc_limit)
1168			highmem = 1;
1169		else
1170			size_limit = vmalloc_limit - reg->base;
1171
 
1172
1173		if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
1174
1175			if (highmem) {
1176				pr_notice("Ignoring RAM at %pa-%pa (!CONFIG_HIGHMEM)\n",
1177					  &block_start, &block_end);
1178				memblock_remove(reg->base, reg->size);
1179				should_use_highmem = true;
1180				continue;
 
 
 
 
 
 
 
 
 
 
1181			}
 
 
 
 
 
 
 
 
 
 
 
 
 
1182
1183			if (reg->size > size_limit) {
1184				phys_addr_t overlap_size = reg->size - size_limit;
1185
1186				pr_notice("Truncating RAM at %pa-%pa to -%pa",
1187					  &block_start, &block_end, &vmalloc_limit);
1188				memblock_remove(vmalloc_limit, overlap_size);
1189				block_end = vmalloc_limit;
1190				should_use_highmem = true;
1191			}
 
 
1192		}
 
 
 
1193
1194		if (!highmem) {
1195			if (block_end > arm_lowmem_limit) {
1196				if (reg->size > size_limit)
1197					arm_lowmem_limit = vmalloc_limit;
1198				else
1199					arm_lowmem_limit = block_end;
1200			}
1201
1202			/*
1203			 * Find the first non-pmd-aligned page, and point
1204			 * memblock_limit at it. This relies on rounding the
1205			 * limit down to be pmd-aligned, which happens at the
1206			 * end of this function.
1207			 *
1208			 * With this algorithm, the start or end of almost any
1209			 * bank can be non-pmd-aligned. The only exception is
1210			 * that the start of the bank 0 must be section-
1211			 * aligned, since otherwise memory would need to be
1212			 * allocated when mapping the start of bank 0, which
1213			 * occurs before any free memory is mapped.
1214			 */
1215			if (!memblock_limit) {
1216				if (!IS_ALIGNED(block_start, PMD_SIZE))
1217					memblock_limit = block_start;
1218				else if (!IS_ALIGNED(block_end, PMD_SIZE))
1219					memblock_limit = arm_lowmem_limit;
1220			}
1221
1222		}
 
1223	}
 
 
 
1224
1225	if (should_use_highmem)
1226		pr_notice("Consider using a HIGHMEM enabled kernel.\n");
1227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228	high_memory = __va(arm_lowmem_limit - 1) + 1;
1229
1230	/*
1231	 * Round the memblock limit down to a pmd size.  This
1232	 * helps to ensure that we will allocate memory from the
1233	 * last full pmd, which should be mapped.
1234	 */
1235	if (memblock_limit)
1236		memblock_limit = round_down(memblock_limit, PMD_SIZE);
1237	if (!memblock_limit)
1238		memblock_limit = arm_lowmem_limit;
1239
1240	memblock_set_current_limit(memblock_limit);
1241}
1242
1243static inline void prepare_page_table(void)
1244{
1245	unsigned long addr;
1246	phys_addr_t end;
1247
1248	/*
1249	 * Clear out all the mappings below the kernel image.
1250	 */
1251	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1252		pmd_clear(pmd_off_k(addr));
1253
1254#ifdef CONFIG_XIP_KERNEL
1255	/* The XIP kernel is mapped in the module area -- skip over it */
1256	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
1257#endif
1258	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1259		pmd_clear(pmd_off_k(addr));
1260
1261	/*
1262	 * Find the end of the first block of lowmem.
1263	 */
1264	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1265	if (end >= arm_lowmem_limit)
1266		end = arm_lowmem_limit;
1267
1268	/*
1269	 * Clear out all the kernel space mappings, except for the first
1270	 * memory bank, up to the vmalloc region.
1271	 */
1272	for (addr = __phys_to_virt(end);
1273	     addr < VMALLOC_START; addr += PMD_SIZE)
1274		pmd_clear(pmd_off_k(addr));
1275}
1276
1277#ifdef CONFIG_ARM_LPAE
1278/* the first page is reserved for pgd */
1279#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1280				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1281#else
1282#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1283#endif
1284
1285/*
1286 * Reserve the special regions of memory
1287 */
1288void __init arm_mm_memblock_reserve(void)
1289{
1290	/*
1291	 * Reserve the page tables.  These are already in use,
1292	 * and can only be in node 0.
1293	 */
1294	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1295
1296#ifdef CONFIG_SA1111
1297	/*
1298	 * Because of the SA1111 DMA bug, we want to preserve our
1299	 * precious DMA-able memory...
1300	 */
1301	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1302#endif
1303}
1304
1305/*
1306 * Set up the device mappings.  Since we clear out the page tables for all
1307 * mappings above VMALLOC_START, except early fixmap, we might remove debug
1308 * device mappings.  This means earlycon can be used to debug this function
1309 * Any other function or debugging method which may touch any device _will_
1310 * crash the kernel.
1311 */
1312static void __init devicemaps_init(const struct machine_desc *mdesc)
1313{
1314	struct map_desc map;
1315	unsigned long addr;
1316	void *vectors;
1317
1318	/*
1319	 * Allocate the vector page early.
1320	 */
1321	vectors = early_alloc(PAGE_SIZE * 2);
1322
1323	early_trap_init(vectors);
1324
1325	/*
1326	 * Clear page table except top pmd used by early fixmaps
1327	 */
1328	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
1329		pmd_clear(pmd_off_k(addr));
1330
1331	/*
1332	 * Map the kernel if it is XIP.
1333	 * It is always first in the modulearea.
1334	 */
1335#ifdef CONFIG_XIP_KERNEL
1336	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1337	map.virtual = MODULES_VADDR;
1338	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1339	map.type = MT_ROM;
1340	create_mapping(&map);
1341#endif
1342
1343	/*
1344	 * Map the cache flushing regions.
1345	 */
1346#ifdef FLUSH_BASE
1347	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1348	map.virtual = FLUSH_BASE;
1349	map.length = SZ_1M;
1350	map.type = MT_CACHECLEAN;
1351	create_mapping(&map);
1352#endif
1353#ifdef FLUSH_BASE_MINICACHE
1354	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1355	map.virtual = FLUSH_BASE_MINICACHE;
1356	map.length = SZ_1M;
1357	map.type = MT_MINICLEAN;
1358	create_mapping(&map);
1359#endif
1360
1361	/*
1362	 * Create a mapping for the machine vectors at the high-vectors
1363	 * location (0xffff0000).  If we aren't using high-vectors, also
1364	 * create a mapping at the low-vectors virtual address.
1365	 */
1366	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1367	map.virtual = 0xffff0000;
1368	map.length = PAGE_SIZE;
1369#ifdef CONFIG_KUSER_HELPERS
1370	map.type = MT_HIGH_VECTORS;
1371#else
1372	map.type = MT_LOW_VECTORS;
1373#endif
1374	create_mapping(&map);
1375
1376	if (!vectors_high()) {
1377		map.virtual = 0;
1378		map.length = PAGE_SIZE * 2;
1379		map.type = MT_LOW_VECTORS;
1380		create_mapping(&map);
1381	}
1382
1383	/* Now create a kernel read-only mapping */
1384	map.pfn += 1;
1385	map.virtual = 0xffff0000 + PAGE_SIZE;
1386	map.length = PAGE_SIZE;
1387	map.type = MT_LOW_VECTORS;
1388	create_mapping(&map);
1389
1390	/*
1391	 * Ask the machine support to map in the statically mapped devices.
1392	 */
1393	if (mdesc->map_io)
1394		mdesc->map_io();
1395	else
1396		debug_ll_io_init();
1397	fill_pmd_gaps();
1398
1399	/* Reserve fixed i/o space in VMALLOC region */
1400	pci_reserve_io();
1401
1402	/*
1403	 * Finally flush the caches and tlb to ensure that we're in a
1404	 * consistent state wrt the writebuffer.  This also ensures that
1405	 * any write-allocated cache lines in the vector page are written
1406	 * back.  After this point, we can start to touch devices again.
1407	 */
1408	local_flush_tlb_all();
1409	flush_cache_all();
1410
1411	/* Enable asynchronous aborts */
1412	early_abt_enable();
1413}
1414
1415static void __init kmap_init(void)
1416{
1417#ifdef CONFIG_HIGHMEM
1418	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1419		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1420#endif
1421
1422	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
1423			_PAGE_KERNEL_TABLE);
1424}
1425
1426static void __init map_lowmem(void)
1427{
1428	struct memblock_region *reg;
1429#ifdef CONFIG_XIP_KERNEL
1430	phys_addr_t kernel_x_start = round_down(__pa(_sdata), SECTION_SIZE);
1431#else
1432	phys_addr_t kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1433#endif
1434	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1435
1436	/* Map all the lowmem memory banks. */
1437	for_each_memblock(memory, reg) {
1438		phys_addr_t start = reg->base;
1439		phys_addr_t end = start + reg->size;
1440		struct map_desc map;
1441
1442		if (memblock_is_nomap(reg))
1443			continue;
1444
1445		if (end > arm_lowmem_limit)
1446			end = arm_lowmem_limit;
1447		if (start >= end)
1448			break;
1449
1450		if (end < kernel_x_start) {
1451			map.pfn = __phys_to_pfn(start);
1452			map.virtual = __phys_to_virt(start);
1453			map.length = end - start;
1454			map.type = MT_MEMORY_RWX;
1455
1456			create_mapping(&map);
1457		} else if (start >= kernel_x_end) {
1458			map.pfn = __phys_to_pfn(start);
1459			map.virtual = __phys_to_virt(start);
1460			map.length = end - start;
1461			map.type = MT_MEMORY_RW;
1462
1463			create_mapping(&map);
1464		} else {
1465			/* This better cover the entire kernel */
1466			if (start < kernel_x_start) {
1467				map.pfn = __phys_to_pfn(start);
1468				map.virtual = __phys_to_virt(start);
1469				map.length = kernel_x_start - start;
1470				map.type = MT_MEMORY_RW;
1471
1472				create_mapping(&map);
1473			}
1474
1475			map.pfn = __phys_to_pfn(kernel_x_start);
1476			map.virtual = __phys_to_virt(kernel_x_start);
1477			map.length = kernel_x_end - kernel_x_start;
1478			map.type = MT_MEMORY_RWX;
1479
1480			create_mapping(&map);
1481
1482			if (kernel_x_end < end) {
1483				map.pfn = __phys_to_pfn(kernel_x_end);
1484				map.virtual = __phys_to_virt(kernel_x_end);
1485				map.length = end - kernel_x_end;
1486				map.type = MT_MEMORY_RW;
1487
1488				create_mapping(&map);
1489			}
1490		}
1491	}
1492}
1493
1494#ifdef CONFIG_ARM_PV_FIXUP
1495extern unsigned long __atags_pointer;
1496typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata);
1497pgtables_remap lpae_pgtables_remap_asm;
1498
1499/*
1500 * early_paging_init() recreates boot time page table setup, allowing machines
1501 * to switch over to a high (>4G) address space on LPAE systems
1502 */
1503void __init early_paging_init(const struct machine_desc *mdesc)
 
1504{
1505	pgtables_remap *lpae_pgtables_remap;
1506	unsigned long pa_pgd;
1507	unsigned int cr, ttbcr;
1508	long long offset;
1509	void *boot_data;
 
 
1510
1511	if (!mdesc->pv_fixup)
1512		return;
1513
1514	offset = mdesc->pv_fixup();
1515	if (offset == 0)
1516		return;
 
 
 
 
 
 
 
 
 
1517
1518	/*
1519	 * Get the address of the remap function in the 1:1 identity
1520	 * mapping setup by the early page table assembly code.  We
1521	 * must get this prior to the pv update.  The following barrier
1522	 * ensures that this is complete before we fixup any P:V offsets.
1523	 */
1524	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
1525	pa_pgd = __pa(swapper_pg_dir);
1526	boot_data = __va(__atags_pointer);
1527	barrier();
1528
1529	pr_info("Switching physical address space to 0x%08llx\n",
1530		(u64)PHYS_OFFSET + offset);
1531
1532	/* Re-set the phys pfn offset, and the pv offset */
1533	__pv_offset += offset;
1534	__pv_phys_pfn_offset += PFN_DOWN(offset);
1535
1536	/* Run the patch stub to update the constants */
1537	fixup_pv_table(&__pv_table_begin,
1538		(&__pv_table_end - &__pv_table_begin) << 2);
1539
1540	/*
1541	 * We changing not only the virtual to physical mapping, but also
1542	 * the physical addresses used to access memory.  We need to flush
1543	 * all levels of cache in the system with caching disabled to
1544	 * ensure that all data is written back, and nothing is prefetched
1545	 * into the caches.  We also need to prevent the TLB walkers
1546	 * allocating into the caches too.  Note that this is ARMv7 LPAE
1547	 * specific.
1548	 */
1549	cr = get_cr();
1550	set_cr(cr & ~(CR_I | CR_C));
1551	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
1552	asm volatile("mcr p15, 0, %0, c2, c0, 2"
1553		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
1554	flush_cache_all();
 
1555
1556	/*
1557	 * Fixup the page tables - this must be in the idmap region as
1558	 * we need to disable the MMU to do this safely, and hence it
1559	 * needs to be assembly.  It's fairly simple, as we're using the
1560	 * temporary tables setup by the initial assembly code.
1561	 */
1562	lpae_pgtables_remap(offset, pa_pgd, boot_data);
1563
1564	/* Re-enable the caches and cacheable TLB walks */
1565	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
1566	set_cr(cr);
 
1567}
1568
1569#else
1570
1571void __init early_paging_init(const struct machine_desc *mdesc)
 
1572{
1573	long long offset;
1574
1575	if (!mdesc->pv_fixup)
1576		return;
1577
1578	offset = mdesc->pv_fixup();
1579	if (offset == 0)
1580		return;
1581
1582	pr_crit("Physical address space modification is only to support Keystone2.\n");
1583	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
1584	pr_crit("feature. Your kernel may crash now, have a good day.\n");
1585	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1586}
1587
1588#endif
1589
1590static void __init early_fixmap_shutdown(void)
1591{
1592	int i;
1593	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
1594
1595	pte_offset_fixmap = pte_offset_late_fixmap;
1596	pmd_clear(fixmap_pmd(va));
1597	local_flush_tlb_kernel_page(va);
1598
1599	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
1600		pte_t *pte;
1601		struct map_desc map;
1602
1603		map.virtual = fix_to_virt(i);
1604		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
1605
1606		/* Only i/o device mappings are supported ATM */
1607		if (pte_none(*pte) ||
1608		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
1609			continue;
1610
1611		map.pfn = pte_pfn(*pte);
1612		map.type = MT_DEVICE;
1613		map.length = PAGE_SIZE;
1614
1615		create_mapping(&map);
1616	}
1617}
1618
1619/*
1620 * paging_init() sets up the page tables, initialises the zone memory
1621 * maps, and sets up the zero page, bad page and bad page tables.
1622 */
1623void __init paging_init(const struct machine_desc *mdesc)
1624{
1625	void *zero_page;
1626
1627	build_mem_type_table();
1628	prepare_page_table();
1629	map_lowmem();
1630	memblock_set_current_limit(arm_lowmem_limit);
1631	dma_contiguous_remap();
1632	early_fixmap_shutdown();
1633	devicemaps_init(mdesc);
1634	kmap_init();
1635	tcm_init();
1636
1637	top_pmd = pmd_off_k(0xffff0000);
1638
1639	/* allocate the zero page. */
1640	zero_page = early_alloc(PAGE_SIZE);
1641
1642	bootmem_init();
1643
1644	empty_zero_page = virt_to_page(zero_page);
1645	__flush_dcache_page(NULL, empty_zero_page);
1646}
v3.15
   1/*
   2 *  linux/arch/arm/mm/mmu.c
   3 *
   4 *  Copyright (C) 1995-2005 Russell King
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/errno.h>
  13#include <linux/init.h>
  14#include <linux/mman.h>
  15#include <linux/nodemask.h>
  16#include <linux/memblock.h>
  17#include <linux/fs.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sizes.h>
  20
  21#include <asm/cp15.h>
  22#include <asm/cputype.h>
  23#include <asm/sections.h>
  24#include <asm/cachetype.h>
 
  25#include <asm/sections.h>
  26#include <asm/setup.h>
  27#include <asm/smp_plat.h>
  28#include <asm/tlb.h>
  29#include <asm/highmem.h>
  30#include <asm/system_info.h>
  31#include <asm/traps.h>
  32#include <asm/procinfo.h>
  33#include <asm/memory.h>
  34
  35#include <asm/mach/arch.h>
  36#include <asm/mach/map.h>
  37#include <asm/mach/pci.h>
 
  38
 
  39#include "mm.h"
  40#include "tcm.h"
  41
  42/*
  43 * empty_zero_page is a special page that is used for
  44 * zero-initialized data and COW.
  45 */
  46struct page *empty_zero_page;
  47EXPORT_SYMBOL(empty_zero_page);
  48
  49/*
  50 * The pmd table for the upper-most set of pages.
  51 */
  52pmd_t *top_pmd;
  53
 
 
  54#define CPOLICY_UNCACHED	0
  55#define CPOLICY_BUFFERED	1
  56#define CPOLICY_WRITETHROUGH	2
  57#define CPOLICY_WRITEBACK	3
  58#define CPOLICY_WRITEALLOC	4
  59
  60static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  61static unsigned int ecc_mask __initdata = 0;
  62pgprot_t pgprot_user;
  63pgprot_t pgprot_kernel;
  64pgprot_t pgprot_hyp_device;
  65pgprot_t pgprot_s2;
  66pgprot_t pgprot_s2_device;
  67
  68EXPORT_SYMBOL(pgprot_user);
  69EXPORT_SYMBOL(pgprot_kernel);
  70
  71struct cachepolicy {
  72	const char	policy[16];
  73	unsigned int	cr_mask;
  74	pmdval_t	pmd;
  75	pteval_t	pte;
  76	pteval_t	pte_s2;
  77};
  78
  79#ifdef CONFIG_ARM_LPAE
  80#define s2_policy(policy)	policy
  81#else
  82#define s2_policy(policy)	0
  83#endif
  84
  85static struct cachepolicy cache_policies[] __initdata = {
  86	{
  87		.policy		= "uncached",
  88		.cr_mask	= CR_W|CR_C,
  89		.pmd		= PMD_SECT_UNCACHED,
  90		.pte		= L_PTE_MT_UNCACHED,
  91		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
  92	}, {
  93		.policy		= "buffered",
  94		.cr_mask	= CR_C,
  95		.pmd		= PMD_SECT_BUFFERED,
  96		.pte		= L_PTE_MT_BUFFERABLE,
  97		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED),
  98	}, {
  99		.policy		= "writethrough",
 100		.cr_mask	= 0,
 101		.pmd		= PMD_SECT_WT,
 102		.pte		= L_PTE_MT_WRITETHROUGH,
 103		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH),
 104	}, {
 105		.policy		= "writeback",
 106		.cr_mask	= 0,
 107		.pmd		= PMD_SECT_WB,
 108		.pte		= L_PTE_MT_WRITEBACK,
 109		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 110	}, {
 111		.policy		= "writealloc",
 112		.cr_mask	= 0,
 113		.pmd		= PMD_SECT_WBWA,
 114		.pte		= L_PTE_MT_WRITEALLOC,
 115		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK),
 116	}
 117};
 118
 119#ifdef CONFIG_CPU_CP15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120/*
 121 * These are useful for identifying cache coherency
 122 * problems by allowing the cache or the cache and
 123 * writebuffer to be turned off.  (Note: the write
 124 * buffer should not be on and the cache off).
 125 */
 126static int __init early_cachepolicy(char *p)
 127{
 128	int i;
 129
 130	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
 131		int len = strlen(cache_policies[i].policy);
 132
 133		if (memcmp(p, cache_policies[i].policy, len) == 0) {
 134			cachepolicy = i;
 135			cr_alignment &= ~cache_policies[i].cr_mask;
 136			cr_no_alignment &= ~cache_policies[i].cr_mask;
 137			break;
 138		}
 139	}
 140	if (i == ARRAY_SIZE(cache_policies))
 141		printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
 
 
 142	/*
 143	 * This restriction is partly to do with the way we boot; it is
 144	 * unpredictable to have memory mapped using two different sets of
 145	 * memory attributes (shared, type, and cache attribs).  We can not
 146	 * change these attributes once the initial assembly has setup the
 147	 * page tables.
 148	 */
 149	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
 150		printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
 151		cachepolicy = CPOLICY_WRITEBACK;
 
 
 
 
 
 
 
 
 152	}
 153	flush_cache_all();
 154	set_cr(cr_alignment);
 155	return 0;
 156}
 157early_param("cachepolicy", early_cachepolicy);
 158
 159static int __init early_nocache(char *__unused)
 160{
 161	char *p = "buffered";
 162	printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
 163	early_cachepolicy(p);
 164	return 0;
 165}
 166early_param("nocache", early_nocache);
 167
 168static int __init early_nowrite(char *__unused)
 169{
 170	char *p = "uncached";
 171	printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
 172	early_cachepolicy(p);
 173	return 0;
 174}
 175early_param("nowb", early_nowrite);
 176
 177#ifndef CONFIG_ARM_LPAE
 178static int __init early_ecc(char *p)
 179{
 180	if (memcmp(p, "on", 2) == 0)
 181		ecc_mask = PMD_PROTECTION;
 182	else if (memcmp(p, "off", 3) == 0)
 183		ecc_mask = 0;
 184	return 0;
 185}
 186early_param("ecc", early_ecc);
 187#endif
 188
 189static int __init noalign_setup(char *__unused)
 190{
 191	cr_alignment &= ~CR_A;
 192	cr_no_alignment &= ~CR_A;
 193	set_cr(cr_alignment);
 194	return 1;
 195}
 196__setup("noalign", noalign_setup);
 197
 198#ifndef CONFIG_SMP
 199void adjust_cr(unsigned long mask, unsigned long set)
 200{
 201	unsigned long flags;
 202
 203	mask &= ~CR_A;
 204
 205	set &= mask;
 206
 207	local_irq_save(flags);
 208
 209	cr_no_alignment = (cr_no_alignment & ~mask) | set;
 210	cr_alignment = (cr_alignment & ~mask) | set;
 211
 212	set_cr((get_cr() & ~mask) | set);
 213
 214	local_irq_restore(flags);
 215}
 216#endif
 217
 218#else /* ifdef CONFIG_CPU_CP15 */
 219
 220static int __init early_cachepolicy(char *p)
 221{
 222	pr_warning("cachepolicy kernel parameter not supported without cp15\n");
 223}
 224early_param("cachepolicy", early_cachepolicy);
 225
 226static int __init noalign_setup(char *__unused)
 227{
 228	pr_warning("noalign kernel parameter not supported without cp15\n");
 229}
 230__setup("noalign", noalign_setup);
 231
 232#endif /* ifdef CONFIG_CPU_CP15 / else */
 233
 234#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
 235#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
 236#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
 237
 238static struct mem_type mem_types[] = {
 239	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
 240		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
 241				  L_PTE_SHARED,
 242		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) |
 243				  s2_policy(L_PTE_S2_MT_DEV_SHARED) |
 244				  L_PTE_SHARED,
 245		.prot_l1	= PMD_TYPE_TABLE,
 246		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
 247		.domain		= DOMAIN_IO,
 248	},
 249	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
 250		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
 251		.prot_l1	= PMD_TYPE_TABLE,
 252		.prot_sect	= PROT_SECT_DEVICE,
 253		.domain		= DOMAIN_IO,
 254	},
 255	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */
 256		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
 257		.prot_l1	= PMD_TYPE_TABLE,
 258		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
 259		.domain		= DOMAIN_IO,
 260	},
 261	[MT_DEVICE_WC] = {	/* ioremap_wc */
 262		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
 263		.prot_l1	= PMD_TYPE_TABLE,
 264		.prot_sect	= PROT_SECT_DEVICE,
 265		.domain		= DOMAIN_IO,
 266	},
 267	[MT_UNCACHED] = {
 268		.prot_pte	= PROT_PTE_DEVICE,
 269		.prot_l1	= PMD_TYPE_TABLE,
 270		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
 271		.domain		= DOMAIN_IO,
 272	},
 273	[MT_CACHECLEAN] = {
 274		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 275		.domain    = DOMAIN_KERNEL,
 276	},
 277#ifndef CONFIG_ARM_LPAE
 278	[MT_MINICLEAN] = {
 279		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
 280		.domain    = DOMAIN_KERNEL,
 281	},
 282#endif
 283	[MT_LOW_VECTORS] = {
 284		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 285				L_PTE_RDONLY,
 286		.prot_l1   = PMD_TYPE_TABLE,
 287		.domain    = DOMAIN_USER,
 288	},
 289	[MT_HIGH_VECTORS] = {
 290		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 291				L_PTE_USER | L_PTE_RDONLY,
 292		.prot_l1   = PMD_TYPE_TABLE,
 293		.domain    = DOMAIN_USER,
 294	},
 295	[MT_MEMORY_RWX] = {
 296		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 297		.prot_l1   = PMD_TYPE_TABLE,
 298		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 299		.domain    = DOMAIN_KERNEL,
 300	},
 301	[MT_MEMORY_RW] = {
 302		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 303			     L_PTE_XN,
 304		.prot_l1   = PMD_TYPE_TABLE,
 305		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 306		.domain    = DOMAIN_KERNEL,
 307	},
 308	[MT_ROM] = {
 309		.prot_sect = PMD_TYPE_SECT,
 310		.domain    = DOMAIN_KERNEL,
 311	},
 312	[MT_MEMORY_RWX_NONCACHED] = {
 313		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 314				L_PTE_MT_BUFFERABLE,
 315		.prot_l1   = PMD_TYPE_TABLE,
 316		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
 317		.domain    = DOMAIN_KERNEL,
 318	},
 319	[MT_MEMORY_RW_DTCM] = {
 320		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 321				L_PTE_XN,
 322		.prot_l1   = PMD_TYPE_TABLE,
 323		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
 324		.domain    = DOMAIN_KERNEL,
 325	},
 326	[MT_MEMORY_RWX_ITCM] = {
 327		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
 328		.prot_l1   = PMD_TYPE_TABLE,
 329		.domain    = DOMAIN_KERNEL,
 330	},
 331	[MT_MEMORY_RW_SO] = {
 332		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 333				L_PTE_MT_UNCACHED | L_PTE_XN,
 334		.prot_l1   = PMD_TYPE_TABLE,
 335		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
 336				PMD_SECT_UNCACHED | PMD_SECT_XN,
 337		.domain    = DOMAIN_KERNEL,
 338	},
 339	[MT_MEMORY_DMA_READY] = {
 340		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
 341				L_PTE_XN,
 342		.prot_l1   = PMD_TYPE_TABLE,
 343		.domain    = DOMAIN_KERNEL,
 344	},
 345};
 346
 347const struct mem_type *get_mem_type(unsigned int type)
 348{
 349	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
 350}
 351EXPORT_SYMBOL(get_mem_type);
 352
 353#define PTE_SET_FN(_name, pteop) \
 354static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
 355			void *data) \
 356{ \
 357	pte_t pte = pteop(*ptep); \
 358\
 359	set_pte_ext(ptep, pte, 0); \
 360	return 0; \
 361} \
 362
 363#define SET_MEMORY_FN(_name, callback) \
 364int set_memory_##_name(unsigned long addr, int numpages) \
 365{ \
 366	unsigned long start = addr; \
 367	unsigned long size = PAGE_SIZE*numpages; \
 368	unsigned end = start + size; \
 369\
 370	if (start < MODULES_VADDR || start >= MODULES_END) \
 371		return -EINVAL;\
 372\
 373	if (end < MODULES_VADDR || end >= MODULES_END) \
 374		return -EINVAL; \
 375\
 376	apply_to_page_range(&init_mm, start, size, callback, NULL); \
 377	flush_tlb_kernel_range(start, end); \
 378	return 0;\
 379}
 380
 381PTE_SET_FN(ro, pte_wrprotect)
 382PTE_SET_FN(rw, pte_mkwrite)
 383PTE_SET_FN(x, pte_mkexec)
 384PTE_SET_FN(nx, pte_mknexec)
 385
 386SET_MEMORY_FN(ro, pte_set_ro)
 387SET_MEMORY_FN(rw, pte_set_rw)
 388SET_MEMORY_FN(x, pte_set_x)
 389SET_MEMORY_FN(nx, pte_set_nx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390
 391/*
 392 * Adjust the PMD section entries according to the CPU in use.
 393 */
 394static void __init build_mem_type_table(void)
 395{
 396	struct cachepolicy *cp;
 397	unsigned int cr = get_cr();
 398	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
 399	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
 400	int cpu_arch = cpu_architecture();
 401	int i;
 402
 403	if (cpu_arch < CPU_ARCH_ARMv6) {
 404#if defined(CONFIG_CPU_DCACHE_DISABLE)
 405		if (cachepolicy > CPOLICY_BUFFERED)
 406			cachepolicy = CPOLICY_BUFFERED;
 407#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
 408		if (cachepolicy > CPOLICY_WRITETHROUGH)
 409			cachepolicy = CPOLICY_WRITETHROUGH;
 410#endif
 411	}
 412	if (cpu_arch < CPU_ARCH_ARMv5) {
 413		if (cachepolicy >= CPOLICY_WRITEALLOC)
 414			cachepolicy = CPOLICY_WRITEBACK;
 415		ecc_mask = 0;
 416	}
 417	if (is_smp())
 418		cachepolicy = CPOLICY_WRITEALLOC;
 
 
 
 
 
 
 
 
 
 419
 420	/*
 421	 * Strip out features not present on earlier architectures.
 422	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
 423	 * without extended page tables don't have the 'Shared' bit.
 424	 */
 425	if (cpu_arch < CPU_ARCH_ARMv5)
 426		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 427			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
 428	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
 429		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
 430			mem_types[i].prot_sect &= ~PMD_SECT_S;
 431
 432	/*
 433	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
 434	 * "update-able on write" bit on ARM610).  However, Xscale and
 435	 * Xscale3 require this bit to be cleared.
 436	 */
 437	if (cpu_is_xscale() || cpu_is_xsc3()) {
 438		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 439			mem_types[i].prot_sect &= ~PMD_BIT4;
 440			mem_types[i].prot_l1 &= ~PMD_BIT4;
 441		}
 442	} else if (cpu_arch < CPU_ARCH_ARMv6) {
 443		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 444			if (mem_types[i].prot_l1)
 445				mem_types[i].prot_l1 |= PMD_BIT4;
 446			if (mem_types[i].prot_sect)
 447				mem_types[i].prot_sect |= PMD_BIT4;
 448		}
 449	}
 450
 451	/*
 452	 * Mark the device areas according to the CPU/architecture.
 453	 */
 454	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
 455		if (!cpu_is_xsc3()) {
 456			/*
 457			 * Mark device regions on ARMv6+ as execute-never
 458			 * to prevent speculative instruction fetches.
 459			 */
 460			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
 461			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
 462			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
 463			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
 464
 465			/* Also setup NX memory mapping */
 466			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
 467		}
 468		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 469			/*
 470			 * For ARMv7 with TEX remapping,
 471			 * - shared device is SXCB=1100
 472			 * - nonshared device is SXCB=0100
 473			 * - write combine device mem is SXCB=0001
 474			 * (Uncached Normal memory)
 475			 */
 476			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
 477			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
 478			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 479		} else if (cpu_is_xsc3()) {
 480			/*
 481			 * For Xscale3,
 482			 * - shared device is TEXCB=00101
 483			 * - nonshared device is TEXCB=01000
 484			 * - write combine device mem is TEXCB=00100
 485			 * (Inner/Outer Uncacheable in xsc3 parlance)
 486			 */
 487			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
 488			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 489			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 490		} else {
 491			/*
 492			 * For ARMv6 and ARMv7 without TEX remapping,
 493			 * - shared device is TEXCB=00001
 494			 * - nonshared device is TEXCB=01000
 495			 * - write combine device mem is TEXCB=00100
 496			 * (Uncached Normal in ARMv6 parlance).
 497			 */
 498			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
 499			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
 500			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
 501		}
 502	} else {
 503		/*
 504		 * On others, write combining is "Uncached/Buffered"
 505		 */
 506		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
 507	}
 508
 509	/*
 510	 * Now deal with the memory-type mappings
 511	 */
 512	cp = &cache_policies[cachepolicy];
 513	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
 514	s2_pgprot = cp->pte_s2;
 515	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
 516	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
 517
 
 518	/*
 519	 * We don't use domains on ARMv6 (since this causes problems with
 520	 * v6/v7 kernels), so we must use a separate memory type for user
 521	 * r/o, kernel r/w to map the vectors page.
 522	 */
 523#ifndef CONFIG_ARM_LPAE
 524	if (cpu_arch == CPU_ARCH_ARMv6)
 525		vecs_pgprot |= L_PTE_MT_VECTORS;
 
 
 
 
 
 
 
 
 
 526#endif
 527
 528	/*
 529	 * ARMv6 and above have extended page tables.
 530	 */
 531	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
 532#ifndef CONFIG_ARM_LPAE
 533		/*
 534		 * Mark cache clean areas and XIP ROM read only
 535		 * from SVC mode and no access from userspace.
 536		 */
 537		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 538		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 539		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
 540#endif
 541
 542		if (is_smp()) {
 543			/*
 544			 * Mark memory with the "shared" attribute
 545			 * for SMP systems
 546			 */
 
 547			user_pgprot |= L_PTE_SHARED;
 548			kern_pgprot |= L_PTE_SHARED;
 549			vecs_pgprot |= L_PTE_SHARED;
 550			s2_pgprot |= L_PTE_SHARED;
 551			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
 552			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
 553			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
 554			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
 555			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
 556			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
 557			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
 558			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
 559			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
 560			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
 561			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
 562		}
 563	}
 564
 565	/*
 566	 * Non-cacheable Normal - intended for memory areas that must
 567	 * not cause dirty cache line writebacks when used
 568	 */
 569	if (cpu_arch >= CPU_ARCH_ARMv6) {
 570		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
 571			/* Non-cacheable Normal is XCB = 001 */
 572			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 573				PMD_SECT_BUFFERED;
 574		} else {
 575			/* For both ARMv6 and non-TEX-remapping ARMv7 */
 576			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
 577				PMD_SECT_TEX(1);
 578		}
 579	} else {
 580		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
 581	}
 582
 583#ifdef CONFIG_ARM_LPAE
 584	/*
 585	 * Do not generate access flag faults for the kernel mappings.
 586	 */
 587	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 588		mem_types[i].prot_pte |= PTE_EXT_AF;
 589		if (mem_types[i].prot_sect)
 590			mem_types[i].prot_sect |= PMD_SECT_AF;
 591	}
 592	kern_pgprot |= PTE_EXT_AF;
 593	vecs_pgprot |= PTE_EXT_AF;
 
 
 
 
 
 594#endif
 595
 596	for (i = 0; i < 16; i++) {
 597		pteval_t v = pgprot_val(protection_map[i]);
 598		protection_map[i] = __pgprot(v | user_pgprot);
 599	}
 600
 601	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
 602	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
 603
 604	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
 605	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
 606				 L_PTE_DIRTY | kern_pgprot);
 607	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
 608	pgprot_s2_device  = __pgprot(s2_device_pgprot);
 609	pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
 610
 611	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
 612	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
 613	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
 614	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
 615	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
 616	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
 617	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
 618	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
 619	mem_types[MT_ROM].prot_sect |= cp->pmd;
 620
 621	switch (cp->pmd) {
 622	case PMD_SECT_WT:
 623		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
 624		break;
 625	case PMD_SECT_WB:
 626	case PMD_SECT_WBWA:
 627		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
 628		break;
 629	}
 630	pr_info("Memory policy: %sData cache %s\n",
 631		ecc_mask ? "ECC enabled, " : "", cp->policy);
 632
 633	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
 634		struct mem_type *t = &mem_types[i];
 635		if (t->prot_l1)
 636			t->prot_l1 |= PMD_DOMAIN(t->domain);
 637		if (t->prot_sect)
 638			t->prot_sect |= PMD_DOMAIN(t->domain);
 639	}
 640}
 641
 642#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
 643pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 644			      unsigned long size, pgprot_t vma_prot)
 645{
 646	if (!pfn_valid(pfn))
 647		return pgprot_noncached(vma_prot);
 648	else if (file->f_flags & O_SYNC)
 649		return pgprot_writecombine(vma_prot);
 650	return vma_prot;
 651}
 652EXPORT_SYMBOL(phys_mem_access_prot);
 653#endif
 654
 655#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
 656
 657static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
 658{
 659	void *ptr = __va(memblock_alloc(sz, align));
 660	memset(ptr, 0, sz);
 661	return ptr;
 662}
 663
 664static void __init *early_alloc(unsigned long sz)
 665{
 666	return early_alloc_aligned(sz, sz);
 667}
 668
 669static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
 
 
 
 
 
 
 
 
 
 
 670{
 671	if (pmd_none(*pmd)) {
 672		pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
 673		__pmd_populate(pmd, __pa(pte), prot);
 674	}
 675	BUG_ON(pmd_bad(*pmd));
 676	return pte_offset_kernel(pmd, addr);
 677}
 678
 
 
 
 
 
 
 679static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
 680				  unsigned long end, unsigned long pfn,
 681				  const struct mem_type *type)
 
 
 682{
 683	pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
 684	do {
 685		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
 
 686		pfn++;
 687	} while (pte++, addr += PAGE_SIZE, addr != end);
 688}
 689
 690static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
 691			unsigned long end, phys_addr_t phys,
 692			const struct mem_type *type)
 693{
 694	pmd_t *p = pmd;
 695
 696#ifndef CONFIG_ARM_LPAE
 697	/*
 698	 * In classic MMU format, puds and pmds are folded in to
 699	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
 700	 * group of L1 entries making up one logical pointer to
 701	 * an L2 table (2MB), where as PMDs refer to the individual
 702	 * L1 entries (1MB). Hence increment to get the correct
 703	 * offset for odd 1MB sections.
 704	 * (See arch/arm/include/asm/pgtable-2level.h)
 705	 */
 706	if (addr & SECTION_SIZE)
 707		pmd++;
 708#endif
 709	do {
 710		*pmd = __pmd(phys | type->prot_sect);
 711		phys += SECTION_SIZE;
 712	} while (pmd++, addr += SECTION_SIZE, addr != end);
 713
 714	flush_pmd_entry(p);
 715}
 716
 717static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
 718				      unsigned long end, phys_addr_t phys,
 719				      const struct mem_type *type)
 
 720{
 721	pmd_t *pmd = pmd_offset(pud, addr);
 722	unsigned long next;
 723
 724	do {
 725		/*
 726		 * With LPAE, we must loop over to map
 727		 * all the pmds for the given range.
 728		 */
 729		next = pmd_addr_end(addr, end);
 730
 731		/*
 732		 * Try a section mapping - addr, next and phys must all be
 733		 * aligned to a section boundary.
 734		 */
 735		if (type->prot_sect &&
 736				((addr | next | phys) & ~SECTION_MASK) == 0) {
 737			__map_init_section(pmd, addr, next, phys, type);
 738		} else {
 739			alloc_init_pte(pmd, addr, next,
 740						__phys_to_pfn(phys), type);
 741		}
 742
 743		phys += next - addr;
 744
 745	} while (pmd++, addr = next, addr != end);
 746}
 747
 748static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
 749				  unsigned long end, phys_addr_t phys,
 750				  const struct mem_type *type)
 
 751{
 752	pud_t *pud = pud_offset(pgd, addr);
 753	unsigned long next;
 754
 755	do {
 756		next = pud_addr_end(addr, end);
 757		alloc_init_pmd(pud, addr, next, phys, type);
 758		phys += next - addr;
 759	} while (pud++, addr = next, addr != end);
 760}
 761
 762#ifndef CONFIG_ARM_LPAE
 763static void __init create_36bit_mapping(struct map_desc *md,
 764					const struct mem_type *type)
 
 
 765{
 766	unsigned long addr, length, end;
 767	phys_addr_t phys;
 768	pgd_t *pgd;
 769
 770	addr = md->virtual;
 771	phys = __pfn_to_phys(md->pfn);
 772	length = PAGE_ALIGN(md->length);
 773
 774	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
 775		printk(KERN_ERR "MM: CPU does not support supersection "
 776		       "mapping for 0x%08llx at 0x%08lx\n",
 777		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 778		return;
 779	}
 780
 781	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
 782	 *	Since domain assignments can in fact be arbitrary, the
 783	 *	'domain == 0' check below is required to insure that ARMv6
 784	 *	supersections are only allocated for domain 0 regardless
 785	 *	of the actual domain assignments in use.
 786	 */
 787	if (type->domain) {
 788		printk(KERN_ERR "MM: invalid domain in supersection "
 789		       "mapping for 0x%08llx at 0x%08lx\n",
 790		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 791		return;
 792	}
 793
 794	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
 795		printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
 796		       " at 0x%08lx invalid alignment\n",
 797		       (long long)__pfn_to_phys((u64)md->pfn), addr);
 798		return;
 799	}
 800
 801	/*
 802	 * Shift bits [35:32] of address into bits [23:20] of PMD
 803	 * (See ARMv6 spec).
 804	 */
 805	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
 806
 807	pgd = pgd_offset_k(addr);
 808	end = addr + length;
 809	do {
 810		pud_t *pud = pud_offset(pgd, addr);
 811		pmd_t *pmd = pmd_offset(pud, addr);
 812		int i;
 813
 814		for (i = 0; i < 16; i++)
 815			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
 
 816
 817		addr += SUPERSECTION_SIZE;
 818		phys += SUPERSECTION_SIZE;
 819		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
 820	} while (addr != end);
 821}
 822#endif	/* !CONFIG_ARM_LPAE */
 823
 824/*
 825 * Create the page directory entries and any necessary
 826 * page tables for the mapping specified by `md'.  We
 827 * are able to cope here with varying sizes and address
 828 * offsets, and we take full advantage of sections and
 829 * supersections.
 830 */
 831static void __init create_mapping(struct map_desc *md)
 832{
 833	unsigned long addr, length, end;
 834	phys_addr_t phys;
 835	const struct mem_type *type;
 836	pgd_t *pgd;
 837
 838	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
 839		printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
 840		       " at 0x%08lx in user region\n",
 841		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 842		return;
 843	}
 844
 845	if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
 846	    md->virtual >= PAGE_OFFSET &&
 847	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
 848		printk(KERN_WARNING "BUG: mapping for 0x%08llx"
 849		       " at 0x%08lx out of vmalloc space\n",
 850		       (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
 851	}
 852
 853	type = &mem_types[md->type];
 854
 855#ifndef CONFIG_ARM_LPAE
 856	/*
 857	 * Catch 36-bit addresses
 858	 */
 859	if (md->pfn >= 0x100000) {
 860		create_36bit_mapping(md, type);
 861		return;
 862	}
 863#endif
 864
 865	addr = md->virtual & PAGE_MASK;
 866	phys = __pfn_to_phys(md->pfn);
 867	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 868
 869	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
 870		printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
 871		       "be mapped using pages, ignoring.\n",
 872		       (long long)__pfn_to_phys(md->pfn), addr);
 873		return;
 874	}
 875
 876	pgd = pgd_offset_k(addr);
 877	end = addr + length;
 878	do {
 879		unsigned long next = pgd_addr_end(addr, end);
 880
 881		alloc_init_pud(pgd, addr, next, phys, type);
 882
 883		phys += next - addr;
 884		addr = next;
 885	} while (pgd++, addr != end);
 886}
 887
 888/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889 * Create the architecture specific mappings
 890 */
 891void __init iotable_init(struct map_desc *io_desc, int nr)
 892{
 893	struct map_desc *md;
 894	struct vm_struct *vm;
 895	struct static_vm *svm;
 896
 897	if (!nr)
 898		return;
 899
 900	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
 901
 902	for (md = io_desc; nr; md++, nr--) {
 903		create_mapping(md);
 904
 905		vm = &svm->vm;
 906		vm->addr = (void *)(md->virtual & PAGE_MASK);
 907		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
 908		vm->phys_addr = __pfn_to_phys(md->pfn);
 909		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
 910		vm->flags |= VM_ARM_MTYPE(md->type);
 911		vm->caller = iotable_init;
 912		add_static_vm_early(svm++);
 913	}
 914}
 915
 916void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
 917				  void *caller)
 918{
 919	struct vm_struct *vm;
 920	struct static_vm *svm;
 921
 922	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
 923
 924	vm = &svm->vm;
 925	vm->addr = (void *)addr;
 926	vm->size = size;
 927	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
 928	vm->caller = caller;
 929	add_static_vm_early(svm);
 930}
 931
 932#ifndef CONFIG_ARM_LPAE
 933
 934/*
 935 * The Linux PMD is made of two consecutive section entries covering 2MB
 936 * (see definition in include/asm/pgtable-2level.h).  However a call to
 937 * create_mapping() may optimize static mappings by using individual
 938 * 1MB section mappings.  This leaves the actual PMD potentially half
 939 * initialized if the top or bottom section entry isn't used, leaving it
 940 * open to problems if a subsequent ioremap() or vmalloc() tries to use
 941 * the virtual space left free by that unused section entry.
 942 *
 943 * Let's avoid the issue by inserting dummy vm entries covering the unused
 944 * PMD halves once the static mappings are in place.
 945 */
 946
 947static void __init pmd_empty_section_gap(unsigned long addr)
 948{
 949	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
 950}
 951
 952static void __init fill_pmd_gaps(void)
 953{
 954	struct static_vm *svm;
 955	struct vm_struct *vm;
 956	unsigned long addr, next = 0;
 957	pmd_t *pmd;
 958
 959	list_for_each_entry(svm, &static_vmlist, list) {
 960		vm = &svm->vm;
 961		addr = (unsigned long)vm->addr;
 962		if (addr < next)
 963			continue;
 964
 965		/*
 966		 * Check if this vm starts on an odd section boundary.
 967		 * If so and the first section entry for this PMD is free
 968		 * then we block the corresponding virtual address.
 969		 */
 970		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 971			pmd = pmd_off_k(addr);
 972			if (pmd_none(*pmd))
 973				pmd_empty_section_gap(addr & PMD_MASK);
 974		}
 975
 976		/*
 977		 * Then check if this vm ends on an odd section boundary.
 978		 * If so and the second section entry for this PMD is empty
 979		 * then we block the corresponding virtual address.
 980		 */
 981		addr += vm->size;
 982		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
 983			pmd = pmd_off_k(addr) + 1;
 984			if (pmd_none(*pmd))
 985				pmd_empty_section_gap(addr);
 986		}
 987
 988		/* no need to look at any vm entry until we hit the next PMD */
 989		next = (addr + PMD_SIZE - 1) & PMD_MASK;
 990	}
 991}
 992
 993#else
 994#define fill_pmd_gaps() do { } while (0)
 995#endif
 996
 997#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
 998static void __init pci_reserve_io(void)
 999{
1000	struct static_vm *svm;
1001
1002	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1003	if (svm)
1004		return;
1005
1006	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1007}
1008#else
1009#define pci_reserve_io() do { } while (0)
1010#endif
1011
1012#ifdef CONFIG_DEBUG_LL
1013void __init debug_ll_io_init(void)
1014{
1015	struct map_desc map;
1016
1017	debug_ll_addr(&map.pfn, &map.virtual);
1018	if (!map.pfn || !map.virtual)
1019		return;
1020	map.pfn = __phys_to_pfn(map.pfn);
1021	map.virtual &= PAGE_MASK;
1022	map.length = PAGE_SIZE;
1023	map.type = MT_DEVICE;
1024	iotable_init(&map, 1);
1025}
1026#endif
1027
1028static void * __initdata vmalloc_min =
1029	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1030
1031/*
1032 * vmalloc=size forces the vmalloc area to be exactly 'size'
1033 * bytes. This can be used to increase (or decrease) the vmalloc
1034 * area - the default is 240m.
1035 */
1036static int __init early_vmalloc(char *arg)
1037{
1038	unsigned long vmalloc_reserve = memparse(arg, NULL);
1039
1040	if (vmalloc_reserve < SZ_16M) {
1041		vmalloc_reserve = SZ_16M;
1042		printk(KERN_WARNING
1043			"vmalloc area too small, limiting to %luMB\n",
1044			vmalloc_reserve >> 20);
1045	}
1046
1047	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1048		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1049		printk(KERN_WARNING
1050			"vmalloc area is too big, limiting to %luMB\n",
1051			vmalloc_reserve >> 20);
1052	}
1053
1054	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1055	return 0;
1056}
1057early_param("vmalloc", early_vmalloc);
1058
1059phys_addr_t arm_lowmem_limit __initdata = 0;
1060
1061void __init sanity_check_meminfo(void)
1062{
1063	phys_addr_t memblock_limit = 0;
1064	int i, j, highmem = 0;
1065	phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
 
 
1066
1067	for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1068		struct membank *bank = &meminfo.bank[j];
1069		phys_addr_t size_limit;
1070
1071		*bank = meminfo.bank[i];
1072		size_limit = bank->size;
1073
1074		if (bank->start >= vmalloc_limit)
1075			highmem = 1;
1076		else
1077			size_limit = vmalloc_limit - bank->start;
1078
1079		bank->highmem = highmem;
1080
1081#ifdef CONFIG_HIGHMEM
1082		/*
1083		 * Split those memory banks which are partially overlapping
1084		 * the vmalloc area greatly simplifying things later.
1085		 */
1086		if (!highmem && bank->size > size_limit) {
1087			if (meminfo.nr_banks >= NR_BANKS) {
1088				printk(KERN_CRIT "NR_BANKS too low, "
1089						 "ignoring high memory\n");
1090			} else {
1091				memmove(bank + 1, bank,
1092					(meminfo.nr_banks - i) * sizeof(*bank));
1093				meminfo.nr_banks++;
1094				i++;
1095				bank[1].size -= size_limit;
1096				bank[1].start = vmalloc_limit;
1097				bank[1].highmem = highmem = 1;
1098				j++;
1099			}
1100			bank->size = size_limit;
1101		}
1102#else
1103		/*
1104		 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1105		 */
1106		if (highmem) {
1107			printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1108			       "(!CONFIG_HIGHMEM).\n",
1109			       (unsigned long long)bank->start,
1110			       (unsigned long long)bank->start + bank->size - 1);
1111			continue;
1112		}
1113
1114		/*
1115		 * Check whether this memory bank would partially overlap
1116		 * the vmalloc area.
1117		 */
1118		if (bank->size > size_limit) {
1119			printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1120			       "to -%.8llx (vmalloc region overlap).\n",
1121			       (unsigned long long)bank->start,
1122			       (unsigned long long)bank->start + bank->size - 1,
1123			       (unsigned long long)bank->start + size_limit - 1);
1124			bank->size = size_limit;
1125		}
1126#endif
1127		if (!bank->highmem) {
1128			phys_addr_t bank_end = bank->start + bank->size;
1129
1130			if (bank_end > arm_lowmem_limit)
1131				arm_lowmem_limit = bank_end;
 
 
 
 
 
1132
1133			/*
1134			 * Find the first non-section-aligned page, and point
1135			 * memblock_limit at it. This relies on rounding the
1136			 * limit down to be section-aligned, which happens at
1137			 * the end of this function.
1138			 *
1139			 * With this algorithm, the start or end of almost any
1140			 * bank can be non-section-aligned. The only exception
1141			 * is that the start of the bank 0 must be section-
1142			 * aligned, since otherwise memory would need to be
1143			 * allocated when mapping the start of bank 0, which
1144			 * occurs before any free memory is mapped.
1145			 */
1146			if (!memblock_limit) {
1147				if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1148					memblock_limit = bank->start;
1149				else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1150					memblock_limit = bank_end;
1151			}
 
1152		}
1153		j++;
1154	}
1155#ifdef CONFIG_HIGHMEM
1156	if (highmem) {
1157		const char *reason = NULL;
1158
1159		if (cache_is_vipt_aliasing()) {
1160			/*
1161			 * Interactions between kmap and other mappings
1162			 * make highmem support with aliasing VIPT caches
1163			 * rather difficult.
1164			 */
1165			reason = "with VIPT aliasing cache";
1166		}
1167		if (reason) {
1168			printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1169				reason);
1170			while (j > 0 && meminfo.bank[j - 1].highmem)
1171				j--;
1172		}
1173	}
1174#endif
1175	meminfo.nr_banks = j;
1176	high_memory = __va(arm_lowmem_limit - 1) + 1;
1177
1178	/*
1179	 * Round the memblock limit down to a section size.  This
1180	 * helps to ensure that we will allocate memory from the
1181	 * last full section, which should be mapped.
1182	 */
1183	if (memblock_limit)
1184		memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1185	if (!memblock_limit)
1186		memblock_limit = arm_lowmem_limit;
1187
1188	memblock_set_current_limit(memblock_limit);
1189}
1190
1191static inline void prepare_page_table(void)
1192{
1193	unsigned long addr;
1194	phys_addr_t end;
1195
1196	/*
1197	 * Clear out all the mappings below the kernel image.
1198	 */
1199	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1200		pmd_clear(pmd_off_k(addr));
1201
1202#ifdef CONFIG_XIP_KERNEL
1203	/* The XIP kernel is mapped in the module area -- skip over it */
1204	addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1205#endif
1206	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1207		pmd_clear(pmd_off_k(addr));
1208
1209	/*
1210	 * Find the end of the first block of lowmem.
1211	 */
1212	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1213	if (end >= arm_lowmem_limit)
1214		end = arm_lowmem_limit;
1215
1216	/*
1217	 * Clear out all the kernel space mappings, except for the first
1218	 * memory bank, up to the vmalloc region.
1219	 */
1220	for (addr = __phys_to_virt(end);
1221	     addr < VMALLOC_START; addr += PMD_SIZE)
1222		pmd_clear(pmd_off_k(addr));
1223}
1224
1225#ifdef CONFIG_ARM_LPAE
1226/* the first page is reserved for pgd */
1227#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
1228				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1229#else
1230#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
1231#endif
1232
1233/*
1234 * Reserve the special regions of memory
1235 */
1236void __init arm_mm_memblock_reserve(void)
1237{
1238	/*
1239	 * Reserve the page tables.  These are already in use,
1240	 * and can only be in node 0.
1241	 */
1242	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1243
1244#ifdef CONFIG_SA1111
1245	/*
1246	 * Because of the SA1111 DMA bug, we want to preserve our
1247	 * precious DMA-able memory...
1248	 */
1249	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1250#endif
1251}
1252
1253/*
1254 * Set up the device mappings.  Since we clear out the page tables for all
1255 * mappings above VMALLOC_START, we will remove any debug device mappings.
1256 * This means you have to be careful how you debug this function, or any
1257 * called function.  This means you can't use any function or debugging
1258 * method which may touch any device, otherwise the kernel _will_ crash.
1259 */
1260static void __init devicemaps_init(const struct machine_desc *mdesc)
1261{
1262	struct map_desc map;
1263	unsigned long addr;
1264	void *vectors;
1265
1266	/*
1267	 * Allocate the vector page early.
1268	 */
1269	vectors = early_alloc(PAGE_SIZE * 2);
1270
1271	early_trap_init(vectors);
1272
1273	for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
 
 
 
1274		pmd_clear(pmd_off_k(addr));
1275
1276	/*
1277	 * Map the kernel if it is XIP.
1278	 * It is always first in the modulearea.
1279	 */
1280#ifdef CONFIG_XIP_KERNEL
1281	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1282	map.virtual = MODULES_VADDR;
1283	map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1284	map.type = MT_ROM;
1285	create_mapping(&map);
1286#endif
1287
1288	/*
1289	 * Map the cache flushing regions.
1290	 */
1291#ifdef FLUSH_BASE
1292	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1293	map.virtual = FLUSH_BASE;
1294	map.length = SZ_1M;
1295	map.type = MT_CACHECLEAN;
1296	create_mapping(&map);
1297#endif
1298#ifdef FLUSH_BASE_MINICACHE
1299	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1300	map.virtual = FLUSH_BASE_MINICACHE;
1301	map.length = SZ_1M;
1302	map.type = MT_MINICLEAN;
1303	create_mapping(&map);
1304#endif
1305
1306	/*
1307	 * Create a mapping for the machine vectors at the high-vectors
1308	 * location (0xffff0000).  If we aren't using high-vectors, also
1309	 * create a mapping at the low-vectors virtual address.
1310	 */
1311	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1312	map.virtual = 0xffff0000;
1313	map.length = PAGE_SIZE;
1314#ifdef CONFIG_KUSER_HELPERS
1315	map.type = MT_HIGH_VECTORS;
1316#else
1317	map.type = MT_LOW_VECTORS;
1318#endif
1319	create_mapping(&map);
1320
1321	if (!vectors_high()) {
1322		map.virtual = 0;
1323		map.length = PAGE_SIZE * 2;
1324		map.type = MT_LOW_VECTORS;
1325		create_mapping(&map);
1326	}
1327
1328	/* Now create a kernel read-only mapping */
1329	map.pfn += 1;
1330	map.virtual = 0xffff0000 + PAGE_SIZE;
1331	map.length = PAGE_SIZE;
1332	map.type = MT_LOW_VECTORS;
1333	create_mapping(&map);
1334
1335	/*
1336	 * Ask the machine support to map in the statically mapped devices.
1337	 */
1338	if (mdesc->map_io)
1339		mdesc->map_io();
1340	else
1341		debug_ll_io_init();
1342	fill_pmd_gaps();
1343
1344	/* Reserve fixed i/o space in VMALLOC region */
1345	pci_reserve_io();
1346
1347	/*
1348	 * Finally flush the caches and tlb to ensure that we're in a
1349	 * consistent state wrt the writebuffer.  This also ensures that
1350	 * any write-allocated cache lines in the vector page are written
1351	 * back.  After this point, we can start to touch devices again.
1352	 */
1353	local_flush_tlb_all();
1354	flush_cache_all();
 
 
 
1355}
1356
1357static void __init kmap_init(void)
1358{
1359#ifdef CONFIG_HIGHMEM
1360	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1361		PKMAP_BASE, _PAGE_KERNEL_TABLE);
1362#endif
 
 
 
1363}
1364
1365static void __init map_lowmem(void)
1366{
1367	struct memblock_region *reg;
1368	unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1369	unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
 
 
 
 
1370
1371	/* Map all the lowmem memory banks. */
1372	for_each_memblock(memory, reg) {
1373		phys_addr_t start = reg->base;
1374		phys_addr_t end = start + reg->size;
1375		struct map_desc map;
1376
 
 
 
1377		if (end > arm_lowmem_limit)
1378			end = arm_lowmem_limit;
1379		if (start >= end)
1380			break;
1381
1382		if (end < kernel_x_start || start >= kernel_x_end) {
1383			map.pfn = __phys_to_pfn(start);
1384			map.virtual = __phys_to_virt(start);
1385			map.length = end - start;
1386			map.type = MT_MEMORY_RWX;
1387
1388			create_mapping(&map);
 
 
 
 
 
 
 
1389		} else {
1390			/* This better cover the entire kernel */
1391			if (start < kernel_x_start) {
1392				map.pfn = __phys_to_pfn(start);
1393				map.virtual = __phys_to_virt(start);
1394				map.length = kernel_x_start - start;
1395				map.type = MT_MEMORY_RW;
1396
1397				create_mapping(&map);
1398			}
1399
1400			map.pfn = __phys_to_pfn(kernel_x_start);
1401			map.virtual = __phys_to_virt(kernel_x_start);
1402			map.length = kernel_x_end - kernel_x_start;
1403			map.type = MT_MEMORY_RWX;
1404
1405			create_mapping(&map);
1406
1407			if (kernel_x_end < end) {
1408				map.pfn = __phys_to_pfn(kernel_x_end);
1409				map.virtual = __phys_to_virt(kernel_x_end);
1410				map.length = end - kernel_x_end;
1411				map.type = MT_MEMORY_RW;
1412
1413				create_mapping(&map);
1414			}
1415		}
1416	}
1417}
1418
1419#ifdef CONFIG_ARM_LPAE
 
 
 
 
1420/*
1421 * early_paging_init() recreates boot time page table setup, allowing machines
1422 * to switch over to a high (>4G) address space on LPAE systems
1423 */
1424void __init early_paging_init(const struct machine_desc *mdesc,
1425			      struct proc_info_list *procinfo)
1426{
1427	pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1428	unsigned long map_start, map_end;
1429	pgd_t *pgd0, *pgdk;
1430	pud_t *pud0, *pudk, *pud_start;
1431	pmd_t *pmd0, *pmdk;
1432	phys_addr_t phys;
1433	int i;
1434
1435	if (!(mdesc->init_meminfo))
1436		return;
1437
1438	/* remap kernel code and data */
1439	map_start = init_mm.start_code;
1440	map_end   = init_mm.brk;
1441
1442	/* get a handle on things... */
1443	pgd0 = pgd_offset_k(0);
1444	pud_start = pud0 = pud_offset(pgd0, 0);
1445	pmd0 = pmd_offset(pud0, 0);
1446
1447	pgdk = pgd_offset_k(map_start);
1448	pudk = pud_offset(pgdk, map_start);
1449	pmdk = pmd_offset(pudk, map_start);
1450
1451	mdesc->init_meminfo();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1452
1453	/* Run the patch stub to update the constants */
1454	fixup_pv_table(&__pv_table_begin,
1455		(&__pv_table_end - &__pv_table_begin) << 2);
1456
1457	/*
1458	 * Cache cleaning operations for self-modifying code
1459	 * We should clean the entries by MVA but running a
1460	 * for loop over every pv_table entry pointer would
1461	 * just complicate the code.
1462	 */
1463	flush_cache_louis();
1464	dsb();
1465	isb();
1466
1467	/* remap level 1 table */
1468	for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1469		set_pud(pud0,
1470			__pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1471		pmd0 += PTRS_PER_PMD;
1472	}
1473
1474	/* remap pmds for kernel mapping */
1475	phys = __pa(map_start) & PMD_MASK;
1476	do {
1477		*pmdk++ = __pmd(phys | pmdprot);
1478		phys += PMD_SIZE;
1479	} while (phys < map_end);
1480
1481	flush_cache_all();
1482	cpu_switch_mm(pgd0, &init_mm);
1483	cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1484	local_flush_bp_all();
1485	local_flush_tlb_all();
1486}
1487
1488#else
1489
1490void __init early_paging_init(const struct machine_desc *mdesc,
1491			      struct proc_info_list *procinfo)
1492{
1493	if (mdesc->init_meminfo)
1494		mdesc->init_meminfo();
 
 
 
 
 
 
 
 
 
 
 
1495}
1496
1497#endif
1498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1499/*
1500 * paging_init() sets up the page tables, initialises the zone memory
1501 * maps, and sets up the zero page, bad page and bad page tables.
1502 */
1503void __init paging_init(const struct machine_desc *mdesc)
1504{
1505	void *zero_page;
1506
1507	build_mem_type_table();
1508	prepare_page_table();
1509	map_lowmem();
 
1510	dma_contiguous_remap();
 
1511	devicemaps_init(mdesc);
1512	kmap_init();
1513	tcm_init();
1514
1515	top_pmd = pmd_off_k(0xffff0000);
1516
1517	/* allocate the zero page. */
1518	zero_page = early_alloc(PAGE_SIZE);
1519
1520	bootmem_init();
1521
1522	empty_zero_page = virt_to_page(zero_page);
1523	__flush_dcache_page(NULL, empty_zero_page);
1524}